WO2015081514A1 - 收发共用天线的自干扰消除方法、收发机和通信设备 - Google Patents
收发共用天线的自干扰消除方法、收发机和通信设备 Download PDFInfo
- Publication number
- WO2015081514A1 WO2015081514A1 PCT/CN2013/088512 CN2013088512W WO2015081514A1 WO 2015081514 A1 WO2015081514 A1 WO 2015081514A1 CN 2013088512 W CN2013088512 W CN 2013088512W WO 2015081514 A1 WO2015081514 A1 WO 2015081514A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- self
- interference
- reference signal
- channel
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 196
- 230000005540 biological transmission Effects 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 230000008030 elimination Effects 0.000 claims abstract 6
- 238000003379 elimination reaction Methods 0.000 claims abstract 6
- 238000006243 chemical reaction Methods 0.000 claims description 92
- 238000012545 processing Methods 0.000 claims description 67
- 230000003321 amplification Effects 0.000 claims description 21
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 21
- 230000008054 signal transmission Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 230000010267 cellular communication Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/44—Transmit/receive switching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/50—Circuits using different frequencies for the two directions of communication
- H04B1/52—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
- H04B1/525—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B15/00—Suppression or limitation of noise or interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/143—Two-way operation using the same type of signal, i.e. duplex for modulated signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1461—Suppression of signals in the return path, i.e. bidirectional control circuits
Definitions
- Embodiments of the present invention relate to mobile communication technologies, and in particular, to a self-interference cancellation method, a transceiver, and a communication device for transmitting and receiving a shared antenna. Background technique
- various communication nodes such as a base station and a user equipment (User Equipment, hereinafter referred to as UE), have the capability of transmitting and receiving signals.
- UE User Equipment
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the prior art uses Time Division Duplex (TDD) or Frequency Division Duplex (FDD). Communication.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- Wireless full-duplex technology can simultaneously receive and transmit on the same wireless channel, which improves spectrum utilization.
- wireless full-duplex technology needs to reduce the self-interference of the transmitted signal of the same transceiver to the received signal as much as possible.
- FIG. 1 is a block diagram of radio frequency self-interference processing of a transmitting and receiving common antenna in the prior art.
- a transmitting and receiving isolation device such as a circulator can be used to isolate a transmitting channel and a receiving channel, and the transmitting signal passes through a power amplifier (Power Amplifier, below).
- Power Amplifier Power Amplifier
- the abbreviation PA is input from the left side of the circulator and is output from the upper side of the circulator to the shared antenna, thereby transmitting the transmitted signal, and the received signal received from the shared antenna is input from the upper side of the circulator and from the ring
- the output of the right side of the device enters the Low Noise Amplifier (LNA) of the receiving channel.
- LNA Low Noise Amplifier
- the transmitting signal can be separated by a coupler or a power splitter on the transmitting channel, and the signal is sequentially passed through the attenuator and the phaser to generate a self-interference signal. Then, the self-interference signal is coupled with the received signal by a coupler or combiner disposed on the receiving channel to eliminate self-interference.
- the self-interference signal entering the receiving channel is not only a signal whose signal is subjected to simple amplitude attenuation and phase change. Therefore, the prior art cannot effectively perform effective self-interference cancellation, thereby resulting in poor quality of the received signal. Summary of the invention
- the embodiments of the present invention provide a self-interference cancellation method, a transceiver, and a communication device for transmitting and receiving a shared antenna, so as to solve the problem that the self-interference signal in the existing transceiver shared antenna cannot be effectively eliminated.
- an embodiment of the present invention provides a self-interference cancellation method for a transceiver common antenna, which includes:
- the second communication signal is a signal received from the transceiver common antenna; according to the first communication signal and the description information of the self-interference transmission channel, a self-interference signal is obtained, and the self-interference signal is used to The second communication signal performs self-interference cancellation.
- the sending the first reference signal on the transmitting channel includes:
- Receiving the second reference signal on the reference signal receiving channel including:
- the reference signal receiving channel Receiving, by the reference signal receiving channel, a second reference signal transmitted by the transceiver isolator, where the second reference signal includes a reflected signal of the transceiver common antenna to the first reference signal and a first signal on the transmitting channel
- the reference signal is leaked to the interference signal on the reference signal receiving channel through the transceiver isolator; and the second reference signal is subjected to down-conversion and analog-to-digital conversion processing;
- Transmitting the first communication signal on the transmitting channel includes:
- Receiving the second communication signal on the communication signal receiving channel includes:
- the self-interference signal is obtained according to the description information of the first communication signal and the self-interference transmission channel, and the self-interference is adopted
- the signal performs self-interference cancellation on the second communication signal, including:
- the self-interference signal after the processing is combined with the second communication signal to obtain a second communication signal after self-interference cancellation.
- the sending, by the transmitting, the first reference signal includes:
- Receiving the second reference signal on the reference signal receiving channel including:
- the reference signal receiving channel Receiving, by the reference signal receiving channel, a second reference signal transmitted by the transceiver isolator, where the second reference signal includes a reflected signal of the transceiver common antenna to the first reference signal and a first signal on the transmitting channel
- the reference signal is leaked to the interference signal on the reference signal receiving channel through the transceiver isolator; and the second reference signal is subjected to down-conversion and analog-to-digital conversion processing;
- the sending, by the transmitting, the first communications signal includes:
- Receiving the second communication signal on the communication signal receiving channel includes:
- the self-interference signal is obtained according to the description information of the first communication signal and the self-interference transmission channel, and the self-interference is adopted
- the signal performs self-interference cancellation on the second communication signal, including:
- the self-interference signal after the processing is combined with the second communication signal to obtain a second communication signal after self-interference cancellation.
- a transceiver for transmitting and receiving a shared antenna includes: a transmitter, a receiver, and a self-interference signal generating device, wherein a transmitting channel of the transmitter and a receiving channel of the receiver are shared with a transceiver through a transceiver isolator An antenna connection, the self-interference signal generating device is connected between the transmitter and the receiver; the receiving channel of the receiver includes a reference signal receiving channel and a communication signal receiving channel;
- the transmitter transmits a first reference signal on the transmission channel
- the receiver receives a second reference signal on the reference signal receiving channel, where the second reference signal is a reference signal after the first reference signal passes through the self-interference signal transmission channel
- the self-interference signal generating device performs channel estimation according to the first reference signal and the second reference signal, and obtains a description of the self-interference transmission channel Information
- the receiver Transmitting, by the transmitter, a first communication signal on the transmission channel, in a data transmission and reception time slot, And the receiver receives a second communication signal on the communication signal receiving channel, the first communication signal is a signal transmitted by the transmitter from the transceiver common antenna, and the second communication signal is the receiving a signal received by the machine from the transceiver shared antenna; the self-interference signal generating device obtains a self-interference signal according to the first communication signal and the description information of the self-interference transmission channel; the receiver adopts the self-interference The signal performs self-interference cancellation on the second communication signal.
- the transmitting channel of the transmitter is provided with a first digital-to-analog converter, a first up-converter, and a power amplifier connected in sequence;
- the reference signal receiving channel of the receiver is provided with a down converter and an analog-to-digital converter which are sequentially connected, and the communication signal receiving channel of the receiver is provided with a combiner and a low noise amplifier which are sequentially connected, and the lower
- the frequency converter and the combiner are both connected to a radio frequency switch and the radio frequency switch is connected to the transceiver isolator;
- the self-interference signal generating device includes a signal selector, a channel estimator, a self-interference signal generator, a second digital-to-analog converter, and a second up-converter, which are sequentially connected, and the signal selector and the self-interference signal Generator connection
- the first digital-to-analog converter is connected to a baseband unit, and the power amplifier is connected to the transceiver;
- the analog to digital converter is coupled to the channel estimator;
- the signal selector is coupled to the baseband unit, and the second upconverter is coupled to the combiner.
- the transmitting channel of the transmitter is provided with a first digital-to-analog converter that is sequentially connected, and the first Frequency converter, power amplifier and power divider;
- the reference signal receiving channel of the receiver is provided with a first down converter and a first analog-to-digital converter which are sequentially connected, and the communication signal receiving channel of the receiver is provided with a combiner and a low noise amplifier which are sequentially connected
- the first down converter and the combiner are both connected to a radio frequency switch and the radio frequency switch is connected to the transceiver isolator;
- the self-interference signal generating device includes a second down converter, a second analog to digital converter, a signal selector, a channel estimator, a self-interference signal generator, a second digital-to-analog converter, and a second up-converter which are sequentially connected And the signal selector is connected to the self-interference signal generator;
- the first digital-to-analog converter is connected to a baseband unit, and the power splitter is connected to the transceiver isolator Connect
- the first analog to digital converter is coupled to the channel estimator
- the second down converter is connected to the power splitter, and the second up converter is connected to the combiner.
- the transceiver isolator is a circulator.
- a third aspect a communication device comprising the transceiver of the second aspect, the first to the third possible implementation of the second aspect.
- the self-interference cancellation method, the transceiver, and the communication device of the transmitting and receiving common antenna perform channel estimation by transmitting the first reference signal to the transmitting end and the second reference signal received by the receiving end, thereby obtaining an accurate self-interference transmission channel.
- the description information is then used to generate a self-interference signal using the description information and the first communication signal, so that the received second communication signal can perform effective self-interference cancellation, thereby improving the quality of the received signal.
- FIG. 1 is a block diagram of radio frequency self-interference processing of a transmitting and receiving common antenna in the prior art
- Embodiment 2 is a system architecture diagram of Embodiment 1 of a transceiver for transmitting and receiving a shared antenna according to the present invention
- FIG. 3 is a structural diagram of a signal frame of a transmitting signal according to Embodiment 1 of the present invention
- FIG. 4 is a system architecture diagram of Embodiment 2 of a transceiver for transmitting and receiving a shared antenna according to the present invention
- Embodiment 5 is a system architecture diagram of Embodiment 3 of a transceiver for transmitting and receiving a shared antenna according to the present invention
- FIG. 6 is a flowchart of Embodiment 1 of a self-interference cancellation method for a transmitting and receiving common antenna according to the present invention
- FIG. 7 is a flowchart of Embodiment 2 of a self-interference cancellation method for a transmitting and receiving common antenna according to the present invention
- FIG. 9 is a schematic structural diagram of an embodiment of a communication device for transmitting and receiving a shared antenna according to the present invention. detailed description
- the transceiver 200 includes a transmitter 210, a receiver 220, and a self-interference signal generating device 230.
- the transmitting channel 211 of the 210 and the receiving channel of the receiver 220 are connected to a transceiver shared antenna 250 through the transceiver isolator 240, and the self-interference signal generating device 230 is connected between the transmitter 210 and the receiver 220;
- the transmitter 210 transmits a first reference signal on the transmission channel 211, and the receiver 220 receives the second reference signal on the reference signal receiving channel 221, the second reference signal being the a reference signal passing through the self-interference signal transmission channel;
- the self-interference signal generating device 230 performs channel estimation according to the first reference signal and the second reference signal to obtain description information of the self-interference transmission channel;
- the transmitter 210 transmits a first communication signal on the transmission channel 211, and the receiver 220 receives a second communication signal on the communication signal receiving channel 222, the first The communication signal is a signal transmitted by the transmitter 210 from the transceiver shared antenna 250, the second communication signal is a signal received by the receiver 220 from the transceiver shared antenna 250; the self-interference signal generating device 230 is based on the first communication The signal and the description information of the self-interference transmission channel obtain a self-interference signal; the receiver 220 performs self-interference cancellation on the second communication signal by using the self-interference signal.
- the transceiver splits the transmit signal through the attenuator and the phase shifter for amplitude attenuation and phase change, and then couples with the received signal at the receiving end to eliminate the self-interference signal.
- the self-interference signal is not a simple amplitude.
- the phase change includes a self-interference signal leaked from the transmitting end to the receiving end and a self-interference signal reflected by the antenna port into the receiving end, so the self-interference signal in the received signal cannot be effectively eliminated.
- the transceiver of this embodiment receives the self-interference signal generating device 230, transmits the reference signal in the self-interference channel measurement time slot, and receives the first reference signal transmitted by the transmitter 210 and the reference signal signal receiving channel 221 of the receiver 220.
- the second reference signal performs channel estimation to obtain an accurate description information of the self-interference transmission channel, and the description information of the self-interference transmission channel includes a variation characteristic of amplitude, phase, frequency, etc.; in the data transmission and reception time slot, the transmitter 210 is to be transmitted.
- the first communication signal and the description information of the obtained self-interference transmission channel are obtained from the interference signal, so that the second communication signal received by the communication signal receiving channel 222 of the receiver 220 is coupled by the self-interference signal, thereby effectively eliminating the self-interference signal, Thereby, the communication quality of the signal received by the receiver 220 is improved.
- FIG. 3 is a schematic diagram of a signal frame structure of the transmit signal according to Embodiment 1 of the transceiver of the present invention.
- the self-interference channel measures the time slot, only the transceiver 200 locally transmits the first reference signal for self-interference channel measurement, and the other communication devices in the same frequency band other communication peers do not transmit signals, or allow the same frequency band
- the communication device transmits a signal, but its transmission power should ensure that its transmitted signal enters the local power sufficiently low so as not to interfere with the measurement of the local self-interference channel; in the data transmission time slot, the first communication signal is transmitted.
- the present signal frame structure is also applicable to other embodiments of the present invention, and details are not described herein again.
- the transceiver of the embodiment by using the self-interference signal generating device, first obtains the description information of the accurate self-interference transmission channel by using the transmitter reference signal, and then generates the self-interference signal by using the description information and the communication signal, so that the receiver can be effective.
- the self-interference is eliminated, thereby improving the quality of the received signal.
- FIG. 4 is a system architecture diagram of a second embodiment of a transceiver for transmitting and receiving a shared antenna according to the present invention.
- the transmitting channel 211 of the transmitter 210 is provided with a first digital-to-analog converter 401, which is sequentially connected.
- the reference signal receiving channel 221 of the receiver 220 is provided with a down converter 405 and an analog to digital converter 404 connected in sequence, and the communication signal receiving channel 222 of the receiver 220 is provided with a combiner 406 and a serial connection a low noise amplifier 407, wherein the down converter 405 and the combiner 406 are both connected to a radio frequency switch 223 and the radio frequency switch 223 is connected to the transceiver isolator 240;
- the self-interference signal generating device 230 includes a signal selector 408 connected in sequence, and channel estimation a timer 409, a self-interference signal generator 410, a second digital-to-analog converter 411, and a second up-converter 412, and the signal selector 408 is connected to the self-interference signal generator 410;
- the first digital-to-analog converter 401 on the transmitting channel 211 is connected to the baseband unit 212 in the transmitter 210 and the power amplifier 403 is connected to the transceiver isolator 240; the analog-to-digital converter and the self-interference signal on the reference signal receiving channel 221
- the channel estimator 409 in the generating device 230 is connected; the signal selector 408 in the self-interference signal generating device 230 is connected to the baseband unit 212 in the transmitter 210 and the combined on the second upconverter 412 and the communication signal receiving channel 222
- the device 406 is connected.
- the signal transmitted by the baseband unit 212 includes two parts: a first reference signal and a first communication signal.
- the first digital-to-analog converter 401, the first up-converter 402, and the power amplifier 403 on the transmission channel 211 respectively perform digital-to-analog conversion on the first reference signal sent by the baseband unit 212, and up-convert the processing.
- the power amplification process, and then the antenna is transmitted through the transceiver isolator 240; through the receiving of the antenna and the transceiver isolator 240, the second reference signal first enters the RF switch 223 in the receiver 220, and the RF switch 223 is shown in FIG.
- the timing signal corresponding to the signal frame structure is controlled to turn on the reference signal receiving channel, and the second reference signal is sequentially processed by the down converter 405 and the analog to digital converter 404 on the reference signal receiving channel 221 for down-conversion processing and analog-to-digital conversion processing.
- the second reference signal; the signal selector 408 in the self-interference signal generator 230 selects the reference signal and the communication signal, and transmits the received first reference signal to the channel estimator 409, the channel estimator according to the first reference
- the signal and the processed second reference signal are used for channel estimation, and a description letter of the self-interference signal transmission channel is obtained.
- the self-interference signal generator 410 in the data transceiving time slot, the first digital-to-analog converter 401, the first up-converter 402, and the power amplifier 403 on the transmitting channel 211 respectively send the first communication to the baseband unit 212.
- the signal is subjected to digital-to-analog conversion, up-conversion processing and power amplification processing, and then transmitted to the antenna through the transceiver isolator 240.
- the second communication signal first enters the RF switch 223 in the receiver 220.
- the RF switch 223 turns on the communication signal receiving channel; the signal selector 408 in the self-interference signal generator 230 selects the reference signal and the communication signal, and transmits the received first communication signal to the self-interference signal generator 410.
- the self-interference signal generator 410 calculates the self-interference signal according to the description information of the self-interference signal transmission channel obtained by the first communication signal and the channel estimator 409, and then enters the second digital-to-analog converter 411 and the second up-converter 412 to perform the number.
- the mode conversion processing and the up-conversion processing obtain the processed self-interference signal, and then transmit to the communication signal receiving channel 22
- the combiner 406 on 2 the combiner 406 can also be a coupler; the combiner 406 can be the second pass
- the signal and the processed self-interference signal are combined to eliminate the self-interference signal in the second communication signal, and then enter the low noise amplifier 407 for noise reduction processing.
- the RF switch 223 is used for protection, so as to prevent the excessive receiving signal from blocking or damaging the receiving branch when transmitting the reference signal for the self-interference channel measurement (low noise amplifier LNA, etc.) For this reason, when the reference signal for self-interference channel measurement is transmitted, the communication signal receiving channel 222 is disconnected from the signal from the antenna by the radio frequency switch 223.
- the reference signal transmitted by the baseband unit of the digital domain is used as the first reference signal
- the second reference signal of the analog domain is up-converted and analog-digital converted into a digital signal
- the self-interference is performed in the digital domain by the channel estimator.
- the signal is tracked and estimated, and the description information of the self-interference transmission channel can be accurately obtained, and then the self-interference signal generator obtains the self-interference signal of the digital domain according to the first communication signal, and after the down-conversion and digital-to-analog conversion processing, the receiver and the receiver
- the second communication signal in the effective self-interference cancellation improves the transmission and reception isolation of the received signal.
- FIG. 5 is a system architecture diagram of a third embodiment of a transceiver for transmitting and receiving a shared antenna according to the present invention.
- a power splitter is introduced on the transmitting channel 211, and the power splitter can also be a coupler, as shown in FIG.
- the transmitter 211 of the transmitter 210 is provided with a first digital-to-analog converter 401, a first up-converter 402, a power amplifier 403 and a power splitter 501;
- the reference signal receiving channel 221 of the receiver 220 is provided with a first down converter 505 and a first analog to digital converter 504 connected in sequence, and the communication signal receiving channel 222 of the receiver 220 is provided with a connection in sequence.
- the self-interference signal generating device 230 includes a second down converter 502, a second analog to digital converter 503, a signal selector 408, a channel estimator 409, a self-interference signal generator 410, and a second digital-to-analog converter. 411 and the second up-converter 412, and the signal selector 408 is connected to the self-interference signal generator 410;
- the first digital-to-analog converter 401 on the transmitting channel 211 is connected to the baseband unit 212 in the transmitter 210 and the power splitter 504 is connected to the transceiver isolator 240; the first analog-to-digital converter 504 on the reference signal receiving channel 221 Connected to channel estimator 409 in self-interference signal generating device 230; second downconverter 502 in self-interference signal generating device 230 and splitter in transmit channel 211 The 504 is connected and the second upconverter 412 is coupled to the combiner 406 on the communication signal receiving channel 222.
- the first reference signal is a baseband reference signal transmitted by the baseband unit, and the first digital-to-analog converter 401, the first up-converter 402, and the power amplifier 403 sequentially passing through the transmitting channel 211.
- Digital-to-analog conversion, up-conversion processing and power amplification processing are sequentially passing through the transmitting channel 211.
- the power splitter 501 splits the first reference signal into two identical signals: one passes through the transceiver isolator 240 and enters the antenna transmission, and simultaneously receives and receives the shared antenna for reception, and enters the reference signal receiving channel 221 to become the second reference signal, and then passes through the
- the inverter 505 performs down-conversion processing and the first analog-to-digital converter 504 performs analog-to-digital conversion processing to become the processed second reference signal; all the way to the self-interference signal generating device 230 is performed by the second down converter 502.
- the frequency conversion process and the second analog to digital converter 503 perform analog-to-digital conversion processing to become a digital baseband reference signal, which is sent by the signal selector 408 to the channel estimator for channel estimation.
- the channel estimation process is the same as that of the transceiver embodiment 2 shown in FIG. 4, and details are not described herein again.
- the first communication signal is obtained as the first reference signal, and after passing through the power divider 504, the first input self-interference signal generating device 230 performs the down conversion processing and the second modulus through the second down converter 502.
- the converter 503 performs the analog-to-digital conversion process and becomes a baseband communication signal.
- the self-interference signal generation process is the same as that of the second embodiment of the transceiver shown in FIG. 4, and details are not described herein again.
- the transceiver isolator according to the first, second, and third embodiments of the transceiver may be a circulator.
- the power splitter is used to separate one transmission signal as the first reference signal or the first communication signal, so that the self-interference signal is generated.
- the self-interference signal generated by the device and the second communication signal are combined, the nonlinear distortion caused by the power amplification of the second communication signal and the power amplification of the self-interference signal is avoided.
- FIG. 6 is a flowchart of Embodiment 1 of a method for canceling self-interference of a transmitting and receiving common antenna according to the present invention.
- FIG. 2 is a structural diagram of a corresponding transceiver system according to the embodiment. As shown in FIG. 6 and FIG. 2, the method includes:
- S601 in the self-interference channel measurement time slot, transmitting a first reference signal on the transmit channel, and receiving a second reference signal on the reference signal receive channel, where the second reference signal is self-interference of the first reference signal a reference signal after the signal transmission channel; performing channel estimation according to the first reference signal and the second reference signal, to obtain description information of the self-interference transmission channel;
- the first reference signal is transmitted on the transmitting channel of the transmitter in the self-interference channel measurement time slot, so that the self-interference signal generating device can receive the first reference signal according to the transmitting channel and the receiving channel
- a reference signal passes through the second reference signal after the self-interference signal transmission channel, and the description information of the self-interference signal transmission channel is estimated, and then, in the actual data transmission and reception time slot, the self-interference signal generation device can transmit according to the transmission channel.
- the first communication signal and the description information of the self-interference transmission channel obtain a self-interference signal
- the communication signal receiving channel of the receiver uses the self-interference signal to perform self-interference cancellation on the second communication signal received by the transmitting and receiving common antenna.
- FIG. 7 is a flowchart of Embodiment 2 of a self-interference cancellation method of a transmitting and receiving common antenna according to the present invention.
- FIG. 4 is a structural diagram of a transceiver corresponding to the embodiment. As shown in FIG. 7 and FIG. 4, the method specifically includes the following steps:
- S701 Perform digital-to-analog conversion, up-conversion processing, and power amplification processing on the first reference signal sent by the baseband unit on the transmitting channel, and send the same to the transceiver common antenna through the transceiver isolator; S702, receive on the reference signal receiving channel.
- the second reference signal transmitted by the transceiver isolator performs down-conversion and analog-to-digital conversion processing on the second reference signal;
- the second reference signal includes a reflection signal of the transceiver common antenna to the first reference signal and a first reference signal on the transmission channel leaking through the transceiver isolator to the reference signal receiving channel.
- S703 performing channel estimation according to the first reference signal sent by the baseband unit and the second reference signal after the analog-to-digital conversion process, to obtain description information of the self-interference transmission channel;
- the first communication signal sent by the baseband unit is subjected to digital-to-analog conversion, up-conversion processing, and power amplification processing on the transmission channel, and is sent to the transceiver common antenna through the transceiver isolator;
- S705 receiving, by the communication signal receiving channel, a second communication signal transmitted by the transceiver isolator;
- S706 according to the first communication signal sent by the baseband unit and the self-interference transmission channel Describe the information and obtain a self-interference signal;
- S708 Perform a combining process with the processed self-interference signal and the second communication signal to obtain a second communication signal after self-interference cancellation.
- the self-interference signal generating device of the transceiver directly uses the reference signal transmitted by the baseband of the digital domain as the first reference signal, and performs analog-to-digital conversion on the first reference signal in the transmitting channel.
- the frequency conversion and power amplification processing become an analog signal for transmission
- the second reference signal received by the reference signal receiving channel is an analog signal
- the second reference signal is subjected to analog-to-digital conversion and down-conversion processing in the reference signal receiving channel to obtain a second in the digital domain.
- the channel estimator of the self-interference signal generating apparatus performs self-interference channel estimation in the digital domain by using the first reference signal and the second reference signal of the digital domain to obtain description information of the self-interference transmission channel;
- the self-interference signal generator of the self-interference signal generating device uses the communication signal transmitted by the baseband of the digital domain as the first communication signal, and obtains the self-interference signal of the digital domain according to the description information of the first communication signal and the self-interference transmission channel, The second pass received by the communication signal receiving channel
- the signal is an analog signal, so the self-interference signal is subjected to digital-to-analog conversion by the second digital-to-analog converter and up-conversion processing by the second up-converter to obtain an analog signal; the communication signal receiving channel of the receiver
- the combiner performs combined processing with the processed self-interference signal and the second communication signal to obtain a second communication signal after self-interference cancellation.
- FIG. 8 is a flowchart of Embodiment 3 of a method for canceling self-interference of a transmitting and receiving common antenna according to the present invention.
- the first reference signal and the first communication signal in this embodiment are respectively the first reference signal in the embodiment shown in FIG.
- the first communication signal is obtained by performing digital-to-analog conversion, up-conversion, and power amplification processing.
- FIG. 5 is a structural diagram of the transceiver system corresponding to the embodiment. As shown in FIG. 8 and FIG. 5, the method specifically includes the following steps:
- the second reference signal includes a reflected signal of the transceiver shared antenna to the first reference signal and a first reference signal on the transmit channel leaking through the transceiver isolator to an interference signal on the reference signal receiving channel.
- S803 performing down-conversion processing and analog-to-digital conversion on the first reference signal to obtain the baseband reference signal; performing channel estimation according to the baseband reference signal and the second reference signal after analog-to-digital conversion processing, to obtain self-interference transmission Description of the channel;
- S808 Perform a combining process with the processed self-interference signal and the second communication signal to obtain a second communication signal after self-interference cancellation.
- step S801 is obtained by digital-to-analog conversion, up-conversion and power amplification processing of the baseband reference signal, it is an analog signal, and accordingly the channel of the self-interference signal generating apparatus in step S803.
- the estimator Before performing channel estimation, the estimator needs to perform down-conversion processing and analog-to-digital conversion on the first reference signal by using the second down converter and the second analog-to-digital converter to obtain a baseband reference signal in the digital domain; similarly, due to the steps
- the first communication signal in S804 is obtained by performing digital-to-analog conversion, up-conversion and power amplification processing on the baseband communication signal, and accordingly, the self-interference signal generator of the self-interference signal generating device in step S806 needs to generate a self-interference signal before
- the first communication signal is down-converted and analog-digital converted by the second down-converter and the second analog-to-digital converter to obtain a baseband communication signal in the digital domain.
- FIG. 9 is a schematic structural diagram of an embodiment of a communication device for transmitting and receiving a shared antenna according to the present invention.
- the communication device 900 may include a processor 901, a memory 902, and a transceiver 903, where the memory 902 is configured to store a command.
- the processor 901, coupled to the memory 902, is configured to execute instructions stored in the memory 902, and the processor 901 is configured to perform the radio frequency switch control, signal performed by the corresponding terminal in the self-interference cancellation method embodiment.
- Technical solutions such as selection, channel estimation and self-interference signal generation;
- the transceiver 903 is configured to receive and transmit notification information, system information, or data information, etc., that interact with the communication peer according to the instruction of the processor 901.
- the transceiver 903 can be any one of the transceivers shown in FIG. 2, FIG. 4 and FIG. 5, and can respectively perform any one of the methods shown in FIG. 6, FIG. 7, and FIG. 8, and the working principle and technology thereof. The effect is similar and will not be described here.
- the communication device may be a base station or an access point, a relay station, and a user equipment applied to a wireless communication system such as a mobile cellular communication system, a wireless local area network, a fixed wireless access, etc., and generally have the capability of transmitting a self signal and receiving signals of other communication nodes.
- the communication node uses the self-interference generating device in the transceiver to improve the quality of the signal received by the communication node.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Noise Elimination (AREA)
- Transceivers (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供一种收发共用天线的自干扰消除方法、收发机和通信设备,包括:在自干扰信道测量时隙内,在发射通道上发送第一参考信号,并在参考信号接收通道上接收第二参考信号,第二参考信号为第一参考信号经过自干扰信号传输通道后的参考信号;根据第一参考信号和第二参考信号进行信道估计,得到自干扰传输通道的描述信息;在数据收发时隙内,在发射通道上发送第一通信信号,并在通信信号接收通道上接收第二通信信号,第一通信信号为从所述收发共用天线发射的信号,第二通信信号为从收发共用天线接收的信号;根据第一通信信号和自干扰传输通道的描述信息,得到自干扰信号,并采用该自干扰信号对第二通信信号进行自干扰消除。
Description
收发共用天线的自干扰消除方法、 收发机和通信设备
技术领域
本发明实施例涉及移动通信技术, 尤其涉及一种收发共用天线的自干扰 消除方法、 收发机和通信设备。 背景技术
在移动蜂窝通信系统中, 各种通信节点, 例如基站、 用户设备 (User Equipment, 以下简称: UE) 都具有收发信号的能力。 为了避免同一收发信 机的发射信号对接收信号产生自干扰,现有技术使用时分双工(Time Division Duplex, 以下简称: TDD) 或频分双工 (Frequency Division Duplex, 以下简 称: FDD) 方式进行通信。 但是, FDD和 TDD的频谱利用率较低。 而无线 全双工技术则可以在相同的无线信道上同时进行接收与发送, 从而提高了频 谱利用率。 但无线全双工技术需要尽可能降低同一收发信机的发射信号对接 收信号的自干扰。
现有无线全双工技术可以采用收发共用天线的方式来发射信号和接收信 号。 图 1为现有技术中收发共用天线的射频自干扰处理框图, 如图 1所示, 可以采用环形器等收发隔离器件对发射通道和接收通道进行隔离, 发射信号 经过功率放大器 (Power Amplifier, 以下简称 PA) 从环形器的左侧输入, 并 从环形器的上侧输出到共用天线, 从而将该发射信号发射出去, 从共用天线 上接收到的接收信号从环形器上侧输入, 并从环形器的右侧输出, 进入接收 通道的低噪声放大器(Low Noise Amplifier, 以下简称 LNA)。 为了消除发射 信号对接收信号产生的自干扰信号, 发射信号可以通过设置发射通道上的耦 合器或者功分器分出一路信号, 将该路信号依次通过衰减器和相位器, 来生 成自干扰信号, 然后采用设置在接收通道上的耦合器或合路器将该自干扰信 号与接收信号进行耦合来消除自干扰。
但是, 上述进入接收通道的自干扰信号并非仅是发射信号经过简单幅度 衰减和相位变化的信号, 因此, 现有技术无法有效地进行有效的自干扰消除, 从而导致接收信号的质量较差。
发明内容
本发明实施例提供一种收发共用天线的自干扰消除方法、 收发机和通信 设备, 以解决现有收发共用天线中自干扰信号无法有效消除的问题。
第一方面, 本发明实施例提供一种收发共用天线的自干扰消除方法, 包 括:
在自干扰信道测量时隙内, 在发射通道上发送第一参考信号, 并在参考 信号接收通道上接收第二参考信号, 所述第二参考信号为所述第一参考信号 经过自干扰信号传输通道后的参考信号; 根据所述第一参考信号和所述第二 参考信号进行信道估计, 得到所述自干扰传输通道的描述信息;
在数据收发时隙内, 在所述发射通道上发送第一通信信号, 并在通信信 号接收通道上接收第二通信信号, 所述第一通信信号为从所述收发共用天线 发射的信号, 所述第二通信信号为从所述收发共用天线接收的信号; 根据所 述第一通信信号和所述自干扰传输通道的描述信息, 得到自干扰信号, 并采 用所述自干扰信号对所述第二通信信号进行自干扰消除。
在第一方面的第一种可能的实现方式中, 所述在发射通道上发送第一参 考信号, 包括:
在发射通道上对基带单元发送的第一参考信号进行数模转换、 上变频处 理以及功率放大处理, 并通过收发隔离器发送给所述收发共用天线;
所述在参考信号接收通道上接收第二参考信号, 包括:
在参考信号接收通道上接收所述收发隔离器传输的第二参考信号, 所述 第二参考信号包括所述收发共用天线对所述第一参考信号的反射信号以及所 述发射通道上的第一参考信号通过收发隔离器泄露到所述参考信号接收通道 上的干扰信号; 对所述第二参考信号进行下变频和模数转换处理;
所述根据所述第一参考信号和第二参考信号进行信道估计, 得到所述自 干扰传输通道的描述信息, 包括:
根据所述基带单元发送的第一参考信号以及模数转换处理后的第二参考 信号进行信道估计, 得到自干扰传输通道的描述信息。
结合第一方面的第一种可能的实现方式, 在第一方面的第二种可能的实
现方式中,
所述在所述发射通道上发送第一通信信号, 包括:
在发射通道上对基带单元发送的第一通信信号进行数模转换、 上变频处 理以及功率放大处理, 并通过收发隔离器发送给所述收发共用天线;
所述在通信信号接收通道上接收第二通信信号, 包括:
在通信信号接收通道上接收所述收发隔离器传输的第二通信信号; 所述根据所述第一通信信号和所述自干扰传输通道的描述信息, 得到自 干扰信号, 并采用所述自干扰信号对所述第二通信信号进行自干扰消除, 包 括:
根据所述基带单元发送的第一通信信号和所述自干扰传输通道的描述信 息, 得到自干扰信号;
对所述自干扰信号进行数模转换和上变频处理得到处理后的自干扰信 号;
采用所述处理后的自干扰信号与所述第二通信信号进行合路处理, 得到 自干扰消除后的第二通信信号。
在第一方面第三种可能的实现方式中, 所述在发射通道上发送第一参考 信号, 包括:
在发射通道上对基带单元发送的基带参考信号进行数模转换、 上变频处 理以及功率放大处理得到第一参考信号, 并通过收发隔离器将所述第一参考 信号发送给所述收发共用天线;
所述在参考信号接收通道上接收第二参考信号, 包括:
在参考信号接收通道上接收所述收发隔离器传输的第二参考信号, 所述 第二参考信号包括所述收发共用天线对所述第一参考信号的反射信号以及所 述发射通道上的第一参考信号通过收发隔离器泄露到所述参考信号接收通道 上的干扰信号; 对所述第二参考信号进行下变频和模数转换处理;
所述根据所述第一参考信号和第二参考信号进行信道估计, 得到所述自 干扰传输通道的描述信息, 包括:
对所述第一参考信号进行下变频处理和模数转换, 得到所述基带参考信 号;
根据所述基带参考信号以及模数转换处理后的第二参考信号进行信道估
计, 得到自干扰传输通道的描述信息。
结合第一方面的第三种可能的实现方式, 在第一方面的第四种可能的实 现方式中, 所述在所述发射通道上发送第一通信信号, 包括:
在发射通道上对基带单元发送的基带通信信号进行数模转换、 上变频处 理以及功率放大处理得到第一通信信号, 并通过收发隔离器将所述第一通信 信号发送给所述收发共用天线;
所述在通信信号接收通道上接收第二通信信号, 包括:
在通信信号接收通道上接收所述收发隔离器传输的第二通信信号; 所述根据所述第一通信信号和所述自干扰传输通道的描述信息, 得到自 干扰信号, 并采用所述自干扰信号对所述第二通信信号进行自干扰消除, 包 括:
对所述第一通信信号进行下变频处理和模数转换, 得到所述基带通信信 号;
根据所述基带通信信号和所述自干扰传输通道的描述信息, 得到自干扰 信号;
对所述自干扰信号进行数模转换和上变频处理得到处理后的自干扰信 号;
采用所述处理后的自干扰信号与所述第二通信信号进行合路处理, 得到 自干扰消除后的第二通信信号。
第二方面, 一种收发共用天线的收发机, 包括: 发射机、 接收机和自干 扰信号生成装置, 所述发射机的发射通道和所述接收机的接收通道通过收发 隔离器与一收发共用天线连接, 所述自干扰信号生成装置连接在所述发射机 和接收机之间; 所述接收机的接收通道包括参考信号接收通道和通信信号接 收通道;
在自干扰信道测量时隙内,所述发射机在发射通道上发送第一参考信号, 并且所述接收机在所述参考信号接收通道上接收第二参考信号, 所述第二参 考信号为所述第一参考信号经过自干扰信号传输通道后的参考信号; 所述自 干扰信号生成装置根据所述第一参考信号和所述第二参考信号进行信道估 计, 得到所述自干扰传输通道的描述信息;
在数据收发时隙内, 所述发射机在所述发射通道上发送第一通信信号,
并且所述接收机在所述通信信号接收通道上接收第二通信信号, 所述第一通 信信号为所述发射机从所述收发共用天线发射的信号, 所述第二通信信号为 所述接收机从所述收发共用天线接收的信号; 所述自干扰信号生成装置根据 所述第一通信信号和所述自干扰传输通道的描述信息, 得到自干扰信号; 所 述接收机采用所述自干扰信号对所述第二通信信号进行自干扰消除。
在第二方面的第一种可能的实现方式中, 所述发射机的发射通道上设有 依次连接的第一数模转换器、 第一上变频器和功率放大器;
所述接收机的参考信号接收通道上设有依次连接的下变频器和模数转换 器, 所述接收机的通信信号接收通道上设有依次连接的合路器和低噪声放大 器, 所述下变频器和所述合路器均与一射频开关连接且所述射频开关与所述 收发隔离器连接;
所述自干扰信号生成装置包括依次连接的信号选择器、 信道估计器、 自 干扰信号产生器、 第二数模转换器以及第二上变频器, 且所述信号选择器与 所述自干扰信号产生器连接;
所述第一数模转换器与基带单元连接, 所述功率放大器与所述收发隔离 器连接;
所述模数转换器与所述信道估计器连接;
所述信号选择器与所述基带单元连接, 所述第二上变频器与所述合路器 连接。
结合第二方面的第一种可能的实现方式, 在第二方面的第二种可能的实 现方式中, 所述发射机的发射通道上设有依次连接的第一数模转换器、 第一 上变频器、 功率放大器和功分器;
所述接收机的参考信号接收通道上设有依次连接的第一下变频器和第一 模数转换器, 所述接收机的通信信号接收通道上设有依次连接的合路器和低 噪声放大器, 所述第一下变频器和所述合路器均与一射频开关连接且所述射 频开关与所述收发隔离器连接;
所述自干扰信号生成装置包括依次连接的第二下变频器、 第二模数转换 器、 信号选择器、 信道估计器、 自干扰信号产生器、 第二数模转换器以及第 二上变频器, 且所述信号选择器与所述自干扰信号产生器连接;
所述第一数模转换器与基带单元连接, 所述功分器与所述收发隔离器连
接;
所述第一模数转换器与所述信道估计器连接;
所述第二下变频器与所述功分器连接, 所述第二上变频器与所述合路器 连接。
结合第二方面, 第二方面的第一种和第二种任一种可能的实现方式, 在 第二方面的第三种可能的实现方式中, 所述收发隔离器为环形器。
第三方面, 一种通信设备, 包括第二方面、 第二方面的第一到第三种任 一种可能的实现方式中所述的收发机。
本发明实施例收发共用天线的自干扰消除方法、 收发机和通信设备, 通 过对发射端发射第一参考信号与接收端接收到的第二参考信号进行信道估 计, 得到准确的自干扰传输通道的描述信息, 然后利用该描述信息和第一通 信信号生成自干扰信号, 使得接收的第二通信信号能够进行有效的自干扰消 除, 从而提高了接收信号的质量。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中收发共用天线的射频自干扰处理框图;
图 2为本发明收发共用天线的收发机实施例一的系统架构图;
图 3为本发明收发机实施例一所述的发射信号的信号帧结构图; 图 4为本发明收发共用天线的收发机实施例二的系统架构图;
图 5为本发明收发共用天线的收发机实施例三的系统架构图;
图 6为本发明收发共用天线的自干扰消除方法实施例一的流程图; 图 7为本发明收发共用天线的自干扰消除方法实施例二的流程图; 图 8为本发明收发共用天线的自干扰消除方法实施例三的流程图; 图 9为本发明收发共用天线的通信设备实施例的结构示意图。
具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明收发共用天线的收发机实施例一的系统架构图, 如图 2所 示,该收发机 200包括:发射机 210、接收机 220和自干扰信号生成装置 230, 所述发射机 210的发射通道 211和所述接收机 220的接收通道通过收发隔离 器 240与一收发共用天线 250连接, 自干扰信号生成装置 230连接在所述发 射机 210和接收机 220之间; 接收机 220的接收通道包括参考信号接收通道
221和通信信号接收通道 222。
在自干扰信道测量时隙内, 发射机 210在发射通道 211上发送第一参考 信号, 并且接收机 220在参考信号接收通道 221上接收第二参考信号, 所述 第二参考信号为所述第一参考信号经过自干扰信号传输通道后的参考信号; 自干扰信号生成装置 230根据所述第一参考信号和第二参考信号进行信道估 计, 得到所述自干扰传输通道的描述信息;
在数据收发时隙内, 所述发射机 210在所述发射通道 211上发送第一通 信信号, 并且所述接收机 220在所述通信信号接收通道 222上接收第二通信 信号,所述第一通信信号为所述发射机 210从收发共用天线 250发射的信号, 所述第二通信信号为所述接收机 220从收发共用天线 250接收的信号; 自干 扰信号生成装置 230根据所述第一通信信号和所述自干扰传输通道的描述信 息, 得到自干扰信号; 接收机 220采用所述自干扰信号对所述第二通信信号 进行自干扰消除。
现有技术中的收发机, 在发射信号分出一路经过衰减器和移相器作幅度 衰减和相位变化, 之后与接收端的接收信号进行耦合消除自干扰信号, 然而 该自干扰信号并非简单的幅度和相位变化, 包括由发射端泄漏到接收端的自 干扰信号以及由天线端口反射进入接收端的自干扰信号, 因此不能有效地消 除接收信号中的自干扰信号。
本实施例的收发机通过引入自干扰信号生成装置 230, 在自干扰信道测 量时隙, 发射参考信号, 通过发射机 210发射的第一参考信号和接收机 220 的参考信号信号接收通道 221接收的第二参考信号进行信道估计, 得到准确 的自干扰传输通道的描述信息, 该自干扰传输通道的描述信息包括幅度、 相 位、 频率等的变化特性; 在数据收发时隙, 通过发射机 210待发射的第一通 信信号与所得自干扰传输通道的描述信息获得自干扰信号, 使得接收机 220 的通信信号接收通道 222接收到的第二通信信号利用自干扰信号进行耦合, 有效地消除自干扰信号, 从而提高了接收机 220接收信号的通信质量。
其中, 所述第一参考信号和第一通信信号在发射信号的不同时隙发送, 如图 3所示, 图 3为本发明收发机实施例一所述的发射信号的信号帧结构图, 在自干扰信道测量时隙, 仅收发机 200本地发射用于自干扰信道测量的第一 参考信号, 而其他通信对端在内的其它同频段的通信设备不发射信号, 或者 允许所述同频段的通信设备发射信号, 但其发射功率应保证其发射信号进入 本地的功率足够低从而不会对本地自干扰信道的测量造成干扰; 在数据传输 时隙, 发射第一通信信号。 本信号帧结构同样适用于本发明其他实施例, 在 此不再赘述。
本实施例的收发机, 通过自干扰信号生成装置, 首先利用发射机参考信 号获得准确的自干扰传输信道的描述信息, 然后利用该描述信息和通信信号 生成自干扰信号, 使得接收机能够进行有效的自干扰消除, 从而提高了接收 信号的质量。 下面结合两个具体实施例来对收发机的工作原理进行详细说明。
图 4为本发明收发共用天线的收发机实施例二的系统架构图, 如图 4所 示, 所述发射机 210的发射通道 211上设有依次连接的第一数模转换器 401、 第一上变频器 402和功率放大器 403;
所述接收机 220的参考信号接收通道 221上设有依次连接的下变频器 405 和模数转换器 404, 所述接收机 220的通信信号接收通道 222上设有依次连 接的合路器 406和低噪声放大器 407, 其中下变频器 405和合路器 406均与 一射频开关 223连接且该射频开关 223与收发隔离器 240连接;
所述自干扰信号生成装置 230包括依次连接的信号选择器 408、 信道估
计器 409、 自干扰信号产生器 410、 第二数模转换器 411 以及第二上变频器 412, 且信号选择器 408与自干扰信号产生器 410连接;
此外, 发射通道 211上的第一数模转换器 401与发射机 210中的基带单 元 212连接且功率放大器 403与收发隔离器 240连接;参考信号接收通道 221 上的模数转换器与自干扰信号生成装置 230中的信道估计器 409连接; 自干 扰信号生成装置 230中的信号选择器 408与发射机 210中的基带单元 212连 接且第二上变频器 412与通信信号接收通道 222上的合路器 406连接。
具体来说, 基带单元 212发射的信号包括两部分: 第一参考信号和第一 通信信号。 在自干扰信道测量时隙, 发射通道 211上的第一数模转换器 401、 第一上变频器 402和功率放大器 403分别对基带单元 212发出的第一参考信 号进行数模转换, 上变频处理和功率放大处理, 之后通过收发隔离器 240进 入天线发射出去; 通过天线和收发隔离器 240的接收, 第二参考信号首先进 入接收机 220中的射频开关 223, 该射频开关 223受图 3所示信号帧结构对 应的定时信号控制, 接通参考信号接收通道, 第二参考信号依次经过参考信 号接收通道 221上的下变频器 405和模数转换器 404进行下变频处理和模数 转换处理成为处理后的第二参考信号; 自干扰信号生成器 230中的信号选择 器 408对参考信号和通信信号进行选择, 将接收到的第一参考信号发送给信 道估计器 409, 信道估计器根据第一参考信号和处理后的第二参考信号进行 信道估计,得出自干扰信号传输通道的描述信息,用于自干扰信号产生器 410; 在数据收发时隙, 发射通道 211上的第一数模转换器 401、第一上变频器 402 和功率放大器 403分别对基带单元 212发出的第一通信信号进行数模转换, 上变频处理和功率放大处理, 之后通过收发隔离器 240进入天线发射出去; 通过天线和收发隔离器 240的接收, 第二通信信号首先进入接收机 220中的 射频开关 223, 此时射频开关 223接通通信信号接收通道; 自干扰信号生成 器 230中的信号选择器 408对参考信号和通信信号进行选择, 将接收到的第 一通信信号发送给自干扰信号产生器 410, 自干扰信号产生器 410根据第一 通信信号和信道估计器 409得到的自干扰信号传输通道的描述信息计算得出 自干扰信号, 然后进入第二数模转换器 411和第二上变频器 412进行数模转 换处理和上变频处理得到处理后的自干扰信号, 之后发送给通信信号接收通 道 222上的合路器 406, 该合路器 406也可为耦合器; 合路器 406对第二通
信信号和处理后的自干扰信号进行合路从而消除第二通信信号中的自干扰信 号, 之后进入低噪声放大器 407进行降噪处理。
其中, 在通信信号接收通道 222之前, 采用射频开关 223进行保护, 是 为了防止在发射用于自干扰信道测量的参考信号时, 过强的接收信号阻塞或 损坏接收支路(低噪声放大器 LNA等) , 为此, 当发射用于自干扰信道测量 的参考信号时, 利用射频开关 223将通信信号接收通道 222与来自天线的信 号断开。
本实施例, 以数字域的基带单元发射的参考信号作为第一参考信号, 对 模拟域的第二参考信号进行上变频和模数转换处理成数字信号, 通过信道估 计器在数字域对自干扰信号进行跟踪和估计, 可准确得出自干扰传输通道的 描述信息, 进而自干扰信号生成器根据第一通信信号得出数字域的自干扰信 号, 经过下变频和数模转换处理后, 与接收机中的第二通信信号进行有效地 自干扰消除, 提高了接收信号的收发隔离度。
图 5为本发明收发共用天线的收发机实施例三的系统架构图, 在图 4所 示收发机中发射通道 211上引入功分器, 该功分器也可为耦合器, 如图 5所 示, 所述发射机 210的发射通道 211上设有依次连接的第一数模转换器 401、 第一上变频器 402、 功率放大器 403和功分器 501 ;
所述接收机 220的参考信号接收通道 221上设有依次连接的第一下变频 器 505和第一模数转换器 504, 所述接收机 220的通信信号接收通道 222上 设有依次连接的合路器 406和低噪声放大器 407, 其中第一下变频器 805和 合路器 406均与一射频开关 223连接且该射频开关 223与收发隔离器 240连 接;
所述自干扰信号生成装置 230包括依次连接的第二下变频器 502、 第二 模数转换器 503、 信号选择器 408、 信道估计器 409、 自干扰信号产生器 410、 第二数模转换器 411 以及第二上变频器 412, 且信号选择器 408与自干扰信 号产生器 410连接;
此外, 发射通道 211上的第一数模转换器 401与发射机 210中的基带单 元 212连接且功分器 504与收发隔离器 240连接; 参考信号接收通道 221上 的第一模数转换器 504与自干扰信号生成装置 230中的信道估计器 409连接; 自干扰信号生成装置 230中的第二下变频器 502与发射通道 211中的功分器
504连接且第二上变频器 412与通信信号接收通道 222上的合路器 406连接。 具体实现时, 在自干扰信道测量时隙, 第一参考信号是基带单元发射的 基带参考信号在依次经过发射通道 211上的第一数模转换器 401、 第一上变 频器 402和功率放大器 403的数模转换, 上变频处理和功率放大处理后得到 的。 之后, 功分器 501将第一参考信号分成两路相同的信号: 一路经过收发 隔离器 240进入天线发射, 同时收发共用天线进行接收, 进入参考信号接收 通道 221成为第二参考信号, 接着经过第一下变频器 505进行下变频处理和 第一模数转换器 504进行模数转换处理后成为处理后的第二参考信号; 一路 进入自干扰信号生成装置 230在经过第二下变频器 502进行下变频处理和第 二模数转换器 503进行模数转换处理后成为数字基带参考信号, 由信号选择 器 408发送给信道估计器作信道估计用。 信道估计过程与图 4所示收发机实 施例二相同, 在此不再赘述。 在数据收发时隙, 第一通信信号的获得同第一 参考信号, 在经过功分器 504后, 一路进入自干扰信号生成装置 230经过第 二下变频器 502进行下变频处理和第二模数转换器 503进行模数转换处理后 成为基带通信信号, 之后自干扰信号生成过程与图 4所示收发机实施例二相 同, 在此不再赘述。
其中, 上述收发机实施例一、 二、 三所述收发隔离器可为环形器。
本实施例, 在图 4所示收发机实施例的基础上, 在发射通道的功率放大 器之后, 利用功分器分出一路发射信号作为第一参考信号或第一通信信号, 使得自干扰信号生成装置生成的自干扰信号与第二通信信号进行合路处理的 时候, 避免了只有第二通信信号经过功率放大而自干扰信号没有经过功率放 大引起的非线性失真影响。 下面结合收发机实施例, 描述方法实施例。
图 6为本发明收发共用天线的自干扰消除方法实施例一的流程图, 图 2 为本实施例对应的收发机系统架构图, 如图 6和图 2所示, 该方法包括:
S601、 在自干扰信道测量时隙内, 在发射通道上发送第一参考信号, 并 在参考信号接收通道上接收第二参考信号, 所述第二参考信号为所述第一参 考信号经过自干扰信号传输通道后的参考信号; 根据所述第一参考信号和所 述第二参考信号进行信道估计, 得到所述自干扰传输通道的描述信息;
S602、 在数据收发时隙内, 在所述发射通道上发送第一通信信号, 并在
通信信号接收通道上接收第二通信信号, 所述第一通信信号为从所述收发共 用天线发射的信号, 所述第二通信信号为从所述收发共用天线接收的信号; 根据所述第一通信信号和所述自干扰传输通道的描述信息,得到自干扰信号, 并采用所述自干扰信号对所述第二通信信号进行自干扰消除。
具体实现时, 在自干扰信道测量时隙内, 在发射机的发射通道上发射第 一参考信号, 从而自干扰信号生成装置可以根据发射通道发射的第一参考信 号以及接收通道接收到的该第一参考信号经过自干扰信号传输通道后的第二 参考信号, 估计得到该自干扰信号传输通道的描述信息, 进而在实际的数据 收发时隙内, 自干扰信号生成装置可以根据对发射通道上发送的第一通信信 号和所述自干扰传输通道的描述信息, 得到自干扰信号, 由接收机的通信信 号接收通道采用该自干扰信号对收发共用天线接收的第二通信信号进行自干 扰消除。
本方法实施例提供的技术方案, 可通过图 2所示收发机来执行, 其实现 原理和技术效果类似, 此处不再赘述。
图 7为本发明收发共用天线的自干扰消除方法实施例二的流程图, 图 4 为本实施例对应的收发机的架构图, 如图 7和图 4所示, 该方法具体包括如 下步骤:
S701、 在发射通道上对基带单元发送的第一参考信号进行数模转换、 上 变频处理以及功率放大处理, 并通过收发隔离器发送给所述收发共用天线; S702、在参考信号接收通道上接收所述收发隔离器传输的第二参考信号, 对所述第二参考信号进行下变频和模数转换处理;
其中, 所述第二参考信号包括所述收发共用天线对所述第一参考信号的 反射信号以及所述发射通道上的第一参考信号通过收发隔离器泄露到所述参 考信号接收通道上的干扰信号;
S703、 根据所述基带单元发送的第一参考信号以及模数转换处理后的第 二参考信号进行信道估计, 得到自干扰传输通道的描述信息;
5704、 在发射通道上对基带单元发送的第一通信信号进行数模转换、 上 变频处理以及功率放大处理, 并通过收发隔离器发送给所述收发共用天线;
5705、在通信信号接收通道上接收所述收发隔离器传输的第二通信信号; S706、 根据所述基带单元发送的第一通信信号和所述自干扰传输通道的
描述信息, 得到自干扰信号;
5707、 对所述自干扰信号进行数模转换和上变频处理得到处理后的自干 扰信号;
5708、采用所述处理后的自干扰信号与所述第二通信信号进行合路处理, 得到自干扰消除后的第二通信信号。
具体实现时, 在自干扰信道测量时隙, 收发机的自干扰信号生成装置直 接利用数字域的基带发射的参考信号作为第一参考信号, 在发射通道对第一 参考信号进行模数转换, 上变频和功率放大处理成为模拟信号进行发射, 参 考信号接收通道接收到的第二参考信号为模拟信号, 在参考信号接收通道对 第二参考信号进行模数转换和下变频处理得到数字域的第二参考信号, 自干 扰信号生成装置的信道估计器利用第一参考信号和数字域的第二参考信号在 数字域进行自干扰信道估计, 得到自干扰传输通道的描述信息; 在数据收发 时隙内, 自干扰信号生成装置的自干扰信号产生器以数字域的基带发射的通 信信号为第一通信信号, 根据该第一通信信号与所述自干扰传输信道的描述 信息得到数字域的自干扰信号, 由于通信信号接收通道接收到的第二通信信 号为模拟信号, 因此该自干扰信号经过第二数模转换器进行数模转换和第二 上变频器进行上变频处理得到处理后的自干扰信号为模拟信号; 接收机的通 信信号接收通道上的合路器利用该处理后的自干扰信号与第二通信信号进行 合路处理, 得到自干扰消除后的第二通信信号。
本实施例提供的技术方案, 可通过图 4所示的收发机来执行, 其实现原 理和技术效果类似, 此处不再赘述。
图 8为本发明收发共用天线的自干扰消除方法实施例三的流程图, 该实 施例中的第一参考信号和第一通信信号分别是对图 7所示实施例中的第一参 考信号和第一通信信号进行数模转换、 上变频和功率放大处理得到的, 图 5 为本实施例对应的收发机系统架构图, 如图 8和图 5所示, 该方法具体包括 如下步骤:
S801、 在发射通道上对基带单元发送的基带参考信号进行数模转换、 上 变频处理以及功率放大处理得到第一参考信号, 并通过收发隔离器将所述第 一参考信号发送给所述收发共用天线;
S802、在参考信号接收通道上接收所述收发隔离器传输的第二参考信号,
对所述第二参考信号进行下变频和模数转换处理;
其中, 该第二参考信号包括所述收发共用天线对所述第一参考信号的反 射信号以及所述发射通道上的第一参考信号通过收发隔离器泄露到所述参考 信号接收通道上的干扰信号;
S803、 对所述第一参考信号进行下变频处理和模数转换, 得到所述基带 参考信号; 根据所述基带参考信号以及模数转换处理后的第二参考信号进行 信道估计, 得到自干扰传输通道的描述信息;
5804、 在发射通道上对基带单元发送的基带通信信号进行数模转换、 上 变频处理以及功率放大处理得到第一通信信号, 并通过收发隔离器将所述第 一通信信号发送给所述收发共用天线;
5805、在通信信号接收通道上接收所述收发隔离器传输的第二通信信号;
5806、 对所述第一通信信号进行下变频处理和模数转换, 得到所述基带 通信信号; 根据所述基带通信信号和所述自干扰传输通道的描述信息, 得到 自干扰信号;
S807、 对所述自干扰信号进行数模转换和上变频处理得到处理后的自干 扰信号;
S808、采用所述处理后的自干扰信号与所述第二通信信号进行合路处理, 得到自干扰消除后的第二通信信号。
具体实现时, 本实施例工作原理与图 7所示实施例工作原理类似, 在此 不再赘述。 需要指出的是,由于步骤 S801 的第一参考信号是基带参考信号经 过数模转换, 上变频以及功率放大处理得到的, 是一个模拟信号, 因此相应 地在步骤 S803中自干扰信号生成装置的信道估计器在进行信道估计之前,需 要利用第二下变频器和第二模数转换器对该第一参考信号进行下变频处理和 模数转换, 得到数字域的基带参考信号; 同理, 由于步骤 S804中的第一通信 信号是基带通信信号进行数模转换、 上变频和功率放大处理得到的, 因此相 应地步骤 S806 中自干扰信号生成装置的自干扰信号产生器在产生自干扰信 号之前, 需要利用第二下变频器和第二模数转换器对该第一通信信号进行下 变频处理和模数转换, 得到数字域的基带通信信号。
本方法实施例提供的技术方案, 可通过图 5所示收发机来执行, 其实现 原理和技术效果类似, 此处不再赘述。
图 9为本发明收发共用天线的通信设备实施例的结构示意图, 如图 9所 示, 该通信设备 900可以包括处理器 901、 存储器 902和收发机 903, 其中, 存储器 902, 用于存储命令;
处理器 901, 与存储器 902耦合, 被配置为执行存储在存储器 902中的 指令, 且所述处理器 901被配置为用于执行上述自干扰消除方法实施例中对 应终端执行的射频开关控制、 信号选择、 信道估计和自干扰信号产生等技术 方案;
收发机 903, 用于根据处理器 901 的指令, 接收和发射与通信对端进行 交互的通知信息、 系统信息或数据信息等。
其中收发机 903可以是图 2, 图 4和图 5所示的收发机中的任一种, 可 以分别执行图 6, 图 7, 图 8所示方法中的任一种, 其工作原理和技术效果类 似, 在此不再赘述。
所述通信设备可以是应用于移动蜂窝通信系统、 无线局域网、 固定无线 接入等无线通信系统中的基站或接入点、 中继站以及用户设备等通常具有发 射自身信号和接收其它通信节点信号的能力的通信节点, 利用收发机中的自 干扰生成装置, 提高通信节点接收信号的质量。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims
1、 一种收发共用天线的自干扰消除方法, 其特征在于, 包括: 在自干扰信道测量时隙内, 在发射通道上发送第一参考信号, 并在参考 信号接收通道上接收第二参考信号, 所述第二参考信号为所述第一参考信号 经过自干扰信号传输通道后的参考信号; 根据所述第一参考信号和所述第二 参考信号进行信道估计, 得到所述自干扰传输通道的描述信息;
在数据收发时隙内, 在所述发射通道上发送第一通信信号, 并在通信信 号接收通道上接收第二通信信号, 所述第一通信信号为从所述收发共用天线 发射的信号, 所述第二通信信号为从所述收发共用天线接收的信号; 根据所 述第一通信信号和所述自干扰传输通道的描述信息, 得到自干扰信号, 并采 用所述自干扰信号对所述第二通信信号进行自干扰消除。
2、 根据权利要求 1所述的方法, 其特征在于, 所述在发射通道上发送第 一参考信号, 包括:
在发射通道上对基带单元发送的第一参考信号进行数模转换、 上变频处 理以及功率放大处理, 并通过收发隔离器发送给所述收发共用天线;
所述在参考信号接收通道上接收第二参考信号, 包括:
在参考信号接收通道上接收所述收发隔离器传输的第二参考信号, 所述 第二参考信号包括所述收发共用天线对所述第一参考信号的反射信号以及所 述发射通道上的第一参考信号通过收发隔离器泄露到所述参考信号接收通道 上的干扰信号; 对所述第二参考信号进行下变频和模数转换处理;
所述根据所述第一参考信号和第二参考信号进行信道估计, 得到所述自 干扰传输通道的描述信息, 包括:
根据所述基带单元发送的第一参考信号以及模数转换处理后的第二参考 信号进行信道估计, 得到自干扰传输通道的描述信息。
3、 根据权利要求 2所述的方法, 其特征在于, 所述在所述发射通道上发 送第一通信信号, 包括:
在发射通道上对基带单元发送的第一通信信号进行数模转换、 上变频处 理以及功率放大处理, 并通过收发隔离器发送给所述收发共用天线;
所述在通信信号接收通道上接收第二通信信号, 包括:
在通信信号接收通道上接收所述收发隔离器传输的第二通信信号;
所述根据所述第一通信信号和所述自干扰传输通道的描述信息, 得到自 干扰信号, 并采用所述自干扰信号对所述第二通信信号进行自干扰消除, 包 括:
根据所述基带单元发送的第一通信信号和所述自干扰传输通道的描述信 息, 得到自干扰信号;
对所述自干扰信号进行数模转换和上变频处理得到处理后的自干扰信 号;
采用所述处理后的自干扰信号与所述第二通信信号进行合路处理, 得到 自干扰消除后的第二通信信号。
4、 根据权利要求 1所述的方法, 其特征在于, 所述在发射通道上发送第 一参考信号, 包括:
在发射通道上对基带单元发送的基带参考信号进行数模转换、 上变频处 理以及功率放大处理得到第一参考信号, 并通过收发隔离器将所述第一参考 信号发送给所述收发共用天线;
所述在参考信号接收通道上接收第二参考信号, 包括:
在参考信号接收通道上接收所述收发隔离器传输的第二参考信号, 所述 第二参考信号包括所述收发共用天线对所述第一参考信号的反射信号以及所 述发射通道上的第一参考信号通过收发隔离器泄露到所述参考信号接收通道 上的干扰信号; 对所述第二参考信号进行下变频和模数转换处理;
所述根据所述第一参考信号和第二参考信号进行信道估计, 得到所述自 干扰传输通道的描述信息, 包括:
对所述第一参考信号进行下变频处理和模数转换, 得到所述基带参考信 号;
根据所述基带参考信号以及模数转换处理后的第二参考信号进行信道估 计, 得到自干扰传输通道的描述信息。
5、 根据权利要求 4所述的方法, 其特征在于, 所述在所述发射通道上发 送第一通信信号, 包括:
在发射通道上对基带单元发送的基带通信信号进行数模转换、 上变频处 理以及功率放大处理得到第一通信信号, 并通过收发隔离器将所述第一通信 信号发送给所述收发共用天线;
所述在通信信号接收通道上接收第二通信信号, 包括:
在通信信号接收通道上接收所述收发隔离器传输的第二通信信号; 所述根据所述第一通信信号和所述自干扰传输通道的描述信息, 得到自 干扰信号, 并采用所述自干扰信号对所述第二通信信号进行自干扰消除, 包 括:
对所述第一通信信号进行下变频处理和模数转换, 得到所述基带通信信 号;
根据所述基带通信信号和所述自干扰传输通道的描述信息, 得到自干扰 信号;
对所述自干扰信号进行数模转换和上变频处理得到处理后的自干扰信 号;
采用所述处理后的自干扰信号与所述第二通信信号进行合路处理, 得到 自干扰消除后的第二通信信号。
6、 一种收发共用天线的收发机, 其特征在于, 包括:
发射机、 接收机和自干扰信号生成装置, 所述发射机的发射通道和所述 接收机的接收通道通过收发隔离器与一收发共用天线连接, 所述自干扰信号 生成装置连接在所述发射机和接收机之间;
所述接收机的接收通道包括参考信号接收通道和通信信号接收通道; 在自干扰信道测量时隙内,所述发射机在发射通道上发送第一参考信号, 并且所述接收机在所述参考信号接收通道上接收第二参考信号, 所述第二参 考信号为所述第一参考信号经过自干扰信号传输通道后的参考信号;
所述自干扰信号生成装置根据所述第一参考信号和所述第二参考信号进 行信道估计, 得到所述自干扰传输通道的描述信息;
在数据收发时隙内, 所述发射机在所述发射通道上发送第一通信信号, 并且所述接收机在所述通信信号接收通道上接收第二通信信号, 所述第一通 信信号为所述发射机从所述收发共用天线发射的信号, 所述第二通信信号为 所述接收机从所述收发共用天线接收的信号;
所述自干扰信号生成装置根据所述第一通信信号和所述自干扰传输通道 的描述信息, 得到自干扰信号;
所述接收机采用所述自干扰信号对所述第二通信信号进行自干扰消除。
7、 根据权利要求 6所述的收发机, 其特征在于, 所述发射机的发射通道 上设有依次连接的第一数模转换器、 第一上变频器和功率放大器;
所述接收机的参考信号接收通道上设有依次连接的下变频器和模数转换 器, 所述接收机的通信信号接收通道上设有依次连接的合路器和低噪声放大 器, 所述下变频器和所述合路器均与一射频开关连接且所述射频开关与所述 收发隔离器连接;
所述自干扰信号生成装置包括依次连接的信号选择器、 信道估计器、 自 干扰信号产生器、 第二数模转换器以及第二上变频器, 且所述信号选择器与 所述自干扰信号产生器连接;
所述第一数模转换器与基带单元连接, 所述功率放大器与所述收发隔离 器连接;
所述模数转换器与所述信道估计器连接;
所述信号选择器与所述基带单元连接, 所述第二上变频器与所述合路器 连接。
8、 根据权利要求 6所述的收发机, 其特征在于, 所述发射机的发射通道 上设有依次连接的第一数模转换器、 第一上变频器、 功率放大器和功分器; 所述接收机的参考信号接收通道上设有依次连接的第一下变频器和第一 模数转换器, 所述接收机的通信信号接收通道上设有依次连接的合路器和低 噪声放大器, 所述第一下变频器和所述合路器均与一射频开关连接且所述射 频开关与所述收发隔离器连接;
所述自干扰信号生成装置包括依次连接的第二下变频器、 第二模数转换 器、 信号选择器、 信道估计器、 自干扰信号产生器、 第二数模转换器以及第 二上变频器, 且所述信号选择器与所述自干扰信号产生器连接;
所述第一数模转换器与基带单元连接, 所述功分器与所述收发隔离器连 接;
所述第一模数转换器与所述信道估计器连接;
所述第二下变频器与所述功分器连接, 所述第二上变频器与所述合路器 连接。
9、 根据权利要求 6~8中任一项所述的收发机, 其特征在于, 所述收发隔 离器为环形器。
种通信设备, 其特征在于, 包括权利要求 6~9中任一项所述的收
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/088512 WO2015081514A1 (zh) | 2013-12-04 | 2013-12-04 | 收发共用天线的自干扰消除方法、收发机和通信设备 |
CN201380079056.4A CN105474549B (zh) | 2013-12-04 | 2013-12-04 | 收发共用天线的自干扰消除方法、收发机和通信设备 |
US15/172,895 US9768826B2 (en) | 2013-12-04 | 2016-06-03 | Self-interference cancellation method, transceiver, and communications device for transmit/receive shared antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/088512 WO2015081514A1 (zh) | 2013-12-04 | 2013-12-04 | 收发共用天线的自干扰消除方法、收发机和通信设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/172,895 Continuation US9768826B2 (en) | 2013-12-04 | 2016-06-03 | Self-interference cancellation method, transceiver, and communications device for transmit/receive shared antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015081514A1 true WO2015081514A1 (zh) | 2015-06-11 |
Family
ID=53272743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/088512 WO2015081514A1 (zh) | 2013-12-04 | 2013-12-04 | 收发共用天线的自干扰消除方法、收发机和通信设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9768826B2 (zh) |
CN (1) | CN105474549B (zh) |
WO (1) | WO2015081514A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018053870A1 (zh) * | 2016-09-26 | 2018-03-29 | 华为技术有限公司 | 双工通信方法、通信设备和系统 |
CN108254722A (zh) * | 2017-12-25 | 2018-07-06 | 珠海纳睿达科技有限公司 | 一种双频相控阵雷达系统及其实现方法 |
CN108713298A (zh) * | 2016-07-28 | 2018-10-26 | 华为技术有限公司 | 通信方法、电缆调制解调器终端系统和电缆调制解调器 |
CN111211836A (zh) * | 2020-01-09 | 2020-05-29 | 中国人民解放军战略支援部队信息工程大学 | 对称载波消除光通信方法、可见光收发器及可见光通信终端 |
US11233587B2 (en) | 2017-11-14 | 2022-01-25 | Lg Electronics Inc. | Method for receiving information for measuring self-interference, and terminal therefor |
CN114499415A (zh) * | 2020-11-13 | 2022-05-13 | 千寻位置网络有限公司 | 接收机射频前端模块及接收机 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015131397A1 (zh) * | 2014-03-07 | 2015-09-11 | 华为技术有限公司 | 用于干扰消除的装置和方法 |
CN106464616B (zh) | 2014-06-26 | 2019-10-22 | 华为技术有限公司 | 一种干扰消除的装置和方法 |
CN106464617B (zh) | 2014-06-26 | 2020-01-31 | 华为技术有限公司 | 一种干扰消除的装置和方法 |
SG11201610769YA (en) * | 2014-06-26 | 2017-01-27 | Huawei Tech Co Ltd | Interference cancellation apparatus and method |
US9825665B2 (en) * | 2015-05-27 | 2017-11-21 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Self-interference cancellation for full-duplex communication using a phase and gain adjusted transmit signal |
US9774364B2 (en) * | 2015-09-04 | 2017-09-26 | Futurewei Technologies, Inc. | Interference phase estimate system and method |
CN106911358A (zh) * | 2017-01-25 | 2017-06-30 | 武汉矽磊电子科技有限公司 | 一种无线收发系统 |
WO2018224488A1 (en) * | 2017-06-06 | 2018-12-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Radio frequency communication and jamming device and method for physically secured friendly radio frequency communication and for jamming hostile radio frequency communication |
CN107317665B (zh) * | 2017-06-22 | 2019-05-17 | 维沃移动通信有限公司 | 一种同时同频全双工系统及移动终端 |
CN109728893B (zh) * | 2017-10-31 | 2021-06-08 | 华为技术有限公司 | 一种全双工fd传输方法及相关设备 |
CN110611521B (zh) * | 2018-06-15 | 2022-04-15 | 中兴通讯股份有限公司 | 全双工自干扰抵消方法、设备以及计算机可读存储介质 |
CN111277300B (zh) * | 2018-12-18 | 2021-10-01 | 维沃移动通信有限公司 | 信息传输方法、终端及网络设备 |
CN110731053B (zh) * | 2019-04-29 | 2020-12-11 | Oppo广东移动通信有限公司 | 自干扰估计的方法和终端设备 |
WO2020220927A1 (zh) * | 2019-04-30 | 2020-11-05 | 华为技术有限公司 | 一种全双工通信装置和方法 |
CN112543037B (zh) * | 2019-09-20 | 2022-05-24 | 华为技术有限公司 | 一种通信设备、射频干扰消除方法及装置 |
WO2021217298A1 (en) * | 2020-04-26 | 2021-11-04 | Qualcomm Incorporated | Uplink resource restriction reporting for full-duplex communications |
CN113676424B (zh) * | 2020-05-15 | 2024-01-30 | 上海华为技术有限公司 | 通信装置和信道估计方法 |
CN114629511B (zh) * | 2022-05-17 | 2022-08-12 | 成都华芯天微科技有限公司 | 一种同频收发一体化的相控阵天线的信号处理方法 |
CN117459957A (zh) * | 2022-07-18 | 2024-01-26 | 中兴通讯股份有限公司 | 基站下行干扰检测方法、电路、控制单元及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101141235A (zh) * | 2006-09-08 | 2008-03-12 | 北京大学 | 一种适用于同频同时隙双工的干扰消除方法 |
CN103297069A (zh) * | 2013-05-08 | 2013-09-11 | 北京工业大学 | 一种全双工无线电射频干扰删除装置与方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3800382B2 (ja) * | 1998-09-04 | 2006-07-26 | 富士通株式会社 | 干渉キャンセラにおける伝搬路推定方法及び干渉除去装置 |
CN1146170C (zh) * | 2000-11-27 | 2004-04-14 | 华为技术有限公司 | 一种多用户扩频通信系统联合检测的改进方法 |
CN1154272C (zh) * | 2001-08-03 | 2004-06-16 | 华为技术有限公司 | 一种基于干扰消除的接收方法 |
US8611401B2 (en) * | 2010-04-01 | 2013-12-17 | Adeptence, Llc | Cancellation system for millimeter-wave radar |
WO2013088393A1 (en) * | 2011-12-14 | 2013-06-20 | Redline Communications Inc. | Single channel full duplex wireless communication |
US9001712B2 (en) * | 2012-05-02 | 2015-04-07 | Texas Instruments Incorporated | Transmit signal cancelation apparatus and methods |
US8855175B2 (en) * | 2012-08-02 | 2014-10-07 | Telefonaktiebolaget L M Ericsson (Publ) | Low complexity all-digital PIM compensator |
US8977224B2 (en) * | 2012-08-09 | 2015-03-10 | Mstar Semiconductor, Inc. | Transceiver and noise cancellation method for radio-frequency identification |
US9077440B2 (en) * | 2013-01-04 | 2015-07-07 | Telefonaktiebolaget L M Ericsson (Publ) | Digital suppression of transmitter intermodulation in receiver |
US8964608B2 (en) * | 2013-01-11 | 2015-02-24 | Futurewei Technologies, Inc. | Interference cancellation for division free duplexing or full duplex operation |
-
2013
- 2013-12-04 CN CN201380079056.4A patent/CN105474549B/zh active Active
- 2013-12-04 WO PCT/CN2013/088512 patent/WO2015081514A1/zh active Application Filing
-
2016
- 2016-06-03 US US15/172,895 patent/US9768826B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101141235A (zh) * | 2006-09-08 | 2008-03-12 | 北京大学 | 一种适用于同频同时隙双工的干扰消除方法 |
CN103297069A (zh) * | 2013-05-08 | 2013-09-11 | 北京工业大学 | 一种全双工无线电射频干扰删除装置与方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108713298A (zh) * | 2016-07-28 | 2018-10-26 | 华为技术有限公司 | 通信方法、电缆调制解调器终端系统和电缆调制解调器 |
EP3454482A4 (en) * | 2016-07-28 | 2019-09-04 | Huawei Technologies Co., Ltd. | COMMUNICATION METHOD, TERMINAL SYSTEM OF WIRED MODEM, AND CABLE MODEM |
US10938509B2 (en) | 2016-07-28 | 2021-03-02 | Huawei Technologies Co., Ltd. | Communication method, cable modem terminal system, and cable modem |
WO2018053870A1 (zh) * | 2016-09-26 | 2018-03-29 | 华为技术有限公司 | 双工通信方法、通信设备和系统 |
CN108292930A (zh) * | 2016-09-26 | 2018-07-17 | 华为技术有限公司 | 双工通信方法、通信设备和系统 |
CN108292930B (zh) * | 2016-09-26 | 2019-11-05 | 华为技术有限公司 | 双工通信方法、通信设备和系统 |
US11233587B2 (en) | 2017-11-14 | 2022-01-25 | Lg Electronics Inc. | Method for receiving information for measuring self-interference, and terminal therefor |
CN108254722A (zh) * | 2017-12-25 | 2018-07-06 | 珠海纳睿达科技有限公司 | 一种双频相控阵雷达系统及其实现方法 |
CN108254722B (zh) * | 2017-12-25 | 2021-04-27 | 广东纳睿雷达科技股份有限公司 | 一种双频相控阵雷达系统及其实现方法 |
CN111211836A (zh) * | 2020-01-09 | 2020-05-29 | 中国人民解放军战略支援部队信息工程大学 | 对称载波消除光通信方法、可见光收发器及可见光通信终端 |
CN114499415A (zh) * | 2020-11-13 | 2022-05-13 | 千寻位置网络有限公司 | 接收机射频前端模块及接收机 |
Also Published As
Publication number | Publication date |
---|---|
US9768826B2 (en) | 2017-09-19 |
US20160285502A1 (en) | 2016-09-29 |
CN105474549B (zh) | 2018-05-11 |
CN105474549A (zh) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015081514A1 (zh) | 收发共用天线的自干扰消除方法、收发机和通信设备 | |
EP3210307B1 (en) | Full duplex radio with tx leakage cancellation | |
Askar et al. | Active self-interference cancellation mechanism for full-duplex wireless transceivers | |
Chung et al. | Compact full duplex MIMO radios in D2D underlaid cellular networks: From system design to prototype results | |
JP6562566B2 (ja) | 干渉除去の装置および方法 | |
US9231715B2 (en) | I/Q mismatch compensation method and apparatus | |
US9973233B2 (en) | Interference cancellation apparatus and method | |
CN111800179B (zh) | 一种分集接收机及终端 | |
US10205585B2 (en) | Systems and methods for analog cancellation for division free duplexing for radios using MIMO | |
US10129010B2 (en) | Dual-mode radio system having a full-duplex mode and a half-duplex mode | |
US9998171B2 (en) | IBFD transceiver with non-reciprocal frequency transposition module | |
WO2015139266A1 (zh) | 用于自干扰消除的装置和方法 | |
Soriano-Irigaray et al. | Adaptive self-interference cancellation for full duplex radio: Analytical model and experimental validation | |
WO2015196425A1 (zh) | 一种干扰消除的装置和方法 | |
WO2015196404A1 (zh) | 一种干扰消除的装置和方法 | |
WO2015135197A1 (zh) | 用于干扰消除的装置和方法 | |
US10965337B2 (en) | Antenna configuration switching for full-duplex transmission | |
Emara et al. | A full duplex transceiver with reduced hardware complexity | |
US7340234B2 (en) | UWB transmitting and receiving device for removing an unnecessary carrier component in a transmission signal spectrum | |
Askar et al. | Agile full-duplex transceiver: The concept and self-interference channel characteristics | |
US20150131491A1 (en) | Tracking | |
Kaiser et al. | General Principles and Basic Algorithms for Full‐duplex Transmission | |
Chandran et al. | Transmitter leakage analysis when operating USRP (N210) in duplex mode | |
Li et al. | Nonlinear distortion suppression of cooperative jamming system for secure wireless communication | |
Zhou et al. | Analysis of RF feedback chain isolation in wireless co-time co-frequency full duplex |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380079056.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13898531 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13898531 Country of ref document: EP Kind code of ref document: A1 |