WO2016000456A1 - 一种轻质油的制备方法 - Google Patents

一种轻质油的制备方法 Download PDF

Info

Publication number
WO2016000456A1
WO2016000456A1 PCT/CN2015/072996 CN2015072996W WO2016000456A1 WO 2016000456 A1 WO2016000456 A1 WO 2016000456A1 CN 2015072996 W CN2015072996 W CN 2015072996W WO 2016000456 A1 WO2016000456 A1 WO 2016000456A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
temperature
gas
catalytic cracking
light oil
Prior art date
Application number
PCT/CN2015/072996
Other languages
English (en)
French (fr)
Inventor
曹志德
张春伟
张善印
彭红娜
Original Assignee
湖南万通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南万通科技有限公司 filed Critical 湖南万通科技有限公司
Priority to CA2953662A priority Critical patent/CA2953662C/en
Priority to RU2017101965A priority patent/RU2662218C1/ru
Publication of WO2016000456A1 publication Critical patent/WO2016000456A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G51/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
    • C10G51/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
    • C10G51/04Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only including only thermal and catalytic cracking steps

Definitions

  • the invention relates to the technical field of refining chemicals, in particular to a method for preparing a light oil.
  • Heavy oil refers to crude oil with high content of asphalt and colloid and high viscosity, and has high viscosity and high freezing point. Due to the high viscosity and high freezing point characteristics of heavy oil, it has encountered some technical problems in application. For example, heavy metals in heavy oil will rapidly reduce the effect of catalyst in the refining process, and the amount of residual oil in heavy oil refining Large, high levels of refractory components such as sulfur, nitrogen, metals, and acids in the residue increase the difficulty of refining heavy oil. Therefore, the heavy oil is reformed, and the preparation of light oil with heavy oil has become the focus of attention.
  • the methods for refining light oil by using heavy oil mainly include solvent deasphalting process, visbreaking process, delayed coking process, catalytic cracking process and hydrogenation process.
  • solvent deasphalting process visbreaking process
  • delayed coking process delayed coking process
  • catalytic cracking process catalytic cracking process
  • hydrogenation process is complicated and the investment in the device is too high.
  • many researchers have proposed some combination processes in recent years. For example, the Chinese patent application No.
  • 00124904.5 discloses a combination method of shallow solvent deasphalting and delayed coking, and the pre-heated deasphalted raw material and solvent are introduced into the extraction tower, and the solvent-containing deoiled asphalt solution is extracted from the extraction tower.
  • some or all of the deasphalted oil after recovery of the solvent and optional conventional coking feedstock are preheated into the convection section of the delayed coking furnace, and then heated into the radiant section of the furnace, and then enter the coke drum for coking reaction, and the coke remains.
  • the coking gas is separated to obtain coking gas, coking gasoline, coking diesel oil and coking gas oil.
  • the light oil obtained by the combination of the deasphalting process and the delayed coking process provided by the prior art has a low yield, and the yield thereof is in the range of 73% to 74%.
  • an object of the present invention is to provide a method for preparing a light oil, and the method for preparing a light oil provided by the present invention has a high yield.
  • the invention provides a preparation method of a light oil, comprising the following steps:
  • the mass ratio of the heavy oil in the step 1) to the catalyst in the step 2) is (24 to 48):1.
  • the temperature of the visbreaking in the step 1) is 240 ° C ⁇ 270 ° C;
  • the pressure for visbreaking in the step 1) is from -0.5 KPa to 1.5 KPa.
  • the time for visbreaking in the step 1) is from 1.5 hours to 3 hours.
  • the stirring speed in the step 1) is 30 rpm to 50 rpm;
  • the stirring speed in the step 2) is from 30 rpm to 50 rpm.
  • the catalyst in the step 2) is a cobalt naphthenate catalyst
  • the cobalt naphthenate catalyst in parts by weight, comprises:
  • the temperature of the catalytic cracking in the step 2) is 440 ° C to 470 ° C.
  • the pressure of catalytic cracking in the step 2) is from -0.5 KPa to 1.5 KPa.
  • the catalytic cracking time in the step 2) is from 1.5 hours to 3 hours.
  • the method further comprises:
  • the obtained catalytic cracking product is cooled to obtain a light oil, and the cooling temperature is 40 ° C to 50 ° C.
  • the invention provides a preparation method of a light oil, comprising the following steps: 1) visbreaking heavy oil under the action of stirring to obtain an intermediate product; 2) stirring and catalyst preparation The intermediate product was subjected to catalytic cracking to obtain a light oil.
  • the invention combines visbreaking and catalytic cracking processes to prepare a light oil.
  • the visbreaking and catalytic cracking are carried out under stirring conditions, and the reaction materials are dispersed by stirring to increase the droplets of the reaction material.
  • the evaporation area which in turn increases the surface curvature of the droplets, thereby increasing the vapor pressure of the droplets, which increases the amount of gasification of the reaction material during visbreaking and catalytic cracking, and reduces the amount of petroleum coke produced.
  • the yield of the light oil preparation method provided by the present invention is improved; therefore, the method for preparing the light oil provided by the present invention has a high yield.
  • the experimental results show that the yield of the light oil preparation method provided by the present invention is 75% to 84%.
  • the present invention adopts a combination of visbreaking and catalytic cracking to prepare a light oil, which can reduce the damage of the heavy oil to the equipment during the preparation of the light oil.
  • FIG. 1 is a flow chart showing a method for preparing a light oil according to Examples 4 to 6 of the present invention.
  • the invention provides a preparation method of a light oil, comprising the following steps:
  • the invention combines visbreaking and catalytic cracking processes to prepare a light oil, the visbreaking Both the catalytic cracking and the catalytic cracking are carried out under stirring conditions, and the reaction materials are dispersed by stirring, thereby increasing the evaporation area of the droplets of the reaction material, thereby increasing the surface curvature of the droplets, thereby increasing the vapor of the droplets.
  • Pressure which increases the amount of gasification of the reaction material in the visbreaking and catalytic cracking process, reduces the amount of petroleum coke produced, thereby improving the yield of the light oil preparation method provided by the present invention; therefore, the light provided by the present invention
  • the preparation method of the quality oil has a high yield.
  • the present invention adopts a combination of visbreaking and catalytic cracking to prepare a light oil, which can reduce the damage of the heavy oil to the equipment during the preparation of the light oil.
  • the heavy oil is visbroken under the action of stirring to obtain an intermediate product.
  • the stirring speed at the time of visbreaking is preferably from 30 rpm to 50 rpm, more preferably from 35 rpm to 45 rpm, and most preferably 40 rpm.
  • the invention disperses the heavy oil by stirring, increases the evaporation area of the heavy oil droplets, thereby increasing the vapor pressure of the heavy oil droplets, so that the intermediate product has more gas content and less petroleum coke content, thereby making
  • the preparation method of the light oil provided by the invention has a high yield.
  • the temperature of the visbreaking is preferably from 240 ° C to 270 ° C, more preferably from 250 ° C to 260 ° C.
  • the present invention has no particular limitation on the heating device for achieving the visbreaking to a desired temperature, and a heating device known to those skilled in the art may be used.
  • the heating device may be a flue gas furnace.
  • the present invention preferably converts the energy remaining after heating the visbreaking into new thermal energy to enhance the energy utilization of the light oil preparation process provided by the present invention.
  • the medium temperature flue gas becomes a medium temperature waste flue gas, and the medium temperature waste flue gas can be flowed into the heat exchanger and the cold air.
  • Heat exchange the obtained hot air flows into the flue gas furnace for combustion support;
  • the temperature of the medium temperature flue gas is preferably 500 ° C to 700 ° C, more preferably 550 ° C to 650 ° C; in the present invention, The temperature of the intermediate temperature waste flue gas is preferably from 200 ° C to 350 ° C, more preferably from 200 ° C to 300 ° C.
  • the present invention preferably recovers the exhaust gas generated during the use of energy, so that the method for preparing the light oil provided by the present invention is environmentally friendly.
  • the normal temperature waste flue gas obtained by exchanging heat between the medium temperature waste flue gas and the cold air may be recovered in a device for off-selling and sulfur removal; in the present invention, the normal temperature waste The temperature of the flue gas is preferably from 20 ° C to 30 ° C, more preferably from 23 ° C to 28 ° C.
  • the pressure of the visbreaking is preferably from -0.5 KPa to 1.5 KPa, more preferably From -0.8 KPa to 1.2 KPa, most preferably 1 KPa.
  • the visbreaking time is preferably from 1.5 hours to 3 hours, more preferably from 2 hours to 2.5 hours.
  • the viscous oil is preferably preheated in the present invention before the viscous oil is subjected to visbreaking.
  • the preheating temperature of the heavy oil is preferably from 50 ° C to 95 ° C, more preferably from 60 ° C to 80 ° C, and most preferably from 65 ° C to 75 ° C.
  • the present invention is not particularly limited to the kind and source of the heavy oil, and a heavy oil well known to those skilled in the art can be used, which is commercially available.
  • the viscosity of the heavy oil is preferably from 100 mPa ⁇ s to 1000 mPa ⁇ s, more preferably from 300 mPa ⁇ s to 800 mPa ⁇ s, and most preferably from 500 mPa ⁇ s to 600 mPa ⁇ s.
  • the heavy oil produces medium temperature oil and gas during visbreaking, and the temperature of the medium temperature oil and gas is preferably from 240 ° C to 270 ° C, more preferably from 250 ° C to 260 ° C.
  • the present invention preferably collects the intermediate temperature oil and gas to reduce foam in the intermediate product of the above technical solution.
  • the present invention is subjected to catalytic cracking of the intermediate product by stirring and a catalyst to obtain a light oil.
  • the present invention preferably incorporates the catalyst in the visbreaking process described in the above technical solution in order to give the catalyst a better effect.
  • the catalyst and the heavy oil are preferably visbroken by stirring to obtain an intermediate product.
  • the stirring speed at the time of catalytic cracking is preferably from 30 rpm to 50 rpm, more preferably from 35 rpm to 45 rpm, and most preferably 40 rpm.
  • the present invention disperses the liquid in the above intermediate product by stirring, increases the evaporation area of the liquid droplets in the intermediate product, thereby increasing the vapor pressure of the liquid droplets in the intermediate product, so that the catalytic cracking process is generated. More oil and gas, thereby reducing the amount of petroleum coke produced, further improving the yield of the light oil preparation method provided by the present invention.
  • the temperature of the catalytic cracking is preferably 440 ° C to 470 ° C, and more preferably 450 ° C to 460 ° C.
  • the present invention is not particularly limited to the heating device for causing the catalytic cracking to reach a desired temperature, and the heating device known to those skilled in the art may be used.
  • the heating device may be a flue gas furnace.
  • the invention can adjust the temperature of the flue gas furnace to use the flue gas of different temperatures for heating.
  • the energy remaining to heat the catalytic cracking is preferably used as the energy for heating the above visbreaking, so that the present invention can utilize the heat energy reasonably in the process of preparing the light oil.
  • the catalytic cracking is heated by high temperature flue gas. Thereafter, the high-temperature flue gas becomes a high-temperature waste flue gas, and the visbreaking can be heated by using the residual heat of the high-temperature waste flue gas; in the present invention, the temperature of the high-temperature flue gas is preferably 700 ° C. 1200 ° C, more preferably 800 ° C to 1100 ° C; in the present invention, the temperature of the high-temperature waste flue gas is preferably from 500 ° C to 800 ° C, more preferably from 600 ° C to 700 ° C.
  • the pressure of the catalytic cracking is preferably from -0.5 KPa to 1.5 KPa, more preferably from -0.8 KPa to 1.2 KPa, and most preferably 1 KPa.
  • the catalytic cracking time is preferably from 1.5 hours to 3 hours, more preferably from 2 hours to 2.5 hours.
  • the present invention is not particularly limited in the kind and source of the catalyst, and is catalyzed by a person skilled in the art for catalytic cracking, which is commercially available or can be prepared.
  • the catalyst is preferably a cobalt naphthenate catalyst, and the cobalt naphthenate catalyst comprises, by weight, 20 parts to 35 parts of cobalt naphthenate, and 30 parts to 40 parts of ethylene glycol.
  • the invention adopts the cobalt naphthenate catalyst for catalytic cracking, and the catalyst has a good catalytic effect, and can further improve the yield of the light oil preparation method provided by the invention.
  • the cobalt naphthenate catalyst is a catalyst disclosed in Chinese Patent Application No. 200510126073.6, which is prepared by the method disclosed in Chinese Patent Application No. 200510126073.6.
  • the high temperature oil and gas is generated in the catalytic cracking process, and the present invention cools the high temperature oil and gas to obtain a light oil;
  • the temperature of the high temperature oil and gas is preferably 440 ° C to 470 ° C, It is preferably 450 ° C to 460 ° C.
  • the temperature at which the high-temperature oil and gas is cooled in the catalytic cracking process is preferably from 40 ° C to 50 ° C, more preferably from 42 ° C to 47 ° C.
  • the medium-temperature oil and gas described in the above technical solution and the high-temperature oil and gas are preferably mixed and cooled to obtain a light oil.
  • the present invention is not particularly limited to the apparatus for cooling the high-temperature oil and gas, and a condenser well known to those skilled in the art can be used.
  • the present invention preferably separates the light oil from the dry gas, and the dry gas is used as a visbreaking and catalytic cracking heating fuel as described in the above technical solution to reduce the cost of the light oil preparation method provided by the present invention.
  • the present invention is not particularly limited to the apparatus for separating the light oil and dry gas, and a separator well known to those skilled in the art can be used.
  • the separator is preferably a cyclone separator.
  • the separator is preferably provided with a mist trapping device.
  • the separator with a mist trapping device enables a better separation of light oil and dry gas, and avoids light oil in the separated dry gas.
  • the present invention can simultaneously perform the above catalytic cracking operation in a plurality of catalytic cracking apparatuses.
  • the present invention is not particularly limited to the catalytic cracking apparatus, and may be a catalytic cracking apparatus well known to those skilled in the art, such as a reaction tank. In an embodiment of the present invention, two reaction tanks may be provided to simultaneously perform the catalytic cracking described in the above technical scheme.
  • the present invention preferably removes the petroleum coke.
  • the petroleum coke removal method is preferably mechanical decoking to avoid environmental pollution caused by hydraulic decoking.
  • the mechanical decoking device is preferably a defocusing device disclosed in Chinese Patent Application No. 201310293933.X.
  • the present invention preferably lowers the petroleum coke by a temperature of 200 ° C to 350 ° C.
  • the temperature drop temperature of the petroleum coke is more preferably from 220 ° C to 250 ° C.
  • the present invention has no particular limitation on the apparatus for cooling the petroleum coke, and a cooling fan can be employed.
  • 1 is a flow chart of a method for preparing light oil according to Examples 4 to 6 of the present invention.
  • 1 is a catalyst heating tank
  • 2 is a raw material pool
  • 2-1 is an oil and gas pipeline
  • 3-1 is thick.
  • Oil 3-2 is the catalyst
  • 3-3 is the intermediate product
  • 4-1 is the heavy oil pump
  • 4-2 is the catalyst pump
  • 4-3 is the high temperature pump
  • 5 is the mixing device
  • 6 is the first stage reaction tank
  • 7- 1 is medium temperature oil and gas
  • 7-2 high temperature oil and gas
  • 7-3 is a mixture of high temperature oil and medium temperature oil and gas
  • 7-4 is a mixture of light oil and dry gas
  • 8 is condenser
  • 9 condenser fan
  • 10 For the high pressure fan, 11 is the separator
  • 12 is the light oil
  • 13 is the dry gas
  • 14-1 is the dry gas cabinet
  • 14-2 is the oil storage barrel
  • 15 is the centrifugal fan
  • 16 is the heat exchanger
  • 17
  • the heating device of the catalyst heating tank 1 and the raw material tank 2 is started, the temperature of the catalyst 3-2 and the heavy oil 3-1 is preheated to 50 ° C to 95 ° C; and the catalyst 3-2 is sent to the mixing through the catalyst pump 4-2.
  • the heavy oil 3-1 is sent to the mixing device 5 via the heavy oil pump 4-1; in the mixing device 5
  • the catalyst 3-1 and the heavy oil 3-2 are uniformly mixed and sent to the first-stage reaction tank 6 for visbreaking; the catalyst pump 4-2 and the heavy oil pump 4-1 both have a metering function, so that the thickening
  • the mass ratio of oil 3-1 to catalyst 3-2 was (24 to 48):1.
  • the types and sources of the heavy oil 3-1 and the catalyst 3-2 are the same as those of the heavy oil and the catalyst described in the above technical scheme, and will not be described herein.
  • the temperature of the intermediate temperature flue gas 19-1 is 500 ° C ⁇ 700 ° C; starting the stirring device in the first-stage reaction tank 6,
  • the viscous oil and the catalyst in the first-stage reaction tank 6 are visbroken at a temperature of 240 ° C to 270 ° C for 1.5 hours to 3 hours at a stirring speed of 30 rpm to 50 rpm, and the first stage is set.
  • the pressure in the reaction tank 6 is -0.5 KPa to 1.5 KPa.
  • the generated medium temperature oil and gas 7-1 escapes from the primary reaction tank 6, and enters the oil and gas pipeline 2-1 in the raw material pool 2, and the temperature of the medium temperature oil and gas 7-1 is 240. °C ⁇ 270 ° C; the intermediate product 3-3 obtained after the visbreaking is completed is sent to the No. 1 secondary reaction tank 21-1 via the high temperature pump 4-3.
  • the medium temperature flue gas 19-1 is discharged from the first reaction tank 6 to form a medium temperature waste flue gas 19-3, and the medium temperature waste flue gas 19-3 enters the heat exchanger 16, and exchanges heat with the cold air to obtain hot air 17, which will be hot air.
  • the normal temperature waste flue gas 19-5 obtained by heat exchange between the medium temperature waste flue gas 19-3 and the cold air is sent to the denitration and desulfurization device 18 for recovery, and the temperature of the normal temperature waste flue gas 19-5 is 20 ° C. 30 ° C.
  • the temperature of the high-temperature flue gas 19-2 is 700 ° C to 1200 ° C;
  • the stirring device in the reaction tank 21-1 is catalytically cracked at a temperature of 440 ° C to 470 ° C for 1.5 hours to 3 hours at a stirring speed of 30 rpm to 50 rpm.
  • the pressure inside the No. 1 secondary reaction tank 21-1 is -0.5 KPa to 1.5 KPa. During the catalytic cracking process, the generated high-temperature oil and gas 7-2 escapes from the No.
  • the high-temperature flue gas 19-2 is discharged from the heating chamber of the No. 1 second-stage reaction tank to form a high-temperature waste flue gas 19-4, and the high-temperature waste flue gas 19-4 is sent to the heating chamber of the first-stage reaction tank 6, and the high-temperature waste is utilized.
  • the residual heat of the flue gas 19-4 provides heat for the above visbreaking, and the temperature of the high-temperature waste flue gas 19-4 is 500 ° C to 800 ° C.
  • the medium temperature oil and gas 7-1 and the high temperature oil and gas 7-2 are mixed in the oil and gas pipeline 2-1 in the raw material pool 2, A mixed gas 7-3 of high temperature oil and gas and medium temperature oil and gas is obtained, and the condenser fan 9 is turned on to cool the mixed gas 7-3 of medium temperature oil and high temperature oil and gas in the condenser 8, and the cooling temperature is 40 ° C to 50 ° C.
  • the medium temperature oil and gas mixture and the high temperature oil and gas mixture 7-3 are cooled to obtain a mixture of light oil and dry gas 7-4; the high pressure blower 10 is turned on, and the light oil and dry gas mixture 7-4 is separated in the separator 11.
  • the light oil 12 and the dry gas 13 are obtained, the light oil 12 is sent to the oil storage tank 14-2, and the dry gas 13 is sent to the dry gas cabinet 14-1; when the dry gas 13 is stably produced At this time, the dry gas in the dry gas cabinet 14-1 is sent to the flue gas furnace 19 for combustion and heat supply.
  • the cooling fan 20 is started to be heated to the No. 1 secondary reaction tank 21-1. Air is introduced into the chamber to cool the temperature of the petroleum coke generated during the catalytic cracking process to 200 ° C to 350 ° C, and the mechanical decoking device is activated to discharge the petroleum coke.
  • the invention provides a preparation method of a light oil, comprising the following steps: 1) visbreaking a heavy oil under stirring to obtain an intermediate product; 2) under stirring and a catalyst, The intermediate product is subjected to catalytic cracking to obtain a light oil.
  • the invention combines visbreaking and catalytic cracking processes to prepare a light oil.
  • the visbreaking and catalytic cracking are carried out under stirring conditions, and the reaction materials are dispersed by stirring to increase the droplets of the reaction material.
  • the evaporation area which in turn increases the surface curvature of the droplets, thereby increasing the vapor pressure of the droplets, which increases the amount of gasification of the reaction material during visbreaking and catalytic cracking, and reduces the amount of petroleum coke produced.
  • the yield of the light oil preparation method provided by the present invention is improved; therefore, the method for preparing the light oil provided by the present invention has a high yield.
  • the present invention adopts a combination of visbreaking and catalytic cracking to prepare a light oil, which can reduce the damage of the heavy oil to the equipment during the preparation of the light oil.
  • the raw materials used in the following examples of the present invention are all commercially available products.
  • the acidified activated clay is composed of mass Sulfuric acid and white clay having a concentration of 98% were mixed at a mass ratio of 1:49.
  • the acidified activated clay is composed of mass Sulfuric acid and white clay having a concentration of 98% were mixed at a mass ratio of 1:49.
  • the acidified activated clay is composed of mass Sulfuric acid and white clay having a concentration of 98% were mixed at a mass ratio of 1:49.
  • FIG. 1 is a flow chart of a method for preparing a light oil according to Examples 4 to 6 of the present invention, and the specific process is as follows:
  • the catalyst 3-2 is the catalyst prepared in the first embodiment; 3-2 is sent to the mixing device 5 via the catalyst pump 4-2, and the heavy oil 3-1 is sent to the mixing device 5 via the heavy oil pump 4-1; in the mixing device 5, the catalyst 3-1 and the heavy oil 3- 2 mixing and uniformly transporting to the first-stage reaction tank 6 for visbreaking; the catalyst pump 4-2 and the heavy oil pump 4-1 each have a metering function, so that the amount of the heavy oil 3-1 is 98 kg, the catalyst 3 The amount of -2 is 2 kg.
  • the flue gas furnace 19 is started, and the medium temperature flue gas 19-1 is generated to enter the heating chamber of the first-stage reaction tank 6, and the temperature of the intermediate temperature flue gas 19-1 is 500 ° C; the stirring device in the first-stage reaction tank 6 is started at the stirring speed.
  • the heavy oil and catalyst in the first-stage reaction tank 6 are at 240 ° C at a speed of 30 rpm.
  • the visbreaking was carried out at a temperature for 1.5 hours, and the pressure in the first-stage reaction tank 6 was set to -0.5 KPa. During the visbreaking process, the generated medium temperature oil and gas 7-1 escapes from the primary reaction tank 6, and enters the oil and gas pipeline 2-1 in the raw material pool 2, and the temperature of the medium temperature oil and gas 7-1 is 240.
  • the intermediate product 3-3 obtained after the visbreaking is completed is sent to the No. 1 secondary reaction tank 21-1 via the high temperature pump 4-3.
  • the medium temperature flue gas 19-1 is discharged from the first reaction tank 6 to form a medium temperature waste flue gas 19-3, and the medium temperature waste flue gas 19-3 enters the heat exchanger 16, and exchanges heat with the cold air to obtain hot air 17, which will be hot air. 17 is fed into the flue gas furnace 19 for combustion support, and the temperature of the intermediate temperature waste flue gas 19-3 is 200 °C.
  • the normal temperature waste flue gas 19-5 obtained by heat exchange between the intermediate temperature waste flue gas 19-3 and the cold air is sent to the denitration and desulfurization device 18 for recovery, and the temperature of the normal temperature waste flue gas 19-5 is 20 °C.
  • the temperature of the flue gas furnace 19 is adjusted to generate high-temperature flue gas 19-2 into the heating chamber of the second-stage reaction tank 21-1, and the temperature of the high-temperature flue gas 19-2 is 700 ° C; the second-stage reaction tank 21 is opened.
  • the stirring device of -1 the intermediate product 3-3 was catalytically cracked at a temperature of 440 ° C for 2 hours at a stirring speed of 40 rpm, and the inside of the No. 1 secondary reaction tank 21-1 was set.
  • the pressure is 1KPa.
  • the generated high-temperature oil and gas 7-2 escapes from the No.
  • the high-temperature flue gas 19-2 is discharged from the heating chamber of the second-stage reaction tank 21-1 to form a high-temperature waste flue gas 19-4, and the high-temperature waste flue gas 19-4 is sent to the heating chamber of the first-stage reaction tank 6.
  • the waste heat of the high-temperature waste flue gas 19-4 is used to provide heat for the above catalytic cracking, and the temperature of the high-temperature waste flue gas 19-4 is 500 °C.
  • the medium temperature oil and gas 7-1 and the high temperature oil and gas 7-2 are mixed in the oil and gas pipeline 2-1 in the raw material pool 2, and the mixed gas of the high temperature oil and the medium temperature oil and gas is obtained 7-3, and the condenser fan 9 is turned on to the medium temperature oil and gas and the high temperature oil and gas.
  • the mixed gas 7-3 is cooled in the condenser 8, the cooling temperature is 50 ° C, and the medium temperature oil and gas and the high temperature oil and gas mixture 7-3 are cooled to obtain a mixture of light oil and dry gas 7-4;
  • the fan 10 separates the light oil and dry gas mixture 7-4 in the separator 11 to obtain the light oil 12 and the dry gas 13, and sends the light oil 12 to the oil storage tank 14-2.
  • the dry gas 13 is sent to the dry gas cabinet 14-1; when the amount of dry gas 13 is stable, the dry gas in the dry gas cabinet 14-1 is sent to the flue gas furnace 19 for combustion and heat supply.
  • the cooling fan 20 is started to be added to the No. 1 secondary reaction tank 21-1. Air is introduced into the heat chamber to cool the temperature of the petroleum coke generated during the visbreaking process to 200 ° C, and the mechanical decoking device is activated to discharge the petroleum coke.
  • the yield of the light oil preparation method provided in Example 4 of the present invention is calculated, and the calculation result is that the yield of the light oil preparation method provided in Example 4 of the present invention is 75.3%, and the yield is 75.3%. Higher.
  • the light oil is prepared according to the process shown in Figure 1, and the specific process is as follows:
  • the catalyst 3-2 is the catalyst prepared in the example 2; 3-2 is sent to the mixing device 5 via the catalyst pump 4-2, and the heavy oil 3-1 is sent to the mixing device 5 via the heavy oil pump 4-1; in the mixing device 5, the catalyst 3-1 and the heavy oil 3- 2 mixing and uniformly transporting to the first-stage reaction tank 6 for visbreaking; the catalyst pump 4-2 and the heavy oil pump 4-1 each have a metering function, so that the amount of the heavy oil 3-1 is 96 kg, the catalyst 3 The amount of -2 is 4 kg.
  • the flue gas furnace 19 is started, and the medium temperature flue gas 19-1 is generated to enter the heating chamber of the first-stage reaction tank 6, and the temperature of the intermediate temperature flue gas 19-1 is 700 ° C; the stirring device in the first-stage reaction tank 6 is started at the stirring speed.
  • the heavy oil and the catalyst in the first-stage reaction tank 6 were visbroken at a temperature of 270 ° C for 2 hours at a rate of 40 rpm, and the pressure in the first-stage reaction tank 6 was set to 1.5 KPa.
  • the generated medium temperature oil and gas 7-1 escapes from the primary reaction tank 6, and enters the oil and gas pipeline 2-1 in the raw material pool 2, and the temperature of the medium temperature oil and gas 7-1 is 270.
  • the intermediate product 3-3 obtained after the visbreaking is completed is sent to the No. 1 secondary reaction tank 21-1 via the high temperature pump 4-3.
  • the medium temperature flue gas 19-1 is discharged from the first reaction tank 6 to form a medium temperature waste flue gas 19-3, and the medium temperature waste flue gas 19-3 enters the heat exchanger 16, and exchanges heat with the cold air to obtain hot air 17, which will be hot air. 17 is fed into the flue gas furnace 19 for combustion support, and the temperature of the intermediate temperature waste flue gas 19-3 is 350 °C.
  • the normal temperature waste flue gas 19-5 obtained by heat exchange between the intermediate temperature waste flue gas 19-3 and the cold air is sent to the denitration and desulfurization device 18 for recovery, and the temperature of the normal temperature waste flue gas 19-5 is 30 °C.
  • the temperature of the flue gas furnace 19 is adjusted to generate high-temperature flue gas 19-2 into the heating chamber of the second-stage reaction tank 21-1, and the temperature of the high-temperature flue gas 19-2 is 1200 ° C; the second-stage reaction tank 21 is opened.
  • the intermediate product 3-3 was catalytically cracked at a temperature of 470 ° C for 1.5 hours at a stirring speed of 30 rpm, and the inside of the No. 1 secondary reaction tank 21-1 was set.
  • the pressure is 1.5KPa.
  • the generated high-temperature oil and gas 7-2 escapes from the No.
  • the high-temperature flue gas 19-2 is discharged from the heating chamber of the second-stage reaction tank 21-1 to form a high-temperature waste flue gas 19-4, and the high-temperature waste flue gas 19-4 is sent to the heating chamber of the first-stage reaction tank 6.
  • the waste heat of the high-temperature waste flue gas 19-4 is used to provide heat for the above catalytic cracking, and the temperature of the high-temperature waste flue gas 19-4 is 800 °C.
  • the medium temperature oil and gas 7-1 and the high temperature oil and gas 7-2 are mixed in the oil and gas pipeline 2-1 in the raw material pool 2, and the mixed gas of the high temperature oil and the medium temperature oil and gas is obtained 7-3, and the condenser fan 9 is turned on to the medium temperature oil and gas and the high temperature oil and gas.
  • the mixed gas 7-3 is cooled in the condenser 8, the cooling temperature is 40 ° C, and the medium temperature oil and gas and the high temperature oil and gas mixture 7-3 are cooled to obtain a mixture of light oil and dry gas 7-4;
  • the fan 10 separates the light oil and dry gas mixture 7-4 in the separator 11 to obtain the light oil 12 and the dry gas 13, and sends the light oil 12 to the oil storage tank 14-2.
  • the dry gas 13 is sent to the dry gas cabinet 14-1; when the amount of dry gas 13 is stable, the dry gas in the dry gas cabinet 14-1 is sent to the flue gas furnace 19 for combustion and heat supply.
  • the cooling fan 20 is started to be heated to the No. 1 secondary reaction tank 21-1. Air is introduced into the chamber to cool the temperature of the petroleum coke generated during the catalytic cracking process to 350 ° C, and a mechanical defocusing device is activated to discharge the petroleum coke.
  • the yield of the light oil preparation method provided in Example 5 of the present invention is calculated, and the calculation result is that the yield of the method for preparing the light oil provided in Example 5 of the present invention is 83.6%. The rate is higher.
  • the light oil is prepared according to the process shown in Figure 1, and the specific process is as follows:
  • the catalyst 3-2 is the catalyst prepared in the embodiment 3; 3-2 is sent to the mixing device 5 via the catalyst pump 4-2, and the heavy oil 3-1 is sent to the mixing device 5 via the heavy oil pump 4-1; in the mixing device 5, the catalyst 3-1 and the heavy oil 3- 2 mixing and uniformly transporting to the first-stage reaction tank 6 for visbreaking; the catalyst pump 4-2 and the heavy oil pump 4-1 each have a metering function, so that the amount of the heavy oil 3-1 is 97 kg, the catalyst 3 The amount of -2 is 3 kg.
  • the flue gas furnace 19 is started to generate the medium temperature flue gas 19-1 into the heating chamber of the first-stage reaction tank 6, and the temperature of the intermediate temperature flue gas 19-1 is 600 ° C; the stirring device in the first-stage reaction tank 6 is started, at the stirring speed
  • the heavy oil and the catalyst in the primary reaction tank 6 were visbroken at a temperature of 255 ° C for 3 hours at a rate of 50 rpm, and the pressure in the primary reaction tank 6 was set to 1 KPa.
  • the generated medium temperature oil and gas 7-1 escapes from the primary reaction tank 6, and enters the oil and gas pipeline 2-1 in the raw material pool 2, and the temperature of the medium temperature oil and gas 7-1 is 255.
  • the intermediate product 3-3 obtained after the visbreaking is completed is sent to the No. 1 secondary reaction tank 21-1 via the high temperature pump 4-3.
  • the medium temperature flue gas 19-1 is discharged from the first reaction tank 6 to form a medium temperature waste flue gas 19-3, and the medium temperature waste flue gas 19-3 enters the heat exchanger 16, and exchanges heat with the cold air to obtain hot air 17, which will be hot air. 17 is fed into the flue gas furnace 19 for combustion support, and the temperature of the intermediate temperature waste flue gas 19-3 is 300 °C.
  • the normal temperature waste flue gas 19-5 obtained by heat exchange between the intermediate temperature waste flue gas 19-3 and the cold air is sent to the denitration and desulfurization device 18 for recovery, and the temperature of the normal temperature waste flue gas 19-5 is 25 °C.
  • the temperature of the flue gas furnace 19 is adjusted to generate high-temperature flue gas 19-2 into the heating chamber of the second-stage reaction tank 21-1, and the temperature of the high-temperature flue gas 19-2 is 1000 ° C; the second-stage reaction tank 21 is opened.
  • the stirring device of -1 the intermediate product 3-3 was catalytically cracked at a temperature of 455 ° C for 3 hours at a stirring speed of 50 rpm, and the inside of the No. 1 secondary reaction tank 21-1 was set.
  • the pressure is -0.5 KPa.
  • the generated high-temperature oil and gas 7-2 escapes from the No.
  • the high-temperature flue gas 19-2 is discharged from the heating chamber of the second-stage reaction tank 21-1 to form a high-temperature waste flue gas 19-4, and the high-temperature waste flue gas 19-4 is sent to the heating chamber of the first-stage reaction tank 6.
  • high-temperature waste flue gas 19-4 The temperature is 650 ° C.
  • the medium temperature oil and gas 7-1 and the high temperature oil and gas 7-2 are mixed in the oil and gas pipeline 2-1 in the raw material pool 2, and the mixed gas of the high temperature oil and the medium temperature oil and gas is obtained 7-3, and the condenser fan 9 is turned on to the medium temperature oil and gas and the high temperature oil and gas.
  • the mixed gas 7-3 is cooled in the condenser 8, the cooling temperature is 45 ° C, and the medium temperature oil and gas and the high temperature oil and gas mixture 7-3 are cooled to obtain a mixture of light oil and dry gas 7-4;
  • the fan 10 separates the light oil and dry gas mixture 7-4 in the separator 11 to obtain the light oil 12 and the dry gas 13, and sends the light oil 12 to the oil storage tank 14-2.
  • the dry gas 13 is sent to the dry gas cabinet 14-1; when the amount of dry gas 13 is stable, the dry gas in the dry gas cabinet 14-1 is sent to the flue gas furnace 19 for combustion and heat supply.
  • the cooling fan 20 is started to be heated to the No. 1 secondary reaction tank 21-1. Air is introduced into the chamber to cool the temperature of the petroleum coke generated during the catalytic cracking process to 250 ° C, and a mechanical defocusing device is activated to discharge the petroleum coke.
  • the yield of the light oil preparation method provided in Example 6 of the present invention is calculated, and the calculation result is that the yield of the method for preparing the light oil provided in Example 6 of the present invention is 80.7%. The rate is higher.
  • the present invention provides a method for preparing a light oil, comprising the steps of: 1) visbreaking a heavy oil under stirring to obtain an intermediate product; 2) stirring and The intermediate product is subjected to catalytic cracking under the action of a catalyst to obtain a light oil.
  • the invention combines visbreaking and catalytic cracking processes to prepare a light oil.
  • the visbreaking and catalytic cracking are carried out under stirring conditions, and the reaction materials are dispersed by stirring to increase the droplets of the reaction material.
  • the evaporation area which in turn increases the surface curvature of the droplets, thereby increasing the vapor pressure of the droplets, which increases the amount of gasification of the reaction material during visbreaking and catalytic cracking, and reduces the amount of petroleum coke produced. Therefore, the yield of the light oil preparation method provided by the present invention is improved; therefore, the method for preparing the light oil provided by the present invention has a high yield.
  • the present invention adopts a combination of visbreaking and catalytic cracking to prepare a light oil, which can reduce heavy oil in the process of preparing light oil. Damage to the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种轻质油制备方法,包括以下步骤:1)、在搅拌作用下,将稠油进行减粘裂化,得到中间产物;2)在搅拌和催化剂作用下,将所述中间产物进行催化裂化,得到轻质油。上述方法中通过搅拌使反应物料更加分散,从而增大了反应物料液滴的蒸发面积,降低了石油焦的生成量,轻质油收率较高。

Description

一种轻质油的制备方法
本申请要求于2014年6月30日提交中国专利局、申请号为201410304982.3、发明名称为“一种轻质油的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及炼油化工技术领域,尤其涉及一种轻质油的制备方法。
背景技术
稠油是指沥青和胶质含量较高、粘度较大的原油,具有高粘度和高凝固点的特性。由于稠油具有高粘度和高凝固点的特性,使其在应用方面遇到了一些技术难题,如在炼化过程中稠油中的重金属会迅速降低催化剂的效果,而且稠油炼化的渣油量大,渣油中的硫、氮、金属、酸等难处理的组分含量高,增加了稠油炼化的难度。因此,将稠油进行改质处理,利用稠油制备轻质油成为人们关注的焦点。
目前,利用稠油炼制轻质油的方法主要包括溶剂脱沥青工艺、减粘裂化工艺、延迟焦化工艺、催化裂化工艺和加氢工艺等。但是单独使用这几种工艺中的任意一种制备轻质油均存在着一些缺点,如溶剂脱沥青工艺得到的脱沥青油质量较差;减粘裂化工艺制备的轻质油收率低、质量差;延迟焦化工艺的能耗高,而且使用水力除焦容易造成环境污染;催化裂化工艺的加氢方法复杂、装置投资过高。针对单一工艺的缺点,近年来许多研究者也提出了一些组合工艺。如申请号为00124904.5的中国专利公开了一种浅度溶剂脱沥青与延迟焦化的组合方法,将预热后的脱沥青原料和溶剂进入抽提塔,含有溶剂的脱油沥青溶液从抽提塔底部排出,回收溶剂后的脱沥青油部分或全部和任选的常规焦化原料进入延迟焦化加热炉对流段预热,然后再进入加热炉辐射段加热,再进入焦炭塔进行焦化反应,焦炭留在焦炭塔内,分离焦化油气得到焦化气体、焦化汽油、焦化柴油和焦化瓦斯油。现有技术提供的这种脱沥青工艺和延迟焦化工艺相结合的方法得到的轻质油的收率较低,其收率在73%~74%的范围内。
发明内容
有鉴于此,本发明的目的在于提供一种轻质油的制备方法,本发明提供的轻质油的制备方法收率较高。
本发明提供了一种轻质油的制备方法,包括以下步骤:
1)、在搅拌的作用下,将稠油进行减粘裂化,得到中间产物;
2)、在搅拌和催化剂的作用下,将所述中间产物进行催化裂化,得到轻质油。
优选的,所述步骤1)中稠油和步骤2)中催化剂的质量比为(24~48):1。
优选的,所述步骤1)中减粘裂化的温度为240℃~270℃;
所述步骤1)中减粘裂化的压力为-0.5KPa~1.5KPa。
优选的,所述步骤1)中减粘裂化的时间为1.5小时~3小时。
优选的,所述步骤1)中搅拌的速度为30转/分~50转/分;
所述步骤2)中搅拌的速度为30转/分~50转/分。
优选的,所述步骤2)中的催化剂为环烷酸钴催化剂,所述环烷酸钴催化剂,以重量份计,包括:
20份~35份的环烷酸钴;
30份~40份的乙二醇单甲醚;
3份~5份的酸化活性白土;
10份~20份的硬脂酸甘油酯;
20份~37份的氯化石蜡。
优选的,所述步骤2)中催化裂化的温度为440℃~470℃。
优选的,所述步骤2)中催化裂化的压力为-0.5KPa~1.5KPa。
优选的,所述步骤2)中催化裂化的时间为1.5小时~3小时。
优选的,所述步骤2)中催化裂化完成后还包括:
将得到的催化裂化产物进行冷却,得到轻质油,所述冷却的温度为40℃~50℃。
本发明提供了一种轻质油的制备方法,包括以下步骤:1)、在搅拌的作用下,将稠油进行减粘裂化,得到中间产物;2)、在搅拌和催化剂的作 用下,将所述中间产物进行催化裂化,得到轻质油。本发明将减粘裂化和催化裂化工艺相结合来制备轻质油,所述减粘裂化和催化裂化都是在搅拌的条件下进行的,通过搅拌使反应物料分散,增大了反应物料液滴的蒸发面积,进而增大了液滴的表面曲率,从而增大了液滴的蒸汽压,这样就会增加反应物料在减粘裂化和催化裂化过程中的气化量,降低石油焦的生成量,从而提高本发明提供的轻质油制备方法的收率;因此本发明提供的轻质油的制备方法收率较高。实验结果表明,本发明提供的轻质油制备方法的收率为75%~84%。
此外,本发明采用减粘裂化和催化裂化相结合的工艺制备轻质油,能够减少制备轻质油过程中稠油对设备的损坏。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例4~实施例6提供的轻质油制备方法的流程图。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种轻质油的制备方法,包括以下步骤:
1)、在搅拌的作用下,将稠油进行减粘裂化,得到中间产物;
2)、在搅拌和催化剂的作用下,将所述中间产物进行催化裂化,得到轻质油。
本发明将减粘裂化和催化裂化工艺相结合来制备轻质油,所述减粘裂 化和催化裂化都是在搅拌的条件下进行的,通过搅拌使反应物料分散,增大了反应物料液滴的蒸发面积,进而增大了液滴的表面曲率,从而增大了液滴的蒸汽压,这样就会增加反应物料在减粘裂化和催化裂化过程中的气化量,降低石油焦的生成量,从而提高本发明提供的轻质油制备方法的收率;因此本发明提供的轻质油的制备方法收率较高。此外,本发明采用减粘裂化和催化裂化相结合的工艺制备轻质油,能够减少制备轻质油过程中稠油对设备的损坏。
本发明在搅拌的作用下,将稠油进行减粘裂化,得到中间产物。在本发明中,所述减粘裂化时搅拌的速度优选为30转/分~50转/分,更优选为35转/分~45转/分,最优选为40转/分。本发明通过搅拌使稠油分散,增大稠油液滴的蒸发面积,从而增大稠油液滴的蒸汽压,使得到的中间产物中气体含量较多而石油焦的含量较少,从而使本发明提供的轻质油的制备方法具有较高的收率。
在本发明中,所述减粘裂化的温度优选为240℃~270℃,更优选为250℃~260℃。本发明对使所述减粘裂化达到所需温度的加热设备没有特殊的限制,采用本领域技术人员熟知的加热设备即可,在本发明的实施例中,所述加热设备可以为烟气炉。本发明优选将加热所述减粘裂化后剩余的能量转化为新的热能,以提高本发明提供的轻质油制备方法的能量利用率。如在本发明的实施例中,采用中温烟气对所述减粘裂化加热后,所述中温烟气变为中温废烟气,可以将所述中温废烟气流入换热器与冷空气进行热量交换,将得到的热空气流入烟气炉中进行助燃;在本发明中,所述中温烟气的温度优选为500℃~700℃,更优选为550℃~650℃;在本发明中,所述中温废烟气的温度优选为200℃~350℃,更优选为200℃~300℃。本发明优选将能量使用过程中产生的废气进行回收处理,使本发明提供的轻质油的制备方法较为环保。如在本发明的实施例中,可以将所述中温废烟气与冷空气进行热量交换后将得到的常温废烟气在脱销、除硫的装置中回收;在本发明中,所述常温废烟气的温度优选为20℃~30℃,更优选为23℃~28℃。
在本发明中,所述减粘裂化的压力优选为-0.5KPa~1.5KPa,更优选为 -0.8KPa~1.2KPa,最优选为1KPa。在本发明中,所述减粘裂化的时间优选为1.5小时~3小时,更优选为2小时~2.5小时。
将所述稠油进行减粘裂化前,本发明优选将所述稠油进行预热。在本发明中,所述稠油的预热温度优选为50℃~95℃,更优选为60℃~80℃,最优选为65℃~75℃。
本发明对所述稠油的种类和来源没有特殊的限制,采用本领域技术人员熟知的稠油即可,可由市场购买获得。在本发明中,所述稠油的粘度优选为100mPa·s~1000mPa·s,更优选为300mPa·s~800mPa·s,最优选为500mPa·s~600mPa·s。在本发明中,所述稠油在减粘裂化的过程中产生中温油气,所述中温油气的温度优选为240℃~270℃,更优选为250℃~260℃。本发明优选将所述中温油气收集起来,以减少上述技术方案所述中间产物中的泡沫。
得到中间产物后,本发明在搅拌和催化剂的作用下,将所述中间产物进行催化裂化,得到轻质油。本发明优选将所述催化剂在上述技术方案所述的减粘裂化的过程中加入,以便使催化剂更好的发挥效果。本发明优选在搅拌的作用下,将催化剂和稠油进行减粘裂化,得到中间产物。在本发明中,所述催化裂化时的搅拌速度优选为30转/分~50转/分,更优选为35转/分~45转/分,最优选为40转/分。本发明通过搅拌使上述中间产物中的液体分散,增大所述中间产物中液体液滴的蒸发面积,从而增大所述中间产物中液体液滴的蒸汽压,使所述催化裂化过程中产生较多的油气,从而降低石油焦的生成量,进一步提高本发明提供的轻质油制备方法的收率。
在本发明中,所述催化裂化的温度优选为440℃~470℃,更优选为450℃~460℃。本发明对使所述催化裂化达到所需温度的加热设备没有特殊的限制,采用本领域技术人员熟知的加热设备即可,在本发明的实施例中,所述加热设备可以为烟气炉,本发明可调节烟气炉的温度利用不同温度的烟气进行加热。在本发明中,加热所述催化裂化剩余的能量优选用于作为加热上述减粘裂化的能量,以使本发明在制备轻质油的过程中合理利用热能。如在本发明的实施例中,采用高温烟气对所述催化裂化进行加热 后,所述高温烟气变为高温废烟气,可以采用所述高温废烟气的余热对所述减粘裂化进行加热;在本发明中,所述高温烟气的温度优选为700℃~1200℃,更优选为800℃~1100℃;在本发明中,所述高温废烟气的温度优选为500℃~800℃,更优选为600℃~700℃。
在本发明中,所述催化裂化的压力优选为-0.5KPa~1.5KPa,更优选为-0.8KPa~1.2KPa,最优选为1KPa。在本发明中,所述催化裂化的时间优选为1.5小时~3小时,更优选为2小时~2.5小时。
本发明对所述催化剂的种类和来源没有特殊的限制,采用本领域技术人员熟知的用于催化裂化的催化即可,可由市场购买获得,也可制备得到。在本发明中,所述催化剂优选为环烷酸钴催化剂,所述环烷酸钴催化剂以重量份计,包括20份~35份的环烷酸钴,30份~40份的乙二醇单甲醚,3份~5份的酸化活性白土,10份~20份的硬脂酸甘油酯,20份~37份的氯化石蜡。本发明采用所述环烷酸钴催化剂进行催化裂化,这种催化剂具有较好的催化效果,能够进一步提高本发明提供的轻质油制备方法的收率。在本发明中,所述环烷酸钴催化剂为申请号为200510126073.6的中国专利所公开的催化剂,所述环烷酸钴催化剂可按照申请号为200510126073.6的中国专利所公开的方法制备得到。
在本发明中,所述催化裂化过程中产生高温油气,本发明对所述高温油气进行冷却,得到轻质油;在本发明中,所述高温油气的温度优选为440℃~470℃,更优选为450℃~460℃。在本发明中,所述催化裂化过程中冷却所述高温油气的温度优选为40℃~50℃,更优选为42℃~47℃。本发明优选将上述技术方案所述的中温油气和所述高温油气混合后进行冷却,得到轻质油。本发明对冷却所述高温油气的设备没有特殊的限制,采用本领域技术人员熟知的冷凝器即可。
本发明冷却所述高温油气后,除得到轻质油外还可得到干气。本发明优选将所述轻质油和干气分离,将所述干气作为上述技术方案所述减粘裂化和催化裂化的供热燃料,以降低本发明提供的轻质油制备方法的成本。本发明对分离所述轻质油和干气的设备没有特殊的限制,采用本领域技术人员熟知的分离器即可。在本发明中,所述分离器优选为旋风式分离器。 在本发明中,所述分离器优选带有捕雾装置。在本发明中,所述带有捕雾装置的分离器能够使轻质油和干气更好的分离,避免分离后的干气中带有轻质油。
为了提高本发明提供的轻质油制备方法的生产效率,本发明可在多个催化裂化装置中同时进行上述催化裂化操作。本发明对所述催化裂化的设备没有特殊的限制,采用本领域技术人员熟知的催化裂化设备即可,如反应罐。在本发明的实施例中,可以设置两个反应罐同时进行上述技术方案所述的催化裂化。
在本发明中,所述催化裂化过程中产生石油焦。本发明优选将所述石油焦去除。在本发明中,所述石油焦的去除方法优选为机械除焦,以避免水力除焦带来的环境污染。在本发明中,所述机械除焦的设备优选为申请号为201310293933.X的中国专利所公开的除焦装置。在去除所述石油焦之前,本发明优选将所述石油焦进行降温处理,所述降温温度为200℃~350℃。在本发明中,所述石油焦的降温温度更优选为220℃~250℃。本发明对所述降温处理石油焦的设备没有特殊的限制,可采用冷却风机。
图1为本发明实施例4~实施例6提供的轻质油制备方法的流程图,图1中1为催化剂伴热罐,2为原料池,2-1为油气管道,3-1为稠油,3-2为催化剂,3-3为中间产物,4-1为稠油泵,4-2为催化剂泵,4-3为高温泵,5为混合装置,6为一级反应罐,7-1为中温油气,7-2为高温油气,7-3为高温油气和中温油气的混合气,7-4为轻质油和干气的混合物,8为冷凝器,9为冷凝器风机,10为高压风机,11为分离器,12为轻质油,13为干气,14-1为干气柜,14-2为储油桶,15为离心风机,16为换热器,17为热空气,18为脱硝、除硫装置,19为烟气炉,19-1为中温烟气,19-2为高温烟气,19-3为中温废烟气,19-4为高温废烟气,19-5为常温废烟气,20为冷却风机,21-1为1号二级反应罐,21-2为2号二级反应罐。按照图1所述的流程制备轻质油,具体过程为:
启动催化剂伴热罐1和原料池2的加热装置,使催化剂3-2和稠油3-1的温度预热到50℃~95℃;将催化剂3-2经催化剂泵4-2输送到混合装置5中,将稠油3-1经稠油泵4-1输送到混合装置5中;在混合装置5 中将催化剂3-1和稠油3-2混合均匀输送到一级反应罐6中进行减粘裂化;所述催化剂泵4-2和稠油泵4-1均带有计量功能,使所述稠油3-1和催化剂3-2的质量比为(24~48):1。在本发明中,所述稠油3-1和催化剂3-2的种类和来源与上述技术方案所述稠油和催化剂的种类和来源一致,在此不再赘述。
启动烟气炉19,产生中温烟气19-1进入一级反应罐6的加热腔内,中温烟气19-1的温度为500℃~700℃;启动一级反应罐6中的搅拌装置,在搅拌速度为30转/分~50转/分的速度下,使一级反应罐6中的稠油和催化剂在240℃~270℃的温度下减粘裂化1.5小时~3小时,设置一级反应罐6内的压力为-0.5KPa~1.5KPa。在进行所述减粘裂化的过程中,生成的中温油气7-1从一级反应罐6中逸出,进入原料池2中的油气管道2-1中,中温油气7-1的温度为240℃~270℃;所述减粘裂化完成后得到的中间产物3-3经高温泵4-3输送至1号二级反应罐21-1内。中温烟气19-1从一级反应罐6排出形成中温废烟气19-3,中温废烟气19-3进入换热器16,与冷空气进行热交换,得到热空气17,将热空气17送入烟气炉19中进行助燃,中温废烟气19-3的温度为200℃~350℃。将中温废烟气19-3与冷空气进行热交换后得到的常温废烟气19-5送入到脱硝、除硫装置18中进行回收,常温废烟气19-5的温度为20℃~30℃。
调节烟气炉19的温度,产生高温烟气19-2进入1号二级反应罐21-1的加热腔内,高温烟气19-2的温度为700℃~1200℃;开启1号二级反应罐21-1中的搅拌装置,在搅拌速度为30转/分~50转/分的速度下,将所述中间产物在440℃~470℃的温度下催化裂化1.5小时~3小时,设置1号二级反应罐21-1内部的压力为-0.5KPa~1.5KPa。在所述催化裂化的过程中,产生的高温油气7-2从1号二级反应罐中逸出,流入到原料池2中的油气管道2-1中,所述高温油气7-2的温度为440℃~470℃。高温烟气19-2从1号二级反应罐的加热腔流出后形成高温废烟气19-4,将高温废烟气19-4输送到一级反应罐6的加热腔中,利用高温废烟气19-4的余热为上述减粘裂化提供热量,高温废烟气19-4的温度为500℃~800℃。
中温油气7-1和高温油气7-2在原料池2中的油气管道2-1内混合, 得到高温油气和中温油气的混合气7-3,开启冷凝器风机9将中温油气和高温油气的混合气7-3在冷凝器8中进行冷却,所述冷却的温度为40℃~50℃,将中温油气和高温油气混合气7-3冷却后得到轻质油和干气的混合物7-4;开启高压风机10,将轻质油和干气的混合物7-4在分离器11中进行分离,得到轻质油12和干气13,将轻质油12送入到储油罐14-2中,将干气13送入到干气柜14-1中;当干气13的生成量稳定时,将干气柜14-1中的干气送入烟气炉19中进行燃烧供热。
所述1号二级反应罐21-1内催化裂化过程中产生的高温油气7-2都进入油气管道2-1中后,启动冷却风机20,向1号二级反应罐21-1的加热腔中通入空气,使所述催化裂化过程中产生的石油焦的温度冷却到200℃~350℃,启动机械除焦装置,排出所述石油焦。
当1号二级反应罐21-1进行催化裂化时,将一级反应罐6中得到的中间产物3-3输送至2号二级反应罐21-2中,在2号二级反应罐21-2中重复进行上述技术方案所述的催化裂化,制备轻质油。
通过得到的轻质油的产量以及制备轻质油所用稠油的质量,计算本发明提供的轻质油制备方法的收率,计算结果为本发明提供的轻质油制备方法的收率为75%~84%,收率较高。
本发明提供了一种轻质油的制备方法,包括以下步骤:1)、在搅拌的作用下,将稠油进行减粘裂化,得到中间产物;2)、在搅拌和催化剂的作用下,将所述中间产物进行催化裂化,得到轻质油。本发明将减粘裂化和催化裂化工艺相结合来制备轻质油,所述减粘裂化和催化裂化都是在搅拌的条件下进行的,通过搅拌使反应物料分散,增大了反应物料液滴的蒸发面积,进而增大了液滴的表面曲率,从而增大了液滴的蒸汽压,这样就会增加反应物料在减粘裂化和催化裂化过程中的气化量,降低石油焦的生成量,从而提高本发明提供的轻质油制备方法的收率;因此本发明提供的轻质油的制备方法收率较高。此外,本发明采用减粘裂化和催化裂化相结合的工艺制备轻质油,能够减少制备轻质油过程中稠油对设备的损坏。
为了进一步了解本发明,下面结合实施例对本发明提供的轻质油的制备方法进行详细描述,但不能将它们理解为对本发明保护范围的限定。
本发明以下实施例所用的原料均为市售商品。
实施例1
将25kg的环烷酸钴、40kg的乙二醇单甲醚、5kg的酸化活性白土、10kg的硬脂酸甘油酯和20kg的氯化石蜡70混合均匀,得到催化剂;所述酸化活性白土由质量浓度为98%的硫酸和白土按照质量比为1:49的比例混合得到。
实施例2
将20kg的环烷酸钴、30kg的乙二醇单甲醚、3kg的酸化活性白土、20kg的硬脂酸甘油酯和27kg的氯化石蜡70混合均匀,得到催化剂;所述酸化活性白土由质量浓度为98%的硫酸和白土按照质量比为1:49的比例混合得到。
实施例3
将20kg的环烷酸钴、30kg的乙二醇单甲醚、3kg的酸化活性白土、10kg的硬脂酸甘油酯和37kg的氯化石蜡70混合均匀,得到催化剂;所述酸化活性白土由质量浓度为98%的硫酸和白土按照质量比为1:49的比例混合得到。
实施例4
按照图1所示的流程制备轻质油,图1为本发明实施例4~实施例6提供的轻质油制备方法的流程图,具体过程为:
启动催化剂伴热罐1和原料池2的加热装置,使催化剂3-2和稠油3-1的温度预热到50℃,所述催化剂3-2为实施例1制备得到的催化剂;将催化剂3-2经催化剂泵4-2输送到混合装置5中,将稠油3-1经稠油泵4-1输送到混合装置5中;在混合装置5中将催化剂3-1和稠油3-2混合均匀输送到一级反应罐6中进行减粘裂化;所述催化剂泵4-2和稠油泵4-1均带有计量功能,使所述稠油3-1的用量为98kg,催化剂3-2的用量为2kg。
启动烟气炉19,产生中温烟气19-1进入一级反应罐6的加热腔内,中温烟气19-1的温度为500℃;启动一级反应罐6中的搅拌装置,在搅拌速度为30转/分的速度下,使一级反应罐6中的稠油和催化剂在240℃ 温度下减粘裂化1.5小时,设置一级反应罐6内的压力为-0.5KPa。在进行所述减粘裂化的过程中,生成的中温油气7-1从一级反应罐6中逸出,进入原料池2中的油气管道2-1中,中温油气7-1的温度为240℃;所述减粘裂化完成后得到的中间产物3-3经高温泵4-3输送至1号二级反应罐21-1内。中温烟气19-1从一级反应罐6排出形成中温废烟气19-3,中温废烟气19-3进入换热器16,与冷空气进行热交换,得到热空气17,将热空气17送入烟气炉19中进行助燃,中温废烟气19-3的温度为200℃。将中温废烟气19-3与冷空气进行热交换后得到的常温废烟气19-5送入到脱硝、除硫装置18中进行回收,常温废烟气19-5的温度为20℃。
调节烟气炉19的温度,产生高温烟气19-2进入1号二级反应罐21-1的加热腔内,高温烟气19-2的温度为700℃;开启1号二级反应罐21-1中的搅拌装置,在搅拌速度为40转/分的速度下,将所述中间产物3-3在440℃的温度下催化裂化2小时,设置1号二级反应罐21-1内部的压力为1KPa。在所述催化裂化的过程中,产生的高温油气7-2从1号二级反应罐中逸出,流入到原料池2中的油气管道2-1中,所述高温油气7-2的温度为440℃。高温烟气19-2从1号二级反应罐21-1的加热腔流出后形成高温废烟气19-4,将高温废烟气19-4输送到一级反应罐6的加热腔中,利用高温废烟气19-4的余热为上述催化裂化提供热量,高温废烟气19-4的温度为500℃。
中温油气7-1和高温油气7-2在原料池2中的油气管道2-1内混合,得到高温油气和中温油气的混合气7-3,开启冷凝器风机9将中温油气和高温油气的混合气7-3在冷凝器8中进行冷却,所述冷却的温度为50℃,将中温油气和高温油气混合气7-3冷却后得到轻质油和干气的混合物7-4;开启高压风机10,将轻质油和干气的混合物7-4在分离器11中进行分离,得到轻质油12和干气13,将轻质油12送入到储油罐14-2中,将干气13送入到干气柜14-1中;当干气13的生成量稳定时,将干气柜14-1中的干气送入烟气炉19中进行燃烧供热。
所述1号二级反应罐21-1内催化裂化过程中产生的高温油气7-2都进入油气管道2-1中后,启动冷却风机20,向1号二级反应罐21-1的加 热腔中通入空气,使所述减粘裂化过程中产生的石油焦的温度冷却到200℃,启动机械除焦装置,排出所述石油焦。
当1号二级反应罐21-1进行催化裂化时,将一级反应罐6中得到的中间产物3-3输送至2号二级反应罐21-2中,在2号二级反应罐21-2中重复进行上述催化裂化,制备轻质油。
按照上述技术方案所述方法,计算本发明实施例4提供的轻质油制备方法的收率,计算结果为本发明实施例4提供的轻质油的制备方法的收率为75.3%,收率较高。
实施例5
按照图1所示的流程制备轻质油,具体过程为:
启动催化剂伴热罐1和原料池2的加热装置,使催化剂3-2和稠油3-1的温度预热到95℃,所述催化剂3-2为实施例2制备得到的催化剂;将催化剂3-2经催化剂泵4-2输送到混合装置5中,将稠油3-1经稠油泵4-1输送到混合装置5中;在混合装置5中将催化剂3-1和稠油3-2混合均匀输送到一级反应罐6中进行减粘裂化;所述催化剂泵4-2和稠油泵4-1均带有计量功能,使所述稠油3-1的用量为96kg,催化剂3-2的用量为4kg。
启动烟气炉19,产生中温烟气19-1进入一级反应罐6的加热腔内,中温烟气19-1的温度为700℃;启动一级反应罐6中的搅拌装置,在搅拌速度为40转/分的速度下,使一级反应罐6中的稠油和催化剂在270℃的温度下减粘裂化2小时,设置一级反应罐6内的压力为1.5KPa。在进行所述减粘裂化的过程中,生成的中温油气7-1从一级反应罐6中逸出,进入原料池2中的油气管道2-1中,中温油气7-1的温度为270℃;所述减粘裂化完成后得到的中间产物3-3经高温泵4-3输送至1号二级反应罐21-1内。中温烟气19-1从一级反应罐6排出形成中温废烟气19-3,中温废烟气19-3进入换热器16,与冷空气进行热交换,得到热空气17,将热空气17送入烟气炉19中进行助燃,中温废烟气19-3的温度为350℃。将中温废烟气19-3与冷空气进行热交换后得到的常温废烟气19-5送入到脱硝、除硫装置18中进行回收,常温废烟气19-5的温度为30℃。
调节烟气炉19的温度,产生高温烟气19-2进入1号二级反应罐21-1的加热腔内,高温烟气19-2的温度为1200℃;开启1号二级反应罐21-1中的搅拌装置,在搅拌速度为30转/分的速度下,将所述中间产物3-3在470℃的温度下催化裂化1.5小时,设置1号二级反应罐21-1内部的压力为1.5KPa。在所述催化裂化的过程中,产生的高温油气7-2从1号二级反应罐中逸出,流入到原料池2中的油气管道2-1中,所述高温油气7-2的温度为470℃。高温烟气19-2从1号二级反应罐21-1的加热腔流出后形成高温废烟气19-4,将高温废烟气19-4输送到一级反应罐6的加热腔中,利用高温废烟气19-4的余热为上述催化裂化提供热量,高温废烟气19-4的温度为800℃。
中温油气7-1和高温油气7-2在原料池2中的油气管道2-1内混合,得到高温油气和中温油气的混合气7-3,开启冷凝器风机9将中温油气和高温油气的混合气7-3在冷凝器8中进行冷却,所述冷却的温度为40℃,将中温油气和高温油气混合气7-3冷却后得到轻质油和干气的混合物7-4;开启高压风机10,将轻质油和干气的混合物7-4在分离器11中进行分离,得到轻质油12和干气13,将轻质油12送入到储油罐14-2中,将干气13送入到干气柜14-1中;当干气13的生成量稳定时,将干气柜14-1中的干气送入烟气炉19中进行燃烧供热。
所述1号二级反应罐21-1内催化裂化过程中产生的高温油气7-2都进入油气管道2-1中后,启动冷却风机20,向1号二级反应罐21-1的加热腔中通入空气,使所述催化裂化过程中产生的石油焦的温度冷却到350℃,启动机械除焦装置,排出所述石油焦。
当1号二级反应罐21-1进行催化裂化时,将一级反应罐6中得到的中间产物3-3输送至2号二级反应罐21-2中,在2号二级反应罐21-2中重复进行上述催化裂化,制备轻质油。
按照上述技术方案所述的方法,计算本发明实施例5提供的轻质油制备方法的收率,计算结果为本发明实施例5提供的轻质油的制备方法的收率为83.6%,收率较高。
实施例6
按照图1所示的流程制备轻质油,具体过程为:
启动催化剂伴热罐1和原料池2的加热装置,使催化剂3-2和稠油3-1的温度预热到70℃,所述催化剂3-2为实施例3制备得到的催化剂;将催化剂3-2经催化剂泵4-2输送到混合装置5中,将稠油3-1经稠油泵4-1输送到混合装置5中;在混合装置5中将催化剂3-1和稠油3-2混合均匀输送到一级反应罐6中进行减粘裂化;所述催化剂泵4-2和稠油泵4-1均带有计量功能,使所述稠油3-1的用量为97kg,催化剂3-2的用量为3kg。
启动烟气炉19,产生中温烟气19-1进入一级反应罐6的加热腔内,中温烟气19-1的温度为600℃;启动一级反应罐6中的搅拌装置,在搅拌速度为50转/分的速度下,使一级反应罐6中的稠油和催化剂在255℃的温度下减粘裂化3小时,设置一级反应罐6内的压力为1KPa。在进行所述减粘裂化的过程中,生成的中温油气7-1从一级反应罐6中逸出,进入原料池2中的油气管道2-1中,中温油气7-1的温度为255℃;所述减粘裂化完成后得到的中间产物3-3经高温泵4-3输送至1号二级反应罐21-1内。中温烟气19-1从一级反应罐6排出形成中温废烟气19-3,中温废烟气19-3进入换热器16,与冷空气进行热交换,得到热空气17,将热空气17送入烟气炉19中进行助燃,中温废烟气19-3的温度为300℃。将中温废烟气19-3与冷空气进行热交换后得到的常温废烟气19-5送入到脱硝、除硫装置18中进行回收,常温废烟气19-5的温度为25℃。
调节烟气炉19的温度,产生高温烟气19-2进入1号二级反应罐21-1的加热腔内,高温烟气19-2的温度为1000℃;开启1号二级反应罐21-1中的搅拌装置,在搅拌速度为50转/分的速度下,将所述中间产物3-3在455℃的温度下催化裂化3小时,设置1号二级反应罐21-1内部的压力为-0.5KPa。在所述催化裂化的过程中,产生的高温油气7-2从1号二级反应罐中逸出,流入到原料池2中的油气管道2-1中,所述高温油气7-2的温度为455℃。高温烟气19-2从1号二级反应罐21-1的加热腔流出后形成高温废烟气19-4,将高温废烟气19-4输送到一级反应罐6的加热腔中,利用高温废烟气19-4的余热为上述催化裂化提供热量,高温废烟气19-4 的温度为650℃。
中温油气7-1和高温油气7-2在原料池2中的油气管道2-1内混合,得到高温油气和中温油气的混合气7-3,开启冷凝器风机9将中温油气和高温油气的混合气7-3在冷凝器8中进行冷却,所述冷却的温度为45℃,将中温油气和高温油气混合气7-3冷却后得到轻质油和干气的混合物7-4;开启高压风机10,将轻质油和干气的混合物7-4在分离器11中进行分离,得到轻质油12和干气13,将轻质油12送入到储油罐14-2中,将干气13送入到干气柜14-1中;当干气13的生成量稳定时,将干气柜14-1中的干气送入烟气炉19中进行燃烧供热。
所述1号二级反应罐21-1内催化裂化过程中产生的高温油气7-2都进入油气管道2-1中后,启动冷却风机20,向1号二级反应罐21-1的加热腔中通入空气,使所述催化裂化过程中产生的石油焦的温度冷却到250℃,启动机械除焦装置,排出所述石油焦。
当1号二级反应罐21-1进行催化裂化时,将一级反应罐6中得到的中间产物3-3输送至2号二级反应罐21-2中,在2号二级反应罐21-2中重复进行上述催化裂化,制备轻质油。
按照上述技术方案所述的方法,计算本发明实施例6提供的轻质油制备方法的收率,计算结果为本发明实施例6提供的轻质油的制备方法的收率为80.7%,收率较高。
由以上实施例可知,本发明提供了一种轻质油的制备方法,包括以下步骤:1)、在搅拌的作用下,将稠油进行减粘裂化,得到中间产物;2)、在搅拌和催化剂的作用下,将所述中间产物进行催化裂化,得到轻质油。本发明将减粘裂化和催化裂化工艺相结合来制备轻质油,所述减粘裂化和催化裂化都是在搅拌的条件下进行的,通过搅拌使反应物料分散,增大了反应物料液滴的蒸发面积,进而增大了液滴的表面曲率,从而增大了液滴的蒸汽压,这样就会增加反应物料在减粘裂化和催化裂化过程中的气化量,降低石油焦的生成量,从而提高本发明提供的轻质油制备方法的收率;因此本发明提供的轻质油的制备方法收率较高。此外,本发明采用减粘裂化和催化裂化相结合的工艺制备轻质油,能够减少制备轻质油过程中稠油 对设备的损坏。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对所公开的实施例的上述说明,使本领域专技术人员能够实现或使用本发明,对这些实施例的多种修改对本领域专业技术人员来说将是显而易见的。本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖性特点相一致的最宽的范围。

Claims (10)

  1. 一种轻质油的制备方法,包括以下步骤:
    1)、在搅拌的作用下,将稠油进行减粘裂化,得到中间产物;
    2)、在搅拌和催化剂的作用下,将所述中间产物进行催化裂化,得到轻质油。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤1)中稠油和步骤2)中催化剂的质量比为(24~48):1。
  3. 根据权利要求1所述的方法,其特征在于,所述步骤1)中减粘裂化的温度为240℃~270℃;
    所述步骤1)中减粘裂化的压力为-0.5KPa~1.5KPa。
  4. 根据权利要求1所述的方法,其特征在于,所述步骤1)中减粘裂化的时间为1.5小时~3小时。
  5. 根据权利要求1所述的方法,其特征在于,所述步骤1)中搅拌的速度为30转/分~50转/分;
    所述步骤2)中搅拌的速度为30转/分~50转/分。
  6. 根据权利要求1所述的方法,其特征在于,所述步骤2)中的催化剂为环烷酸钴催化剂,所述环烷酸钴催化剂,以重量份计,包括:
    20份~35份的环烷酸钴;
    30份~40份的乙二醇单甲醚;
    3份~5份的酸化活性白土;
    10份~20份的硬脂酸甘油酯;
    20份~37份的氯化石蜡。
  7. 根据权利要求1所述的方法,其特征在于,所述步骤2)中催化裂化的温度为440℃~470℃。
  8. 根据权利要求1所述的方法,其特征在于,所述步骤2)中催化裂化的压力为-0.5KPa~1.5KPa。
  9. 根据权利要求1所述的方法,其特征在于,所述步骤2)中催化裂化的时间为1.5小时~3小时。
  10. 根据权利要求1所述的方法,其特征在于,所述步骤2)中催化裂化完成后还包括:
    将得到的催化裂化产物进行冷却,得到轻质油,所述冷却的温度为40℃~50℃。
PCT/CN2015/072996 2014-06-30 2015-02-13 一种轻质油的制备方法 WO2016000456A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2953662A CA2953662C (en) 2014-06-30 2015-02-13 Method for preparing light oil
RU2017101965A RU2662218C1 (ru) 2014-06-30 2015-02-13 Способ получения легкой нефти

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410304982.3 2014-06-30
CN201410304982.3A CN105273749A (zh) 2014-06-30 2014-06-30 一种轻质油的制备方法

Publications (1)

Publication Number Publication Date
WO2016000456A1 true WO2016000456A1 (zh) 2016-01-07

Family

ID=55018405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072996 WO2016000456A1 (zh) 2014-06-30 2015-02-13 一种轻质油的制备方法

Country Status (4)

Country Link
CN (1) CN105273749A (zh)
CA (1) CA2953662C (zh)
RU (1) RU2662218C1 (zh)
WO (1) WO2016000456A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108865264A (zh) * 2018-07-03 2018-11-23 安徽星鑫化工科技有限公司 一种季铵盐改性氯化石蜡的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777467B (zh) * 2017-11-14 2021-05-04 中国石油化工股份有限公司 一种高粘油减粘的加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434044A (en) * 1981-09-01 1984-02-28 Ashland Oil, Inc. Method for recovering sulfur oxides from CO-rich flue gas
CN1644653A (zh) * 2005-01-14 2005-07-27 曹志德 一种生产轻质燃料油的催化剂和方法
CN1786115A (zh) * 2005-11-30 2006-06-14 曹志德 一种以含油岩石为原料生产轻质燃料油的催化剂和方法
CN102746890A (zh) * 2011-04-22 2012-10-24 中国石油化工股份有限公司 一种船用燃料油及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1033532A1 (ru) * 1981-06-29 1983-08-07 Горьковский Государственный Институт По Проектированию Предприятий Нефтеперерабатывающей И Нефтехимической Промышленности Способ получени котельного топлива
RU2185415C1 (ru) * 2001-05-29 2002-07-20 Открытое акционерное общество "Рязанский нефтеперерабатывающий завод" Способ получения судового или котельного топлива
CN1151239C (zh) * 2001-07-02 2004-05-26 中国石油化工股份有限公司 一种重、渣油轻质化方法
CA2624746C (en) * 2007-03-12 2015-02-24 Robert Graham Methods and systems for producing reduced resid and bottomless products from heavy hydrocarbon feedstocks
CN101597511B (zh) * 2008-06-04 2013-04-24 中国石油天然气股份有限公司 一种超重原油改质处理的工艺方法
CN102618324B (zh) * 2011-01-27 2014-12-03 中国石油化工股份有限公司 一种加工重油原料的组合方法
CN102643671B (zh) * 2011-02-17 2015-03-18 中国石油化工股份有限公司 一种重油原料的加工方法
CN102358846A (zh) * 2011-09-19 2012-02-22 中国石油天然气股份有限公司 一种重油供氢减粘-焦化组合工艺方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4434044A (en) * 1981-09-01 1984-02-28 Ashland Oil, Inc. Method for recovering sulfur oxides from CO-rich flue gas
CN1644653A (zh) * 2005-01-14 2005-07-27 曹志德 一种生产轻质燃料油的催化剂和方法
CN1786115A (zh) * 2005-11-30 2006-06-14 曹志德 一种以含油岩石为原料生产轻质燃料油的催化剂和方法
CN102746890A (zh) * 2011-04-22 2012-10-24 中国石油化工股份有限公司 一种船用燃料油及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108865264A (zh) * 2018-07-03 2018-11-23 安徽星鑫化工科技有限公司 一种季铵盐改性氯化石蜡的制备方法

Also Published As

Publication number Publication date
CA2953662C (en) 2019-08-20
RU2662218C1 (ru) 2018-07-25
CA2953662A1 (en) 2016-01-07
CN105273749A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
CN102295943B (zh) 一种大循环比油系针状焦焦化的方法
CN101591561B (zh) 一种延迟焦化工艺
CN106520176B (zh) 一种用聚烯烃塑料制取小分子烯烃的方法
CN101597517B (zh) 一种富油脱苯工艺
CN105586077B (zh) 一种重油焦化设备
CN104673371B (zh) 一种提高延迟焦化液体产品产率的方法
CN105647581B (zh) 催化汽油加氢方法
CN105131999A (zh) 单炉单釜生产改质沥青的工艺及装置
CN104662131A (zh) 用于生产液态烃的方法和设备的预备停止的改进的方法
WO2016000456A1 (zh) 一种轻质油的制备方法
CN109504416B (zh) 一种煤系针状焦的生产工艺
CN106544053B (zh) 一种降低加热炉燃料消耗的溶剂脱沥青工艺
CN105623721B (zh) 一种制备针状焦原料的方法
CN106244193B (zh) 高蜡原油处理装置及处理方法
CN206089583U (zh) 高蜡原油处理装置
RU128612U1 (ru) Установка для получения моторных топлив
CN105985804B (zh) 一种重质油加工工艺及加工装置
CN109652121B (zh) 无掺杂全馏分乙烯焦油延迟焦化设备
CN211471301U (zh) 焦化生产用大吹气回收利用系统
CN101481626A (zh) 一种重油裂解制球形焦工艺
CN204939397U (zh) 单炉单釜生产改质沥青的装置
CN103059922B (zh) 利用煤焦油连续生产汽柴油的装置及方法
CN101691498B (zh) 一种用于降低焦化装置循环比的重蜡油溶剂脱沥青工艺
RU2612964C1 (ru) Способ подготовки высоковязкой нефти
CN105623692B (zh) 一种制备针状焦原料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2953662

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017101965

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15814063

Country of ref document: EP

Kind code of ref document: A1