WO2015199750A1 - Ethylene acid copolymers, their ionomers, and their use in packaging films and injection molded articles - Google Patents
Ethylene acid copolymers, their ionomers, and their use in packaging films and injection molded articles Download PDFInfo
- Publication number
- WO2015199750A1 WO2015199750A1 PCT/US2014/068786 US2014068786W WO2015199750A1 WO 2015199750 A1 WO2015199750 A1 WO 2015199750A1 US 2014068786 W US2014068786 W US 2014068786W WO 2015199750 A1 WO2015199750 A1 WO 2015199750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ethylene
- acid
- ionomer
- copolymer
- carboxylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C49/00—Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/02—Wrappers or flexible covers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5435—Silicon-containing compounds containing oxygen containing oxygen in a ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
- C08L23/0869—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen with unsaturated acids, e.g. [meth]acrylic acid; with unsaturated esters, e.g. [meth]acrylic acid esters
- C08L23/0876—Salts thereof, i.e. ionomers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0023—Covers
- A63B37/0024—Materials other than ionomers or polyurethane
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0038—Intermediate layers, e.g. inner cover, outer core, mantle
- A63B37/0039—Intermediate layers, e.g. inner cover, outer core, mantle characterised by the material
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/005—Cores
- A63B37/0051—Materials other than polybutadienes; Constructional details
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/20—Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
- C08K5/053—Polyhydroxylic alcohols
Definitions
- novel ethylene acid copolymers ionomers of the ethylene acid copolymers, and the use of these copolymers and ionomers in various materials, including packaging films and injection molded articles. These copolymers and ionomers show improved optical properties when compared to conventional ethylene acrylic or methacrylic acid copolymers and their ionomers.
- Ionomers are copolymers produced by partially or fully neutralizing the carboxylic acid groups of precursor or parent polymers that are acid copolymers comprising copolymerized residues of a-olefins and ⁇ , ⁇ -ethylenically unsaturated carboxylic acids.
- a variety of articles made from ionomers by injection molding processes have been used in our daily life.
- golf balls with ionomer-containing covers have been produced by injection molding. See, e.g.; U.S. Patent Nos. 4,714,253;
- ionomers for packaging films, injection molded articles, and other end-uses is well known in the art.
- Some films are designed to be breathable, to allow oxygen and/or moisture to pass through, to exhibit elastic properties, or to protect the materials they surround. See, for example, U.S. Patent Nos. 7,438,940 and 7,635,509; and U.S. Patent Appln. Publn.
- lonomeric materials can also be used to fabricate blown films and thermoforrned articles. See, for example, U.S. Patent Appln. Publn. Nos. 2011/0028622 and 2009/0099313 and U.S. Patent No. 8,110,138.
- an ethylene acid copolymer comprising copolymerized units of ethylene, about 10 to about 30 wt% of copolymerized units of a first ⁇ , ⁇ -unsaturated carboxylic acid having 3 to 10 carbon atoms; and about 5 to about 15 wt% of copolymerized units of a derivative of a second ⁇ , ⁇ -unsaturated carboxylic acid having 3 to 10 carbon atoms.
- the weight percentages of the copolymerized units are based on the total weight of the ethylene acid copolymer.
- at least a portion of the carboxylic acid groups of the copolymerized ⁇ , ⁇ -unsaturated carboxylic acid units are neutralized to form carboxylate salts.
- packaging films injection-molded articles such as containers, golf balls and components of golf balls, and other structures comprising the ethylene acid copolymers and ionomers described herein.
- a finite amount refers to an amount that is greater than zero.
- compositions, a process, a structure, or a portion of a composition, a process, or a structure is described herein using an open-ended term such as "comprising,” unless otherwise stated the description also includes an
- copolymer refers to polymers comprising copolymerized units resulting from copolymerization of two or more comonomers.
- a copolymer may be described herein with reference to its constituent comonomers or to the amounts of its constituent comonomers, for example "a copolymer comprising ethylene and 15 weight % of acrylic acid", or a similar description.
- Such a description may be considered informal in that it does not refer to the comonomers as copolymerized units; in that it does not include a conventional nomenclature for the copolymer, for example International Union of Pure and Applied Chemistry (lUPAC) nomenclature; in that it does not use product-by-process terminology; or for another reason.
- lUPAC International Union of Pure and Applied Chemistry
- a copolymer is not the product of a reaction mixture containing given comonomers in given amounts, unless expressly stated in limited circumstances to be such.
- dipolymer refers to polymers consisting essentially of two monomers
- terpolymer refers to polymers consisting essentially of three monomers
- acid copolymer refers to a polymer comprising copolymerized units of an ⁇ -olefin, an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, and optionally other suitable comonomer(s) such as, an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid ester.
- (meth)acrylic refers to acrylic or methacrylic, for example, “acrylic acid or methacrylic acid”, or “alkyl acrylate or alkyl methacrylate”.
- ionomer refers to a polymer that comprises ionic groups that are carboxylate salts, for example, ammonium carboxylates, alkali metal carboxylates, alkaline earth carboxylates, transition metal carboxylates and/or combinations of such carboxylates.
- carboxylate salts for example, ammonium carboxylates, alkali metal carboxylates, alkaline earth carboxylates, transition metal carboxylates and/or combinations of such carboxylates.
- Such polymers are generally produced by partially or fully neutralizing the carboxylic acid groups of precursor or parent polymers that are acid copolymers, as defined herein, for example by reaction with a base.
- an alkali metal ionomer as used herein is a zinc sodium mixed ionomer (or zinc sodium neutralized mixed ionomer), for example a copolymer of ethylene and methacrylic acid wherein all or a portion of the carboxylic acid groups of the copolymerized methacrylic acid units are in the form of zinc carboxylates and sodium carboxylates.
- a zinc sodium mixed ionomer or zinc sodium neutralized mixed ionomer
- an ethylene acid copolymer that comprises
- copolymerized units of ethylene about 10 to about 30 wt% of copolymerized units of a first ⁇ , ⁇ -unsaturated carboxylic acid having 3 to 10, preferably 3 to 8, carbon atoms; and about 5 to about 15 wt% of copolymerized units of a derivative of a second ⁇ , ⁇ -unsaturated carboxylic acid having 3 to 10, preferably 3 to 8, carbon atoms.
- the amount of copolymerized acid(s) is about 15 to about 25 wt%, or about 20 to 24 wt%, or about 22 wt%.
- the amount of copolymerized acid derivative(s) is about 8 to about 12 wt%, or about 10 wt%. In some preferred ethylene acid copolymers, the sum of the weight percentages of the copolymerized acid and acid derivative is about 20 to about 45 wt%. The weight percentages of the copolymerized units are based on the total weight of the ethylene acid copolymer, and the sum of the weight percentages of the copolymerized units is 100 wt%.
- at least a portion of the carboxylic acid groups of the copolymerized units of the ⁇ , ⁇ -unsaturated carboxylic acid units are neutralized to form carboxylate salts.
- Suitable first ⁇ , ⁇ -ethylenically unsaturated acid comonomers include, without limitation, acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, and mixtures of two or more thereof.
- the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid is selected from acrylic acid, methacrylic acid, and mixtures of two or more thereof.
- the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid is methacrylic acid.
- the ethylene acid copolymer further comprises copolymerized units of one or more additional comonomer(s), such as a second ⁇ , ⁇ -ethylenically
- unsaturated carboxylic acid having 3 to 10, or preferably 3 to 8 carbons, or derivatives thereof.
- Suitable acid derivatives include acid anhydrides, amides, and esters.
- Esters are preferred, and alkyl esters are more preferred.
- Specific examples of more preferred esters of unsaturated carboxylic acids include, without limitation, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, octyl acrylate, octyl methacrylate, undecyl acrylate, undecyl methacrylate, o
- the suitable additional comonomers are selected from methyl acrylate, methyl methacrylate, n-butyl acrylate, n-butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, glycidyl methacrylate, vinyl acetate, and mixtures of two or more thereof.
- the first ⁇ , ⁇ -ethylenically unsaturated carboxylic acid is the same as the second ⁇ , ⁇ -ethylenically unsaturated carboxylic acid; in yet another preferred ethylene copolymer, however, the first and the second ⁇ , ⁇ -ethylenically unsaturated carboxylic acids are different.
- Suitable ethylene acid copolymers have a melt flow rate (MFR) of about 1 to about 4000 g/10 min, or about 1 to 1000 g/10 min, or about 20 to about 400 g/10 min, as determined in accordance with ASTM method D1238-89 at 190°C and 2.16 kg.
- MFR melt flow rate
- ethylene acid copolymers may be synthesized as described in U.S. Patent Nos. 3,404,134; 5,028,674; 6,500,888; 6,518,365;
- the ethylene acid copolymers are partially neutralized by reaction with one or more bases.
- An example of a suitable procedure for neutralizing the ethylene acid copolymers is described in U.S.
- Patent Nos. 3,404,134 and 6,518,365 After neutralization, about 1% to about 90%, or about 10% to about 60%, or about 20% to about 55%, or about 20 to about 30% of the hydrogen atoms of carboxylic acid groups present in the ethylene acid copolymer are replaced by other cations. Stated alternatively, about 1% to about 90%, or about 10% to about 60%, or about 20% to about 55%, or about 20 to about 30% of the total content of the carboxylic acid groups present in the ethylene acid copolymer are neutralized. In another alternative expression, the acid groups are neutralized to a level of about 1% to about 90%, or about 10% to about 60%, or about 20% to about 55%, or about 20 to about
- the neutralization level can be tailored for the specific end-use.
- the ionomers comprise cations as counterions to the carboxylate anions.
- Suitable cations include any positively charged species that is stable under the conditions in which the ionomer composition is synthesized, processed and used. Suitable cations may be used in combinations of two or more.
- the cations are metal cations, which may be monovalent, divalent, bivalent, or multivalent. Useful monovalent metal cations include but are not limited to cations of sodium, potassium, lithium, silver, mercury, copper, and the like.
- Useful divalent metal cations include but are not limited to cations of beryllium, magnesium, calcium, strontium, barium, copper, cadmium, mercury, tin, lead, iron, cobalt, nickel, zinc, and the like.
- Useful trivalent metal cations include but are not limited to cations of aluminum, scandium, iron, yttrium, and the like.
- Useful multivalent metal cations include but are not limited to cations of titanium, zirconium, hafnium, vanadium, tantalum, tungsten, chromium, cerium, iron, and the like.
- the metal cations used are monovalent or divalent metal cations.
- Preferred metal cations are sodium, lithium, magnesium, zinc, potassium, and combinations of two or more of these metal cations.
- the cations are sodium cations, zinc cations and combinations of sodium and zinc cations.
- the resulting neutralized ionomer has a melt index, as determined in accordance with ASTM method D1238-89 at 190°C and 2.16 kg, that is lower than that of the corresponding ethylene acid copolymer.
- the ionomer's melt index depends on a number of factors, including the melt index of the ethylene acid copolymer, the amount of copolymerized acid, the neutralization level, the identity of the cation and its valency.
- the desired value of the ionomer's melt index may be determined by its intended end use.
- the ionomer has a melt index of about 1000 g/10 min or less, about 750 g/10 min or less, about 500 g/10 min or less, about 250 g/10 min or less, about 100 g/10 min or less, about 50 g/10 min or less, about 25 g/10 min or less, or about of 20 g/10 min or less, or about 10 g/10 min or less, or about 5 g/10 min or less, or about 0.7 to about 7.5 g/10 min, as determined in accordance with ASTM method D1238-89 at 190°C and 2.16 kg.
- the ethylene acid copolymers and ionomers described herein may be formulated into compositions that further comprise additives known within the art.
- the additives include, but are not limited to, processing aids, flow enhancing additives, lubricants, pigments, dyes, flame retardants, impact modifiers, nucleating agents, anti-blocking agents such as silica, thermal stabilizers, UV absorbers, UV stabilizers, dispersants, surfactants, chelating agents, coupling agents, reinforcement additives, such as glass fiber, fillers and the like.
- suitable additives suitable levels of the additives in the ethylene acid copolymers and ionomers, and methods of incorporating the additives into the ethylene acid copolymers and ionomers may be found in reference texts such as, for example, the Kirk Othmer Encyclopedia, the Modern Plastics Encyclopedia, McGraw-Hill (New York, 1995) or the Wiley Encyclopedia of Packaging Technology, 2d edition, A.L. Brady and K.S. Marsh, Eds., Wiley- Interscience (Hoboken, 1997).
- Four types of additives are of note for use in the ionomeric polymers, specifically thermal stabilizers, UV absorbers, hindered amine light stabilizers (HALS), and silane coupling agents. Further information about these four types of additives, such as preferred examples and suitable levels in ionomeric polymers, may be found in the reference texts cited above and in U.S. Patent No. 7,641 ,965, for example.
- the ethylene acid copolymers or ionomers are cross-linked.
- Several methods of decreasing the melt flow of ethylene acid copolymers and their ionomers are known and are described in U.S. Patent Appln. Publn. No. 2009/0126859, by Cadwallader et al., for example.
- Organic peroxides in particular, have been used as cross-linking agents for ethylene acid copolymers and their ionomers.
- the copolymer composition includes a hydroxyl-containing crosslinking agent and one or more silane adjuvants.
- hydroxyl-containing crosslinking agent refers to any molecule that is miscible with the ethylene copolymer and that has two or more hydroxyl groups.
- suitable hydroxyl- containing crosslinking agents include, without limitation, diols such as
- the hydroxyl-containing crosslinking agent is included in the acid copolymer composition in an amount of up to about 5 wt%, preferably about 2 wt% or less or about 1.5 wt% or less, more preferably about 1 wt% or less, 0.5 wt% or less, or 0.25 wt% or less, or 0.1 wt%, based on total weight of the acid copolymer composition.
- Those of skill in the art are able to determine an appropriate level of cross- linking based on the physical properties that are desired in the cross-linked composition. For example, higher levels of cross-linking are correlated with a higher flex modulus, better high temperature adhesion, lower melt indices, and better heat resistance. The level of cross-linking must be adjusted, however, so that the desired end use performance is obtained. Those of skill in the art are also aware that the time required to obtain a desired level of cross-linking depends directly on the concentration of carboxylic acid groups and hydroxyl- containing groups.
- cross-linking reactions can require heat, but the reaction may also be carried out using catalysis, or by using a combination of heat and catalysis.
- esterification reactions are known to be catalyzed by acid catalysts and by base catalysts.
- the hydroxyl-containing crosslinking agent can be added to the ionomer in any convenient manner.
- One particularly useful way is to add the agent to the ionomer flake, pellets or granules in the pre-mix chamber of an extruder.
- cross-linking agent is incorporated into the polymer composition and may react so that the cross-linking occurs in the ionomer as it is extruded. Alternatively, the cross-linking reaction can take place during melt mixing or extrusion of the melt.
- the cross-linkable polymer composition may optionally comprise one or more adjuvants.
- suitable adjuvants include silanes. When silanes are used, they can be added in amounts of between 0.025 wt% and 0.1 wt%, 0.25 wt%, 0.5 wt%, 0.75 wt% or 1.0 wt%, based on the total weight of the polymer composition.
- Non-limiting examples of preferred silanes include N-(2- aminoethyl-3-aminopropyl) trimethoxysilane, 3-glycidoxypropyl trimethoxysilane, and combinations thereof.
- the adjuvant can be added at the same time and in the same manner as the hydroxyl-containing crosslinking agent, or by any other known method.
- Catalysts may also be included, such as the creation of either acidic or basic conditions to catalyze the cross-linking reaction.
- a specific catalyst such as dibutyl tin oxide or similar compound, may be employed.
- the present invention also includes a product of cross-linking the ethylene acid copolymer or ionomer composition, so that at least a portion of the carboxylic acid groups of one or more ethylene acid copolymer (or ionomer) molecules are reacted with at least two hydroxy! groups of the hydroxyl- containing crosslinking agent, thereby forming cross-links between or within the ethylene acid copolymer (or ionomer) molecules.
- At least a portion of the carboxylic acid groups of two or more ethylene acid copolymer (or ionomer) molecules are reacted with at least two hydroxyl groups of the hydroxyl- containing crosslinking agent, thereby forming cross-links between the ethylene acid copolymer (or ionomer) molecules.
- the resulting cross-linked polymer composition may have a MFR of 25 g/10 min or less, or about of 20 g/10 min or less, or about 10 g/10 min or less, or about 5 g/10 min or less, or about 0.7 to about 5 g/10 min or to about 7.5 g/10 min, as determined in accordance with ASTM method D1238-89 at 190°C and 2.16 kg.
- the ethylene acid copolymers and ionomers described herein are surprisingly well-suited for use with the polyhydroxyl crosslinking agents and silane adjuvants.
- the creep resistance of the copolymers and ionomers described herein exhibits favorable effects when cross-linked, when compared with conventional ethylene acid copolymers and ionomers that are cross-linked using the same system.
- the cross-linked acid copolymers and ionomers described herein exhibit greater elongation with integrity when compared to sheets or films of previously known acid copolymers and ionomers that are cross-linked using the same system.
- the term "elongation with integrity”, as used herein, refers to the ability of a film to stretch by 10% or greater without incurring any defects that would impair performance. Non-limiting examples of such defects include breaking, stretching and necking down to a thin fiber-like construction, and material unable to support its own weight.
- articles comprising the ethylene acid copolymers and ionomers described herein and articles comprising the products of cross-linking the ethylene acid copolymers and ionomers described herein. More specifically, the polymers and compositions described herein are suitable for use in various objects including packaging films or sheets and injection molded or
- thermoformed articles Accordingly, provided herein are sheets and films comprising or made from the polymer composition. Further provided are sheets and films comprising or made from a product of crosslinking the polymer composition.
- the difference between a film and a sheet is the thickness; however, there is no set industry standard as to when a film becomes a sheet.
- film refers to a structure having a thickness of about 20 mils (0.50 mm) or less
- sheet refers to a structure having a thickness of greater than about 20 mils (0.50 mm).
- the polymer compositions when used as packaging films, they can have a thickness between about 0.4 mil and about 20 mils (about 10 to about 500 micrometers), and preferably between about 0.9 and about 6 mils (about 25 to about 150
- the packaging films can comprise more than one layer.
- Sheets comprising the polymer compositions may be formed by any suitable method, including without limitation dipcoating, solution casting, compression molding, injection molding, lamination, melt extrusion casting, blown film, extrusion coating, tandem extrusion coating, or by a combination of two or more of these methods.
- the sheets are formed by an extrusion method, such as melt extrusion casting, melt coextrusion casting, melt extrusion coating, or tandem melt extrusion coating processes.
- the article is a film or sheet, which may be prepared by any convention process, such as, dipcoating, solution casting, lamination, melt extrusion, blown film, extrusion coating, tandem extrusion coating, or by any other procedures that are known to those of skill in the art.
- the films or sheets are formed by melt extrusion, melt coextrusion, melt extrusion coating, blown film process, or tandem melt extrusion coating process.
- the article comprising the polymer composition described herein is a molded article, which may be prepared by any conventional molding process, such as, compression molding, injection molding, extrusion molding, blow molding, injection blow molding, injection stretch blow molding, extrusion blow molding and the like. Articles may also be formed by combinations of two or more of these processes, such as for example when a core formed by compression molding is overmolded by injection molding.
- the article comprising the polymer composition disclosed herein is an injection molded article having a minimum thickness (i.e, the thickness at the smallest dimension of the article) of at least about 1 mm.
- the injection molded article may have a thickness of about 1 mm to 100 mm, or 2 mm to 100 mm, or 3 to about 100 mm, or about 3 to about 50 mm, or about 5 to about 35 mm.
- the article is an injection molded article in the form of a multi-layer structure (such as an over-molded article), wherein at least one layer of the multi-layer structure comprises or consists essentially of the ionomer composition disclosed above and that layer has a minimum thickness of at least about 1 mm.
- the at least one layer of the multi-layer article has a thickness of about 1 to about 100 mm, or 2 mm to 100 mm, or 3 to about 100 mm, or about 3 to about 50 mm, or about 5 to about 35 mm.
- the article is an injection molded article in the form of a sheet, a container (e.g., a bottle or a bowl), a cap or stopper (e.g., for a container), a sealant for a container (a bottle cap liner), a tray, a medical device or instrument (e.g., an automated or portable defibrillator unit), a handle, a knob, a push button, a decorative article, a panel, a console box, or a footwear component (e.g., a heel counter, a toe puff, or a sole).
- the article is an injection molded intermediate article for use in further shaping processes.
- the article may be a pre-form or a parison suitable for use in a blow molding process to form a container (e.g., a cosmetic container).
- a container e.g., a cosmetic container.
- the injection molded intermediate article may be in the form of a multi-layer structure such as the one described above, and it may therefore produce a container having a multi-layer wall structure.
- the article is an injection molded article in the form of a golf ball or a sub-part of a golf ball, for example a core or a mantle of a golf ball.
- Injection molding is a well-known molding process.
- the article disclosed herein is in the form of an injection molded article, it may be produced by any suitable injection molding process.
- Suitable injection molding processes include, for example, co-injection molding and over-molding (also referred to as two-shot or multi-shot molding processes).
- the polymer composition may be used as the substrate material, the over-mold material or both.
- the polymer composition disclosed herein may be over-molded on a glass or metal container.
- the polymer compositions may be over-molded on any other articles (such as house items, medical devices or instruments, electronic devices, automobile parts, architectural structures, sporting goods, and etc.) to form a soft touch and/or protective overcoating.
- the over-mold material comprises the polymer composition described herein
- the melt index of the polymer composition is preferably from 0.75 up to about 25 g/10 min, as determined in accordance with ASTM D1238 at 190°C and 2.16 kg.
- the polymer composition may notably comprise an ionomer having zinc cations.
- the precursor acid copolymer preferably has a melt index of about 10 to about 100 g/10 min, or about 10 to 70 g/10 min, as determined in accordance with ASTM D1238 at 190°C and 2.16 kg.
- the zinc ionomer preferably has a melt index of from about 0.1 to about 2.0 g/10 min, as determined in accordance with ASTM D1238 at 190°C and 2.16 kg.
- the polymer composition may be molded at a melt temperature of about 120°C to about 250°C, or about 130°C to about 210°C. In general, slow to moderate fill rates with pressures of about 30 to about 210 MPa or of about 69 to about 110 MPa may be used.
- the mold temperatures may be in the range of about 5°C to about 50°C. Based on the polymer composition and the process type that is to be used, one skilled in the art would be able to determine the proper molding conditions required to produce a particular type of article.
- injection molding conditions may include temperatures, pressures and cycle times as indicated in Table A.
- compositions described herein may be used with any type of ball construction. It may be used in the core, cover, or one or more intermediate layers of a golf ball. Suitable golf ball constructions, including one-piece golf balls, two-piece golf balls, three-piece golf balls and multi-piece golf balls, are described in U.S. Pat. NoS. 8,044,136 and 8,202,925, both issued to de
- Acid copolymer resins and their ionomers were obtained from DuPont under the trademarks Nucrel®, Surlyn® or SentryGlas®. Alternatively, the polymers were synthesized by the methods described in U.S. Patent
- the first ⁇ , ⁇ -ethylenically unsaturated carboxylic acid was acrylic acid or methacrylic acid.
- a sufficiently high level and complementary amount of the derivative of the second ⁇ , ⁇ -ethylenically unsaturated carboxylic acid (here, /-butyl acrylate or /7-butyl acrylate) was present in the reaction mixture.
- the compositions of the synthesized polymers which are set forth in Table 1 , were determined by nuclear magnetic resonance (NMR) spectroscopy, by titration, or by mass balance methods.
- the counterions of the ionomers were sodium cations.
- Patent No. 8,399,096 The enthalpies of crystallization are reported in Table 1.
- the acid copolymers and ionomers are also formed into sheets, which in turn are used as interiayers in glass laminates. Again, the methods are set forth in U.S. Patent No. 8,399,096.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Mechanical Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Laminated Bodies (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020167034993A KR102274719B1 (ko) | 2014-06-26 | 2014-12-05 | 에틸렌 산 공중합체, 그의 이오노머, 및 포장 필름과 사출 성형된 물품에서의 그의 용도 |
| DE112014006770.9T DE112014006770T5 (de) | 2014-06-26 | 2014-12-05 | Ethylen-Säure-Copolymere, ihre lonomere und ihre Verwendung in Verpackungsfolien und spritzgegossenen Artikeln |
| JP2016573760A JP6563960B2 (ja) | 2014-06-26 | 2014-12-05 | エチレン酸コポリマー、それらのイオノマー、並びに包装用フィルムおよび射出成形品におけるそれらの使用 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462017711P | 2014-06-26 | 2014-06-26 | |
| US62/017,711 | 2014-06-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015199750A1 true WO2015199750A1 (en) | 2015-12-30 |
Family
ID=52278774
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/068786 Ceased WO2015199750A1 (en) | 2014-06-26 | 2014-12-05 | Ethylene acid copolymers, their ionomers, and their use in packaging films and injection molded articles |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US20150376310A1 (enExample) |
| JP (1) | JP6563960B2 (enExample) |
| KR (1) | KR102274719B1 (enExample) |
| DE (1) | DE112014006770T5 (enExample) |
| WO (1) | WO2015199750A1 (enExample) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017196707A1 (en) | 2016-05-09 | 2017-11-16 | Kuraray America, Inc. | Multilayer interlayer and glass laminate |
| WO2018081570A1 (en) | 2016-10-28 | 2018-05-03 | Kuraray America, Inc. | Wedge-shaped multilayer interlayer and glass laminate |
| WO2019027865A1 (en) | 2017-07-31 | 2019-02-07 | Kuraray America, Inc. | IONOMER INTERMEDIATE LAYER HAVING ENHANCED ADHESION PROPERTIES |
| WO2020163296A1 (en) | 2019-02-04 | 2020-08-13 | Kuraray America, Inc. | Hurricane-resistant acoustic glazing |
| WO2021237205A1 (en) | 2020-05-22 | 2021-11-25 | Kuraray America, Inc. | Interlayer and laminate with controlled debonding zone treatments for enhanced performance |
| WO2022132417A1 (en) | 2020-12-16 | 2022-06-23 | Kuraray Europe Gmbh | Laminated structures with adhesive polymeric interlayer comprising cohesive debonding zones for enhanced performance |
| WO2023096879A1 (en) | 2021-11-23 | 2023-06-01 | Kuraray Europe Gbmh | Interlayer and laminate with controlled debonding zone treatments |
| WO2023249853A1 (en) | 2022-06-22 | 2023-12-28 | Kuraray America, Inc. | Ionomer resin composition |
| US12195613B2 (en) | 2019-05-31 | 2025-01-14 | Kuraray Europe Gmbh | Ionomer, resin sheet, and laminated glass |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150376310A1 (en) * | 2014-06-26 | 2015-12-31 | E.I. Du Pont De Nemours And Company | Ethylene acid copolymers, their ionomers, and their use in packaging films and injection molded articles |
| WO2019231916A1 (en) * | 2018-05-31 | 2019-12-05 | E. I. Du Pont De Nemours And Company | Molded articles, and methods thereof |
| EP3919525B1 (en) * | 2019-01-28 | 2023-08-09 | Japan Polyethylene Corporation | Polar group-containing olefin copolymer |
| EP3936535B1 (en) * | 2019-03-04 | 2022-12-28 | Japan Polyethylene Corporation | Multi-component ionomer |
| WO2020262481A1 (ja) * | 2019-06-24 | 2020-12-30 | 日本ポリエチレン株式会社 | 射出成形用又は圧縮成形用樹脂組成物 |
| WO2021124951A1 (ja) | 2019-12-19 | 2021-06-24 | 株式会社クラレ | アイオノマー樹脂、樹脂シートおよび合わせガラス |
| WO2022113906A1 (ja) | 2020-11-27 | 2022-06-02 | 株式会社クラレ | アイオノマー樹脂 |
| CN118076648A (zh) * | 2021-11-05 | 2024-05-24 | 陶氏环球技术有限责任公司 | 具有改进的耐热性的聚合物共混物 |
| KR20230166514A (ko) | 2022-05-31 | 2023-12-07 | 에스케이이노베이션 주식회사 | 에틸렌 알킬아크릴레이트계 공중합체 이오노머 및 이의 제조방법 |
Citations (53)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3404134A (en) | 1961-08-31 | 1968-10-01 | Du Pont | Process of crosslinking polymers |
| US4714253A (en) | 1983-04-21 | 1987-12-22 | Sumitomo Rubber Industries, Ltd. | Three-piece solid golf ball |
| US4857258A (en) | 1986-02-01 | 1989-08-15 | Doux Georges F J Le | Process for the manufacturing of a multilayer plastic container |
| US4937035A (en) | 1986-10-17 | 1990-06-26 | Richter Guenter | Method for manufacturing large-volume hollow bodies of plastics material having multiple-layer walls |
| US4944906A (en) | 1988-10-11 | 1990-07-31 | Spirex Corporation | Methods of injection molding and extruding wet hygroscopic ionomers |
| US5028674A (en) | 1990-06-06 | 1991-07-02 | E. I. Du Pont De Nemours And Company | Methanol copolymerization of ethylene |
| US5094921A (en) | 1989-05-30 | 1992-03-10 | Kuraray Co., Ltd. | Multilayered structure |
| US5439227A (en) | 1992-08-31 | 1995-08-08 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
| US5452898A (en) | 1993-03-12 | 1995-09-26 | Bridgestone Sports Co., Ltd. | Golf ball |
| US5553852A (en) | 1993-07-08 | 1996-09-10 | Bridgestone Sports Co., Ltd. | Three-piece solid golf ball |
| US5752889A (en) | 1996-02-09 | 1998-05-19 | Bridgestone Sports Co., Ltd. | Two-piece solid golf ball |
| US5782703A (en) | 1996-05-01 | 1998-07-21 | Bridgestone Sports Co., Ltd. | Practice golf ball |
| US5782707A (en) | 1996-03-11 | 1998-07-21 | Bridgestone Sports Co., Ltd. | Three-piece solid golf ball |
| EP0855155A1 (en) | 1996-12-18 | 1998-07-29 | BENSON S.r.L. | Dispenser for cosmetic products |
| US5788890A (en) | 1996-04-04 | 1998-08-04 | E. I. Du Pont De Nemours And Company | Injection molding process |
| WO1998038227A1 (en) * | 1997-02-28 | 1998-09-03 | E.I. Du Pont De Nemours And Company | New ionomers based on copolymers of ethylene with both mono- and dicarboxylic acids and polyamide blends containing these ionomers |
| US5803833A (en) | 1996-02-07 | 1998-09-08 | Bridgestone Sports Co., Ltd. | Two-piece solid golf ball |
| US5807192A (en) | 1995-10-16 | 1998-09-15 | Bridgestone Sports Co., Ltd. | Solid golf ball |
| US6179732B1 (en) | 1997-12-16 | 2001-01-30 | Bridgestone Sports Co., Ltd. | Golf ball and golf ball marking method |
| US6207761B1 (en) | 1999-03-18 | 2001-03-27 | A. Schulman, Inc. | Ionomer/rubber/polyolefin blend and uses thereof |
| US20020175136A1 (en) | 2001-05-23 | 2002-11-28 | Bouix Herve F. | Plastic over-molded bottle |
| US20020180083A1 (en) | 1997-09-19 | 2002-12-05 | Stuart Yaniger | Multilayer synthetic stopper |
| US6500888B2 (en) | 2000-12-27 | 2002-12-31 | E. I. Du Pont De Nemours And Company | Surface treatment of ethylene based polymer pellets to improve blocking resistance |
| US6518365B1 (en) | 1999-07-28 | 2003-02-11 | E. I. Du Pont De Nemours And Company | High melt swell polymer |
| WO2003045186A1 (fr) | 2001-11-29 | 2003-06-05 | Benson S.R.L. | Distributeur de produit cosmetique en materiau barriere |
| US6699027B2 (en) | 2001-12-04 | 2004-03-02 | Callaway Golf Company | Molding processes and apparatuses for forming golf balls |
| WO2004062881A1 (en) | 2003-01-14 | 2004-07-29 | E.I.Dupont De Nemours And Company | Container having a double wall structure, manufacturing method and apparatus therefor |
| US6833420B1 (en) * | 1999-04-09 | 2004-12-21 | Du Pont Mitsui Polychemicals Co., Ltd. | Film for wrapping |
| US6866158B1 (en) | 1999-08-27 | 2005-03-15 | Schott Glas | Closeable glass container comprising a plastic coating applied by injection molding and method for the production thereof |
| US20050129888A1 (en) | 2003-12-10 | 2005-06-16 | Kwon Hyuk T. | Process for making cosmetic containers having a transparent thermoplastic outer wall |
| US7005098B2 (en) | 2002-01-23 | 2006-02-28 | Acushnet Company | Method for making golf ball with co-injected inner cover |
| US20060043632A1 (en) | 2004-08-25 | 2006-03-02 | Andersen Keith C | Process for manufacturing thermoplastic components for golf balls |
| US20060094824A1 (en) | 2004-11-02 | 2006-05-04 | Jacques Roulin | Polymer composition having elastomeric features |
| US7128864B2 (en) | 2001-12-04 | 2006-10-31 | Callaway Golf Company | Process forming a cover layer for a golf ball |
| US20060273485A1 (en) | 2005-06-03 | 2006-12-07 | Bridgestone Sports Co., Ltd. | Golf ball manufacturing method |
| US7201672B2 (en) | 1997-08-11 | 2007-04-10 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
| EP1816147A1 (en) | 2004-11-22 | 2007-08-08 | JSR Corporation | Ionomer, method for producing same and molded article |
| US20070282069A1 (en) | 2006-05-31 | 2007-12-06 | Bridgestone Sports Co., Ltd. | Golf ball material, golf ball and method for preparing golf ball material |
| WO2008010597A1 (en) | 2006-07-19 | 2008-01-24 | Du Pont-Mitsui Polychemicals Co., Ltd. | Synthetic resin hollow body |
| US7438940B2 (en) | 2002-04-19 | 2008-10-21 | E. I. Du Pont De Nemours And Company | Film and film structures having improved oxygen transmission, forming, and puncture resistances |
| US20090099313A1 (en) | 2007-10-10 | 2009-04-16 | E. I. Du Pont De Nemours And Company | Poly(hydroxyalkanoic acid) and thermoformed articles |
| US20090126859A1 (en) | 2007-11-16 | 2009-05-21 | Cadwallader Robert J | Process for producing glass laminates |
| US7635509B2 (en) | 2005-07-19 | 2009-12-22 | E.I. Du Pont De Nemours And Company | Vacuum skin packaging structure with high oxygen permeability |
| US7641965B1 (en) | 2008-06-30 | 2010-01-05 | E.I. Du Pont De Nemours And Company | Transparent light-weight safety glazings |
| WO2010030464A1 (en) * | 2008-09-10 | 2010-03-18 | Cryovac, Inc. | Package assembly for on-demand marination and method for providing the same |
| US20100272898A1 (en) | 2009-04-23 | 2010-10-28 | E. I. Du Pont De Nemours And Company | Method for preparing a selectively permeable protective structure |
| US20100304893A1 (en) * | 2009-05-26 | 2010-12-02 | E.I. Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene terpolymers and organic acids |
| US20110028622A1 (en) | 2009-07-28 | 2011-02-03 | E. I. Du Pont De Nemours And Company | Poly(hydroxyalkanoic acid) blown film |
| US8044136B2 (en) | 2007-11-01 | 2011-10-25 | E.I. Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene copolymers and organic acids |
| US8110138B2 (en) | 2008-05-08 | 2012-02-07 | E. I. Du Pont De Nemours And Company | Poly(hydroxyalkanoic acid) and thermoformed articles |
| US8334033B2 (en) | 2008-12-31 | 2012-12-18 | E I Du Pont De Nemours And Company | Ionomer compositions with low haze and high moisture resistance and articles comprising the same |
| US8399096B2 (en) | 2008-10-31 | 2013-03-19 | E I Du Pont De Nemours And Company | High-clarity ionomer compositions and articles comprising the same |
| WO2014100301A1 (en) | 2012-12-19 | 2014-06-26 | E. I. Du Pont De Nemours And Company | Cross-linked polymers and their use in photovoltaic modules |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3952135A (en) * | 1972-01-18 | 1976-04-20 | Imperial Chemical Industries Limited | Laminated glass windows for vehicles |
| DE19633312A1 (de) | 1996-08-19 | 1998-02-26 | Siemens Ag | Verfahren zum Sintern von Pellets aus Nuklearbrennstoff |
| JP3597965B2 (ja) * | 1997-02-18 | 2004-12-08 | 三井・デュポンポリケミカル株式会社 | ゴルフボール材料及び新規アイオノマー |
| JP4745492B2 (ja) * | 2000-10-17 | 2011-08-10 | 三井・デュポンポリケミカル株式会社 | 架橋性樹脂組成物及び架橋アイオノマー |
| JP4033256B2 (ja) * | 2002-03-25 | 2008-01-16 | 三井・デュポンポリケミカル株式会社 | 樹脂改質材及びその組成物 |
| JP4054970B2 (ja) * | 2002-05-31 | 2008-03-05 | ブリヂストンスポーツ株式会社 | ゴルフボール |
| US20090151772A1 (en) * | 2007-12-14 | 2009-06-18 | E.I. Du Pont De Nemours And Company | Terionomer Films or Sheets and Solar Cell Modules Comprising the Same |
| AU2009252345B2 (en) * | 2008-05-30 | 2012-06-28 | Du Pont-Mitsui Polychemicals Co., Ltd. | Polymer composition |
| US20150174453A1 (en) * | 2013-12-19 | 2015-06-25 | E I Du Pont De Nemours And Company | Golf balls with covers of high acid ionomers |
| US20150376310A1 (en) * | 2014-06-26 | 2015-12-31 | E.I. Du Pont De Nemours And Company | Ethylene acid copolymers, their ionomers, and their use in packaging films and injection molded articles |
-
2014
- 2014-12-04 US US14/560,663 patent/US20150376310A1/en not_active Abandoned
- 2014-12-05 JP JP2016573760A patent/JP6563960B2/ja active Active
- 2014-12-05 KR KR1020167034993A patent/KR102274719B1/ko active Active
- 2014-12-05 WO PCT/US2014/068786 patent/WO2015199750A1/en not_active Ceased
- 2014-12-05 DE DE112014006770.9T patent/DE112014006770T5/de not_active Withdrawn
-
2017
- 2017-06-08 US US15/617,253 patent/US10377840B2/en active Active
Patent Citations (56)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3404134A (en) | 1961-08-31 | 1968-10-01 | Du Pont | Process of crosslinking polymers |
| US4714253A (en) | 1983-04-21 | 1987-12-22 | Sumitomo Rubber Industries, Ltd. | Three-piece solid golf ball |
| US4857258A (en) | 1986-02-01 | 1989-08-15 | Doux Georges F J Le | Process for the manufacturing of a multilayer plastic container |
| US4937035A (en) | 1986-10-17 | 1990-06-26 | Richter Guenter | Method for manufacturing large-volume hollow bodies of plastics material having multiple-layer walls |
| US4944906A (en) | 1988-10-11 | 1990-07-31 | Spirex Corporation | Methods of injection molding and extruding wet hygroscopic ionomers |
| US5094921A (en) | 1989-05-30 | 1992-03-10 | Kuraray Co., Ltd. | Multilayered structure |
| US5028674A (en) | 1990-06-06 | 1991-07-02 | E. I. Du Pont De Nemours And Company | Methanol copolymerization of ethylene |
| US5439227A (en) | 1992-08-31 | 1995-08-08 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
| US5452898A (en) | 1993-03-12 | 1995-09-26 | Bridgestone Sports Co., Ltd. | Golf ball |
| US5553852A (en) | 1993-07-08 | 1996-09-10 | Bridgestone Sports Co., Ltd. | Three-piece solid golf ball |
| US5807192A (en) | 1995-10-16 | 1998-09-15 | Bridgestone Sports Co., Ltd. | Solid golf ball |
| US5803833A (en) | 1996-02-07 | 1998-09-08 | Bridgestone Sports Co., Ltd. | Two-piece solid golf ball |
| US5752889A (en) | 1996-02-09 | 1998-05-19 | Bridgestone Sports Co., Ltd. | Two-piece solid golf ball |
| US5782707A (en) | 1996-03-11 | 1998-07-21 | Bridgestone Sports Co., Ltd. | Three-piece solid golf ball |
| US5788890A (en) | 1996-04-04 | 1998-08-04 | E. I. Du Pont De Nemours And Company | Injection molding process |
| US5782703A (en) | 1996-05-01 | 1998-07-21 | Bridgestone Sports Co., Ltd. | Practice golf ball |
| EP0855155A1 (en) | 1996-12-18 | 1998-07-29 | BENSON S.r.L. | Dispenser for cosmetic products |
| WO1998038227A1 (en) * | 1997-02-28 | 1998-09-03 | E.I. Du Pont De Nemours And Company | New ionomers based on copolymers of ethylene with both mono- and dicarboxylic acids and polyamide blends containing these ionomers |
| US7201672B2 (en) | 1997-08-11 | 2007-04-10 | Bridgestone Sports Co., Ltd. | Multi-piece solid golf ball |
| US20020180083A1 (en) | 1997-09-19 | 2002-12-05 | Stuart Yaniger | Multilayer synthetic stopper |
| US6179732B1 (en) | 1997-12-16 | 2001-01-30 | Bridgestone Sports Co., Ltd. | Golf ball and golf ball marking method |
| US6207761B1 (en) | 1999-03-18 | 2001-03-27 | A. Schulman, Inc. | Ionomer/rubber/polyolefin blend and uses thereof |
| US6833420B1 (en) * | 1999-04-09 | 2004-12-21 | Du Pont Mitsui Polychemicals Co., Ltd. | Film for wrapping |
| US6518365B1 (en) | 1999-07-28 | 2003-02-11 | E. I. Du Pont De Nemours And Company | High melt swell polymer |
| US6866158B1 (en) | 1999-08-27 | 2005-03-15 | Schott Glas | Closeable glass container comprising a plastic coating applied by injection molding and method for the production thereof |
| US6500888B2 (en) | 2000-12-27 | 2002-12-31 | E. I. Du Pont De Nemours And Company | Surface treatment of ethylene based polymer pellets to improve blocking resistance |
| US20020175136A1 (en) | 2001-05-23 | 2002-11-28 | Bouix Herve F. | Plastic over-molded bottle |
| WO2003045186A1 (fr) | 2001-11-29 | 2003-06-05 | Benson S.R.L. | Distributeur de produit cosmetique en materiau barriere |
| US6699027B2 (en) | 2001-12-04 | 2004-03-02 | Callaway Golf Company | Molding processes and apparatuses for forming golf balls |
| US7128864B2 (en) | 2001-12-04 | 2006-10-31 | Callaway Golf Company | Process forming a cover layer for a golf ball |
| US7005098B2 (en) | 2002-01-23 | 2006-02-28 | Acushnet Company | Method for making golf ball with co-injected inner cover |
| US7438940B2 (en) | 2002-04-19 | 2008-10-21 | E. I. Du Pont De Nemours And Company | Film and film structures having improved oxygen transmission, forming, and puncture resistances |
| WO2004062881A1 (en) | 2003-01-14 | 2004-07-29 | E.I.Dupont De Nemours And Company | Container having a double wall structure, manufacturing method and apparatus therefor |
| US20050129888A1 (en) | 2003-12-10 | 2005-06-16 | Kwon Hyuk T. | Process for making cosmetic containers having a transparent thermoplastic outer wall |
| US20060043632A1 (en) | 2004-08-25 | 2006-03-02 | Andersen Keith C | Process for manufacturing thermoplastic components for golf balls |
| US20060094824A1 (en) | 2004-11-02 | 2006-05-04 | Jacques Roulin | Polymer composition having elastomeric features |
| EP1816147A1 (en) | 2004-11-22 | 2007-08-08 | JSR Corporation | Ionomer, method for producing same and molded article |
| US20060273485A1 (en) | 2005-06-03 | 2006-12-07 | Bridgestone Sports Co., Ltd. | Golf ball manufacturing method |
| US7635509B2 (en) | 2005-07-19 | 2009-12-22 | E.I. Du Pont De Nemours And Company | Vacuum skin packaging structure with high oxygen permeability |
| US20070282069A1 (en) | 2006-05-31 | 2007-12-06 | Bridgestone Sports Co., Ltd. | Golf ball material, golf ball and method for preparing golf ball material |
| WO2008010597A1 (en) | 2006-07-19 | 2008-01-24 | Du Pont-Mitsui Polychemicals Co., Ltd. | Synthetic resin hollow body |
| US20090099313A1 (en) | 2007-10-10 | 2009-04-16 | E. I. Du Pont De Nemours And Company | Poly(hydroxyalkanoic acid) and thermoformed articles |
| US8044136B2 (en) | 2007-11-01 | 2011-10-25 | E.I. Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene copolymers and organic acids |
| US20090126859A1 (en) | 2007-11-16 | 2009-05-21 | Cadwallader Robert J | Process for producing glass laminates |
| US8110138B2 (en) | 2008-05-08 | 2012-02-07 | E. I. Du Pont De Nemours And Company | Poly(hydroxyalkanoic acid) and thermoformed articles |
| US7641965B1 (en) | 2008-06-30 | 2010-01-05 | E.I. Du Pont De Nemours And Company | Transparent light-weight safety glazings |
| WO2010030464A1 (en) * | 2008-09-10 | 2010-03-18 | Cryovac, Inc. | Package assembly for on-demand marination and method for providing the same |
| US8399096B2 (en) | 2008-10-31 | 2013-03-19 | E I Du Pont De Nemours And Company | High-clarity ionomer compositions and articles comprising the same |
| US8334033B2 (en) | 2008-12-31 | 2012-12-18 | E I Du Pont De Nemours And Company | Ionomer compositions with low haze and high moisture resistance and articles comprising the same |
| US20100272898A1 (en) | 2009-04-23 | 2010-10-28 | E. I. Du Pont De Nemours And Company | Method for preparing a selectively permeable protective structure |
| US8202925B2 (en) | 2009-05-26 | 2012-06-19 | E. I. Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene terpolymers and organic acids |
| US20100304893A1 (en) * | 2009-05-26 | 2010-12-02 | E.I. Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene terpolymers and organic acids |
| US20110028622A1 (en) | 2009-07-28 | 2011-02-03 | E. I. Du Pont De Nemours And Company | Poly(hydroxyalkanoic acid) blown film |
| WO2014100301A1 (en) | 2012-12-19 | 2014-06-26 | E. I. Du Pont De Nemours And Company | Cross-linked polymers and their use in photovoltaic modules |
| WO2014100309A1 (en) | 2012-12-19 | 2014-06-26 | E. I. Du Pont De Nemours And Company | Cross-linkable acid copolymer composition and its use in glass laminates |
| WO2014100313A1 (en) | 2012-12-19 | 2014-06-26 | E.I. Du Pont De Nemours And Company | Cross-linked polymers and their use in packaging films and injection molded articles |
Non-Patent Citations (3)
| Title |
|---|
| "Kirk Othmer Encyclopedia, the Modem Plastics Encyclopedia", 1995, MCGRAW-HILL |
| "Kirk Othmer Encyclopedia, the Modern Plastics Encyclopedia", 1995, MCGRAW-HILL |
| A.L. BRODY AND K.S. MARSH,: "Wiley Encyclopedia of Packaging Technology, 2d edition,", 1997, WILEY-INTERSCIENCE |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017196707A1 (en) | 2016-05-09 | 2017-11-16 | Kuraray America, Inc. | Multilayer interlayer and glass laminate |
| WO2018081570A1 (en) | 2016-10-28 | 2018-05-03 | Kuraray America, Inc. | Wedge-shaped multilayer interlayer and glass laminate |
| WO2019027865A1 (en) | 2017-07-31 | 2019-02-07 | Kuraray America, Inc. | IONOMER INTERMEDIATE LAYER HAVING ENHANCED ADHESION PROPERTIES |
| WO2020163296A1 (en) | 2019-02-04 | 2020-08-13 | Kuraray America, Inc. | Hurricane-resistant acoustic glazing |
| US12195613B2 (en) | 2019-05-31 | 2025-01-14 | Kuraray Europe Gmbh | Ionomer, resin sheet, and laminated glass |
| WO2021237205A1 (en) | 2020-05-22 | 2021-11-25 | Kuraray America, Inc. | Interlayer and laminate with controlled debonding zone treatments for enhanced performance |
| US12017443B2 (en) | 2020-05-22 | 2024-06-25 | Kuraray Europe Gmbh | Interlayer and laminate with controlled debonding zone treatments with enhanced performance |
| WO2022132417A1 (en) | 2020-12-16 | 2022-06-23 | Kuraray Europe Gmbh | Laminated structures with adhesive polymeric interlayer comprising cohesive debonding zones for enhanced performance |
| WO2022132418A2 (en) | 2020-12-16 | 2022-06-23 | Kuraray Europe Gmbh | Laminated structures with composite adhesive polymeric interlayer comprising cohesive debonding zones for enhanced performance |
| WO2023096879A1 (en) | 2021-11-23 | 2023-06-01 | Kuraray Europe Gbmh | Interlayer and laminate with controlled debonding zone treatments |
| WO2023249853A1 (en) | 2022-06-22 | 2023-12-28 | Kuraray America, Inc. | Ionomer resin composition |
| WO2023249852A1 (en) | 2022-06-22 | 2023-12-28 | TREANOR, Richard | Ionomer resin composition |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2017519083A (ja) | 2017-07-13 |
| DE112014006770T5 (de) | 2017-06-01 |
| US10377840B2 (en) | 2019-08-13 |
| JP6563960B2 (ja) | 2019-08-21 |
| KR102274719B1 (ko) | 2021-07-14 |
| US20150376310A1 (en) | 2015-12-31 |
| US20170369610A1 (en) | 2017-12-28 |
| KR20180086541A (ko) | 2018-08-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10377840B2 (en) | Ethylene acid copolymers, their ionomers, and their use in packaging films and injection molded articles | |
| EP2934883B1 (en) | Cross-linked polymers and their use in packaging films and injection molded articles | |
| JP5587336B2 (ja) | 曇り度が低く防水性の高いアイオノマー組成物及びそれを含む物品 | |
| JP5840496B2 (ja) | 高透明度のアイオノマー組成物及びそれを含む物品 | |
| CN102046373B (zh) | 包含离聚物组合物的模塑制品 | |
| US8399082B2 (en) | High-clarity blended ionomer compositions and articles comprising the same | |
| US20240425674A1 (en) | Polymer blends having improved thermal resistance |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14821952 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 20167034993 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2016573760 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 112014006770 Country of ref document: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 14821952 Country of ref document: EP Kind code of ref document: A1 |