WO2015196731A1 - 一种实现印染废水反渗透浓水处理及回用于染色的方法 - Google Patents
一种实现印染废水反渗透浓水处理及回用于染色的方法 Download PDFInfo
- Publication number
- WO2015196731A1 WO2015196731A1 PCT/CN2014/092634 CN2014092634W WO2015196731A1 WO 2015196731 A1 WO2015196731 A1 WO 2015196731A1 CN 2014092634 W CN2014092634 W CN 2014092634W WO 2015196731 A1 WO2015196731 A1 WO 2015196731A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dyeing
- concentrated water
- printing
- reverse osmosis
- treatment
- Prior art date
Links
Definitions
- the invention belongs to the field of printing and dyeing wastewater treatment, and particularly relates to a method for realizing reverse osmosis concentrated water treatment of printing and dyeing wastewater and reused for dyeing.
- Textile printing and dyeing enterprises are one of the main pillar industries in China. Textile printing and dyeing is the main process of textile enterprises. The environmental characteristics of the printing and dyeing industry are that they need to consume a large amount of water resources in production, thus generating a large amount of refractory printing and dyeing wastewater.
- Printing and dyeing wastewater has the characteristics of large amount of wastewater, high content of organic pollutants, high salinity, high chroma and alkalinity, and large changes in water quality.
- the specific performance is: high chroma, from the sensory red-black or dark green, the chromaticity is up to 10,000 times; the high salt, the salt content can be as high as 5000mg/L; high chemical oxygen demand (COD), COD usually reaches 1000mg/L or more; difficult to handle, it is difficult to completely biodegrade when using biochemical method, and the B/C value of biodegradability index of many printing and dyeing wastewater is less than 0.2. Therefore, it is difficult to ensure that the effluent meets the standard by using a single physicochemical or biochemical treatment process.
- the current common process is physicochemical-biochemical-physicochemical process
- the post-biochemical physicochemical treatment process is mainly membrane treatment technology.
- Membrane treatment mainly includes ultrafiltration, nanofiltration and reverse osmosis, which is an important means to ensure the stability of water quality.
- the reverse osmosis method in membrane treatment technology as a common technology for water reuse, can ensure that the treated fresh water reaches the recycling standard of printing and dyeing enterprises, but the treatment and reuse of reverse osmosis concentrated water is a difficult point.
- the treatment method for reverse osmosis concentrated water is mainly a membrane distillation method, and the membrane distillation method has high treatment cost and cannot utilize the high concentration of salt in the wastewater.
- the hardness of reverse osmosis concentrated water can usually reach 90-350mg/L, the COD is above 80mg/L, and the salt content is up to 10000mg/L. If the concentrated water is directly returned to the regulating tank, long-term accumulation will inevitably lead to wastewater. The handling system, especially the collapse of biological processing systems. Due to the dyeing process of printing and dyeing, it is necessary to add a large amount of salt (sodium sulfate or sodium chloride) to improve the dyeing efficiency, which is the reason for the high salt content of the printing and dyeing wastewater. If it is directly discharged, the concentrated water still contains more organic pollutants. Therefore, if the direct discharge will cause certain environmental pollution, and the concentrated water contains a high salinity, this part of the salinity will be lost with the discharge of the waste water. It pollutes the environment and wastes resources.
- salt sodium sulfate or sodium chloride
- the invention provides a reverse osmosis of printing and dyeing wastewater. Concentrated water treatment and recycling methods for dyeing.
- a method for realizing reverse osmosis concentrated water treatment of printing and dyeing wastewater and for recycling comprising the following steps:
- the steps of the high-temperature oxidation coupling of lime persulfate in the step (1) are as follows:
- the dosage of the sodium persulfate is 500-6000 mg/L;
- the reaction temperature of the high temperature oxidation reaction of sodium persulfate is 60 to 95 ° C;
- reaction time of the high temperature oxidation reaction of sodium persulfate is 2-8 h;
- the calcium hydroxide is added in an amount of 500 to 6500 mg / L;
- the sodium carbonate is added in an amount of 200 to 5000 mg/L;
- the water quality of the concentrated water after reverse osmosis treatment is: COD is 80-200 mg/L, hardness (calcium carbonate) is 90-350 mg/L, salinity is 5-50 mg/L, and chroma is 20-60. Times
- the COD of the treated concentrated water effluent is less than 30 mg/L, the chromaticity is less than 10 times, and the hardness (calculated as calcium carbonate) is 5 ⁇ 17mg/L;
- the salt of the step (2) is sodium sulfate or sodium chloride
- the salt of the step (2) is added in an amount of 10 to 70 g / L;
- the dye of the dyeing process in the step (2) is a reactive dye, an acid dye, a sulfur dye, a disperse dye, a direct dye or a vat dye.
- the concentrated water described in the treatment method of the present invention is a high salinity, high hardness waste water containing organic pollutants, and after being subjected to high temperature oxidation coupled with lime soda by sodium sulfate, the COD, chroma and hardness removal rates in the water are both Up to 80% or more, after treatment, the effluent with low COD, low chroma, low hardness and high salinity can meet the dyeing process standard, and the salinity of the concentrated water is retained during the treatment. According to the dyeing process requirements, the salinity of the treated concentrated water effluent is measured and the salt is added and returned to the dyeing process.
- the processing method of the present invention is convenient, simple and easy to operate.
- the treatment method of the present invention does not produce sludge such as ferrous iron, and has no secondary pollution.
- the treatment method of the invention not only retains the high salinity in the wastewater during the treatment, but also the sodium sulfate of the product during the oxidation of sodium persulfate increases the salinity of the monovalent sodium salt in the effluent, reducing the recycling process.
- the dosage of sodium sulfate in the dyeing process saves the cost of printing and dyeing.
- the treatment method of the invention enables the concentrated water to be reused for the printing and dyeing process after being treated, and the concentrated water after the treatment is completely reused, thereby realizing the recycling of the reverse osmosis concentrated water of the printing and dyeing wastewater and the zero row of the wastewater of the printing and dyeing production enterprise. put.
- RO reverse osmosis
- Concentrated water treatment the concentrated water is added to the reactor, and then sodium persulfate is used as the oxidant, and the concentrated water is subjected to high-temperature activated oxidation reaction of sodium persulfate, followed by adding calcium hydroxide and sodium carbonate to precipitate by lime soda precipitation. Hardness, the specific operation of the treated concentrated water effluent is as follows:
- the sodium persulfate is added to the concentrated water, and heated in a water bath to carry out an oxidation reaction.
- the dosage of sodium persulfate is 5000 mg/L, the heating temperature is 85 ° C, and the reaction time is 2 h;
- the calcium hydroxide is added to the concentrated water after the high-temperature activated oxidation reaction of sodium persulfate, the pH value of the concentrated water is greater than 9.50, and then the sodium carbonate is added according to the dosage of 500 mg/L.
- concentrated water In concentrated water;
- Table 1 Water quality of each water sample before and after reverse osmosis treatment and concentrated water by sodium sulfate oxidation coupled with lime soda precipitation treatment
- the concentrated water effluent treated by the sodium sulfate-lime soda method is completely reused for dyeing.
- the dyed fabric is made of 32S cotton + 40D spandex 180cm ⁇ 160g / m 2 , dye-selective reactive dye SRB type dye for dyeing, dye selection of active yellow SRB owf and reactive red SRB owf, the sodium sulfate concentration required for brine is 60g / L.
- the dyeing temperature was 60 ° C
- the dyeing time was 90 min
- the bath ratio was 1:10.
- a color difference of less than 1 is considered to be useful for dyeing.
- RO reverse osmosis
- Concentrated water treatment the concentrated water is added to the reactor, then sodium persulfate is used as the oxidant, and the concentrated water is subjected to high-temperature activated oxidation reaction of sodium persulfate, followed by adding calcium hydroxide and sodium carbonate for lime soda precipitation. In addition to the hardness, the treated concentrated water is discharged; the specific operation is as follows:
- the sodium persulfate is added to the concentrated water, and heated in a water bath to carry out an oxidation reaction.
- the dosage of sodium persulfate is 3000 mg/L, the temperature of the water bath is 80 ° C, and the reaction time is 4 h;
- the calcium hydroxide is added to the concentrated water after the high-temperature activated oxidation reaction of sodium persulfate, the pH value of the solution is greater than 9.50, and then the sodium carbonate is added to the dosage of 1000 mg/L.
- the concentrated water effluent treated by the sodium sulfate-lime soda method is completely reused for dyeing.
- the dyeing fabric is made of 100D polyester + 40S cotton 180cm ⁇ 150g / m 2 , dye-selective disperse dye for dyeing, the dye is selected to disperse yellow (hfw-6g) owf and disperse the upper owf, and the sodium sulfate concentration required for the brine is 40g/L.
- the dyeing temperature was 130 ° C
- the dyeing time was 30 min
- the bath ratio was 1:10. A color difference of less than 1 is considered to be useful for dyeing.
- RO reverse osmosis
- Concentrated water treatment the concentrated water is added to the reactor, and then sodium persulfate is used as the oxidant, and the concentrated water is subjected to high-temperature activated oxidation reaction of sodium persulfate, followed by adding calcium hydroxide and sodium carbonate to precipitate by lime soda precipitation. Hardness, the treated concentrated water is discharged; the specific operation is as follows:
- the calcium hydroxide is added to the concentrated water after the high-temperature activated oxidation reaction of sodium persulfate, the pH of the solution is greater than 9.50, and then the sodium carbonate is added to the dosage of 500mg/L.
- the concentrated water effluent treated by the sodium sulfate-lime soda method is completely reused for dyeing.
- the dyed fabric is 100D polyester + 40S cotton 180cm ⁇ 150g / m 2 , the dye selected disperse dye is mixed with reactive dye, the dye is selected Dianix ruby owf and Procion red XL owf, the sodium sulfate concentration required for brine is 60g / L.
- the dyeing temperature was 60 ° C, the dyeing time was 30 min, and the bath ratio was 1:10. A color difference of less than 1 is considered to be useful for dyeing.
- the treated wastewater can be completely reused, thereby solving the problem of reverse osmosis concentrated water treatment of the printing and dyeing wastewater, saving the cost of the medicament,
- the salinity of the treated effluent is effectively improved, the clean production of the printing and dyeing production enterprises is realized, the ecological environment is protected, and the recycling of the reverse osmosis concentrated water of the printing and dyeing wastewater is realized.
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
一种实现印染废水反渗透浓水处理及回用于染色的方法,包括如下步骤:将印染废水经反渗透处理后的浓水利用过硫酸钠高温氧化耦合石灰苏打法处理,得到处理后的浓水出水;然后处理后的浓水出水根据染色需要加盐后回用于染色工序;过硫酸钠高温氧化耦合石灰苏打法的步骤为:先将过硫酸钠加入浓水中,进行过硫酸钠高温氧化反应;然后在经过硫酸钠高温氧化反应后的浓水中加入氢氧化钙,使浓水pH值大于9.50,再加入碳酸钠进行石灰苏打法反应。
Description
本发明属于印染废水处理领域,具体涉及一种实现印染废水反渗透浓水处理及回用于染色的方法。
纺织印染企业是我国主要的支柱产业之一,纺织品印染是纺织企业的主要工序。印染产业的环境特征是生产上需要消耗大量的水资源,因此产生大量的难处理印染废水。
印染废水具有废水水量大、有机污染物含量高、盐度高、色度和碱度高以及水质变化大等特点。具体表现为:高色度,从感官上为红黑色或墨绿色,色度高达上万倍;高盐分,含盐量可高达5000mg/L左右;高化学需氧量(COD),COD通常达到1000mg/L以上;难处理,体现在采用生化法时难以完全生物降解,不少印染废水的可生化性指标B/C值均低于0.2。因此采用单一的物化或生化处理工艺难以保证出水达标。
针对纺织印染废水,目前常用工艺为物化-生化-物化工艺,生化后的物化处理工艺主要为膜处理技术。膜处理主要包括超滤、纳滤和反渗透,是作为保证水质稳定达标的重要手段。然而,膜处理技术中的反渗透法作为水回用的常用技术,能够保证处理后的淡水达到印染企业回用水标准,但反渗透浓水的处理及回用是一个难点。目前针对反渗透浓水的处理方法主要是膜蒸馏法,膜蒸馏法的处理成本高,而且不能利用废水中的高浓度盐分。
反渗透浓水硬度通常能达到90-350mg/L,COD在80mg/L以上,盐含量高达10000mg/L以上,若直接将浓水回流到调节池,长期积累,必然会导致废水
处理系统,尤其是生物处理系统的崩溃。由于印染的染色工序,需要投加大量的盐(硫酸钠或氯化钠),以提高染色效率,这是印染废水盐分较高的原因。若直接外排,浓水仍含有较多的有机污染物,因此若直接外排必定造成一定的环境污染,同时浓水含有较高的盐度,这部分盐度将随废水外排而流失,既污染环境又浪费资源。
发明内容
为解决反渗透浓水难以处理的难题,针对反渗透浓水有机物难以处理、含盐量高的水质情况,结合印染染色工序需要补充高浓度盐分的特点,本发明提供一种实现印染废水反渗透浓水处理及回用于染色的方法。
本发明的目的通过下述技术方案实现:
一种实现印染废水反渗透浓水处理及回用于染色的方法,包括如下步骤:
(1)将印染废水经反渗透处理后的浓水利用过硫酸钠高温氧化耦合石灰苏打法处理,得到处理后的浓水出水;
(2)将步骤(1)处理后的浓水出水根据染色需要加盐后回用于染色工序。
在上述实现印染废水反渗透浓水处理及回用于染色的方法中,步骤(1)所述过硫酸钠高温氧化耦合石灰苏打法的步骤如下:
a.先将过硫酸钠加入所述浓水中,进行过硫酸钠高温氧化反应;
b.在经过硫酸钠高温氧化反应后的浓水中加入氢氧化钙,使所述浓水pH值大于9.50,然后加入碳酸钠进行石灰苏打法反应。
优选的,所述过硫酸钠的投加量为500~6000mg/L;
优选的,所述过硫酸钠高温氧化反应的反应温度为60~95℃;
优选的,所述过硫酸钠高温氧化反应的反应时间为2~8h;
优选的,所述氢氧化钙的投加量为500~6500mg/L;
优选的,所述碳酸钠的投加量为200~5000mg/L;
在上述实现印染废水反渗透浓水处理及回用于染色的方法中,所述印染废
水经反渗透处理后的浓水的水质为:COD为80~200mg/L,硬度(以碳酸钙计)为90~350mg/L,盐度为5~50mg/L,色度为20~60倍;
在上述实现印染废水反渗透浓水处理及回用于染色的方法中,所述处理后的浓水出水的COD小于30mg/L,色度在10倍以内,硬度(以碳酸钙计)为5~17mg/L;
优选的,步骤(2)所述盐为硫酸钠或氯化钠;
优选的,步骤(2)所述盐的投加量为10~70g/L;
优选的,步骤(2)所述染色工艺的染料为活性染料、酸性染料、硫化染料、分散染料、直接染料或还原染料。
本发明的原理:
本发明处理方法中所述的浓水为高盐度、高硬度的含有机污染物的废水,经过过硫酸钠高温氧化耦合石灰苏打法处理后,水中COD、色度与硬度的脱除率都高达80%以上,处理后为低COD、低色度、低硬度及高盐度的出水,能达到染色工艺标准,处理过程中保留了浓水中盐度。根据染色的工艺要求,测定处理后的浓水出水的盐度并进行盐分补加后回用于染色工序。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明处理方法操作方便、简单易行。
(2)本发明处理方法的过硫酸盐高温氧化法同Fenton处理方法相比,过硫酸盐高温活化氧化过程中无需酸度调节,相对应的碱度调节加入的碱用量减少,易于操作。
(3)本发明处理方法没有亚铁等污泥的产生,无二次污染。
(4)本发明处理方法在处理过程中不仅保留了废水中的高盐度,而且过硫酸钠氧化过程中的产物硫酸钠增加了出水中的一价钠盐的盐度,减少了回用过程中染色工序硫酸钠的投加量,节约了印染加药成本。
(5)本发明处理方法使得浓水经处理后能回用于印染工序,将处理后的浓水完全回用,实现了印染废水反渗透浓水的资源化和印染生产企业废水的零排
放。
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
对某印染厂的印染废水反渗透(RO)浓水进行如下处理:
(1)浓水处理:取浓水加入反应器,然后采用过硫酸钠作为氧化剂,对浓水进行过硫酸钠高温活化氧化反应,随后投加氢氧化钙和碳酸钠进行石灰苏打法沉淀脱除硬度,得到处理后的浓水出水具体操作如下:
a.先将过硫酸钠加入浓水中,水浴加热进行氧化反应,过硫酸钠的投加量为5000mg/L,加热温度为85℃,反应时间为2h;
b.按1000mg/L的投加量将氢氧化钙加入经过过硫酸钠高温活化氧化反应后的浓水中,浓水的pH值大于9.50,然后再按500mg/L的投加量将碳酸钠加入到浓水中;
(2)染色:向步骤(1)处理后的浓水中补加21.4mg/L硫酸钠,使浓水回用于染色工序。
上述处理中,反渗透处理前的原水水质、反渗透处理的浓水与淡水水质以及经过本发明方法处理后的浓水出水水质如表1所示:
表1反渗透处理前后及浓水经过硫酸钠氧化耦合石灰苏打法沉淀处理后的各水样水质情况
本实施例中经过过硫酸钠-石灰苏打法处理后的浓水出水完全回用于染色。
染色布料选用32S棉+40D氨纶180cm×160g/m2,染料选择活性染料SRB型染料进行染色,染料选择活性黄SRB o.w.f和活性红SRB o.w.f,盐水所需硫酸钠浓度为60g/L。染色温度为60℃,染色时间为90min,浴比为1∶10。色差低于1则认为能用于染色。
上述处理中,反渗透处理的淡水与过硫酸钠氧化耦合石灰苏打沉淀处理的浓水出水与生产用的自来水染色情况比较如表2所示。
表2.RO处理的淡水与实施例1处理后的浓水出水出水回用于染色情况
淡水 | 处理后浓水 | |
色差(与自来水染色对比) | <0.3 | <0.4 |
硫酸钠补加量(g/L) | 60 | 21.4 |
实施例2
对某印染厂的印染废水的反渗透(RO)浓水进行如下处理:
(1)浓水处理:取浓水加入反应器,然后采用过硫酸钠作为氧化剂,并对浓水进行过硫酸钠高温活化氧化反应,随后投加氢氧化钙和碳酸钠进行石灰苏打法沉淀脱除硬度,得到处理后的浓水出水;具体操作如下:
a.先将过硫酸钠加入浓水中,水浴加热进行氧化反应,过硫酸钠的投加量为3000mg/L,水浴温度为80℃,反应时间为4h;
b.按1500mg/L的投加量将氢氧化钙加入经过过硫酸钠高温活化氧化反应后的浓水中,溶液的pH值大于9.50,然后再按1000mg/L的投加量将碳酸钠加入到浓水中;
(2)染色:向步骤(1)处理后的浓水中补加18.0mg/L硫酸钠,使浓水回用于染色工序。
上述处理中,反渗透处理前的原水水质、反渗透处理的浓水与淡水水质以
及经过本发明方法处理后的浓水出水水质如表3所示:
表3.反渗透处理前后及浓水经过硫酸钠氧化耦合石灰苏打法沉淀处理后的各水样水质情况
本实施例中经过过硫酸钠-石灰苏打法处理后的浓水出水完全回用于染色。
染色布料选用100D涤纶+40S棉180cm×150g/m2,染料选择分散染料进行染色,染料选择分散黄(hfw-6g)o.w.f与分散上青o.w.f,盐水所需硫酸钠浓度为40g/L。染色温度为130℃,染色时间为30min,浴比为1∶10。色差低于1则认为能用于染色。
上述处理中,反渗透处理的淡水与过硫酸钠氧化耦合石灰苏打沉淀处理的浓水出水与生产用的自来水染色情况比较如表4所示。
表4.RO处理的淡水与实施例2处理后的浓水出水出水回用于染色情况
淡水 | 处理后浓水 | |
色差(与自来水染色对比) | <0.4 | <0.5 |
硫酸钠补加量(g/L) | 40 | 18.0 |
实施例3
对某印染厂的印染废水反渗透(RO)浓水进行如下处理:
(1)浓水处理:取浓水加入反应器,然后采用过硫酸钠作为氧化剂,对浓水进行过硫酸钠高温活化氧化反应,随后投加氢氧化钙和碳酸钠进行石灰苏打法沉淀脱除硬度,得到处理后的浓水出水;具体操作如下:
a.先将过硫酸钠加入浓水中,水浴加热进行氧化反应,过硫酸钠的投加量
为1000mg/L,水浴温度为75℃,反应时间为6h;
b.按800mg/L的投加量将氢氧化钙加入经过过硫酸钠高温活化氧化反应后的浓水中,溶液的pH值大于9.50,然后再按500mg/L的投加量将碳酸钠加入到浓水中;
(2)染色:向步骤(1)处理后的浓水中补加21.1mg/L硫酸钠,使浓水回用于染色工序。
上述处理中,反渗透处理前的原水水质、反渗透处理的浓水与淡水水质以及经过本发明方法处理后的浓水出水水质如表5所示:
表5.反渗透处理前后及浓水经过硫酸钠氧化耦合石灰苏打法沉淀处理后的各水样水质情况
本实施例中经过过硫酸钠-石灰苏打法处理后的浓水出水完全回用于染色。
染色布料选用100D涤纶+40S棉180cm×150g/m2,染料选择分散染料与活性染料混染,染料选择Dianix红玉o.w.f与Procion红XL o.w.f,盐水所需硫酸钠浓度为60g/L。染色温度为60℃,染色时间为30min,浴比为1∶10。色差低于1则认为能用于染色。
上述处理中,反渗透处理的淡水与过硫酸钠氧化耦合石灰苏打沉淀处理的浓水出水与生产用的自来水染色情况比较如表6所示。
表6.RO处理的淡水与实施例2处理后的浓水出水出水回用于染色情况
淡水 | 处理后浓水 | |
色差(与自来水染色对比) | <0.3 | <0.5 |
硫酸钠补加量(g/L) | 60 | 41.1 |
从上述实施例可以看到,印染废水反渗透浓水经本发明处理方法处理后,能将处理后的废水完全回用,解决了印染废水反渗透浓水处理的难题,节约了药剂成本,无二次污染,处理后的出水盐度得到有效提高吗,实现了印染生产企业的清洁生产,保护生态环境,实现了印染废水反渗透浓水的资源化。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (9)
- 一种实现印染废水反渗透浓水处理及回用于染色的方法,其特征在于包括如下步骤:(1)将印染废水经反渗透处理后的浓水利用过硫酸钠高温氧化耦合石灰苏打法处理,得到处理后的浓水出水;(2)将步骤(1)处理后的浓水出水根据染色需要加盐后回用于染色工序。
- 根据权利要求1所述的实现印染废水反渗透浓水处理及回用于染色的方法,其特征在于:步骤(1)所述过硫酸钠高温氧化耦合石灰苏打法的步骤如下:a.先将过硫酸钠加入所述浓水中,进行过硫酸钠高温氧化反应;b.在经过硫酸钠高温氧化反应后的浓水中加入氢氧化钙,使所述浓水pH值大于9.50,然后加入碳酸钠进行石灰苏打法反应。
- 根据权利要求2所述的实现印染废水反渗透浓水处理及回用于染色的方法,其特征在于:所述过硫酸钠的投加量为500~6000mg/L;所述氢氧化钙的投加量为500~6500mg/L;所述碳酸钠的投加量为200~5000mg/L。
- 根据权利要求2所述的实现印染废水反渗透浓水处理及回用于染色的方法,其特征在于:所述过硫酸钠高温氧化反应的反应温度为60~95℃;所述过硫酸钠高温氧化反应的反应时间为2~8h。
- 根据权利要求1所述的实现印染废水反渗透浓水处理及回用于染色的方法,其特征在于:所述印染废水经反渗透处理后的浓水的水质为:COD为80~200mg/L,硬度(以碳酸钙计)为90~350mg/L,盐度为5~50mg/L,色度为20~60倍。
- 根据权利要求1所述的实现印染废水反渗透浓水处理及回用于染色的方法,其特征在于:所述处理后的浓水出水的COD小于30mg/L,色度在10倍以内,硬度(以碳酸钙计)为5~17mg/L。
- 根据权利要求1所述的实现印染废水反渗透浓水处理及回用于染色的方 法,其特征在于:步骤(2)所述盐为硫酸钠或氯化钠。
- 根据权利要求1所述的实现印染废水反渗透浓水处理及回用于染色的方法,其特征在于:步骤(2)所述盐的投加量为10~70g/L。
- 根据权利要求1所述的实现印染废水反渗透浓水处理及回用于染色的方法,其特征在于:步骤(2)所述染色工艺的染料为活性染料、酸性染料、硫化染料、分散染料、直接染料或还原染料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410301489.6 | 2014-06-27 | ||
CN201410301489.6A CN104086021A (zh) | 2014-06-27 | 2014-06-27 | 一种实现印染废水反渗透浓水处理及回用于染色的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015196731A1 true WO2015196731A1 (zh) | 2015-12-30 |
Family
ID=51633818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/092634 WO2015196731A1 (zh) | 2014-06-27 | 2014-12-01 | 一种实现印染废水反渗透浓水处理及回用于染色的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104086021A (zh) |
WO (1) | WO2015196731A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106746131A (zh) * | 2017-01-23 | 2017-05-31 | 上海中耀环保实业有限公司 | 一种有机废水反渗透浓水氧化及脱盐方法和系统 |
CN108383295A (zh) * | 2018-05-11 | 2018-08-10 | 上海晶宇环境工程股份有限公司 | 浓盐水中的有机物与盐的分离工艺及其专用设备 |
CN113324585A (zh) * | 2021-05-27 | 2021-08-31 | 苏州汇博龙环保科技有限公司 | 一种染色残液回用自动化在线检测、测色和配色仪器及其方法 |
CN114132996A (zh) * | 2021-12-15 | 2022-03-04 | 刘海波 | 一种回收利用染色残液的处理装置及其处理方法 |
CN114605009A (zh) * | 2022-03-11 | 2022-06-10 | 佛山市佳利达环保科技股份有限公司 | 一种用于印染废水处理中的氯化钠回收零排放处理方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104086021A (zh) * | 2014-06-27 | 2014-10-08 | 华南理工大学 | 一种实现印染废水反渗透浓水处理及回用于染色的方法 |
CN104695238B (zh) * | 2015-03-11 | 2016-11-30 | 西安工程大学 | 分散染料原位矿化、深度节水减排染色后处理方法及助剂 |
CN107503194B (zh) * | 2017-07-12 | 2020-04-21 | 石狮市万峰盛漂染织造有限公司 | 一种印染废水染色用表面活性剂及其制备方法 |
CN113943040A (zh) * | 2021-10-30 | 2022-01-18 | 中冶华天工程技术有限公司 | 一种去除印染废水cod的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004337777A (ja) * | 2003-05-16 | 2004-12-02 | Japan Organo Co Ltd | 化学物質による汚染の浄化方法 |
WO2007035981A1 (en) * | 2005-09-28 | 2007-04-05 | Jason Ian Nathaniel Beath | Contaminated water treatment process |
CN101172691A (zh) * | 2007-12-11 | 2008-05-07 | 大连海事大学 | 硫酸自由基氧化水处理方法 |
CN102863104A (zh) * | 2012-10-28 | 2013-01-09 | 徐磊 | 印染废水处理工艺 |
CN103304017A (zh) * | 2013-06-28 | 2013-09-18 | 华南理工大学 | 一种同步脱除废水cod和硬度的处理方法 |
CN103359878A (zh) * | 2013-07-12 | 2013-10-23 | 华南理工大学 | 一种实现印染废水零排放的处理方法 |
CN104086021A (zh) * | 2014-06-27 | 2014-10-08 | 华南理工大学 | 一种实现印染废水反渗透浓水处理及回用于染色的方法 |
-
2014
- 2014-06-27 CN CN201410301489.6A patent/CN104086021A/zh active Pending
- 2014-12-01 WO PCT/CN2014/092634 patent/WO2015196731A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004337777A (ja) * | 2003-05-16 | 2004-12-02 | Japan Organo Co Ltd | 化学物質による汚染の浄化方法 |
WO2007035981A1 (en) * | 2005-09-28 | 2007-04-05 | Jason Ian Nathaniel Beath | Contaminated water treatment process |
CN101172691A (zh) * | 2007-12-11 | 2008-05-07 | 大连海事大学 | 硫酸自由基氧化水处理方法 |
CN102863104A (zh) * | 2012-10-28 | 2013-01-09 | 徐磊 | 印染废水处理工艺 |
CN103304017A (zh) * | 2013-06-28 | 2013-09-18 | 华南理工大学 | 一种同步脱除废水cod和硬度的处理方法 |
CN103359878A (zh) * | 2013-07-12 | 2013-10-23 | 华南理工大学 | 一种实现印染废水零排放的处理方法 |
CN104086021A (zh) * | 2014-06-27 | 2014-10-08 | 华南理工大学 | 一种实现印染废水反渗透浓水处理及回用于染色的方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106746131A (zh) * | 2017-01-23 | 2017-05-31 | 上海中耀环保实业有限公司 | 一种有机废水反渗透浓水氧化及脱盐方法和系统 |
CN108383295A (zh) * | 2018-05-11 | 2018-08-10 | 上海晶宇环境工程股份有限公司 | 浓盐水中的有机物与盐的分离工艺及其专用设备 |
CN113324585A (zh) * | 2021-05-27 | 2021-08-31 | 苏州汇博龙环保科技有限公司 | 一种染色残液回用自动化在线检测、测色和配色仪器及其方法 |
CN113324585B (zh) * | 2021-05-27 | 2023-08-22 | 苏州汇博龙环保科技有限公司 | 一种染色残液回用自动化在线检测、测色和配色仪器及其方法 |
CN114132996A (zh) * | 2021-12-15 | 2022-03-04 | 刘海波 | 一种回收利用染色残液的处理装置及其处理方法 |
CN114605009A (zh) * | 2022-03-11 | 2022-06-10 | 佛山市佳利达环保科技股份有限公司 | 一种用于印染废水处理中的氯化钠回收零排放处理方法 |
CN114605009B (zh) * | 2022-03-11 | 2024-03-22 | 佛山市佳利达环保科技股份有限公司 | 一种用于印染废水处理中的氯化钠回收零排放处理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104086021A (zh) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015196731A1 (zh) | 一种实现印染废水反渗透浓水处理及回用于染色的方法 | |
CN103359878B (zh) | 一种实现印染废水零排放的处理方法 | |
Zaharia et al. | Options and solutions for textile effluent decolorization using some specific physico-chemical treatment steps | |
CN108147593B (zh) | 一种催化裂化烟气脱硫废水的处理方法 | |
CN103787537B (zh) | 一种污水的处理方法及其应用 | |
CN104944692A (zh) | 一种水性油墨废水的处理方法 | |
CN105727902A (zh) | 纺织废水处理用吸附组合物 | |
CN105692952A (zh) | 纺织废水的处理方法 | |
CN108529819B (zh) | 一种炼化碱渣的资源综合利用方法 | |
CN110937762B (zh) | 一种含pva退浆印染废水预处理方法 | |
CN110697960A (zh) | 一种通过电渗析技术从印染废水中分离盐的方法 | |
CN111777149A (zh) | 一种利用染料废酸制备聚合硫酸铁絮凝剂的方法及其应用 | |
CN114560581A (zh) | 一种回收利用染色废水的处理方法 | |
CN103011519B (zh) | 一种高盐分碱减量废水的处理方法及设备 | |
CN105858844A (zh) | 一种印染污水处理用复合型絮凝剂 | |
CN106698536A (zh) | 一种净水剂及其制备方法 | |
CN105254067B (zh) | 污水深度处理芬顿法污泥的资源化利用方法 | |
CN109368870B (zh) | 一种利用芬顿技术处理印染废水的ro浓水的方法 | |
CN105692967A (zh) | 一种pva生产装置废水的处理方法 | |
CN111018176A (zh) | 一种破乳剂及其制备方法与应用 | |
Uzal | Effluent treatment in denim and jeans manufacture | |
CN105692826A (zh) | 纺织废水处理用絮凝剂组合物及其使用方法 | |
CN102531126B (zh) | 采用复合混凝法处理造纸黑液的方法 | |
CN103708648A (zh) | 还原-Fenton氧化耦合处理偶氮印染废水的方法 | |
CN114751564A (zh) | 一种焦化废水处理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14895966 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14895966 Country of ref document: EP Kind code of ref document: A1 |