WO2015194210A1 - ステッピングモータ - Google Patents

ステッピングモータ Download PDF

Info

Publication number
WO2015194210A1
WO2015194210A1 PCT/JP2015/055319 JP2015055319W WO2015194210A1 WO 2015194210 A1 WO2015194210 A1 WO 2015194210A1 JP 2015055319 W JP2015055319 W JP 2015055319W WO 2015194210 A1 WO2015194210 A1 WO 2015194210A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
exciting coil
coil
excitation
stepping motor
Prior art date
Application number
PCT/JP2015/055319
Other languages
English (en)
French (fr)
Inventor
正和 野上
建夫 小榑
Original Assignee
野上 忍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野上 忍 filed Critical 野上 忍
Priority to US14/772,463 priority Critical patent/US9722477B2/en
Priority to EP15739494.1A priority patent/EP2988402A4/en
Publication of WO2015194210A1 publication Critical patent/WO2015194210A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/12Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles

Definitions

  • the present invention relates to a stepping motor that rotates by the magnetization of an exciting coil.
  • a permanent magnet is disposed on the rotor side, an excitation coil is disposed on the stator side, and the rotor is rotated by controlling on / off of the excitation coil. For example, stepping described in [Patent Document 1] below Motors are in practical use.
  • the inventors of the present application have also invented a power conversion device with high conversion efficiency in which a coil is disposed in a lateral direction between permanent magnets with the same polarity facing each other [Patent Document 2].
  • the conventional stepping motor as shown in [Patent Document 1] has a problem that the magnetic flux contributing to the rotation is leaked and the efficiency is poor.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a high-efficiency stepping motor in which the magnetic force of an exciting coil effectively contributes to the rotating operation of a rotor.
  • the present invention (1) The rotating shaft 10 supported by the stator 12, the rotating plate 20 fixed to the rotating shaft 10, the concentric circle fixed at the rotating plate 20 and centered on the rotating shaft 10, and equally spaced A plurality of permanent magnets 22 arranged so that magnetic poles are alternated; and a plurality of substantially cylindrical excitation coils 26 fixed to the stator 12;
  • the permanent magnet 22 has a substantially C-shaped inner peripheral surface with the same polarity inside.
  • the exciting coil 26 is disposed inside the inner peripheral surface of the permanent magnet 22, A stepping motor in which the rotating plate 20 is rotated by moving the permanent magnet 22 so that the exciting coil 26 passes inside the inner peripheral surface by the magnetization of the exciting coil 26;
  • the length of the exciting coil 26 is slightly longer than the pitch interval L between the adjacent permanent magnets 22, Of the two ends of the exciting coil 26, the side toward which the permanent magnet 22 faces as viewed from the exciting coil 26 is a front end 26 a, and the side from which the permanent magnet 22 moves away is the rear end 26 b.
  • a substantially cylindrical inner peripheral surface is formed inside a permanent magnet, and a substantially columnar exciting coil is disposed inside the inner peripheral surface.
  • FIG. 1 is a schematic configuration diagram of a stepping motor according to the present invention. It is a figure explaining the structure of the permanent magnet and exciting coil of the stepping motor which concerns on this invention. It is a figure explaining rotation operation of the stepping motor concerning the present invention. It is a figure which shows an example of the control mechanism of the stepping motor which concerns on this invention.
  • FIG. 1A is a schematic top view of a stepping motor 50 according to the present invention.
  • FIG. 1B is a sectional view taken along line XX of the stepping motor 50 according to the present invention.
  • a permanent magnet 22 (to be described later) is indicated by a solid line, and a configuration related to the excitation coil 26 located in the rotor 30 is indicated by a broken line.
  • the stepping motor 50 includes a rotating shaft 10 supported by the stator 12, a rotating plate 20 fixed to the rotating shaft 10, a plurality of permanent magnets 22 fixed to the rotating plate 20, And a plurality of exciting coils 26 fixed to the stator 12. And the permanent magnet 22 is installed so that the magnetic poles may be alternately arranged at equal intervals concentrically around the rotation shaft 10.
  • the rotating plate 20 includes a first rotating plate 20a and a second rotating plate 20b, and the permanent magnet 22 is sandwiched and held between the first rotating plate 20a and the second rotating plate 20b. It is preferable from the viewpoint of strength.
  • the exciting coils 26 are installed concentrically with the rotating shaft 10 as the center so that the magnetic cores face in the lateral direction (the tangential direction of the concentric circles).
  • the ratio of the number of permanent magnets 22 and exciting coils 26 may be any ratio such as 3: 2 or 5: 3. However, here, the ratio of the number of the permanent magnets 22 and the excitation coils 26 is set to 4: 3, and the excitation coils 26 are configured by three phase groups having the same positional relationship with respect to the permanent magnets 22, and these are evenly distributed. An example of an arrangement is shown. That is, in FIG.
  • FIG. 2 is a partially enlarged view of the permanent magnet 22 and the exciting coil 26.
  • the permanent magnet 22 shown in FIG. 2 has a substantially cylindrical inner peripheral surface, and the inner peripheral surface has a substantially C-shape in which a part of the peripheral surface is opened along the axial direction. And this substantially C-shaped inner peripheral surface is comprised by the same magnetic pole altogether.
  • FIG. 2 shows an example in which the permanent magnet 22 is formed by arranging three permanent magnets having a substantially sectoral cross section.
  • the permanent magnet 22 of the present invention is not limited to this configuration, and is integrated. Permanent magnets 22 formed in the above may be used.
  • the exciting coil 26 includes a substantially cylindrical magnetic core 14 and a winding 16 wound around the magnetic core 14 and has a substantially cylindrical shape as a whole.
  • a well-known ferrite core or the like may be used, but it is preferable to use a silicon steel or a silicon steel plate bonded in a cylindrical shape from the viewpoint of suppressing heat generation due to eddy current.
  • the exciting coil 26 is fixed to the stator 12 via the coil stay 18 that passes through the opening of the permanent magnet 22. Thereby, the exciting coil 26 is held inside the inner peripheral surface of the permanent magnet 22 in a non-contact state with the permanent magnet 22.
  • a sufficient gap is provided between the exciting coil 26 and the inner peripheral surface of the permanent magnet 22 so that the inner peripheral surface does not contact the exciting coil 26 even when the permanent magnet 22 rotates.
  • the magnet coil 26 sequentially passes through the inside of the inner peripheral surface of the permanent magnet 22 while maintaining a non-contact state.
  • the lead wires at both ends of the winding 16 constituting the exciting coil 26 are connected to a control mechanism for controlling on / off of current application to the exciting coil 26 and the direction of application.
  • the operation of the stepping motor 50 according to the present invention will be described with reference to FIG. In FIG. 3, one excitation coil 26 is illustrated and described. However, as described above, the excitation coil 26 includes excitation coils 26 having different phases, and these excitation coils 26 perform the following operations. By sequentially performing, the stepping motor 50 continuously rotates.
  • the length of the exciting coil 26 is slightly longer than the pitch interval L between the adjacent permanent magnets 22, that is, the distance L from the center to the center of the adjacent permanent magnets 22.
  • the side toward which the permanent magnet 22 is facing as viewed from the exciting coil 26 is the front end 26a, and the side from which the permanent magnet 22 is separated (the left side in FIG. 3). Is the rear end 26b.
  • the exciting coil 26 is in the state shown in FIG. 3A, that is, the approximate center position of the permanent magnet 22 (22a) is slightly past the rear end 26b of the exciting coil 26.
  • the control mechanism excites the excitation coil 26 by applying a predetermined current to the winding 16 of the excitation coil 26.
  • the current application direction is such that the front end 26a of the excitation coil 26 and the magnetic pole on the inner peripheral surface of the permanent magnet 22b located at the front end 26a have the same polarity, and the excitation coil 26 has a rear end 26b and a rear end 26b.
  • This is a direction in which the magnetic poles on the inner peripheral surface of the permanent magnet 22a positioned are in the same polarity.
  • the control mechanism uses the front end 26a of the exciting coil 26 as the S pole. Then, a current is applied in a direction in which the rear end 26b is an N pole.
  • the front end 26a of the exciting coil 26 is excited to the S pole and the rear end 26b is excited to the N pole, and a repulsive force acts between the front end 26a of the exciting coil 26 and the inner peripheral surface of the permanent magnet 22b to repel each other.
  • a repulsive force acts between the rear end 26b of the exciting coil 26 and the inner peripheral surface of the permanent magnet 22a to repel each other.
  • the exciting coil 26 is slightly past the substantially central position of the permanent magnet 22a, and the length of the exciting coil 26 is longer than the pitch interval L of the permanent magnet 22, so that the front end 26a of the exciting coil 26 is permanent. Projecting to the permanent magnet 22c side from the center of the magnet 22b.
  • the magnetic pole of the permanent magnet 22c is opposite to the magnetic pole of the permanent magnet 22b, an attractive force acts between the front end 26a of the exciting coil 26 and the inner peripheral surface of the permanent magnet 22c. As a result, the permanent magnet 22c It is drawn toward the exciting coil 26 side. Then, the permanent magnets 22a, 22b, and 22c rotate together with the rotating plate 20 in the direction of the arrow in FIG. As a result, the rotor 30 rotates and the rotating shaft 10 of the stepping motor 50 rotates.
  • the permanent magnets 22 (22a, 22b, 22c) are rotated and moved by the excitation operation of the excitation coils 26 of other phases, and the state shown in FIG. 3C is obtained.
  • the state shown in FIG. 3C is a position where the substantially center position of the permanent magnet 22b is slightly past the rear end 26b of the exciting coil 26.
  • the control mechanism excites the excitation coil 26 by applying a predetermined current to the winding 16 of the excitation coil 26.
  • the current application direction is such that the front end 26a of the excitation coil 26 and the magnetic pole on the inner peripheral surface of the permanent magnet 22c located at the front end 26a have the same polarity, and the excitation coil 26 has a rear end 26b and a rear end 26b.
  • the rear end 26b of the exciting coil 26 is excited to the S pole and the front end 26a is excited to the N pole, and a repulsive force acts between the front end 26a of the exciting coil 26 and the inner peripheral surface of the permanent magnet 22c to repel each other.
  • a repulsive force acts between the rear end 26b of the exciting coil 26 and the inner peripheral surface of the permanent magnet 22b to repel each other.
  • an attractive force acts between the front end 26a of the exciting coil 26 and the inner peripheral surface of the permanent magnet 22d to attract each other. Due to the action of the attractive force and the repulsive force, the permanent magnets 22b, 22c and 22d rotate together with the rotary plate 20 in the direction of the arrow in FIG. As a result, the rotor 30 rotates and the rotating shaft 10 of the stepping motor 50 rotates. Then, these operations are repeatedly performed including the excitation coils 26 of other phases, so that the rotating shaft 10 continuously rotates.
  • FIG. 4 is a schematic view showing a control portion for the excitation coil 26 of one phase group in the control mechanism 40.
  • the control mechanism 40 according to the present invention is not particularly limited to this configuration, and may be any mechanism that detects the position of the permanent magnet 22 and switches on / off the current application to the excitation coil 26 and the application direction. Any thing may be used.
  • the fourth drive unit 41a and 4 (b) includes a first drive unit 41a and a second drive unit 41b connected in parallel to the excitation coil 26 of one phase group.
  • the first drive unit 41a and the second drive unit 41b include well-known DC power sources 44a and 44b such as a battery for exciting the excitation coil 26, and solids connected in series to the DC power sources 44a and 44b, respectively.
  • Well-known switching means SW1 and SW2 such as relays, and optical sensors 42a and 42b for turning on and off the switching means SW1 and SW2 according to the position of the permanent magnet 22, respectively.
  • the optical sensor 42a detects this position and turns on the switching means SW1.
  • a current is applied to the excitation coil 26 from the DC power supply 44a, and the excitation coil 26 is excited so that the front end 26a has the S pole and the rear end 26b has the N pole.
  • repulsive force and attractive force act between the permanent magnet 22 and the exciting coil 26, and the rotor 30 rotates.
  • the optical sensor 42a detects this position and turns off the switching means SW1. Thereby, the current application to the exciting coil 26 is stopped.
  • the optical sensor 42b detects this position and turns on the switching means SW2.
  • the switching means SW2 When the switching means SW2 is turned on, a current is applied to the excitation coil 26 from the DC power supply 44b in the opposite direction to the excitation coil 26 so that the front end 26a of the excitation coil 26 is N pole and the rear end 26b is S pole. .
  • repulsive force and attractive force act between the permanent magnet 22 and the exciting coil 26, and the rotor 30 rotates.
  • the optical sensor 42b detects this position and switches the switching means SW2. Turn off. Thereby, the current application to the exciting coil 26 by the DC power supply 44b is stopped. Then, by repeatedly performing these operations including the excitation coils 26 of other phase groups, the rotating shaft 10 of the stepping motor 50 rotates continuously.
  • the stepping motor 50 uses the permanent magnet 22 having a substantially cylindrical inner peripheral surface on the inner side, and arranges the substantially columnar excitation coil 26 on the inner side of the inner peripheral surface. Then, when the permanent magnet 22 and the exciting coil 26 reach a specific position, the application of current to the exciting coil 26 is switched on and off and the direction of application is switched. Thereby, repulsive force and attractive force acting on both ends of the exciting coil 26 can be contributed to the rotational motion of the stepping motor 50. For this reason, the stepping motor 50 according to the present invention can obtain high conversion efficiency.
  • each part of the stepping motor 50 and the control mechanism 40 according to the present invention are not particularly limited to the above examples, and the present invention It is possible to change and implement without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Stepping Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

励磁コイルの磁力を回転子の回転動作に効果的に寄与させた高効率のステッピングモータを提供する。ステッピングモータ(50)は、内側に略円筒状の内周面を有した永久磁石(22)を用い、この内周面の内側に略円柱状の励磁コイル(26)を配置する。該励磁コイル(26)の長さは、隣り合う前記永久磁石(22)のピッチ間隔よりも若干長く構成され、永久磁石(22)と励磁コイル(26)とが特定の位置となった時に励磁コイル(26)への電流印加のオン・オフ及び印加方向を切り換える。これにより、励磁コイル(26)の両端に働く斥力及び引力をステッピングモータ(50)の回転運動に寄与させることができる。このため、ステッピングモータ(50)は高い変換効率を得ることができる。

Description

ステッピングモータ
 本発明は、励磁コイルの磁化によって回転するステッピングモータに関するものである。
 回転子側に永久磁石を配し、固定子側に励磁コイルを配し、この励磁コイルのオン・オフ等を制御することで回転子を回転させる例えば下記[特許文献1]等に記載のステッピングモータが実用化されている。また、本願発明者らは、同極が対向した永久磁石間に、コイルを横方向に向けて配置した変換効率の高い発電装置に関する発明を行った[特許文献2]。
特開平11-168870号公報 特許第4873671号公報
 しかしながら、[特許文献1]に示すような従来のステッピングモータは、回転に寄与する磁束に漏れが多く効率が悪いという問題点がある。本発明は上記事情に鑑みてなされたものであり、励磁コイルの磁力を回転子の回転動作に効果的に寄与させた高効率のステッピングモータを提供することを目的とする。
 本発明は、
(1)固定子12に軸支された回転軸10と、前記回転軸10に固定された回転板20と、前記回転板20に固定され前記回転軸10を中心とした同心円状に等間隔且つ磁極が交互となるように配置された複数の永久磁石22と、前記固定子12に固定され略円柱状の複数の励磁コイル26と、を備え、
前記永久磁石22が、内側が同極で略C字状の内周面を有し、
前記励磁コイル26が、前記永久磁石22の内周面の内側に配置され、
前記励磁コイル26の磁化により、内周面の内側を前記励磁コイル26が通過するように前記永久磁石22が移動することで前記回転板20が回転するステッピングモータであって、
前記励磁コイル26の長さが、隣り合う前記永久磁石22のピッチ間隔Lよりも若干長く、
前記励磁コイル26の両端のうち、励磁コイル26から見て永久磁石22が向かってくる側を前端26aとし、永久磁石22が離れて行く側を後端26bとし、前記永久磁石22の両端のうち、励磁コイル26に向かって行く側を前端としたときに、
前記永久磁石22の略中心が前記励磁コイル26の後端26bを若干過ぎた位置となった時に、前記励磁コイル26の前端26a及び後端26bと、前記励磁コイル26の両端部に位置する永久磁石22とが各々反発するように前記励磁コイル26を励磁し、
前記永久磁石22の前端が前記励磁コイル26の後端26bと略同等の位置となった時に、前記励磁コイル26の励磁を停止することを特徴とするステッピングモータ50を提供することにより、上記課題を解決する。
 本発明に係るステッピングモータは、永久磁石の内側に略円筒状の内周面を形成し、この内周面の内側に略円柱状の励磁コイルを配置する。これにより、励磁コイルの両端の磁極の斥力及び引力をステッピングモータの回転運動に寄与させることができ、高い変換効率を得ることができる。
本発明に係るステッピングモータの概略構成図である。 本発明に係るステッピングモータの永久磁石と励磁コイルの構成を説明する図である。 本発明に係るステッピングモータの回転動作を説明する図である。 本発明に係るステッピングモータの制御機構の一例を示す図である。
 本発明に係るステッピングモータについて図面に基づいて説明する。図1(a)は本発明に係るステッピングモータ50の模式的な上面図である。また、図1(b)は本発明に係るステッピングモータ50のX-X断面図である。尚、図1(a)においては、後述の永久磁石22を実線で示し、回転子30内に位置する励磁コイル26に関する構成を破線で示す。
 本発明に係るステッピングモータ50は、固定子12に軸支された回転軸10と、この回転軸10に固定された回転板20と、この回転板20に固定された複数の永久磁石22と、固定子12に固定された複数の励磁コイル26と、を有している。そして、永久磁石22は回転軸10を中心とした同心円状に等間隔且つ磁極が交互となるように設置される。尚、回転板20は、第1の回転板20aと第2の回転板20bとで構成し、この第1の回転板20aと第2の回転板20bとで永久磁石22を挟持して保持することが強度の面から好ましい。
 また、励磁コイル26は回転軸10を中心とした同心円状に等間隔且つ磁芯が横方向(同心円の接線方向)を向くように設置される。尚、永久磁石22と励磁コイル26との個数の比は3:2や5:3等、如何なるものとしても良い。ただし、ここでは永久磁石22と励磁コイル26との個数の比を4:3とした上で、励磁コイル26を永久磁石22に対する位置関係が同一の3つの位相グループで構成し、これらを均等に配列して構成した例を示している。即ち、図1(a)では、永久磁石22を32個、励磁コイル26を24個設置し、励磁コイル26の(1)、(4)、(7)、(10)、(13)、(16)、(19)、(22)が第1の位相のグループを、励磁コイル26の(2)、(5)、(8)、(11)、(14)、(17)、(20)、(23)が第2の位相のグループを、励磁コイル26の(3)、(6)、(9)、(12)、(15)、(18)、(21)、(24)が第3の位相のグループをそれぞれ構成した例を示している。
 次に、永久磁石22と励磁コイル26の構成を図2を用いて説明する。ここで、図2は永久磁石22と励磁コイル26の部分拡大図である。図2に示す永久磁石22は略円筒状の内周面を有し、その内周面は一部の周面が軸線方向に沿って開口した略C字形状を呈している。そして、この略C字状の内周面は全て同磁極で構成される。尚、図2では断面略扇形の永久磁石を3枚配列して永久磁石22を形成する例を図示しているが、本発明の永久磁石22はこの構成に限定されるものではなく、一体的に形成した永久磁石22を使用しても良い。
 また、励磁コイル26は略円柱状の磁芯14と、この磁芯14の周りに巻回された巻線16とで構成され、全体として略円柱形状を呈している。尚、磁芯14としては、周知のフェライトコア等を用いても良いが、渦電流による発熱を抑制する観点からケイ素鋼もしくはケイ素鋼板を円柱状に貼り合せたものを用いることが好ましい。そして、励磁コイル26は永久磁石22の開口部を通したコイルステー18を介して固定子12に固定される。これにより、励磁コイル26は永久磁石22の内周面の内側に永久磁石22と非接触の状態で保持される。尚、励磁コイル26と永久磁石22の内周面との間には十分な間隙が設けられ、永久磁石22が回転した場合でも内周面と励磁コイル26とが接触することはない。そして、永久磁石22が回転軸10を中心に回転移動する際には、永久磁石22の内周面の内側を励磁コイル26が非接触の状態を維持しながら順次通過する。また、励磁コイル26を構成する巻線16の両端の引出し線は、励磁コイル26への電流印加のオン・オフ及び印加方向を制御する制御機構に各々接続される。
 次に、本発明に係るステッピングモータ50の動作を図3を用いて説明する。尚、図3においては、一つの励磁コイル26を図示して説明を行うが、前述のように励磁コイル26には別位相の励磁コイル26が存在し、これらの励磁コイル26が以下の動作を順次行うことにより、ステッピングモータ50は連続して回転動作する。
 先ず、励磁コイル26の長さは、図3(a)に示すように、隣り合う永久磁石22のピッチ間隔L、即ち、隣り合う永久磁石22の中心から中心までの距離Lよりも、若干長く形成する。ここで、励磁コイル26の両端のうち、励磁コイル26から見て永久磁石22が向かってくる側(図3における右側)を前端26aとし、永久磁石22が離れていく側(図3における左側)を後端26bとする。そして、本発明に係るステッピングモータ50では励磁コイル26が図3(a)の状態、即ち、永久磁石22(22a)の略中心位置が励磁コイル26の後端26bを若干過ぎた位置となった時に、制御機構が励磁コイル26の巻線16に所定の電流を印加して励磁コイル26を励磁する。このときの電流の印加方向は、励磁コイル26の前端26aとこの前端26aに位置する永久磁石22bの内周面の磁極とが同極となり、励磁コイル26の後端26bとこの後端26bに位置する永久磁石22aの内周面の磁極とが同極となる方向である。ここで、図3(a)では、永久磁石22bの内周面がS極であり、永久磁石22aの内周面がN極であるから、制御機構は励磁コイル26の前端26aをS極とし、後端26bをN極とする方向に電流を印加する。
 これにより、励磁コイル26の前端26aはS極に、後端26bはN極に励磁され、励磁コイル26の前端26aと永久磁石22bの内周面との間には斥力が働き互いに反発する。同様に、励磁コイル26の後端26bと永久磁石22aの内周面との間には斥力が働き互いに反発する。このとき、励磁コイル26は永久磁石22aの略中心位置を若干過ぎた位置にあり、また励磁コイル26の長さは永久磁石22のピッチ間隔Lよりも長いから、励磁コイル26の前端26aは永久磁石22bの中心よりも永久磁石22c側に突出している。そして、永久磁石22cの磁極は永久磁石22bの磁極と逆方向であるから、励磁コイル26の前端26aと永久磁石22cの内周面との間には引力が働き、その結果、永久磁石22cは励磁コイル26の側に引き寄せられる。そして、この引力と斥力の働きにより、永久磁石22a、22b、22cは回転板20とともに回転軸10を中心に図3中の矢印の方向に回転移動する。これにより回転子30は回転動作し、ステッピングモータ50の回転軸10が回転する。
 次に、永久磁石22の両端の内、励磁コイル26に向かって行く側(図3における左側)を前端とする。そして、上記の回転動作によって永久磁石22(22b)の前端が図3(b)に示すように、励磁コイル26の後端26bと略同等の位置となった時に、制御機構はこの励磁コイル26に対する電流印加を停止する。
 次に、永久磁石22(22a、22b、22c)は他の位相の励磁コイル26の励磁動作等によって回転移動し、図3(c)に示す状態となる。この図3(c)に示す状態は、永久磁石22bの略中心位置が励磁コイル26の後端26bを若干過ぎた位置である。このとき、制御機構は励磁コイル26の巻線16に所定の電流を印加して励磁コイル26を励磁する。このときの電流の印加方向は、励磁コイル26の前端26aとこの前端26aに位置する永久磁石22cの内周面の磁極とが同極となり、励磁コイル26の後端26bとこの後端26bに位置する永久磁石22bの内周面の磁極とが同極となる方向である。ここで、図3(c)では、永久磁石22cの内周面がN極であり、永久磁石22bの内周面がS極であるから、制御機構は励磁コイル26の前端26aをN極とし、後端26bをS極とする方向、即ち図3(a)とは逆の方向に電流を印加する。
 これにより、励磁コイル26の後端26bはS極に、前端26aはN極に励磁され、励磁コイル26の前端26aと永久磁石22cの内周面との間には斥力が働き互いに反発する。同様に、励磁コイル26の後端26bと永久磁石22bの内周面との間には斥力が働き互いに反発する。さらに、励磁コイル26の前端26aと永久磁石22dの内周面との間には引力が働き互いに引き合う。この引力と斥力の働きにより、永久磁石22b、22c、22dは回転板20とともに回転軸10を中心に図3中の矢印の方向に回転移動する。これにより回転子30は回転動作し、ステッピングモータ50の回転軸10が回転する。そして、これらの動作が他の位相の励磁コイル26も含めて繰り返し行われることで回転軸10は連続して回転動作する。
 次に、本発明に係るステッピングモータ50の好適な制御機構40の例を図4を用いて説明する。ここで、図4は制御機構40のうち、1つの位相グループの励磁コイル26に対する制御部分を示した概略図である。尚、本発明に係る制御機構40は特にこの構成に限定されるものではなく、永久磁石22の位置を検出して励磁コイル26への電流印加のオン・オフ及び印加方向を切り換える機構であれば如何なるものを用いても良い。
 図4(a)、(b)に示す制御機構40は、1つの位相グループの励磁コイル26に並列に接続された第1駆動部41aと、第2駆動部41bと、を有している。そして、第1駆動部41a、第2駆動部41bには、励磁コイル26を励磁するためのバッテリ等の周知の直流電源44a、44bと、この直流電源44a、44bにそれぞれ直列に接続されたソリッドリレー等の周知のスイッチング手段SW1、SW2と、永久磁石22の位置に応じてスイッチング手段SW1、SW2をそれぞれオン・オフする光センサ42a、42bと、を有している。
 そして、永久磁石22(22a)が図3(a)に示す位置となったときに、光センサ42aはこの位置を検知してスイッチング手段SW1をオンする。これにより、励磁コイル26には直流電源44aから電流が印加され、励磁コイル26の前端26aがS極、後端26bがN極となるように励磁される。これにより、永久磁石22と励磁コイル26との間には斥力及び引力が働き、回転子30が回転する。
 次に、回転子30が回転して、図3(b)に示す位置となったときに、光センサ42aはこの位置を検知してスイッチング手段SW1をオフする。これにより、励磁コイル26への電流印加は停止する。
 次に、回転子30がさらに回転して、図3(c)に示す位置となったときに、光センサ42bはこの位置を検知してスイッチング手段SW2をオンする。スイッチング手段SW2がオンすると、励磁コイル26には直流電源44bから上記とは逆方向に電流が印加され、励磁コイル26の前端26aがN極、後端26bがS極となるように励磁される。これにより、永久磁石22と励磁コイル26との間には斥力及び引力が働き、回転子30が回転する。
 次に、回転子30が回転して、永久磁石22cの前端がこの位相グループの励磁コイル26の後端26bと略同等の位置となると、光センサ42bはこの位置を検知してスイッチング手段SW2をオフする。これにより、直流電源44bによる励磁コイル26への電流印加は停止する。そして、これらの動作が他の位相グループの励磁コイル26を含めて繰り返し行われることにより、ステッピングモータ50の回転軸10は連続的に回転する。
 以上のように、本発明に係るステッピングモータ50は、内側に略円筒状の内周面を有した永久磁石22を用い、この内周面の内側に略円柱状の励磁コイル26を配置する。そして、永久磁石22と励磁コイル26とが特定の位置となった時に励磁コイル26への電流印加のオン・オフ及び印加方向を切り換える。これにより、励磁コイル26の両端に働く斥力及び引力をステッピングモータ50の回転運動に寄与させることができる。このため、本発明に係るステッピングモータ50は高い変換効率を得ることができる。
 尚、本発明に係るステッピングモータ50、制御機構40の各部の構成、形状、動作、永久磁石、励磁コイルの個数や配置等は特に上記の例に限定されるものではなく、本発明は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。
      10  回転軸
      12  固定子
      20  回転板
      22  永久磁石
      26  励磁コイル
      26a (励磁コイルの)前端
      26b (励磁コイルの)後端
      50  ステッピングモータ

Claims (1)

  1. 固定子に軸支された回転軸と、
    前記回転軸に固定された回転板と、
    前記回転板に固定され前記回転軸を中心とした同心円状に等間隔且つ磁極が交互となるように配置された複数の永久磁石と、
    前記固定子に固定され略円柱状の複数の励磁コイルと、を備え、
    前記永久磁石が、内側が同極で略C字状の内周面を有し、
    前記励磁コイルが、前記永久磁石の内周面の内側に配置され、
    前記励磁コイルの磁化により、内周面の内側を前記励磁コイルが通過するように前記永久磁石が移動することで前記回転板が回転するステッピングモータであって、
    前記励磁コイルの長さが、隣り合う前記永久磁石のピッチ間隔よりも若干長く、
    前記励磁コイルの両端のうち、励磁コイルから見て永久磁石が向かってくる側を前端とし、永久磁石が離れて行く側を後端とし、前記永久磁石の両端のうち、励磁コイルに向かって行く側を前端としたときに、
    前記永久磁石の略中心が前記励磁コイルの後端を若干過ぎた位置となった時に、前記励磁コイルの前端及び後端と、前記励磁コイルの両端部に位置する永久磁石とが各々反発するように前記励磁コイルを励磁し、
    前記永久磁石の前端が前記励磁コイルの後端と略同等の位置となった時に、前記励磁コイルの励磁を停止することを特徴とするステッピングモータ。
PCT/JP2015/055319 2014-06-19 2015-02-25 ステッピングモータ WO2015194210A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/772,463 US9722477B2 (en) 2014-06-19 2015-02-25 Stepping motor
EP15739494.1A EP2988402A4 (en) 2014-06-19 2015-02-25 STEP MOTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014126637A JP5649203B1 (ja) 2014-06-19 2014-06-19 ステッピングモータ
JP2014-126637 2014-06-19

Publications (1)

Publication Number Publication Date
WO2015194210A1 true WO2015194210A1 (ja) 2015-12-23

Family

ID=52344820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055319 WO2015194210A1 (ja) 2014-06-19 2015-02-25 ステッピングモータ

Country Status (4)

Country Link
US (1) US9722477B2 (ja)
EP (1) EP2988402A4 (ja)
JP (1) JP5649203B1 (ja)
WO (1) WO2015194210A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102039538B1 (ko) * 2018-04-13 2019-11-13 조희수 영구자석을 이용한 모터
WO2020042725A1 (zh) * 2018-08-27 2020-03-05 广东威灵电机制造有限公司 永磁电机
CN110867987A (zh) * 2018-08-27 2020-03-06 广东威灵电机制造有限公司 永磁电机
CN110867988A (zh) * 2018-08-27 2020-03-06 广东威灵电机制造有限公司 永磁电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243625A (ja) * 1997-02-24 1998-09-11 Hideyoshi Senda 永久磁石を利用した回転体
JPH11168870A (ja) 1997-12-01 1999-06-22 Trw Steering Systems Japan Co Ltd ステッピングモータ
US20030169011A1 (en) * 2002-03-08 2003-09-11 Toshiba Tec Kabushiki Kaisha Drive method of stepping motor
US20040195921A1 (en) * 2002-04-26 2004-10-07 Delta Electronics, Inc. Permanent magnet stepping motor
JP4873671B1 (ja) 2011-07-14 2012-02-08 信正商事株式会社 発電装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL142123A0 (en) * 1999-07-23 2002-03-10 Advanced Rotary Systems Inc Electric drive (options)
US7064466B2 (en) * 2001-11-27 2006-06-20 Denso Corporation Brushless rotary electric machine having tandem rotary cores
WO2010068988A1 (en) * 2008-12-17 2010-06-24 Estelle Asmodelle Asymmetric electric pulse motor (aepm) and digital control system
JP2011172355A (ja) * 2010-02-17 2011-09-01 Nippon Steel Corp 回転電機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243625A (ja) * 1997-02-24 1998-09-11 Hideyoshi Senda 永久磁石を利用した回転体
JPH11168870A (ja) 1997-12-01 1999-06-22 Trw Steering Systems Japan Co Ltd ステッピングモータ
US20030169011A1 (en) * 2002-03-08 2003-09-11 Toshiba Tec Kabushiki Kaisha Drive method of stepping motor
US20040195921A1 (en) * 2002-04-26 2004-10-07 Delta Electronics, Inc. Permanent magnet stepping motor
JP4873671B1 (ja) 2011-07-14 2012-02-08 信正商事株式会社 発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2988402A4 *

Also Published As

Publication number Publication date
JP2016005423A (ja) 2016-01-12
US20170110954A1 (en) 2017-04-20
US9722477B2 (en) 2017-08-01
EP2988402A1 (en) 2016-02-24
JP5649203B1 (ja) 2015-01-07
EP2988402A4 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP6272293B2 (ja) ブラシレスdc電動機
JP5906360B2 (ja) 磁力回転装置、電動機、および電動発電機
US11165322B2 (en) Variable flux motor
EP2340602B1 (en) Permanent magnet operating machine
KR101492172B1 (ko) 일체형 권선을 활용한 반경 방향 및 축 방향 자속 일체형 모터
JP2007252184A (ja) 回転電機
WO2015194210A1 (ja) ステッピングモータ
JP2013099241A (ja) スイッチドリラクタンスモータの駆動装置及びその方法
JP2021141814A (ja) 電動モータ
WO2016135725A2 (en) Electric motor
US20140252913A1 (en) Single phase switched reluctance machine with axial flux path
JP6643980B2 (ja) ハイブリッド車のための改良されたスイッチトリラクタンスモータ及びスイッチトリラクタンス装置
TWI559651B (zh) DC motor inner and outer ring stator structure
EP1716627B1 (en) Single field rotor motor
JP4408093B2 (ja) 回転電機
JP2017509311A (ja) ハイブリッド電気機械
JP2000512838A (ja) 自己起動式ブラシレス電気モータ
EP2710717B1 (en) Direct-current electric motor
WO2012070514A1 (ja) 永久磁石を用いた回転装置
KR101748829B1 (ko) 융합형 직류 전동기
JP2019187047A (ja) モータ
JP2011010421A (ja) モータ
JP2019502354A (ja) 電気機械
US20170229948A1 (en) Single phase brushless direct current motor
JP2008161038A (ja) アキシャルギャップ型モータ

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015739494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015739494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14772463

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15739494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE