WO2015196428A1 - 一种干扰消除的装置和方法 - Google Patents

一种干扰消除的装置和方法 Download PDF

Info

Publication number
WO2015196428A1
WO2015196428A1 PCT/CN2014/080870 CN2014080870W WO2015196428A1 WO 2015196428 A1 WO2015196428 A1 WO 2015196428A1 CN 2014080870 W CN2014080870 W CN 2014080870W WO 2015196428 A1 WO2015196428 A1 WO 2015196428A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
radio frequency
self
interference
reference signal
Prior art date
Application number
PCT/CN2014/080870
Other languages
English (en)
French (fr)
Inventor
刘晟
陈特彦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/CN2014/080870 priority Critical patent/WO2015196428A1/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020177001698A priority patent/KR101901220B1/ko
Priority to SG11201610769YA priority patent/SG11201610769YA/en
Priority to JP2016574975A priority patent/JP6562566B2/ja
Priority to CN201480079679.6A priority patent/CN106464284B/zh
Priority to EP14895760.8A priority patent/EP3151438B1/en
Priority to CA2953658A priority patent/CA2953658C/en
Priority to MX2016017327A priority patent/MX360550B/es
Priority to BR112016030506-0A priority patent/BR112016030506B1/pt
Priority to RU2017102384A priority patent/RU2664392C2/ru
Priority to AU2014399209A priority patent/AU2014399209B2/en
Publication of WO2015196428A1 publication Critical patent/WO2015196428A1/zh
Priority to US15/388,968 priority patent/US9973224B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/109Means associated with receiver for limiting or suppressing noise or interference by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15585Relay station antennae loop interference reduction by interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to an apparatus and method for interference cancellation.
  • a wireless local area network such as a mobile cellular communication system
  • a fixed wireless access FWA
  • a base station BS, Base SU ti on
  • an access point AP, Communication nodes such as Access Point), Relay Station (RS), and User Equipment (UE, User Equipment)
  • UE User Equipment
  • the transmission and reception of the wireless signal are usually distinguished by different frequency bands or time segments.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Communication is performed using different time periods separated by a certain guard time interval, wherein the guard band in the FDD system and the guard time interval in the FDD system are both to ensure sufficient isolation between reception and transmission, and to avoid interference caused by transmission.
  • Wireless full-duplex technology is different from existing FDD or TDD technology in that it can simultaneously perform receiving and transmitting operations on the same wireless channel.
  • the theoretical full-duplex wireless technology has twice the frequency efficiency of FDD or TDD technology.
  • the premise of implementing wireless full-duplex is to avoid, reduce and eliminate the strong interference of the transmitted signal of the same transceiver to the received signal (called self-interference), so as to prevent the correct reception of the useful signal. Make an impact.
  • the self-interference entering the receiver in a full-duplex system is mainly composed of two types of self-interference components.
  • the first type of self-interference component is the main-path self-interference component, and its power is strong.
  • the main path self-interference component mainly includes a self-interference signal leaking from the transmitting end to the receiving end due to leakage of the circulator, and a self-interference signal that enters the receiving end due to reflection of the antenna echo.
  • the existing RF-free interference cancellation is mainly used to cancel the first type of self-interference component.
  • the path delay, power and phase of such components depend on the specific RF, antenna, and other hardware of the specific transceiver, which is basically fixed or The change is slow and there is no need to quickly track each interference path.
  • the second type of self-interference component is mainly a self-interference component formed by multipath reflection of a scatterer or a reflecting surface during transmission of a transmitted signal through a transmitting antenna.
  • a self-interference component formed by multipath reflection of a scatterer or a reflecting surface during transmission of a transmitted signal through a transmitting antenna.
  • the prior art generally uses the device shown in the structure of FIG. 1 to cancel the second type of self-interference component by means of active analog self-interference cancellation or digital baseband self-interference cancellation, specifically: baseband digital self-interference signal to be reconstructed in the digital domain.
  • Digital to analog converter
  • DAC Digital to Analog Converter
  • ADC Analog-to -Digital Converter, Analog to Digital Converter
  • an apparatus for providing interference cancellation including:
  • the main receiving antenna (110) is configured to receive the radio frequency receiving signal, and send the radio frequency receiving signal to the first type of interference canceller (130);
  • a splitter 120, configured to acquire a radio frequency reference signal generated according to the transmit signal, and send the radio frequency reference signal to the first type of interference canceller (130) and the second type of interference reconstructor (150) ;
  • a first type of interference canceller configured to receive a radio frequency reference signal sent by the splitter (120) and a radio frequency receive signal sent by the main receiving antenna (11Q), and perform the radio frequency received signal according to the radio frequency reference signal.
  • a first processing signal Acquiring, by the first type of self-interference component, a first processing signal, where the first type of self-interference component comprises a main path self-interference component;
  • a second type of interference reconstructor configured to acquire the self-interference reconstructed signal according to the self-interference channel parameter and the radio frequency reference signal sent by the splitter (120);
  • a coupler configured to receive the self-interference reconstructed signal sent by the first processed signal and the second type of interference reconstructor (150), and cancel the first of the first processed signal according to the self-interference reconstructed signal
  • the second type of self-interference signal generates a second processed signal
  • a down converter 160, configured to perform a down conversion process on the second processed signal to generate a third processed signal
  • An analog-to-digital converter ADC (170), configured to perform analog-to-digital conversion on the third processed signal to generate a digital signal;
  • the second type of interference reconstructor (150) is further configured to acquire a digital baseband reference signal, and receive the digital signal generated by the analog-to-digital converter ADC (170) and the location sent by the splitter (120) Deriving a radio frequency reference signal; obtaining self-interference channel parameters according to the digital baseband reference signal and the digital signal for self-interference channel estimation.
  • the second type of interference reconstructor (150) includes: a self-interference estimation module (1501), configured to acquire the digital baseband reference signal and receive the digital signal generated by an analog-to-digital converter ADC (170), and perform a self-interference channel according to the digital baseband reference signal and the digital signal Estimating the acquisition of self-interference channel parameters;
  • a self-interference signal reconstruction module configured to receive the radio frequency reference signal sent by the splitter (120) and the self-interference channel parameter acquired by the self-interference estimation module (15Q1), and according to the self-interference channel The parameter and the radio frequency reference signal acquire the self-interference reconstructed signal.
  • the method further includes: a first amplifier, wherein the first amplifier is configured to amplify the second processing signal.
  • the method further includes: a second amplifier and a third amplifier;
  • the second amplifier is configured to amplify the first processed signal
  • the third amplifier is configured to amplify a radio frequency reference signal received by the second type of interference reconstructor.
  • the self-interference signal reconstruction module (1502) includes:
  • the first delay group includes at least one delay device, wherein the delay devices are connected in series, the first delay group is configured to receive the radio frequency reference signal, and sequentially use the delay device to the radio frequency reference The signal is subjected to delay processing to form a delayed signal of at least one RF reference signal;
  • a first phase adjuster group comprising at least one amplitude and phase adjuster, wherein each amplitude and phase adjuster is configured to perform amplitude and phase adjustment on a delay signal of a radio frequency reference signal according to the self-interference channel parameter;
  • the first combiner is configured to generate the self-interference reconstructed signal by combining the delayed signal of the amplitude-adjusted radio frequency reference signal.
  • the self-interference signal reconstruction module (1502) further includes: a first radio frequency selection switch, configured to receive a delay signal of the at least one radio frequency reference signal, and send a delay signal of at least one radio frequency reference signal to the delay signal of all radio frequency reference signals according to the self-interference channel parameter The first phase regulator group is described.
  • the self-interference signal reconstruction module (1,502) includes:
  • the second delay group includes at least one circulator and at least one delay device, wherein the at least one circulator is connected in series through the first port and the third port, and one end of the delay device is connected to the circulator a second port;
  • the first delay group is configured to receive the radio frequency reference signal, and delay processing the radio frequency reference signal by using a delay device to form a delay signal of at least one radio frequency reference signal;
  • a second phase adjuster group comprising at least one amplitude and phase adjuster, wherein each amplitude and phase adjuster is configured to perform amplitude and phase adjustment on a delay signal of a radio frequency reference signal according to the self-interference channel parameter;
  • the second combiner is configured to generate the self-interference reconstructed signal by combining the delay signal of the amplitude-adjusted radio frequency reference signal.
  • the self-interference signal reconstruction module (1,502) further includes:
  • a second radio frequency selection switch configured to receive a delay signal of the at least one radio frequency reference signal, and send a delay signal of at least one radio frequency reference signal to the delay signal of all radio frequency reference signals according to the self-interference channel parameter
  • the amplitude and phase adjuster group includes: an attenuator and a phase shifter
  • the attenuator is configured to perform amplitude adjustment processing on the delayed signal of the radio frequency reference signal sent by the received radio frequency selection switch according to the first phase phase parameter and the second phase phase parameter; the phase shifter is configured to be used according to the first frame Phase parameter and second phase parameter pair attenuation The delay signal phase shift processing of the RF reference signal after the amplitude adjustment processing.
  • the first type interference canceller is configured to perform amplitude adjustment processing on the delayed signal of the radio frequency reference signal sent by the received radio frequency selection switch according to the first phase phase parameter and the second phase phase parameter; the phase shifter is configured to be used according to the first frame Phase parameter and second phase parameter pair attenuation The delay signal phase shift processing of the RF reference signal after the amplitude adjustment processing.
  • the method is specifically configured to perform delay processing, amplitude adjustment processing, and phase adjustment processing on the radio frequency reference signal based on the radio frequency receiving signal, so that the amplitude of the radio frequency reference signal and the radio frequency receiving signal are The amplitude of the first type of self-interference component is opposite or approximately opposite, such that the phase of the radio frequency reference signal is the same or nearly the same as the phase of the first type of self-interference component of the radio frequency received signal; or
  • Performing delay processing, amplitude adjustment processing, and phase adjustment processing on the radio frequency reference signal based on the radio frequency receiving signal, so that the amplitude of the radio frequency reference signal and the first type of self-interference component in the radio frequency receiving signal The amplitudes are the same or approximately the same, such that the phase of the reference signal is different from the phase of the first type of self-interference component of the radio frequency received signal by 180 degrees or close to 180 degrees.
  • the transmitting signal includes an interval setting self-interference channel estimation time slot And data transmission time slot
  • an interference cancellation method including:
  • the word signal is subjected to self-interference channel estimation to obtain self-interference channel parameters.
  • the method further includes: amplifying the second processing signal.
  • the method further includes: amplifying the first processing signal
  • the method Before acquiring the self-interference reconstructed signal according to the self-interference channel parameter and the radio frequency reference signal, the method includes: amplifying the radio frequency reference signal.
  • the acquiring the self-interference reconstructed signal according to the self-interference channel parameter and the radio frequency reference signal includes: performing at least one delay on the radio frequency reference signal Processing, forming a delayed signal of at least one RF reference signal;
  • the self-interference reconstructed signal is generated by a delayed signal combining process of the amplitude-adjusted radio frequency reference signal.
  • the method before the amplitude and phase adjustment of the delayed signal of each RF reference signal according to the self-interference channel parameter, the method further includes:
  • the amplitude and phase adjustment of the delay signal of each radio frequency reference signal according to the self-interference channel parameter is specifically: performing amplitude and phase adjustment on the delay signal of each radio frequency reference signal in the delayed signal of the selected at least one radio frequency reference signal .
  • the amplitude and phase adjustment of the delay signal of each RF reference signal according to the self-interference channel parameter includes:
  • the performing interference cancellation processing on the radio frequency receiving signal according to the radio frequency reference signal includes:
  • the amplitude direction is opposite or approximately opposite, such that the phase of the radio frequency reference signal is the same as or nearly the same as the phase of the first type of self-drying 4 component of the radio frequency received signal; or
  • the radio frequency receiving signal Receiving, by the radio frequency receiving signal, delay processing, amplitude adjustment processing, and phase adjustment processing on the radio frequency reference signal, so that the amplitude of the radio frequency reference signal and the amplitude of the first type of self-interference component in the radio frequency received signal The same or approximately the same, the phase of the reference signal is different from the phase of the first type of self-interference component of the radio frequency received signal by 180 degrees or close to 180 degrees.
  • the transmitting signal includes a self-interference channel estimation time slot and a data transmission time slot that are set at intervals.
  • the apparatus and method for interference cancellation according to the embodiment of the present invention perform interference cancellation processing on a radio frequency received signal obtained by a main receiving antenna by using a radio frequency reference signal, so as to cancel a first type of self-interference component of the radio frequency receiving signal to obtain a first processed signal, Further obtaining the self-interference reconstructed signal by self-interference channel estimation cancels the second type of self-interference component in the first processed signal, because the self-interference reconstructed signal is directly used in the analog domain to cancel the second self-interference component, which can be avoided.
  • the dynamic range of the ADC / DAC limits the effective cancellation of the second type of self-interference component.
  • FIG. 1 is a schematic structural diagram of an apparatus for interference cancellation provided by the prior art.
  • FIG. 2 is a schematic structural diagram of an apparatus for interference cancellation according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first type of interference canceller according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a second type of interference reconstructor according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a self-interference signal reconstruction module according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a self-interference signal reconstruction module according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a self-interference signal reconstruction module according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a self-interference signal reconstruction module according to still another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an amplitude and phase adjuster according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an apparatus for interference cancellation according to another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an apparatus for interference cancellation according to still another embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of an interference cancellation method according to an embodiment of the present invention. Reference mark:
  • ком ⁇ онент can be, but is not limited to, a process running on a processor, Processor, object, executable, thread of execution, program, and/or computer.
  • a component can be, but is not limited to, a process running on a processor, Processor, object, executable, thread of execution, program, and/or computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside in a process and/or execution thread, and the components can be located on a single computer
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the apparatus for interference cancellation provided by the embodiment of the present invention may be set to or in itself an access terminal adopting wireless full duplex technology.
  • An access terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a user equipment (UE,
  • the User Equipment s access terminal can be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), A handheld device, in-vehicle device, wearable device, computing device, or other processing device connected to a wireless modem that has wireless communication capabilities.
  • the apparatus for eliminating interference provided by the embodiment of the present invention may also be disposed on or in itself as a base station adopting a wireless full duplex technology.
  • the base station can be used for communication with a mobile device, and the base station can be an AP (Access Point, wireless access point) of GSM, or a GSM (Global System of Mobile communication) or CDMA (Code Division Multile Access).
  • BTS Base Transceiver Station
  • NB NodeB, Base Station
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • eNB or eNodeB Evolutional Node B
  • a relay station or access point or a base station device in a future 5G network.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash devices (eg, EPR0M (Erasable Programmable Read-Only Memory), cards, sticks or key drives, etc.).
  • various storage media described herein can represent one or more devices and/or other machine readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the interference cancellation may be to eliminate all interference components in the signal (including the first type of self-interference component and the second type of self-interference component), or to cancel part of the interference component in the signal. (Includes a portion of the first type of self-interference component and a portion of the second type of self-interference component).
  • Fig. 2 is a schematic structural view of an apparatus for interference cancellation according to an embodiment of the present invention.
  • the apparatus 100 provided in this embodiment includes:
  • a main receiving antenna 110 a splitter 120, a first type of interference canceller 130, a coupler 140, a second type of interference reconstructor 150, a down converter 160, an ADC 170, and a splitter 180; wherein, the main receiving antenna 110
  • the output end is connected to the first input end 131 of the first type of interference canceller 130, and the input end 121 of the splitter 120 is used to obtain the radio frequency reference signal generated according to the transmitted signal, and the first output end 122 of the splitter 120 is connected to the first
  • the second input 132 of the interference canceler 130, the output 133 of the first type of interference canceller 130 is connected to the first input 141 of the coupler 140, and the second output 123 of the splitter 120 is connected to the second type of interference.
  • the first input 151 of the constructor 150, the second input 142 of the coupler 140 is connected to the output 153 of the second type of interference reconstructor 150; the third input 154 of the second type of interference reconstructor 150, the input number The baseband reference signal; the output 143 of the coupler 140 is coupled to the input 161 of the downconverter 160, the output 162 of the downconverter 160 is coupled to the input 171 of the ADC 170, and the output 172 of the ADC is coupled to the first input of the splitter 180. End 181, the first loss of splitter 180 A digital signal output terminal 182, The second output 183 of the splitter 180 is coupled to the second input 152 of the second type of interference reconstructor 150.
  • the main receiving antenna 110 is configured to receive a radio frequency receiving signal, and send the radio frequency receiving signal to the first type of interference canceller 130;
  • the splitter 120 is configured to acquire a radio frequency reference signal generated according to the transmit signal, and send the radio frequency reference signal to the first type interference canceller 130 and the second type interference reconstructor 150;
  • the first type of interference canceller 130 is configured to receive the radio frequency reference signal sent by the splitter 120 and the radio frequency receive signal sent by the main receiving antenna 110, and perform the first type of self-interference component on the radio frequency received signal according to the radio frequency reference signal. Eliminating acquiring the first processed signal, the first type of self-interference component comprising a main path self-interference component;
  • a second type of interference reconstructor 150 configured to acquire the self-interference reconstructed signal according to the self-interference channel parameter and the radio frequency reference signal sent by the splitter 120;
  • the coupler 140 is configured to receive the self-interference reconstructed signal sent by the first processed signal and the second type of interference reconstructor 150, and cancel the second type of self-interference in the first processed signal according to the self-interference reconstructed signal Generating a second processed signal;
  • a down converter 160 configured to perform a down conversion process on the second processed signal to generate a third processed signal
  • An analog-to-digital converter ADC170 configured to perform analog-to-digital conversion on the third processed signal to generate a digital signal
  • the second type of interference reconstructor 150 is further configured to acquire a digital baseband reference signal, and receive the digital signal generated by the analog-to-digital converter ADC 170 and the radio frequency reference signal sent by the splitter 120; The digital baseband reference signal and the digital signal are subjected to self-interference channel estimation to obtain self-interference channel parameters.
  • the splitter 180 for converting the digital signal converted by the third processed signal as the output signal and the input signal of the second type of interference reconstructor 150, respectively.
  • main receiving antenna 110 The connection relationship, structure and function of each device in the embodiment shown in FIG. 2 are described in detail. under: 1>, main receiving antenna 110
  • a coupler or a power splitter can be employed as the splitter 120.
  • the radio frequency reference signal is acquired based on the transmission signal from the transmitter, for example, the baseband processed transmission signal can be used as the radio frequency reference signal and input to the splitter 120 through the input terminal 121 of the splitter 120.
  • the RF reference signal can be split into two paths by the splitter 120, and the first signal is transmitted to the second input 132 of the first type of interference canceller 130 through the first output end 122 of the splitter 120 to be first.
  • the interference cancellation device 130 receives, and the other signal is transmitted to the first input 151 of the second type of interference reconstructor 150 via the second output 123 of the splitter 120 and received by the second type of interference reconstructor 150.
  • the two signal signals output from the splitter 120 can be made to coincide with the waveform of the radio frequency reference signal, thereby facilitating the interference cancellation based on the radio frequency reference signal described later.
  • the above-mentioned coupler and power splitter as the splitter 120 are merely illustrative, and the present invention is not limited thereto.
  • Other similarities between the waveform of the reference signal and the waveform of the transmitted signal are Devices within the preset range are all within the scope of the present invention.
  • the power of the two signals divided according to the radio frequency reference signal may be the same or different, and the present invention is not particularly limited.
  • the transmission process of the baseband processing transmission signal may be similar to the prior art, and the description thereof is omitted here to avoid redundancy.
  • the first type of interference cancellation The device 130 may include: a splitter a, a combiner a, and a combiner b, wherein at least one of the delayer, the phase adjuster, and the amplitude adjuster is included between the splitter a and the combiner a A transmission path formed in series, wherein the output of the combiner a is connected to one input of the combiner b.
  • the first type of interference canceller 130 has two inputs.
  • the splitter a can be a power splitter, combiner a, and combiner b can be couplers.
  • the first input 131 of the first type of interference canceller 130 (ie, an input port of the combiner b) is coupled to the output of the primary receive antenna 110 for receiving signals from the output of the primary receive antenna 110 ( That is, the radio frequency receiving signal); the second input 132 of the first type of interference canceller 130 (ie, the input port of the splitter a) and the first output 122 of the combiner 120 for the slave combiner 120 Receive one RF reference signal.
  • the first type of interference canceller 130 is configured to perform delay processing, amplitude adjustment processing, and phase adjustment processing on the radio frequency reference signal based on the radio frequency received signal, so as to increase the amplitude of the radio frequency reference signal.
  • the phase of the radio frequency reference signal is opposite or nearly the same as the amplitude of the first type of self-interference component of the radio frequency received signal, in a direction opposite to or approximately opposite to the amplitude of the first type of self-interference component of the radio frequency received signal ; or,
  • the amplitudes of the components are the same or approximately the same, such that the phase of the reference signal and the phase of the first type of self-interference component of the first received signal are 180° out of phase or nearly 180° apart;
  • the radio frequency reference signals after the delay processing, the amplitude adjustment processing, and the phase adjustment processing are combined and combined with the radio frequency receiving signals.
  • the second input 132 of the first type of interference canceller 130 is coupled to the first output 122 of the splitter 120 and from the second input 132 of the first type of interference canceller 130
  • the signal of the first output 122 of the router 120 ie, the RF reference signal
  • the splitter a can be a power splitter, and the splitter a divides the RF reference signal into several RF references.
  • Signal (these roads)
  • the power of the RF reference signal can be the same or different); taking one of them as an example, the output of the splitter a outputs an RF reference signal to the adjustment consisting of a series connection of the delay, the phase adjuster and the amplitude adjuster.
  • a circuit for adjusting a delay, an amplitude, and a phase of the signal by delay, attenuation, and shifting, for example, by attenuating, the amplitude of the RF reference signal is close to the RF received signal
  • the magnitude of the first type of self-interference component (which includes the main path interference signal component), of course, the best effect is the same amplitude, but due to the error in the actual application, it is also possible to adjust to approximately the same, and can pass Delay and/or phase shifting, the phase of the RF reference signal can be adjusted to be different from the RF received signal (specifically, the first type of self-interference component in the RF received signal) by 180 ° or approximately 1 8 0 °.
  • the amplitude of the radio frequency reference signal may be opposite to the amplitude of the first type of self-interference component in the radio frequency received signal by attenuation.
  • the best effect is that the amplitude direction is opposite, but due to errors in practical applications, It is also possible to adjust to the approximate opposite, and the phase of the radio frequency reference signal can be adjusted to the radio frequency receiving signal by delay and/or phase shifting (specifically, the first type of self-interference in the radio frequency receiving signal)
  • the components are the same or approximately the same.
  • each of the branches of the splitter output may include at least one of a delay, a phase adjuster, and an amplitude adjuster.
  • the amplitude adjustment can be expressed as attenuation or gain.
  • the attenuation is taken as an example.
  • the "approximation" may mean that the similarity between the two is within a preset range.
  • the preset range can be arbitrarily determined according to actual use and needs, and the present invention is not particularly limited. In the following, in order to avoid redundancy, the description of the similar description is omitted unless otherwise stated.
  • the RF reference signal of each branch output by the splitter a is amplitude and phase
  • the combiner a combines and inputs to the other input port of the combiner b, so that the combiner b can adjust the RF received signal with the RF reference signal after the amplitude and phase adjustment and combination Combining (eg, adding or subtracting) to cancel the first type of self-interference component in the radio frequency received signal, thereby achieving cancellation processing of the first type of self-interference component of the radio frequency received signal.
  • the amplitude adjuster for example, an attenuator or the like can be used.
  • the phase adjuster for example, a phase shifter or the like can be applied.
  • the delayer for example, a delay line or the like can be applied.
  • the first processed signal output from the output 133 of the first type of interference canceller 130 (specifically, from the output of combiner b) is the elimination of the first type of self-interference component from the radio frequency received signal.
  • the generated signal is the first processed signal output from the output 133 of the first type of interference canceller 130 (specifically, from the output of combiner b) and the elimination of the first type of self-interference component from the radio frequency received signal. The generated signal.
  • the delay, the phase adjuster, and the phase adjuster may be adjusted based on the output of the combiner b to minimize the intensity of the first processed signal output from the combiner b.
  • Amplitude adjuster may be adjusted based on the output of the combiner b to minimize the intensity of the first processed signal output from the combiner b.
  • the present invention is not limited to the above factual manner, as long as the intensity of the radio frequency received signal is reduced according to the radio frequency reference signal (or the intensity of the first processed signal is less than the strength of the radio frequency received signal), Eliminate the effect.
  • the second type of interference reconstructor 150 may include: a self-interference estimation module 1501 and;
  • the self-interference estimation module 1501 is configured to acquire the digital baseband reference signal and receive the digital signal generated by the analog-to-digital converter ADC 170, and perform self-interference channel estimation according to the digital baseband reference signal and the digital signal to obtain a self-interference channel.
  • the self-interference estimation module 1501 includes: a field-programmable gate array (FPGA), a central processing CPU (Centra! Processing Unit), or any other application specific integrated circuit (ASIC) One.
  • FPGA field-programmable gate array
  • CPU Central Processing Unit
  • ASIC application specific integrated circuit
  • Performing self-interference channel estimation according to the digital baseband reference signal and the digital signal may adopt a pilot-based channel estimation method or an adaptive filtering method, such as LMS (Last mean square) Algorithm) or RLS (Recursive least mean square) algorithm, which is not described in the prior art.
  • LMS Longst mean square
  • RLS Recursive least mean square
  • the transmit signal includes a self-interference channel estimation time slot and a data transmission time slot that are set at intervals; wherein the data transmission time slot can perform full-duplex data communication, and in the self-interference channel estimation time slot, the communication peer end does not perform data.
  • the signal received by the local receiver only includes the self-interference signal. Since there is no signal from the communication peer, the local end uses the self-interference channel estimation time slot to perform self-interference channel estimation to obtain the self-interference channel parameter.
  • the radio frequency received signal only includes the second type of self-interference component, and the self-interference channel estimation is performed on the digital signal reference digital baseband reference signal obtained by the radio frequency receiving signal processing in the self-interference channel estimation time slot. . Therefore, in the self-interference channel estimation time slot, the communication opposite end does not transmit a signal, and the signal received by the receiver only includes the self-interference signal. Since there is no signal from the communication opposite end, the receiver can perform self-interference in the self-interference channel estimation time slot.
  • the channel estimation obtains self-interference channel parameters, wherein the self-interference channel parameter may include a transmission path delay, phase, and amplitude parameter indicating the second type of self-interference component; in the data transmission time slot, the signal received by the receiver is self-interference
  • the receiver can generate a self-interference reconstructed signal according to the radio frequency reference signal and the self-interference channel parameter in the data transmission time slot, and use the interference reconstructed signal for the cancellation of the second type self-interference component.
  • the self-interference signal reconstruction module 1502 is configured to receive the radio frequency reference signal sent by the splitter 120 and the self-interference channel parameter acquired by the self-interference estimation module 1501, and according to the self-interference channel parameter and the radio frequency reference The signal acquires the self-interference reconstructed signal.
  • the self-interference signal reconstruction module 1502 includes: a first delay group, a first phase adjuster group, and a first combiner;
  • the first delay group includes at least one delay device, wherein the delay devices are connected in series, the first delay group is configured to receive the radio frequency reference signal, and sequentially use the delay device to the radio frequency reference The signal is subjected to delay processing to form a delayed signal of at least one RF reference signal;
  • a first phase regulator set comprising at least one amplitude phase adjuster, wherein each amplitude phase The regulator is configured to perform amplitude and phase adjustment on the delayed signal of one radio frequency reference signal according to the self-interference channel parameter;
  • the first combiner is configured to generate the self-interference reconstructed signal by combining the delayed signal of the amplitude-adjusted radio frequency reference signal.
  • the delay device in the first delay group is connected through the coupler, and the delay signal of the RF reference signal formed by each delay is output through the coupler, that is, The output of the first stage delay is connected to one input of the coupler, one output of the coupler is connected to one of the amplitude adjusters of the first phase adjuster group; the other output of the coupler is connected to the next stage The input of the delayer,
  • the first delay group may include M
  • the delay device is configured to delay the RF reference signal by M times and form a delay signal of the M-channel RF reference signal, and the number of delay taps that the first delay group includes M delays can be M.
  • the self-interference signal reconstruction module described in FIG. 6 further includes: a first radio frequency selection switch, configured to receive a delay signal of the at least one radio frequency reference signal, and according to the self-interference channel parameter in all radio frequency references The delayed signal of the signal selects a delayed signal of the at least one RF reference signal to be sent to the first phase regulator group.
  • a first radio frequency selection switch configured to receive a delay signal of the at least one radio frequency reference signal, and according to the self-interference channel parameter in all radio frequency references The delayed signal of the signal selects a delayed signal of the at least one RF reference signal to be sent to the first phase regulator group.
  • the first radio frequency selection switch may be a radio frequency selection switch of the ⁇ ⁇ ,, that is, the delay signal of the radio frequency reference signal of the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the self-interference signal reconstruction module 1 5 02 includes:
  • the second delay group includes at least one circulator and at least one delay device, wherein the at least one circulator is connected in series through the first port and the third port, and one end of the delay device is connected to the circulator a second port;
  • the first delay group is configured to receive Deriving a radio frequency reference signal, and delaying the radio frequency reference signal by a delay device to form a delay signal of at least one radio frequency reference signal;
  • a second phase adjuster group comprising at least one amplitude and phase adjuster, wherein each amplitude and phase adjuster is configured to perform amplitude and phase adjustment on a delay signal of a radio frequency reference signal according to the self-interference channel parameter;
  • the second combiner is configured to generate the self-interference reconstructed signal by combining the delay signal of the amplitude-adjusted radio frequency reference signal.
  • the circulators in the first delay group are connected by a coupler.
  • the circulator includes three ports 1, 2, 3, wherein the first port 1 is used for receiving a radio frequency reference signal, and the second port 2 of the circulator is configured to send the radio frequency reference signal received by the first port 1 to a delay device, and the delay device delays the radio frequency reference signal and returns to the delay device.
  • the second port 2 the circulator sends the delayed radio frequency reference signal to the next circulator through the third port 3; wherein the delay device can adopt a delay line; where the circulator receives the delay device Delaying the signal and outputting a delay signal of the RF reference signal formed by each delay through the coupler, that is, the third port 3 of the upper circulator is connected to one input of the coupler, and one output of the coupler is connected One amplitude adjuster in one phase regulator group; the other output of the coupler is connected to the first port 1 of the next stage circulator, (upper and lower stages are only for The order of transmission of the radio frequency reference signal in the first delay group is not limited to the embodiment of the present invention.
  • the first delay group may include M delays for performing the radio frequency reference signal.
  • the delay line is used as the delay device, since the delay line is connected to the second port 2 of the circulator, the RF reference signal is transmitted back and forth twice in the delay line to form a delay. The signal, therefore, can save half the length of the embodiment delay line corresponding to Figure 6.
  • the self-interference signal reconstruction module further includes: a second radio frequency selection switch, configured to receive a delay signal of the at least one radio frequency reference signal, according to the self-interference channel parameter Delay signal for all RF reference signals A delay signal for selecting at least one RF reference signal is sent to the second phase regulator group.
  • the first radio frequency selection switch may be a radio frequency selection switch of the ⁇ ⁇ ,, that is, the delay signal of the M radio frequency reference signal may be selected according to the self-interference channel parameter in the delay signal of the M radio frequency reference signal.
  • the delayed signal output of the RF reference signal may be a radio frequency selection switch of the ⁇ ⁇ , that is, the delay signal of the M radio frequency reference signal may be selected according to the self-interference channel parameter in the delay signal of the M radio frequency reference signal.
  • amplitude and phase regulator can be implemented in a manner:
  • the first mode is as shown in FIG. 10, and the amplitude and phase adjuster includes:
  • the amplitude and phase regulator group includes: an attenuator and a phase shifter;
  • the attenuator is configured to perform amplitude adjustment processing on the delayed signal of the radio frequency reference signal sent by the received radio frequency selection switch according to the self-interference channel parameter;
  • the phase shifter is configured to phase shift the delay signal of the radio frequency reference signal after the attenuator amplitude adjustment processing according to the self-interference channel parameter.
  • the self-interference signal generates a second processed signal.
  • the second processed signal sent by the coupler 140 is down-converted to generate a third processed signal.
  • the down conversion processing since the radio frequency receiving signal is transmitted by the high frequency signal during the wireless transmission process, the down conversion processing here converts the high frequency signal component into the low frequency signal.
  • the components are such that the effects of the high frequency signal components on the self-interfering channel estimation of the second type of interference reconstructor 150 are avoided.
  • the splitter 180 is also shown in FIG. 2, which is the same as the structure and basic working principle of the splitter 120.
  • the splitter 180 is used to divide the digital signal sent by the ADC 170 into two digital signals, one for output. The other path is used as an input signal to the second type of interference reconstructor 150.
  • the apparatus for interference cancellation further includes a first amplifier 190, wherein the first amplifier 190 is disposed between the coupler 140 and the down converter 160 (the first amplifier in FIG. 10 takes an LNA as an example),
  • the first amplifier 190 is for amplifying the second processed signal. Amplifying the second processed signal by the first amplifier reduces the power requirement of the transmitter side for the RF transmitted signal.
  • the apparatus for eliminating interference further includes:
  • a second amplifier 200 disposed between the first type of interference canceller 130 and the coupler 140, for amplifying the first processed signal
  • the third amplifier 210 is disposed between the splitter 120 and the second type of interference reconstructor 150 for amplifying the radio frequency reference signal received by the second type of interference reconstructor.
  • the second amplifier and the third amplifier in FIG. 11 both take the LNA as an example, and the first processed signal before the denoising process is amplified by the second amplifier, and the third amplifier pairs the RF that enters the second type of interference reconstructor 150.
  • the reference signal is amplified to reduce the power requirement of the RF reference signal, thereby reducing the power requirement of the transmitter side for the RF transmit signal.
  • the full duplex transceiver is a multiple input multiple output (MIMO)
  • the receiving branch corresponding to each receiving antenna needs a neighboring area corresponding to each transmitting antenna. Disturber, refactoring each The self-interference reconstructed signals corresponding to the transmitting branches cancel the first-class self-interference components one by one.
  • the device for canceling interference provided by the embodiment of the present invention performs interference cancellation processing on the radio frequency received signal obtained by the main receiving antenna by using the radio frequency reference signal, so as to cancel the first type of self-interference component of the radio frequency receiving signal, and obtain the first processed signal, further
  • the interference channel estimation obtains the self-interference reconstructed signal to cancel the second type of self-interference component in the first processed signal, and the self-interference reconstructed signal is directly used in the analog domain to cancel the second type of self-interference component, thereby avoiding the ADC/DAC
  • the limitation of the dynamic range effectively offsets the second type of self-interference component.
  • Figure 12 shows a flow diagram of a method for interference cancellation, including the following steps:
  • the transmit signal after baseband processing can be input as a radio frequency reference signal.
  • a radio frequency reference signal for example, a coupler or a power splitter, such that the radio frequency reference signal can be split into two paths by a coupler or a power splitter, one for generating a first processed signal and the other for a reference generating self-interfering reconstruction signal.
  • obtaining the digital baseband reference signal may specifically include: performing digital sampling on the radio frequency reference signal to obtain the digital baseband reference signal.
  • the two signals can be made to coincide with the transmitted signal waveform, wherein the waveform consistently includes the same or similarity as the transmitted signal waveform, thereby It is advantageous for the interference cancellation based on the radio frequency reference signal (including the elimination of the first type of self-interference component and the elimination of the second type of self-interference component).
  • the method further includes: amplifying the second processing signal.
  • the method further includes: amplifying the first processing signal
  • the method further includes: amplifying the radio frequency reference signal.
  • L N A low noise amplifier
  • directly performing the method on the second processed signal can reduce the power requirement of the transmitter side for the RF transmission signal.
  • step 1 0 3 the first type of self-interference component cancellation processing is performed on the radio frequency received signal according to the radio frequency reference signal, and the first processed signal is generated, including:
  • Performing delay processing, amplitude adjustment processing, and phase adjustment processing on the radio frequency reference signal based on the radio frequency receiving signal, so that the amplitude of the radio frequency reference signal and the first type of self-interference component in the radio frequency receiving signal The amplitude direction is opposite or approximately opposite, such that the phase of the radio frequency reference signal is the same as or nearly the same as the phase of the first type of self-drying 4 component of the radio frequency received signal; or Receiving, by the radio frequency receiving signal, delay processing, amplitude adjustment processing, and phase adjustment processing on the radio frequency reference signal, so that the amplitude of the radio frequency reference signal and the amplitude of the first type of self-interference component in the radio frequency received signal.
  • the phase of the reference signal is different from the phase of the first type of self-interference component of the radio frequency received signal by 180 degrees or close to 180 degrees.
  • the present invention may be implemented by, for example, a delay circuit, a phase adjuster, and an amplitude adjuster connected in series, so that in step 1 0 3, delay, phase shift can be adopted by the adjustment circuit.
  • attenuating, etc., adjusting the amplitude and phase of the RF reference signal for example, by attenuating, the amplitude of the RF reference signal is close to the amplitude of the first type of self-interference component in the RF received signal, of course, the best effect
  • the amplitude is the same, but due to the error in the actual application, it is also possible to adjust to the approximation, and the phase of the radio frequency reference signal can be adjusted to the first class in the radio frequency receiving signal by phase shifting and/or delay.
  • the interference component (which includes the main path dry 4 especially signal) is opposite or approximately opposite.
  • the delayed, amplitude, and phase adjusted RF reference signals can be combined (eg, added) with the RF received signals to cancel the first type of self-interference components in the RF received signals, thereby implementing the RF received signals.
  • the first type of self-interference component is eliminated, and the processed signal is used as the first processed signal.
  • the amplitude adjuster for example, an attenuator or the like can be used.
  • the phase adjuster for example, a phase shifter or the like can be applied, and as the retarder, a delay line can be applied.
  • the foregoing methods and processes for performing the first type of self-interference component elimination processing on the radio frequency received signal based on the radio frequency reference signal are merely illustrative, and the present invention is not limited thereto.
  • the first method may also be adopted.
  • the delay, phase shifter and attenuator are adjusted in such a way as to minimize the intensity of the processed signal.
  • the step 1 0 4 obtains the self-interference reconstructed signal according to the self-interference channel parameter and the radio frequency reference signal, including:
  • the self-interference reconstructed signal is generated by a delayed signal combining process of the amplitude-adjusted radio frequency reference signal.
  • step 1 04 amplitude-phase adjustment is performed on the delayed signal of each radio frequency reference signal according to the self-interference channel parameter
  • the transmission signal includes a self-interference channel estimation time slot and a data transmission time slot which are spaced apart.
  • the self-interference channel estimation time slot the communication opposite end does not transmit a signal, and the signal received by the receiver only includes the self-interference signal. Since there is no signal from the communication opposite end, the receiver can perform self-interference channel estimation in the self-interference channel estimation time slot.
  • the self-interference channel parameter may include a transmission path delay, phase, and amplitude parameter indicating a second type of self-interference component; in the data transmission time slot, the signal received by the receiver is a self-interference signal and The data signal, the receiver may generate a self-interference reconstructed signal according to the radio frequency reference signal and the self-interference channel parameter in the data transmission time slot, and use the interference reconstructed signal for the cancellation of the second type self-interference component.
  • the specific examples are not described herein again with reference to the description in the device embodiment.
  • the radio frequency reference signal is used to perform interference cancellation processing on the radio frequency receiving signal acquired by the main receiving antenna, so as to cancel the first type self-interference component of the radio frequency receiving signal, and obtain the first processing signal, further
  • the interference channel estimation obtains the self-interference reconstructed signal to cancel the second type of self-interference component in the first processed signal, and the ADC/DAC can be avoided because the self-interference reconstructed signal is directly used in the analog domain to cancel the second type of self-interference component.
  • the limitation of the dynamic range is effective for the second type of self-interference component.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed apparatus can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as the units may or may not be physical units, and may be located in one place or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiment of the present embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on this The understanding that the technical solution of the present invention contributes in essence or to the prior art or part of the technical solution can be embodied in the form of a software product stored in a storage medium, including several instructions.
  • a computer device which may be a personal computer, server, or network device, etc.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提供一种干扰消除的装置和方法,涉及通信技术领域,能够避免ADC/DAC动态范围的限制,对第二类自干扰分量进行有效的抵消。包括:获取射频参考信号;通过主接收天线接收射频接收信号;根据射频参考信号对射频接收信号进行第一类自干扰分量消除处理,生成第一处理信号;根据自干扰信道参数和射频参考信号获取所述自干扰重构信号;根据自干扰重构信号抵消第一处理信号中的第二类自干扰信号生成第二处理信号;对第二处理信号进行下变频处理生成第三处理信号;对第三处理信号进行数模转换生成数字信号;获取数字基带参考信号,根据数字基带参考信号和数字信号进行自干扰信道估计获取自干扰信道参数。本发明用于干扰消除。

Description

一种干扰消除的装置和方法 技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种干扰消除的装 置和方法。
背景技术
在移动蜂窝通信系统、 无线局域网 ( WLAN, Wireless Local Area Network ), 固定无线接入 ( FWA , Fixed Wireless Access ) 等无线 通信系统中,基站( BS, Base S U t i on )或接入点( AP, Access Point )、 中继站 ( RS, Relay Stat ion ) 以及用户设备 ( UE, User Equipment ) 等通信节点通常具有发射自 身信号和接收其它通信节点信号的能 力。 由于无线信号在无线信道中的衰减非常大, 与 自身的发射信号 相比, 来自通信对端的信号到达接收端时信号已非常微弱, 例如, 移动蜂窝通信 系 统 中 一个通信节点 的 收发信号功率差达到 80dB-140dB甚至更大, 因此, 为了避免同一收发信机的发射信号对 接收信号的自干扰, 无线信号的发送和接收通常采用不同的频段或 时间段力口以区分。 列 ^口, 在频分 又王 ( FDD, Frequency Division Duplex ) 中, 发送和接收使用相隔一定保护频带的不同频段进行通 信, 在时分双工 ( TDD, Time Divis ion Duplex ) 中, 发送和接收则 使用相隔一定保护时间间隔的不同时间段进行通信, 其中, FDD 系 统中的保护频带和 FDD 系统中的保护时间间隔都是为了保证接收和 发送之间充分地隔离, 避免发送对接收造成干扰。
无线全双工技术不同于现有的 FDD或 TDD技术, 可以在相同无 线信道上同时进行接收与发送操作, 这样, 理论上无线全双工技术 的频语效率是 FDD或 TDD技术的两倍。 显然, 实现无线全双工的前 提在于尽可能地避免、 降低与消除同一收发信机的发射信号对接收 信号的强干扰 (称为 自干扰, Self-interference ), 使之不对有用 信号的正确接收造成影响。 全双工系统中进入接收机的自干扰主要是由两类自干扰分量组 成的。
第一类自干扰分量为主径自干扰分量, 其功率较强。 所述主径 自干扰分量主要包括因环行器泄漏从发射端泄漏到接收端的自干扰 信号, 以及由于天线回波反射进入接收端的自干扰信号。 现有射频 无源自干扰抵消主要用于抵消第一类自干扰分量, 这类分量的路径 延迟、 功率和相位, 取决于特定的收发信机的中射频、 天馈等硬件 本身, 基本固定或变化緩慢, 不需要对其各干扰路径进行快速跟踪。
第二类自干扰分量主要是发射信号经发射天线发射后, 在空间 传播过程中遇到散射体或反射面等的多径反射形成的自干扰分量。 当全双工技术应用于蜂窝系统的基站、中继站、以及室外布设的 WiFi 接入点 ( AP ) 等场景时, 由于这些设备的天线往往架设较高, 其近 数米至数十米范围内散射体或反射面等较少, 因此, 其接收信号中 包含的空间传播多径反射自干扰分量各多径的延迟较大, 分布较广, 且随着延迟的增加相应多径信号的 (来自较远的散射体或反射面等 的反射信号) 功率呈下降趋势。
现有技术通常采用如图 1 结构所示装置通过有源模拟自干扰抵 消或者数字基带自干扰抵消的方式抵消第二类自干扰分量, 具体为: 将在数字域重构的基带数字 自 干扰信号通过数字模拟转换器
( Digital to Analog Converter, DAC ) 重新变换到模拟域, 在模 拟域经过模拟基带处理 ( 图中未示出 ) 或经上变频到中射频, 与包 含自干扰信号的模拟接收信号进行抵消; 而在数字域的数字基带自 干扰抵消为重构的基带数字自干扰信号直接在基带数字域与包含自 干扰信号的数字接收信号相抵消; 但是该装置的自干扰抵消的性能 最终受 ADC ( Analog-to-Digi tal Converter , 模数转换器 ) /DAC
( Digital -to- Analog Converter, 数模转换器) 动态范围的限制。 通常, ADC/DAC的动态范围在 60dB左右, 这样, 当第二类自干扰分 量的功率高出有用信号 60dB以上时, 现有方法都无法对第二类自干 扰分量进行有效的抵消。 发明内容
本发明的实施例提供一种干扰消除的装置及方法, 能够避免
ADC/DAC动态范围的限制, 对第二类自干扰分量进行有效的抵消。
第一方面, 提供一种干扰消除的装置, 包括:
主接收天线 ( 110 ), 用于接收射频接收信号, 并将所述射频接 收信号发送给第一类干扰消除器 ( 130 );
分路器 ( 120 ), 用于获取根据发射信号生成的射频参考信号, 并将所述射频参考信号发送给所述第一类干扰消除器 ( 130 )和第二 类干扰重构器 ( 150 );
第一类干扰消除器 ( 130 ), 用于接收分路器 ( 120 ) 发送的射频 参考信号和主接收天线 ( 11Q ) 发送的射频接收信号, 根据所述射频 参考信号对所述射频接收信号进行第一类自干扰分量消除获取第一 处理信号, 所述第一类自干扰分量包含主径自干扰分量;
第二类干扰重构器 ( 150 ), 用于根据自干扰信道参数和分路器 ( 120 ) 发送的所述射频参考信号获取所述自干扰重构信号;
耦合器 ( 140 ), 用于接收所述第一处理信号和第二类干扰重构 器(150)发送的自干扰重构信号, 根据自干扰重构信号抵消所述第一 处理信号中的第二类自干扰信号生成第二处理信号;
下变频器 ( 160 ), 用于对所述第二处理信号进行下变频处理生 成第三处理信号;
模数转换器 ADC ( 170 ), 用于对所述第三处理信号进行模数转 换生成数字信号;
所述第二类干扰重构器 ( 150 ), 还用于获取数字基带参考信号, 并接收模数转换器 ADC ( 170 ) 生成的所述数字信号和所述分路器 ( 120 )发送的所述射频参考信号; 根据所述数字基带参考信号和所 述数字信号进行自干扰信道估计获取自干扰信道参数。
结合第一方面, 在第一种可能的实现方式中, 所述第二类干扰 重构器 ( 150 ), 包括: 自干扰估计模块(1501) , 用于获取所述数字基带参考信号并接 收模数转换器 ADC ( 170 ) 生成的所述数字信号, 根据所述数字基带 参考信号和所述数字信号进行自干扰信道估计获取自干扰信道参 数;
自干扰信号重构模块(1502) , 用于接收分路器 ( 120 )发送的所 述射频参考信号和自干扰估计模块(15Q1)获取的所述自干扰信道参 数, 并根据所述自干扰信道参数和所述射频参考信号获取所述自干 扰重构信号。
结合第一方面, 在第二种可能的实现方式中, 还包括: 第一放 大器, 所述第一放大器用于放大所述第二处理信号。
结合第一方面, 在第三种可能的实现方式中, 还包括: 第二放 大器和第三放大器;
所述第二放大器用于放大所述第一处理信号;
所述第三放大器用于放大所述第二类干扰重构器接收的射频参 考信号。
结合第一方面的第一种可能的实现方式, 在第四种可能的实现 方式中, 所述自干扰信号重构模块(1502) , 包括:
第一延时器组、 第一幅相调节器组及第一合路器;
所述第一延时器组包含至少一个延时器, 其中延时器串联连接, 所述第一延时器组用于接收所述射频参考信号, 并通过延时器依次 对所述射频参考信号进行延时处理, 形成至少一路射频参考信号的 延时信号;
第一幅相调节器组, 包括至少一个幅相调节器, 其中每个幅相 调节器用于根据所述自干扰信道参数对一路射频参考信号的延时信 号进行幅相调节;
第一合路器, 用于对幅相调节后的射频参考信号的延时信号合 路处理生成所述自干扰重构信号。
结合第一方面第四种可能的实现方式, 在第五种可能的实现方 式中, 所述自干扰信号重构模块(1502) , 还包括: 第一射频选择开关, 用于接收所述至少一路射频参考信号的延 时信号, 根据所述自干扰信道参数在所有射频参考信号的延时信号 选择至少一路射频参考信号的延时信号发送至所述第一幅相调节器 组。
结合第一方面第一种可能的实现方式, 在第六种可能的实现方 式中, 所述自干扰信号重构模块(1 5 0 2 ) , 包括:
第二延时器组、 第二幅相调节器组及第二合路器;
所述第二延时器组包含至少一个环形器及至少一个延时器, 所 述至少一个环形器通过第一端口和第三端口 串联连接, 所述延时器 的一端连接所述环形器的第二端口; 所述第一延时器组用于接收所 述射频参考信号, 并通过延时器依次对所述射频参考信号进行延时 处理, 形成至少一路射频参考信号的延时信号;
第二幅相调节器组, 包括至少一个幅相调节器, 其中每个幅相 调节器用于根据所述自干扰信道参数对一路射频参考信号的延时信 号进行幅相调节;
第二合路器, 用于对幅相调节后的射频参考信号的延时信号合 路处理生成所述自干扰重构信号。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现 方式中, 所述自干扰信号重构模块(1 5 0 2 ) , 还包括:
第二射频选择开关, 用于接收所述至少一路射频参考信号的延 时信号, 根据所述自干扰信道参数在所有射频参考信号的延时信号 选择至少一路射频参考信号的延时信号发送至所述第二幅相调节器 组。
结合第一方面的第四种至第七种可能的实现方式中的任意一 种, 在第八种可能的实现方式中, 幅相调节器组包括: 衰减器和移 相器;
衰减器用于根据所述第一幅相参数和第二幅相参数对接收到的 射频选择开关发送的射频参考信号的延时信号进行幅度调节处理; 所述移相器用于根据所述第一幅相参数和第二幅相参数对衰减 器幅度调节处理后的射频参考信号的延时信号移相处理。 结合第一方面或第一方面中第一种至第八种可能的实现方式中 的任意一种, 在第九种可能的实现方式中, 所述第一类干扰消除器
( 1 3 0 )具体用于基于所述射频接收信号, 对所述射频参考信号进行 延时处理、 幅度调节处理和相位调节处理, 以使所述射频参考信号 的幅度与所述射频接收信号中的第一类自干扰分量的幅度方向相反 或近似相反, 使所述射频参考信号的相位与所述射频接收信号中的 第一类自干扰分量的相位相同或接近相同; 或
基于所述射频接收信号, 对所述射频参考信号进行延时处理、 幅度调节处理和相位调节处理, 以使所述射频参考信号的幅度与所 述射频接收信号中的第一类自干扰分量的幅度相同或近似相同, 使 所述参考信号的相位与所述射频接收信号中的第一类自干扰分量的 相位相差 1 8 0 ° 或接近相差 1 8 0 ° 。
结合第一方面或第一方面中第一种至第九种可能的实现方式中 的任意一种, 在第十种可能的实现方式中, 所述发射信号包括间隔 设置的自干扰信道估计时隙和数据传输时隙
第二方面, 提供一种干扰消除方法, 包括:
获取根据发射信号生成的射频参考信号;
通过主接收天线接收射频接收信号;
根据所述射频参考信号对射频接收信号进行第一类自干扰分量 消除处理, 并生成第一处理信号, 所述第一类自干扰分量包含主径 自干扰分量;
根据自干扰信道参数和所述射频参考信号获取所述自干扰重构 信号;
根据自干扰重构信号抵消所述第一处理信号中的第二类自干扰 信号生成第二处理信号;
对所述第二处理信号进行下变频处理生成第三处理信号; 对所述第三处理信号进行数模转换生成数字信号;
获取数字基带参考信号, 根据所述数字基带参考信号和所述数 字信号进行自干扰信道估计获取自干扰信道参数。
结合第二方面, 在第一种可能的实现方式中法, 其特征在于, 所述方法还包括: 放大所述第二处理信号。
结合第二方面, 在第二种可能的实现方式中, 所述方法还包括: 放大所述第一处理信号;
根据所述自干扰信道参数和所述射频参考信号获取所述自干扰 重构信号前, 所述方法包括: 放大所述射频参考信号。
结合第二方面, 在第三种可能的实现方式中, 所述根据自干扰 信道参数和所述射频参考信号获取所述自干扰重构信号, 包括: 对所述射频参考信号进行至少一次延时处理, 形成至少一路射 频参考信号的延时信号;
根据自干扰信道参数对每一路射频参考信号的延时信号进行幅 相调节;
对幅相调节后的射频参考信号的延时信号合路处理生成所述自 干扰重构信号。
结合第三种可能的实现方式, 在第四种可能的实现方式中, 所 述根据自干扰信道参数对每一路射频参考信号的延时信号进行幅相 调节前, 还包括:
根据自干扰信道参数在所有射频参考信号的延时信号选择至少 一路射频参考信号的延时信号;
所述根据自干扰信道参数对每一路射频参考信号的延时信号进 行幅相调节具体为: 对选择的至少一路射频参考信号的延时信号中 每一路射频参考信号的延时信号进行幅相调节。
结合第三种可能的实现方式, 在第五种可能的实现方式中, 所 述根据自干扰信道参数对每一路射频参考信号的延时信号进行幅相 调节, 包括:
根据自干扰信道参数对射频参考信号的延时信号进行幅度调节 处理;
根据所述自干扰信道参数对幅度调节处理后的射频参考信号的 延时信号移相处理。
结合第二方面或第二方面任意一种可能的实现方式, 在第六种 可能的实现方式中, 所述根据所述射频参考信号对射频接收信号进 行干扰消除处理, 包括:
基于所述射频接收信号, 对所述射频参考信号进行延时处理、 幅度调节处理和相位调节处理, 以使所述射频参考信号的幅度与所 述射频接收信号中的第一类 自干扰分量的幅度方向相反或近似相 反, 使所述射频参考信号的相位与所述射频接收信号中的第一类自 干 4尤分量的相位相同或接近相同; 或者
所述射频接收信号, 对所述射频参考信号进行延时处理、 幅度 调节处理和相位调节处理, 以使所述射频参考信号的幅度与所述射 频接收信号中的第一类自干扰分量的幅度相同或近似相同, 使所述 参考信号的相位与所述射频接收信号中的第一类自干扰分量的相位 相差 1 8 0 ° 或接近相差 1 8 0 ° 。
结合第二方面或第二方面任意一种可能的实现方式, 在第七种 可能的实现方式中, 所述发射信号包括间隔设置的自干扰信道估计 时隙和数据传输时隙。
根据本发明实施例提供的干扰消除的装置和方法, 通过射频参 考信号对主接收天线获取的射频接收信号进行干扰消除处理, 以消 除射频接收信号的第一类自干扰分量获取第一处理信号, 进一步通 过自干扰信道估计获取自干扰重构信号对第一处理信号中的第二类 自干扰分量进行抵消, 由于是直接在模拟域采用 自干扰重构信号抵 消第二类自干扰分量, 能够避免 ADC / DAC 动态范围的限制, 对第二 类自干扰分量进行有效的抵消。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例 或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技 术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图 获得其他的附图。
图 1是现有技术提供的一种干扰消除的装置的示意性结构图。 图 2 是本发明一实施例提供的一种干扰消除的装置的示意性结 构图。
图 3 是本发明一实施例提供的第一类干扰消除器的示意性结构 图。
图 4 是本发明一实施例提供的第二类干扰重构器的示意性结构 图。
图 5 是本发明一实施例提供的自干扰信号重构模块的示意性结 构图。
图 6 是本发明另一实施例提供的自干扰信号重构模块的示意性 结构图。
图 7 是本发明又一实施例提供的自干扰信号重构模块的示意性 结构图。
图 8 是本发明再一实施例提供的自干扰信号重构模块的示意性 结构图。
图 9是本发明一实施例提供的幅相调节器的示意性结构图。 图 10 是本发明另一实施例提供的一种干扰消除的装置的示意 性结构图。
图 11 是本发明又一实施例提供的一种干扰消除的装置的示意 性结构图。
图 12是本发明一实施例提供的干扰消除方法的示意性流程图。 附图标记:
110-主接收天线
120-分路器
121-分路器的输入端
122-分路器的第一输出端
123-分路器的第二输出端
130-第一类干扰消除器 131· 楚
—弟一一类干扰消除器的第一输入端
132· 楚
—弟一一类干扰消除器的第二输入端
133· 楚
—弟一一类干扰消除器的输出端
140 -耦合器
141 -耦合器的第一输入端
142 -耦合器的第二输入端
143. -耦合器的输出端
150 -弟楚一一类干扰重构器
151· -弟楚一一类干扰重构器的第一输入端
152· -弟楚一一类干扰重构器的第二输入端
153· -弟楚一一类干扰重构器的输出端
154·—弟楚一一类干扰重构器的第三输入端
1501 -自干扰估计模块
1502-自干扰信号重构模块
160-下变频器
161-下变频器的输入端
162-下变频器的输出端
170- ADC
171- ADC的输入端
172- ADC的输出端
具体实施方式
现在参照附图描述多个实施例, 其中用相同的附图标记指示本 文中的相同元件。 在下面的描述中, 为便于解释, 给出了大量具体 细节, 以便提供对一个或多个实施例的全面理解。 然而, 很明显, 也可以不用这些具体细节来实现所述实施例。 在其它例子中, 以方 框图形式示出公知结构和设备, 以便于描述一个或多个实施例。
在本说明书中使用的术语"部件"、 "模块"、 "系统 "等用于表示 计算机相关的实体、 硬件、 固件、 硬件和软件的组合、 软件、 或执 行中的软件。 例如, 部件可以是但不限于, 在处理器上运行的进程、 处理器、 对象、 可执行文件、 执行线程、 程序和 /或计算机。 通过图 示, 在计算设备上运行的应用和计算设备都可以是部件。 一个或多 个部件可驻留在进程和 /或执行线程中, 部件可位于一个计算机上和
/或分布在 2个或更多个计算机之间。 此外, 这些部件可从在上面存 储有各种数据结构的各种计算机可读介质执行。 部件可例如根据具 有一个或多个数据分组(例如来自与本地系统、 分布式系统和 /或网 络间的另一部件交互的二个部件的数据, 例如通过信号与其它系统 交互的互联网 ) 的信号通过本地和 /或远程进程来通信。
本发明实施例提供的干扰消除的装置可以设置于或本身即为采 用无线全双工技术的接入终端。 接入终端也可以称为系统、 用户单 元、 用户站、 移动站、 移动台、 远方站、 远程终端、 移动设备、 用 户终端、 终端、 无线通信设备、 用户代理、 用户装置或用户设备( UE, User Equipment s 接入终端可以是蜂窝电话、 无绳电话、 SIP ( Session Initiation Protocol , 会话启动协议 ) 电话、 WLL ( Wireless Local Loop, 无线本地环路)站、 PDA ( Personal Digital Assistant, 个人数字处理)、 具有无线通信功能的手持设备、 车载 设备、 可穿戴设备、 计算设备或连接到无线调制解调器的其它处理 设备。
此外, 本发明实施例提供的干扰消除的装置还可以设置于或本 身即为采用无线全双工技术的基站。 基站可用于与移动设备通信, 基站可以是 WiFi 的 AP ( Access Point , 无线接入点), 或者是 GSM ( Global System of Mobile communication, 全球移动通讯 ) 或 CDMA ( Code Division Multi le Access, 码分多址) 中的 BTS ( Base Transceiver Station, 基站 ), 也可以是 WCDMA ( Wideband Code Division Multiple Access, 宽带码分多址) 中的 NB ( NodeB, 基 站), 还可以是 LTE ( Long Term Evolution, 长期演进) 中的 eNB 或 eNodeB ( Evolut ional Node B, 演进型基站), 或者中继站或接 入点, 或者未来 5G 网络中的基站设备等。
此外, 本发明的各个方面或特征可以实现成装置或使用标准编 程和 /或工程技术的制品。 本申请中使用的术语"制品"涵盖可从任何 计算机可读器件、 载体或介质访问的计算机程序。 例如, 计算机可 读介质可以包括, 但不限于:磁存储器件 (例如, 硬盘、 软盘或磁带 等),光盘(例如, CD( Compact Disk,压缩盘)、DVD( Digital Versatile Disk, 数字通用盘)等), 智能卡和闪存器件(例如, EPR0M( Erasable Programmable Read-Only Memory, 可擦写可编程只读存储器)、 卡、 棒或钥匙驱动器等)。 另外, 本文描述的各种存储介质可代表用于存 储信息的一个或多个设备和 /或其它机器可读介质。 术语"机器可读 介质"可包括但不限于, 无线信道和能够存储、 包含和 /或承载指令 和 /或数据的各种其它介质。
需要说明的是, 在本发明实施例中, 干扰消除可以是消除信号 中的全部干扰分量 ( 包括第一类自干扰分量和第二类自干扰分量), 也可以是消除信号中的部分干扰分量 ( 包括第一类自干扰分量的一 部分和第二类自干扰分量的一部分)。
图 2 是本发明一实施例的用于干扰消除的装置的示意性结构 图。 如图 2所示, 该实施例提供的装置 100 包括:
主接收天线 110、 分路器 120、 第一类干扰消除器 130、 耦合器 140、 第二类干扰重构器 150、 下变频器 160、 ADC170及分路器 180; 其中, 主接收天线 110 的输出端连接第一类干扰消除器 130 的第一 输入端 131, 分路器 120 的输入端 121 用于获取根据发射信号生成 的射频参考信号, 分路器 120 的第一输出端 122 连接第一类干扰消 除器 130 的第二输入端 132, 第一类干扰消除器 130 的输出端 133 连接耦合器 140 的第一输入端 141, 分路器 120 的第二输出端 123 连接第二类干扰重构器 150 的第一输入端 151, 耦合器 140 的第二 输入端 142 连接第二类干扰重构器 150 的输出端 153; 第二类干扰 重构器 150的第三输入端 154, 输入数字基带参考信号; 耦合器 140 的输出端 143 连接下变频器 160 的输入端 161, 下变频器 160 的输 出端 162连接 ADC170 的输入端 171, ADC 的输出端 172连接分路器 180的第一输入端 181,分路器 180的第一输出端 182输出数字信号, 分路器 180 的第二输出端 183连接第二类干扰重构器 150 的第二输 入端 152。
其中, 图 2所示的实施例各器件作用综述为如下:
主接收天线 110, 用于接收射频接收信号, 并将所述射频接收 信号发送给第一类干扰消除器 130;
分路器 120, 用于获取根据发射信号生成的射频参考信号, 并 将所述射频参考信号发送给所述第一类干扰消除器 130 和第二类干 扰重构器 150;
第一类干扰消除器 130, 用于接收分路器 120 发送的射频参考 信号和主接收天线 110 发送的射频接收信号, 根据所述射频参考信 号对所述射频接收信号进行第一类自干扰分量消除获取第一处理信 号, 所述第一类自干扰分量包含主径自干扰分量;
第二类干扰重构器 150, 用于根据自干扰信道参数和分路器 120 发送的所述射频参考信号获取所述自干扰重构信号;
耦合器 140, 用于接收所述第一处理信号和第二类干扰重构器 150 发送的自干扰重构信号, 根据自干扰重构信号抵消所述第一处 理信号中的第二类自干扰信号生成第二处理信号;
下变频器 160, 用于对所述第二处理信号进行下变频处理生成 第三处理信号;
模数转换器 ADC170, 用于对所述第三处理信号进行模数转换生 成数字信号;
所述第二类干扰重构器 150, 还用于获取数字基带参考信号, 并接收模数转换器 ADC170生成的所述数字信号和所述分路器 120发 送的所述射频参考信号; 根据所述数字基带参考信号和所述数字信 号进行自干扰信道估计获取自干扰信道参数。
图 2 中还示出了分路器 180用于将第三处理信号转换的数字信 号分别作为输出信号和第二类干扰重构器 150的输入信号。
其中, 对图 2 所示的实施例中各器件的连接关系、 结构及功能 进行详细说明, 。下: 1>、 主接收天线 110
用于接收无线信号, 并将所接收到的无线信号作为射频接收信 号, 输入至第一类干扰消除器 130 的第一输入端 131, 其中, 主接 收天线 110 接收无线信号的过程可以与现有技术中天线接收无线信 号的过程相似, 这里, 为了避免赘述, 省略其说明。
2>、 分路器 120
具体地说, 在本发明实施例中, 可以采用例如, 耦合器或功率 分配器作为分路器 120。
并且, 由于射频参考信号根据来自发射机的发射信号获取, 可 以将例如, 经基带处理后的发射信号作为射频参考信号, 并通过分 路器 120的输入端 121输入至该分路器 120。
从而, 能够通过分路器 120 将该射频参考信号分成两路, 一路 信号, 经过分路器 120 的第一输出端 122传输至第一类干扰消除器 130 的第二输入端 132 而被第一类干扰消除器 130接收, 另一路信 号,经过分路器 120的第二输出端 123传输至第二类干扰重构器 150 的第一输入端 151 而被第二类干扰重构器 150接收。
通过将耦合器或功率分配器作为分路器 120, 能够使从该分路 器 120 输出的两路信号信号与射频参考信号的波形一致, 从而有利 于后述基于射频参考信号的干扰消除。
应理解, 以上列举的作为分路器 120 的耦合器和功率分配器仅 为示例性说明, 本发明并未限定于此, 其他能够使参考信号的波形 与发射信号的波形之间的相似度在预设范围内的装置均落入本发明 的保护范围内。
需要说明的是, 在本发明实施例中, 上述根据射频参考信号分 成的两路信号功率可以相同, 也可以相异, 本发明并未特别限定。
另外, 在本发明实施例中, 基带处理发射信号的发射过程, 可 以与现有技术相似, 这里, 为了避免赘述, 省略其说明。
3>、 第一类干扰消除器 130
具体地说, 如图 3 所示, 在本发明实施例中, 第一类干扰消除 器 130 可以包含: 分路器 a、 合路器 a及合路器 b, 其中分路器 a和 合路器 a 之间包含至少一条由延时器、 相位调节器和幅度调节器中 至少一个器件串联构成的传输路径, 其中合路器 a 的输出端连接合 路器 b 的一个输入端, 在本发明实施例中, 第一类干扰消除器 130 具有两个输入端。 分路器 a 可以为功率分配器、 合路器 a 及合路器 b可以为耦合器。
其中, 第一类干扰消除器 130的第一输入端 131 (即, 合路器 b 的一个输入端口 ) 与主接收天线 110 的输出端连接, 用于从主接收 天线 110的输出端接收信号 ( 即, 射频接收信号); 第一类干扰消除 器 130的第二输入端 132 (即, 分路器 a的输入端口 ) 与合路器 120 的第一输出端 122, 用于从合路器 120接收一路射频参考信号。
可选地, 该第一类干扰消除器 130 具体用于基于所述射频接收 信号, 对所述射频参考信号进行延时处理、 幅度调节处理和相位调 节处理, 以使所述射频参考信号的幅度与所述射频接收信号中的第 一类自干扰分量的幅度方向相反或近似相反, 使所述射频参考信号 的相位与所述射频接收信号中的第一类自干扰分量的相位相同或接 近相同; 或,
基于所述第一接收信号, 对所述射频参考信号进行延时处理、 幅度调节处理和相位调节处理, 以使所述射频参考信号的幅度与所 述第一接收信号中的第一类自干扰分量的幅度相同或近似相同, 使 所述参考信号的相位与所述第一接收信号中的第一类自干扰分量的 相位相差 180° 或接近相差 180° ;
将经延时处理、 幅度调节处理和相位调节处理后的射频参考信 号合路并与射频接收信号结合。
具体地说, 第一类干扰消除器 130 的第二输入端 132 与分路器 120 的第一输出端 122 连接, 并且, 经由第一类干扰消除器 130 的 第二输入端 132 而从该分路器 120 的第一输出端 122 的信号 (即, 射频参考信号) 被输入分路器 a, 其中分路器 a可以为功率分配器, 分路器 a 将射频参考信号分为若干路射频参考信号 (其中该若干路 射频参考信号的功率可以相同或不同 ); 以其中一路为例说明, 分路 器 a —个输出端将一路射频参考信号输出至至由延时器、 相位调节 器和幅度调节器串联构成的调节电路, 该调节电路用于通过延时、 衰减和移向等方式, 对信号的时延、 幅度和相位进行调节, 例如, 将可以通过衰减, 使该射频参考信号的幅度接近上述射频接收信号 中的第一类自干扰分量 (其中, 包含主径干扰信号分量) 的幅度, 当然, 最佳效果是幅度相同, 但由于实际应用中存在误差, 所以调 整到近似相同也是可以的,并且,可以通过延时和 /或可以通过移相, 将射频参考信号的相位调节到与射频接收信号 (具体地说, 是射频 接收信号中的第一类自干扰分量) 相差 1 8 0 ° 或近似相差 1 8 0 ° 。
或者, 可以通过衰减, 使该射频参考信号的幅度与上述射频接 收信号中的第一类自干扰分量的幅度方向相反, 当然, 最佳效果是 幅度方向相反, 但由于实际应用中存在误差, 所以调整到近似相反 也是可以的, 并且, 可以通过延时和 /或可以通过移相, 将射频参考 信号的相位调节到与射频接收信号 (具体地说, 是射频接收信号中 的第一类自干扰分量) 相同或近似相同。
以上仅是对分路器分成一路射频参考信号进行说明, 当然由于 分路器将射频参考信号分成了多路, 最后又通过合路器 a 进行了合 并, 因此上述的延时处理、 幅度调节处理和相位调节处理也可以是 分别发生在分路器输出的每个支路上的作用, 最后通过合路后达到 对分路器的输入端输入的射频参考信号的延时处理、 幅度调节处理 和相位调节处理的目 的, 即分路器输出的每个支路上可以包含延时 器、 相位调节器和幅度调节器中的至少一种器件。
当然, 幅度调节可以表述为衰减或增益, 上述实施例中仅是以 衰减为例进行说明, 此外, 在本发明实施例中 "近似" 可以是指二 者之间的相似度在预设的范围之内, 该预设范围可以根据实际的使 用和需要任意确定, 本发明并未特别限定。 以下为了避免赘述, 在 未特别说明的情况下, 省略对相似描述的说明。
其后, 分路器 a 输出的每个支路的射频参考信号经幅度和相位 调节后通过合路器 a合路, 并输入至合路器的 b 另一个输入端口, 从而, 合路器 b 可以将该射频接收信号与经由上述幅度和相位调节 并合路后的射频参考信号结合 (例如, 相加或者相减), 以抵消射频 接收信号中的第一类自干扰分量, 从而实现对射频接收信号的第一 类自干扰分量的消除处理。
作为示例而非限定, 在本发明实施例中, 作为幅度调节器, 可 以是用例如, 衰减器等。 作为相位调节器可以适用例如, 移相器等。 作为延时器可以适用例如, 延时线等。
从而, 从第一类干扰消除器 130 的输出端 133 (具体地说, 是 从合路器 b 的输出端) 所输出的第一处理信号为从射频接收信号中 消除第一类自干扰分量而生成的信号。
需要说明的是, 在本发明实施例中, 可以基于上述合路器 b 的 输出, 以使从合路器 b 输出的第一处理信号的强度最小化的方式调 节延时器、 相位调节器和幅度调节器。 并且, 本发明并不限定于以 上事实方式, 只要够根据射频参考信号使射频接收信号的强度减小 (或者说, 使第一处理信号的强度小于射频接收信号的强度), 则能 够起到干扰消除的效果。
4>、 第二类干扰重构器 150
具体地说, 如图 4 所示, 在本发明实施例中, 第二类干扰重构 器 150可以包含: 自干扰估计模块 1501和;
自干扰估计模块 1501, 用于获取所述数字基带参考信号并接收 模数转换器 ADC170生成的所述数字信号, 根据所述数字基带参考信 号和所述数字信号进行自干扰信道估计获取自干扰信道参数;
可选的, 自干扰估计模块 1501 包括: 现场可编程门阵列 FPGA ( Field - Programmable Gate Array )、 中央处理器 CPU ( Centra! Processing Unit) 或其他专用集成电路 ASIC ( Application Specific Integrated Circuit ) 中的任意一种。 根据所述数字基带参考信号 和所述数字信号进行自干扰信道估计可以采用基于导频的信道估计 方法或者自适应滤波方法, 例如 LMS ( Least mean square, 最小均 方 ) 算法或 RLS ( Recursive least mean square, 递归最小均方 ) 算法, 此为现有技术不在赘述。
此外可选的, 发射信号包括间隔设置的自干扰信道估计时隙和 数据传输时隙; 其中数据传输时隙可以进行全双工数据通信, 在自 干扰信道估计时隙, 通信对端不进行数据的发射, 本端接收机所接 收的信号中只包含自干扰信号, 由于没有来自通信对端的信号, 因 此, 本端利用 自干扰信道估计时隙进行进行自干扰信道估计以获取 自干扰信道参数。 具体来说, 在自干扰信道估计时隙, 射频接收信 号只包含第二类自干扰分量, 在自干扰信道估计时隙对射频接收信 号处理获取的数字信号参考数字基带参考信号进行自干扰信道估 计。 因此, 在自干扰信道估计时隙, 通信对端不发射信号, 接收机 所接收的信号只包含自干扰信号, 由于没有来自通信对端的信号, 接收机可以在自干扰信道估计时隙进行自干扰信道估计获取自干扰 信道参数, 其中, 自干扰信道参数可以包括指示第二类自干扰分量 的传输路径时延、 相位、 幅度参数; 在数据传输时隙, 接收机所接 收的信号为包含自干扰信号和数据信号, 接收机可以在数据传输时 隙, 根据射频参考信号和自干扰信道参数生成自干扰重构信号, 并 将该干扰重构信号用于第二类自干扰分量的抵消。
自干扰信号重构模块 1502, 用于接收分路器 120发送的所述射 频参考信号和自干扰估计模块 1501获取的所述自干扰信道参数, 并 根据所述自干扰信道参数和所述射频参考信号获取所述自干扰重构 信号。
进一步的, 参照图 5所示, 自干扰信号重构模块 1502, 包括: 第一延时器组、 第一幅相调节器组及第一合路器;
所述第一延时器组包含至少一个延时器, 其中延时器串联连接, 所述第一延时器组用于接收所述射频参考信号, 并通过延时器依次 对所述射频参考信号进行延时处理, 形成至少一路射频参考信号的 延时信号;
第一幅相调节器组, 包括至少一个幅相调节器, 其中每个幅相 调节器用于根据所述自干扰信道参数对一路射频参考信号的延时信 号进行幅相调节;
第一合路器, 用于对幅相调节后的射频参考信号的延时信号合 路处理生成所述自干扰重构信号。
此外参照图 5 并结合以上描述可以理解的是, 第一延时器组中 的延时器通过耦合器连接, 并且通过耦合器输出每次延时形成的射 频参考信号的延时信号, 即上一级的延时器的输出端连接耦合器的 一个输入端, 耦合器的一个输出端连接第一幅相调节器组中的一个 幅相调节器; 耦合器的另一个输出端连接下一级的延时器的输入端,
(上一级和下一级仅仅是为了描述清楚射频参考信号在第一延时器 组中的传递顺序, 并不是对本发明的实施方式的限制 ), 第一延时器 组中可以包括 M个延时器, 用于将射频参考信号进行 M次时延并形 成 M路射频参考信号的延时信号, 第一延时器组包含 M个延时器可 以形成的延时抽头数为 M。
进一步的, 参照图 6所述自干扰信号重构模块, 还包括: 第一射频选择开关, 用于接收所述至少一路射频参考信号的延 时信号, 根据所述自干扰信道参数在所有射频参考信号的延时信号 选择至少一路射频参考信号的延时信号发送至所述第一幅相调节器 组。
其中, 第一射频选择开关可以为 Μ χ Κ的射频选择开关, 即可以 在接收的 Μ路射频参考信号的延时信号中, 根据自干扰信道参数在 Μ 路射频参考信号的延时信号选择 Κ 路射频参考信号的延时信号输 出。
或者, 可选的, 参照图 7所示,
所述自干扰信号重构模块 1 5 02 , 包括:
第二延时器组、 第二幅相调节器组及第二合路器;
所述第二延时器组包含至少一个环形器及至少一个延时器, 所 述至少一个环形器通过第一端口和第三端口 串联连接, 所述延时器 的一端连接所述环形器的第二端口; 所述第一延时器组用于接收所 述射频参考信号, 并通过延时器依次对所述射频参考信号进行延时 处理, 形成至少一路射频参考信号的延时信号;
第二幅相调节器组, 包括至少一个幅相调节器, 其中每个幅相 调节器用于根据所述自干扰信道参数对一路射频参考信号的延时信 号进行幅相调节;
第二合路器, 用于对幅相调节后的射频参考信号的延时信号合 路处理生成所述自干扰重构信号。
此外参照图 7 并结合以上描述可以理解的是, 第一延时器组中 的环形器通过耦合器连接, 如图 7所示, 环形器包括三个端口 1、 2、 3 , 其中第一端口 1用于接收一路射频参考信号, 环形器的第二端口 2 用于将第一端口 1 接收的射频参考信号发送至一个延时器, 延时 器对该射频参考信号进行延时处理后返回给第二端口 2 , 环形器通 过第三端口 3 将延时处理后的射频参考信号发送至下一级环形器; 其中, 延时器可以采用延时线; 这里, 环形器接收延时器形成的延 时信号并且通过耦合器输出每次延时形成的射频参考信号的延时信 号, 即上一级的环形器的第三端口 3 连接耦合器的一个输入端, 耦 合器的一个输出端连接第一幅相调节器组中的一个幅相调节器; 耦 合器的另一个输出端连接下一级的环形器的第一端口 1 , (上一级和 下一级仅仅是为了描述清楚射频参考信号在第一延时器组中的传递 顺序, 并不是对本发明的实施方式的限制 ), 第一延时器组中可以包 括 M个延时器, 用于将射频参考信号进行 M次时延并形成 M路射频 参考信号的延时信号, 第一延时器组包含 M 个延时器可以形成的延 时抽头数为 M。 相对图 6 对应的实施例, 在采用延时线作为延时器 时, 由于延时线单端连接环形器的第二端口 2 , 即射频参考信号在 延时线中来回传输两次形成延时信号, 因此, 相对图 6 对应的实施 例延时线可以节省一半长度。
进一步的, 参照图 8所示, 所述自干扰信号重构模块, 还包括: 第二射频选择开关, 用于接收所述至少一路射频参考信号的延 时信号, 根据所述自干扰信道参数在所有射频参考信号的延时信号 选择至少一路射频参考信号的延时信号发送至所述第二幅相调节器 组。
其中, 第一射频选择开关可以为 Μ χ Κ的射频选择开关, 即可以 在接收的 M路射频参考信号的延时信号中, 根据自干扰信道参数在 M 路射频参考信号的延时信号选择 K 路射频参考信号的延时信号输 出。
进一步的, 幅相调节器可以通过方式实现:
第一种方式为参照图 10所示, 所述幅相调节器包括:
幅相调节器组包括: 衰减器和移相器;
衰减器用于根据所述自干扰信道参数对接收到的射频选择开关 发送的射频参考信号的延时信号进行幅度调节处理;
所述移相器用于根据所述自干扰信道参数对衰减器幅度调节处 理后的射频参考信号的延时信号移相处理。
对应上述图 6、 7、 8、 9所示的实施例, 若所述自干扰信号重构 模块 1502可分辨的自干扰信道的最小多径延迟差为 T, 则每个延迟 抽头产生的延迟可设置为 T, 即每个延时器可以对一路射频参考信 号形成 T 时延; 该最小多径延迟差, 是由对端基带发射信号的带宽 W 决定的, 即有: Γ = ϋ, 其中 "≥1, 当 " >1时, 需要采用超分辨算 法才能实现。 例如, 发射信号带宽 =40皿, 可取: T + 25 , 若 延迟抽头数 M = l6,则最大可重构延迟为 ΜΓ = 40(^的自干扰重构信号, 这相当于距离发射源 60米的反射体反射的信号。
5>耦合器 140
用于接收第一类干扰消除器 130 生成的第一处理信号和第二类 干扰重构器 150 发送的自干扰重构信号, 根据自干扰重构信号抵消 所述第一处理信号中的第二类自干扰信号生成第二处理信号。
6>下变频器 160
用于对耦合器 140 发送的第二处理信号进行下变频处理生成第 三处理信号。 其中, 由于在无线传输过程中射频接收信号是以高频 信号传输的, 这里的下变频处理是将高频信号成分转换为低频信号 成分, 从而避免高频信号成分对第二类干扰重构器 150 进行自干扰 信道估计的影响。
7>ADC170
用于对下变频器 160 发送的第三处理信号进行数模转换生成数 字信号。
8>分路器 180
其中, 图 2 中还示出了分路器 180, 与分路器 120 的结构和基 本工作原理相同, 分路器 180用于将 ADC170发送的数字信号分成两 路数字信号, 一路用作输出, 另一路用作第二类干扰重构器 150 的 输入信号。
参照图 10所示, 干扰消除的装置还包括, 第一放大器 190, 其 中第一放大器 190设置在耦合器 140和下变频器 160之间( 图 10 中 第一放大器以 LNA为例), 所述第一放大器 190用于放大所述第二处 理信号。 第一放大器对第二处理信号进行放大可以降低发射机侧对 射频发射信号的功率需求。
作为一种可选的方式, 参照图 11所示, 所述干扰消除的装置还 包括:
第二放大器 200, 设置在第一类干扰消除器 130 和耦合器 140 之间, 用于放大所述第一处理信号;
第三放大器 210, 设置在分路器 120 和第二类干扰重构器 150 之间, 用于放大所述第二类干扰重构器接收的射频参考信号。
图 11 中第二放大器和第三放大器均以 LNA为例, 通过第二放大 器对消噪处理前的第一处理信号进行放大, 第三放大器对进入第二 类干扰重构器 150 的所述射频参考信号进行放大, 这样可以降低对 射频参考信号的功率要求, 进而降低发射机侧对射频发射信号的功 率需求。
需要说明的是, 当全双工收发信机为多天线接收发送( Multiple Input Multiple Output, MIMO ) 时情况下, 每个接收天线对应的接 收支路均需要一个与每个发射天线对应的近区干扰器, 分别重构每 个发射支路对应的自干扰重构信号, 以对第一类自干扰分量逐一进 行抵消。
本发明实施例提供的干扰消除的装置, 通过射频参考信号对主 接收天线获取的射频接收信号进行干扰消除处理, 以消除射频接收 信号的第一类自干扰分量获取第一处理信号, 进一步通过自干扰信 道估计获取自干扰重构信号对第一处理信号中的第二类自干扰分量 进行抵消, 由于是直接在模拟域采用 自干扰重构信号抵消第二类自 干扰分量, 能够避免 ADC/DAC 动态范围的限制, 对第二类自干扰分 量进行有效的抵消。
以上结合图 1-11 详细说明了本发明的实施例提供的干扰消除 的装置, 以下结合图 12, 详细说明本发明的实施例用于干扰消除的 方法。
图 12示出一种用于干扰消除的方法的流程示意图, 包括以下步 骤:
101、 获取根据发射信号生成的射频参考信号;
102、 通过主接收天线接收射频接收信号;
103、根据所述射频参考信号对射频接收信号进行第一类自干扰 分量消除处理, 并生成第一处理信号, 所述第一类自干扰分量包含 主径自干扰分量;
104、根据自干扰信道参数和所述射频参考信号获取所述自干扰 重构信号;
105、根据自干扰重构信号抵消所述第一处理信号中的第二类自 干扰信号生成第二处理信号;
106、 对所述第二处理信号进行下变频处理生成第三处理信号;
107、 对所述第三处理信号进行数模转换生成数字信号;
108、 获取数字基带参考信号, 根据所述数字基带参考信号和所 述数字信号进行自干扰信道估计获取自干扰信道参数。
具体地说, 在步骤 101 中, 可以将基带处理 (例如, 数模转换、 上变频、 功率放大等处理) 后的发射信号作为射频参考信号, 输入 至例如, 耦合器或功率分配器, 从而, 能够通过耦合器或功率分配 器将该射频参考信号分成两路, 一路信号用于生成第一处理信号, 另一路信号用于参考生成自干扰重构信号。
可选的, 步骤 1 0 8 中, 获取数字基带参考信号, 具体可以包括: 对所述射频参考信号进行数字采样获取所述数字基带参考信号。
此外, 通过使用耦合器或功率分配器将射频参考信号分为两路, 能够使两路信号与发射信号波形一致, 其中, 波形一致包括与发射 信号波形相同或相似度在预设范围内, 从而有利于后述基于射频参 考信号的干扰消除 ( 包括第一类自干扰分量的消除和第二类自干扰 分量的消除)。
可选的, 步骤 1 0 5 后, 所述方法还包括: 放大所述第二处理信 号。
或者, 可选的, 在步骤 1 0 3 之后, 还包括: 放大所述第一处理 信号;
在步骤 1 04 中根据所述自干扰信道参数和所述射频参考信号获 取所述自干扰重构信号之前还包括: 放大所述射频参考信号。
以上对各种信号的放大均为采用低噪声放大器( L N A )进行放大, 其中直接对第二处理信号进行方法可以降低发射机侧对射频发射信 号的功率需求。 或者采用分别对第一处理信号进行放大, 及对进入 自干扰信号重构模块的所述射频参考信号进行放大, 这样也可以降 低对射频参考信号的功率要求, 进而降低发射机侧对射频发射信号 的功率需求,
可选的, 步骤 1 0 3 中根据所述射频参考信号对射频接收信号进 行第一类自干扰分量消除处理, 并生成第一处理信号, 包括:
基于所述射频接收信号, 对所述射频参考信号进行延时处理、 幅度调节处理和相位调节处理, 以使所述射频参考信号的幅度与所 述射频接收信号中的第一类 自干扰分量的幅度方向相反或近似相 反, 使所述射频参考信号的相位与所述射频接收信号中的第一类自 干 4尤分量的相位相同或接近相同; 或者 所述射频接收信号, 对所述射频参考信号进行延时处理、 幅度 调节处理和相位调节处理, 以使所述射频参考信号的幅度与所述射 频接收信号中的第一类自干扰分量的幅度相同或近似相同, 使所述 参考信号的相位与所述射频接收信号中的第一类自干扰分量的相位 相差 1 8 0 ° 或接近相差 1 8 0 ° 。
在本发明实施例中, 可以由例如, 延时器、 相位调节器和幅度 调节器串联构成的调节电路实施, 从而, 在步骤 1 0 3 中, 可以通过 该调节电路, 采用延时、 移相和衰减等方式, 对射频参考信号的幅 度和相位进行调节, 例如, 可以通过衰减, 使该射频参考信号的幅 度接近上述射频接收信号中的第一类自干扰分量的幅度, 当然, 最 佳效果是幅度相同, 但由于实际应用中存在误差, 所以调整到近似 也是可以的, 并且, 可以通过移相和 /或延时, 将射频参考信号的相 位调节到与射频接收信号中的第一类自干扰分量 (其中包括主径干 4尤信号) 相反或近似相反。
其后, 可以将经延时、 幅度和相位调节后的射频参考信号与射 频接收信号结合 (例如, 相加), 以抵消射频接收信号中的第一类自 干扰分量, 从而实现对射频接收信号的第一类自干扰分量的消除处 理, 并将处理后的信号作为第一处理信号。
作为示例而非限定, 在本发明实施例中, 作为幅度调节器, 可 以是用例如, 衰减器等。 作为相位调节器可以适用例如, 移相器等, 作为延迟器可以适用延时线。
应理解, 以上列举的基于射频参考信号对射频接收信号进行第 一类自干扰分量消除处理的方法和过程, 仅为示例性说明, 本发明 并不限定于此, 例如, 还可以采用使第一处理信号的强度最小化的 方式调节延时器、 移相器和衰减器。
可选的, 步骤 1 0 4 根据自干扰信道参数和所述射频参考信号获 取所述自干扰重构信号, 包括:
对所述射频参考信号进行至少一次延时处理, 形成至少一路射 频参考信号的延时信号; 根据所述自干扰信道参数对每一路射频参考信号的延时信号进 行幅相调节;
对幅相调节后的射频参考信号的延时信号合路处理生成所述自 干扰重构信号。
进一步的, 步骤 1 04 中, 根据所述自干扰信道参数对每一路射 频参考信号的延时信号进行幅相调节,
可以通过以下方式实现:
根据所述自干扰信道参数对射频参考信号的延时信号进行幅度 调节处理;
根据所述自干扰信道参数对幅度调节处理后的射频参考信号的 延时信号移相处理。
根据上述实施例的说明进一步的, 所述发射信号包括间隔设置 的自干扰信道估计时隙和数据传输时隙。 在自干扰信道估计时隙, 通信对端不发射信号, 接收机所接收的信号只包含自干扰信号, 由 于没有来自通信对端的信号, 接收机可以在自干扰信道估计时隙进 行自干扰信道估计获取自干扰信道参数, 其中, 自干扰信道参数可 以包括指示第二类自干扰分量的传输路径时延、 相位、 幅度参数; 在数据传输时隙, 接收机所接收的信号为包含自干扰信号和数据信 号, 接收机可以在数据传输时隙, 根据射频参考信号和自干扰信道 参数生成自干扰重构信号, 并将该干扰重构信号用于第二类自干扰 分量的抵消。 具体实例参照装置实施例中的说明这里不再赘述。
根据本发明实施例提供的干扰消除方法, 通过射频参考信号对 主接收天线获取的射频接收信号进行干扰消除处理, 以消除射频接 收信号的第一类自干扰分量获取第一处理信号, 进一步通过自干扰 信道估计获取自干扰重构信号对第一处理信号中的第二类自干扰分 量进行抵消, 由于是直接在模拟域采用 自干扰重构信号抵消第二类 自干扰分量, 能够避免 ADC / DAC 动态范围的限制, 对第二类自干扰 分量进行有效的 ·ί氏消。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例 描述的各示例的单元及算法步骤, 能够以电子硬件、 或者计算机软 件和电子硬件的结合来实现。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员 可以对每个特定的应用来使用不同方法来实现所描述的功能, 但是 这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述的系统、 装置和单元的具体工作过程, 可以参考前述方法 实施例中的对应过程, 在此不再赘述。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小 并不意味着执行顺序的先后, 各过程的执行顺序应以其功能和内在 逻辑确定, 而不应对本发明实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是 示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实 际实现时可以有另外的划分方式, 例如多个单元或组件可以结合或 者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一 点, 所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是 通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分 开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可 以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实 际的需要选择其中的部分或者全部单元来实现本实施例方案的 目 的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处 理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以 上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样 的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部 分或者该技术方案的部分可以以软件产品的形式体现出来, 该计算 机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计 算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 执行本 发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质包 括: U 盘、 移动硬盘、 只读存储器 ( ROM, Read-Only Memory )、 随 机存取存储器 ( RAM, Random Access Memory )、 磁碟或者光盘等各 种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种干扰消除的装置, 其特征在于, 包括:
主接收天线 ( 110 ), 用于接收射频接收信号, 并将所述射频接收 信号发送给第一类干扰消除器 ( 130 );
分路器 ( 120 ), 用于获取根据发射信号生成的射频参考信号, 并 将所述射频参考信号发送给所述第一类干扰消除器 ( 130 ) 和第二类 干扰重构器 ( 150 );
第一类干扰消除器 ( 130 ), 用于接收分路器 ( 120 ) 发送的射频 参考信号和主接收天线 ( 11Q ) 发送的射频接收信号, 根据所述射频 参考信号对所述射频接收信号进行第一类自干扰分量消除获取第一 处理信号, 所述第一类自干扰分量包含主径自干扰分量;
第二类干扰重构器 ( 150 ), 用于根据自干扰信道参数和分路器 ( 120 ) 发送的所述射频参考信号获取所述自干扰重构信号;
耦合器( 140 ), 用于接收所述第一处理信号和第二类干扰重构器 (150)发送的自干扰重构信号, 根据自干扰重构信号抵消所述第一处 理信号中的第二类自干扰信号生成第二处理信号;
下变频器( 160 ), 用于对所述第二处理信号进行下变频处理生成 第三处理信号;
模数转换器 ADC ( 170 ), 用于对所述第三处理信号进行模数转换 生成数字信号;
所述第二类干扰重构器 ( 150 ), 还用于获取数字基带参考信号, 并接收模数转换器 ADC( 170 )生成的所述数字信号和所述分路器( 120 ) 发送的所述射频参考信号; 根据所述数字基带参考信号和所述数字信 号进行自干扰信道估计获取自干扰信道参数。
2、 根据权利要求 1 所述的装置, 其特征在于, 所述第二类干扰 重构器 ( 150 ), 包括:
自干扰估计模块(1501) , 用于获取所述数字基带参考信号并接收 模数转换器 ADC ( 170 ) 生成的所述数字信号, 根据所述数字基带参 考信号和所述数字信号进行自干扰信道估计获取自干扰信道参数; 自干扰信号重构模块(1 5 0 2) , 用于接收分路器 ( 1 2 0 ) 发送的所 述射频参考信号和自干扰估计模块(1 5 Q 1 )获取的所述自干扰信道参 数, 并根据所述自干扰信道参数和所述射频参考信号获取所述自干扰 重构信号。
3、 根据权利要求 1 所述的装置, 其特征在于, 还包括: 第一放 大器, 所述第一放大器用于放大所述第二处理信号。
4、 根据权利要求 1 所述的装置, 其特征在于, 还包括: 第二放 大器和第三放大器;
所述第二放大器用于放大所述第一处理信号;
所述第三放大器用于放大所述第二类干扰重构器接收的射频参 考信号。
5、 根据权利要求 2 所述的装置, 其特征在于, 所述自干扰信号 重构模块(1 5 0 2) , 包括:
第一延时器组、 第一幅相调节器组及第一合路器;
所述第一延时器组包含至少一个延时器, 其中延时器串联连接, 所述第一延时器组用于接收所述射频参考信号, 并通过延时器依次对 所述射频参考信号进行延时处理, 形成至少一路射频参考信号的延时 信号;
第一幅相调节器组, 包括至少一个幅相调节器, 其中每个幅相调 节器用于根据所述自干扰信道参数对一路射频参考信号的延时信号 进行幅相调节;
第一合路器, 用于对幅相调节后的射频参考信号的延时信号合路 处理生成所述自干扰重构信号。
6、 根据权利要求 5 所述的装置, 其特征在于, 所述自干扰信号 重构模块(1 5 0 2) , 还包括:
第一射频选择开关, 用于接收所述至少一路射频参考信号的延时 信号, 根据所述自干扰信道参数在所有射频参考信号的延时信号选择 至少一路射频参考信号的延时信号发送至所述第一幅相调节器组。
7、 根据权利要求 2 所述的装置, 其特征在于, 所述自干扰信号 重构模块(1 5 0 2) , 包括:
第二延时器组、 第二幅相调节器组及第二合路器;
所述第二延时器组包含至少一个环形器及至少一个延时器, 所述 至少一个环形器通过第一端口和第三端口 串联连接, 所述延时器的一 端连接所述环形器的第二端口; 所述第一延时器组用于接收所述射频 参考信号, 并通过延时器依次对所述射频参考信号进行延时处理, 形 成至少一路射频参考信号的延时信号;
第二幅相调节器组, 包括至少一个幅相调节器, 其中每个幅相调 节器用于根据所述自干扰信道参数对一路射频参考信号的延时信号 进行幅相调节;
第二合路器, 用于对幅相调节后的射频参考信号的延时信号合路 处理生成所述自干扰重构信号。
8、 根据权利要求 7 所述的装置, 其特征在于, 所述自干扰信号 重构模块(1 5 0 2) , 还包括:
第二射频选择开关, 用于接收所述至少一路射频参考信号的延时 信号, 根据所述自干扰信道参数在所有射频参考信号的延时信号选择 至少一路射频参考信号的延时信号发送至所述第二幅相调节器组。
9、 根据权利要求 5 - 8 任一项所述的装置, 其特征在于, 幅相调 节器组包括: 衰减器和移相器;
衰减器用于根据所述第一幅相参数和第二幅相参数对接收到的 射频选择开关发送的射频参考信号的延时信号进行幅度调节处理; 所述移相器用于根据所述第一幅相参数和第二幅相参数对衰减 器幅度调节处理后的射频参考信号的延时信号移相处理。
1 0、 根据权利要求 1 - 9任一项所述的装置, 其特征在于, 所述 第一类干扰消除器 ( 1 3 0 ) 具体用于基于所述射频接收信号, 对 所述射频参考信号进行延时处理、 幅度调节处理和相位调节处理, 以 使所述射频参考信号的幅度与所述射频接收信号中的第一类自干扰 分量的幅度方向相反或近似相反, 使所述射频参考信号的相位与所述 射频接收信号中的第一类自干扰分量的相位相同或接近相同; 或 基于所述射频接收信号, 对所述射频参考信号进行延时处理、 幅 度调节处理和相位调节处理, 以使所述射频参考信号的幅度与所述射 频接收信号中的第一类自干扰分量的幅度相同或近似相同, 使所述参 考信号的相位与所述射频接收信号中的第一类自干扰分量的相位相 差 180° 或接近相差 180° 。
11、 根据权利要求 1-10 任一项所述的装置, 其特征在于, 所述 发射信号包括间隔设置的自干扰信道估计时隙和数据传输时隙。
12、 根据权利要求 2所述的装置, 其特征在于, 自干扰估计模块 (1501)包括: 现场可编程门阵列 FPGA、 中央处理器 CPU 或其他专用 集成电路 ASIC。
13、 一种干扰消除方法, 其特征在于, 包括:
获取根据发射信号生成的射频参考信号;
通过主接收天线接收射频接收信号;
根据所述射频参考信号对射频接收信号进行第一类自干扰分量 消除处理, 并生成第一处理信号, 所述第一类自干扰分量包含主径自 干扰分量;
根据自干扰信道参数和所述射频参考信号获取所述自干扰重构 信号;
根据自干扰重构信号抵消所述第一处理信号中的第二类自干扰 信号生成第二处理信号;
对所述第二处理信号进行下变频处理生成第三处理信号; 对所述第三处理信号进行数模转换生成数字信号;
获取数字基带参考信号,根据所述数字基带参考信号和所述数字 信号进行自干扰信道估计获取自干扰信道参数。
14、 根据权利要求 13 所述的方法, 其特征在于, 所述方法还包 括: 放大所述第二处理信号。
15、 根据权利要求 13 所述的方法, 其特征在于, 所述方法还包 括:
放大所述第一处理信号; 根据所述自干扰信道参数和所述射频参考信号获取所述自干扰 重构信号前, 所述方法包括: 放大所述射频参考信号。
1 6、 根据权利要求 1 3 所述的方法, 其特征在于, 所述根据自干 扰信道参数和所述射频参考信号获取所述自干扰重构信号, 包括: 对所述射频参考信号进行至少一次延时处理, 形成至少一路射频 参考信号的延时信号;
根据自干扰信道参数对每一路射频参考信号的延时信号进行幅 相调节;
对幅相调节后的射频参考信号的延时信号合路处理生成所述自 干扰重构信号。
1 7、 根据权利要求 1 6 所述的方法, 其特征在于, 所述根据自干 扰信道参数对每一路射频参考信号的延时信号进行幅相调节前, 还包 括:
根据自干扰信道参数在所有射频参考信号的延时信号选择至少 一路射频参考信号的延时信号;
所述根据所述自干扰信道参数对每一路射频参考信号的延时信 号进行幅相调节具体为: 对选择的至少一路射频参考信号的延时信号 中每一路射频参考信号的延时信号进行幅相调节。
1 8、 根据权利要求 1 6 所述的方法, 其特征在于, 所述根据自干 扰信道参数对每一路射频参考信号的延时信号进行幅相调节, 包括: 根据自干扰信道参数对射频参考信号的延时信号进行幅度调节 处理;
根据所述自干扰信道参数对幅度调节处理后的射频参考信号的 延时信号移相处理。
1 9、 根据权利要求 1 3 - 1 8任一项所述的方法, 其特征在于, 所述 根据所述射频参考信号对射频接收信号进行干扰消除处理, 包括: 基于所述射频接收信号, 对所述射频参考信号进行延时处理、 幅 度调节处理和相位调节处理, 以使所述射频参考信号的幅度与所述射 频接收信号中的第一类自干扰分量的幅度方向相反或近似相反, 使所 述射频参考信号的相位与所述射频接收信号中的第一类自干扰分量 的相位相同或接近相同; 或者
所述射频接收信号, 对所述射频参考信号进行延时处理、 幅度调 节处理和相位调节处理, 以使所述射频参考信号的幅度与所述射频接 收信号中的第一类自干扰分量的幅度相同或近似相同, 使所述参考信 号的相位与所述射频接收信号中的第一类自干扰分量的相位相差 180 。 或接近相差 180° 。
20、 根据权利要求 13-19任一项所述的方法, 其特征在于, 所述 发射信号包括间隔设置的自干扰信道估计时隙和数据传输时隙。
PCT/CN2014/080870 2014-06-26 2014-06-26 一种干扰消除的装置和方法 WO2015196428A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP14895760.8A EP3151438B1 (en) 2014-06-26 2014-06-26 Interference cancellation device and method
KR1020177001698A KR101901220B1 (ko) 2014-06-26 2014-06-26 간섭 제거 장치 및 방법
SG11201610769YA SG11201610769YA (en) 2014-06-26 2014-06-26 Interference cancellation apparatus and method
JP2016574975A JP6562566B2 (ja) 2014-06-26 2014-06-26 干渉除去の装置および方法
CN201480079679.6A CN106464284B (zh) 2014-06-26 2014-06-26 一种干扰消除的装置和方法
PCT/CN2014/080870 WO2015196428A1 (zh) 2014-06-26 2014-06-26 一种干扰消除的装置和方法
CA2953658A CA2953658C (en) 2014-06-26 2014-06-26 Interference cancellation apparatus and method
RU2017102384A RU2664392C2 (ru) 2014-06-26 2014-06-26 Способ и устройство подавления помех
BR112016030506-0A BR112016030506B1 (pt) 2014-06-26 2014-06-26 Aparelho e método de cancelamento de interferência
MX2016017327A MX360550B (es) 2014-06-26 2014-06-26 Aparato y método de cancelación de interferencia.
AU2014399209A AU2014399209B2 (en) 2014-06-26 2014-06-26 Interference cancellation apparatus and method
US15/388,968 US9973224B2 (en) 2014-06-26 2016-12-22 Interference cancellation apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/080870 WO2015196428A1 (zh) 2014-06-26 2014-06-26 一种干扰消除的装置和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/388,968 Continuation US9973224B2 (en) 2014-06-26 2016-12-22 Interference cancellation apparatus and method

Publications (1)

Publication Number Publication Date
WO2015196428A1 true WO2015196428A1 (zh) 2015-12-30

Family

ID=54936490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080870 WO2015196428A1 (zh) 2014-06-26 2014-06-26 一种干扰消除的装置和方法

Country Status (12)

Country Link
US (1) US9973224B2 (zh)
EP (1) EP3151438B1 (zh)
JP (1) JP6562566B2 (zh)
KR (1) KR101901220B1 (zh)
CN (1) CN106464284B (zh)
AU (1) AU2014399209B2 (zh)
BR (1) BR112016030506B1 (zh)
CA (1) CA2953658C (zh)
MX (1) MX360550B (zh)
RU (1) RU2664392C2 (zh)
SG (1) SG11201610769YA (zh)
WO (1) WO2015196428A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359896A (zh) * 2017-06-27 2017-11-17 电子科技大学 一种三维区域内电磁波设备的干扰抑制系统及方法
CN108111188A (zh) * 2016-11-17 2018-06-01 财团法人资讯工业策进会 针对全双工通信装置的自干扰消除信号产生装置与方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9001920B2 (en) * 2013-02-19 2015-04-07 At&T Intellectual Property I, Lp Apparatus and method for interference cancellation in communication systems
WO2015021461A1 (en) 2013-08-09 2015-02-12 Kumu Networks, Inc. Systems and methods for non-linear digital self-interference cancellation
WO2015054858A1 (zh) * 2013-10-17 2015-04-23 华为技术有限公司 一种信道估计方法、装置及系统
SG11201610674QA (en) * 2014-06-26 2017-02-27 Huawei Tech Co Ltd Interference cancellation apparatus and method
CN106464284B (zh) 2014-06-26 2019-08-16 华为技术有限公司 一种干扰消除的装置和方法
WO2015196404A1 (zh) 2014-06-26 2015-12-30 华为技术有限公司 一种干扰消除的装置和方法
PL226101B1 (pl) * 2015-02-10 2017-06-30 Sławomir Szechniuk Sposob redukcji zaklocen i szumow w ukladach z dwoma torami sygnalow oraz filtr fazowy
US10033542B2 (en) 2015-07-15 2018-07-24 Cisco Technology, Inc. Scheduling mechanisms in full duplex cable network environments
US9942024B2 (en) 2015-07-15 2018-04-10 Cisco Technology, Inc. Full duplex network architecture in cable network environments
US9966993B2 (en) * 2015-07-15 2018-05-08 Cisco Technology, Inc. Interference suppression in full duplex cable network environments
US9912464B2 (en) 2015-07-15 2018-03-06 Cisco Technology, Inc. Interference relationship characterization in full duplex cable network environments
US10230423B2 (en) * 2015-11-10 2019-03-12 Huawei Technologies Canada Co., Ltd. System and method for balanced passive cancellation for full duplex communications
US9742593B2 (en) 2015-12-16 2017-08-22 Kumu Networks, Inc. Systems and methods for adaptively-tuned digital self-interference cancellation
US10797750B2 (en) 2016-02-24 2020-10-06 Cisco Technology, Inc. System architecture for supporting digital pre-distortion and full duplex in cable network environments
EP3440779A1 (en) * 2016-04-05 2019-02-13 Telefonaktiebolaget LM Ericsson (publ) Interference supression in a radio transceiver device
CN107276599B (zh) * 2016-04-07 2021-05-04 中兴通讯股份有限公司 抗干扰方法、电路及移动终端
US10389510B2 (en) * 2016-07-22 2019-08-20 Electronics And Telecommunications Research Institute Self-interference signal cancellation apparatus and transceiver including the same
US10103774B1 (en) 2017-03-27 2018-10-16 Kumu Networks, Inc. Systems and methods for intelligently-tuned digital self-interference cancellation
CN111052642B (zh) * 2017-06-06 2023-12-26 弗劳恩霍夫应用研究促进协会 射频通信和干扰设备及相应的方法
CN110637422B (zh) * 2017-06-26 2024-06-14 Oppo广东移动通信有限公司 无线通信方法和设备
CN107547105B (zh) * 2017-08-31 2019-10-18 电子科技大学 一种用于抵消不可分辨多径的全双工射频自干扰抑制方法
EP3499731B1 (en) * 2017-12-18 2021-07-14 NXP USA, Inc. Interference cancellation of expected interference signal
KR102339808B1 (ko) * 2018-02-27 2021-12-16 쿠무 네트웍스, 아이엔씨. 구성가능한 하이브리드 자기-간섭 소거를 위한 시스템 및 방법
KR102503541B1 (ko) 2018-09-04 2023-02-27 삼성전자주식회사 데이터 통신 신호로부터 무선 전력에 의한 간섭을 제거하는 전자 장치 및 그 작동 방법
KR20200071491A (ko) * 2018-12-11 2020-06-19 삼성전자주식회사 안테나를 통해 수신된 신호의 적어도 일부를 감쇄하기 위한 전자 장치 및 통신 신호 제어 방법
US10868661B2 (en) 2019-03-14 2020-12-15 Kumu Networks, Inc. Systems and methods for efficiently-transformed digital self-interference cancellation
CN111865361B (zh) * 2019-04-25 2023-03-24 华为技术有限公司 一种全双工自干扰消除方法和装置
US11159197B2 (en) * 2019-04-29 2021-10-26 Qualcomm Incorporated Self-interference cancellation for in-band full-duplex wireless communication
JP7269144B2 (ja) * 2019-10-07 2023-05-08 株式会社東芝 レーダ装置、信号処理装置、および方法
US11245430B1 (en) * 2020-08-14 2022-02-08 Apple Inc. Wireless transmitters having self-interference cancellation circuitry
CN111948614B (zh) * 2020-08-20 2023-01-10 电子科技大学 一种相控阵雷达宽带自干扰射频域分段对消系统及方法
CN112235073B (zh) * 2020-10-22 2023-09-01 维沃移动通信有限公司 干扰信号的抵消方法、驱动集成电路和电子设备
US11726166B2 (en) * 2020-11-18 2023-08-15 Kabushiki Kaislia Toshiba Dual polar full duplex radar transceiver
CN114726459B (zh) * 2021-01-04 2024-09-06 中国移动通信有限公司研究院 一种干扰消除方法、装置及设备
CN113206677B (zh) * 2021-04-28 2022-09-27 中国电子科技集团公司第三十六研究所 一种自干扰抵消器
CN115276686B (zh) * 2022-06-22 2024-03-01 中国科学院国家天文台 低频射电频谱仪干扰信号的处理方法、装置、设备及介质
CN116112324B (zh) * 2023-02-02 2024-10-15 电子科技大学 一种同时同频自干扰收发联合抑制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453228A (zh) * 2007-12-04 2009-06-10 松下电器产业株式会社 共站址干扰消除系统和方法
CN101656562A (zh) * 2009-09-22 2010-02-24 武汉虹信通信技术有限责任公司 一种实现直放站自激干扰消除的装置及方法
KR20130061326A (ko) * 2011-12-01 2013-06-11 연세대학교 산학협력단 노드, 릴레이 노드 및 이의 제어 방법
CN103685098A (zh) * 2012-09-07 2014-03-26 华为技术有限公司 一种干扰信号的处理方法、装置和系统

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9423027D0 (en) 1994-11-15 1995-01-04 Univ Bristol Full-duplex radio transmitter/receiver
US5691978A (en) * 1995-04-07 1997-11-25 Signal Science, Inc. Self-cancelling full-duplex RF communication system
JP3603714B2 (ja) * 2000-01-06 2004-12-22 Kddi株式会社 符号分割多元接続方式用リピータ装置
US20030098806A1 (en) * 2001-11-27 2003-05-29 Green Evan R. Rejecting interference for simultaneous received signals
CN1553601A (zh) 2003-06-03 2004-12-08 西门子(中国)有限公司 时分双工系统中消除自生干扰的方法
US7804760B2 (en) * 2003-08-07 2010-09-28 Quellan, Inc. Method and system for signal emulation
US7123676B2 (en) * 2003-11-17 2006-10-17 Quellan, Inc. Method and system for antenna interference cancellation
JP2008017341A (ja) * 2006-07-07 2008-01-24 Ntt Docomo Inc 無線通信装置および無線通信方法
EP2095516A2 (en) 2006-11-06 2009-09-02 Nokia Corporation Analog signal path modeling for self-interference cancellation
US8526903B2 (en) 2008-03-11 2013-09-03 Qualcomm, Incorporated High-linearity receiver with transmit leakage cancellation
US8249540B1 (en) * 2008-08-07 2012-08-21 Hypres, Inc. Two stage radio frequency interference cancellation system and method
KR101386839B1 (ko) 2010-05-18 2014-04-18 엘에스산전 주식회사 Rfid 시스템의 송신누설신호 제거장치
US8630211B2 (en) 2010-06-30 2014-01-14 Qualcomm Incorporated Hybrid radio architecture for repeaters using RF cancellation reference
US10284356B2 (en) * 2011-02-03 2019-05-07 The Board Of Trustees Of The Leland Stanford Junior University Self-interference cancellation
US9019849B2 (en) * 2011-11-07 2015-04-28 Telefonaktiebolaget L M Ericsson (Publ) Dynamic space division duplex (SDD) wireless communications with multiple antennas using self-interference cancellation
US10243719B2 (en) * 2011-11-09 2019-03-26 The Board Of Trustees Of The Leland Stanford Junior University Self-interference cancellation for MIMO radios
WO2015048678A1 (en) 2013-09-27 2015-04-02 The Board Of Trustees Of The Leland Stanford Junior University Self-interference cancellation for mimo radios
CN103139115B (zh) 2011-11-25 2016-08-03 华为技术有限公司 一种干扰对齐方法、装置及系统
CN103200140B (zh) 2012-01-06 2016-05-11 微思泰(北京)信息技术有限公司 一种基于预均衡的干扰消除系统及方法
WO2013173250A1 (en) 2012-05-13 2013-11-21 Invention Mine Llc Full duplex wireless transmission with self-interference cancellation
US8842584B2 (en) 2012-07-13 2014-09-23 At&T Intellectual Property I, L.P. System and method for full duplex cancellation
CN103595520B (zh) 2012-08-16 2017-08-04 华为技术有限公司 通讯装置及其空分双工方法
CN104737456B (zh) 2012-10-17 2016-11-09 株式会社村田制作所 收发装置
US8964608B2 (en) 2013-01-11 2015-02-24 Futurewei Technologies, Inc. Interference cancellation for division free duplexing or full duplex operation
CN103297069B (zh) 2013-05-08 2015-05-20 北京工业大学 一种全双工无线电射频干扰删除装置与方法
US9100110B2 (en) * 2013-08-29 2015-08-04 Qualcomm Incorporated Non-linear interference cancellation with multiple aggressors
CN103427872B (zh) * 2013-09-03 2015-01-21 电子科技大学 一种同时同频全双工多抽头射频自干扰抵消系统及方法
CN103427874B (zh) * 2013-09-03 2015-03-11 电子科技大学 多径环境下大发射功率同时同频自干扰抵消系统及方法
CN103580720B (zh) 2013-11-20 2015-07-08 东南大学 一种同频全双工自干扰抵消装置
WO2015078009A1 (zh) 2013-11-29 2015-06-04 华为技术有限公司 减少通信系统自干扰信号的方法和装置
WO2015081514A1 (zh) * 2013-12-04 2015-06-11 华为技术有限公司 收发共用天线的自干扰消除方法、收发机和通信设备
CN103701480A (zh) 2013-12-31 2014-04-02 上海交通大学 无线全双工单输入单输出通信模拟自干扰信号消除装置
CN106134095B (zh) * 2014-03-20 2019-08-23 华为技术有限公司 用于自干扰消除的装置和方法
CN106464284B (zh) 2014-06-26 2019-08-16 华为技术有限公司 一种干扰消除的装置和方法
SG11201610674QA (en) 2014-06-26 2017-02-27 Huawei Tech Co Ltd Interference cancellation apparatus and method
WO2015196404A1 (zh) 2014-06-26 2015-12-30 华为技术有限公司 一种干扰消除的装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453228A (zh) * 2007-12-04 2009-06-10 松下电器产业株式会社 共站址干扰消除系统和方法
CN101656562A (zh) * 2009-09-22 2010-02-24 武汉虹信通信技术有限责任公司 一种实现直放站自激干扰消除的装置及方法
KR20130061326A (ko) * 2011-12-01 2013-06-11 연세대학교 산학협력단 노드, 릴레이 노드 및 이의 제어 방법
CN103685098A (zh) * 2012-09-07 2014-03-26 华为技术有限公司 一种干扰信号的处理方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3151438A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111188A (zh) * 2016-11-17 2018-06-01 财团法人资讯工业策进会 针对全双工通信装置的自干扰消除信号产生装置与方法
CN107359896A (zh) * 2017-06-27 2017-11-17 电子科技大学 一种三维区域内电磁波设备的干扰抑制系统及方法

Also Published As

Publication number Publication date
RU2017102384A3 (zh) 2018-08-02
BR112016030506B1 (pt) 2023-04-11
JP2017520192A (ja) 2017-07-20
EP3151438A4 (en) 2017-07-12
MX360550B (es) 2018-10-26
KR20170018452A (ko) 2017-02-17
SG11201610769YA (en) 2017-01-27
US20170104506A1 (en) 2017-04-13
AU2014399209B2 (en) 2018-03-29
AU2014399209A1 (en) 2017-02-02
RU2664392C2 (ru) 2018-08-17
JP6562566B2 (ja) 2019-08-21
BR112016030506A2 (zh) 2017-08-22
RU2017102384A (ru) 2018-08-02
EP3151438B1 (en) 2019-04-10
US9973224B2 (en) 2018-05-15
MX2016017327A (es) 2017-07-07
CA2953658A1 (en) 2015-12-30
EP3151438A1 (en) 2017-04-05
KR101901220B1 (ko) 2018-09-21
CN106464284B (zh) 2019-08-16
CA2953658C (en) 2020-05-12
CN106464284A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2015196428A1 (zh) 一种干扰消除的装置和方法
JP6339702B2 (ja) 干渉除去装置および方法
US10050812B2 (en) Methods and apparatuses for interference cancellation
US9973233B2 (en) Interference cancellation apparatus and method
US10079666B2 (en) Apparatus and method for self-interference cancellation
JP2017520192A5 (zh)
Askar et al. Active self-interference cancellation mechanism for full-duplex wireless transceivers
US10205585B2 (en) Systems and methods for analog cancellation for division free duplexing for radios using MIMO
WO2015081514A1 (zh) 收发共用天线的自干扰消除方法、收发机和通信设备
TW201208457A (en) Hybrid radio architecture for repeaters using RF cancellation reference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/017327

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016574975

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2953658

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014895760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014895760

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016030506

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177001698

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017102384

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014399209

Country of ref document: AU

Date of ref document: 20140626

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016030506

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161223