WO2015198834A1 - スプレーノズル - Google Patents

スプレーノズル Download PDF

Info

Publication number
WO2015198834A1
WO2015198834A1 PCT/JP2015/066302 JP2015066302W WO2015198834A1 WO 2015198834 A1 WO2015198834 A1 WO 2015198834A1 JP 2015066302 W JP2015066302 W JP 2015066302W WO 2015198834 A1 WO2015198834 A1 WO 2015198834A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
main
sub
nozzle
main hole
Prior art date
Application number
PCT/JP2015/066302
Other languages
English (en)
French (fr)
Inventor
久継 中野
Original Assignee
株式会社いけうち
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社いけうち filed Critical 株式会社いけうち
Priority to US15/317,170 priority Critical patent/US10183300B2/en
Priority to EP15811240.9A priority patent/EP3162461B1/en
Publication of WO2015198834A1 publication Critical patent/WO2015198834A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0483Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with gas and liquid jets intersecting in the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • B05B1/042Outlets having two planes of symmetry perpendicular to each other, one of them defining the plane of the jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Definitions

  • the present invention relates to a spray nozzle, and in particular, is suitably used as a nozzle for spraying cooling water on a slab continuously drawn out to a secondary cooling zone of a continuous casting apparatus, and in particular, spraying cooling water.
  • the present invention relates to a nozzle that can generate uniform flow rate distribution and striking force distribution with little variation in jet angle even when the amount is changed, and can prevent occurrence of uneven cooling.
  • the present applicant provides a nozzle 100 shown in FIGS. 9A to 9C in Japanese Patent No. 2719073.
  • the nozzle 100 is provided with a main hole 102 serving as a gas-liquid mixing channel of water and compressed air along the central axis L of the nozzle body 101.
  • An arc-shaped injection-side tip of the lower hole portion 102a of the main hole 102 is formed close to the injection-side end surface 101f of the nozzle body 101, and a diametrical cut 104 provided in the injection-side end surface 101f is formed in the lower hole portion 102a.
  • An oval nozzle 105 is provided so as to communicate with the tip of the injection side.
  • auxiliary holes 106 and 107 having a circular cross section are provided on both sides of the lower hole portion 102a in the width direction.
  • the nozzle 100 is provided with the sub-holes 106 and 107 on both sides of the main hole 102, so that the gas-liquid mixed fluid flowing into the both sides of the main hole 102 from the sub-holes 106 and 107 along the central axis L of the main hole 102.
  • gas-liquid mixing is promoted and spray homogenization is achieved. This makes it possible to widen the spray angle even when the water flow rate is low, while suppressing the spread of the spray angle when the water flow rate is high, and maintaining the spray angle substantially even when the water supply amount is changed. I can do it.
  • the spray angle range, flow rate distribution, striking force distribution, and particle diameter are maintained uniformly and can be controlled without causing uneven cooling.
  • the ratio is increased to 1:20.
  • the water supply amount can be controlled in a range of 2 liters to 40 liters / min with respect to a constant supply amount of compressed air of 0.4 NL / min. In this way, by widening the turndown ratio, cooling can be performed using the same nozzle from the upstream region of the secondary cooling zone that requires a large amount of cooling water to the downstream region where the amount of cooling water may be small, and casting. Even if the thicknesses of the pieces are different, the same nozzle can be used.
  • the nozzle of Patent Document 1 has expanded the previous turndown ratio of 1:10 to 1:20, which is twice as much.
  • the range of turndown ratio is wide so that it can handle various thicknesses of slabs. Is required.
  • the spray angle at the time of low water volume is not stable compared with the spray angle at the time of high water volume, it is also required to stabilize the spray angle at the time of low water volume while keeping the turndown ratio in a wide range.
  • an object of the present invention is to provide a nozzle that can stably maintain the spray angle at the time of low water volume as well as the spray angle at the time of high water volume while setting the turndown ratio to a range larger than 1:20.
  • the present invention provides a conical main hole which is narrowed toward the injection side front end at the center of the injection side of the main flow path along the central axis of the nozzle body, and the main hole.
  • a pair of sub-holes provided on both sides in the width direction in communication with the main channel and the main hole, The sub-hole is formed in a long hole shape, and the long side portion facing the main hole of the sub-holes on both sides and the both side portions of the main hole communicate with each other, and the rear end diameter (D1) of the main hole
  • An incision is made in a diameter direction in the same direction as the longitudinal direction of the sub-hole in the ejection side end face of the nozzle body, and a nozzle hole is provided by notching a tip arc portion of the main hole by the incision.
  • a spray nozzle is provided.
  • the main hole has a circular cross section, and the sub hole has an elliptical cross section.
  • the ratio D1: D3 1: 0.3 to 1: 0.7 of the minor diameter D3 of the auxiliary hole to the rear end diameter D1 of the main hole,
  • Ratio D3: D2 1: 1.5 to 1: 2.5 of the minor diameter D2 of the minor hole to the minor dimension D3 of the minor hole It is preferable to set to.
  • the nozzle hole has an oval shape, and guide recesses that gradually spread toward the outer peripheral end of the injection side end face extend at both ends in the length direction of the nozzle hole.
  • the area of the wrap portion can be increased.
  • the gas-liquid mixed fluid flowing into the main hole from the auxiliary hole collides with the gas-liquid mixed fluid that travels straight in the main hole toward the nozzle, and agitation occurs.
  • the lap area with the main hole will increase, in other words, the area of the stirring portion will increase, and this mixing will cause gas-liquid mixing.
  • the homogenization of the fluid can be promoted. Therefore, even if the liquid flow rate fluctuates greatly, the gas-liquid homogenization by the agitation can reduce the fluctuation of the spray angle of the gas-liquid mixed fluid ejected from the nozzle and obtain an even flow distribution and striking force distribution. it can.
  • the wrap portion between the main hole and the sub hole is used as in the case of the two-fluid nozzle.
  • the elongated hole-shaped subhole may have an elliptical cross section or an elliptical cross section.
  • the main hole may have an oval cross section, and the long side of the sub-hole having the oval cross section may be communicated with both sides on the long side of the main hole.
  • the major diameter of the rear end of the main hole is preferably 1: 1 to 1: 2, and more preferably 1: 1 to 1: 1.4, relative to the minor diameter of the rear end of the main hole.
  • the nozzle having the above configuration is preferably used when the nozzle body needs to have an oval cross section.
  • the nozzle of the present invention configured as described above has a spray angle variation angle of 5 degrees or less even when the liquid supply amount with respect to a constant supply amount of compressed air varies within the range of the turndown ratio of 1:40.
  • the turndown ratio of the nozzle shown in FIG. 9 of the conventional example is 1:20, whereas the nozzle of the present invention has a turndown ratio that is doubled to 1:40.
  • By increasing the turndown ratio in this way it can be suitably used when the cooling temperature needs to be significantly changed, such as a slab having a greatly different thickness, or a long secondary cooling zone. it can.
  • the nozzle body is provided integrally or connected to the distal end side of a gas-liquid mixed fluid supply pipe provided with a rectifying plate, and the liquid supply pipe and the gas supply pipe are orthogonal to the proximal end side of the gas-liquid mixed fluid supply pipe. Connected in the direction, It is preferable that a branch passage parallel to the central axis of the nozzle body is provided by the rectifying plate.
  • the nozzle body is connected to the gas-liquid mixed fluid supply pipe formed of a straight pipe through a rectifying adapter, the gas-liquid mixed fluid supply pipe is connected to the mixing adapter, and the liquid supply is supplied to the mixing adapter.
  • a center plate of the rectifying adapter is made to coincide with a center axis of the nozzle body, and a rectifying plate is provided in a flow path along the central axis of the rectifying adapter so as to be separated into a flow path parallel to the central axis. preferable.
  • the gas-liquid mixed fluid supply pipe formed of a straight pipe from the gas supply pipe to the mixing adapter by supplying pressurized air from the gas supply pipe and water from the liquid supply pipe in an orthogonal direction into the mixing adapter to perform collision mixing. It is preferable that the gas-liquid mixed fluid is circulated through the rectifier adapter and rectified in the rectifying adapter so that the gas-liquid mixed fluid flows into the main hole and the auxiliary holes on both sides of the nozzle body.
  • a flow straightening plate is disposed in the flow path on the upstream side of the nozzle main body, and after the gas-liquid mixed fluid flowing into the nozzle main body is rectified, the main hole and the sub hole are formed in the vicinity of the nozzle orifice of the nozzle main body. Stirring by lapping. In this manner, the homogenization of the droplets can be further promoted by sequentially performing the mixing by the mixing adapter, the rectification by the rectifying plate, and the stirring by the collision mixing in the main body nozzle.
  • the rectifying plate may be integrally projected from the inner surface of the flow path of the rectifying adapter, or may be a separate body that is inserted and fixed in the flow path.
  • the rectifying plate is disposed at a position 3 cm to 8 cm from the nozzle hole of the main body nozzle, the length of the rectifying plate is 5 mm to 30 mm, and one inflow channel is divided into 5 to 10 dividing channels. This is true.
  • the spray nozzle of the present invention is a slab cooling of a secondary cooling zone of a continuous casting apparatus, steel plate cooling of thick plate / thin plate / plated steel plate, steel pipe cooling of seamless pipe, control cooling after rolling / heat treatment, surface treatment of steel plate It can be used in a wide range such as for cooling plate materials such as aluminum plates and glass plates, and for exhaust gas cooling.
  • the spray nozzle of the present invention is arranged in parallel with a gap in the width direction of a material to be cooled such as a slab, and is wrapped so that the flow rate on both sides of the spray range is equal to the flow rate at the center of the spray range. It is preferable to arrange.
  • the sub-holes provided on both sides of the main hole of the nozzle body have an oval cross-sectional shape, and the long side portions on the opposite side of the sub-holes on both sides are continuously provided on both sides of the main hole. Therefore, the area of the lap portion where the sub hole and the main hole overlap can be increased. In this lap portion, the gas-liquid mixed fluid flowing into the main hole from the sub-hole and the gas-liquid mixed fluid moving straight in the main hole toward the nozzle can be caused to collide and be agitated.
  • the secondary hole compared with the case where the secondary hole has a circular cross-section in the past, if the secondary hole is a cross-sectional long hole, the area of the lap portion with the main hole increases, the amount of stirring is increased and gas-liquid mixing is performed by stirring.
  • the homogenization of the fluid can be promoted. Therefore, even if the liquid flow rate fluctuates greatly, the homogenization of the mixed fluid by the agitation makes it possible to reduce the fluctuation of the spray angle of the gas-liquid mixed fluid ejected from the nozzle, and to obtain a uniform flow rate distribution and striking force distribution. Can do.
  • FIG. 1A is a cross-sectional view taken along the line AA in FIG. 1A
  • FIG. 1B is a schematic diagram comparing the main hole and the subhole shown in FIG. 1A
  • D is the DD sectional view taken on the line of FIG. 1 (A).
  • FIG. 2 is a cross-sectional view taken along line EE of FIG. (A)-(C) are sectional views for explaining the action of the spray nozzle. It is drawing which shows an experimental result.
  • FIG. 1 is sectional drawing which shows the 1st modification of a baffle plate
  • B is sectional drawing which shows the 2nd modification of a baffle plate
  • C is sectional drawing which shows the 3rd modification of a baffle plate.
  • a 2nd embodiment is shown
  • A) is a sectional view of a nozzle body
  • B) is a schematic diagram showing a main hole and a subhole.
  • A) (B) is drawing which shows the modification of the subhole of 2nd Embodiment.
  • FIG.)-(C) are drawings which show a conventional example.
  • the spray nozzle 10 of the first embodiment is a two-fluid nozzle that is disposed in the secondary cooling zone of the continuous casting apparatus and sprays cooling mist from above the slab.
  • the spray nozzle 10 includes a rectifying adapter 2 in the nozzle body 1, a gas-liquid mixed fluid supply pipe 3 (hereinafter abbreviated as a fluid supply pipe 3) consisting of a straight pipe, and a mixing adapter 4.
  • a fluid supply pipe 3 (hereinafter abbreviated as a fluid supply pipe 3) consisting of a straight pipe, and a mixing adapter 4.
  • the main flow path 1 a of the nozzle body 1, the main flow path 2 a of the rectifying adapter 2, the main flow path 3 a of the fluid supply pipe 3, and the main flow path 4 a of the mixing adapter 4 along the central axis X are communicated.
  • a compressed air supply pipe 5 is connected to the rear end opening 4b of the main flow path 4a of the mixing adapter 4, and a liquid supply pipe 6 is connected to the main flow path 4a in a perpendicular direction.
  • a main hole 11 is provided in communication with the center of the front end face 1e of the injection side end of the main flow path 1a along the central axis X of the nozzle body 1, and the width of the main hole 11 is set.
  • a pair of sub-holes 12 and 13 are provided on both sides in the direction so as to communicate with the main flow path 1 a and the main hole 11.
  • the nozzle body 1 has a substantially cylindrical shape, and the hollow portion is the main flow path 1a, and the main flow path 1a is circular in cross section.
  • the main hole 11 having a circular cross section is continuously provided in the central portion of the front end face 1e of the main channel 1a having a circular cross section, and the sub-holes 12 and 13 having an oblong cross section are continuously provided on both sides thereof.
  • the main hole 11 has a conical shape in which the flow passage cross-sectional area gradually decreases toward the tip on the injection side in the axial direction, and the tip arc portion 11a is provided with a tip having an arc shape. It is made to adjoin to the side end face 1s.
  • the pair of sub-holes 12 and 13 are symmetrical with respect to the center axis X, and tip arc portions 12a and 13a are provided at the injection-side tip, and the positions of the tip arc portions 12a and 13a are set at the tip arc portion 11a of the main hole 11.
  • the position is slightly away from the ejection side end face 1s or the equivalent position. That is, the tip arc portions 12a and 13a of the sub-holes 12 and 13 are not protruded from the tip arc portion 11a of the main hole 11 to the injection side.
  • a cut 14 having a concave cross section in the diameter direction is provided on the ejection side end face 1s of the nozzle body 1.
  • the direction of the incision 14 is a direction parallel to the long side direction Y1 of the sub-holes 12 and 13, and has a taper that becomes deeper toward the incision 14 toward the center.
  • the width 14w of the cut 14 is set so as not to interfere with the auxiliary holes 12 and 13 on both sides, interferes with the tip arc portion 11a of the main hole 11 located in the center, and cut 14 Thus, only the tip arc portion 11a is cut out to form an oval nozzle 15.
  • the notch 14 extends in the width direction toward both ends on the outer peripheral side, and extends guide recesses 14 a and 14 b that gradually expand toward the outer peripheral end of the injection side end face at both ends in the length direction of the injection hole 15.
  • the sub-holes 12 and 13 have an oval cross section, and the long side portions on the main hole side of the left and right sub-holes 12 and 13 overlap with both side portions of the main hole 11, and this overlap portion, that is, the cross in FIG.
  • the lap portions Z1 and Z2 indicated by oblique lines are continuous.
  • the main hole 11 has a conical shape that becomes narrower toward the nozzle hole 15 and has a circular cross section.
  • the main hole 11 has a maximum area at the rear end, that is, at the boundary position with the front end surface 1e of the main flow path 1a.
  • the outer periphery is made to coincide with the center point Yo of the sub holes 12 and 13. Since the main hole 11 has a conical shape that decreases toward the front end, the cross-sectional area of the wrap portions Z1 and Z2 gradually decreases toward the injection-side front end.
  • the short hole diameter D3 of the sub-holes 12 and 13 is set within the above range with respect to the rear end diameter D1 of the main hole 11 and the long diameter D2 of the sub-holes 12 and 13. This is because the amount of inflow to 13 is ensured to a required amount, and the amount to be stirred by flowing into the main hole 11 from the sub-holes 12 and 13 is ensured. If the short diameter D3 of the sub-holes 12 and 13 is made smaller than the above range, the lap area is reduced and the stirring effect is reduced.
  • the front insertion part 2b of the rectifying adapter 2 is inserted into the rear end opening 1g of the main flow path 1a of the nozzle body 1, and is connected by screwing.
  • the rectifying adapter 2 is cylindrical and has a hollow portion as a main flow path 2a, and a rectifying plate 18 is provided at an intermediate position of the main flow path 2a.
  • the rectifying plate 18 has four small cylinders 18a to 18d arranged at intervals of 90 degrees to form a continuous shape, and the diameter of a virtual circle surrounding these small cylinders 18a to 18d is set to the main flow path 2a. It is equivalent to the diameter.
  • the fitting concave portion 2v is annularly formed in the peripheral surface of the main flow passage 2a, and the outer peripheral portion of the rectifying plate 18 is press-fitted and fixed to the fitting concave portion 2v.
  • Nine separation flow paths 2d parallel to the central axis X are provided.
  • the length L3 of the current plate 18 is 5 mm to 30 mm, and the front end position of the current plate 18 is 3 cm to 6 cm from the nozzle 15 of the nozzle body 1.
  • the front insertion portion 3b of the fluid supply pipe 3 made of a straight pipe is inserted into the rear end opening of the rectifying adapter 2 and connected by screwing.
  • the front insertion portion 4g of the mixing adapter 4 is externally fitted to the rear portion of the fluid supply pipe 3, and is connected by screwing.
  • the main channel 4a of the mixing adapter 4 communicates with the main channel 3a having substantially the same diameter, and a liquid insertion tube 4c is inserted and fixed in an opening provided on one side of the main channel 4a from a right angle direction.
  • the liquid supply pipe 6 is connected to the tip opening 4d.
  • An orifice 4e having a reduced channel cross-sectional area is provided in the liquid insertion tube 4c so that water with increased pressure flows into the main channel 4a from the side.
  • a small-diameter channel 4h is continuously provided at the rear end of the main channel 4a of the mixing adapter 4
  • a large-diameter insertion hole 4j is continuously provided in the small-diameter channel 4h
  • the compressed air supply pipe is provided at the rear end opening 4b. 5 is inserted and connected.
  • compressed air with increased pressure flows into the main channel 4 a through the small-diameter channel 4 h from the compressed air supply pipe 5, and water with increased pressure flows into the compressed air from the side. Mixed.
  • the compressed air supply pipe 5 supplies air having a required pressure from a compressor (not shown) to the spray nozzle 10 at a constant flow rate. Further, water having a required pressure is supplied to the liquid supply pipe 6 through a pump (not shown) in a water amount adjusted in a wide range of a turndown ratio of 1:40.
  • FIGS. 4 (A) to (C) Pressure air having a required pressure from the compressed air supply pipe 5 serving as a gas supply pipe is supplied from the liquid supply pipe 6 with water into the mixing adapter 4 from the orthogonal direction to be collided and mixed from the mixing adapter 4 to the fluid supply pipe 3.
  • the gas-liquid mixed fluid AQ which is a mixture of water and air, flows into the rectifying adapter 2 via the rectifier, rectifies through the rectifying plate 18 in the rectifying adapter 2, and flows into the main flow path 1 a in the nozzle body 1.
  • the gas-liquid mixed fluid AQ-c at the center of the main flow path 1a flows into the main hole 11, and the gas-liquid mixed fluid AQ-s on both sides flows into the sub-holes 12 and 13 on both sides, respectively.
  • the homogenized gas-liquid mixed fluid AQ is ejected outward from an oblong nozzle hole 15 at the front end of the main hole 11.
  • the nozzle hole 15 is sandwiched between both side walls of the notch 14, and guide recesses 14 a and 14 b extend continuously at both ends in the length direction of the nozzle hole 15, so that the gas-liquid mixed fluid AQ injected from the nozzle hole 15 is guided. It spreads to both sides along the recesses 14a and 14b. As a result, the flow rate immediately below the spray nozzle is suppressed to increase the flow rate on both sides, resulting in a trapezoidal spray pattern with a long uniform flow range.
  • the water droplets in the gas-liquid mixed fluid AQ to be jetted are atomized and mixed with the pressure air and become a homogenized spray, even if the amount of pressure air is changed to a constant amount, The spray angle that forms the spray pattern hardly varies, and the liquid amount distribution and the striking force distribution within the spray range can be made substantially uniform.
  • the table of FIG. 5 shows the experimental results using the spray nozzle of the above embodiment.
  • Pa air pressure
  • MPa Pw hydraulic pressure
  • MPa Qa amount of air
  • NL / min Qw liquid amount
  • L / min H measurement position from directly under the nozzle
  • the 50% injection angle in the table refers to an angle calculated by a trigonometric function from the spread dimension with a ratio of 50% and the spray height with the highest flow rate distribution being 100.
  • the air amount (Qa) is constant 200 NL / min
  • the liquid amount (Qw) is 1.0 L / min ⁇ 2.0 L / min ⁇ 10.0 L / min ⁇ 20.0 L / min. Even if it was changed from min ⁇ 30.0 L / min ⁇ 40.0 L / min, the 50% injection angle varied only 3 degrees from 111 ° ⁇ 111 ° ⁇ 112 ° ⁇ 109 ° ⁇ 111 ° ⁇ 109 °. Moreover, the flow rate distribution and the striking force distribution were almost uniform.
  • the spray nozzle 10 of the present invention can widen the turndown ratio of the liquid flow rate control range to 1:40, and can obtain a turndown ratio that is twice that of the prior art. Therefore, it is possible to respond by changing the liquid flow rate according to the difference in the thickness dimension of the slab, the installation area of the spray nozzle, and the spraying time zone, and it is possible to meet the demand for multi-product small-volume production.
  • the present invention is not limited to the above-described embodiment, and the rectifying plate may have a configuration of a modification shown in FIGS. 6 (A), (B), and (C).
  • the rectifying plate 18 of the first modified example shown in FIG. 6A has a so-called blade type shape in which eight partition plates 18s are provided radially from the center.
  • the rectifying plate 18 of the second modification shown in FIG. 6B has a so-called vane type in which eight partition plates 18f protrude from the outer peripheral surface of the central cylindrical portion 18e at equal angular intervals.
  • the rectifying plate 18 of the third modified example shown in FIG. 6C is a perforated type in which four holes 18h are provided as separation channels at intervals of 90 degrees in a body 18i having a circular cross section. The perforation type is advantageous in that the separation channel can be made circular in cross section and no corners are generated.
  • the spray nozzle of 2nd Embodiment is shown to FIG. 7 (A) (B).
  • the main hole 11-2 communicating with the front end of the main flow path 1a of the nozzle body 1 has an oval cross section
  • the long side direction Y1 is a sub hole 12 having an oval cross section on both sides.
  • -2, 13-2 are arranged in parallel with the long side direction Y1, and the short side direction Y2 is also arranged in parallel.
  • the long dimension in the long side direction Y1 is 1: 1 to 1.2, preferably 1: 1 to 1.4 with respect to the short diameter in the short side direction Y2 at the rear end of the main hole 11-2.
  • the opposite long side portions of the sub-holes 12-2 and 13-2 overlap with both side portions on the long side of the main hole 11-2 to form wrap portions Z1 and Z2 indicated by cross diagonal lines.
  • Other configurations and operational effects are the same as those of the first embodiment, and thus description thereof is omitted.
  • FIGS. 8A and 8B show a modification in which the shapes of the sub holes 12-2 and 13-2 of the second embodiment are changed.
  • the main hole 11-2 has a circular cross section similar to that of the first embodiment.
  • the sub-holes 12-2 and 13-2 on both sides cause the long sides 12s and 13s on the opposite side not continuous with the main hole 11-2 to bulge outward in a circular arc shape instead of being linear.
  • the sub holes 12-2 and 13-2 on both sides have a substantially elliptical cross section. With this shape, the amount of fluid flowing from the side holes 12-2 and 13-2 into the main hole 11-2 from the side can be increased, and the spray angle can be increased.
  • the sub-holes 12-2 and 13-2 on both sides are inclined inward toward the center in the length direction on the opposite long side that is not continuous with the main hole 11-2.
  • the outer long sides 12m and 13m of -2 and 13-2 each have a bowl shape. With this shape, the amount of fluid flowing from the side holes 12-2 and 13-2 into the main hole 11-2 from the side can be reduced, and the spray angle can be reduced.
  • the mixing adapter is connected to the liquid supply pipe and the gas supply pipe to form a two-fluid nozzle that sprays the gas-liquid mixed fluid.
  • the liquid supply pipe is connected to the fluid supply pipe 3 and rectified. It is good also as a 1 fluid nozzle which inject
  • the fluid supply pipe continuing to the nozzle body via the rectifying adapter may be a bent pipe that is not a straight pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nozzles (AREA)
  • Continuous Casting (AREA)

Abstract

 液流量を大幅に調節しても噴霧角度が変動しないスプレーノズルを提供する。ノズル本体の中心軸線に沿った主流路の噴射側の中心に噴射側前端に向けて細くなる円錐形状の主孔を連通して設けると共に、該主孔の幅方向の両側に一対の副孔を前記主流路および前記主孔と連通させて設け、該副孔は長孔形状とし、これら両側の副孔の前記主孔を挟んで対向する長辺側部分と前記主孔の両側部分とを連通させ、主孔の後端径(D1)に対して前記副孔の長寸径(D2)の比をD1:D2=1:07~1:1.2とし、前記ノズル本体の噴射側端面に前記副孔の長寸方向と同方向の直径方向に切り込みを入れ、該切り込みで前記主孔の先端円弧部を切り欠いて噴口を設けている。

Description

スプレーノズル
 本発明はスプレーノズルに関し、詳しくは、連続鋳造装置の二次冷却帯に連続的に引き出される鋳片に対して冷却水を噴霧するノズルとして好適に用いられるものであり、特に、冷却水の噴霧量を変えても噴角変動が少なく均等な流量分布と打力分布が得られ、冷却ムラの発生を防止できるノズルに関するものである。
 この種のスプレーノズルとして、本出願人は特許第2719073号公報で図9(A)~(C)に示すノズル100を提供している。該ノズル100はノズル本体101の中心軸線Lに沿って水と圧縮空気との気液混合流路となる主孔102を設けている。該主孔102の下孔部102aの円弧形状とした噴射側先端をノズル本体101の噴射側端面101fに近接して形成し、該噴射側端面101fに設ける直径方向の切り込み104を下孔部102aの噴射側先端部と連通させて長円形状の噴口105を設けている。かつ、前記下孔部102aの幅方向両側に断面円形の副孔106、107を設けている。 
 前記ノズル100は、主孔102の両側に副孔106、107を設けることで、これら副孔106、107から主孔102の両側に流れ込む気液混合流体を主孔102の中心軸線Lに沿って流れる気液混合流体に衝突させて、気液混合を促進し、噴霧の均質化を図っている。これにより、水流量を低流量としても噴霧角度を広げることができる一方、水流量を高流量とした場合に噴霧角度の広がりを抑え、水の供給量を変えても噴霧角度を略均一に保持できるようにしている。
 その結果、圧縮空気の一定供給量に対する水の供給量を変化させても、噴霧角度範囲、流量分布、打力分布および粒子径を均等に保持し、冷却ムラを発生させずに制御できるターンダウン比を1:20と広げている。例えば、圧縮空気の一定供給量0.4NL/minに対して水供給量を2リットル~40リットル/minの範囲で制御できるようにしている。このように、ターンダウン比を広げることにより、冷却水量を多く必要とする二次冷却帯の上流領域から冷却水量が少なくてよい下流領域にかけて同一のノズルを用いて冷却することができると共に、鋳片の厚さが相違しても同一のノズルで対応できるものとしている。
特許第2719073号公報
 特許文献1のノズルは、それ迄のターンダウン比1:10を2倍の1:20に広げているが、更に鋳片の多様な厚さ等に対応できるように、ターンダウン比を広い範囲とすることが求められている。また、低水量時の噴霧角度は高水量時の噴霧角度と比べて安定しないため、ターンダウン比を広い範囲としながら、低水量時に噴霧角度を安定化させることも求められている。
 よって、本発明は、ターンダウン比を1:20より大きな範囲としながら、低水量時の噴霧角度を高水量時の噴霧角度と同等に安定して保持できるノズルを提供することを課題としている。
 前記課題を解決するため、本発明は、ノズル本体の中心軸線に沿った主流路の噴射側の中心に噴射側前端に向けて細くなる円錐形状の主孔を連通して設けると共に、該主孔の幅方向の両側に一対の副孔を前記主流路および前記主孔と連通させて設け、
 該副孔は長孔形状とし、これら両側の副孔の前記主孔を挟んで対向する長辺側部分と前記主孔の両側部分とを連通させ、該主孔の後端径(D1)に対して前記副孔の長寸径(D2)の比をD1:D2=1:0.7~1:1.2とし、
 前記ノズル本体の噴射側端面に前記副孔の長寸方向と同方向の直径方向に切り込みを入れ、該切り込みで前記主孔の先端円弧部を切り欠いて噴口を設けていることを特徴とするスプレーノズルを提供している。 
 前記ノズル本体の主流路に、水からなる液体と圧縮空気からなる気体の気液混合流体を導入し、
 前記主孔は断面円形とすると共に、前記副孔は断面長円形状とし、
 前記主孔の後端径D1に対して前記副孔の短寸径D3の比D1:D3=1:0.3~1:0.7、
 前記副孔の短寸径D3に対する副孔の長寸径D2の比D3:D2=1:1.5~1:2.5
  に設定していることが好ましい。
 また、前記噴口は長円形とし、該噴口の長さ方向の両端に前記噴射側端面の外周端に向けて次第に広がるガイド凹部を延在させることが好ましい。
 前記のように、主孔の両側に設ける副孔を断面長円形状とし、両側の副孔の対向側の長辺側部分を主孔の両側にそれぞれ連続させると、副孔と主孔とのラップ部分の面積を増大できる。このラップ部分で副孔から主孔に流入する気液混合流体と主孔内を噴口に向かって直進する気液混合流体とが衝突して撹拌が生じる。
 副孔を従来の断面円形にした場合と比較して、副孔を断面長円とすると主孔とのラップ面積が増大し、言い換えると、撹拌部分の面積が増大し、該撹拌により気液混合流体の均質化を促進できる。よって、液体流量が大きく変動しても、前記撹拌による気液均質化で、噴口から噴射される気液混合流体の噴霧角度の変動を少なくでき、均等な流量分布と打力分布を得ることができる。
 前記構成として、断面長円形状の副孔を長寸方向に2分割したうちの主孔側の約半分を中央の主孔とラップした状態で連続し、主孔側の流体と副孔側の流体との撹拌面積を増大させることができる。この撹拌面積の増大により、前記のように、気液混合流体の均質化を促進し、前記噴口からの噴霧を安定化し、その結果、液流量を大きく変動させても、噴霧角度、流量分布、打力分布の変動を抑制して、冷却ムラを発生しないノズルとすることができる。
 なお、前記ノズル本体の主孔および副孔に流入する流体を液体のみとする一流体ノズルとして用いた場合も、前記二流体ノズルとする場合と同様に、前記主孔と副孔とのラップ部分の面積増大による撹拌の強化で、液滴を均質化して噴霧角度の変動を少なくでき、均等な流量分布と打力分布を得ることができる。
 なお、前記長孔形状の副孔は断面長円形状または断面楕円形状としてもよい。
 また、前記主孔を断面長円形状とし、該主孔の長辺側の両側に前記断面長円形状の副孔の長辺側を連通させてもよい。この場合、主孔の後端の短寸径に対して主孔の後端の長寸径は1:1~1:2が好ましく、更に1:1~1:1.4が好ましい。前記構成のノズルは、ノズル本体を断面長円形状とする必要がある場合に好適に用いられる。
 前記構成からなる本発明のノズルは、圧縮空気の一定供給量に対する液体供給量を1:40のターンダウン比の範囲内で変動しても、噴霧角度の変動角度を5度以下としている。
 前記ターンダウン比は従来例の図9に示すノズルのターンダウン比が1:20であるのに対して、本発明のノズルはターンダウン比を2倍大きくして1:40としている。
 このようにターンダウン比を大きくすることで、厚さが大きく相違する鋳片、二次冷却帯が長尺である場合等に、冷却温度を大幅に変える必要がある場合に好適に用いることができる。
 前記ノズル本体を、整流板を設けた気液混合流体供給管の先端側に一体的または接続して設け、前記気液混合流体供給管の基端側に液体供給管と気体供給管とを直交方向に接続し、
 前記整流板により前記ノズル本体の中心軸線と平行な分流路を設けていることが好ましい。
 詳細には、前記ノズル本体を整流アダプタを介して直管状パイプからなる前記気液混合流体供給管と接続し、該気液混合流体供給管を混合アダプタに接続し、該混合アダプタに前記液体供給管と気体供給管とを直交方向に接続し、
 前記整流アダプタの中心軸線を前記ノズル本体の中心軸線と一致させ、前記整流アダプタの中心軸線に沿った流路に、該中心軸線と平行な分流路に分離する整流板を介在していることが好ましい。
 前記気体供給管から圧力空気、液体供給管から水を前記混合アダプタ内に直交方向から供給して衝突混合し、該混合アダプタから前記整流アダプタへ直管状のパイプからなる前記気液混合流体供給管を通して気液混合流体を流通し、前記整流アダプタ内で整流して前記ノズル本体内の主孔と両側の副孔にそれぞれ気液混合流体を流入させる構成としていることが好ましい。
 前記のように、ノズル本体の上流側の流路に整流板を配置し、ノズル本体内へ流入する気液混合流体を整流化した後に、ノズル本体の噴口近傍で前記主孔と副孔とのラップにより撹拌している。このように、混合アダプタでの混合→整流板での整流→本体ノズル内での衝突混合による撹拌を順次行うことで、液滴の均質化をより促進することができる。
 前記整流板は、整流アダプタの流路の内面から一体的に突設しても良いし、前記流路に挿入固定する別体でもよい。
 該整流板は前記本体ノズルの噴口から3cm~8cmの位置に配置し、該整流板の長さは5mm~30mmとし、1つの流入側流路を5~10個の分流路に区切る形状とすることがこのましい。
 本発明のスプレーノズルは連続鋳造装置の二次冷却帯の鋳片冷却、厚板・薄板・メッキ鋼板等の鋼板冷却、シームレスパイプ等の鋼管冷却、圧延・熱処理後の制御冷却、鋼板の表面処理、アルミ板・ガラス板等の板材冷却、排ガス冷却用など広範囲に用いることができる。
 また、本発明のスプレーノズルは、鋳片等の被冷却材の幅方向に間隔をあけて並列し、噴霧範囲の両側の流量が噴霧範囲の中央部の流量と同等となるようにラップさせて配置することが好ましい。
 前記した本発明のスプレーノズルは、ノズル本体の主孔の両側に設ける副孔を断面長円形状とし、該両側の副孔の対向側の長辺側部分を主孔の両側にそれぞれ連続させているため、副孔と主孔とが重なるラップ部分の面積を増大できる。このラップ部分で、副孔から主孔に流入する気液混合流体と主孔内を噴口に向かって直進する気液混合流体とを衝突させて撹拌させることができる。其の際、副孔を従来の断面円形にした場合と比較して、副孔を断面長孔とすると主孔とのラップ部分の面積が増大し、撹拌量を増大して撹拌により気液混合流体の均質化を促進できる。よって、液体流量が大きく変動しても、前記撹拌による混合流体の均質化で、噴口から噴射される気液混合流体の噴霧角度の変動を少なくでき、均等な流量分布と打力分布を得ることができる。
本発明の第1実施形態のスプレーノズルを示し、(A)は軸線方向に沿った断面図、(B)は(A)のB-B線断面図、(C)は左側面図である。 (A)は図1(A)のA-A線断面図、(B)は(A)に示す主孔と副孔を比較して示す概略図、(C)は主孔と副孔が重なるラップ領域を示す図面、(D)は図1(A)のD-D線断面図である。 整流板を示し、図1(A)のE-E線断面図である。 (A)~(C)は前記スプレーノズルの作用を説明する断面図である。 実験結果を示す図面である。 (A)は整流板の第1変形例を示す断面図、(B)は整流板の第2変形例を示す断面図、(C)は整流板の第3変形例を示す断面図である。 第2実施形態を示し、(A)はノズル本体の断面図、(B)は主孔と副孔を示す概略図である。 (A)(B)は第2実施形態の副孔の変形例を示す図面である。 (A)~(C)は従来例を示す図面である。
 以下、本発明の実施形態を図面を参照して説明する。 
 図1乃至図4に第1実施形態を示す。
 該第1実施形態のスプレーノズル10は連続鋳造装置の二次冷却帯に配置して、鋳片の上方から冷却用ミストを噴霧する二流体ノズルからなる。
 スプレーノズル10は、図1(A)に示すように、ノズル本体1に整流アダプタ2、直管パイプからなる気液混合流体供給管3(以下、流体供給管3と略称する)、混合アダプタ4をそれらの中心軸線Xを一致させて順次接続して形成している。前記中心軸線Xに沿ったノズル本体1の主流路1a、整流アダプタ2の主流路2a、流体供給管3の主流路3a、混合アダプタ4の主流路4aを連通している。混合アダプタ4の主流路4aの後端開口4bに圧縮空気供給管5を接続し、該主流路4aに液体供給管6を直角方向に接続している。
 図1(B)に示すように、ノズル本体1の中心軸線Xに沿った主流路1aの噴射側端の前端面1eの中心に主孔11を連通して設けると共に、該主孔11の幅方向の両側に一対の副孔12、13を主流路1aおよび主孔11と連通して設けている。
 詳しくは、ノズル本体1は略円筒形状で、中空部を前記主流路1aとし、該主流路1aを断面円形としている。該断面円形の主流路1aの前端面1eの中央部に断面円形の前記主孔11を連続して設けると共に、その両側に断面長円形の前記副孔12、13を連続して設けている。
 前記主孔11は軸線方向の噴射側先端に向けて流路断面積を次第に減少する円錐状とすると共に先端を円弧状として先端円弧部11aを設け、該先端円弧部11aをノズル本体1の噴射側端面1sに近接させている。
 前記一対の副孔12、13は中心軸線Xを挟んで対称形状とし、噴射側先端に先端円弧部12a、13aを設け、これら先端円弧部12a、13aの位置を主孔11の先端円弧部11aの位置より噴射側端面1sから若干離した位置または同等の位置としている。即ち、主孔11の先端円弧部11aより副孔12、13の先端円弧部12a、13aを噴射側に突出させていない。
 図1(C)に示すように、ノズル本体1の噴射側端面1sに直径方向に断面凹状とした切り込み14を設けている。該切り込み14の方向は前記副孔12、13の長辺方向Y1と平行方向とし、かつ、該切り込み14を中心に向けて深くなるテーパとしている。かつ、図1(B)に示すように、該切り込み14の幅14wは両側の副孔12、13と干渉しない幅とし、中央に位置する主孔11の先端円弧部11aと干渉し、切り込み14により先端円弧部11aだけを切り欠いて長円形の噴口15を形成している。かつ、切り込み14は外周側の両端に向けて幅方向を広げて、噴口15の長さ方向の両端に噴射側端面の外周端に向けて次第に広がるガイド凹部14a、14bを延在させている。
 副孔12、13は断面長円形状とし左右の副孔12、13の主孔側の長辺側部分は主孔11の両側部と重なり、この重なり部分、即ち、図2(C)でクロス斜線で示すラップ部分Z1、Z2で連続した形状としている。主孔11は前記のように、噴口15に向けて細くなる円錐形状で且つ断面円形であり、最大面積となる後端、即ち、主流路1aの前端面1eとの境界位置で主孔11の外周を副孔12、13の中心点Yoと一致させている。主孔11を前端に向けて縮小する円錐形状としているため、前記ラップ部分Z1、Z2の断面積は噴射側前端にかけて次第に小さくなる。
 前記主孔11の後端径(D1)に対して副孔12、13の長寸径(D2)の比D1:D2=1:0.7~1:1.2としている。前記主孔11は断面円形であるため、前記後端径(D1)は主孔11の後端の直径である。
 前記主孔11の後端径D1に対して副孔12、13の短寸径D3の比は、D1:D3=1:0.3~1:0.7としている。
 さらに、副孔12、13の短寸径D3に対する副孔12、13の長寸径D2の比は、
D3:D2=1:1.5~1:2.5としている。
 主孔11の後端径D1および副孔12、13の長寸径D2に対して、副孔12、13の短寸径D3を前記比の範囲に設定しているのは、副孔12、13への流入量を所要量に確保し、副孔12、13から主孔11に流入して撹拌する量を所要量に確保するためである。副孔12、13の短寸径D3を前記範囲より小さくするとラップ面積が減少して撹拌効果が少なくなり、前記範囲より大きくすると、ノズル本体1が大型化する問題がある。
 前記ノズル本体1の主流路1aの後端開口1gに整流アダプタ2の前部挿入部2bを挿入し、螺合して連結している。該整流アダプタ2は円筒形状で中空部を主流路2aとし、該主流路2aの中間位置に整流板18を介設している。
 整流板18は図3に示すように4個の小円筒18a~18dを90度間隔をあけて配置して連続した形状とし、これら小円筒18a~18dを囲む仮想円の直径を主流路2aの直径と同等としている。主流路2aの周面に嵌合凹部2vを環状に凹設し、整流板18の外周部分を嵌合凹部2vに圧入固定している、該整流板18を主流路2aに配置することで、中心軸線Xと平行な9個の分離流路2dを設けている。
 前記整流板18の長さL3は5mm~30mm、整流板18の前端位置はノズル本体1の噴口15から3cm~6cmの位置としている。
 前記整流アダプタ2の後端開口に直管パイプからなる流体供給管3の前部挿入部3bを挿入し、螺合して連結している。
 前記流体供給管3の後部に前記混合アダプタ4の前部挿入部4gを外嵌し、螺合して連結している。該混合アダプタ4の主流路4aは略同径の主流路3aと連通し、該主流路4aの一側部に設けた開口に液体挿入管4cを直角方向から挿入固定し、該液体挿入管4cの先端開口4dに前記液体供給管6を連結している。前記液体挿入管4cに流路断面積を絞ったオリフィス4eを設け、主流路4aに側方から圧力を高めた水を流入させるようにしている。
 また、混合アダプタ4の主流路4aの後端に小径流路4hを連続して設け、該小径流路4hに大径挿入穴4jを連続して設け、その後端開口4bに前記圧縮空気供給管5を挿入して連結している。
 該混合アダプタ4では圧縮空気供給管5より小径流路4hをへて主流路4aに圧力を高めた圧縮空気を流入させ、該圧縮空気に側方から圧力を高めた水を流入させて、衝突混合している。
 前記圧縮空気供給管5はコンプレッサー(図示せず)から所要圧力とした空気を一定流量でスプレーノズル10に供給している。
 また、前記液体供給管6にはポンプ(図示せず)を介して所要圧力とした水をターンダウン比を1:40の広範囲で調節した水量で供給している。
 次に、本発明のスプレーノズル10の作用を図4(A)~(C)を参照して説明する。 気体供給管となる圧縮空気供給管5から所要圧力とした圧力空気を、液体供給管6から水を混合アダプタ4内に直交方向から供給して衝突混合し、該混合アダプタ4から流体供給管3を介して整流アダプタ2へ水と空気を混合した気液混合流体AQを流入し、整流アダプタ2内で整流板18を通って整流化し、ノズル本体1内の主流路1aに流入する。
 主流路1aの中央部の気液混合流体AQ-cは主孔11に流入し、両側の気液混合流体AQ-sは両側の副孔12、13にそれぞれ流入する。
 主孔11の両側で副孔12、13の長辺側の約半分が重なり、該ラップ部分Z1、Z2で、副孔12、13に流入する気液混合流体AQ-sは主孔11に側方から流れ込み、主孔11内の気液混合流体AQ-cと衝突混合して、撹拌が生じる。この撹拌により気液混合流体AQの均質化を促進する。
 図4(C)に示すように、均質化された気液混合流体AQは主孔11の前端の長円形状の噴口15より外方に噴射される。噴口15は切り欠み14の両側壁に挟まれ、噴口15の長さ方向の両端にガイド凹部14a、14bが連続して延在するため、噴口15から噴射された気液混合流体AQはガイド凹部14a、14bに沿って両側方へ拡がる。これにより、スプレーノズル直下への流量を抑えて両側へ流量を多くし、流量が均一な範囲が長い台形状の噴霧パターンとなる。かつ、噴射される気液混合流体AQ中の水滴は微粒化されて圧力空気と混合され、均質化された噴霧となっているため、液量を変えても圧力空気量を一定量とすると、前記噴霧パターンとなる噴霧角度は殆ど変動せず、噴霧範囲内での液量分布および打力分布を略均等にできる。
 図5の表に前記実施形態のスプレーノズルを用いた実験結果を示す。
 図5の表において、Pa(空気圧):MPa
          Pw(液圧) :MPa
          Qa(空気量):NL/min
          Qw(液量) :L/min
          H(ノズル直下からの測定位置):mm
 なお、表中の50%噴角とは、流量分布が一番高い値を100とし、それに対して50%の比率の広がり寸法と、噴霧高さより三角関数で算出した角度を指す。
 図5の表に示すように、空気量(Qa)は一定の200NL/minとし、液量(Qw)を1.0L/min→2.0L/min→10.0L/min→20.0L/min→30.0L/min→40.0L/minと変えても、50%噴角は111°→111°→112°→109°→111°→109°と3度しか変動しなかった。また、流量分布および打力分布もほぼ均等であった。
 このように、本発明のスプレーノズル10は液流量制御範囲のターンダウン比を1:40と広げることができ、従来の2倍のターンダウン比を得ることができる。そのため、鋳片の厚さ寸法の相違、スプレーノズルの設置領域、噴霧時間帯に応じて液流量を変えて対応させることができ、多品種小量生産の要請に答えることができる。
 本発明は前記実施形態に限定されず、整流板は図6(A)(B)(C)に示す変形例の構成としてもよい。
 図6(A)に示す第1変形例の整流板18では、中心から8本の仕切板18sを放射状に設けた形状、所謂、羽根タイプとしている。
 図6(B)に示す第2変形例の整流板18では、中央円筒部18eの外周面から8本の仕切板18fを等角度間隔で突出した形状、所謂ベーンタイプとしている。
 図6(C)に示す第3変形例の整流板18は、断面円形の本体18iに90度間隔をあけて4つの穴18hを分離流路として設け、穴あけタイプとしている。該穴あけタイプとすると、分離流路をすべて断面円形にでき、隅部を発生させない利点がある。
 図7(A)(B)に第2実施形態のスプレーノズルを示す。
 該第2実施形態のスプレーノズルでは、ノズル本体1の主流路1aの前端に連通する主孔11-2を断面長円形状とし、その長辺方向Y1を両側の断面長円形状の副孔12ー2、13ー2の長辺方向Y1と平行に配置し、短辺方向Y2も平行に配置している。
 前記主孔11-2の後端の短辺方向Y2の短寸径に対して長辺方向Y1の長寸径は1:1~1.2、好ましくは1:1~1.4としている。
 前記主孔11-2の長辺側の両側部分に副孔12-2、13-2の対向する長辺側部が重なり、クロス斜線で示すラップ部分Z1、Z2を形成している。
 他の構成および作用効果は第1実施形態と同様であるため、説明を省略する。
 図8(A)(B)に第2実施形態の副孔12-2、13-2の形状を変えた変形例を示す。主孔11-2は前記第1実施形態と同様の断面円形としている。
 図8(A)では、両側の副孔12-2、13-2は、主孔11-2と連続しない反対側の長辺12s、13sを直線状ではなく外方へ円弧形状に膨出させ、両側の副孔12-2、13-2を断面略楕円形状としている。該形状とすると、副孔12-2、13-2から主孔11-2へ側方から流入する流体量が増加でき、噴霧角度を大きくできる。
 図8(B)では、両側の副孔12-2、13-2は、主孔11-2と連続しない反対側の長辺を長さ方向中心に向けて内向き傾斜させ、各副孔12-2、13-2の外側長辺12m、13mをそれぞれ瓢箪形状としている。該形状とすると副孔12-2、13-2から主孔11-2へ側方から流入する流体量が減少でき、噴霧角度を小さくできる。
 さらに、前記第1実施形態では混合アダプタを液体供給管と気体供給管に接続して、気液混合流体を噴霧する二流体ノズルとしているが、液体供給管のみ流体供給管3に接続し、整流アダプタ2を通して第1実施形態のノズル本体1に液体のみを流入させ、液体を微粒化して噴射する一流体ノズルとしてもよい。
 さらに、ノズル本体に整流アダプタを介して連続する流体供給管は直管状ではなく、屈曲した曲げ配管でもよい。
 1 ノズル本体
 2 整流アダプタ
 3 気液混合流体供給管
 4 混合アダプタ
 1a、2a、3a、4a 主流路
 5 圧縮空気供給管
 6 液体供給管
 10 スプレーノズル
 11 主孔
 12、13 副孔
 14 切り込み
  14a、14b ガイド凹部
 15 噴口
 18 整流板
 Z1、Z2 ラップ部分 
 X 中心軸線

Claims (4)

  1.  ノズル本体の中心軸線に沿った主流路の噴射側の中心に噴射側前端に向けて細くなる円錐形状の主孔を連通して設けると共に、該主孔の幅方向の両側に一対の副孔を前記主流路および前記主孔と連通させて設け、
     該副孔は長孔形状とし、これら両側の副孔の前記主孔を挟んで対向する長辺側部分と前記主孔の両側部分とを連通させ、主孔の後端径(D1)に対して前記副孔の長寸径(D2)の比をD1:D2=1:0.7~1:1.2とし、
     前記ノズル本体の噴射側端面に前記副孔の長寸方向と同方向の直径方向に切り込みを入れ、該切り込みで前記主孔の先端円弧部を切り欠いて噴口を設けていることを特徴とするスプレーノズル。 
  2.  前記ノズル本体の主流路に、水からなる液体と圧縮空気からなる気体の気液混合流体を導入し、
     前記主孔は断面円形とすると共に、前記副孔は断面長円形状とし、
     前記主孔の後端径D1に対して前記副孔の短寸径D3の比D1:D3=1:0.3~1:0.7、
     前記副孔の短寸径D3に対する副孔の長寸径D2の比D3:D2=1:1.5~1:2.5
      に設定している請求項1に記載のスプレーノズル。
  3.  一定量の圧力空気に対する液体流量を1:40の範囲で変動した状態で、噴霧角度の変動角度を5度以下としている請求項1または請求項2に記載のスプレーノズル。
  4.  前記ノズル本体を、整流板を設けた気液混合流体供給管の先端側に一体的または接続して設け、前記気液混合流体供給管の基端側に液体供給管と気体供給管とを直交方向に接続し、
     前記整流板により前記ノズル本体の中心軸線と平行な分流路を設けている請求項1乃至請求項3のいずれか1項に記載のスプレーノズル。
PCT/JP2015/066302 2014-06-26 2015-06-05 スプレーノズル WO2015198834A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/317,170 US10183300B2 (en) 2014-06-26 2015-06-05 Spray nozzle
EP15811240.9A EP3162461B1 (en) 2014-06-26 2015-06-05 Spray nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014131817A JP6089006B2 (ja) 2014-06-26 2014-06-26 スプレーノズル
JP2014-131817 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015198834A1 true WO2015198834A1 (ja) 2015-12-30

Family

ID=54937930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066302 WO2015198834A1 (ja) 2014-06-26 2015-06-05 スプレーノズル

Country Status (4)

Country Link
US (1) US10183300B2 (ja)
EP (1) EP3162461B1 (ja)
JP (1) JP6089006B2 (ja)
WO (1) WO2015198834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054280A (zh) * 2019-04-26 2019-07-26 盛世生态环境股份有限公司 一种湖水循环净化处理装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6482100B2 (ja) * 2015-03-02 2019-03-13 株式会社三谷バルブ 内容物放出構造ならびにこの内容物放出構造を備えたエアゾール式製品およびポンプ式製品
CN108942086A (zh) * 2017-05-17 2018-12-07 上海梅山钢铁股份有限公司 连铸用冷却喷嘴加工方法
WO2021024920A1 (ja) 2019-08-02 2021-02-11 Jfeスチール株式会社 連続鋳造鋳片の二次冷却装置及び二次冷却方法
JP7433263B2 (ja) * 2021-03-03 2024-02-19 日本碍子株式会社 Cu-Ni-Sn合金の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016846A (ja) * 2002-06-12 2004-01-22 Ikeuchi:Kk ノズル
JP2007237086A (ja) * 2006-03-09 2007-09-20 Jfe Steel Kk ノズル
JP2008168167A (ja) * 2007-01-05 2008-07-24 Kyoritsu Gokin Co Ltd 噴射ノズルとそれを用いた噴霧方法
JP2008296197A (ja) * 2007-06-04 2008-12-11 Jfe Steel Kk ノズル
JP2010221121A (ja) * 2009-03-23 2010-10-07 Kyoritsu Gokin Co Ltd 噴射ノズル
JP2011067781A (ja) * 2009-09-28 2011-04-07 Kyoritsu Gokin Co Ltd デフレクタ及びそれを用いた噴霧ノズル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079563U (ja) * 1983-11-02 1985-06-03 株式会社いけうち スプレ−ノズル
JP2719073B2 (ja) * 1992-05-27 1998-02-25 株式会社いけうち スプレーノズル
JP2003159549A (ja) * 2001-09-12 2003-06-03 Ikeuchi:Kk スプレーノズル
JP2004298765A (ja) * 2003-03-31 2004-10-28 Ikeuchi:Kk 気液混合装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016846A (ja) * 2002-06-12 2004-01-22 Ikeuchi:Kk ノズル
JP2007237086A (ja) * 2006-03-09 2007-09-20 Jfe Steel Kk ノズル
JP2008168167A (ja) * 2007-01-05 2008-07-24 Kyoritsu Gokin Co Ltd 噴射ノズルとそれを用いた噴霧方法
JP2008296197A (ja) * 2007-06-04 2008-12-11 Jfe Steel Kk ノズル
JP2010221121A (ja) * 2009-03-23 2010-10-07 Kyoritsu Gokin Co Ltd 噴射ノズル
JP2011067781A (ja) * 2009-09-28 2011-04-07 Kyoritsu Gokin Co Ltd デフレクタ及びそれを用いた噴霧ノズル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054280A (zh) * 2019-04-26 2019-07-26 盛世生态环境股份有限公司 一种湖水循环净化处理装置
CN110054280B (zh) * 2019-04-26 2022-06-10 盛世生态环境股份有限公司 一种湖水循环净化处理装置

Also Published As

Publication number Publication date
JP2016007602A (ja) 2016-01-18
EP3162461A4 (en) 2018-04-25
EP3162461A1 (en) 2017-05-03
US20170106379A1 (en) 2017-04-20
US10183300B2 (en) 2019-01-22
EP3162461B1 (en) 2019-05-01
JP6089006B2 (ja) 2017-03-01

Similar Documents

Publication Publication Date Title
WO2015198834A1 (ja) スプレーノズル
JP5505700B2 (ja) シャワー装置
AU739239B2 (en) Spray nozzle assembly
JP4971708B2 (ja) 二流体ノズル
JP5547802B2 (ja) ノズル
US20170304851A1 (en) Atomizer nozzle
JP2013063369A (ja) 噴射ノズル並びに噴射ノズル装置及び噴霧方法
JPH0787907B2 (ja) 改良されたスプレーノズルデザイン
KR20110131032A (ko) 내부 혼합식 분무 노즐
EP2799149A1 (en) Liquid atomization device
KR20160106414A (ko) 복수개의 챔버를 갖는 내부 혼합식 분무 노즐
JP6159711B2 (ja) 液体噴射装置及び液体噴射方法
US10094352B2 (en) Swirl impingement prefilming
JP2004216320A (ja) 噴霧ノズル
JP4936904B2 (ja) 噴射ノズルとそれを用いた噴霧方法
JP2006167599A (ja) 二流体ノズル
JP4972326B2 (ja) ノズル
JP2010221121A (ja) 噴射ノズル
JP5048394B2 (ja) ノズル
JP2011224484A (ja) 二流体ノズル
JP4452093B2 (ja) 噴射ノズルおよび噴射方法
JP2004344689A (ja) 2流体ノズル
JP2004050121A (ja) ノズル
JPS6221331Y2 (ja)
JP2005046769A (ja) スプレーノズル及びそれを用いた噴霧方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15317170

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015811240

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811240

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015811240

Country of ref document: EP