WO2015197005A1 - 气固相快速制备环戊二烯改性碳纳米管的方法 - Google Patents

气固相快速制备环戊二烯改性碳纳米管的方法 Download PDF

Info

Publication number
WO2015197005A1
WO2015197005A1 PCT/CN2015/082283 CN2015082283W WO2015197005A1 WO 2015197005 A1 WO2015197005 A1 WO 2015197005A1 CN 2015082283 W CN2015082283 W CN 2015082283W WO 2015197005 A1 WO2015197005 A1 WO 2015197005A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclopentadiene
carbon nanotubes
reaction
reactor
fluidized state
Prior art date
Application number
PCT/CN2015/082283
Other languages
English (en)
French (fr)
Inventor
李岩
肖胜雄
徐泗蛟
耿磊
Original Assignee
山东大展纳米材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大展纳米材料有限公司 filed Critical 山东大展纳米材料有限公司
Publication of WO2015197005A1 publication Critical patent/WO2015197005A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Definitions

  • the present invention relates to a process for modifying carbon nanotubes with cyclopentadiene.
  • the method for modifying carbon nanotubes of cyclopentadiene of the invention has strong operability, and the obtained cyclopentadiene-modified carbon nanotubes have high purity, high grafting rate, less agglomeration and entanglement, and the cost is lower than other methods.
  • the advantages of good reproducibility, the quality of the obtained products is stable, and it is suitable for industrialized mass production.
  • Carbon nanotubes have very good physical and mechanical properties, a Young's modulus of about 1.8 TPa, a tensile strength of about 200 GPa, a strength 100 times higher than that of steel, and a weight of only 1/6 to 1/7 of the latter. At the same time, the elastic strain of carbon nanotubes can reach up to about 12%, and has good flexibility like a spring. The electrical conductivity of carbon nanotubes can reach 10,000 times that of copper, and the thermal conductivity is also very good. Due to its excellent performance, carbon nanotubes have broad application prospects in many fields such as nanoelectronic devices, catalyst carriers, electrochemical materials, and composite materials.
  • a method for manufacturing a plurality of carbon nanotubes is known in the prior art.
  • Chinese Patent No. CN1327943A to Wei Fei et al. discloses a method for continuously preparing carbon nanotubes in a fluidized bed and a reaction device thereof, the method comprising mainly including a catalyst treatment step and Carbon nanotube manufacturing steps:
  • the catalyst treatment step comprises: carrying a transition metal oxide catalyst on a support, placing the supported catalyst in a catalyst activation reactor, and introducing a flowing hydrogen gas or a mixed gas of carbon monoxide and nitrogen at a temperature of 500-900 ° C.
  • the reduction reaction is carried out to reduce the transition metal oxide nanoparticles to elemental metal nanoparticles, and hydrogen or carbon monoxide is mixed with nitrogen at a volume ratio of 1:0.3-1, and the reduction time is 0.3 to 3 hours.
  • the lower part of the fluidized bed is obtained with carbon nanotubes having a diameter of 4 to 80 nm and a length of 0.5 to 200 ⁇ m.
  • carbon nanotubes have a very strong surface effect.
  • the unique properties of this nanomaterial can cause agglomeration and entanglement between carbon nanotubes, which is difficult to disperse, which greatly limits their Application of the field.
  • the only way to solve this problem is to modify the surface functionalization of carbon nanotubes to improve the dispersion properties and interfacial adhesion of carbon nanotubes.
  • the prior art methods for modifying carbon nanotubes mainly include carboxylation modification, hydroxylation modification, amination modification, graft copolymerization modification, electrochemical modification, irradiation radical modification, and organic coating modification.
  • Chinese Patent No. CN102689893A to Liu Jianying et al. discloses a method for carboxylation modification of carbon nanotubes, which is applied to the preparation of carbon nanotube/tin-silver-copper composite lead-free solder, the method comprising the following steps:
  • the reactor is placed in an ultrasonic disperser, the ultrasonic reaction is more than 4 hours, and the ultrasonic frequency is 35 kHz;
  • the washed carbon nanotubes are placed in a vacuum oven for drying, the drying temperature is 60 ° C, and the drying time is more than 4 hours to obtain surface-modified carbon nanotubes.
  • the cyclopentadiene-modified carbon nanotubes are uniformly mixed in proportion to the following materials to prepare a cyclopentadiene-modified carbon nanotube/rubber composite material, and the specific composition ratio is in parts by mass.
  • Component 1-50 parts of cyclopentadiene-modified carbon nanotubes, 100 parts of rubber material, 1-6 parts of vulcanizing agent, 3-8 parts of active agent, 0.5-2 parts of vulcanizing agent, carbon black 5-20 a portion, a filler of 10-30 parts, a plasticizer 2-12 parts, an antioxidant 1-5 parts, a dispersing agent 0.1-2 parts;
  • the cyclopentadiene-modified carbon nanotube/rubber composite material is shaped and vulcanized to crosslink the vinyl group on the surface of the carbon nanotube with the rubber molecular chain.
  • the above method requires a modification reaction in a sealed pressure-resistant reaction vessel, which limits its further large-scale application.
  • the prior art still needs to develop a method for rapidly modifying the surface of carbon nanotubes by using cyclopentadiene, which should have high operability and purity of the obtained cyclopentadiene-modified carbon nanotubes. It has high grafting rate and is not easy to agglomerate and entangle. The cost is lower than other methods, the reproducibility is good, and the obtained product quality is stable, which is suitable for industrial large-scale production.
  • the object of the present invention is to provide a method for rapidly modifying the surface of carbon nanotubes by using cyclopentadiene, which has strong operability, and the obtained cyclopentadiene-modified carbon nanotubes have high purity and are connected.
  • the branch rate is high, the agglomeration and entanglement are not easy to occur, the cost is lower than other methods, the reproducibility is good, the obtained product quality is stable, and the utility model is suitable for the advantages of industrial large-scale production.
  • a method of preparing a cyclopentadiene-modified carbon nanotube comprising the steps of:
  • the mass ratio of the cyclopentadiene to the carbon nanotubes is from 10:1 to 1:10.
  • the method before the step of providing cyclopentadiene and carbon nanotubes in a fluidized state, the method further comprises decomposing the dicyclopentadiene dimer into cyclopentane.
  • the pretreatment step of the ene before the step of providing cyclopentadiene and carbon nanotubes in a fluidized state, the method further comprises decomposing the dicyclopentadiene dimer into cyclopentane.
  • the step of providing a fluidized state of cyclopentadiene and carbon nanotubes comprises dispersing cyclopentadiene and carbon nanotubes in a fluidized protective gas to provide a flow. Cyclopentadiene and carbon nanotubes.
  • the step of providing the cyclopentadiene and the carbon nanotubes in a fluidized state comprises mixing the carbon nanotubes and the cyclopentadiene, followed by heating and applying a driving force to disperse the carbon nanotubes. In the flowing cyclopentadiene vapor, thereby providing cyclopentadiene and carbon nanotubes in a fluidized state.
  • the driving force is selected from the group consisting of a carrier gas carrier, a rotary drive or a differential pressure drive.
  • the reaction is carried out at a temperature of from 200 to 450 ° C, more preferably from 230 to 400 ° C, preferably from 250 to 350 ° C.
  • the mass ratio of the cyclopentadiene to the carbon nanotube is 8:1 to 1:5, preferably 5:1 to 1:3, more preferably 3:1. 1:2.5, preferably 2:1-1:2.
  • the flow rate of the cyclopentadiene and the carbon nanotubes in the fluidized state is 0.1-0.8 m/s, preferably 0.15-0.6 m/s, preferably 0.2-0.5 m. / s, preferably 0.25-0.4 m/s.
  • the pretreatment step is carried out at a temperature of 120 ° C or above, preferably 120 to 300 ° C, preferably 150 to 250 ° C, preferably 180 to 230 ° C.
  • the process is carried out using a fluidized bed reactor, a tubular reactor or a spiral reactor.
  • 1 is a schematic view of the preparation of cyclopentadiene-modified carbon nanotubes using a fluidized bed reactor
  • FIG. 2 is a schematic view of preparing a cyclopentadiene-modified carbon nanotube using a tubular reactor
  • FIG. 3 is a schematic view of preparing a cyclopentadiene-modified carbon nanotube by using a spiral reactor
  • Example 4 is a scanning electron microscope image of a cyclopentadiene-modified carbon nanotube obtained in Example 1 using the method of the present invention
  • Figure 5 is a graph showing the thermal weight loss curve of carbon nanotubes before and after cyclopentadiene modification.
  • the method for preparing a cyclopentadiene-modified carbon nanotube of the present invention comprises (1) providing a fluidized state of cyclopentadiene and carbon nanotubes; and (2) at a temperature of 150-500 ° C to make a fluidized state A mixture of cyclopentadiene and carbon nanotubes is reacted; wherein the mass ratio of the cyclopentadiene to the carbon nanotubes is from 0.1 to 10.
  • the term "fluidization state” means that solid carbon nanotube particles and cyclopentadiene fine droplets are suspended in a moving gas such that the particles and droplets have certain apparent characteristics of the fluid; It is meant that the solid carbon nanotube particles are suspended in the moving cyclopentadiene gas such that the carbon nanotube particles have certain apparent characteristics of the fluid.
  • the method for providing cyclopentadiene and carbon nanotubes in a fluidized state of the present invention is not particularly limited, and It is any conventional method known in the art.
  • cyclopentadiene and carbon nanotubes are dispersed in a fluidized protective gas to form cyclopentadiene and carbon nanotubes in a fluidized state.
  • the term "protective gas” means a gas which does not interfere with the reaction of cyclopentadiene and carbon nanotubes, and non-limiting examples thereof include, for example, nitrogen, helium, argon, and the like.
  • carbon nanotubes and cyclopentadiene are mixed, followed by heating and applying a driving force to disperse the carbon nanotubes in the flowing cyclopentadiene vapor to form a fluidized state of cyclopentadiene. And carbon nanotubes.
  • the fluidization state is provided by a driving force in the form of a driving medium such as a carrier gas carrier, a rotary drive or a differential pressure drive.
  • a driving medium such as a carrier gas carrier, a rotary drive or a differential pressure drive.
  • the carrier gas carrier includes a carrier gas carrying a reactant using a protective gas such as nitrogen or argon.
  • a cyclopentadiene is carried by a protective gas (for example, nitrogen) in a fluidized bed reactor or a tubular reactor to blow the carbon nanotubes in a suspended state to provide a fluidized state.
  • a protective gas for example, nitrogen
  • a fluidized state is formed using a rotational drive.
  • the rotary drive includes propelling the reaction material forward by utilizing a rotary power such as a propeller blade, a turbine drive, or the like to provide a fluidized state of the reaction material.
  • a rotary power such as a propeller blade, a turbine drive, or the like.
  • the propeller is utilized in the spiral reactor. The rotation of the leaves continuously pushes the reaction material forward.
  • the fluidization state is formed using a differential pressure drive.
  • the differential pressure drive can utilize the pressure difference between the inlet and outlet of the reaction device to cause the reaction material to flow forward, thereby providing a reaction material in a fluidized state, which can be generated by setting a booster pump or evacuating.
  • a fluidized bed reactor In an embodiment of the invention, a fluidized bed reactor, a tubular reactor or a spiral reactor is employed for the rapid preparation of cyclopentadiene-modified carbon nanotubes.
  • the fluidized bed reactor has the advantages of high heat transfer rate, high catalytic efficiency and easy automatic control.
  • the tubular reactor has the advantages of uniform axial and radial temperature distribution, high heat transfer efficiency, safety and reliability, and the screw feeding device.
  • the utility model has the advantages of simple structure, large surface area per unit volume, no running parts, and easy control of the temperature of the system.
  • a fluidized bed reactor, tubular reactor or spiral reactor allow the reaction mass to remain in a flowing state during the reaction and are therefore particularly suitable for use in the process of the present invention.
  • the reactors suitable for use in the process of the present invention are not limited to fluidized bed reactors, tubular reactors or spiral reactors, as long as they are capable of maintaining the flow of the reaction mass during the reaction. It can be used in the present invention.
  • the cyclopentadiene which is suitable for the method of the present invention is not particularly limited and may be a commercially available cyclopentadiene. Since cyclopentadiene is easily dimerized to dicyclopentadiene at room temperature, it is usually present in the form of a dicyclopentadiene dimer. Dicyclopentadiene slowly decomposes to cyclopentadiene at 120 ° C and rapidly decomposes to cyclopentadiene at temperatures above 150 ° C, for example 170 ° C.
  • the method of the invention further comprises a pretreatment step of placing the dicyclopentadiene dimer at a high temperature (e.g., a temperature of 120 ° C or above, preferably 120-) Depolymerization is carried out at 300 ° C, preferably 150-250 ° C, preferably 180-230 ° C, and then the depolymerized cyclopentadiene is brought into a fluidized state together with the carbon nanotubes.
  • a high temperature e.g., a temperature of 120 ° C or above, preferably 120-
  • Depolymerization is carried out at 300 ° C, preferably 150-250 ° C, preferably 180-230 ° C, and then the depolymerized cyclopentadiene is brought into a fluidized state together with the carbon nanotubes.
  • the term "carbon nanotube” means a one-dimensional quantum material having a special structure having a radial dimension on the order of nanometers and an axial dimension on the order of micrometers.
  • the carbon nanotubes are mainly composed of a plurality of coaxial tubes of a plurality of layers of carbon atoms arranged in a hexagonal shape. The layer is maintained at a fixed distance between the layers, about 0.34 nm, and generally has a diameter of 2 to 20 nm.
  • the carbon nanotubes used in the present invention are not particularly limited, and may be any conventional carbon nanotubes in the art, including single-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures of the above-mentioned carbon nanotubes, and various forms of carbon.
  • Nanotubes preferably multi-walled carbon nanotubes.
  • the single-walled carbon nanotube is composed of a single-layer cylindrical graphite layer, and has a small distribution range of diameters, few defects, and high uniformity.
  • the multi-walled carbon nanotubes are composed of a plurality of layers of graphite, and the layers are easily become the center of the trap to capture various defects, and thus the wall of the multi-walled tube is usually covered with small holes.
  • inorganic materials such as carbon nanorods and nanowires having similar structures are also suitable for use in the present invention.
  • the carbon nanotube used in the method for preparing a cyclopentadiene-modified carbon nanotube is a single-walled or multi-walled carbon nanotube produced by Shandong Dazhan Nano Material Co., Ltd., having a purity of >96%.
  • the diameter is 1-100 nm
  • the length is 5 nm-100 ⁇ m
  • the aspect ratio is 5:1 to 100000:1.
  • the flow rate of the cyclopentadiene and the carbon nanotubes in the fluidized state is from 0.1 to 0.8 m/s, preferably from 0.15 to 0.6 m/s, preferably from 0.2 to 0.5 m. / s, preferably 0.25-0.4 m/s.
  • the inventors of the present invention found that under high temperature conditions, the gaseous cyclopentadiene produced by the instantaneous decomposition can be rapidly grafted onto the carbon nanotubes, and in the reactor for keeping the material flowing, the gas-solid two phases continuously react and rapidly form a ring.
  • the present invention is based on the discovery of pentadiene-modified carbon nanotubes.
  • a conventional conventional reactor such as a fluidized bed, a tubular reactor, or a spiral reactor may be used for the modification reaction of the carbon nanotubes, and the contact area of the preparation device is large.
  • the high mass transfer heat transfer rate makes the modification reaction faster and more efficient.
  • the reaction does not require additional pressure, and avoids the shortcomings of cyclopentadiene self-polymerization caused by high-temperature long-term reaction, improves reaction efficiency, and reacts rapidly.
  • the time is short, the cost is lower than other methods, the obtained product quality is stable, the purity and the grafting rate are high, the process method is simple and easy to operate, and is suitable for industrial large-scale production.
  • cyclopentadiene-modified carbon nanotube means a modified carbon nanotube obtained by reacting cyclopentadiene with carbon nanotubes.
  • the cyclopentadiene is obtained by decomposition of dicyclopentadiene.
  • the cyclopentadiene may comprise one or more functional groups.
  • the reaction of the cyclopentadiene and the carbon nanotube in the fluidized state of the present invention is carried out at a temperature of from 150 to 500 ° C, preferably from 200 to 450 ° C, more preferably from 230 to 400 ° C, preferably from 250 to 350 ° C. Perform at temperature.
  • the mass ratio of the cyclopentadiene to the carbon nanotubes is from 10:1 to 1:10, preferably from 8:1 to 1:5, preferably from 5:1 to 1:3. More preferably, it is 3:1-1:2.5, preferably 2:1-1:2.
  • the cyclopentadiene may contain one or more functional groups, for example, selected from a C 1-6 alkyl group, a C 3 -C 12 alkenyl group, a halogen, a carboxylic acid group, and an ester.
  • Base ether group, -NH 2 , NHCH 3 , -CONH, -SO 3 H, keto group, aldehyde group, epoxy group, phenyl group or benzyl group.
  • the carbon nanotubes are preferably multi-walled carbon nanotubes.
  • a cyclopentadiene-modified carbon nanotube is prepared using a fluidized bed reactor.
  • Fig. 1 is a schematic view showing the preparation of a cyclopentadiene-modified carbon nanotube by a fluidized bed reactor used in a preferred embodiment of the present invention, as shown in Fig. 1.
  • the reaction apparatus used in this embodiment includes a vaporizer 1, a carrier gas inlet 2, a preheater 3, and a fluidized bed reactor 4 for decomposing the dicyclopentadiene.
  • carbon nanotubes are fed into the fluidized bed reactor through the carbon nanotube feed port 5, nitrogen gas is introduced from the bottom of the reactor for 2-30 minutes, and the reactor is heated. Up to 150-500 ° C; the biscyclopentadiene modifier is first introduced into a vaporizer 1 at a temperature of 150-300 ° C, decomposed and vaporized to cyclopentadiene at a high temperature, and then passed through a carrier gas inlet 2 through a nitrogen gas and a cyclopentane The diene is mixed, and the mixed material is introduced into the preheater 3 at a temperature of 150-350 ° C, and the preheated mixed gas is continuously introduced into the fluidized bed reactor 4 from the bottom of the reactor to blow the carbon nanotubes into In the state of suspension boiling, the gas and solid phases are sufficiently contacted to form a cyclopentadiene-modified carbon nanotube. After the cyclopentadiene is completely injected
  • the method comprises the steps of:
  • a cyclopentadiene-modified carbon nanotube is prepared using a fluidized bed reactor, the cyclopentadiene being a continuous feed, wherein the process of the invention comprises decomposing the dicyclopentadiene
  • the cyclopentadiene is mixed with nitrogen in proportion, and after mixing, it is continuously preheated into the reactor, and the preheating temperature is 150-350 ° C until the feed is complete, and the carbon nanotubes are blown into a suspension boiling state, gas and solid.
  • the two phases are sufficiently contacted to form a cyclopentadiene-modified carbon nanotube.
  • a cyclopentadiene-modified carbon nanotube is prepared using a fluidized bed reactor, the cyclopentadiene being in a batch feed mode, wherein the process of the invention comprises flowing nitrogen at a constant flow rate. Feeding, the cyclopentadiene obtained by decomposing dicyclopentadiene is fed once every 10 to 60 seconds, and after feeding, it is mixed with nitrogen and preheated and then introduced into the reactor until the injection is completed.
  • a cyclopentadiene-modified carbon nanotube is prepared using a tubular reactor.
  • 2 is a schematic view showing the preparation of cyclopentadiene-modified carbon nanotubes by a tubular reactor used in a preferred embodiment of the present invention, as shown in FIG.
  • the reaction apparatus used in this embodiment includes a mixing device 1, a carrier gas inlet 2, a tubular reactor 3, a cooling device 4, and a receiving device 5 for mixing dicyclopentadiene and carbon nanotubes.
  • the modifier dicyclopentadiene is mixed with the carbon nanotubes at 40-70 ° C for 0.5-2 hours in a small mixer 1, cyclopentadiene and carbon.
  • the mixing ratio of the nanotubes is 10:1 to 1:10, nitrogen gas is introduced from the carrier gas inlet 2, and the mixed material is carried into the tubular reactor 3, and the reaction temperature of the tubular reactor is raised to 200 in advance. -500 ° C.
  • the mixture is carried into the high temperature reaction zone of the tubular reactor by nitrogen gas, and the modifier dicyclopentadiene is instantaneously decomposed and vaporized into cyclopentadiene at a high temperature, and immediately reacts with the carbon nanotubes, and the reaction material continuously flows forward. Continue to react efficiently during the flow until the reaction is complete. After the reaction is completed, the material enters the cooling device 4 with nitrogen, and after cooling, it enters the receiving device 5 to receive the material.
  • the method comprises the steps of:
  • reaction stage the mixed material is introduced from one end of the tubular reactor under the action of nitrogen, and the modifier instantly reacts with the carbon nanotubes under high temperature and continuously flows forward, and the flow process continues to be efficient. Reaction until the reaction is complete;
  • the tubular reactor has a diameter of 20-100 mm, a length of 10-100 m, a nitrogen flow rate of 0.1-1.0 m/s, and an overall flow rate of the material of 0.2-2.0 m/s.
  • a cyclopentadiene modified carbon nanotube is prepared using a spiral reactor.
  • 3 is a schematic view showing the preparation of cyclopentadiene-modified carbon nanotubes by a spiral reactor used in a preferred embodiment of the present invention, as shown in FIG.
  • the reaction apparatus used in this embodiment includes a mixing device 1, a spiral reactor 2, and a receiving device 3 for mixing dicyclopentadiene and carbon nanotubes.
  • the modifier dicyclopentadiene and the carbon nanotubes are mixed in a small mixer 1 at 40-70 ° C for 0.5-2 hours, cyclopentadiene and carbon nano
  • the mixing mass ratio of the tube is 10:1-1:10, and the mixed material enters the reaction section along with the spiral blade of the spiral reactor 2, and the temperature of the reaction section of the spiral reactor is previously raised to 200-500 ° C, the modifier Dicyclopentadiene is instantaneously decomposed and vaporized into cyclopentadiene at high temperature, and immediately reacts with the carbon nanotubes.
  • the reaction material continuously flows forward with the spiral vanes, and the reaction progresses continuously until the reaction is complete. After the reaction is completed, the material continues to move forward, cools naturally, and finally enters the receiving device 3 to receive the material.
  • the method comprises the steps of:
  • Reaction stage the material enters the high temperature zone with the spiral blade, and the modifier immediately reacts with the carbon nanotube after gasification and gradually moves forward until the reaction is complete;
  • the spiral reactor reaction section has a length of from 1 to 50 m and a diameter of from 10 to 60 cm.
  • the scanning electron microscope image of the cyclopentadiene-modified carbon nanotubes prepared by the method of the present invention is shown in FIG. 4, and the dispersion of the cyclopentadiene-modified carbon nanotubes is better than that of the unmodified carbon nanotubes. It is not easy to agglomerate and tangled.
  • the process of the invention comprises adding single-walled carbon nanotubes in a fluidized bed reactor, introducing nitrogen gas from the bottom of the reactor, and raising the temperature of the reactor to 150-500 ° C, preferably 200- 400 ° C, more preferably 300 ° C; the dicyclopentadiene is decomposed and vaporized in a vaporizer and mixed with nitrogen, and the mixed gas is introduced into the fluidized bed reactor after preheating at 150-300 ° C, preferably 170-200 ° C,
  • the carbon nanotubes are blown into a suspension boiling state, and the gas and solid phases are sufficiently contacted to form a cyclopentadiene-modified carbon nanotube, and the reaction time is about 5-15 minutes, and the mixed gas ratio is nitrogen: cyclopentane.
  • the diene 5:1-1:1, preferably 3:1-2:1, the mixed gas flow rate is 0.3 m/s; after the cyclopentadiene is completely injected, the natural cooling is continued by the nitrogen reaction, and the material is discharged.
  • the cyclopentadiene-modified carbon nanotubes have a mass ratio of the cyclopentadiene to the carbon nanotubes of 10:1 to 1:10, preferably 8:1 to 1:5, preferably 5:1. 1:3, more preferably 3:1-1:2.5, preferably 2:1-1:2.
  • the method of the present invention comprises mixing dicyclopentadiene with multi-walled carbon nanotubes at 50 ° C for 1 h in a small mixer, and heating the tubular reactor to 150-500 °C, preferably 200-400 ° C, more preferably 300 ° C; under the action of nitrogen, the mixed material is passed from one end of the tubular reactor, and the modifier instantly reacts with the carbon nanotubes under high temperature and continuously moves forward.
  • the tubular reactor has a diameter of 30 mm, a length of 20 m, a nitrogen flow rate of 0.4 m/s, an overall flow rate of the material of 0.6 m/s, and a reaction time of about 8 minutes;
  • the mass ratio of the cyclopentadiene to the carbon nanotube is 10:1-1:10, preferably 8:1-1:5. It is preferably from 5:1 to 1:3, more preferably from 3:1 to 1:2.5, and preferably from 2:1 to 1:2.
  • the method of the present invention comprises mixing cyclopentadiene with multi-walled carbon nanotubes at 60 ° C for 0.5 hours in a small mixer, and heating the spiral reactor reaction section to 150 -500 ° C, preferably 200-400 ° C, more preferably 350 ° C; the material enters the high temperature reaction zone with the spiral blade, the modifier immediately reacts with the carbon nanotube after gasification and gradually moves forward until the reaction is complete, the reaction section The length is 1.6m, the diameter is 20cm, and the reaction time is about 5 minutes. After the reaction, the material continues to move forward and finally enters the receiving bin to receive the material.
  • the mass ratio of the cyclopentadiene to the carbon nanotube is 10 : 1-1:10, preferably 8:1-1:5, preferably 5:1-1:3, more preferably 3:1-1:2.5, Preferably 2:1-1:2.
  • reaction devices such as fluidized bed reactor, tubular reactor and spiral reactor, can be used to increase the contact area between carbon nanotubes and cyclopentadiene, and the mass transfer heat transfer rate is high, which greatly improves the reaction. effectiveness.
  • reaction time is short, and the self-polymerization of cyclopentadiene caused by long-term reaction at a high temperature is avoided.
  • the prepared cyclopentadiene-modified carbon nanotubes have high purity and can reach more than 93%; the grafting ratio of cyclopentadiene can be adjusted according to customer requirements.
  • the method is simple and easy to operate, can realize continuous operation, and is suitable for industrialized large production.
  • Dicyclopentadiene purchased from Zibo Shenzhan Industry and Trade Co., Ltd., purity >98%;
  • Carbon nanotubes Single-walled carbon nanotubes and multi-walled carbon nanotubes are supplied by Shandong Dazhan Nanomaterials Co., Ltd. with a purity of >96%, a diameter of 1-1000 nm, a length of 5 nm-100 ⁇ m, and a length-to-diameter ratio. 5:1 to 100000:1.
  • the weight loss analysis of the carbon nanotubes before and after modification was carried out by using Shimadzu thermal weight loss analyzer. The heating rate was 5 ° C / min.
  • the grafting of cyclopentadiene was calculated by the difference of weight loss rate before and after modification at 650 ° C. rate.
  • the nitrogen gas is continuously reacted for 15 minutes to naturally cool down, and the carbon nanotubes are obtained by cyclopentadiene-modified carbon nanotubes.
  • the parameters and properties of the obtained modified carbon nanotubes are as follows: purity >93%, outer diameter 8-15 nm, length 3-15 ⁇ m, specific surface area >190 m 2 /g, black, bulk density 0.06 g/cm 3 , graft ratio 6.5 %.
  • FIG. 1 A scanning electron microscope image of the prepared cyclopentadiene carbon nanotubes is shown in FIG.
  • cyclopentadiene-modified carbon nanotubes have good dispersion, are not easy to agglomerate and entangle, and can be used as rubber additives to enhance the mechanical properties of rubber materials.
  • Figure 5 is a graph showing the thermal weight loss of carbon nanotubes before and after cyclopentadiene modification. It can be seen that the modified carbon nanotubes have significant weight loss before 650 °C compared with unmodified carbon nanotubes. A cyclopentadienyl group is grafted onto the carbon nanotubes.
  • 10 g of dicyclopentadiene is decomposed and vaporized in a vaporizer and mixed with nitrogen.
  • the mixed gas is preheated at 300 ° C and then introduced into a fluidized bed reactor to blow the carbon nanotubes into a suspension boiling state, and the gas and solid phases are sufficiently Contact reaction, rapid formation of cyclopentadiene-modified carbon nanotubes, the reaction time is about 10min.
  • the nitrogen gas was continuously reacted for 10 minutes to cool down naturally, and the carbon nanotubes were obtained by cyclopentadiene-modified carbon nanotubes.
  • the parameters and properties of the obtained modified carbon nanotubes are as follows: purity > 94%, outer diameter 8-15 nm, length 3-15 ⁇ m, specific surface area > 180 m 2 /g, black, bulk density 0.07 g/cm 3 , graft ratio 8.9 %.
  • the reaction is naturally cooled for 5 minutes, and the material is discharged to obtain a cyclopentadiene-modified carbon nanotube.
  • the parameters and properties of the obtained modified carbon nanotubes are as follows: purity >93%, outer diameter 10-15 nm, length 2-10 ⁇ m, specific surface area >220 m 2 /g, black, bulk density 0.08 g/cm 3 , graft ratio 9.2 %.
  • the mixed material is introduced from one end of the tubular reactor under the action of nitrogen, and the modifier cyclopentadiene is instantaneously vaporized at a high temperature to react with the carbon nanotubes and continuously flow forward, and the reaction continuously continues to be highly efficient.
  • the tubular reactor has a diameter of 30 mm, a length of 20 m, a nitrogen flow rate of 0.4 m/s, an overall flow rate of the material of 0.6 m/s, and a reaction time of about 8 min.
  • the parameters and properties of the obtained modified carbon nanotubes are as follows: purity > 94%, outer diameter 10-15 nm, length 3-12 ⁇ m, specific surface area > 210 m 2 /g, black, bulk density 0.07 g/cm 3 , graft ratio 8.8 %.
  • the material enters the high temperature reaction zone with the spiral vane, and the cyclopentadiene modifier reacts with the carbon nanotubes and then moves forward gradually until the reaction is complete.
  • the length of the reaction section is 1.6 m and the diameter is 20 cm.
  • the duration is about 5 minutes.
  • the material continues to move forward and finally enters the receiving bin to receive the material.
  • the parameters and properties of the obtained modified carbon nanotubes are as follows: purity > 94%, outer diameter 8-12 nm, length 4-15 ⁇ m, specific surface area > 220 m 2 /g, black, bulk density 0.08 g/cm 3 , graft ratio 9.3 %.
  • the preparation of the cyclopentadiene-modified carbon nanotube by the method of the invention requires only 5 min to 15 min of reaction time, which greatly shortens the reaction time, and the method of the invention does not require additional pressure during the reaction.
  • the production process is less dangerous, safe and easy to operate.
  • the cyclopentadiene-modified carbon nanotube obtained by the method of the invention has high purity, high grafting rate of cyclopentadiene, excellent performance, can meet the requirements of commercial application, and is suitable for industrial large-scale production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种制备环戊二烯改性碳纳米管的方法,包括:提供流化状态的环戊二烯和碳纳米管;在150-500℃的温度下,使流化状态的环戊二烯和碳纳米管的混合物进行反应;其中,所述环戊二烯与碳纳米管的质量比为10:1-1:10。所述方法可以采用流化床反应器、管式反应器或螺旋反应器进行。该方法充分利用制备装置接触面积大、传质传热速率高的特点,使改性反应更加快捷高效。同时避免了高温长时间反应导致的环戊二烯自身聚合的缺点,提高了反应效率。

Description

气固相快速制备环戊二烯改性碳纳米管的方法 技术领域
本发明涉及一种用环戊二烯对碳纳米管进行改性的方法。本发明环戊二烯改性碳纳米管的方法具有操作性强,得到的环戊二烯改性碳纳米管纯度高,接枝率高,不易发生团聚和缠结,成本较其它方法低,重现性好的优点,所得的产品质量稳定,适用于工业化大规模生产。
背景技术
碳纳米管具有非常优异的物理机械性能,杨氏模量约为1.8TPa;拉伸强度约为200GPa,比钢的强度高100倍,重量却只有后者的1/6到1/7。同时,碳纳米管的弹性应变最高可达到12%左右,拥有像弹簧一样良好的柔韧性。碳纳米管的电导率可达到铜的1万倍,导热性也非常好。由于具有优异的性能,碳纳米管在纳米电子器械、催化剂载体、电化学材料、复合材料等诸多领域都有广阔的应用前景。
现有技术存在多种碳纳米管的制造方法,例如魏飞等的中国专利CN1327943A公开了一种流化床连续化制备碳纳米管的方法及其反应装置,该方法包括主要包括催化剂处理步骤和碳纳米管制造步骤:
所述催化剂处理步骤包括:将过渡金属的氧化物催化剂载于担体上,将负载催化剂放在催化剂活化反应器内,于500-900℃温度下,通入流动的氢气或一氧化碳与氮气的混合气体进行还原反应,使过渡金属氧化物纳米颗粒还原为单质金属纳米颗粒,氢气或一氧化碳与氮气按体积比1:0.3-1混合,还原时间为0.3-3小时。
所述碳纳米管制造步骤包括:将上面得到的催化剂送至流化床中,流化床的温度为500-900℃,通入一氧化碳及7碳以下低碳烃与氢气、氮气的混合气体至反应器内,气体配比为氢气:碳源气体:氮气=0.4-1:1:0.1-2,反应过程空速为5-10000小时-1,气体的空塔流速为0.08-2米/秒,流化床的下部得到直径为4-80纳米、长度为0.5-200微米的碳纳米管。
采用现有技术的方法可有利地制得各种碳纳米管。
但是,碳纳米管具有极强的表面效应,这种纳米材料独有的特性会导致碳纳米管之间非常容易发生团聚和缠结,难以分散,极大的限制了其在各个 领域的应用。目前,解决这一问题的唯一方法,是对碳纳米管进行表面功能化改性,提高碳纳米管的分散性能和界面结合力。
现有技术对碳纳米管的改性方法主要有羧基化改性、羟基化改性、胺化改性、接枝共聚改性、电化学改性、辐照自由基改性、有机包覆改性等,例如刘建影等的中国专利CN102689893A公开了一种对碳纳米管进行羧基化改性的方法,该方法应用于纳米碳管/锡银铜复合无铅焊料的制备,该方法包括以下步骤:
1)配制浓硝酸/浓硫酸混合溶液,混合溶液中浓硝酸与浓硫酸的体积比为3:1;
2)将待处理纳米碳管置于反应器中后,向反应器中倒入配制好的浓硝酸/浓硫酸混合溶液,直至所有纳米碳管被浸没;
3)将反应器置于超声分散仪中,超声反应4小时以上,超声频率35千赫;
4)用蒸馏水反复洗涤改性后的纳米碳管直至pH值等于7;
5)将洗涤后的纳米碳管置于真空烘箱烘干,烘干温度60℃,烘干时间4小时以上,得到表面改性纳米碳管。
上述这些改性方法大都存在反应复杂,周期较长,难以工业化的缺点。
近年来,发现环戊二烯改性碳纳米管能够提高橡胶的耐磨、散热等性能,因此,这种改性纳米管逐渐成为研究的热点。例如,李岩等的申请号为201310599656.5的中国专利申请公开了一种环戊二烯改性碳纳米管/橡胶复合材料及其制备方法,该方法包括如下步骤:
1)将碳纳米管进行表面改性;将环戊二烯或双环戊二烯,与碳纳米管按照(0.5-1):1的重量比例,加入到耐压反应器中,油浴升温至150-200℃,压力自然升至0.1-0.5MPa,反应8-20h;然后冷却至室温,反应混合物分别用甲苯和甲醇清洗、过滤,滤饼50-70℃真空干燥10-14小时,即得到表面含有乙烯基官能团的环戊二烯改性碳纳米管;
2)将上述环戊二烯改性碳纳米管与下述物质按照比例混合均匀,制备出环戊二烯改性碳纳米管/橡胶复合材料,具体配比组成为按质量份数计的下述组分:环戊二烯改性碳纳米管1-50份,橡胶材料100份,硫化剂1-6份,活性剂3-8份、助硫化剂0.5-2份、炭黑5-20份、填充剂10-30份、增塑剂2-12份、防老剂1-5份、助分散剂0.1-2份;
3)将环戊二烯改性碳纳米管/橡胶复合材料进行成型、硫化,使碳纳米管表面的乙烯基与橡胶分子链发生交联反应。
上述方法需要在密闭耐压反应容器中进行改性反应,限制了其进一步大规模应用。
因此,现有技术仍需要开发一种能快速地采用环戊二烯对碳纳米管进行表面改性的方法,这种方法应具有操作性强,得到的环戊二烯改性碳纳米管纯度高,接枝率高,不易发生团聚和缠结的优点,其成本较其它方法低,重现性好,所得的产品质量稳定,适用于工业化大规模生产。
发明内容
本发明的目的是提供一种能快速地采用环戊二烯对碳纳米管进行表面改性的方法,这种方法具有操作性强,得到的环戊二烯改性碳纳米管纯度高,接枝率高,不易发生团聚和缠结,成本较其它方法低,重现性好,所得的产品质量稳定,适用于工业化大规模生产的优点。
因此,本发明的一个方面,提供了一种制备环戊二烯改性碳纳米管的方法,它包括如下步骤:
(1)提供流化状态的环戊二烯和碳纳米管;
(2)在150-500℃的温度下,使流化状态的环戊二烯和碳纳米管的混合物进行反应;
其中,所述环戊二烯与碳纳米管的质量比为10:1-1:10。
在本发明一个优选的实施方式中,在所述提供流化状态的环戊二烯和碳纳米管的步骤之前,所述方法还包括将所述双环戊二烯二聚体分解为环戊二烯的预处理步骤。
在本发明一个优选的实施方式中,所述提供流化状态的环戊二烯和碳纳米管的步骤包括将环戊二烯和碳纳米管分散在流化的保护性气体中,从而提供流化状态的环戊二烯和碳纳米管。
在本发明一个优选的实施方式中,所述提供流化状态的环戊二烯和碳纳米管的步骤包括将碳纳米管和环戊二烯混合,随后加热并施加驱动力使碳纳米管分散在流动的环戊二烯蒸汽中,从而提供流化状态的环戊二烯和碳纳米管。
在本发明一个优选的实施方式中,所述驱动力选自载气载带、旋转驱动或压差驱动。
在本发明一个优选的实施方式中,所述反应是在200-450℃的温度下,更好230-400℃,优选在250-350℃的温度下进行。
在本发明一个优选的实施方式中,所述环戊二烯与碳纳米管的质量比为8:1-1:5,较好为5:1-1:3,更好为3:1-1:2.5,优选2:1-1:2。
在本发明一个优选的实施方式中,所述流化状态的环戊二烯和碳纳米管的流速为0.1-0.8m/s,较好为0.15-0.6m/s,宜为0.2-0.5m/s,优选0.25-0.4m/s。
在本发明一个优选的实施方式中,所述预处理步骤是在120℃或以上的温度,较好为120-300℃,宜为150-250℃,优选180-230℃的温度下进行的。
在本发明一个优选的实施方式中,所述方法采用流化床反应器、管式反应器或螺旋反应器进行。
附图说明
下面,结合附图对本发明进行说明。附图中:
图1是采用流化床反应器制备环戊二烯改性碳纳米管的示意图;
图2是采用管式反应器制备环戊二烯改性碳纳米管的示意图;
图3是采用螺旋反应器制备环戊二烯改性碳纳米管的示意图;
图4是采用本发明方法的实施例1得到的环戊二烯改性碳纳米管的扫描电镜图像;
图5是环戊二烯改性前后碳纳米管的热失重曲线。
具体实施方式
本发明制备环戊二烯改性碳纳米管的方法包括(1)提供流化状态的环戊二烯和碳纳米管;和(2)在150-500℃的温度下,使流化状态的环戊二烯和碳纳米管的混合物进行反应;其中,所述环戊二烯与碳纳米管的质量比为0.1-10。
以下对制备环戊二烯改性碳纳米管的具体步骤进行描述:
(1)提供流化状态的环戊二烯和碳纳米管
在本发明中,术语“流化状态”是指固体碳纳米管颗粒和环戊二烯细微液滴悬浮于运动的气体之中,从而使颗粒和液滴具有流体的某些表观特征;或者是指固体碳纳米管颗粒悬浮于运动的环戊二烯气体中,从而使碳纳米管颗粒具有流体的某些表观特征。
本发明提供流化状态的环戊二烯和碳纳米管的方法无特别的限制,可以 是本领域已知的任何常规方法。
在本发明的一个例子中,将环戊二烯和碳纳米管分散在流化的保护性气体中,形成流化状态的环戊二烯和碳纳米管。
在本发明中,术语“保护性气体”是指不会干扰环戊二烯和碳纳米管反应的气体,其非限定性例子有,例如氮气、氦气、氩气等。
在本发明的另一个实例中,将碳纳米管和环戊二烯混合,随后加热并施加驱动力使碳纳米管分散在流动的环戊二烯蒸汽中,形成流化状态的环戊二烯和碳纳米管。
在本发明上述实例中,利用驱动力提供所述流化状态,所述驱动力的形式包括载气载带、旋转驱动或压差驱动等驱动形式。载气载带包括利用氮气、氩气等保护性气体载带反应物。
在本发明的一个实施例中,在流化床反应器或管式反应器中利用保护性气体(例如氮气)载带环戊二烯,将碳纳米管吹成悬浮状态,从而提供流化状态的环戊二烯和碳纳米管。
在本发明的一个实例中,采用旋转驱动形成流化状态。所述旋转驱动包括利用螺旋桨叶,涡轮驱动等旋转动力形式推动反应物料不断向前移动,从而提供流化状态的反应物料,例如,在本发明的一个实施例中,在螺旋反应器中利用螺旋桨叶旋转不断推动反应物料向前流动。
在本发明的一个实例中,利用压差驱动形成流化状态。所述压差驱动可以利用反应设备进出口的压力差使反应物料向前流动,从而提供流化状态的反应物料,所述压力差可通过设置增压泵或抽真空等形式产生。
在本发明的实施例中,采用流化床反应器、管式反应器或螺旋反应器进行快速制备环戊二烯改性碳纳米管的反应。流化床反应器具有传热速率快、催化效率高、易于实现自动控制等优点,管式反应器具有轴向和径向温度分布均匀,传热效率高,安全可靠等优点,螺旋进料装置具有结构简单、单位体积中表面积大、无运转部件以及体系温度易于控制等优点。
流化床反应器、管式反应器或螺旋反应器的结构和特点使得反应物料在反应过程中保持流动状态,因此特别适合用于本发明所述的方法。本领域技术人员可以理解适用于本发明所述方法的反应器不限于流化床反应器、管式反应器或螺旋反应器,只要是能将反应物料在反应过程中保持流动状态的反应装置均可用于本发明。
适用于本发明方法的环戊二烯无特别的限制,可以是市售的环戊二烯。 由于环戊二烯在室温下易二聚成双环戊二烯,因此通常以双环戊二烯二聚体的形式存在。双环戊二烯在120℃条件下会缓慢分解为环戊二烯,在高于150℃,例如170℃,的温度下快速分解为环戊二烯。
因此,在本发明的一个实例中,本发明方法还包括一个预处理步骤,它将所述双环戊二烯二聚体置于高温下(例如,120℃或以上的温度,较好为120-300℃,宜为150-250℃,优选180-230℃的温度)使之解聚,随后使解聚的环戊二烯与碳纳米管一起形成流化状态。
在本发明中,术语“碳纳米管”表示一种具有特殊结构的一维量子材料,其径向尺寸为纳米量级,轴向尺寸为微米量级。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm。
本发明所用的碳纳米管无特别的限制,可以是本领域任何常规的碳纳米管,它包括单壁碳纳米管、多壁碳纳米管以及上述碳纳米管的混合物,及各种形态的碳纳米管;优选为多壁碳纳米管。其中,单壁碳纳米管是由单层圆柱型石墨层构成,其直径大小的分布范围小、缺陷少,具有较高的均匀一致性。而多壁碳纳米管是由多层石墨层构成,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。除了单壁和多壁碳纳米管之外,具有类似结构的碳纳米棒、纳米线等无机材料也适用于本发明。
在本发明的一个实例中,制备环戊二烯改性碳纳米管的方法中使用的碳纳米管为山东大展纳米材料有限公司生产的单壁或多壁碳纳米管,纯度>96%,直径为1-100nm,长度为5nm-100μm,长径比为5:1至100000:1。
在本发明的一个较好实例中,所述流化状态的环戊二烯和碳纳米管的流速为0.1-0.8m/s,较好为0.15-0.6m/s,宜为0.2-0.5m/s,优选0.25-0.4m/s。
(2)在150-500℃的温度下,使流化状态的环戊二烯和碳纳米管的混合物进行反应。
本申请发明人发现在高温条件下,瞬时分解产生的气态环戊二烯能迅速接枝到碳纳米管上,在保持物料流动状态的反应器中,气固两相不断进行反应,快速生成环戊二烯改性碳纳米管,本发明就是在该发现的基础上完成的。
因此,在本发明的一个实例中,可采用流化床、管式反应器和螺旋反应器等已有的常规反应器进行碳纳米管的改性反应,利用制备装置接触面积大、 传质传热速率高的特点,使改性反应更加快捷高效,反应无需额外施加压力,同时避免了高温长时间反应导致的环戊二烯自身聚合的缺点,提高了反应效率,反应迅速,生产时间短,成本较其它方法低,所得的产品质量稳定,纯度和接枝率高,该工艺方法简单易操作,适合工业化大规模生产。
在本发明中,术语“环戊二烯改性碳纳米管”是指环戊二烯与碳纳米管反应得到的改性碳纳米管。
在本发明的一个实例中所述环戊二烯通过双环戊二烯分解得到。
在本发明的另一个实例中,所述环戊二烯可包含一个或多个官能团。
本发明流化状态的环戊二烯和碳纳米管的反应在150-500℃的温度下,较好在200-450℃的温度下,更好230-400℃,优选在250-350℃的温度下进行。在本发明改性反应中,所述环戊二烯与碳纳米管的质量比为10:1-1:10,宜为8:1-1:5,较好为5:1-1:3,更好为3:1-1:2.5,优选2:1-1:2。
在本发明的一个实例中,所述环戊二烯可含有一个或多个官能团,所述官能团例如选自C1-6烷基、C3-C12烯基、卤素、羧酸基、酯基、醚基、-NH2、NHCH3、-CONH、-SO3H、酮基、醛基、环氧基、苯基或苯甲基。
所述碳纳米管优选为多壁碳纳米管。
在本发明的一个实例中,采用流化床反应器制备环戊二烯改性碳纳米管。图1是本发明一个较好的实施方式中使用的流化床反应器制备环戊二烯改性碳纳米管的示意图,如图1所示。该实施方式使用的反应设备包括用于分解所述双环戊二烯的汽化器1、载气入口2、预热器3、和流化床反应器4。
使用流化床反应器进行本发明所述方法时,通过碳纳米管投料口5向流化床反应器中加入碳纳米管,从反应器底部通入氮气2-30分钟,并将反应器升温至150-500℃;双环戊二烯改性剂首先通入温度为150-300℃的汽化器1,在高温下分解气化为环戊二烯,接着经载气入口2通入氮气与环戊二烯混合,将混合好的物料通入温度为150-350℃的预热器3,预热后的混合气体从反应器底部持续通入流化床反应器4内,将碳纳米管吹成悬浮沸腾状态,气、固两相充分接触反应,快速生成环戊二烯改性碳纳米管。环戊二烯进样完全后,继续通氮气反应2-30分钟,自然降温,从出料口7放料,尾气从尾气出口8排出反应装置。
因此,在本发明的一个实例中,所述方法包括以下步骤:
(1)在流化床反应器中加入碳纳米管,通入氮气并将反应器升温至150-500℃;以及
(2)环戊二烯(由双环戊二烯裂解制得)气化后与氮气的混合气体经过150-350℃的预热通入流化床反应器内,将碳纳米管吹成悬浮沸腾状态,快速生成环戊二烯改性碳纳米管。
在本发明的一个实例中,从流化床反应器底部通入的氮气流速为0.1-0.4m/s;进入主反应器的混合气体体积配比为氮气:环戊二烯=10:1-1:5;混合气体流速为0.2-1.0m/s。
在本发明的一个实例中,采用流化床反应器制备环戊二烯改性碳纳米管,所述环戊二烯采用连续化进料,此时本发明方法包括将双环戊二烯分解得到的环戊二烯与氮气按比例混合,混好后经预热持续通入反应器,预热温度为150-350℃,直至进料完全,将碳纳米管吹成悬浮沸腾状态,气、固两相充分接触反应,快速生成环戊二烯改性碳纳米管。
在本发明的一个实例中,采用流化床反应器制备环戊二烯改性碳纳米管,所述环戊二烯采用间歇式进料方式,此时本发明方法包括使氮气按一定流速持续进料,将双环戊二烯分解得到的环戊二烯每隔10-60秒进料1次,进料后与氮气混合经预热再通入反应器,直至进样完全。
在本发明的一个实例中,采用管式反应器制备环戊二烯改性碳纳米管。图2是本发明一个较好的实施方式中使用的管式反应器制备环戊二烯改性碳纳米管的示意图,如图2所示。该实施方式使用的反应设备包括用于混合双环戊二烯和碳纳米管的混合装置1、载气入口2、管式反应器3、冷却装置4和收料装置5。
使用管式反应器进行本发明所述方法时,在小型混料机1中将改性剂双环戊二烯与碳纳米管在40-70℃下混合0.5-2小时,环戊二烯与碳纳米管的混合质量比为10:1-1:10,从载气入口2通入氮气,将混好的物料载带进入管式反应器3,该管式反应器的反应温度预先升至200-500℃。混合物料被氮气带入管式反应器的高温反应区,改性剂双环戊二烯在高温下瞬时分解气化为环戊二烯,并立刻与碳纳米管进行反应,反应物料不断向前流动,流动过程中持续高效反应,直至反应完全。反应完全后物料随氮气进入冷却装置4,冷却后进入收料装置5收料。
在本发明的一个实例中,所述方法包括以下步骤:
(1)混料与预热阶段:在小型混料机中将环戊二烯与碳纳米管在20-100℃下混合0.5-2小时,混料比例(质量比)为环戊二烯:碳纳米管=10:1-1:10。将管式反应器预先升至反应温度200-500℃;
(2)反应阶段:在氮气作用下将混好的物料从管式反应器的一端通入,改性剂高温下瞬时气化与碳纳米管进行反应并不断向前流动,流动过程中持续高效反应,直至反应完全;以及
(3)收料阶段:反应完全后物料随氮气进入冷却管道,并最终进入收料仓收料。
所述管式反应器的直径为20-100mm,长度为10-100m,氮气流速为0.1-1.0m/s,物料整体流速0.2-2.0m/s。
在本发明的一个实例中,使用螺旋反应器制备环戊二烯改性碳纳米管。图3是本发明一个较好的实施方式中使用的螺旋反应器制备环戊二烯改性碳纳米管的示意图,如图3所示。该实施方式使用的反应设备包括用于混合双环戊二烯和碳纳米管的混合装置1、螺旋反应器2和收料装置3。
使用螺旋反应器进行本发明所述方法时,在小型混料机1中将改性剂双环戊二烯与碳纳米管在40-70℃下混合0.5-2小时,环戊二烯与碳纳米管的混合质量比为10:1-1:10,混好的物料随螺旋反应器2的螺旋叶片进入反应区段,该螺旋反应器的反应段温度预先升至200-500℃,改性剂双环戊二烯在高温下瞬时分解气化为环戊二烯,并立刻与碳纳米管进行反应,反应物料随螺旋叶片不断向前流动,流动过程中持续高效反应,直至反应完全。反应完全后物料继续向前移动,自然冷却,并最终进入收料装置3收料。
在本发明的一个实例中,所述方法包括以下步骤:
(1)混料与预热阶段:在小型混料机中将环戊二烯与碳纳米管在20-100℃下混合0.5-2小时,混料比例(质量比)为环戊二烯:碳纳米管=10:1-1:10。将螺旋反应器预先升至反应温度200-500℃;
(2)反应阶段:物料随螺旋叶片进入到高温区,改性剂气化后瞬时与碳纳米管进行反应并逐步向前移动,直至反应完全;以及
(3)收料阶段:反应完后物料继续向前移动并最终进入收料仓收料。
所述螺旋反应器反应段的长度为1-50m,直径为10-60cm。
用本发明方法制备得到的环戊二烯改性碳纳米管的扫描电镜图像如图4所示,与未改性的碳纳米管相比,环戊二烯改性碳纳米管的分散度好,不易团聚和缠结。
在本发明的一个具体实施方式中,本发明方法包括在流化床反应器中加入单壁碳纳米管,从反应器底部通入氮气,并将反应器升温至150-500℃,优选200-400℃,更优选300℃;将双环戊二烯在汽化器中分解气化后与氮气混合,混合气体经过150-300℃,优选170-200℃的预热后通入流化床反应器内,将碳纳米管吹成悬浮沸腾状态,气、固两相充分接触反应,快速生成环戊二烯改性碳纳米管,反应时长约为5-15分钟,混合气体的配比为氮气:环戊二烯=5:1-1:1,优选3:1-2:1,混合气体流速为0.3m/s;环戊二烯进样完全后,继续通氮气反应自然降温,放料,即得环戊二烯改性碳纳米管,所述环戊二烯与碳纳米管的投料质量比为10:1-1:10,宜为8:1-1:5,较好为5:1-1:3,更好为3:1-1:2.5,优选2:1-1:2。
在本发明的另一个具体实施方式中,本发明方法包括在小型混料机中将双环戊二烯与多壁碳纳米管在50℃条件下混合1h,将管式反应器升温至150-500℃,优选200-400℃,更优选300℃;在氮气作用下将混好的物料从管式反应器的一端通入,改性剂高温下瞬时气化与碳纳米管进行反应并不断向前流动,流动过程中持续高效反应,其中,管式反应器的直径为30mm,长度为20m,氮气流速为0.4m/s,物料整体流速0.6m/s,反应时长约为8分钟;物料全部进入冷却管道时反应完全,在氮气作用下进入收料仓收料,所述环戊二烯与碳纳米管的投料质量比为10:1-1:10,宜为8:1-1:5,较好为5:1-1:3,更好为3:1-1:2.5,优选2:1-1:2。
在本发明的另一个具体实施方式中,本发明方法包括在小型混料机中将环戊二烯与多壁碳纳米管在60℃条件下混合0.5小时,将螺旋反应器反应段升温至150-500℃,优选200-400℃,更优选350℃;物料随螺旋叶片进入到高温反应区,改性剂气化后瞬时与碳纳米管进行反应并逐步向前移动,直至反应完全,反应段的长度为1.6m,直径为20cm,反应时长约为5分钟;反应完后物料继续向前移动并最终进入收料仓收料,所述环戊二烯与碳纳米管的投料质量比为10:1-1:10,宜为8:1-1:5,较好为5:1-1:3,更好为3:1-1:2.5, 优选2:1-1:2。
本发明的有益效果在于:
(1)可以采用流化床反应器、管式反应器、螺旋反应器三种反应装置,使碳纳米管与环戊二烯反应接触面积增大、传质传热速率高,大大提高了反应效率。
(2)反应时间短,避免了高温长时间反应导致的环戊二烯自身聚合。
(3)通过控制气体流速和上料速度,可以控制反应器内环戊二烯与碳纳米管的流化及其接触状态,保证了原料的利用率。
(4)制备的环戊二烯改性碳纳米管纯度高,可以达到93%以上;环戊二烯的接枝率可根据客户要求进行调整。
(5)方法简单易操作,能实现连续化运行,适合工业化大生产。
下面结合具体实施例对本发明做进一步说明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。对于下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。比例和百分比基于摩尔量,除非特别说明。
原料来源及制备:
(1)双环戊二烯:购自淄博申展工贸有限公司,纯度>98%;
(2)碳纳米管:单壁碳纳米管和多壁碳纳米管均由山东大展纳米材料有限公司提供,纯度>96%,直径为1-1000nm,长度为5nm-100μm,长径比为5:1至100000:1。
产品性能测试:
(1)纯度测试:
根据国标GB/T 24990测试环戊二烯改性碳纳米管的纯度;
(2)比表面积测试:
根据国标GB/T 10722使用氮气物理吸附仪测试产品比表面积;
(3)接枝率测试:
采用岛津热失重分析仪对碳纳米管改性前后进行失重分析(室温至650℃),升温速率5℃/min,通过650℃下改性前后失重率差值计算环戊二烯的接枝率。
实施例1:
在流化床反应器中加入单壁碳纳米管20g,从反应器底部通入氮气10min,氮气流速为0.1m/s,并将反应器升温至300℃;
双环戊二烯8g在汽化器中分解气化后与氮气混合,混合气体经过200℃的预热后通入流化床反应器内,将碳纳米管吹成悬浮沸腾状态,气、固两相充分接触反应,快速生成环戊二烯改性碳纳米管,反应时长约为15min。其中,混合气体的配比为氮气:环戊二烯=2:1,混合气体流速为0.3m/s;
环戊二烯进样完全后,继续通氮气反应15min自然降温,放料,即得环戊二烯改性碳纳米管。
所得改性碳纳米管的参数和性能如下:纯度>93%,外径8-15nm,长度3-15μm,比表面积>190m2/g,黑色,堆密度0.06g/cm3,接枝率6.5%。
制备得到的环戊二烯碳纳米管的扫描电镜图像如图4所示。与未改性的碳纳米管相比,环戊二烯改性碳纳米管的分散度好,不易团聚和缠结,可作为橡胶助剂增强橡胶材料的力学性能。
图5是环戊二烯改性前后碳纳米管的热失重曲线图,可以看出改性后的碳纳米管与未改性的碳纳米管相比在650℃前有明显的失重,证明确实有环戊二烯基团接枝到碳纳米管上。
实施例2:
在流化床反应器中加入多壁碳纳米管20g,从反应器底部通入氮气20min,氮气流速为0.2m/s,并将反应器升温至350℃;
双环戊二烯10g在汽化器中分解气化后与氮气混合,混合气体经过300℃的预热后通入流化床反应器内,将碳纳米管吹成悬浮沸腾状态,气、固两相充分接触反应,快速生成环戊二烯改性碳纳米管,反应时长约为10min。其中,混合气体的配比为氮气:环戊二烯=1:1,混合气体流速为0.4m/s;
环戊二烯进样完全后,继续通氮气反应10min自然降温,放料,即得环戊二烯改性碳纳米管。
所得改性碳纳米管的参数和性能如下:纯度>94%,外径8-15nm,长度3-15μm,比表面积>180m2/g,黑色,堆密度0.07g/cm3,接枝率8.9%。
实施例3:
在流化床反应器中加入多壁碳纳米管20g,从反应器底部通入氮气15min,氮气流速为0.2m/s,并将反应器升温至300℃;
双环戊二烯30g采用间歇式进样,每隔20s进样一次,进样量为2g。每次进样均先分解气化再与氮气混合,混合后气体经过300℃的预热后通入流化床反应器内,将碳纳米管吹成悬浮沸腾状态,气、固两相充分接触反应,快速生成环戊二烯改性碳纳米管,反应时长约为10min。
进样完全后反应5min自然降温,放料,即得环戊二烯改性碳纳米管。
所得改性碳纳米管的参数和性能如下:纯度>93%,外径10-15nm,长度2-10μm,比表面积>220m2/g,黑色,堆密度0.08g/cm3,接枝率9.2%。
实施例4:
在小型混料机中将双环戊二烯20g与多壁碳纳米管20g在50℃条件下混合1h,将管式反应器升温至300℃;
在氮气作用下将混好的物料从管式反应器的一端通入,改性剂环戊二烯高温下瞬时气化与碳纳米管进行反应并不断向前流动,流动过程中持续高效反应,其中,管式反应器的直径为30mm,长度为20m,氮气流速为0.4m/s,物料整体流速0.6m/s,反应时长约为8min。
物料全部进入冷却管道时反应完全,在氮气作用下进入收料仓收料。
所得改性碳纳米管的参数和性能如下:纯度>94%,外径10-15nm,长度3-12μm,比表面积>210m2/g,黑色,堆密度0.07g/cm3,接枝率8.8%。
实施例5:
在小型混料机中将环戊二烯10g与多壁碳纳米管20g在60℃条件下混合0.5h,将螺旋反应器反应段升温至350℃。
物料随螺旋叶片进入到高温反应区,改性剂环戊二烯气化后瞬时与碳纳米管进行反应并逐步向前移动,直至反应完全,反应段的长度为1.6m,直径为20cm,反应时长约为5min。
反应完后物料继续向前移动并最终进入收料仓收料。
所得改性碳纳米管的参数和性能如下:纯度>94%,外径8-12nm,长度4-15μm,比表面积>220m2/g,黑色,堆密度0.08g/cm3,接枝率9.3%。
从本发明实施例可以看出,采用本发明方法制备环戊二烯改性碳纳米管使得反应时间仅需5min-15min,大大缩短了反应时间,本发明方法在反应过程中无需施加额外压力,使得生产过程危险性降低,安全易操作。本发明方法制得的环戊二烯改性碳纳米管纯度高,环戊二烯接枝率高,具有优良的性能,可满足商业应用需求,适合工业化大规模生产。
在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种制备环戊二烯改性碳纳米管的方法,所述方法包括如下步骤:
    (1)提供流化状态的环戊二烯和碳纳米管;
    (2)在150-500℃的温度下,使流化状态的环戊二烯和碳纳米管的混合物进行反应;
    其中,所述环戊二烯与碳纳米管的质量比为10:1-1:10。
  2. 如权利要求1所述的方法,其特征在于,在所述提供流化状态的环戊二烯和碳纳米管的步骤之前,所述方法还包括将所述双环戊二烯二聚体分解为环戊二烯的预处理步骤。
  3. 如权利要求1所述的方法,其特征在于,所述提供流化状态的环戊二烯和碳纳米管的步骤包括将环戊二烯和碳纳米管分散在流化的保护性气体中,从而提供流化状态的环戊二烯和碳纳米管。
  4. 如权利要求1所述的方法,其特征在于,所述提供流化状态的环戊二烯和碳纳米管的步骤包括将碳纳米管和环戊二烯混合,随后加热并施加驱动力使碳纳米管分散在流动的环戊二烯蒸汽中,从而提供流化状态的环戊二烯和碳纳米管。
  5. 如权利要求4所述的方法,其特征在于,所述驱动力选自载气载带、旋转驱动或压差驱动。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述反应是在200-450℃的温度下,更好230-400℃,优选在250-350℃的温度下进行。
  7. 如权利要求1-5中任一项所述的方法,其特征在于,所述环戊二烯与碳纳米管的质量比为8:1-1:5,较好为5:1-1:3,更好为3:1-1:2.5,优选2:1-1:2。
  8. 如权利要求1-5中任一项所述的方法,其特征在于,所述流化状态的 环戊二烯和碳纳米管的流速为0.1-0.8m/s,较好为0.15-0.6m/s,宜为0.2-0.5m/s,优选0.25-0.4m/s。
  9. 如权利要求所述的方法,其特征在于,所述预处理步骤是在120℃或以上的温度,较好为120-300℃,宜为150-250℃,优选180-230℃的温度下进行的。
  10. 如权利要求1-5中任一项所述的方法,其特征在于,所述方法采用流化床反应器、管式反应器或螺旋反应器进行。
PCT/CN2015/082283 2014-06-26 2015-06-25 气固相快速制备环戊二烯改性碳纳米管的方法 WO2015197005A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410295119.6 2014-06-26
CN201410295119.6A CN105236381B (zh) 2014-06-26 2014-06-26 气固相快速制备环戊二烯改性碳纳米管的方法

Publications (1)

Publication Number Publication Date
WO2015197005A1 true WO2015197005A1 (zh) 2015-12-30

Family

ID=54936972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082283 WO2015197005A1 (zh) 2014-06-26 2015-06-25 气固相快速制备环戊二烯改性碳纳米管的方法

Country Status (2)

Country Link
CN (1) CN105236381B (zh)
WO (1) WO2015197005A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102579608B1 (ko) * 2016-08-04 2023-09-18 에스케이이노베이션 주식회사 탄소나노튜브의 제조방법
CN109095454B (zh) * 2017-06-20 2020-12-25 比亚迪股份有限公司 一种碳纳米管及其纯化方法
CN110115964B (zh) * 2019-05-29 2021-08-24 山东斯恩特纳米材料有限公司 一种快速连续进行碳纳米管表面功能化的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1475310A (zh) * 2003-07-01 2004-02-18 武汉理工大学 粉碎与改性复合化制备超细改性粉体的方法
CN101531729A (zh) * 2009-04-10 2009-09-16 中国石油大学(华东) 一种单分散复合纳米粒子制备方法
EP2228343A1 (en) * 2009-03-13 2010-09-15 Bayer MaterialScience AG Water vapour assisted ozonolysis of carbon nanotubes
CN103773084A (zh) * 2013-12-30 2014-05-07 福建师范大学 一种流化床气相法合成片状包覆材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0111875D0 (en) * 2001-05-15 2001-07-04 Univ Cambridge Tech Synthesis of nanoscaled carbon materials
CN101104668B (zh) * 2006-07-12 2010-12-01 同济大学 一种功能化碳纳米管的制备方法及其应用
CN101463099B (zh) * 2009-01-14 2010-12-08 天津大学 等离子表面引发烯系单体聚合制备复合材料的方法
CN102675802B (zh) * 2011-12-22 2014-04-23 河南科技大学 一种改性碳纳米管增强聚双环戊二烯复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1475310A (zh) * 2003-07-01 2004-02-18 武汉理工大学 粉碎与改性复合化制备超细改性粉体的方法
EP2228343A1 (en) * 2009-03-13 2010-09-15 Bayer MaterialScience AG Water vapour assisted ozonolysis of carbon nanotubes
CN101531729A (zh) * 2009-04-10 2009-09-16 中国石油大学(华东) 一种单分散复合纳米粒子制备方法
CN103773084A (zh) * 2013-12-30 2014-05-07 福建师范大学 一种流化床气相法合成片状包覆材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NICOLAS ZYDZIAK ET AL.: "Diels-Alder reactions for carbon material synthesis and surface functionalization", POLYMER CHEMISTRY, 31 December 2013 (2013-12-31), pages 4072 - 4086, XP055123011 *
ZHU, SHENBING ET AL.: "Research progress in fiber reinforced polydicyclopentadiene", CHEMICAL PROPELLANTS & POLYMERIC MATERIALS, vol. 11, no. 1, 31 December 2013 (2013-12-31), XP055246759 *

Also Published As

Publication number Publication date
CN105236381B (zh) 2019-01-11
CN105236381A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
Bazargan et al. A review–synthesis of carbon nanotubes from plastic wastes
Lu et al. Fischer–Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst
JP5281086B2 (ja) 炭素繊維の集合体、その製造方法及びそれらを含有する複合材料
Wang et al. Metal-free nitrogen-doped carbon nanosheets: a catalyst for the direct synthesis of imines under mild conditions
WO2016008454A1 (zh) 一种连续化制备碳纳米管的装置及方法
WO2015197005A1 (zh) 气固相快速制备环戊二烯改性碳纳米管的方法
Yang et al. Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays
JP2004526660A (ja) ナノ凝集体流動層を用いたカーボンナノチューブの連続製造方法及びその反応装置
US11820661B2 (en) Device and method for single-stage continuous preparation of carbon nanotubes
CN101830455A (zh) 一种合成连续碳纳米管薄膜的方法
KR20110018024A (ko) 탄소나노물질-고분자 복합체 및 이의 제조방법
CN110357083A (zh) 高分散性石墨烯粉体的制备方法
CN111020525A (zh) 一种碳纳米管包覆金属基的复合粉体的制备方法
Arnaiz et al. Production of bamboo-type carbon nanotubes doped with nitrogen from polyamide pyrolysis gas
CN105836727A (zh) 一种低成本制备多壁碳纳米管的方法
RU2516548C2 (ru) Способ получения углерод-металлического материала каталитическим пиролизом этанола
CN110878433B (zh) 一种连续制备金属型单壁碳纳米管纤维的方法
KR102517481B1 (ko) 탄소나노튜브의 제조방법 및 제조 시스템
Mubarak et al. Mass production of carbon nanofibers using microwave technology
CN106633667A (zh) 一种碳纳米管与聚合物复合材料的制备方法
CN111389357B (zh) 一种介孔多级结构碳微球及其制备方法
Shi et al. Synthesis of carbon materials with different morphologies by solvothermal method with premixing
CN116789108B (zh) 一种提高单壁碳纳米管产率的组合物及方法
CN116443933B (zh) 一种改性二维硫化钼纳米材料的合成方法
CN114057190B (zh) 用于制备碳纳米管的催化剂载体碳材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811432

Country of ref document: EP

Kind code of ref document: A1