WO2020220927A1 - 一种全双工通信装置和方法 - Google Patents

一种全双工通信装置和方法 Download PDF

Info

Publication number
WO2020220927A1
WO2020220927A1 PCT/CN2020/083060 CN2020083060W WO2020220927A1 WO 2020220927 A1 WO2020220927 A1 WO 2020220927A1 CN 2020083060 W CN2020083060 W CN 2020083060W WO 2020220927 A1 WO2020220927 A1 WO 2020220927A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna
cancellation
signals
module
Prior art date
Application number
PCT/CN2020/083060
Other languages
English (en)
French (fr)
Inventor
刘大庆
王斌
刘小成
王俊
李榕
乔云飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910604291.8A external-priority patent/CN111953371B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020220927A1 publication Critical patent/WO2020220927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a full-duplex communication device and method.
  • Full duplex (FD) communication is to send and receive data at the same time, frequency and channel.
  • Wireless full-duplex communication technology has always been a research hotspot in the communication field.
  • the transmit link will cause strong interference to the receive link, and the interference signal is more powerful than the received signal.
  • the interference signal is more powerful than the received signal.
  • 100 ⁇ 120dB higher 100 ⁇ 120dB higher. Therefore, how to eliminate self-interference in full-duplex communication is a problem to be solved.
  • the prior art proposes some methods of how to eliminate self-interference in full-duplex communication.
  • the complexity of interference elimination has risen sharply, and the current methods for eliminating interference in full-duplex communication are not very good.
  • the effect of applying these methods to multi-antenna scenarios is still not ideal.
  • the embodiments of the present application provide a full-duplex communication device and method to eliminate the problem of interference in a multi-antenna application scenario.
  • a full-duplex communication device includes one or more full-duplex units; wherein any one of the full-duplex units includes: a power division module, a transceiver antenna, and a cancellation antenna , A combining module; the transceiver antenna includes a first transmitting port and a first receiving port, the first transmitting port is connected to the power dividing module, the first receiving port is connected to the combining module, and the cancellation antenna It includes a second sending port and a second receiving port, the second sending port is connected to the power dividing module, and the second receiving port is connected to the combining module; the power dividing module is configured to divide the signal to be sent into The first signal and the second signal, the first signal is transmitted through the first transmission port, and the second signal is transmitted through the second transmission port; the transceiver antenna is configured to pass through the first transmission port The first signal is sent, and a third signal is received through the first receiving port.
  • the third signal includes interference signals and signals sent by other communication devices.
  • the interference signals include: signals received by the first receiving port. The signal from all the transceiving antennas in the one or more full-duplex units; the transceiving antenna is also used to transmit the third signal to the combining module; the canceling antenna is used to pass The second transmitting port sends the second signal, and receives a cancellation signal through the second receiving port, and the cancellation signal includes: the second receiving port received from the one or more full-duplex units All cancel the signal sent by the antenna; the cancel antenna is also used to transmit the cancel signal to the combining module; the combination module is used to differentially combine the third signal and the cancel signal , Output the interference canceled signal; and, the scattering parameter matrix of all the transmitting and receiving antennas in the one or more full-duplex units is the same as the scattering parameter matrix of all the canceling antennas.
  • the device further includes a shielding device, the cancellation antenna is placed in the shielding device, and the shielding device is used to block the signal sent by the cancellation antenna from being transmitted to the outside. An external signal is received.
  • a wave absorbing material is attached to the shielding device.
  • the signal sent by the cancelling antenna will not be reflected when transmitted to the shielding box, avoiding the problem that the reflected signal is canceled by the second receiving port of the antenna and the cancellation signal and the interference signal cannot be canceled. .
  • the physical structure and size of the transceiver antenna and the cancellation antenna are the same.
  • the power dividing module is an equal dividing power divider; the equal dividing power divider is used to equally divide the power of the signal to be sent to obtain the first signal and the second signal , The power of the first signal is equal to the power of the second signal. It is easier to play a role in eliminating interference.
  • the power dividing module is a directional coupler or an unequal power divider; the directional coupler or unequal power divider is used to distribute the power of the signal to be transmitted in proportion to obtain For the first signal and the second signal, the power of the first signal is greater than the power of the second signal. This helps to improve the utilization of the transmitted signal energy.
  • the device further includes an amplifier connected to the cancellation antenna and the combining module; the amplifier is used to amplify the power of the cancellation signal according to the ratio To transmit the amplified cancellation signal to the combining module. Since the input and output signals of the amplifier are very small, the distortion of the cancellation signal after amplification is small, and the impact on the cancellation effect is also small.
  • the combining module further includes a phase shifter; the phase shifter is used to phase shift the cancellation signal or the third signal by 180 degrees or an integer multiple of 180 degrees.
  • the power division module is a balun; the balun is used to convert the signal to be sent into the first signal and the second signal, and the first signal and the second signal The amplitudes of the signals are equal and the phase difference is 180 degrees.
  • the transceiving antenna includes a common antenna for receiving and transmitting
  • the canceling antenna includes a common antenna for receiving and transmitting
  • the transceiving antenna is connected to the power dividing module and the combining module through a first circulator. Connection; the cancellation antenna is connected to the power division module and the combining module through a second circulator.
  • the characteristic parameters of the first circulator and the second circulator are the same, and/or the physical structures and dimensions of the first circulator and the second circulator are the same.
  • the effect of interference cancellation depends on the consistency of the scattering parameter matrix of the transceiver antenna and the cancellation antenna. The higher the consistency, the better the interference cancellation effect.
  • the characteristic parameters of the first circulator and the second circulator in this application are the same. In order to make the characteristic parameters of the first circulator and the second circulator tend to be consistent.
  • the transceiving antenna includes a receiving and transmitting antenna
  • the canceling antenna includes a receiving and transmitting antenna.
  • the device further includes an adjustable phase shifter, the adjustable phase shifter is connected between the cancellation antenna and the combining module, and the adjustable phase shifter is used to adjust the The phase of the cancellation signal; and/or, the device further includes an adjustable gain amplifier connected between the cancellation antenna and the combining module; and the adjustable gain amplifier is used for adjusting The amplitude of the cancellation signal. Make the cancellation signal better match the interference signal to achieve better interference cancellation effect.
  • the device further includes an adjustable phase shifter connected between the transceiver antenna and the combining module, and the adjustable phase shifter is used to adjust the The phase of the third signal; and/or, the device further includes an adjustable gain amplifier connected between the transceiver antenna and the combining module; and the adjustable gain amplifier is used for Adjust the amplitude of the third signal. Make the cancellation signal better match the interference signal to achieve better interference cancellation effect.
  • a full-duplex communication device in a second aspect, includes a power division module, a transceiver antenna module, a cancellation antenna module, and a combining module.
  • the transceiver antenna module includes M first transmission ports and M first receivers.
  • the cancellation antenna module includes M second transmission ports and M second reception ports, where M is a positive integer; the scattering parameter matrix of the transceiver antenna module is the same as the scattering parameter matrix of the cancellation antenna module;
  • the M is an integer greater than or equal to 2; wherein, the first sending port and the second sending port are respectively connected to the power division module, and the first receiving port and the second receiving port are respectively connected to The combining module is connected; the power dividing module is used to obtain M signals to be transmitted, and perform power distribution on any one of the M signals to be transmitted to obtain M first signals and M Two signals; the transceiver antenna module is used to transmit the i-th first signal of the M first signals through the i-th first transmitting port among the M first transmitting ports, and receive the i-th first signal through the M first transmission ports;
  • the port receives M third signals and transmits the M third signals to the combining module; the ith third signal received by the ith first receiving port includes interference signals and signals sent by other communication devices ,
  • the canceling antenna module is used to pass M
  • the i-th second transmitting port among the second transmitting ports transmits the i-th second signal among the M second signals, receives M cancellation signals through the M second receiving ports, and combines the M third
  • the signal is transmitted to the combining module, the i-th canceling signal in the M canceling signals includes the signal sent from the M second transmitting ports received by the i-th second receiving port, and the combining module , Used to differentially combine the M third signals and the M cancellation signals to output interference cancellation signals, where the i-th third signal and the i-th cancellation signal are differentially combined.
  • the device includes: a power division module, a transceiver antenna module, a cancellation antenna module, and a combining module, the transceiver antenna module includes M first transmitting ports and N first receiving ports, and the canceling antenna module includes M Two transmitting ports and N second receiving ports, where M and N are positive integers; the scattering parameter matrix of the transceiver antenna module is the same as the scattering parameter matrix of the cancellation antenna module; the M and N are greater than or equal to An integer of 2; wherein the first sending port and the second sending port are respectively connected to the power division module, and the first receiving port and the second receiving port are respectively connected to the combining module;
  • the power division module is configured to obtain M signals to be transmitted, and perform power distribution on any one of the M signals to be transmitted to obtain M first signals and M second signals; the transceiver antenna Module, configured to transmit the i-th first signal among the M first signals through the i-th first transmitting port among the M first transmitting ports, and receive the N-th first signal through the N first receiving
  • the cancellation antenna module is configured to transmit the i-th second signal of the M second signals through the i-th second transmission port among the M second transmission ports, and receive N cancellation signals through the N second receiving ports , And transmitting the N third signals to the combining module, and the jth cancellation signal in the N cancellation signals includes the jth second receiving port received from the M second sending ports
  • the sending signal, the combining module is used to differentially combine the N third signals and the N cancellation signals, and output the signals after interference cancellation, where the jth third signal and the jth Two cancellation signals are combined differentially.
  • M can be equal to N, or M can be different from N.
  • the scattering parameter matrix of the M cancellation antennas is the same as the scattering parameter matrix of the M transceiver antennas, and all the interference signals received on all the receiving ports of the transceiver antennas are processed simultaneously.
  • the hardware complexity of interference cancellation is greatly reduced, and the hardware complexity is reduced from M 2 to M. Since the scattering parameter matrix of the transmitting and receiving antenna and the canceling antenna are the same, the frequency response of the canceling signal and the interference signal are basically the same, and there is no need to perform excessive amplitude and phase modulation processing on the canceling signal, and the hardware complexity is greatly reduced compared with the existing scheme .
  • the device includes a shielding device, and the M second transmitting ports and the M second receiving ports are placed in the shielding device, or the canceling antenna module is placed in the shielding device.
  • the shielding device is used to block the M second signals sent by the cancellation antenna module from being transmitted to the outside, and to block the cancellation antenna module from receiving external signals through the M second receiving ports.
  • a wave absorbing material is attached to the shielding device.
  • the signal sent by the cancelling antenna will not be reflected when transmitted to the shielding box, avoiding the problem that the reflected signal is canceled by the second receiving port of the antenna and the cancellation signal and the interference signal cannot be canceled. .
  • the physical structure and size of the transceiver antenna in the transceiver antenna module and the cancellation antenna in the cancellation antenna module are the same.
  • the power dividing module is an equal dividing power divider; the equal dividing power divider is used to equally divide the power of any signal to be sent, and the power of the first signal is equal to the The power of the second signal. It is easier to play a role in eliminating interference.
  • the power dividing module is a directional coupler or an unequal power divider; the directional coupler or unequal power divider is used to distribute the power of any signal to be transmitted in proportion , The power of the first signal is greater than the power of the second signal. This helps to improve the utilization of the transmitted signal energy.
  • the device further includes an amplifier connected to the cancellation antenna module and the combining module; the amplifier is used to perform the power of the cancellation signal according to the ratio Amplify, and transmit the amplified cancellation signal to the combining module. Since the input and output signals of the amplifier are very small, the distortion of the cancellation signal after amplification is small, and the impact on the cancellation effect is also small.
  • the combining module further includes a phase shifter; the phase shifter is used to phase shift the cancellation signal or the third signal by 180 degrees.
  • the phase shifter is used to shift the phase of the cancellation signal or the third signal, and the phase shift is used to shift the phase of the cancellation signal and the third signal by an integer multiple of 180 degrees.
  • the power dividing module is a balun; the balun is used to convert any one of the signals to be sent into the first signal and the second signal, and the first signal and The second signals have the same amplitude and a phase difference of 180 degrees.
  • the transceiver antenna module includes a common antenna for receiving and transmitting
  • the canceling antenna module includes a common antenna for receiving and transmitting; the common antenna for receiving and transmitting in the transceiver antenna module communicates with each other through a first circulator.
  • the power dividing module is connected to the combining module; the receiving and transmitting common antenna in the canceling antenna module is connected to the power dividing module and the combining module through a second circulator.
  • the characteristic parameters of the first circulator and the second circulator are the same, and/or the physical structures and dimensions of the first circulator and the second circulator are the same.
  • the effect of interference cancellation depends on the consistency of the scattering parameter matrix of the transceiver antenna and the cancellation antenna. The higher the consistency, the better the interference cancellation effect.
  • the characteristic parameters of the first circulator and the second circulator in this application are the same. In order to make the characteristic parameters of the first circulator and the second circulator tend to be consistent.
  • the transceiver antenna module includes a receiving and transmitting antenna
  • the cancellation antenna module includes a receiving and transmitting antenna.
  • the device further includes an adjustable phase shifter connected between the cancellation antenna module and the combining module, and the adjustable phase shifter is used to adjust The phase of the cancellation signal; and/or, the device further includes an adjustable gain amplifier connected between the cancellation antenna module and the combining module; and the adjustable gain amplifier is used for To adjust the amplitude of the cancellation signal. Make the cancellation signal better match the interference signal to achieve better interference cancellation effect.
  • the device further includes an adjustable phase shifter connected between the transceiver antenna module and the combining module, and the adjustable phase shifter is used to adjust The phase of the third signal; and/or, the device further includes an adjustable gain amplifier connected between the transceiver antenna module and the combining module; and the adjustable gain amplifier Used to adjust the amplitude of the third signal. Make the cancellation signal better match the interference signal to achieve better interference cancellation effect.
  • a full-duplex communication method is provided, which is applied to a full-duplex communication device.
  • the method includes: performing power distribution on M signals to be transmitted to obtain M first signals and M second signals, and M is an integer greater than or equal to 2; the M first signals are transmitted through M transceiving antennas, and the M second signals are transmitted through M cancellation antennas.
  • the scattering parameter matrix of the M transceiving antennas is The scattering parameter matrices of the M cancelling antennas are the same; the M third signals are received through the M transmitting and receiving antennas, and the M canceling signals are received through the M canceling antennas, wherein the ith of the M third signals
  • the third signal includes interference signals and signals sent by other communication devices, and the interference signals include signals received by the i-th transceiving antenna from the M transceiving antennas, and i is 1, 2, ... M Any integer number in; the M third signals and the M cancellation signals are differentially combined to output the interference cancellation signal.
  • the M signals to be sent are allocated for power to obtain M first signals and M second signals, where M is a positive integer; the M first signals are transmitted through the transceiver antenna, and the M The second signal is sent through a cancellation antenna, and the scattering parameter matrix formed by the M sending ports and N receiving ports of the transceiver antenna is the same as the scattering parameter matrix formed by the M sending ports and N receiving ports of the cancellation antenna;
  • the transceiver antenna receives N third signals, and receives N cancellation signals through the cancellation antenna, wherein the jth third signal in the N third signals includes interference signals and signals sent by other communication devices, and
  • the interference signal includes the signal received by the j-th receiving port and transmitted from the M transmitting ports, where j is any integer from 1, 2, ... N; and the N third signals are combined with the The N cancellation signals are combined differentially, and the signal after interference cancellation is output.
  • this method can realize multi-antenna interference cancellation.
  • the first signal and the second signal have the same amplitude and opposite phase; or, the method further includes: shifting the phase of the cancellation signal by an integer multiple of 180 degrees;
  • the differential combination of the third signals and the M cancellation signals includes: differential combination of the M third signals and the M cancellation signals after phase shifting.
  • the powers of the first signal and the second signal differ by a fixed multiple. It helps to avoid energy loss and improve the utilization of transmitted signals.
  • a computer-readable storage medium for storing a computer program, the computer program including instructions for executing the above-mentioned full-duplex communication method.
  • a computer program product comprising: computer program code, which when the computer program code runs on a computer, causes the computer to execute the above-mentioned full-duplex communication method.
  • Figure 1 is a schematic diagram of a communication system architecture in an embodiment of the application
  • FIG. 2 is one of the structural schematic diagrams of a full-duplex communication device in an embodiment of the application
  • FIG. 3 is the second structural diagram of a full-duplex communication device in an embodiment of the application.
  • 4a is the third structural diagram of the full-duplex communication device in the embodiment of the application.
  • 4b is the fourth structural diagram of the full-duplex communication device in the embodiment of this application.
  • FIG. 5 is the fifth structural diagram of the full-duplex communication device in the embodiment of this application.
  • FIG. 6 is a sixth structural diagram of a full-duplex communication device in an embodiment of this application.
  • FIG. 7 is a seventh structural diagram of a full-duplex communication device in an embodiment of this application.
  • FIG. 8 is the eighth structural diagram of the full-duplex communication device in the embodiment of this application.
  • FIG. 9 is a schematic diagram of phase and amplitude adjustment in an embodiment of the application.
  • FIG. 10 is a ninth structural diagram of a full-duplex communication device in an embodiment of this application.
  • FIG. 11 is a tenth structural diagram of a full-duplex communication device in an embodiment of this application.
  • FIG. 12 is a schematic flowchart of a full-duplex communication method in an embodiment of the application.
  • the embodiment of the present application provides a full-duplex communication device and method, which is helpful for interference cancellation in a multi-antenna application scenario.
  • the device and the method are based on the same concept. Since the principles of the device and the method to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • "and/or" describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, and both A and B exist at the same time. There are three cases of B.
  • the character "/" generally indicates that the associated objects are in an "or” relationship.
  • At least one involved in this application refers to one or more; multiple involved refers to two or more.
  • words such as “first” and “second” are only used for the purpose of distinguishing description, and cannot be understood as indicating or implying relative importance, nor can it be understood as indicating Or imply the order.
  • the full-duplex communication device and method provided in the embodiments of this application can be applied to various communication systems, such as: long-term evolution (LTE) system, worldwide interoperability for microwave access (WiMAX) communication system , The fifth generation (5th Generation, 5G) new radio (NR) communication system, and future communication systems, such as 6G systems.
  • LTE long-term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • future communication systems such as 6G systems.
  • FIG. 1 shows the architecture of a possible communication system to which the embodiments of the present application can be applied.
  • the communication system 100 includes: a network device 101 and a terminal 102.
  • the full-duplex communication apparatus provided in the embodiment of the present application may be applied to the network device 101 or the terminal 102. It can also be considered that the full-duplex communication apparatus may be the network device 101 or the terminal 102.
  • the network device 101 is a device with a wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), the access point (AP), wireless relay node, wireless backhaul node, and transmission point (transmission and reception point, TRP or transmission) in the wireless fidelity (WIFI) system point, TP), etc.
  • it can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, Or, it may also be a network node that constitutes a gNB or a transmission point, such as
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network CN, which is not limited here.
  • Terminal equipment can also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user Agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, and wireless terminals in smart homes.
  • terminal devices with wireless transceiver functions and chips that can be set in the aforementioned terminal devices are collectively referred to as terminal devices.
  • the full-duplex communication device and method provided in the embodiments of the present application can be applied to a single-antenna or multi-antenna full-duplex communication scenario.
  • the application scenario of multiple antennas may include, for example, a multi-input multiple-output (multi-input multi-output, MIMO) technology, or a massive-input multiple-output massive-MIMO technology.
  • the structure of the full-duplex communication device provided by the embodiment of the present application is shown in FIG. 2.
  • the full-duplex communication device includes one or more full-duplex units.
  • the design of the structure in any full-duplex unit is the same.
  • the number of full-duplex units is consistent with the number of transmitting and receiving antennas in the multi-antenna scenario applied by the full-duplex communication device.
  • the introduction of the concept of a full-duplex unit in this application is to facilitate the understanding of the full-duplex communication device of this application. It can be considered as a logical division in a full-duplex communication device.
  • Each full-duplex unit in Figure 2 includes a receiving antenna (or receiving link) and a transmitting antenna (or transmitting link).
  • the receiving antenna (or receiving link) and the transmitting antenna ( Or the number of sending links) is equal.
  • a full-duplex unit does not necessarily include both a transmitting antenna and a receiving antenna. Therefore, the design of the structure in the full-duplex unit may be different.
  • the transmitting antenna (or transmission link) in a full-duplex communication device is The number of receiving antennas (or links) is not necessarily equal.
  • the present application may all be introduced by taking the same number of receiving antennas (or receiving links) and sending antennas (or sending links) as an example.
  • the full-duplex device shown in FIG. 2 includes 4 receiving antennas and 4 transmitting antennas, and the number is the same.
  • each full-duplex unit includes a receiving antenna and a transmitting antenna
  • the design of each full-duplex unit in the full-duplex communication device can refer to this description.
  • the full-duplex unit includes a power division module 201, a transceiver antenna 202, a cancellation antenna 203, and a combining module 204.
  • the transceiver antenna 202 is used to transmit and receive data, and includes a transmitting port and a receiving port.
  • the transmitting port included in the transceiver antenna 202 is recorded as the first transmitting port
  • the receiving port is recorded as the first receiving port.
  • the first sending port is connected to the power dividing module 201 and is used to send signals from the power dividing module 201.
  • the first receiving port is connected to the combining module 204 for receiving a signal and transmitting the received signal to the combining module 204.
  • the cancellation antenna 203 Similar to the transmitting and receiving antenna 202, the cancellation antenna 203 also includes two ports, denoted as a second transmitting port and a second receiving port.
  • the second transmitting port is connected to the power dividing module 201, and the second receiving port is connected to the combining module 204.
  • Fig. 2 takes four full-duplex units in a full-duplex communication device as an example for illustration. In practical applications, the number of full-duplex units can be any positive integer.
  • the four transmitting and receiving antennas in the four full-duplex units are represented by TRx1, TRx2, TRx3, and TRx4 in FIG. 2.
  • the transmitting links connected by the power dividing module 201 are represented by Tx1, Tx2, Tx3, and Tx4, and the four receiving links connected by the combining module 204 are represented by Rx1, Rx2, Rx3, and Rx4, respectively.
  • the power division module 201 is configured to divide the signal to be sent into a first signal and a second signal.
  • the first signal can be sent through the first sending port, and the second signal can be sent through the second sending port.
  • the transceiver antenna 202 is configured to send a first signal through the first transmission port, and receive a third signal through the first reception port.
  • the third signal includes interference signals and signals sent by other communication devices.
  • the full-duplex communication device is a network device
  • the third signal includes interference signals and useful signals from the terminal.
  • the full-duplex communication device is a terminal
  • the third signal includes interference signals and useful signals from network equipment.
  • the interference signal in the third signal includes the signal received by the first receiving port from all the transmitting and receiving antennas in each full-duplex communication device.
  • a full-duplex communication device includes 4 full-duplex units, that is, 4 transceiver antennas, and the interference signal in the third signal includes the 4 transceiver antennas received by the first receiving port from the 4 full-duplex units The signal sent.
  • the transceiver antenna 202 receives the third signal through the first receiving port, and is also used to transmit the third signal to the combining module 204.
  • the combining module 204 receives the third signal from the transceiver antenna 202.
  • the cancellation antenna 203 is configured to receive the second signal from the power division module 201, send the second signal through the second transmission port, and receive the cancellation signal through the second reception port.
  • the cancellation signal here includes the signal received by the second receiving port from all the cancellation antennas included in the full-duplex communication device.
  • a full-duplex communication device includes 4 full-duplex units, that is, 4 cancellation antennas, and the cancellation signal includes the signal received by the second receiving port from the 4 cancellation antennas.
  • the cancellation antenna 203 is also used to transmit the cancellation signal to the combining module 204.
  • the combining module 204 is used for receiving the cancellation signal from the cancellation antenna 203.
  • the combining module 204 can receive two signals, including the third signal from the transceiver antenna 202 and the cancellation signal from the cancellation antenna 203.
  • the combining module 204 is further configured to differentially combine the third signal and the cancellation signal, and output a signal after interference cancellation.
  • the cancellation signal is used to eliminate the interference signal in the third signal, so that after the interference signal is eliminated, the useful signal in the third signal can be output.
  • all cancellation antennas and transceiver antennas in the full-duplex communication device are designed to make interference cancellation better.
  • the scattering parameter matrix of all transmitting and receiving antennas in a full-duplex communication device is the same as the scattering parameter matrix of all canceling antennas.
  • the same scattering parameter matrix of the transmitting and receiving antenna and the cancellation antenna means that the amplitude and phase of the scattering parameters are the same in theory. In practice, due to processing errors, external environment and other factors, the scattering parameters of the two antennas or antenna arrays are impossible It is completely consistent.
  • the scattering parameter matrix (or physical structure, size, characteristic parameter, etc.) of the two antennas (or other devices) are the same.
  • the effect of interference cancellation depends on the consistency of the scattering parameter matrix of the transceiver antenna and the cancellation antenna. The higher the consistency, the better the interference cancellation effect.
  • the physical structure and size of the transceiver antenna and the cancellation antenna may be the same in this application. This requires increased requirements for machining accuracy.
  • the scattering parameter matrix of the transceiver antenna and the cancellation antenna can reach the same or approximately the same. Since the characteristic parameters of the transmitting antenna and the canceling antenna are the same, the input signals of the transmitting antenna and the canceling antenna are also the same or different by a fixed multiple, and the interference signal and the canceling signal are also the same or different by a fixed multiple.
  • the scattering parameter matrix of all transmitting and receiving antennas in the full-duplex communication device is the same as the scattering parameter matrix of all canceling antennas, which may mean the same in all frequency bands, or the same in a certain frequency band.
  • the hardware complexity can be reduced, and the implementation is relatively simple.
  • multi-antenna interference cancellation can be achieved.
  • the full-duplex communication device may further include a shielding device 205, the cancellation antenna 203 is placed in the shielding device 205, and the shielding device 205 is used to block the cancellation antenna 203 from transmitting The signal is transmitted to the outside, and the cancellation antenna 203 cannot receive the external signal.
  • the shielding device 205 is used to block external signals from being received by the cancellation antenna 203.
  • the shielding device 205 is attached with a wave absorbing material, which can absorb the signal transmitted to the wave absorbing material.
  • the so-called absorption means no reflection.
  • the ability to absorb signals is related to the material of the absorbing material.
  • the shielding device 205 may include a metal isolation wall to isolate the signal.
  • the signal sent by the cancellation antenna in any full-duplex unit through the second transmission port is transmitted to all directions.
  • the second receiving port of the cancellation antenna of one of the full-duplex units receives all the signals leaked by the cancellation antenna in the full-duplex communication device, and generates a cancellation signal.
  • the signal sent by the cancelling antenna will not be reflected when transmitted to the shielding box, avoiding the problem that the reflected signal is canceled by the second receiving port of the antenna and the cancellation signal and the interference signal cannot be canceled. .
  • the design of the absorbing material in the absorbing and shielding device 205 can make the cancellation antenna simulate free space transmission and reception when transmitting and receiving signals, and can also shield the signals of other communication devices except the full-duplex communication device, and avoid the cancellation of the antenna.
  • the signal causes interference to other communication devices.
  • the transceiver antenna can include two forms, and the cancellation antenna can also include two forms. As shown in Fig. 4a, one form of the transmitting and receiving antenna includes separate antennas for receiving and transmitting, and one form of canceling antenna includes separate antennas for receiving and transmitting.
  • the transmitting ports of the four transceiver antennas in the four full-duplex units are represented by Tx1, Tx2, Tx3, and Tx4 in Figure 4a, and the receiving ports of the four transceiver antennas are represented by Rx1, Rx2, Rx3, and Rx4 in Figure 4a.
  • the transmitting links connected by the power dividing module 201 are represented by Tx1, Tx2, Tx3, and Tx4, and the four receiving links connected by the combining module 204 are represented by Rx1, Rx2, Rx3, and Rx4, respectively.
  • another form of the transmitting and receiving antenna includes a common antenna for receiving and transmitting
  • another form of a cancellation antenna includes a common antenna for receiving and transmitting.
  • a circulator is required to isolate the transmitting and receiving signals.
  • the full-duplex communication device further includes a circulator 206.
  • the circulator on the transmitting and receiving antenna side is recorded as the first circulator
  • the circulator on the offset antenna side is recorded as the second circulator.
  • the four transceiving antennas in the four full-duplex units are represented by TRx1, TRx2, TRx3, and TRx4 in FIG. 4b.
  • the transmitting links connected by the power dividing module 201 are represented by Tx1, Tx2, Tx3, and Tx4, and the four receiving links connected by the combining module 204 are represented by Rx1, Rx2, Rx3, and Rx4, respectively.
  • the circulator 206 is a unidirectional 3-port device, which is generally used for antenna multiplexing. Take the first circulator as an example to illustrate the working principle of the circulator. For example, the signal entering from port 2 can only be output from port 3, and the signal entering from port 3 can only be output from port 1. Therefore, port 2 is generally connected to the output link, and port 3 is connected to the transmitting end of the transmitting antenna or transmitting and receiving antenna. 1 is connected to the receiving link, so the circulator 206 expands one antenna port into a transmitting port (circulator port 2) and a receiving port (circulator port 1). However, complete isolation between ports 2 and 1 cannot be achieved, and the isolation is generally 30-40dB. Therefore, part of the transmitted signal will leak from port 2 to port 1 to interfere with the received signal. Therefore, in a multi-antenna system, the receiving port of one transceiving antenna can receive interference from signals sent by all transceiving antennas including itself.
  • the effect of interference cancellation depends on the consistency of the scattering parameter matrix of the transceiver antenna and the cancellation antenna.
  • the characteristics of the first circulator and the second circulator in this application The parameters are the same.
  • the physical structure and size of the first circulator and the second circulator can be designed to be the same in this application. This requires increased requirements for machining accuracy.
  • the scattering parameter matrices of the first circulator and the second circulator can reach the same or approximately the same.
  • the scattering parameter matrix of all the first circulators and the scattering parameter matrix of all the second circulators in the full-duplex communication device are the same, which may mean that the scattering parameter matrix is the same in the whole frequency band or the same in a certain frequency band.
  • the transmitting and receiving antennas do not need to be isolated by a circulator, and through a certain antenna design, the isolation of the transmitting and receiving antennas is improved, combined with the interference cancellation provided by this application Method, can achieve better interference elimination effect.
  • the architecture of the full-duplex communication device in any possible implementation manner provided by the embodiments of the present application may apply an antenna form with separate transmission and reception and an antenna form with common transmission and reception. Except for different antenna forms, other structural designs remain unchanged.
  • the following description of the present application takes the form of an antenna shared by transmitting and receiving as an example. It can be understood that the method described below can also be applied to a form of antenna with separate transmitting and receiving.
  • the power dividing module 201 described in the foregoing full-duplex communication device architecture may be a power divider.
  • the power divider is an equal division power divider.
  • the power divider is used to halve the power of the signal to be sent to obtain two signals, namely the first signal and the second signal, so that the power of the first signal is equal to the power of the second signal.
  • the full-duplex communication device further includes a phase shifter (PS) 207.
  • the phase shifter 207 is located between the transceiver antenna 202 and the combining module 204
  • the phase shifter 207 is located between the cancellation antenna 203 and the combining module 204.
  • the phase shifter 207 is located between the cancellation antenna 203 and the combining module 204 as an example.
  • the combiner module 204 includes a combiner and also includes a phase shifter 207.
  • the combiner and phase shifter 207 realize the function of combining.
  • the phase shifter 207 is used to phase shift the cancellation signal or the third signal by 180 degrees. Specifically, the phase of the cancellation signal or the third signal is shifted by 180 degrees, so that the phase of the cancellation signal and the third signal are different by 180 degrees. Alternatively, the phase shifter 207 is used to shift the phase of the cancellation signal or the third signal, and is used to shift the phase of the cancellation signal and the third signal by an integer multiple of 180 degrees.
  • the phase difference of two signals by 180 degrees refers to the theoretical phase difference of 180 degrees (or an integer multiple of 180 degrees). In practice, due to device processing errors and the influence of the surrounding environment, the signal phase difference is not It may be strictly 180 degrees (or an integer multiple of 180 degrees), and there must be a certain error. In order to ensure the effect of the program, it is generally specified that the error is within a certain range. In this article, the phase difference of the two signals is 180 degrees (or The meanings of other degrees) are the same as this, and will not be repeated here.
  • the phase shifter 207 is used to receive the cancellation signal from the second receiving port of the cancellation antenna 203, and shift the cancellation signal by 180 degrees, Or, the phase shift of the cancellation signal is an integer multiple of 180 degrees. If the phase shifter 207 is connected between the combiner and the transceiver antenna 202, the phase shifter 207 is used to receive the third signal from the first receiving port of the transceiver antenna 202 and shift the third signal by 180 degrees, or The third signal is phase-shifted by an integer multiple of 180 degrees.
  • the phase difference between the interference signal and the cancellation signal in the third signal can be 180 degrees, or an integer multiple of 180 degrees. In this way, when the amplitudes of the interference signal in the cancellation signal and the third signal are equal or approximately equal, the two can be canceled in the combining module 204 to eliminate interference.
  • the embodiments of the present application may also perform the following design to improve the utilization rate of the transmitted signal energy.
  • the power dividing module 201 described in the foregoing full-duplex communication device architecture may be a directional coupler or an unequal power divider.
  • the full-duplex communication device also includes a mobile The phaser 207 and the amplifier 208, the amplifier may also be called a power amplifier (PA).
  • PA power amplifier
  • the amplifier 208 connects and cancels the antenna 203 and the combining module 204.
  • the directional coupler is used to allocate power according to the ratio of the signal to be sent to obtain the first signal and the second signal, and the ratio can make the power of the first signal greater than the power of the second signal. In practical applications, the power distribution of the directional coupler makes the power of the first signal much greater than the power of the second signal.
  • the directional coupler is -10dB to -30dB. Assuming that the second signal coupled by the directional coupler is -20dB of the power of the signal to be sent, this has almost no effect on the power of the signal to be sent. According to the design with the same scattering parameters of all the cancellation antennas and all the cancellation antennas, or further according to the design with the same scattering parameters of the first circulator and the second circulator, the cancellation signal will be more The interference signal is 20dB lower.
  • a power amplifier 208 is added to the output side of the cancellation signal.
  • the amplifier 208 is used to amplify the power of the cancellation signal proportionally, and transmit the amplified cancellation signal to the combining module 204.
  • the ratio of the amplifier 208 amplifying the cancellation signal refers to the ratio of the power distribution of the directional coupler, so that the power of the amplified cancellation signal and the interference signal are the same or tend to be the same. For example, if the second signal coupled by the directional coupler is -20dB of the power of the signal to be transmitted, the power amplification gain of the canceling signal by the amplifier 208 is 20dB, so that the power of the two canceling circuits is the same. Since the input and output signals of the amplifier 208 are both very small, the distortion of the cancellation signal after amplification is small, and the impact on the cancellation effect is also small.
  • phase shifter 207 is used for phase shifting.
  • the embodiment of the present application also provides another optional implementation manner, which implements power division through a balun design. In this case, the structure of the phase shifter 207 is not required.
  • the power dividing module 201 described in the foregoing full-duplex communication device architecture may be a balun.
  • the power dividing module 201 is a balun, and the balun is used to The transmitted signal is converted into a first signal and a second signal, the amplitude of the first signal and the second signal are equal and the phase difference is 180 degrees, or the phase difference is an integer multiple of 180 degrees.
  • the balun can make the first signal and the second signal equal in amplitude and opposite in sign.
  • the effect of the above-mentioned phase shifter 207 with a power splitter or a directional coupler can be achieved.
  • the use of balun for power division can make the time delays of the two signals equal, which is more conducive to achieving broadband cancellation.
  • the foregoing embodiments of the present application provide several possible implementations of the power division module 201, including a power divider, a directional coupler, or a balun, in order to match the cancellation signal with the interference signal, and better realize the interference cancellation.
  • the adjustment of the cancellation signal is basically fixed, such as a fixed phase shift and a fixed gain.
  • Matching refers to the matching of phase and amplitude.
  • the embodiment of the present application also provides a design that can adjust the amplitude and phase of the cancellation signal, so that the cancellation signal better matches the interference signal, so as to achieve a better interference cancellation effect.
  • the device structure in FIGS. 4a to 7 may not include the shielding device 205, and other methods or structures that can achieve similar functions of the shielding device 205 are not excluded.
  • Each optional component or module is designed on the basis of the device structure described in FIG. 2.
  • the full-duplex communication device may also include an adjustable phase shifter (PS) 209.
  • PS adjustable phase shifter
  • the adjustable phase shifter 209 is connected between the cancellation antenna 203 and the combining module 204, and the adjustable phase shifter 209 is used to adjust the phase of the cancellation signal.
  • the full-duplex communication device may also include a variable gain amplifier (VGA) 210, which is connected between the cancellation antenna 203 and the combining module 204, and the variable gain amplifier 210 is used to adjust the amplitude of the cancellation signal .
  • VGA variable gain amplifier
  • the adjustable phase shifter 209 can also be connected between the transceiver antenna 202 and the combining module 204, and the adjustable phase shifter 209 is used to adjust the phase of the third signal.
  • the adjustable gain amplifier 210 may also be connected between the transceiver antenna 202 and the combining module 204, and the adjustable gain amplifier 210 is used to adjust the amplitude of the third signal.
  • the phase and amplitude of the third signal are adjusted.
  • the process of interference elimination is actually the process of adding and subtracting vector signals.
  • the phase of the adjustable phase shifter 209 is adjusted to minimize the amplitude of the residual interference signal observed by the baseband, and then the gain of the adjustable gain amplifier 210 is adjusted to make the residual The interference signal amplitude is the smallest.
  • the residual interference signal obtained at this time is the global minimum value, and the corresponding values of the adjustable phase shifter 209 and the adjustable gain amplifier 210 are also optimal solutions.
  • the adjustable phase shifter 209 is used to adjust the signal phase.
  • Alternative methods can be selected. For example, other phase adjustment methods are also applicable. For example, multiple delay lines (that is, fixed delay) can be used, and then each channel can be adjusted. The amplitude of the signal can also achieve the effect of phase modulation.
  • the phase and amplitude of the cancellation signal or the third signal can be adjusted.
  • the amplitude and phase of the cancellation signal are close to the amplitude and phase of the interference signal, so that a better interference cancellation effect can be achieved.
  • this application uses a full-duplex device as a network device or applied to a network device as an example to provide a more comprehensive introduction to the device structure.
  • the added physical period or functional module can be added on the basis of any of the above-mentioned device architectures shown in Figure 2, Figure 3, Figure 4a, Figure 4b, Figure 5-8, and the following is based on the device architecture shown in Figure 8 As an example, a more comprehensive device structure is introduced in detail.
  • the full-duplex communication device may further include the following physical devices or functional modules, or in other words, the full-duplex communication device may also be connected to the following physical devices or functional modules.
  • the baseband transmits a signal, undergoes D/A conversion, upconversion (upconverter), and radio frequency amplifier (PA), and transforms it into a power radio frequency signal.
  • the signal enters the power division module as the signal to be transmitted above.
  • a residual signal after interference cancellation is output at the output.
  • the signal after interference cancellation passes through the receiving link, passes through a low noise amplifier (LNA), downconverter, and analog to digital, A /D) Convert samples to baseband for processing.
  • LNA low noise amplifier
  • a /D analog to digital Convert samples to baseband for processing.
  • the baseband can also adjust the phase of the adjustable phase shifter 209 and the gain value of the adjustable gain amplifier 210 according to a certain algorithm, so as to minimize the received residual interference signal amplitude. Achieve better interference elimination effect.
  • the above design of adjusting the phase and amplitude can minimize the interference signal of the transceiver antenna, that is, the interference of the transmitting channel to the receiving channel is minimized.
  • the scattering parameters of the transceiver antenna and the cancellation antenna are the same, the relative amplitude and phase of the interference from different transceiver antennas are the same.
  • the interference between other transceiver antennas is also Was reduced to a minimum.
  • the interference signal caused by the antenna near-field coupling is related to the physical structure of the antenna. Once the antenna structure is determined, the interference signal is relatively stable. However, with the change of the external environment and the aging of the device, the amplitude and phase of the interference signal will change. In order to achieve the optimal cancellation effect, the residual interference signal can be monitored in the baseband. Once the amplitude of the residual interference signal is found to increase significantly, the adjustable phase shifter and the adjustable gain amplifier are re-calibrated.
  • the adjustable phase shifter and adjustable gain amplifier can be started periodically. After completing a calibration, the calibration parameters remain valid for a period of time. After the validity period, or after reaching the period, perform calibration again, that is, readjust the adjustable phase shifter and adjustable gain amplifier, and refresh the calibration parameters. By periodically starting the adjustable phase shifter and the adjustable gain amplifier, the power consumption of the full-duplex communication device can be saved and the purpose of power saving can be achieved.
  • the full-duplex communication device includes a power division module 1101, a transceiver antenna module 1102, a cancellation antenna module 1103, and a combining module 1104.
  • the transceiver antenna module 1102 includes M first transmitting ports and M first receiving ports.
  • Any one of the M first transmission ports is connected to one end of the power division module 1101, and any one of the M second transmission ports is connected to the other end of the power division module 1101.
  • Any one of the M first receiving ports is connected to one end of the combining module 1104, and any second receiving port of the M second receiving ports is connected to the other end of the combining module 1104.
  • the power division module 1101 is configured to obtain M signals to be sent, divide any one of the M signals to be sent into a first signal and a second signal, and obtain M first signals and M second signals.
  • the i-th first signal among the M first signals is sent through the i-th first sending port of the M first sending ports, and the i-th second signal among the M second signals is sent through the M second sending ports The i-th second sending port is sent.
  • the transceiver antenna module 1102 is used to transmit the i-th first signal among the M first signals through the i-th first transmitting port among the M first transmitting ports, and receive the M-th first signal through the M first receiving ports. Three signals.
  • the i-th third signal received by the i-th first receiving port includes interference signals and signals sent by other communication devices, where the interference signal includes signals sent from the M first sending ports received by the i-th receiving port.
  • the transceiver antenna module 1102 is also used to transmit the M third signals to the combining module 1104.
  • the cancellation antenna module 1103 is used to transmit the i-th second signal of the M second signals through the i-th second transmitting port among the M second transmitting ports, and receive M cancellations through the M second receiving ports signal.
  • the i-th second receiving port among the M second receiving ports receives the i-th canceling signal among the M canceling signals.
  • the i-th cancellation signal in the M cancellation signals includes the signals sent from the M second sending ports received by the i-th second receiving port.
  • the cancellation antenna module 1103 is also used to transmit M cancellation signals to the combining module 1104.
  • the combining module 1104 is configured to differentially combine the M third signals and the M cancellation signals, and output signals after interference cancellation, wherein the i-th third signal and the i-th cancellation signal are differentially combined.
  • the scattering parameter matrix of the transceiver antenna module 1102 in the full-duplex communication device is the same as the scattering parameter matrix of the cancellation antenna module 1103.
  • the transceiver antenna module 1102 is an antenna array
  • the transceiver antenna module 1102 includes M transceiver antennas
  • the i-th transceiver antenna among the M transceiver antennas includes the i-th first transmitting port and the i-th first receiving port.
  • the cancellation antenna module 1103 can be considered as an antenna array, the cancellation antenna module 1103 includes M cancellation antennas, and the i-th cancellation antenna of the M cancellation antennas includes the i-th second transmitting port and the i-th second transmitting port. Receive port.
  • the physical structure and size of the M transceiving antennas in the transceiving antenna module 1102 are the same as the physical structure and size of the M canceling antennas in the canceling wire module 1103.
  • the cancellation antenna module 1103 further includes a shielding device, the M second transmitting ports and the M second receiving ports are placed in the shielding device, and the shielding device is used to block the M second transmitting ports in the canceling antenna module 1103
  • the transmitted signal is transmitted to the outside, and the signal blocking the outside is received by any one of the M second receiving ports in the cancellation antenna module 1103.
  • a wave-absorbing material is attached to the shielding device.
  • the shielding device and the design and description of the wave absorbing material please refer to the relevant description above, and will not be repeated.
  • the full-duplex communication device shown in FIG. 11 is different from the full-duplex communication device shown in FIG. 2 only in schematic form, and the essence or design idea of the two is the same. Therefore, the design of the implementation of the full-duplex communication device in FIGS. 3, 4a, 4b, and 5-9 can be applied to the full-duplex communication device shown in FIG. 11.
  • the full-duplex device shown in FIG. 11 may also include a shielding device, where M second transmitting ports and M second receiving ports are placed in the shielding device, and the shielding device is used to block the M second transmitting ports sent by the antenna module.
  • the signal is transmitted to the outside, and is used to block the cancellation antenna module from receiving external signals through the M second receiving ports.
  • a wave-absorbing material is attached to the shielding device.
  • the physical structure and size of the transceiver antenna in the transceiver antenna module and the cancellation antenna in the cancellation antenna module are the same.
  • the power dividing module is a power divider; the power divider is used to equally divide the power of any signal to be sent, and the power of the first signal is equal to the power of the second signal.
  • the power division module is a directional coupler, and the directional coupler is used to allocate power in proportion to any signal to be sent, and the power of the first signal is greater than the power of the second signal.
  • the full-duplex communication device may also include an amplifier, which is connected between the cancellation antenna module and the combining module; the amplifier is used to amplify the power of the cancellation signal in proportion to the combined cancellation signal. Road module transmission.
  • the combining module further includes a phase shifter; the phase shifter is used to phase shift the cancellation signal or the third signal by 180 degrees.
  • the power division module is a balun; the balun is used to convert any signal to be sent into a first signal and a second signal, the first signal and the second signal have the same amplitude and a phase difference of 180 degrees.
  • the transceiver antenna module includes a common antenna for receiving and transmitting
  • the canceling antenna module includes a common antenna for receiving and transmitting
  • the common receiving and transmitting antenna in the transceiver antenna module is connected to the power dividing module and the combining module through the first circulator
  • the canceling antenna The receiving and transmitting shared antenna in the module is connected to the power dividing module and the combining module through the second circulator.
  • the characteristic parameters of the first circulator and the second circulator are the same, and/or the physical structure and dimensions of the first circulator and the second circulator are the same.
  • the transceiver antenna module includes a separate receiving and transmitting antenna
  • the canceling antenna module includes a separate receiving and transmitting antenna
  • the full-duplex communication device further includes an adjustable phase shifter, which is connected between the cancellation antenna module and the combining module, and the adjustable phase shifter is used to adjust the phase of the cancellation signal;
  • the full-duplex communication device may also include an adjustable gain amplifier, which is connected between the cancellation antenna module and the combining module; the adjustable gain amplifier is used to adjust the amplitude of the cancellation signal.
  • the full-duplex communication device may further include an adjustable phase shifter, the adjustable phase shifter is connected between the transceiver antenna module and the combining module, and the adjustable phase shifter is used to adjust the phase of the third signal; optional Yes, the full-duplex communication device may further include an adjustable gain amplifier, which is connected between the transceiver antenna module and the combining module; the adjustable gain amplifier is used to adjust the amplitude of the third signal.
  • the principle of the full-duplex communication method is as follows.
  • a full-duplex communication device includes 4 receiving channels and 4 transmitting channels, or a communication system applied by a full-duplex communication device includes 4 receiving channels and 4 transmitting channels.
  • the transceiver antenna module 1102 includes four first transmitting ports, which are respectively named: Tx1, Tx2, Tx3, and Tx4.
  • the transceiver antenna module 1102 also includes four first receiving ports, respectively named: Rx1, Rx2, Rx3, Rx4.
  • the full-duplex communication device provided in the embodiments of the present application can be applied to full-duplex applications with more transceiver channels through simple expansion. This embodiment takes 4 as an example, and the value of M can also be greater than 4.
  • part of the transmission signal will be coupled from the M first transmission ports to one of the first reception ports, thereby causing interference to the useful signal received by the first reception port.
  • the interference of the M transmitted signals to the useful signal received by any first receiving port can be described by a scattering parameter matrix (S-parameter matrix), for example:
  • Any element in the scattering parameter matrix can be defined as:
  • a Txj transmit port j represents an input signal
  • b Rxi an output signal indicative of the receive port i, S Rxi, Txj ratio (all other ports being matched load) of the output signal of said input signal.
  • the value of j is [1, M], and j is an integer from 1 to M.
  • the S-parameter matrix of the cancellation antenna ie, the scattering parameter matrix
  • the interference of the transmission signal to the received signal in the cancellation antenna can also be described by the same scattering parameter matrix.
  • the effect of interference cancellation depends on the consistency of the transceiver antenna and the scattering parameter matrix of the cancellation antenna. The higher the consistency, the better the interference cancellation effect.
  • the simplest method is to make the physical structure and size of the two antennas the same. In this case, the consistency is only affected by the processing error. However, it is not ruled out that the two antennas have different structures, but their S parameter matrices are the same or similar, especially in the case of narrow bands.
  • the method of interference cancellation in this application is as follows.
  • a group of signals to be sent is output from the transmission link and enters the power division module.
  • the power division module divides the power of the signal to be sent into two signals. The above process can be expressed as a vector:
  • a represents the input signal of the power division module, that is, the signal to be sent.
  • the amplitude and phase of the two signals are equal or different by a fixed multiple:
  • the interference signal received by the i-th receiving port is then Can be expressed as:
  • the interference signals received by other first receiving ports can be deduced by analogy.
  • the interference signals received by all receiving ports can be written in the form of matrix vector multiplication:
  • the transceiver antenna is also receiving signals while sending signals. Therefore, in addition to the interference signal received at the receiving port of the transceiver antenna, there are external signals received by the transceiver antenna:
  • the other signal output from the power division module will be transmitted to the transmitting port (second transmitting port) of the cancellation antenna. Similarly, the transmitting port will cause interference to the receiving port.
  • the interference signal can be expressed as:
  • the cancellation antenna Since the cancellation antenna is placed in a shielding device or shielded space, the cancellation antenna cannot receive external signals or signals from the outside world.
  • the signal received by the first receiving port of the transceiving antenna and the signal received by the second receiving port of the cancellation antenna are subjected to interference cancellation in the combining module. Since the scattering parameter matrices of the M cancelling antennas and the M transmitting and receiving antennas are the same, and the transmission signal of the first transmission port and the transmission signal of the second transmission port are also the same, or differ by a fixed multiple. The interference of the first sending port to the first receiving port and the interference of the second sending port to the second receiving port are also the same or different by a fixed multiple.
  • the cancellation signal output by the second receiving port of the cancellation antenna is processed so that the interference signal output by the first receiving port of the transceiver antenna and the cancellation signal output by the second receiving port of the cancellation antenna are equal in amplitude, and the phase difference is 180° (or 180° Integer multiple of ), and then combine, the output signal of the combiner module is:
  • each interference signal needs to be generated separately A cancellation signal, and then adjust the amplitude and phase of the cancellation signal to make it equal to the interference signal amplitude, and the phase difference is 180° (or an integer multiple of 180°), and then cancel it with the interference signal, so the hardware complexity of the system is M 2
  • the complexity of the interference cancellation circuit will rise sharply, making the hardware circuit difficult to implement, and the increase in complexity will also affect the cancellation effect.
  • M cancellation antennas or other multi-port networks are used, and the scattering parameter matrix of the M cancellation antennas is the same as the scattering parameter matrix of the M transceiver antennas, and all the interference signals received on all the receiving ports of the transceiver antenna are simultaneously
  • the hardware complexity of interference cancellation is greatly reduced, and the hardware complexity is reduced from M 2 to M. Since the scattering parameter matrix of the transmitting and receiving antenna and the canceling antenna are the same, the frequency response of the canceling signal and the interference signal are also basically the same. There is no need to perform excessive amplitude and phase modulation processing on the canceling signal, and the hardware complexity is greatly reduced compared with the existing scheme. .
  • the present application does not limit the placement of the transmitting and receiving antenna and the offset antenna.
  • the antenna array can be placed in a two-dimensional array, which is more in line with actual application requirements.
  • the consistency of the scattering parameter matrix of the transmitting and receiving antenna and the cancellation antenna can be ensured as much as possible, thereby improving the interference cancellation effect.
  • the absorbing effect of the absorbing material in the shielding device it can be ensured that the absorbing material inside the shielding device absorbs and cancels the signal emitted by the antenna without causing reflection, so that the canceling antenna and the transceiver antenna work in the same environment to ensure that the output of the canceling antenna
  • the cancellation signal is the same as the interference signal on the transceiver antenna, thereby improving the interference cancellation effect.
  • the interference cancellation process is as follows.
  • the signal to be sent enters the 3dB power divider and divides the power through the power divider to obtain two signals with equal amplitude and phase.
  • One signal enters the transceiver antenna, and the other enters the cancellation antenna. Specifically, one signal enters the 2 port of the circulator connected to the transceiver antenna, and the other signal enters the 2 port of the circulator connected to the cancellation antenna.
  • the transmitted signal will interfere with the received signal.
  • the interference signal output by the receiving port of the transceiver antenna can be expressed as:
  • the transceiver antenna is receiving signals while transmitting signals, so the total output signal can be expressed as:
  • the cancellation signal received on the cancellation antenna (that is, the output signal of the circulator 1 port connected to it) can be expressed as:
  • the offset signal output by the offset antenna is phase-shifted by 180 degrees, and then combined with the total output signal of the circulator port 1 of the transceiver antenna, which can cancel all the interference signals received by the transceiver antenna, so the combiner
  • the output signal is:
  • an embodiment of the present application also provides a full-duplex communication method. As shown in FIG. 12, the flow of the full-duplex communication method also provided in the embodiment of the present application is as follows.
  • M is an integer greater than or equal to 2;
  • the scattering parameter matrix of M transceiver antennas is the same as the scattering parameter matrix of M cancellation antennas;
  • the i-th third signal in the M third signals includes interference signals and signals sent by other communication devices, and the interference signal includes the signals received by the i-th transceiver antenna from the M transceiver antennas, i is 1, 2,...Any integer in M;
  • S1204 Perform differential combination of the M third signals and the M cancellation signals, and output signals after interference cancellation.
  • the first signal and the second signal have the same amplitude and opposite phase.
  • the offset signal is phase-shifted by an integral multiple of 180 degrees.
  • the M third signals and the phase-shifted M cancellation signals are differentially combined.
  • the power difference between the first signal and the second signal is a fixed multiple.
  • This method has the same principle as the foregoing full-duplex communication device, and can be referred to each other, and the details will not be repeated.
  • the full-duplex communication method includes: performing power distribution on M signals to be transmitted to obtain M first signals and M second signals, where M is a positive integer;
  • the M first signals are sent through a transceiving antenna, and the M second signals are sent through a canceling antenna.
  • the scattering parameter matrix formed by the M transmitting ports and the N receiving ports of the transmitting and receiving antenna and the M of the canceling antennas The scattering parameter matrix formed by the transmitting port and the N receiving ports is the same; N third signals are received through the transmitting and receiving antenna, and N cancel signals are received through the canceling antenna, wherein the jth of the N third signals is
  • the three signals include interference signals and signals sent by other communication devices.
  • the interference signals include signals received by the j-th receiving port and transmitted from the M sending ports, where j is 1, 2, ... Any integer; the N third signals and the N cancellation signals are differentially combined to output interference cancellation signals.
  • the embodiment of the present application provides a computer storage medium storing a computer program, and the computer program includes instructions for executing the full-duplex communication method provided in the foregoing embodiment.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the full-duplex communication method provided by the foregoing embodiments.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-readable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program codes.
  • a computer-readable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

一种全双工通信装置和方法,用以在多天线应用场景下干扰消除。该装置包括一个或多个全双工单元,全双工单元包括功分模块,收发天线、抵消天线,合路模块;功分模块用于将待发送信号分成第一信号和第二信号,所述收发天线用于通过所述第一发送端口发送所述第一信号,通过所述第一接收端口接收第三信号,所述第三信号包括干扰信号和其他通信装置发送的信号;所述抵消天线用于通过所述第二发送端口发送所述第二信号,以及通过所述第二接收端口接收抵消信号;所述合路模块,用于将所述第三信号和所述抵消信号进行差分合路,输出干扰抵消后的信号,全部收发天线的散射参数矩阵和全部抵消天线的散射参数矩阵相同。

Description

一种全双工通信装置和方法
相关申请的交叉引用
本申请要求在2019年04月30日提交中国专利局、申请号为201910364410.7、申请名称为“一种全双工通信装置和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2019年07月05日提交中国专利局、申请号为201910604291.8、申请名称为“一种全双工通信装置和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种全双工通信装置和方法。
背景技术
全双工(full duplex,FD)通信是在相同的时间,频率和信道上进行数据的发送和接收。无线全双工通信技术一直以来都是通信领域研究的热点,但是由于发射和接收链路工作在相同的时频资源上,发射链路对接收链路会产生强烈的干扰,干扰信号比接收信号一般高出100~120dB。因此全双工通信中如何消除自干扰是个需要解决的问题。
现有技术中提出一些全双工通信中如何消除自干扰的方法,但在多天线的应用场景中,干扰消除的复杂度急剧上升,目前的全双工通信中消除干扰的方法不能很好的解决干扰消除的问题,将这些方法应用到多天线场景中干扰消除的效果依然不够理想。
发明内容
本申请实施例提供一种全双工通信装置和方法,用以在多天线应用场景下干扰消除的问题。
本申请实施例提供的具体技术方案如下:
第一方面,提供一种全双工通信装置,该全双工通信装置包括一个或多个全双工单元;其中,任一所述全双工单元包括:功分模块,收发天线、抵消天线,合路模块;所述收发天线包括第一发送端口和第一接收端口,所述第一发送端口连接所述功分模块,所述第一接收端口连接所述合路模块,所述抵消天线包括第二发送端口和第二接收端口,所述第二发送端口连接所述功分模块,所述第二接收端口连接所述合路模块;所述功分模块,用于将待发送信号分成第一信号和第二信号,所述第一信号通过所述第一发送端口发送,所述第二信号通过所述第二发送端口发送;所述收发天线,用于通过所述第一发送端口发送所述第一信号,以及通过所述第一接收端口接收第三信号,所述第三信号包括干扰信号和其他通信装置发送的信号,所述干扰信号包括:所述第一接收端口接收的来自于所述一个或多个全双工单元中的全部收发天线发送的信号;所述收发天线还用于将所述第三信号传输到所述合路模块;所述抵消天线,用于通过所述第二发送端口发送所述第二信号,以及通过所述第二接收端口接收抵消信号,所述抵消信号包括:所述第二接收端口接收的来自所述一个或多个全双工单元中的全部抵消天线发送的信号;所述抵消天线还用于将所述抵消 信号传输至合路模块;所述合路模块,用于将所述第三信号和所述抵消信号进行差分合路,输出干扰抵消后的信号;以及,所述一个或者多个全双工单元中的全部收发天线的散射参数矩阵和全部抵消天线的散射参数矩阵相同。通过本申请对全双工通信装置的结构的设计,能够降低硬件复杂度,实现起来比较简单。在较低硬件复杂度的基础上,能够实现多天线的干扰消除。
在一个可能的设计中,所述装置还包括屏蔽装置,所述抵消天线置于所述屏蔽装置内,所述屏蔽装置用于阻挡所述抵消天线发送的信号传输至外界,所述抵消天线无法接收到外部信号。
在一个可能的设计中,所述屏蔽装置内附有吸波材料。通过屏蔽装置205中吸波材料的设计,抵消天线发送的信号不会在传输到屏蔽盒时进行反射,避免反射信号被抵消天线的第二接收端口接收导致抵消信号与干扰信号不能对消的问题。
在一个可能的设计中,所述收发天线和所述抵消天线的物理结构及尺寸相同。
在一个可能的设计中,所述功分模块为等分功分器;所述等分功分器用于将所述待发送信号的功率进行平分,获得所述第一信号和所述第二信号,所述第一信号的功率等于所述第二信号的功率。更易于起到消除干扰的作用。
在一个可能的设计中,所述功分模块为定向耦合器或不等分功分器;所述定向耦合器或不等分功分器用于对所述待发送信号按照比例进行功率分配,获得所述第一信号和所述第二信号,所述第一信号的功率大于所述第二信号的功率。这样有助于提高发送信号能量的利用率。
在一个可能的设计中,所述装置还包括放大器,所述放大器连接与所述抵消天线和所述合路模块之间;所述放大器用于将所述抵消信号的功率按照所述比例进行放大,将放大后的抵消信号向所述合路模块传输。由于放大器的输入和输出信号均非常小,因此抵消信号经过放大之后失真较小,对抵消效果影响也较小。
在一个可能的设计中,所述合路模块还包括移相器;所述移相器用于将所述抵消信号或者第三信号相移180度或者180度的整数倍。
在一个可能的设计中,所述功分模块为巴伦;所述巴伦用于将待发送信号转换成所述第一信号和所述第二信号,所述第一信号和所述第二信号的幅值相等且相位差为180度。
在一个可能的设计中,所述收发天线包括接收和发送共用天线,所述抵消天线包括接收和发送共用天线;所述收发天线通过第一环形器与所述功分模块和所述合路模块连接;所述抵消天线通过第二环形器与所述功分模块和所述合路模块连接。
在一个可能的设计中,所述第一环形器和所述第二环形器的特性参数相同,和/或,所述第一环形器和所述第二环形器的物理结构及尺寸相同。基于干扰消除的效果取决于收发天线和抵消天线的散射参数矩阵的一致性,一致性越高,干扰消除的效果越好,本申请中第一环形器和第二环形器的特性参数相同。为了使得第一环形器和第二环形器的特性参数趋于一致。
在一个可能的设计中,所述收发天线包括接收和发送分离的天线,所述抵消天线包括接收和发送分离的天线。采用收发分离的天线,虽然会使天线口径增加一倍以上,但是收发天线之间无需通过环形器进行隔离,而且通过一定的天线设计,提高收发天线的隔离度,结合本申请提供的干扰对消方法,可以取得更好的干扰消除效果。
在一个可能的设计中,所述装置还包括可调移相器,所述可调移相器连接在所述抵消 天线和所述合路模块之间,所述可调移相器用于调节所述抵消信号的相位;和/或,所述装置还包括可调增益放大器,所述可调增益放大器连接在所述抵消天线和所述合路模块之间;所述可调增益放大器用于调节所述抵消信号的幅度。使得抵消信号更好的匹配干扰信号,以达到更好的干扰消除的效果。
在一个可能的设计中,所述装置还包括可调移相器,所述可调移相器连接在所述收发天线和所述合路模块之间,所述可调移相器用于调节所述第三信号的相位;和/或,所述装置还包括可调增益放大器,所述可调增益放大器连接在所述收发天线和所述合路模块之间;所述可调增益放大器用于调节所述第三信号的幅度。使得抵消信号更好的匹配干扰信号,以达到更好的干扰消除的效果。
第二方面,提供一种全双工通信装置,该装置包括:功分模块、收发天线模块、抵消天线模块和合路模块,所述收发天线模块包括M个第一发送端口和M个第一接收端口,所述抵消天线模块包括M个第二发送端口和M个第二接收端口,所述M为正整数;所述收发天线模块的散射参数矩阵和所述抵消天线模块的散射参数矩阵相同;所述M为大于或等于2的整数;其中,所述第一发送端口和所述第二发送端口分别与所述功分模块相连,所述第一接收端口和所述第二接收端口分别与所述合路模块相连;所述功分模块,用于获取M个待发送信号,将所述M个待发送信号的任意一个待发送信号进行功率分配,获得M个第一信号和M个第二信号;所述收发天线模块,用于通过M个第一发送端口中的第i个第一发送端口发送所述M个第一信号中的第i个第一信号,通过M个第一接收端口接收M个第三信号,以及将所述M个第三信号传输至所述合路模块;第i个第一接收端口接收的第i个第三信号包括干扰信号和其它通信装置发送的信号,所述干扰信号包括第i个接收端口接收的来自于M个第一发送端口发送的信号,i为1,2,……M中的任意一个整数;所述抵消天线模块,用于通过M个第二发送端口中的第i个第二发送端口发送M个第二信号中的第i个第二信号,通过M个第二接收端口接收M个抵消信号,以及将所述M个第三信号传输至所述合路模块,所述M个抵消信号中的第i个抵消信号包括第i个第二接收端口接收的来自所述M个第二发送端口发送的信号,所述合路模块,用于将所述M个第三信号和所述M个抵消信号进行差分合路,输出干扰抵消后的信号,其中,第i个第三信号和第i个抵消信号进行差分合路。或者,该装置包括:功分模块、收发天线模块、抵消天线模块和合路模块,所述收发天线模块包括M个第一发送端口和N个第一接收端口,所述抵消天线模块包括M个第二发送端口和N个第二接收端口,所述M、N为正整数;所述收发天线模块的散射参数矩阵和所述抵消天线模块的散射参数矩阵相同;所述M、N为大于或等于2的整数;其中,所述第一发送端口和所述第二发送端口分别与所述功分模块相连,所述第一接收端口和所述第二接收端口分别与所述合路模块相连;所述功分模块,用于获取M个待发送信号,将所述M个待发送信号的任意一个待发送信号进行功率分配,获得M个第一信号和M个第二信号;所述收发天线模块,用于通过M个第一发送端口中的第i个第一发送端口发送所述M个第一信号中的第i个第一信号,通过所述N个第一接收端口接收N个第三信号,以及将所述N个第三信号传输至所述合路模块;第j个第一接收端口接收的j个第三信号包括干扰信号和其它通信装置发送的信号,所述干扰信号包括第j个接收端口接收的来自于M个第一发送端口发送的信号,i为1,2,……M中的任意一个整数,j为1,2,……N中的任意一个整数;所述抵消天线模块,用于通过M个第二发送端口中的第i个第二发送端口发送M个第二信号中的第i个第二信号,通过 N个第二接收端口接收N个抵消信号,以及将所述N个第三信号传输至所述合路模块,所述N个抵消信号中的第j个抵消信号包括第j个第二接收端口接收的来自所述M个第二发送端口发送的信号,所述合路模块,用于将所述N个第三信号和所述N个抵消信号进行差分合路,输出干扰抵消后的信号,其中,第j个第三信号和第j个抵消信号进行差分合路。M可以等于N,或M可以与N不等。在本申请中,利用M个抵消天线或者其它多端口网络,M个抵消天线的散射参数矩阵与M个收发天线的散射参数矩阵相同,对收发天线所有接收端口上收到的所有干扰信号同时进行重建或消除,干扰消除的硬件复杂度大大降低,硬件复杂度由M 2降为M。由于收发天线和抵消天线的散射参数矩阵相同,抵消信号和干扰信号的频率响应也基本相同,无需对抵消信号进行过多的调幅和调相处理,相比于现有方案硬件复杂度也大大降低。
在一个可能的设计中,所述装置包括屏蔽装置,所述M个第二发送端口和所述M个第二接收端口置于所述屏蔽装置内,或者,所述抵消天线模块置于所述屏蔽装置内,所述屏蔽装置用于阻挡所述抵消天线模块发送的M个第二信号传输至外界,以及用于阻挡所述抵消天线模块通过所述M个第二接收端口接收外部信号。
在一个可能的设计中,所述屏蔽装置内附有吸波材料。通过屏蔽装置205中吸波材料的设计,抵消天线发送的信号不会在传输到屏蔽盒时进行反射,避免反射信号被抵消天线的第二接收端口接收导致抵消信号与干扰信号不能对消的问题。
在一个可能的设计中,所述收发天线模块中的收发天线和所述抵消天线模块中的抵消天线的物理结构及尺寸相同。
在一个可能的设计中,所述功分模块为等分功分器;所述等分功分器用于将所述任意一个待发送信号的功率进行平分,所述第一信号的功率等于所述第二信号的功率。更易于起到消除干扰的作用。
在一个可能的设计中,所述功分模块为定向耦合器或不等分功分器;所述定向耦合器或不等分功分器用于将所述任意一个待发送信号按照比例进行功率分配,所述第一信号的功率大于所述第二信号的功率。这样有助于提高发送信号能量的利用率。
在一个可能的设计中,所述装置还包括放大器,所述放大器连接与所述抵消天线模块和所述合路模块之间;所述放大器用于将所述抵消信号的功率按照所述比例进行放大,将放大后的抵消信号向所述合路模块传输。由于放大器的输入和输出信号均非常小,因此抵消信号经过放大之后失真较小,对抵消效果影响也较小。
在一个可能的设计中,所述合路模块还包括移相器;所述移相器用于将所述抵消信号或者所述第三信号相移180度。或者,所述移相器用于将所述抵消信号或者所述第三信号进行移相,所述移相用于将所述抵消信号和所述第三信号的相位相差180度的整数倍。
在一个可能的设计中,所述功分模块为巴伦;所述巴伦用于将所述任意一个待发送信号转换成所述第一信号和所述第二信号,所述第一信号和所述第二信号的幅值相等且相位差为180度。
在一个可能的设计中,所述收发天线模块包括接收和发送共用天线,所述抵消天线模块包括接收和发送共用天线;所述收发天线模块中的接收和发送共用天线通过第一环形器与所述功分模块和所述合路模块连接;所述抵消天线模块中的接收和发送共用天线通过第二环形器与所述功分模块和所述合路模块连接。
在一个可能的设计中,所述第一环形器和所述第二环形器的特性参数相同,和/或,所 述第一环形器和所述第二环形器的物理结构及尺寸相同。基于干扰消除的效果取决于收发天线和抵消天线的散射参数矩阵的一致性,一致性越高,干扰消除的效果越好,本申请中第一环形器和第二环形器的特性参数相同。为了使得第一环形器和第二环形器的特性参数趋于一致。
在一个可能的设计中,所述收发天线模块包括接收和发送分离的天线,所述抵消天线模块包括接收和发送分离的天线。采用收发分离的天线,虽然会使天线口径增加一倍以上,但是收发天线之间无需通过环形器进行隔离,而且通过一定的天线设计,提高收发天线的隔离度,结合本申请提供的干扰对消方法,可以取得更好的干扰消除效果。
在一个可能的设计中,所述装置还包括可调移相器,所述可调移相器连接在所述抵消天线模块和所述合路模块之间,所述可调移相器用于调节所述抵消信号的相位;和/或,所述装置还包括可调增益放大器,所述可调增益放大器连接在所述抵消天线模块和所述合路模块之间;所述可调增益放大器用于调节所述抵消信号的幅度。使得抵消信号更好的匹配干扰信号,以达到更好的干扰消除的效果。
在一个可能的设计中,所述装置还包括可调移相器,所述可调移相器连接在所述收发天线模块和所述合路模块之间,所述可调移相器用于调节所述第三信号的相位;和/或,所述装置还包括可调增益放大器,所述可调增益放大器连接在所述收发天线模块和所述合路模块之间;所述可调增益放大器用于调节所述第三信号的幅度。使得抵消信号更好的匹配干扰信号,以达到更好的干扰消除的效果。
第三方面,提供一种全双工通信方法,应用于全双工通信装置,该方法包括:将M个待发送信号进行功率分配,获得M个第一信号和M个第二信号,所述M为大于或等于2的整数;将所述M个第一信号通过M个收发天线发送,将所述M个第二信号通过M个抵消天线发送,所述M个收发天线的散射参数矩阵与所述M个抵消天线的散射参数矩阵相同;通过M个收发天线接收M个第三信号,通过所述M个抵消天线接收M个抵消信号,其中,所述M个第三信号中的第i个第三信号包括干扰信号和其它通信装置发送的信号,所述干扰信号包括所述第i个收发天线接收到的来自所述M个收发天线发送的信号,i为1,2,……M中的任意一个整数;将所述M个第三信号和所述M个抵消信号进行差分合路,输出干扰抵消后的信号。或者,将M个待发送信号进行功率分配,获得M个第一信号和M个第二信号,所述M为正整数;将所述M个第一信号通过收发天线发送,将所述M个第二信号通过抵消天线发送,所述收发天线的M个发送端口和N个接收端口形成的散射参数矩阵与所述抵消天线的M个发送端口和N个接收端口形成的散射参数矩阵相同;通过收发天线接收N个第三信号,通过所述抵消天线接收N个抵消信号,其中,所述N个第三信号中的第j个第三信号包括干扰信号和其它通信装置发送的信号,所述干扰信号包括所述第j个接收端口接收到的来自所述M个发送端口发射的信号,j为1,2,……N中的任意一个整数;将所述N个第三信号和所述N个抵消信号进行差分合路,输出干扰抵消后的信号。本方法在较低硬件复杂度的基础上,能够实现多天线的干扰消除。
在一个可能的设计中,所述第一信号和所述第二信号的幅度相等,相位相反;或者,所述方法还包括:将所述抵消信号相移整数倍的180度;将所述M个第三信号和所述M个抵消信号进行差分合路,包括:将所述M个第三信号和相移后的M个抵消信号进行差分合路。
在一个可能的设计中,所述第一信号和所述第二信号的功率相差固定的倍数。有助于 避免能量损失,提高发送信号的利用率。
第四方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述全双工通信方法的指令。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述全双工通信方法。
附图说明
图1为本申请实施例中通信系统架构示意图;
图2为本申请实施例中全双工通信装置的结构示意图之一;
图3为本申请实施例中全双工通信装置的结构示意图之二;
图4a为本申请实施例中全双工通信装置的结构示意图之三;
图4b为本申请实施例中全双工通信装置的结构示意图之四;
图5为本申请实施例中全双工通信装置的结构示意图之五;
图6为本申请实施例中全双工通信装置的结构示意图之六;
图7为本申请实施例中全双工通信装置的结构示意图之七;
图8为本申请实施例中全双工通信装置的结构示意图之八;
图9为本申请实施例中相位和幅度调整示意图;
图10为本申请实施例中全双工通信装置的结构示意图之九;
图11为本申请实施例中全双工通信装置的结构示意图之十;
图12为本申请实施例中全双工通信方法流程示意图。
具体实施方式
本申请实施例提供一种全双工通信装置和方法,有助于在多天线应用场景中进行干扰消除。其中,装置和方法是基于同一构思的,由于装置和方法解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;涉及的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例提供的全双工通信装置和方法能够应用到各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th Generation,5G)新空口(new radio,NR)通信系统,以及未来的通信系统,如6G系统等。
图1示出了本申请实施例可以应用的一种可能的通信系统的架构,参阅图1所示,通信系统100中包括:网络设备101和终端102。本申请实施例提供的全双工通信装置可以应用到网络设备101,或者应用到终端102。也可以认为,全双工通信装置可以是网络设备101,或者是终端102。
网络设备101为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的全双工通信装置和方法可以应用到单天线或多天线的全双工通信场景中。多天线的应用场景例如可以包括:多入多出(multi-input multi-output,MIMO)技术,或者,大规模多入多出massive-MIMO技术。
本申请实施例提供的全双工通信装置的结构如图2所示。全双工通信装置包括一个或多个全双工单元。任意一个全双工单元中结构的设计是相同的。全双工单元的数量与该全双工通信装置应用的多天线场景中收发天线的数量是一致的。本申请中全双工单元概念的 引入是为了方便理解本申请全双工通信装置的理解而引入的。可以认为是全双工通信装置中逻辑上的划分。图2中每个全双工单元都包含接收天线(或接收链路)和发送天线(或发送链路),因此,全双工通信装置中的接收天线(或接收链路)和发送天线(或发送链路)的数量是相等的。但实际应用中,一个全双工单元中不一定既包含发送天线又包含接收天线,因此全双工单元中结构的设计有可能不同,全双工通信装置中发送天线(或发送链路)和接收天线(或链路)的数量也不一定相等。
为了更方便的描述和示意全双工通信装置的结构,本申请中可以均以接收天线(或接收链路)和发送天线(或发送链路)的数量一致为例进行介绍。例如图2所示的全双工装置包括4个接收天线和4个发送天线,数量一致。
下面结合图2,假设每一个全双工单元均包括接收天线和发送天线,则下面针对任意一个全双工单元中的结构设计进行描述。全双工通信装置中的每一个全双工单元的设计都可以参考该描述。如图2所示,全双工单元中包括功分模块201、收发天线202、抵消天线203和合路模块204。其中,收发天线202用于收发数据,包括发送端口和接收端口。为方便区分,收发天线202包括的发送端口记为第一发送端口,接收端口记为第一接收端口。第一发送端口连接功分模块201,用于发送来自功分模块201的信号。第一接收端口连接合路模块204,用于接收信号并传输该接收信号到合路模块204。与收发天线202类似,抵消天线203也包括两个端口,记为第二发送端口和第二接收端口。第二发送端口连接功分模块201,第二接收端口连接合路模块204。图2以全双工通信装置中包括四个全双工单位为例进行示意,实际应用中,全双工单元的数量可以为任意正整数。该四个全双工单元中的4个收发天线在图2中以TRx1、TRx2、TRx3和TRx4表示。功分模块201连接的发射链路分别用Tx1、Tx2、Tx3和Tx4表示,合路模块204连接的4个接收链路分别用Rx1、Rx2、Rx3和Rx4表示。
功分模块201,用于将待发送信号分成第一信号和第二信号,该第一信号能够通过第一发送端口发送,第二信号能够通过第二发送端口发送。
收发天线202,用于通过第一发送端口发送第一信号,并通过第一接收端口接收第三信号。其中,第三信号包括干扰信号和其它通信装置发送的信号。例如,全双工通信装置为网络设备,则第三信号包括干扰信号和来自终端的有用信号。又例如,全双工通信装置为终端,则第三信号包括干扰信号和来自网络设备的有用信号。第三信号中的干扰信号包括第一接收端口接收的来自于全双工通信装置中的各个全双工单元中全部收发天线发送的信号。例如,全双工通信装置包括4个全双工单元,即包括4个收发天线,第三信号中的干扰信号包括第一接收端口接收的来自于该4个全双工单元的4个收发天线发送的信号。
收发天线202通过第一接收端口接收到第三信号,还用于将该第三信号传输到合路模块204。合路模块204从该收发天线202接收该第三信号。
抵消天线203,用于接收来自功分模块201的第二信号,通过第二发送端口发送第二信号,并通过第二接收端口接收抵消信号。这里的抵消信号包括第二接收端口接收的来自该全双工通信装置包括的全部抵消天线发送的信号。例如,全双工通信装置包括4个全双工单元,即包括4个抵消天线,该抵消信号包括第二接收端口接收的来自于这4个抵消天线发送的信号。
抵消天线203还用于将抵消信号传输至合路模块204。合路模块204用于从该抵消天线203接收该抵消信号。
这样,合路模块204能够接收到两路信号,包括来自收发天线202的第三信号和来自抵消天线203的抵消信号。该合路模块204还用于将第三信号和该抵消信号进行差分合路,输出干扰抵消后的信号。其中,该抵消信号用于消除第三信号中的干扰信号,这样干扰信号被消除后,可以输出第三信号中的有用信号。
本申请中,对全双工通信装置中的所有抵消天线和收发天线进行设计,以使得干扰消除更好的实现。例如,全双工通信装置中全部收发天线的散射参数矩阵和全部抵消天线的散射参数矩阵相同。收发天线和抵消天线的散射参数矩阵相同指的是散射参数的幅度和相位在理论上是相同的,实际中由于加工误差,外接环境等因素的影响,两个天线或天线阵列的散射参数不可能完全一致,因此,一般规定只要两个参数的不一致性小于一定范围即可,本申请实施例中,两个天线(或者其它器件)的散射参数矩阵(或者物理结构,尺寸,特性参数等)相同的含义均可参照此描述,不再赘述。干扰消除的效果取决于收发天线和抵消天线的散射参数矩阵的一致性,一致性越高,干扰消除的效果越好。可选的,为了使得收发天线和抵消天线的散射参数矩阵趋于一致,本申请中可以设计收发天线和抵消天线的物理结构和尺寸相同。这需要对加工精度提高要求。但是不排除收发天线和抵消天线的物理结构和尺寸虽然不同,收发天线和抵消天线的散射参数矩阵却能够达到一致或者近似一致。由于发送天线和抵消天线特性参数相同,发送天线和抵消天线的输入信号也相同或者差一个固定的倍数,干扰信号和抵消信号也相同或差一个固定的倍数。
其中,全双工通信装置中全部收发天线的散射参数矩阵和全部抵消天线的散射参数矩阵相同,可以是指在全频段相同,也可以是指在某一段频带内相同。
通过本申请对全双工通信装置的结构的设计,能够降低硬件复杂度,实现起来比较简单。在较低硬件复杂度的基础上,能够实现多天线的干扰消除。
基于图2所示的全双工通信装置,如图3所示,全双工通信装置还可以包括屏蔽装置205,抵消天线203置于屏蔽装置205内,屏蔽装置205用于阻挡抵消天线203发送的信号传输至外界,并使得抵消天线203无法接收到外部信号。或者说屏蔽装置205用于阻挡外界信号被抵消天线203接收。
在一个可能的实现方式中,屏蔽装置205内附有吸波材料,该吸波材料能够将传递至该吸波材料的信号吸收掉,所谓吸收的意思是指不进行反射。吸收信号的能力与吸波材料的材质有关。屏蔽装置205中可以包括金属隔离墙,起到隔离信号的作用。
任一全双工单元中的抵消天线通过第二发送端口发送的信号是传向四面八方的。其中一个全双工单元的抵消天线的第二接收端口,接收全双工通信装置中的所有抵消天线泄露的信号,生成抵消信号。通过屏蔽装置205中吸波材料的设计,抵消天线发送的信号不会在传输到屏蔽盒时进行反射,避免反射信号被抵消天线的第二接收端口接收导致抵消信号与干扰信号不能对消的问题。吸波屏蔽装置205中吸波材料的设计能够使得抵消天线在收发信号时模拟自由空间的收发,还能够屏蔽除该全双工通信装置之外的其它通信装置的信号,以及避免该抵消天线的信号对其它通信装置造成干扰。
在图2或图3所示的全双工通信装置架构的基础上,以下介绍几种全双工通信装置可能的实现方式。仍以四个全双工单元为例进行示意说明。以下实现方式以在图3的架构基础上进行的说明,在图2的架构基础上也可以类似的实现。
收发天线可以包括两种形式,抵消天线也可以包括两种形式。如图4a所示,收发天线的一种形式包括接收和发送分离的天线,抵消天线的一种形式包括接收和发送分离的天线。 该四个全双工单元中的4个收发天线的发送端口在图4a中以Tx1、Tx2、Tx3和Tx4表示,4个收发天线的接收端口在图4a中以Rx1、Rx2、Rx3和Rx4表示。功分模块201连接的发射链路分别用Tx1、Tx2、Tx3和Tx4表示,合路模块204连接的4个接收链路分别用Rx1、Rx2、Rx3和Rx4表示。
如图4b所示,收发天线的另一种形式包括接收和发送共用天线,抵消天线的另一种形式包括接收和发送共用天线。在接收和发送共用天线的这种形式下,需要通过环形器进行发送和接收信号的隔离。这种场景下,全双工通信装置还包括环形器206。对于任一全双工单元来说,收发天线侧的环形器记为第一环形器,抵消天线侧的环形器记为第二环形器。该四个全双工单元中的4个收发天线在图4b中以TRx1、TRx2、TRx3和TRx4表示。功分模块201连接的发射链路分别用Tx1、Tx2、Tx3和Tx4表示,合路模块204连接的4个接收链路分别用Rx1、Rx2、Rx3和Rx4表示。
环形器206是一种单向导通的3端口器件,一般用来做天线的收发复用。以第一环形器进行举例来说明环形器的工作原理。比如从端口2进入的信号只能从端口3输出,从端口3进入的信号只能从端口1输出,所以一般将端口2接输出链路,端口3接发送天线或收发天线的发送端,端口1连接接收链路,因此环形器206将一个天线端口扩展成发送射端口(环形器端口2)和接收端口(环形器端口1)。但是端口2和1之间无法做到完全隔离,隔离度一般为30~40dB,因此会有部分发送信号由端口2泄露到端口1形成对接收信号的干扰。因此,在多天线系统中,一个收发天线的接收端口能够接收到包括自己在内的全部收发天线发送信号的干扰。
可选的,基于干扰消除的效果取决于收发天线和抵消天线的散射参数矩阵的一致性,一致性越高,干扰消除的效果越好,本申请中第一环形器和第二环形器的特性参数相同。为了使得第一环形器和第二环形器的特性参数趋于一致,本申请中可以设计第一环形器和第二环形器的物理结构和尺寸相同。这需要对加工精度提高要求。但是不排除第一环形器和第二环形器的物理结构和尺寸虽然不同,第一环形器和第二环形器的散射参数矩阵却能够达到一致或者近似一致。
其中,全双工通信装置中全部第一环形器的散射参数矩阵和全部第二环形器的散射参数矩阵相同,可以是指在全频段相同,也可以是指在某一段频带内相同。
采用收发分离的天线,虽然会使天线口径增加一倍以上,但是收发天线之间无需通过环形器进行隔离,而且通过一定的天线设计,提高收发天线的隔离度,结合本申请提供的干扰对消方法,可以取得更好的干扰消除效果。
本申请实施例提供的任意一种可能的实现方式中的全双工通信装置的架构,均可以应用收发分离的天线形式和收发共用的天线形式,除了天线形式不同,其它结构设计不变。本申请以下以收发共用的天线形式为例进行介绍,可以理解,以下描述的方式也可以应用到收发分离的天线形式。
基于上述各个全双工通信装置架构,以下提供几种可能的实现方式,以实现更好的消除干扰效果。
一种实现方式中,上述各个全双工通信装置架构中所描述的功分模块201可以是功分器。该功分器为等分功分器。功分器用于将待发送信号的功率进行平分,获得两路信号,即第一信号和第二信号,这样,第一信号的功率等于第二信号的功率。在这种情况下,如图5所示,全双工通信装置还包括移相器(phase shifter,PS)207,可选的,该移相器207 位于收发天线202与合路模块204之间,或者,移相器207位于抵消天线203与合路模块204之间。图5中以移相器207位于抵消天线203与合路模块204之间为例。或者说,合路模块204中包括合路器,还包括移相器207。合路器和移相器207实现合路功能。
移相器207用于将抵消信号或者第三信号相移180度。具体地,将抵消信号或者第三信号相移180度,使得抵消信号和第三信号的相位相差180度。或者,移相器207用于将抵消信号或第三信号进行移相,用于将抵消信号和第三信号的相位相差180度的整数倍。两个信号的相位相差180度(或180度的整数倍)指的是理论上相位相差180度(或180度的整数倍),实际中由于器件加工误差以及周围环境影响,信号的相位差不可能是严格的180度(或180度的整数倍),必然存在一定的误差,为了保证方案的效果,一般规定误差在一定范围内即可,本文中,两个信号的相位相差180度(或者其它度数)的含义均与此相同,不再赘述。
具体的,若移相器207连接在合路器和抵消天线203之间,则移相器207用于接收来自抵消天线203的第二接收端口的抵消信号,将该抵消信号相移180度,或者将该抵消信号相移180度的整数倍。若移相器207连接在合路器和收发天线202之间,则移相器207用于接收来自收发天线202的第一接收端口的第三信号,将该第三信号相移180度,或者将该第三信号相移180度的整数倍。
通过移相器207的设计,能够使得第三信号中的干扰信号和抵消信号的相位相差180度,或者相差180度的整数倍。这样,在抵消信号和第三信号中的干扰信号的幅度相等或近似相等时,两者可以在合路模块204中抵消,起到消除干扰的作用。
上述设计中,通过对待发送信号通过功分器进行功率等分,发送信号会有3dB的衰减,这样会造成能量浪费。基于此,本申请实施例还可以进行下述设计,来提高发送信号能量的利用率。
另一种实现方式中,上述各个全双工通信装置架构中所描述的功分模块201可以是定向耦合器或不等分功分器,如图6所示,全双工通信装置还包括移相器207,和放大器208,放大器也可以称为功率放大器(power amplifier,PA)。放大器208连接与抵消天线203和所述合路模块204之间。定向耦合器用于对待发送信号按照比例进行功率分配,获得第一信号和第二信号,所述比例能够使得第一信号的功率大于第二信号的功率。实际应用中,定向耦合器的功率分配使得第一信号的功率远大于第二信号的功率。这样,待发送信号的大部分功率都能够通过收发天线发送出去,只有一小部分功率传给抵消天线,从而有助于提高发送信号的利用率。定向耦合器的典型值为-10dB~-30dB,假设定向耦合器耦合出的第二信号为待发送信号功率的-20dB,这对待发送信号的功率几乎没有影响。根据全部抵消天线的散射参数和全部抵消天线的散射参数相同的设计,或者进一步根据第一环形器的散射参数和第二环形器的散射参数相同的设计,这样,抵消信号会比第三信号中的干扰信号低20dB。为了达到干扰消除的效果,在抵消信号输出一侧增加功率放大器208。放大器208用于将抵消信号的功率按照比例进行放大,将放大后的抵消信号向合路模块204传输。这里放大器208对抵消信号进行放大的比例参考定向耦合器进行功率分配的比例,使得放大后的抵消信号与干扰信号的功率一致或趋于一致。例如,定向耦合器耦合出的第二信号为待发送信号功率的-20dB,则放大器208对抵消信号的功率放大增益为20dB,使得相互抵消的两路功率一致。由于放大器208的输入和输出信号均非常小,因此抵消信号经过放大之后失真较小,对抵消效果影响也较小。
上述两种实现方式,无论采用功分器还是定向耦合器,均配合移相器207进行相移。本申请实施例还提供了另一种可选的实现方式,通过巴伦的设计来实现功分,这种情况下,不需要移相器207的结构。
再一种可能的实现方式中,上述各个全双工通信装置架构中所描述的功分模块201可以是巴伦,如图7所示,功分模块201为巴伦,巴伦用于将待发送信号转换成第一信号和第二信号,第一信号和第二信号的幅值相等且相位差为180度,或者相位差为180度的整数倍。该实现方式通过巴伦,可以使第一信号和第二信号幅度相等,符号相反。能够达到上述移相器207配合功分器或者定向耦合器的效果。并且使用巴伦进行功分,可以使两路信号的时延相等,更有利于实现宽带抵消。
本申请实施例上述提供了几种功分模块201的可能的实现方式,包括功分器、定向耦合器或巴伦,目的是为了使得抵消信号与干扰信号匹配,更好的实现消除干扰。无论哪种可能的实现方式,对抵消信号的调节基本上是固定的,比如固定的移相和固定的增益。实际应用中,由于加工精度的不同会引入一定的误差,影响干扰抵消深度,抵消信号都有可能出现不能与干扰信号完全匹配的情况。匹配是指相位和幅度的匹配。基于此,本申请实施例还提供了一种设计,能够对抵消信号的幅度和相位进行调整,使得抵消信号更好的匹配干扰信号,以达到更好的干扰消除的效果。
图4a~图7中的装置结构中可以不包括屏蔽装置205,不排除其它能实现屏蔽装置205类似功能的方法或结构。各个可选部件或模块在图2所述的装置结构基础上进行设计。
如图8所示,全双工通信装置还可以包括可调移相器(phase shifter,PS)209,可调移相器209连接在抵消天线203和合路模块204之间,可调移相器209用于调节抵消信号的相位。全双工通信装置还可以包括可调增益放大器(variable gain amplifier,VGA)210,可调增益放大器210连接在抵消天线203和合路模块204之间,可调增益放大器210用于调节抵消信号的幅度。为了简便示意,图8中示出了两个收发天线和两个抵消天线的架构,以M=2为例。其它全双工单元的设计类似。
当然,可调移相器209也可以连接在收发天线202和合路模块204之间,可调移相器209用于调节第三信号的相位。可调增益放大器210也可以连接在收发天线202和合路模块204之间,可调增益放大器210用于调节第三信号的幅度。
为了更好的理解相位和幅度的调整,通过图9来示意一种例子。假设全双工通信装置为网络设备或者基站,调节第三信号(或者干扰信号)的相位和幅度。关于相位和幅度的调节算法,干扰消除的过程其实是矢量信号加减的过程。如图9所示,当产生干扰信号时,调节可调移相器209的相位,使基带观测到的剩余干扰信号幅度最小,然后再调节可调增益放大器210的增益,使基带观测到的剩余干扰信号幅度最小,由于该最小值问题是一个凸问题,此时得到的剩余干扰信号就是全局最小值,对应的可调移相器209和可调增益放大器210的值也是最优解。图9中采用可调移相器209调节信号相位,可选择可替代的方式,例如其它相位调节的方法也同样适用,比如可以用多路延时线(即固定时延),然后调节每一路信号的幅度,同样可以达到调相的效果。
通过上述对可调移相器209和可调增益放大器210的设计,能够调节抵消信号或者第三信号(即干扰信号)的相位和幅度。使得抵消信号的幅度和相位逼近干扰信号的幅度和相位,从而可以达到更好的干扰消除的效果。
实际应用中,发射链路和接收链路还会经过其它一些物理器件或者功能模块。为了使 得方案更加便于理解,本申请以全双工装置为网络设备或者应用于网络设备为例,提供一种更加全面的装置结构介绍。
增加的物理期间或功能模块可以在上述图2、图3、图4a、图4b、图5~图8中的任意一种装置架构的基础上增加,以下以图8所示的装置架构为基础为例,对更加全面的装置结构进行详细介绍。
如图10所示,全双工通信装置还可以包括以下几种物理器件或功能模块,或者说全双工通信装置还可以连接以下几种物理器件或功能模块。数模(digital to analog,D/A)转换器、变频器、放大器、滤波器等。基带发射一个信号,经过D/A转换,上变频(up converter),射频放大器(PA),变换成一个功率射频信号,该信号作为上文中的待发送信号,进入功分模块。在输出端输出一个干扰抵消之后的剩余信号,该干扰抵消后的信号经过接收链路,经过低噪声放大器(low noise amplifier,LNA),下变频(down converter),模数(analog to digital,A/D)转换采样最终到基带进行处理。结合图8所示的构造,基带还可以根据一定的算法,调节可调移相器209的相位,以及调节可调增益放大器210的增益值,使接收到的剩余干扰信号幅度最小。达到较好的干扰消除效果。为了简便示意,图10中示出了两个收发天线和两个抵消天线的架构,以M=2为例。其它全双工单元的设计类似。
以上调整相位和幅度的设计能将收发天线的干扰信号降到最低,即发射通道对接收通道的干扰降到最低。但由于收发天线和抵消天线的散射参数一致,因此来自不同收发天线的干扰之间的相对幅度和相位都是一样的,将收发单元内的干扰降低最低的同时,其它收发天线之间的干扰也被降到最低。按照相同的调整方式对全双工通信装置中的所有全双工单元进行校准,即可使所有干扰降低最低。因此本申请的校准过程同样拥有线性复杂度。
由天线近场耦合引起的干扰信号和天线物理结构相关,一旦天线的结构确定,干扰信号也相对稳定,但是随着外部环境的变化,以及器件的老化,干扰信号的幅度和相位都会发生变化,为了达到最优的抵消效果,可以在基带对剩余干扰信号进行监控,一旦发现剩余干扰信号幅度显著升高,就对重新调节可调移相器和可调增益放大器,进行重新校准。
可调移相器和可调增益放大器可以周期性的启动,完成一次校准后,校准参数维持一段时间有效。有效期过后,或者到达周期后,再进行校准,即重新调节可调移相器和可调增益放大器,刷新校准参数。通过周期性启动可调移相器和可调增益放大器,可以节省全双工通信装置的功耗,达到省电的目的。
基于上述对全双工通信装置的架构的描述,基于同一个发明构思,以下从另一个角度,对本申请实施例提供的全双工通信装置进行进一步详细的描述。
如图11所示,全双工通信装置包括功分模块1101、收发天线模块1102、抵消天线模块1103和合路模块1104。收发天线模块1102包括M个第一发送端口,以及包括M个第一接收端口。抵消天线模块1103包括M个第二发送端口和M第二接收端口。M为正整数,图11中以M=4为例。
M个第一发送端口中的任意一个第一发送端口与功分模块1101的一端连接,M个第二发送端口的任意一个第二发送端口与功分模块1101的另一端连接。M个第一接收端口中的任意一个第一接收端口与合路模块1104的一端连接,M个第二接收端口的任意一个第二接收端口与合路模块1104的另一端连接。
功分模块1101,用于获取M个待发送信号,将M个待发送信号的任意一个待发送信号分成第一信号和第二信号,获得M个第一信号和M个第二信号。M个第一信号中的第 i个第一信号通过M个第一发送端口的第i个第一发送端口发送,M个第二信号中的第i个第二信号通过M个第二发送端口的第i个第二发送端口发送。
收发天线模块1102,用于通过M个第一发送端口中的第i个第一发送端口发送M个第一信号中的第i个第一信号,以及通过M个第一接收端口接收M个第三信号。第i个第一接收端口接收的第i个第三信号包括干扰信号和其它通信装置发送的信号,其中,干扰信号包括第i个接收端口接收的来自于M个第一发送端口发送的信号。收发天线模块1102还用于将M个第三信号传输到合路模块1104。i的取值为[1,M],i为从1到M的整数。例如M=4,i=1、2、3或4。
抵消天线模块1103,用于通过M个第二发送端口中的第i个第二发送端口发送M个第二信号中的第i个第二信号,以及通过M个第二接收端口接收M个抵消信号。M个第二接收端口中的第i个第二接收端口接收M个抵消信号中的第i个抵消信号。M个抵消信号中的第i个抵消信号包括第i个第二接收端口接收的来自M个第二发送端口发送的信号。抵消天线模块1103还用于将M个抵消信号传输至合路模块1104。
合路模块1104,用于将M个第三信号和M个抵消信号进行差分合路,输出干扰抵消后的信号,其中,第i个第三信号和第i个抵消信号进行差分合路。
该全双工通信装置中的收发天线模块1102的散射参数矩阵和抵消天线模块1103的散射参数矩阵相同。
可以认为收发天线模块1102是一个天线阵列,收发天线模块1102中包括M个收发天线,M个收发天线中的第i个收发天线包括第i个第一发送端口和第i个第一接收端口。类似的,可以认为抵消天线模块1103是一个天线阵列,抵消天线模块1103中包括M个抵消天线,M个抵消天线中的第i个抵消天线包括第i个第二发送端口和第i个第二接收端口。
可选的,收发天线模块1102中的M个收发天线的物理结构及尺寸与抵消电线模块1103中M个抵消天线的物理结构及尺寸相同。
可选的,抵消天线模块1103还包括屏蔽装置,M个第二发送端口和所述M个第二接收端口置于屏蔽装置内,屏蔽装置用于阻挡抵消天线模块1103中M个第二发送端口发送的信号传输至外界,以及阻挡外界的信号被抵消天线模块1103中的M个第二接收端口中任一第二接收端口接收。
可选的,屏蔽装置内附有吸波材料。对屏蔽装置的设计或描述,以及对吸波材料的设计和描述可以参照上文中相关描述,不再赘述。
需要说明的是,图11所示的全双工通信装置与图2所示的全双工通信装置只是在示意形式上不同,两者的本质或者设计思路是一样的。因此,图3、图4a、图4b、图5~图9对全双工通信装置的实现方式的设计可以应用到图11所示的全双工通信装置。
例如,图11所示的全双工装置还可以包括屏蔽装置,M个第二发送端口和M个第二接收端口置于屏蔽装置内,屏蔽装置用于阻挡抵消天线模块发送的M个第二信号传输至外界,以及用于阻挡抵消天线模块通过M个第二接收端口接收外部信号。
可选的,屏蔽装置内附有吸波材料。
可选的,收发天线模块中的收发天线和抵消天线模块中的抵消天线的物理结构及尺寸相同。
可选的,功分模块为功分器;功分器用于将任意一个待发送信号的功率进行平分,第一信号的功率等于第二信号的功率。
可选的,功分模块为定向耦合器,定向耦合器用于将任意一个待发送信号按照比例进行功率分配,第一信号的功率大于第二信号的功率。在这种情况下,该全双工通信装置还可以包括放大器,放大器连接与抵消天线模块和合路模块之间;放大器用于将抵消信号的功率按照比例进行放大,将放大后的抵消信号向合路模块传输。
可选的,合路模块还包括移相器;移相器用于将抵消信号或者第三信号相移180度。
可选的,功分模块为巴伦;巴伦用于将任意一个待发送信号转换成第一信号和第二信号,第一信号和第二信号的幅值相等且相位差为180度。
可选的,收发天线模块包括接收和发送共用天线,抵消天线模块包括接收和发送共用天线;收发天线模块中的接收和发送共用天线通过第一环形器与功分模块和合路模块连接;抵消天线模块中的接收和发送共用天线通过第二环形器与功分模块和合路模块连接。
可选的,第一环形器和第二环形器的特性参数相同,和/或,第一环形器和第二环形器的物理结构及尺寸相同。
可选的,收发天线模块包括接收和发送分离的天线,抵消天线模块包括接收和发送分离的天线。
可选的,该全双工通信装置还包括可调移相器,可调移相器连接在抵消天线模块和合路模块之间,可调移相器用于调节抵消信号的相位;
该全双工通信装置还可以包括可调增益放大器,可调增益放大器连接在抵消天线模块和合路模块之间;可调增益放大器用于调节抵消信号的幅度。
可选的,该全双工通信装置还可以包括可调移相器,可调移相器连接在收发天线模块和合路模块之间,可调移相器用于调节第三信号的相位;可选的,该全双工通信装置还可以包括可调增益放大器,可调增益放大器连接在收发天线模块和合路模块之间;可调增益放大器用于调节第三信号的幅度。
图11的全双工通信装置中上述各个可选部件或模块的具体设计方式的描述可以参照图2、图3、图4a、图4b、图5~图10的描述,不再赘述。
基于上述对全双工通信装置的结构的描述,下面对本申请实施例提供的全双工通信方法的原理进行详细的描述。
结合图11所示的全双工通信装置的结构示意图,以M=4为例,全双工通信方法的原理如下所述。
全双工通信装置包括4个接收通道和4个发射通道,或者全双工通信装置应用的通信系统包括4个接收通道和4个发射通道。收发天线模块1102包括四个第一发送端口,分别命名为:Tx1,Tx2,Tx3,Tx4。收发天线模块1102还包括四个第一接收端口,分别命名为:Rx1,Rx2,Rx3,Rx4。本申请实施例提供的全双工通信装置通过简单扩展可适用于更多收发通道的全双工应用。本实施例以4个为例,M的取值还可以大于4。对于全双工天线系统,部分发送信号会从M个第一发送端口耦合至其中一个第一接收端口,从而对该第一接收端口接收到的有用信号形成干扰。M个发送信号对任一第一接收端口接收的有用信号的干扰可以用散射参数矩阵(scattering parameter matrix,S-parameter matrix)描述,例如:
Figure PCTCN2020083060-appb-000001
散射参数矩阵中任意元素可定义为:
S Rxi,Txj=b Rxi/a Txj
其中a Txj表示发射端口j的输入信号,b Rxi表示接收端口i的输出信号,S Rxi,Txj则表示该输出信号与输入信号的比值(其它所有端口接匹配负载)。j的取值为[1,M],j为从1到M的整数。例如M=4,j=1、2、3或4。本申请中,要求抵消天线的S参数矩阵(即散射参数矩阵)与收发天线的S参数矩阵保持一致,因此抵消天线中发送信号对接收信号的干扰也可以用相同的散射参数矩阵描述。干扰消除的效果取决于收发天线和抵消天线散射参数矩阵的一致性,一致性越高,干扰消除的效果越好。为使两个天线的散射参数保持一致,最简单的方法就是使两个天线的物理结构和尺寸相同,这种情况下一致性只受加工误差的影响。但是也不排除两个天线结构不一样,但是其S参数矩阵一致或者近似,尤其是在窄带情况下。
本申请中干扰抵消的方法如下所述。
一组待发送信号由发射链路输出进入功分模块,功分模块将待发送信号功分成两路信号,上述过程可表示为向量的形式:
Figure PCTCN2020083060-appb-000002
其中a表示功分模块的输入信号,即待发送信号。
Figure PCTCN2020083060-appb-000003
表示传输到收发天线的第j个第一发送端口的信号,
Figure PCTCN2020083060-appb-000004
表示传输到抵消天线第j个第二发送端口的信号,两路信号幅度和相位均相等或者差一个固定的倍数:
Figure PCTCN2020083060-appb-000005
待发送信号被功分之后,一路信号传输到收发天线的第一发送端口,大部分信号通过收发天线的第一发送端口发射出去,但有一小部分信号会耦合到第一接收端口对接收信号形成干扰,并且任意两个第一发送端口和第一接收端口都存在干扰。例如,第i个接收端口接收到的干扰信号为
Figure PCTCN2020083060-appb-000006
Figure PCTCN2020083060-appb-000007
可表示为:
Figure PCTCN2020083060-appb-000008
其它第一接收端口收到的干扰信号以此类推,所有接收端口接收到的干扰信号可以写成矩阵向量相乘的形式:
Figure PCTCN2020083060-appb-000009
对于全双工通信系统,收发天线在发送信号的同时也在接收信号,因此在收发天线的接收端口接收到的除了干扰信号之外,还有收发天线接收到的外部信号:
Figure PCTCN2020083060-appb-000010
其中
Figure PCTCN2020083060-appb-000011
代表收发天线接收端口i收到的外部信号,
Figure PCTCN2020083060-appb-000012
代表收发天线接收端口i收到的总信号。
从功分模块输出的另一路信号会传输到抵消天线的发送端口(第二发送端口),同样的,发送端口对接收端口会产生干扰,干扰信号可表达为:
Figure PCTCN2020083060-appb-000013
由于抵消天线置于一个屏蔽装置或屏蔽空间中,因此抵消天线接收不到外部信号或来自外界的信号。
最后,收发天线的第一接收端口收到的信号和抵消天线的第二接收端口收到的信号在合路模块进行干扰消除。由于M个抵消天线和M个收发天线散射参数矩阵均相同,且第一发送端口的发送信号和第二发送端口的发送信号也相同,或者差一个固定倍数。第一发送端口对第一接收端口的干扰,与第二发送端口对第二接收端口的干扰,也相同或者相差一个固定倍数。将抵消天线的第二接收端口输出的抵消信号进行处理,使收发天线的第一接收端口输出的干扰信号和抵消天线的第二接收端口输出的抵消信号幅度相等,相位相差180°(或180°的整数倍),然后进行合路,合路模块的输出信号为:
Figure PCTCN2020083060-appb-000014
从上述公式(9)可以看出,收发天线上M个第一接收端口收到的所有干扰信号被一次性消除,最后合路模块只输出接收到的有用信号,合路模块的输出信号送到接收链路进行处理。
以上为本申请提供的全双工通信装置和方法的原理。
在一个全双工通信系统的收发天线阵列中,任意两个收发天线之间都会存在干扰,因此共有M 2个干扰信号,现有的主动射频干扰消除方案中,需要对每一个干扰信号分别生成一个抵消信号,然后调整抵消信号的幅度和相位,使其与干扰信号幅度相等,相位相差180°(或180°的整数倍),然后和干扰信号进行抵消,因此系统的硬件复杂度为M 2,当天线数量增加时,干扰抵消电路的复杂度会急剧上升,使硬件电路变得难以实现,而且复 杂度升高也会影响抵消效果。而在本申请中,利用M个抵消天线或者其它多端口网络,M个抵消天线的散射参数矩阵与M个收发天线的散射参数矩阵相同,对收发天线所有接收端口上收到的所有干扰信号同时进行重建或消除,干扰消除的硬件复杂度大大降低,硬件复杂度由M 2降为M。由于收发天线和抵消天线的散射参数矩阵相同,抵消信号和干扰信号的频率响应也基本相同,无需对抵消信号进行过多的调幅和调相处理,相比于现有方案硬件复杂度也大大降低。
另一方面,由公式(1)~公式(9)可以看出,本方案最终的抵消效果,只和收发天线和抵消天线的参数一致性有关。当收发天线的散射参数随频率发生变化时,抵消天线的散射参数也会发生相同的变化,因此抵消效果不会随散射参数的变化而降低,因此本方案的抵消效果理论上和频率无关,可以达到非常宽的抵消带宽。当然由于需要对其中一路信号进行180度相移,会造成两路信号延时不同,抵消带宽也将受到限制。
由于本申请的方案硬件复杂度低,干扰抵消不受端口匹配的影响,抵消带宽较宽,因此本方案容易和其它干扰消除方案共用,以进一步提升干扰抵消的效果。同时本申请对收发天线和抵消天线的摆放位置也没有限制,天线阵列可以摆放成二维阵列,更符合实际应用的需求。
本申请中,通过提高天线和器件的加工精度,可以尽可能的保证收发天线和抵消天线的散射参数矩阵的一致性,从而提高干扰消除效果。通过提高屏蔽装置内吸波材料的吸波效果,能够保证屏蔽装置内部吸波材料吸收抵消天线发射的信号而不引起反射,使抵消天线和收发天线工作在相同的环境中,保证抵消天线输出的抵消信号与收发天线上的干扰信号相同,从而提高干扰消除效果。
结合上述对消除干扰原理的描述,例如在图5所示的全双工通信装置的架构基础上,干扰消除的流程如下所述。
待发送信号进入3dB功分器,经过功分器进行功分,获得幅度和相位均相等的两路信号,一路信号进入收发天线,另一路进入抵消天线。具体地,一路信号进入与收发天线连接的环形器的2端口,另一路信号进入与抵消天线连接的环形器的2端口。在收发天线上,发送信号会对接收信号产生干扰,收发天线接收端口输出的干扰信号可表示为:
Figure PCTCN2020083060-appb-000015
其中,
Figure PCTCN2020083060-appb-000016
代表第j个环形器的2端口与第i个环形器的1端口之间的散射参数,
Figure PCTCN2020083060-appb-000017
代表第j个环形器的2端口的输入信号,
Figure PCTCN2020083060-appb-000018
代表第i个环形器1端口的输出信号。收发天线在发射信号的同时也在接收信号,因此总的输出信号可表示为:
Figure PCTCN2020083060-appb-000019
另一方面,由于收发天线阵列和抵消天线阵列的特性参数相同,其连接的环形器特性也相同,抵消天线上也存在相同的抵消信号。由于抵消天线阵列置于屏蔽装置中,接收不到其它通信装置发来的有用信号,因此在抵消天线上收到的抵消信号(即与其连接的环形 器1端口的输出信号)可以表示为:
Figure PCTCN2020083060-appb-000020
在接收端,将抵消天线输出的抵消信号相移180度,然后和收发天线的环形器端口1的输出总信号进行合路,可以将收发天线接收到的所有干扰信号进行抵消,因此合路器的输出信号为:
Figure PCTCN2020083060-appb-000021
由公式13,经过合路器,收发天线上所有的干扰信号同时得到了消除,合路器输出接收天线的接收信号到射频接收链路进行处理。
基于上述对消除干扰原理的描述,本申请实施例还提供了一种全双工通信方法,如图12所示,本申请实施例还提供的全双工通信方法流程如下。
S1201、将M个待发送信号进行功率分配,获得M个第一信号和M个第二信号。
M为大于或等于2的整数;
S1202、将M个第一信号通过M个收发天线发送,将M个第二信号通过M个抵消天线发送。
M个收发天线的散射参数矩阵与M个抵消天线的散射参数矩阵相同;
S1203、通过M个收发天线接收M个第三信号,通过M个抵消天线接收M个抵消信号。
其中,M个第三信号中的第i个第三信号包括干扰信号和其它通信装置发送的信号,干扰信号包括第i个收发天线接收到的来自M个收发天线发送的信号,i为1,2,……M中的任意一个整数;
S1204、将M个第三信号和M个抵消信号进行差分合路,输出干扰抵消后的信号。
可选的,第一信号和第二信号的幅度相等,相位相反。
或者,将抵消信号相移整数倍的180度。将M个第三信号和相移后的M个抵消信号进行差分合路。
可选的,第一信号和第二信号的功率相差固定的倍数。
该方法与上述全双工通信装置的原理相同,相互可以参考,细节不再赘述。
具体地,当收发天线数量不一致时,全双工通信方法包括:将M个待发送信号进行功率分配,获得M个第一信号和M个第二信号,所述M为正整数;将所述M个第一信号通过收发天线发送,将所述M个第二信号通过抵消天线发送,所述收发天线的M个发送端口和N个接收端口形成的散射参数矩阵与所述抵消天线的M个发送端口和N个接收端口形成的散射参数矩阵相同;通过收发天线接收N个第三信号,通过所述抵消天线接收N个抵消信号,其中,所述N个第三信号中的第j个第三信号包括干扰信号和其它通信装置发送的信号,所述干扰信号包括所述第j个接收端口接收到的来自所述M个发送端口发射的信号,j为1,2,……N中的任意一个整数;将所述N个第三信号和所述N个抵消信号进行差分合路,输出干扰抵消后的信号。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述实施例提供的全双工通信方法的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例提供的全双工通信方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可读存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种全双工通信装置,其特征在于,包括一个或多个全双工单元;
    其中,任一所述全双工单元包括:功分模块,收发天线、抵消天线,合路模块;所述收发天线包括第一发送端口和第一接收端口,所述第一发送端口连接所述功分模块,所述第一接收端口连接所述合路模块,所述抵消天线包括第二发送端口和第二接收端口,所述第二发送端口连接所述功分模块,所述第二接收端口连接所述合路模块;
    所述功分模块,用于将待发送信号分成第一信号和第二信号,所述第一信号通过所述第一发送端口发送,所述第二信号通过所述第二发送端口发送;
    所述收发天线,用于通过所述第一发送端口发送所述第一信号,以及通过所述第一接收端口接收第三信号,所述第三信号包括干扰信号和其他通信装置发送的信号,所述干扰信号包括:所述第一接收端口接收的来自于所述一个或多个全双工单元中的全部收发天线发送的信号;所述收发天线还用于将所述第三信号传输到所述合路模块;
    所述抵消天线,用于通过所述第二发送端口发送所述第二信号,以及通过所述第二接收端口接收抵消信号,所述抵消信号包括:所述第二接收端口接收的来自所述一个或多个全双工单元中的全部抵消天线发送的信号;所述抵消天线还用于将所述抵消信号传输至合路模块;
    所述合路模块,用于将所述第三信号和所述抵消信号进行差分合路,输出干扰抵消后的信号;
    以及,
    所述一个或者多个全双工单元中的全部收发天线的散射参数矩阵和全部抵消天线的散射参数矩阵相同。
  2. 如权利要求1所述的装置,其特征在于,所述装置还包括屏蔽装置,所述抵消天线置于所述屏蔽装置内,所述屏蔽装置用于阻挡所述抵消天线发送的信号传输至外界,所述抵消天线无法接收到外部信号。
  3. 如权利要求2所述的装置,其特征在于,所述屏蔽装置内附有吸波材料。
  4. 如权利要求1~3任一项所述的装置,其特征在于,所述收发天线和所述抵消天线的物理结构及尺寸相同。
  5. 如权利要求1~4任一项所述的装置,其特征在于,所述功分模块为等分功分器;
    所述等分功分器用于将所述待发送信号的功率进行平分,获得所述第一信号和所述第二信号,所述第一信号的功率等于所述第二信号的功率。
  6. 如权利要求1~4任一项所述的装置,其特征在于,所述功分模块为定向耦合器或不等分功分器;
    所述定向耦合器或不等分功分器用于对所述待发送信号按照比例进行功率分配,获得所述第一信号和所述第二信号,所述第一信号的功率大于所述第二信号的功率。
  7. 如权利要求6所述的装置,其特征在于,所述装置还包括放大器,所述放大器连接与所述抵消天线和所述合路模块之间;
    所述放大器用于将所述抵消信号的功率按照所述比例进行放大,将放大后的抵消信号向所述合路模块传输。
  8. 如权利要求1~7任一项所述的装置,其特征在于,所述合路模块还包括移相器;
    所述移相器用于将所述抵消信号或者第三信号相移180度或者180度的整数倍。
  9. 如权利要求1~4任一项所述的装置,其特征在于,所述功分模块为巴伦;
    所述巴伦用于将待发送信号转换成所述第一信号和所述第二信号,所述第一信号和所述第二信号的幅值相等且相位差为180度。
  10. 如权利要求1~9任一项所述的装置,其特征在于,所述收发天线包括接收和发送共用天线,所述抵消天线包括接收和发送共用天线;
    所述收发天线通过第一环形器与所述功分模块和所述合路模块连接;所述抵消天线通过第二环形器与所述功分模块和所述合路模块连接。
  11. 如权利要求10所述的装置,其特征在于,所述第一环形器和所述第二环形器的特性参数相同,和/或,所述第一环形器和所述第二环形器的物理结构及尺寸相同。
  12. 如权利要求1~9任一项所述的装置,其特征在于,所述收发天线包括接收和发送分离的天线,所述抵消天线包括接收和发送分离的天线。
  13. 如权利要求1~12任一项所述的装置,其特征在于,所述装置还包括可调移相器,所述可调移相器连接在所述抵消天线和所述合路模块之间,所述可调移相器用于调节所述抵消信号的相位;
    和/或,
    所述装置还包括可调增益放大器,所述可调增益放大器连接在所述抵消天线和所述合路模块之间;所述可调增益放大器用于调节所述抵消信号的幅度。
  14. 如权利要求1~12任一项所述的装置,其特征在于,所述装置还包括可调移相器,所述可调移相器连接在所述收发天线和所述合路模块之间,所述可调移相器用于调节所述第三信号的相位;
    和/或,
    所述装置还包括可调增益放大器,所述可调增益放大器连接在所述收发天线和所述合路模块之间;所述可调增益放大器用于调节所述第三信号的幅度。
  15. 一种全双工通信装置,其特征在于,包括:功分模块、收发天线模块、抵消天线模块和合路模块,所述收发天线模块包括M个第一发送端口和N个第一接收端口,所述抵消天线模块包括M个第二发送端口和N个第二接收端口,所述M、N为正整数;所述收发天线模块的散射参数矩阵和所述抵消天线模块的散射参数矩阵相同;所述M、N为大于或等于2的整数;
    其中,所述第一发送端口和所述第二发送端口分别与所述功分模块相连,所述第一接收端口和所述第二接收端口分别与所述合路模块相连;
    所述功分模块,用于获取M个待发送信号,将所述M个待发送信号的任意一个待发送信号进行功率分配,获得M个第一信号和M个第二信号;
    所述收发天线模块,用于通过M个第一发送端口中的第i个第一发送端口发送所述M个第一信号中的第i个第一信号,通过所述N个第一接收端口接收N个第三信号,以及将所述N个第三信号传输至所述合路模块;第j个第一接收端口接收的j个第三信号包括干扰信号和其它通信装置发送的信号,所述干扰信号包括第j个接收端口接收的来自于M个第一发送端口发送的信号,i为1,2,……M中的任意一个整数,j为1,2,……N中的任意一个整数;
    所述抵消天线模块,用于通过M个第二发送端口中的第i个第二发送端口发送M个 第二信号中的第i个第二信号,通过N个第二接收端口接收N个抵消信号,以及将所述N个第三信号传输至所述合路模块,所述N个抵消信号中的第j个抵消信号包括第j个第二接收端口接收的来自所述M个第二发送端口发送的信号,
    所述合路模块,用于将所述N个第三信号和所述N个抵消信号进行差分合路,输出干扰抵消后的信号,其中,第j个第三信号和第j个抵消信号进行差分合路。
  16. 如权利要求15所述的装置,其特征在于,所述装置包括屏蔽装置,所述M个第二发送端口和所述M个第二接收端口置于所述屏蔽装置内,或者,所述抵消天线模块置于所述屏蔽装置内,所述屏蔽装置用于阻挡所述抵消天线模块发送的M个第二信号传输至外界,以及用于阻挡所述抵消天线模块通过所述M个第二接收端口接收外部信号。
  17. 如权利要求16所述的装置,其特征在于,所述屏蔽装置内附有吸波材料。
  18. 如权利要求15~17任一项所述的装置,其特征在于,所述收发天线模块中的收发天线和所述抵消天线模块中的抵消天线的物理结构及尺寸相同。
  19. 如权利要求15~18任一项所述的装置,其特征在于,所述功分模块为等分功分器;
    所述等分功分器用于将所述任意一个待发送信号的功率进行平分,所述第一信号的功率等于所述第二信号的功率。
  20. 如权利要求15~18任一项所述的装置,其特征在于,所述功分模块为定向耦合器或不等分功分器;
    所述定向耦合器或不等分功分器用于将所述任意一个待发送信号按照比例进行功率分配,所述第一信号的功率大于所述第二信号的功率。
  21. 如权利要求20所述的装置,其特征在于,所述装置还包括放大器,所述放大器连接与所述抵消天线模块和所述合路模块之间;
    所述放大器用于将所述抵消信号的功率按照所述比例进行放大,将放大后的抵消信号向所述合路模块传输。
  22. 如权利要求15~21任一项所述的装置,其特征在于,所述合路模块还包括移相器;
    所述移相器用于将所述抵消信号或者所述第三信号相移180度;或者,
    所述移相器用于将所述抵消信号或者所述第三信号进行移相,所述移相用于将所述抵消信号和所述第三信号的相位相差180度的整数倍。
  23. 如权利要求15~18任一项所述的装置,其特征在于,所述功分模块为巴伦;
    所述巴伦用于将所述任意一个待发送信号转换成所述第一信号和所述第二信号,所述第一信号和所述第二信号的幅值相等且相位差为180度。
  24. 如权利要求15~23任一项所述的装置,其特征在于,所述收发天线模块包括接收和发送共用天线,所述抵消天线模块包括接收和发送共用天线;
    所述收发天线模块中的接收和发送共用天线通过第一环形器与所述功分模块和所述合路模块连接;所述抵消天线模块中的接收和发送共用天线通过第二环形器与所述功分模块和所述合路模块连接。
  25. 如权利要求24所述的装置,其特征在于,所述第一环形器和所述第二环形器的特性参数相同,和/或,所述第一环形器和所述第二环形器的物理结构及尺寸相同。
  26. 如权利要求15~25任一项所述的装置,其特征在于,所述收发天线模块包括接收和发送分离的天线,所述抵消天线模块包括接收和发送分离的天线。
  27. 如权利要求15~26任一项所述的装置,其特征在于,所述装置还包括可调移相器, 所述可调移相器连接在所述抵消天线模块和所述合路模块之间,所述可调移相器用于调节所述抵消信号的相位;
    和/或,
    所述装置还包括可调增益放大器,所述可调增益放大器连接在所述抵消天线模块和所述合路模块之间;所述可调增益放大器用于调节所述抵消信号的幅度。
  28. 如权利要求15~26任一项所述的装置,其特征在于,所述装置还包括可调移相器,所述可调移相器连接在所述收发天线模块和所述合路模块之间,所述可调移相器用于调节所述第三信号的相位;
    和/或,
    所述装置还包括可调增益放大器,所述可调增益放大器连接在所述收发天线模块和所述合路模块之间;所述可调增益放大器用于调节所述第三信号的幅度。
  29. 如权利要求15~28任一项所述的装置,其特征在于,所述M等于所述N。
  30. 一种全双工通信方法,应用于全双工通信装置,其特征在于,包括:
    将M个待发送信号进行功率分配,获得M个第一信号和M个第二信号,所述M为大于或等于2的整数;
    将所述M个第一信号通过M个收发天线发送,将所述M个第二信号通过M个抵消天线发送,所述M个收发天线的散射参数矩阵与所述M个抵消天线的散射参数矩阵相同;
    通过M个收发天线接收M个第三信号,通过所述M个抵消天线接收M个抵消信号,其中,所述M个第三信号中的第i个第三信号包括干扰信号和其它通信装置发送的信号,所述干扰信号包括所述第i个收发天线接收到的来自所述M个收发天线发送的信号,i为1,2,……M中的任意一个整数;
    将所述M个第三信号和所述M个抵消信号进行差分合路,输出干扰抵消后的信号;
    或者,
    将M个待发送信号进行功率分配,获得M个第一信号和M个第二信号,所述M为正整数;
    将所述M个第一信号通过收发天线发送,将所述M个第二信号通过抵消天线发送,所述收发天线的M个发送端口和N个接收端口形成的散射参数矩阵与所述抵消天线的M个发送端口和N个接收端口形成的散射参数矩阵相同;
    通过收发天线接收N个第三信号,通过所述抵消天线接收N个抵消信号,其中,所述N个第三信号中的第j个第三信号包括干扰信号和其它通信装置发送的信号,所述干扰信号包括所述第j个接收端口接收到的来自所述M个发送端口发射的信号,j为1,2,……N中的任意一个整数;
    将所述N个第三信号和所述N个抵消信号进行差分合路,输出干扰抵消后的信号。
  31. 如权利要求30所述的方法,其特征在于,所述第一信号和所述第二信号的幅度相等,相位相反;
    或者,所述方法还包括:
    将所述抵消信号相移整数倍的180度或者180度的整数倍;
    将所述M个第三信号和所述M个抵消信号进行差分合路,包括:将所述M个第三信号和相移后的M个抵消信号进行差分合路。
  32. 如权利要求30所述的方法,其特征在于,所述第一信号和所述第二信号的功率 相差固定的倍数。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储程序,所述程序在被一个或多个处理器读取并执行时,使得权利要求30至32任一项所述的方法被执行。
PCT/CN2020/083060 2019-04-30 2020-04-02 一种全双工通信装置和方法 WO2020220927A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910364410 2019-04-30
CN201910364410.7 2019-04-30
CN201910604291.8 2019-07-05
CN201910604291.8A CN111953371B (zh) 2019-04-30 2019-07-05 一种全双工通信装置和方法

Publications (1)

Publication Number Publication Date
WO2020220927A1 true WO2020220927A1 (zh) 2020-11-05

Family

ID=73028595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083060 WO2020220927A1 (zh) 2019-04-30 2020-04-02 一种全双工通信装置和方法

Country Status (1)

Country Link
WO (1) WO2020220927A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140169236A1 (en) * 2012-12-13 2014-06-19 Kumu Networks Feed forward signal cancellation
CN105474549A (zh) * 2013-12-04 2016-04-06 华为技术有限公司 收发共用天线的自干扰消除方法、收发机和通信设备
CN106972871A (zh) * 2017-03-30 2017-07-21 广东欧珀移动通信有限公司 全双工无线通信装置、方法和移动终端
CN107231168A (zh) * 2017-08-11 2017-10-03 西南电子技术研究所(中国电子科技集团公司第十研究所) 一种自干扰信号的消除装置及消除方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140169236A1 (en) * 2012-12-13 2014-06-19 Kumu Networks Feed forward signal cancellation
CN105474549A (zh) * 2013-12-04 2016-04-06 华为技术有限公司 收发共用天线的自干扰消除方法、收发机和通信设备
CN106972871A (zh) * 2017-03-30 2017-07-21 广东欧珀移动通信有限公司 全双工无线通信装置、方法和移动终端
CN107231168A (zh) * 2017-08-11 2017-10-03 西南电子技术研究所(中国电子科技集团公司第十研究所) 一种自干扰信号的消除装置及消除方法

Similar Documents

Publication Publication Date Title
US9608706B2 (en) System and method for multiple-input and multiple-output (MIMO) full-duplex precoding structures
US10727896B2 (en) Tower top device and passive intermodulation cancellation method
KR102408875B1 (ko) 통신 시스템에서 자기 간섭 신호의 제거 방법 및 장치
CN106464284A (zh) 一种干扰消除的装置和方法
US11923888B2 (en) Full-duplex self-interference cancellation method and apparatus
US20150071185A1 (en) Apparatus, system and method of wireless communication beamforming
WO2021052102A1 (zh) 一种通信设备、射频干扰消除方法及装置
US20230208536A1 (en) Passive inter-modulation fault point detection method and apparatus
US20240031005A1 (en) Signal forwarding method and apparatus
WO2022037188A1 (zh) 一种无源互调源的定位方法及装置
CN111953371B (zh) 一种全双工通信装置和方法
WO2020220927A1 (zh) 一种全双工通信装置和方法
Lampu et al. Air-induced passive intermodulation in FDD networks: Modeling, cancellation and measurements
WO2023107645A1 (en) System and method for interference cancellation
CN116134751A (zh) 用于交分双工的mimo天线阵列
WO2016023368A1 (zh) 一种无线全双工通信系统
WO2023185974A1 (zh) 通信方法以及相关装置
WO2023000753A1 (zh) 无源互调信号的检测方法及装置
WO2024032514A1 (zh) 用于信号转发的方法及相关装置
US11329707B1 (en) Communication systems, devices, and methods for multicarrier frequency division duplexing
WO2021228179A1 (zh) 一种通信方法及装置
WO2023082171A1 (zh) 一种通信装置、通信方法及相关设备
CN116266920A (zh) 互调校正的方法和装置
WO2023109856A1 (zh) 通信收发器、信号收发方法、电子设备及存储介质
Shandan et al. Full-duplex MIMO wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799368

Country of ref document: EP

Kind code of ref document: A1