WO2015194067A1 - 機器運転設定装置及び機器運転設定値決定プログラム - Google Patents

機器運転設定装置及び機器運転設定値決定プログラム Download PDF

Info

Publication number
WO2015194067A1
WO2015194067A1 PCT/JP2014/082039 JP2014082039W WO2015194067A1 WO 2015194067 A1 WO2015194067 A1 WO 2015194067A1 JP 2014082039 W JP2014082039 W JP 2014082039W WO 2015194067 A1 WO2015194067 A1 WO 2015194067A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power consumption
power
calculation unit
operation setting
Prior art date
Application number
PCT/JP2014/082039
Other languages
English (en)
French (fr)
Inventor
村山 大
正明 齋藤
永子 久田
飯野 穣
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to CN201480076873.9A priority Critical patent/CN106068590A/zh
Priority to SG11201607536RA priority patent/SG11201607536RA/en
Priority to EP14894861.5A priority patent/EP3159995B1/en
Publication of WO2015194067A1 publication Critical patent/WO2015194067A1/ja
Priority to US15/262,110 priority patent/US10437273B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/22Pc multi processor system
    • G05B2219/2202Controller calculates a control parameter from values sent by other controllers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • Embodiments of the present invention relate to an apparatus operation setting device and an apparatus operation setting value determination program.
  • the heat source device generates heat by receiving power supply.
  • the power supply device receives electricity and generates electricity.
  • Energy consumed by heat source devices and power supply devices accounts for a large proportion of energy consumed in factories and buildings.
  • the device operation setting device may determine the operation content of the device so that the operation of the device is optimized.
  • the device operation setting device receives a demand response (DR: Demand Response) signal so that the measured value of the power consumption of the device matches the target value of the power consumption, it operates the device.
  • DR Demand Response
  • Such setting values may be determined.
  • the device operation setting device operates the device according to the determined set value.
  • the problem to be solved by the present invention is to provide a device operation setting device and a device operation setting value determination program capable of setting a difference between an actual measurement value of power consumption of a device and a target value of power consumption of the device within a predetermined range. Is to provide.
  • the apparatus operation setting device of the embodiment has a calculation unit and a determination unit.
  • the calculation unit calculates a target value of the power consumption of the device based on the relationship between the setting value related to the operation control of the device and the power consumption of the device.
  • the determination unit determines the setting value so that a difference between the measured actual value of the power consumption of the device and the target value of the power consumption of the device calculated by the calculation unit is within a predetermined range.
  • the figure of the control system in the building of a 1st embodiment The figure of the control system of a 1st embodiment.
  • the figure of the control system of a 2nd embodiment The figure of the electric power generating apparatus of 2nd Embodiment.
  • the figure of the control system of a 3rd embodiment The figure of the power consumption of transition of the electric refrigerator of 3rd Embodiment.
  • FIG. 1 is a configuration diagram of a control system 1 according to the first embodiment.
  • the control system 1 includes a device 2, a control device 3, and a management system 4 (building / energy monitoring control device).
  • the control system 1 may include a plurality of devices 2.
  • the control system 1 may include a plurality of control devices 3.
  • the control system 1 may be provided in the building A or may be provided in a predetermined position other than the building A. In the control system 1, these functional blocks may be distributed and provided in a predetermined range.
  • FIG. 2 is a diagram of the control system of the first embodiment.
  • FIG. 3 is a hardware diagram of the control system according to the first embodiment.
  • the transformer 5 is connected to the local wiring 6.
  • the transformer 5 outputs the received power 7 (secondary power) to the premises wiring 6.
  • the local wiring 6 supplies power consumption 8 to the device 2.
  • the device 2 acquires power consumption 8 through the premises wiring 6.
  • the other power consumption 9 is the remaining power obtained by subtracting the power consumption 8 from the received power 7.
  • the other power consumption 9 is consumed by another power load (not shown).
  • the device 2 acquires a control value from the control device 3.
  • the device 2 performs a predetermined operation based on the control value.
  • the device 2 outputs information indicating the power consumption 8 of the device 2 and the measured value (sensor value) of the generated power to the control device 3 and the device operation setting device 40 via the communication line 10.
  • the communication line 10 is, for example, a building communication circuit.
  • the device 2 is, for example, a power supply device or a heat source device.
  • the device 2 may be an OA (Office Automation) device.
  • the control device 3 acquires a setting value from the management system 4 via the communication line 10.
  • the control device 3 determines a control value based on the set value.
  • the control device 3 outputs the control value to the device 2.
  • Management system 4 determines setting values based on information acquired from the outside.
  • the management system 4 controls the power consumption 8, the generated power, and the heat amount of the device 2 by outputting the set value to the control device 3.
  • the management system 4 controls the power consumption 8, generated power, and heat quantity of the device 2 based on the demand response signal (DR signal).
  • the demand response signal includes, for example, command information for suppressing power and information indicating a power peak shift target.
  • the management system 4 may control the power consumption 8, the generated power, and the heat amount of the device 2 based on the weather forecast signal.
  • the management system 4 includes a calculation unit 400 and a determination unit 410.
  • Part or all of the calculation unit 400 and the determination unit 410 is a software function unit that functions when a processor such as a CPU (Central Processing Unit) executes a program stored in a memory.
  • a processor such as a CPU (Central Processing Unit) executes a program stored in a memory.
  • some or all of these functional units may be hardware functional units such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
  • the calculation unit 400 has a volatile memory such as a RAM (Random Access Memory) and a register.
  • the calculation unit 400 may include a non-volatile memory (non-temporary recording medium) such as a ROM (Read Only Memory), a flash memory, and a hard disk drive.
  • the nonvolatile memory stores a program for operating a processor such as a CPU.
  • the calculation unit 400 acquires information indicating the power consumption 8 of the device 2 and the actual measurement value (sensor value) of the generated power from the device 2.
  • the calculation unit 400 acquires the setting value acquired by the control device 3 from the determination unit 410 from the determination unit 410.
  • the calculation unit 400 acquires a provisional setting value from the determination unit 410.
  • the provisional setting value is a setting value used by the calculation unit 400 to calculate the target value based on the device model.
  • the calculation unit 400 calculates the power consumption value of the device 2 (hereinafter referred to as “temporary power consumption value”) when operated according to the temporary set value based on the device model.
  • the calculation unit 400 outputs information indicating the temporary power consumption value to the determination unit 410.
  • the characteristic equation representing the device model may be any equation.
  • An example of the first characteristic equation representing the device model is expressed by equation (1).
  • x1 represents a provisional set value.
  • y1 indicates a provisional value of provisional power consumption of the device 2.
  • a represents a constant.
  • b represents a constant.
  • An example of the second characteristic equation representing the device model is expressed by equation (2).
  • x2 indicates a value associated with the control value.
  • y2 indicates an actual measurement value of power consumption of the device 2.
  • a represents a constant.
  • b represents a constant.
  • An example of the third characteristic equation representing the device model is expressed by equation (3).
  • x3 indicates a set value.
  • y3 indicates a value associated with the actual measurement value of the power consumption of the device 2.
  • a represents a constant.
  • b represents a constant.
  • the device model is a model that simulates the operations of the device 2 and the control device 3.
  • the actual power consumption value y2 of the device 2 matches the value y3 associated with the actual power consumption value of the device 2.
  • the value x2 associated with the control value matches the set value x3.
  • the deciding unit 410 When there is an error in the simulation of the operation of the device 2 and the control device 3, even if the deciding unit 410 outputs the provisional setting value x1 shown in the equation (1) to the control device 3, the measured value of the power consumption of the device 2 Does not match the provisional value y1 of the provisional power consumption of the device 2.
  • the calculation unit 400 corrects the error between the temporary power consumption value based on the temporary power consumption provisional value y1 and the actually measured power consumption value y2. For example, the calculation unit 400 corrects an error from the actual power consumption value y2 of the device 2 by adding the correction value ⁇ y to the provisional value y1 of the temporary power consumption of the device 2. The calculation unit 400 may correct an error from the actual measured value y2 of the power consumption of the device 2 by subtracting, multiplying, or dividing the temporary value y1 of the temporary power consumption of the device 2 by the correction value ⁇ y.
  • the correction value ⁇ y is expressed by equation (4).
  • the calculation unit 400 determines a value obtained by adding the provisional value y1 of the temporary power consumption of the device 2 and the correction value ⁇ y as the temporary power consumption value of the device 2.
  • the calculation unit 400 outputs information indicating the temporary power consumption value to the determination unit 410.
  • the determination unit 410 acquires information indicating the temporary power consumption value from the calculation unit 400.
  • the determination unit 410 calculates an optimal setting value based on the temporary power consumption value.
  • the optimum set value is, for example, a set value that minimizes the energy cost.
  • the determination unit 410 may calculate the optimal setting value in any way, and is not limited to a specific calculation method. For example, the determination unit 410 determines the set value so that the set value falls within the first range (upper and lower limits). For example, the determination unit 410 determines the set value so that the temporary power consumption value (target value) falls within the second range (upper and lower limits).
  • the determination unit 410 outputs an optimal setting value to the calculation unit 400 and the control device 3.
  • the determination unit 410 may calculate an optimal setting value at a predetermined cycle. This predetermined cycle may be, for example, a 24-hour cycle or a 10-minute cycle.
  • FIG. 4 is a diagram of the operation of the control system 1 of the first embodiment.
  • the determination unit 410 outputs the provisional setting value to the calculation unit 400 (step S101).
  • the calculation unit 400 acquires information indicating the actual measurement value of the power of the device 2 from the device 2 (step S102).
  • the calculation unit 400 calculates a temporary power consumption value of the device 2 based on the actual measurement value of the power of the device 2, the temporary setting value, and the device model (step S103).
  • the determination unit 410 determines whether or not the energy cost of the calculated temporary power consumption value is the minimum (step S104). When the energy cost is not minimum (step S104: NO), the determination unit 410 returns the process to step S101. When the energy cost is the minimum (step S104: YES), the determination unit 410 determines the temporary power consumption value calculated most recently as the set value to be output to the control device 3. The determination unit 410 outputs the determined setting value to the control device 3 (step S105).
  • the control device 3 determines the control value based on the determined setting value and the actual measured value of the power of the device 2.
  • the control device 3 outputs the control value to the device 2 (step S106).
  • the device 2 operates based on the control value (step S107).
  • the difference between the measured value of the power of the device 2 and the target value of the power of the device 2 is within a predetermined range.
  • FIG. 5 is a diagram illustrating the operation of the calculation unit 400 according to the first embodiment.
  • the calculation unit 400 acquires an actual measurement value y2 of power consumption (step S201).
  • the calculation unit 400 calculates a value x2 associated with the control value based on the measured power consumption value y2 (step S202).
  • the calculation unit 400 acquires the latest set value x3 from the determination unit 410 (step S203).
  • the calculation unit 400 calculates the value y3 associated with the actual measurement value of power consumption (step S204).
  • the calculation unit 400 acquires the temporary setting value x1 from the determination unit 410 (step S205).
  • the calculation unit 400 calculates a provisional value y1 of provisional power consumption (step S206).
  • the calculation unit 400 determines a value obtained by adding the provisional value y1 of the temporary power consumption of the device 2 and the correction value ⁇ y as the temporary power consumption value of the device 2.
  • the calculation unit 400 outputs information indicating the temporary power consumption value to the determination unit 410 (step S207).
  • the temporary power consumption value (target value) based on the temporary power consumption provisional value y1 of the device 2 and the actual measurement value y2 of the power consumption of the device 2 are It does not match.
  • the calculation unit 400 obtains information indicating a temporary power consumption value (target value) based on the temporary power consumption provisional value y1 of the device 2 and information indicating an error between the actual power consumption measurement value y2 of the device 2 in a predetermined cycle. Or, obtain it at any time.
  • the calculation unit 400 calculates the power consumption correction value ⁇ y based on the acquired information.
  • the calculation unit 400 may calculate the power consumption correction value ⁇ y based on the average value of the provisional setting value x1 and the average value of the actual measurement value y2 of the power consumption of the device 2 in a predetermined period. In this case, the calculation unit 400 can suppress variations in the correction value ⁇ y.
  • the device operation setting device 40 includes the calculation unit 400 and the determination unit 410.
  • the calculation unit 400 calculates a target value for the power consumption of the device 2 based on the relationship between the setting value related to the operation control of the device 2 and the power consumption of the device 2.
  • the determination unit 410 determines the set value so that the difference between the measured actual value of the power consumption of the device 2 and the target value of the power consumption of the device 2 calculated by the calculation unit 400 is within a predetermined range. . The same applies to the generated power.
  • the device operation setting value determination program calculates a target value of power consumption of the device 2 on the computer based on the relationship between the setting value related to operation control of the device 2 and the power consumption of the device 2. Let the procedure run.
  • the apparatus operation setting value determination program causes the computer to have a difference between the measured actual value of power consumption of the apparatus 2 and the calculated target value of power consumption of the apparatus 2 within a predetermined range. The procedure for determining the set value is executed so that
  • the calculation unit 400 calculates the target value of the power consumption of the device 2 based on the relationship between the setting value related to the operation control of the device 2 and the power consumption of the device 2.
  • the apparatus operation setting device 40 and the apparatus operation setting value determination program according to the first embodiment can set the difference between the measured value of the power of the apparatus 2 and the target value of the power of the apparatus 2 within a predetermined range. it can.
  • FIG. 7 is a diagram of the control system 1 according to the second embodiment.
  • the control system 1 includes a power generation device 2 a as a device 2, a control device 3, and a management system 4.
  • the power generation device 2 a outputs the generated power 11 through the premises wiring 6.
  • the other power consumption 9 is power obtained by adding the received power 7 and the generated power 11.
  • FIG. 8 is a diagram of the power generation device 2a of the second embodiment.
  • the power generator 2a includes a turbine 20a, a generator 21a, and a condenser 22a.
  • the turbine 20a drives the generator 21a with steam from the boiler (boiler main steam amount optimum value (GNoBOpt)).
  • the generator 21a generates electric power according to driving by the turbine 20a (turbine power generation amount (ENoT)).
  • the condenser 22a cools the steam that flows in from the turbine 20a (turbine condenser cooling water inlet temperature (TNoTVin), turbine vacuum standard value (VNoTV)), and changes the water.
  • TNoTVin turbine condenser cooling water inlet temperature
  • VNoTV turbine vacuum standard value
  • the device model in the second embodiment is referred to as a “generator model”.
  • the temporary power consumption value calculated based on the generator model is referred to as a “current value”.
  • the optimum setting value determined based on the generator model is referred to as “optimum value”.
  • FIG. 9 is a diagram of variable names according to the second embodiment.
  • a variable indicating the boiler main steam amount (main steam flow rate) is expressed as “GNoB”.
  • a variable indicating the power generation amount of the turbine 20a is expressed as “ENoT”.
  • a variable indicating the condenser cooling water inlet temperature (cooling water temperature) of the turbine 20a is expressed as “TNoTVin”.
  • a variable indicating the modeling constants a0 to a7 of the turbine 20a is expressed as “aNoT”.
  • a variable indicating the condenser modeling constants a0 to a7 of the turbine 20a is expressed as “aNoTV”.
  • a variable indicating the condenser flow rate rating of the turbine 20a is expressed as “GNoTex0”.
  • a variable indicating the vacuum degree reference value of the turbine 20a is expressed as “VNoTV0”.
  • a variable indicating the condenser upper limit model constants a0 to a4 of the turbine 20a is expressed as “cNoTV_h”.
  • a variable indicating the condenser lower limit model constants a0 to a4 of the turbine 20a is expressed as “cNoTV_l”.
  • a variable indicating the main steam optimization target of the turbine 20a is expressed as “flg_NoTOpt”.
  • a variable indicating the optimum value of the boiler main steam amount is expressed as “GNoBOpt”.
  • a variable indicating the optimum power generation amount of the turbine 20a is expressed as “ENoTOpt”.
  • the variable indicating the amount of inflow to the condenser 22a is expressed as “GNoTex”.
  • a variable indicating the optimum value of the amount of flow into the condenser 22a is denoted as “GnoTexOpt”.
  • a variable indicating the optimum value of the vacuum degree of the condenser 22a is expressed as “VNoTVOpt”.
  • the variable indicating the calculated electric energy is expressed as “ENoTCal”.
  • a variable indicating the calculated electric energy optimum value is expressed as “ENoTOptCal”.
  • a variable indicating the condenser inflow amount corresponding to the upper limit of the vacuum level of the condenser 22a is expressed as “GNoTex_h”.
  • a variable indicating the condenser inflow amount corresponding to the lower limit of the vacuum level of the condenser 22a is expressed as “GNoTex_l”.
  • the variable indicating the generated power is written as “ENoB”.
  • the variable indicating the degree of vacuum is expressed as “VNoTV”.
  • the variable indicating the optimum air flow rate is expressed as “NoBOpt”.
  • a variable indicating the optimum value of generated power is expressed as “ENoBOpt”.
  • the amount of inflow into the condenser 22a is the same as the main steam amount.
  • the calculation unit 400 substitutes the value of the variable “GNoB” indicating the boiler main steam amount (main steam flow rate) into the variable “GNoTex” indicating the inflow amount to the condenser 22a.
  • the calculation unit 400 substitutes the value of the variable indicating the optimum value of the boiler main steam amount into the variable “GnoTexOpt” indicating the optimum value of the inflow amount to the condenser 22a.
  • Equation (5) holds for both the current value and the optimum value.
  • the power generation amount is not a target that is directly operated like the operation end. Therefore, the variable “ENoTCal” indicating the calculated electric energy value and the optimal electric energy value calculated value “ENoTOptCal” are used in place of the actually measured values.
  • These variables are variables for satisfying Expression (5).
  • the characteristics of the turbine 20a are expressed by the equations (6) and (7).
  • GNoBOpt aNoT [0] + aNoT [1] ⁇ ENoTOptCal + aNoT [2] ⁇ (VNoTVOpt ⁇ VNoTV0) (6)
  • GNoB NoT [0] + aNoT [1] x ENoTCal + aNoT [1] x (VNoTV-VNoTV0) (7)
  • the calculation unit 400 calculates the steam consumption characteristic based on the variable “VNoTVOpt” indicating the optimum degree of vacuum of the condenser 22a.
  • the calculation unit 400 calculates the value of the variable “VNoTVOpt” based on a line representing the prediction performance.
  • Vacuum optimum value av0 + Av1 x cooling water inlet temperature + av2 x exchange heat optimum value + av3 x cooling water inlet temperature x cooling water inlet temperature + av4 x cooling water inlet temperature x exchange heat optimum value (10)
  • Equation (11) is established from Equation (9) and Equation (10).
  • FIG. 11 is a transition diagram of the power generation amount of the power generation device 2a of the second embodiment.
  • the upper vertical axis indicates the main steam amount [kg / s] to the turbine 20a.
  • the vertical axis in the middle represents electric power [kW].
  • the lower vertical axis represents power [kW].
  • Each horizontal axis of the upper stage, the middle stage, and the lower stage indicates time.
  • the received power amount is referred to as “received power amount”.
  • the target value of the power reception amount is referred to as “power reception target value”.
  • the upper part of FIG. 11 shows the main steam amount when the power consumption is corrected and the main steam amount when the power consumption is not corrected. There is a difference between the main steam amount when the power consumption is corrected by the calculation unit 400 and the main steam amount when the power consumption is not corrected.
  • the received power 7 that is the power obtained by subtracting the power generation amount from the other power consumption 9 does not match the power reception target value due to an error in the generator model. .
  • the received power 7 that is the power obtained by subtracting the power generation amount from the other power consumption 9 matches the power reception target value (temporary power consumption value). .
  • the degree of this matching depends on the error of the generator model.
  • the calculation unit 400 calculates a correction value for power consumption based on the actual measurement value, the set value (main steam amount set value), and the generator model. Thereby, the determination unit 410 matches the received power 7 with the received power target value.
  • the device operation setting device 40 of the second embodiment includes the calculation unit 400 and the determination unit 410.
  • the calculation unit 400 calculates a target value for the power consumption of the power generation device 2a based on the relationship (generator model) between the set value relating to the operation control of the power generation device 2a and the power consumption of the power generation device 2a.
  • the determination unit 410 sets the set value so that the difference between the measured actual value of the power consumption of the power generation device 2a and the target value of the power consumption of the power generation device 2a calculated by the calculation unit 400 is within a predetermined range. decide.
  • the apparatus operation setting value determination program allows the computer to set the power generation device 2a based on the relationship between the setting value related to the operation control of the power generation device 2a and the power consumption of the power generation device 2a (generator model). A procedure for calculating a target value of power consumption is executed.
  • the apparatus operation set value determination program of the second embodiment allows the computer to measure the measured power consumption value of the power generation device 2a and the power consumption target value of the power generation device 2a calculated by the calculation unit 400. The procedure for determining the set value is executed so that the difference between the two is within a predetermined range.
  • the calculation unit 400 calculates the target value of the power consumption of the power generation device 2a based on the relationship between the setting value relating to the operation control of the power generation device 2a and the power consumption of the power generation device 2a.
  • the apparatus operation setting device 40 and the apparatus operation setting value determination program of the second embodiment set the difference between the measured value of the generated power of the power generation apparatus 2a and the target value of the generated power of the power generation apparatus 2a within a predetermined range. Can be.
  • the third embodiment is different from the first embodiment and the second embodiment in that the control system 1 includes an electric refrigerator 2b (electric chiller) as the device 2.
  • the control system 1 includes an electric refrigerator 2b (electric chiller) as the device 2.
  • the third embodiment only differences from the first embodiment and the second embodiment will be described.
  • FIG. 12 is a diagram of the control system 1 according to the third embodiment.
  • the control system 1 includes an electric refrigerator 2 b as a device 2, a control device 3, and a management system 4.
  • the control device 3 controls the opening degree of the valve 13 according to the control value of the valve 13.
  • the control device 3 controls the opening degree of the valve 14 according to the control value of the valve 14.
  • the word “cold heat” may be read as hot.
  • the heat storage tank 12 outputs cold / hot heat to the cold load via the valve 13.
  • the description will be continued below assuming that a sufficient amount of cold / hot heat is stored in the heat storage tank 12. Even with this assumption, generality is not lost. This is because the heat storage tank 12 may store a sufficient amount of cold / hot heat in advance by the electric refrigerator 2b or the like.
  • the determination unit 410 adjusts the received power 7 to match the received power 7 with the received power target value.
  • the determination unit 410 can adjust the received power 7 by adjusting the power consumption 8 of the electric refrigerator 2b.
  • the power consumption 8 of the electric refrigerator 2b is not a target to be directly operated like the operation ends of the valve 13 and the valve 14.
  • the power consumption 8 of the electric refrigerator 2b varies depending on the cold water load (hereinafter referred to as “cold water load”). For this reason, the determination part 410 controls the power consumption 8 of the electric refrigerator 2b by appropriately controlling the operation ends such as the valve 13 and the valve 14.
  • Calculating section 400 calculates a power consumption correction value based on the measured power consumption value, the set value, and the electric refrigerator model. Thereby, the determination unit 410 matches the received power 7 with the received power target value.
  • the power consumption 8 of the electric refrigerator 2b calculated using the electric refrigerator model and the measured value of the power consumption 8 of the electric refrigerator 2b do not match due to an error of the electric refrigerator model.
  • the calculation unit 400 calculates a power consumption correction value based on the actually measured power consumption value, the set value (cold water load), and the electric refrigerator model. Thereby, the determination unit 410 matches the received power 7 with the received power target value.
  • FIG. 13 is a transition diagram of the power consumption of the electric refrigerator 2b of the third embodiment.
  • the vertical axis in the upper stage indicates the cold water load of the electric refrigerator 2b.
  • the vertical axis in the middle represents electric power [kW].
  • the lower vertical axis represents power [kW].
  • Each horizontal axis of the upper stage, the middle stage, and the lower stage indicates time.
  • the received power 7 which is the power obtained by adding the other power consumption 9 and the power consumption 8 and the received power target value (temporary power consumption value) Match.
  • the degree of coincidence depends on the error of the electric refrigerator model.
  • the calculation unit 400 calculates a power consumption correction value based on the actually measured power consumption value, the set value (cold water load), and the electric refrigerator model. Thereby, the determination unit 410 matches the received power 7 with the received power target value.
  • the determination unit 410 may determine whether or not the difference between the actual measured value and the target value of the electric refrigerator 2b can be within a predetermined range by changing the set value.
  • the control device 3 adjusts the opening degree of the valve 13 based on the control value corresponding to the set value.
  • the device operation setting device 40 includes the calculation unit 400 and the determination unit 410.
  • the calculation unit 400 calculates a target value for the power consumption of the electric refrigerator 2b based on the relationship between the set value relating to the operation control of the electric refrigerator 2b and the power consumption of the electric refrigerator 2b (electric refrigerator model). .
  • the determination unit 410 sets the difference between the measured actual value of the power consumption of the electric refrigerator 2b and the target value of the power consumption of the electric refrigerator 2b calculated by the calculation unit 400 within a predetermined range. Determine the value.
  • the apparatus operation set value determination program causes a computer to perform electric drive based on the relationship between the set value related to operation control of the electric refrigerator 2b and the power consumption of the electric refrigerator 2b (electric refrigerator model). A procedure for calculating a target value of power consumption of the refrigerator 2b is executed. In addition, the apparatus operation setting value determination program of the third embodiment causes the computer to measure the measured power consumption of the electric refrigerator 2b and the target of the power consumption of the electric refrigerator 2b calculated by the calculation unit 400. A procedure for determining the set value so that the difference from the value is within a predetermined range is executed.
  • the calculation unit 400 calculates the target value of the power consumption of the electric refrigerator 2b based on the relationship between the setting value relating to the operation control of the electric refrigerator 2b and the power consumption of the electric refrigerator 2b.
  • the apparatus operation setting device 40 and the apparatus operation setting value determination program according to the third embodiment set the difference between the measured value of the cooling / heating energy of the electric refrigerator 2b and the target value of the cooling / heating energy of the electric refrigerator 2b. Can be within range.
  • the determination unit 410 determines whether or not the difference between the actually measured value of the electric refrigerator 2b and the calculated target value can be within a predetermined range by changing the set value. When the difference between the measured value of the electric power of the electric refrigerator 2b and the calculated target value cannot be within the predetermined range, the determination unit 410 determines whether the difference is within the predetermined range. Is controlled via the control device 3.
  • the device operation set value determination program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a flash memory, and a storage device such as a hard disk built in the computer system.
  • the apparatus operation set value determination program may be transmitted via a telecommunication line.
  • the power of the device by having a calculation unit that calculates a target value of power consumption of a device based on a relationship between a setting value related to operation control of the device and power consumption of the device, the power of the device The difference between the actually measured value and the target value of the power of the device can be within a predetermined range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)
  • Air Conditioning Control Device (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 実施形態の機器運転設定装置は、算出部と、決定部とを持つ。算出部は、機器の運転制御に関する設定値と機器の消費電力との関係に基づいて、機器の消費電力の目標値を算出する。決定部は、計測された機器の消費電力の実測値と、算出部により算出された機器の消費電力の目標値との差が所定範囲内となるように設定値を決定する。

Description

機器運転設定装置及び機器運転設定値決定プログラム
 本発明の実施形態は、機器運転設定装置及び機器運転設定値決定プログラムに関する。
 熱源機器は、電力供給を受けて熱を発生させる。電源機器は、電力供給を受けて電気を発生させる。熱源機器や電源機器によって消費されるエネルギーは、工場やビルで消費されるエネルギーの中でも、大きな割合を占めている。機器運転設定装置は、機器の運転が最適となるように、機器の運転内容を決めることがある。機器運転設定装置は、機器の消費電力の実測値と、消費電力の目標値とが一致するように、デマンドレスポンス(需要応答)(DR:Demand Response)信号を受けた際に、機器の運転に係る設定値を決めることがある。機器運転設定装置は、決めた設定値に応じて機器を運転する。しかしながら、機器運転設定装置は、機器の劣化や環境条件によって、機器の消費電力の実測値と、決めた設定値に応じた機器の消費電力の目標値との差を、所定範囲内にすることができない場合があった。
特許第4396557号公報
 本発明が解決しようとする課題は、機器の消費電力の実測値と、機器の消費電力の目標値との差を所定範囲内にすることができる機器運転設定装置及び機器運転設定値決定プログラムを提供することである。
 実施形態の機器運転設定装置は、算出部と、決定部とを持つ。算出部は、機器の運転制御に関する設定値と機器の消費電力との関係に基づいて、機器の消費電力の目標値を算出する。決定部は、計測された機器の消費電力の実測値と、算出部により算出された機器の消費電力の目標値との差が所定範囲内となるように設定値を決定する。
第1の実施形態の建物内の制御システムの図。 第1の実施形態の制御システムの図。 第1の実施形態の制御システムのハードウェアの図。 第1の実施形態の制御システムの動作の図。 第1の実施形態の算出部の動作の図。 第1の実施形態の消費電力の変化の図。 第2の実施形態の制御システムの図。 第2の実施形態の発電装置の図。 第2の実施形態の変数名の図。 第2の実施形態の復水器の真空度を予測する性能を表す線の図。 第2の実施形態の発電装置の推移の発電量の図。 第3の実施形態の制御システムの図。 第3の実施形態の電動冷凍機の推移の消費電力量の図。
 以下、実施形態の機器運転設定装置及び機器運転設定値決定プログラムを、図面を参照して説明する。
 (第1の実施形態)
 図1は、第1の実施形態の制御システム1の構成図である。制御システム1は、機器2と、制御装置3と、管理システム4(建物・エネルギー監視制御装置)とを備える。制御システム1は、複数の機器2を備えてもよい。制御システム1は、複数の制御装置3を備えてもよい。制御システム1は、建物Aに備えられてもよいし、建物A以外の所定の位置に備えられてもよい。制御システム1は、これらの機能ブロックが分散されて、所定の範囲に備えられてもよい。
 次に、制御システム1の構成例を説明する。
 図2は、第1の実施形態の制御システムの図である。図3は、第1の実施形態の制御システムのハードウェアの図である。
 変圧器5は、構内配線6に接続されている。変圧器5は、受電電力7(二次側の電力)を構内配線6に出力する。構内配線6は、機器2に消費電力8を供給する。
 機器2は、構内配線6を介して、消費電力8を取得する。他の消費電力9は、受電電力7から消費電力8を差し引いた残りの電力である。他の消費電力9は、他の電力負荷(不図示)によって消費される。機器2は、制御値を制御装置3から取得する。機器2は、制御値に基づいて所定の動作を実行する。機器2は、機器2の消費電力8や発電電力の実測値(センサ値)を示す情報を、通信回線10を介して、制御装置3と機器運転設定装置40とに出力する。通信回線10は、例えば、ビル内通信回路である。機器2は、例えば、電源機器、熱源機器である。機器2は、OA(Office Automation)機器でもよい。
 制御装置3は、通信回線10を介して、設定値を管理システム4から取得する。制御装置3は、設定値に基づいて、制御値を決定する。制御装置3は、制御値を機器2に出力する。
 管理システム4は、外部から取得した情報に基づいて、設定値を定める。管理システム4は、設定値を制御装置3に出力することにより、機器2の消費電力8、発電電力や熱量を制御する。管理システム4は、デマンドレスポンス信号(DR信号)に基づいて、機器2の消費電力8、発電電力や熱量を制御する。デマンドレスポンス信号は、例えば、電力を抑制する指令情報や、電力のピークシフト目標を示す情報を含む。管理システム4は、天気予報信号に基づいて、機器2の消費電力8、発電電力や熱量を制御してもよい。
 管理システム4は、算出部400と、決定部410とを備える。算出部400と、決定部410との一部または全部は、例えば、CPU(Central Processing Unit)等のプロセッサが、メモリに記憶されたプログラムを実行することにより機能するソフトウェア機能部である。また、これらの機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。
 算出部400は、RAM(Random Access Memory)やレジスタ等の揮発性メモリを有する。算出部400は、ROM(Read Only Memory)、フラッシュメモリ、ハードディスクドライブ等の不揮発性メモリ(非一時的な記録媒体)を有してもよい。この不揮発性メモリは、CPU等のプロセッサを動作させるためのプログラムを記憶する。
 この不揮発性メモリは、機器2と制御装置3の動作を模擬するモデル(以下、「機器モデル」という。)を表す情報を記憶する。機器モデルは、設定値に応じて運転される機器2の電力の目標値と、その設定値との関係を表す。機器モデルは、機器2の電力や熱の特性を示す特性式で表されてもよいし、機器2の電力や熱の目標値と設定値とを対応付けた対応表で表されてもよい。機器モデルには、機器2と制御装置3の劣化や環境条件等が反映されていてもよい。
 算出部400は、機器2の消費電力8や発電電力の実測値(センサ値)を示す情報を、機器2から取得する。算出部400は、制御装置3が決定部410から取得した設定値を、決定部410から取得する。算出部400は、仮の設定値を、決定部410から取得する。仮の設定値は、機器モデルに基づいて目標値を算出するために、算出部400によって使用される設定値である。算出部400は、仮の設定値に応じて運転された場合の機器2の消費電力値(以下、「仮の消費電力値」という。)を、機器モデルに基づいて算出する。算出部400は、仮の消費電力値を示す情報を、決定部410に出力する。
 機器モデルを表す特性式は、どのような式でもよい。機器モデルを表す第1の特性式の一例は、式(1)により表される。
  y1=a×x1+b …(1)
 ここで、x1は、仮の設定値を示す。y1は、機器2の仮の消費電力の暫定値を示す。aは定数を示す。bは定数を示す。
 機器モデルを表す第2の特性式の一例は、式(2)により表される。
  y2=a×x2+b …(2)
 ここで、x2は、制御値に対応付けられた値を示す。y2は、機器2の消費電力の実測値を示す。aは定数を示す。bは定数を示す。
 機器モデルを表す第3の特性式の一例は、式(3)により表される。
  y3=a×x3+b …(3)
 ここで、x3は、設定値を示す。y3は、機器2の消費電力の実測値に対応付けられた値を示す。aは定数を示す。bは定数を示す。
 上述したように、機器モデルは、機器2と制御装置3の動作を模擬するモデルである。
 機器2と制御装置3の動作の模擬に誤差がない場合、機器2の消費電力の実測値y2と、機器2の消費電力の実測値に対応付けられた値y3とは一致する。また、この場合、制御値に対応付けられた値x2と、設定値x3とは一致する。
 機器2と制御装置3の動作の模擬に誤差がある場合、式(1)に示す仮の設定値x1を、決定部410が制御装置3に出力したとしても、機器2の消費電力の実測値は、機器2の仮の消費電力の暫定値y1とは一致しない。
 そこで、算出部400は、仮の消費電力の暫定値y1に基づく仮の消費電力値と、消費電力の実測値y2との誤差を小さくするように補正する。例えば、算出部400は、機器2の仮の消費電力の暫定値y1に、補正値Δyを加算することにより、機器2の消費電力の実測値y2との誤差を補正する。算出部400は、機器2の仮の消費電力の暫定値y1に、補正値Δyを減算、乗算又は除算することにより、機器2の消費電力の実測値y2との誤差を補正してもよい。補正値Δyは、式(4)により表される。
 Δy=y2-y3=y2-(a×x3+b) …(4)
 算出部400は、機器2の仮の消費電力の暫定値y1と、補正値Δyとを加算した値を、機器2の仮の消費電力値と定める。算出部400は、仮の消費電力値を示す情報を、決定部410に出力する。
 決定部410は、仮の消費電力値を示す情報を、算出部400から取得する。決定部410は、仮の消費電力値に基づいて、最適な設定値を算出する。最適な設定値とは、例えば、エネルギーコストが最小となる設定値である。決定部410は、最適な設定値をどのように算出してもよく、特定の算出方法に限定されない。例えば、決定部410は、設定値が第1の範囲内(上下限)となるように、設定値を決定する。例えば、決定部410は、仮の消費電力値(目標値)が第2の範囲内(上下限)となるように、設定値を決定する。決定部410は、最適な設定値を、算出部400と制御装置3とに出力する。決定部410は、最適な設定値を、所定周期で算出してもよい。この所定周期は、例えば、24時間周期でもよいし、10分周期でもよい。
 図4は、第1の実施形態の制御システム1の動作の図である。
 決定部410は、仮の設定値を算出部400に出力する(ステップS101)。
 算出部400は、機器2の電力の実測値を示す情報を、機器2から取得する(ステップS102)。
 算出部400は、機器2の電力の実測値と、仮の設定値と、機器モデルとに基づいて、機器2の仮の消費電力値を算出する(ステップS103)。
 決定部410は、算出した仮の消費電力値のエネルギーコストが最小であるか否かを判定する(ステップS104)。エネルギーコストが最小でない場合(ステップS104:NO)、決定部410は、ステップS101に処理を戻す。エネルギーコストが最小である場合(ステップS104:YES)、決定部410は、直近に算出した仮の消費電力値を、制御装置3に出力する設定値と決定する。決定部410は、決定した設定値を、制御装置3に出力する(ステップS105)。
 制御装置3は、決定した設定値と、機器2の電力の実測値とに基づいて、制御値を決定する。制御装置3は、制御値を機器2に出力する(ステップS106)。
 機器2は、制御値に基づいて動作する(ステップS107)。機器2の電力の実測値と、機器2の電力の目標値との差は、所定範囲内に収まる。
 図5は、第1の実施形態の算出部400の動作の図である。
 算出部400は、消費電力の実測値y2を取得する(ステップS201)。
 算出部400は、消費電力の実測値y2に基づいて、制御値に対応付けられた値x2を算出する(ステップS202)。
 算出部400は、直近の設定値x3を、決定部410から取得する(ステップS203)。
 算出部400は、制御値に対応付けられた値x2に基づいて、消費電力の実測値に対応付けられた値y3を算出する(ステップS204)。
 算出部400は、仮の設定値x1を、決定部410から取得する(ステップS205)。
 算出部400は、仮の消費電力の暫定値y1を算出する(ステップS206)。
 算出部400は、機器2の仮の消費電力の暫定値y1と、補正値Δyとを加算した値を、機器2の仮の消費電力値と定める。算出部400は、仮の消費電力値を示す情報を、決定部410に出力する(ステップS207)。
 図6は、第1の実施形態の消費電力の変化の図である。図6の上段の縦軸は消費電力を示す。図6の上段の横軸は時間を示す。図6の上段の実線は、機器2の消費電力の実測値を示す。図6の上段の一点破線は、機器2の消費電力の目標値を示す。図6の下段の縦軸は、補正値Δyを示す。図6の下段の横軸は時間を示す。
 機器モデルと、機器2の動作とに誤差がある場合、機器2の仮の消費電力の暫定値y1に基づく仮の消費電力値(目標値)と、機器2の消費電力の実測値y2とは一致しない。
 算出部400は、機器2の仮の消費電力の暫定値y1に基づく仮の消費電力値(目標値)を示す情報と、機器2の消費電力の実測値y2の誤差を示す情報を、所定周期又は任意の時刻に取得する。算出部400は、取得したこれらの情報に基づいて、消費電力の補正値Δyを算出する。
 算出部400は、所定期間における、仮の設定値x1の平均値や、機器2の消費電力の実測値y2の平均値に基づいて、消費電力の補正値Δyを算出してもよい。この場合、算出部400は、補正値Δyのばらつきを抑えることができる。
 以上のように、第1の実施形態の機器運転設定装置40は、算出部400と、決定部410とを持つ。算出部400は、機器2の運転制御に関する設定値と、機器2の消費電力との関係に基づいて、機器2の消費電力の目標値を算出する。決定部410は、計測された機器2の消費電力の実測値と、算出部400により算出された機器2の消費電力の目標値との差が所定範囲内となるように、設定値を決定する。発電電力についても同様である。
 第1の実施形態の機器運転設定値決定プログラムは、コンピュータに、機器2の運転制御に関する設定値と、機器2の消費電力との関係に基づいて、機器2の消費電力の目標値を算出する手順を実行させる。また、第1の実施形態の機器運転設定値決定プログラムは、コンピュータに、計測された機器2の消費電力の実測値と、算出された機器2の消費電力の目標値との差が所定範囲内となるように、設定値を決定する手順を実行させる。
 この構成により、算出部400は、機器2の運転制御に関する設定値と、機器2の消費電力との関係に基づいて、機器2の消費電力の目標値を算出する。これにより、第1の実施形態の機器運転設定装置40及び機器運転設定値決定プログラムは、機器2の電力の実測値と、機器2の電力の目標値との差を所定範囲内にすることができる。
 (第2の実施形態)
 第2の実施形態では、制御システム1が機器2としての発電装置2aを備える点が、第1の実施形態と相違する。第2の実施形態では、第1の実施形態との相違点についてのみ説明する。
 図7は、第2の実施形態の制御システム1の図である。制御システム1は、機器2としての発電装置2aと、制御装置3と、管理システム4とを備える。発電装置2aは、構内配線6を介して、発電電力11を出力する。他の消費電力9は、受電電力7と発電電力11とを加算した電力である。
 図8は、第2の実施形態の発電装置2aの図である。発電装置2aは、タービン20aと、発電機21aと、復水器22aとを備える。タービン20aは、ボイラからの蒸気(ボイラ主蒸気量最適値(GNoBOpt))によって、発電機21aを駆動する。発電機21aは、タービン20aによる駆動に応じて発電する(タービン発電量(ENoT))。復水器22aは、タービン20aから流入された蒸気を冷却して(タービン復水器冷却水入口温度(TNoTVin)、タービン真空度基準値(VNoTV))、水に変える。
 以下、第2実施形態における機器モデルを、「発電機モデル」という。以下、発電機モデルに基づいて算出された仮の消費電力値を、「現状値」という。以下、発電機モデルに基づいて決定された最適な設定値を、「最適値」という。
 図9は、第2の実施形態の変数名の図である。ボイラ主蒸気量(主蒸気流量)を示す変数を「GNoB」と表記する。タービン20aの発電量を示す変数を「ENoT」と表記する。タービン20aの復水器冷却水入口温度(冷却水温度)を示す変数を「TNoTVin 」と表記する。タービン20aのモデル化定数a0~a7を示す変数を「aNoT」と表記する。タービン20aの復水器モデル化定数a0~a7を示す変数を「aNoTV」と表記する。
 タービン20aの復水器流量定格を示す変数を「GNoTex0」と表記する。タービン20aの真空度基準値を示す変数を「VNoTV0」と表記する。
 タービン20aの復水器上限モデル定数a0~a4を示す変数を「cNoTV_h」と表記する。タービン20aの復水器下限モデル定数a0~a4を示す変数を「cNoTV_l」と表記する。タービン20aの主蒸気最適化対象を示す変数を「flg_NoTOpt」と表記する。ボイラ主蒸気量最適値を示す変数を「GNoBOpt」と表記する。タービン20aの発電量最適値を示す変数を「ENoTOpt」と表記する。
 復水器22aへの流入量を示す変数を「GNoTex」と表記する。復水器22aへの流入量最適値を示す変数を「GnoTexOpt」と表記する。復水器22aの真空度最適値を示す変数を「VNoTVOpt」と表記する。電力量計算値を示す変数を「ENoTCal」と表記する。電力量最適値計算値を示す変数を「ENoTOptCal」と表記する。復水器22a真空度上限相当の復水器流入量を示す変数を「GNoTex_h」と表記する。復水器22a真空度下限相当の復水器流入量を示す変数を「GNoTex_l」と表記する。
 発電電力を示す変数を「ENoB」と表記する。真空度を示す変数を「VNoTV」と表記する。気流量最適値を示す変数を「NoBOpt」と表記する。発電電力最適値を示す変数を「ENoBOpt」と表記する。
 復水器22aへの流入量は、主蒸気量と同じである。算出部400は、復水器22aへの流入量を示す変数「GNoTex」に、ボイラ主蒸気量(主蒸気流量)を示す変数「GNoB」の値を代入する。算出部400は、復水器22aへの流入量最適値を示す変数「GnoTexOpt」に、ボイラ主蒸気量最適値を示す変数の値を代入する。タービン20aの蒸気の消費の特性は、Δ真空度(=真空度-真空度基準値)を用いて、式(5)により表される。
 主蒸気量=a0+a1×発電量+a2×Δ真空度  …(5)
 式(5)は、現状値と最適値とのいずれに対しても成立する。ただし、主蒸気量、発電量、Δ真空度(=真空度-真空度基準値)がいずれも実測値である場合には、発電装置2aと制御装置3の動作の模擬の誤差(発電機モデルの誤差)や、センサによる測定の誤差により、式(5)は成立しない。発電量は、操作端のように直接に操作される対象ではない。そこで、発電量には、電力量計算値を示す変数「ENoTCal」と、電力量最適値計算値「ENoTOptCal」とが、実測値に代えて使用される。これらの変数は、式(5)を成り立たせるための変数である。タービン20aの特性は、式(6)と式(7)により表される。
 GNoBOpt=aNoT[0]+aNoT[1]×ENoTOptCal+aNoT[2]×(VNoTVOpt-VNoTV0) …(6)
 GNoB=NoT[0]+aNoT[1]×ENoTCal+aNoT[1]×(VNoTV-VNoTV0) …(7)
 電力量計算値を示す変数「ENoTCal」と、電力量最適値計算値「ENoTOptCal」との偏差は、実際の発電量での偏差と同じである場合、電力量最適値「ENoTOpt」は、式(8)により表される。
 ENoTOpt=ENoT+(ENoTOptCal-ENoTCal) …(8)
 算出部400は、復水器22aの真空度最適値を示す変数「VNoTVOpt」に基づいて、蒸気の消費の特性を算出する。算出部400は、この変数「VNoTVOpt」の値を、予測性能を表す線に基づいて算出する。
 図10は、第2の実施形態の復水器22aの真空度を予測する性能を表す線の図である。縦軸は真空度[%]を示す。横軸は交換熱量[mmHg]を示す。真空度の近似値は、直線で近似されてもよいし、曲線で近似されてもよい。真空度の近似値は、一例として、式(9)で示される。av0は、任意の定数を示す。av1~av4も同様である。
 真空度=av0
 +av1×冷却水入口温度
 +av2×交換熱量
 +av3×冷却水入口温度×冷却水入り口温度
 +av4×冷却水入口温度×交換熱量 …(9)
 復水器22aは、外気温への依存性が高い。このため、運転点が最適点に達する前後で冷却水入口温度は変化しない、と仮定する。式(9)は、最適点に達した後も成り立つ。
 真空度最適値=av0
 +av1×冷却水入口温度
 +av2×交換熱量最適値
 +av3×冷却水入口温度×冷却水入口温度
 +av4×冷却水入口温度×交換熱量最適値 …(10)
 式(9)と式(10)から、式(11)が成り立つ。
 (真空度最適値-真空度)=(av2+av4×冷却水入口温度)×交換熱量最適値 …(11)
 式(11)は、設計データに基づく計算値である。このため、式(11)が示す計算値と、真空度の実測値とには誤差がある。この誤差を補正するため、算出部400は、交換熱量定格に対する復水器流入量に交換熱量が比例すると仮定して、復水器22aの真空度最適値を示す変数「VNoTVOpt」を算出する。すなわち、算出部400は、設計データでの真空度の変化は実際の運転点での真空度の変化に等しいと仮定して、式(12)が成立するか否かを判定する。
 VNoTVOpt=VNoTV+(aNoTV[2]+aNoTV[5]×TNoTVin)×((GNoTexOpt-GNoTex)/GNoTex0) …(12)
 各最適値は、最適化の対象となる場合には、上限値と下限値が定められる。また、再熱蒸気量最適値「GNoBrhOpt」は、対応付けられた操作端が最適化の対象である場合には、上限値「GNoB_l」と下限値「GNoB_h」が定められる。発電量最適値「ENoTOpt」と、復水器流入量最適値「GNoTexOpt」とについても同様である。式(13)において、演算子「<=」は、等価比較演算子「小なりイコール」を示す。
 GNoB_l<=GNoBOpt<=GNoB_h …(13)
 図11は、第2の実施形態の発電装置2aの発電量の推移の図である。上段の縦軸は、タービン20aへの主蒸気量[kg/s]を示す。中段の縦軸は、電力[kW]を示す。下段の縦軸は、電力[kW]を示す。上段と中段と下段との各横軸は、時間を示す。以下、受電電力量を「受電量」という。以下、受電量の目標値を「受電量目標値」という。
 図11の上段には、消費電力が補正された場合の主蒸気量と、消費電力が補正されない場合の主蒸気量とが示されている。算出部400により消費電力が補正された場合の主蒸気量と、消費電力が補正されない場合の主蒸気量とには差がある。消費電力が補正されない場合、図11の中段に示すように、他の消費電力9から発電量を差し引いた電力である受電電力7と、受電量目標値とは、発電機モデルの誤差によって一致しない。
 消費電力が補正されない場合、図11の下段に示すように、他の消費電力9から発電量を差し引いた電力である受電電力7と、受電量目標値(仮の消費電力値)とは一致する。
 この一致の程度は、発電機モデルの誤差に依存する。算出部400は、発電量の実測値と設定値(主蒸気量設定値)と発電機モデルとに基づいて、消費電力の補正値を算出する。
これにより、決定部410は、受電電力7と受電量目標値とを一致させる。
 以上のように、第2の実施形態の機器運転設定装置40は、算出部400と、決定部410とを持つ。算出部400は、発電装置2aの運転制御に関する設定値と、発電装置2aの消費電力との関係(発電機モデル)に基づいて、発電装置2aの消費電力の目標値を算出する。決定部410は、計測された発電装置2aの消費電力の実測値と、算出部400により算出された発電装置2aの消費電力の目標値との差が所定範囲内となるように、設定値を決定する。
 第2の実施形態の機器運転設定値決定プログラムは、コンピュータに、発電装置2aの運転制御に関する設定値と、発電装置2aの消費電力との関係(発電機モデル)に基づいて、発電装置2aの消費電力の目標値を算出する手順を実行させる。また、第2の実施形態の機器運転設定値決定プログラムは、コンピュータに、計測された発電装置2aの消費電力の実測値と、算出部400により算出された発電装置2aの消費電力の目標値との差が所定範囲内となるように、設定値を決定する手順を実行させる。
 この構成により、算出部400は、発電装置2aの運転制御に関する設定値と、発電装置2aの消費電力との関係に基づいて、発電装置2aの消費電力の目標値を算出する。これにより、第2の実施形態の機器運転設定装置40及び機器運転設定値決定プログラムは、発電装置2aの発電電力の実測値と、発電装置2aの発電電力の目標値との差を所定範囲内にすることができる。
 (第3の実施形態)
 第3の実施形態では、制御システム1が機器2としての電動冷凍機2b(電動チラー)を備える点が、第1の実施形態及び第2の実施形態と相違する。第3の実施形態では、第1の実施形態及び第2の実施形態との相違点についてのみ説明する。
 図12は、第3の実施形態の制御システム1の図である。制御システム1は、機器2としての電動冷凍機2bと、制御装置3と、管理システム4とを備える。制御装置3は、バルブ13の制御値に応じて、バルブ13の開度を制御する。制御装置3は、バルブ14の制御値に応じて、バルブ14の開度を制御する。以下、文言「冷熱」は、温熱に読み替えられてもよい。
 蓄熱槽12は、バルブ13を介して、冷温熱を冷熱負荷に出力する。説明を簡便にするため、以下では、蓄熱槽12は十分な量の冷温熱が蓄熱していると仮定して説明を続ける。このように仮定しても、一般性は失われない。蓄熱槽12は、電動冷凍機2bなどによって、十分な量の冷温熱を事前に蓄熱すればよいからである。
 電動冷凍機2bは、構内配線6を介して、消費電力8を取得する。電動冷凍機2bは、バルブ14を介して、冷水を冷熱負荷に出力する。電動冷凍機2bが出力する冷水と、蓄熱槽12が出力する冷温熱とは、合流して冷温熱15となる。冷温熱15は、冷熱負荷に供給される。以下、第3実施形態における機器モデルを、「電動冷凍機モデル」という。
 決定部410は、他の消費電力9が一定である場合、受電電力7を調整することにより、受電電力7と受電量目標値とを一致させる。決定部410は、電動冷凍機2bの消費電力8を調整することにより、受電電力7を調整することが可能である。なお、電動冷凍機2bの消費電力8は、バルブ13やバルブ14などの操作端のように直接に操作される対象ではない。また、電動冷凍機2bの消費電力8は、冷水の負荷(以下、「冷水負荷」という。)に応じて異なる。このため、決定部410は、バルブ13やバルブ14などの操作端を適切に制御させることにより、電動冷凍機2bの消費電力8を制御する。
 算出部400は、消費電力の実測値と設定値と電動冷凍機モデルとに基づいて、消費電力の補正値を算出する。これにより、決定部410は、受電電力7と受電量目標値とを一致させる。電動冷凍機モデルを用いて算出した電動冷凍機2bの消費電力8と、電動冷凍機2bの消費電力8の実測値とは、電動冷凍機モデルの誤差により一致しない。算出部400は、消費電力の実測値と設定値(冷水負荷)と電動冷凍機モデルとに基づいて、消費電力の補正値を算出する。これにより、決定部410は、受電電力7と受電量目標値とを一致させる。
 図13は、第3の実施形態の電動冷凍機2bの消費電力量の推移の図である。上段の縦軸は、電動冷凍機2bの冷水負荷を示す。中段の縦軸は、電力[kW]を示す。下段の縦軸は、電力[kW]を示す。上段と中段と下段との各横軸は、時間を示す。
 図13の上段には、消費電力が補正された場合の冷水負荷と、消費電力が補正されない場合の冷水負荷とが示されている。算出部400により消費電力が補正された場合の冷水負荷と、消費電力が補正されない場合の冷水負荷とには差がある。消費電力が補正されない場合、図13の中段に示すように、他の消費電力9と消費電力8とを加算した電力である受電電力7と、受電量目標値とは、電動冷凍機モデルの誤差によって一致しない。
 消費電力が補正されない場合、図13の下段に示すように、他の消費電力9と消費電力8とを加算した電力である受電電力7と、受電量目標値(仮の消費電力値)とは一致する。この一致の程度は、電動冷凍機モデルの誤差に依存する。算出部400は、消費電力の実測値と設定値(冷水負荷)と電動冷凍機モデルとに基づいて、消費電力の補正値を算出する。これにより、決定部410は、受電電力7と受電量目標値とを一致させる。
 なお、決定部410は、設定値を変更することにより電動冷凍機2bの電力の実測値と目標値との差を所定範囲内にすることができるか否かを判定してもよい。冷熱負荷に供給される冷温熱15が不足する場合、蓄熱槽12が冷熱負荷に出力する冷温熱の量を増加してもよい。この場合、制御装置3は、設定値に応じた制御値に基づいて、バルブ13の開度を調整する。
 以上のように、第3の実施形態の機器運転設定装置40は、算出部400と、決定部410とを持つ。算出部400は、電動冷凍機2bの運転制御に関する設定値と、電動冷凍機2bの消費電力との関係(電動冷凍機モデル)に基づいて、電動冷凍機2bの消費電力の目標値を算出する。決定部410は、計測された電動冷凍機2bの消費電力の実測値と、算出部400により算出された電動冷凍機2bの消費電力の目標値との差が所定範囲内となるように、設定値を決定する。
 第3の実施形態の機器運転設定値決定プログラムは、コンピュータに、電動冷凍機2bの運転制御に関する設定値と、電動冷凍機2bの消費電力との関係(電動冷凍機モデル)に基づいて、電動冷凍機2bの消費電力の目標値を算出する手順を実行させる。また、第3の実施形態の機器運転設定値決定プログラムは、コンピュータに、計測された電動冷凍機2bの消費電力の実測値と、算出部400により算出された電動冷凍機2bの消費電力の目標値との差が所定範囲内となるように設定値を決定する手順を実行させる。
 この構成により、算出部400は、電動冷凍機2bの運転制御に関する設定値と、電動冷凍機2bの消費電力との関係に基づいて、電動冷凍機2bの消費電力の目標値を算出する。これにより、第3の実施形態の機器運転設定装置40及び機器運転設定値決定プログラムは、電動冷凍機2bの冷温熱の実測値と、電動冷凍機2bの冷温熱の目標値との差を所定範囲内にすることができる。
 決定部410は、設定値を変更することにより電動冷凍機2bの電力の実測値と算出された目標値との差を所定範囲内にすることができるか否か、を判定する。決定部410は、電動冷凍機2bの電力の実測値と算出された目標値との差を所定範囲内にすることができない場合、その差が所定範囲内となるように蓄熱槽12又はバルブ13を、制御装置3を介して制御する。
 機器運転設定値決定プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM、フラッシュメモリ等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。機器運転設定値決定プログラムは、電気通信回線を介して送信されてもよい。
 以上説明した少なくともひとつの実施形態によれば、機器の運転制御に関する設定値と機器の消費電力との関係に基づいて機器の消費電力の目標値を算出する算出部を持つことにより、機器の電力の実測値と、機器の電力の目標値との差を所定範囲内にすることができる。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (8)

  1.  機器の運転制御に関する設定値と前記機器の消費電力との関係に基づいて、前記機器の消費電力の目標値を算出する算出部と、
     計測された前記機器の消費電力の実測値と、前記算出部により算出された前記機器の消費電力の目標値との差が所定範囲内となるように前記設定値を決定する決定部と、
     を備える機器運転設定装置。
  2.  前記決定部は、前記実測値と前記算出された目標値との差に基づいて前記設定値を決定する、請求項1に記載の機器運転設定装置。
  3.  前記決定部は、前記実測値と前記算出された目標値との差に応じた補正値に基づいて前記設定値を決定する、請求項2に記載の機器運転設定装置。
  4.  前記決定部は、前記設定値が第1の範囲内となるように前記設定値を決定する、請求項1から請求項3のいずれか一項に記載の機器運転設定装置。
  5.  前記決定部は、前記算出された目標値が第2の範囲内となるように前記設定値を決定する、請求項4に記載の機器運転設定装置。
  6.  前記決定部は、前記設定値を変更することにより前記機器の消費電力の実測値と前記算出された目標値との差を前記所定範囲内にすることができるか否かを判定し、前記実測値と前記算出された目標値との差を前記所定範囲内にすることができない場合、前記差が前記所定範囲内となるように他の機器を制御する、請求項1から請求項5のいずれか一項に記載の機器運転設定装置。
  7.  前記機器は、電動冷凍機であり、
     前記他の機器は、蓄熱槽である、請求項6に記載の機器運転設定装置。
  8.  コンピュータに、
     機器の運転制御に関する設定値と前記機器の消費電力との関係に基づいて、前記機器の消費電力の目標値を算出する手順と、
     計測された前記機器の消費電力の実測値と、算出された前記機器の消費電力の目標値との差が所定範囲内となるように前記設定値を決定する手順と、
     を実行させるための機器運転設定値決定プログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2014/082039 2014-06-20 2014-12-03 機器運転設定装置及び機器運転設定値決定プログラム WO2015194067A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480076873.9A CN106068590A (zh) 2014-06-20 2014-12-03 设备运转设定装置以及设备运转设定值决定程序
SG11201607536RA SG11201607536RA (en) 2014-06-20 2014-12-03 Device operation setting apparatus and device operation setting value determination program
EP14894861.5A EP3159995B1 (en) 2014-06-20 2014-12-03 Device operation setting device and device operation setting value determination program
US15/262,110 US10437273B2 (en) 2014-06-20 2016-09-12 Device operation setting apparatus and device operation setting value determination program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-127613 2014-06-20
JP2014127613A JP6356502B2 (ja) 2014-06-20 2014-06-20 機器運転設定装置及び機器運転設定値決定プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/262,110 Continuation US10437273B2 (en) 2014-06-20 2016-09-12 Device operation setting apparatus and device operation setting value determination program

Publications (1)

Publication Number Publication Date
WO2015194067A1 true WO2015194067A1 (ja) 2015-12-23

Family

ID=54935089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082039 WO2015194067A1 (ja) 2014-06-20 2014-12-03 機器運転設定装置及び機器運転設定値決定プログラム

Country Status (6)

Country Link
US (1) US10437273B2 (ja)
EP (1) EP3159995B1 (ja)
JP (1) JP6356502B2 (ja)
CN (1) CN106068590A (ja)
SG (1) SG11201607536RA (ja)
WO (1) WO2015194067A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6180826B2 (ja) 2013-07-02 2017-08-16 株式会社東芝 エネルギー管理サーバ、エネルギー管理方法およびプログラム
WO2015037307A1 (ja) 2013-09-11 2015-03-19 株式会社東芝 蓄電制御装置、管理システム、蓄電制御方法、蓄電制御プログラム及び記録媒体
JP6384971B2 (ja) * 2016-11-29 2018-09-05 三菱重工サーマルシステムズ株式会社 訓練データ収集システム、空調制御システム、訓練データ収集方法及びプログラム
JP2019148478A (ja) 2018-02-27 2019-09-05 セイコーエプソン株式会社 電源電圧検出回路、半導体装置、及び、電子機器
WO2021214858A1 (ja) * 2020-04-21 2021-10-28 日立ジョンソンコントロールズ空調株式会社 空気調和機及び管理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161492A (ja) * 2001-11-21 2003-06-06 Daikin Ind Ltd 店舗設備消費電力最小化方法およびその装置
JP2010166636A (ja) * 2009-01-13 2010-07-29 Hitachi Ltd 電力需給運用管理サーバ、および電力需給運用管理システム
JP2011036084A (ja) * 2009-08-05 2011-02-17 Hitachi Ltd 需要家エネルギーマネジメントシステム
JP2012163304A (ja) * 2011-02-09 2012-08-30 Azbil Corp 消費電力量削減支援装置および方法、省エネ運転制御システム

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271366A4 (en) * 1999-08-18 2003-05-14 Yusuke Kojima METHOD AND SYSTEM FOR CONTROLLING AND SAVING ENERGY FOR HOUSEHOLDS
US20070222295A1 (en) * 2002-09-05 2007-09-27 Paul Wareham System and method for power load management
JP4234414B2 (ja) * 2002-12-13 2009-03-04 出光興産株式会社 用役システムの制御方法
JP2005157685A (ja) 2003-11-25 2005-06-16 Toshiba Corp エネルギー需要予測システム
JP4396557B2 (ja) 2005-03-22 2010-01-13 株式会社日立プラントテクノロジー 空調システム
US7562234B2 (en) * 2005-08-25 2009-07-14 Apple Inc. Methods and apparatuses for dynamic power control
US20070299562A1 (en) * 2006-06-26 2007-12-27 Lawrence Kates Method and apparatus for temperature-based load management metering in an electric power system
JP4823785B2 (ja) * 2006-07-05 2011-11-24 株式会社リコー 電力監視装置
JP4158820B2 (ja) * 2006-07-07 2008-10-01 ダイキン工業株式会社 電力量制御装置
US8014902B2 (en) * 2008-02-22 2011-09-06 Lawrence Kates Method and apparatus for energy-efficient temperature-based systems management
JP2009216259A (ja) * 2008-03-07 2009-09-24 Hitachi Industrial Equipment Systems Co Ltd 冷凍機設備の運転方法および冷凍機設備
US20100010683A1 (en) * 2008-07-14 2010-01-14 Lawrence Kates Method and apparatus for power-limiting electrical access
US8324755B2 (en) * 2009-03-06 2012-12-04 Briggs And Stratton Corporation Power management system and method of operating the same
JP5645394B2 (ja) * 2009-11-30 2014-12-24 京セラ株式会社 制御装置、制御システム及び制御方法
EP2348596B1 (en) * 2010-01-25 2021-09-08 Accenture Global Services Limited Analytics for consumer power consumption
US8504854B2 (en) * 2010-06-21 2013-08-06 Advanced Micro Devices, Inc. Managing multiple operating points for stable virtual frequencies
EP2701262B1 (en) * 2011-04-22 2017-10-04 Kyocera Corporation Power control device, control system, and control method
KR101420583B1 (ko) * 2011-07-13 2014-07-16 닛토덴코 가부시키가이샤 온디맨드형 전력 제어 시스템, 온디맨드형 전력 제어 시스템 프로그램 및 그 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
JP5908302B2 (ja) * 2012-02-27 2016-04-26 株式会社東芝 蓄電蓄熱最適化装置、最適化方法及び最適化プログラム
JP6145669B2 (ja) * 2012-03-27 2017-06-14 パナソニックIpマネジメント株式会社 電力管理装置および電力管理システム
JP5981313B2 (ja) 2012-11-09 2016-08-31 株式会社東芝 電力抑制型蓄電蓄熱最適化装置、最適化方法及び最適化プログラム
US10345766B2 (en) 2012-12-11 2019-07-09 Kabushiki Kaisha Toshiba Energy management server, energy management method, and medium
JP6109555B2 (ja) 2012-12-11 2017-04-05 株式会社東芝 エネルギー管理サーバ、エネルギー管理方法およびプログラム
US20140371942A1 (en) * 2013-01-11 2014-12-18 Nitto Denko Corporation On-demand power control system, on-demand power control system program, and computer-readable recording medium recording the same program
JP6180826B2 (ja) 2013-07-02 2017-08-16 株式会社東芝 エネルギー管理サーバ、エネルギー管理方法およびプログラム
WO2015037307A1 (ja) 2013-09-11 2015-03-19 株式会社東芝 蓄電制御装置、管理システム、蓄電制御方法、蓄電制御プログラム及び記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161492A (ja) * 2001-11-21 2003-06-06 Daikin Ind Ltd 店舗設備消費電力最小化方法およびその装置
JP2010166636A (ja) * 2009-01-13 2010-07-29 Hitachi Ltd 電力需給運用管理サーバ、および電力需給運用管理システム
JP2011036084A (ja) * 2009-08-05 2011-02-17 Hitachi Ltd 需要家エネルギーマネジメントシステム
JP2012163304A (ja) * 2011-02-09 2012-08-30 Azbil Corp 消費電力量削減支援装置および方法、省エネ運転制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3159995A4 *

Also Published As

Publication number Publication date
SG11201607536RA (en) 2016-10-28
EP3159995B1 (en) 2020-04-01
EP3159995A4 (en) 2018-02-14
US20160378128A1 (en) 2016-12-29
JP2016008725A (ja) 2016-01-18
EP3159995A1 (en) 2017-04-26
US10437273B2 (en) 2019-10-08
CN106068590A (zh) 2016-11-02
JP6356502B2 (ja) 2018-07-11

Similar Documents

Publication Publication Date Title
WO2015194067A1 (ja) 機器運転設定装置及び機器運転設定値決定プログラム
KR101515743B1 (ko) 설비기기의 디맨드 제어 장치
JP5908355B2 (ja) サーバ装置
KR20130098346A (ko) Hvac 시스템을 위한 에너지 최적화 제어 결정
JP6405210B2 (ja) 気象補正装置、空調管理システム及び気象補正方法
WO2019008698A1 (ja) 運転制御装置、空気調和システム、運転制御方法および運転制御プログラム
JP2009109178A (ja) 貯湯式給湯装置、運転計画装置及び運転計画方法
WO2015118744A1 (ja) エネルギーマネジメントシステム
JP6582755B2 (ja) 熱源機器ネットワークの運転計画を最適化するための方法及びシステム、及びプログラム
CN110832251B (zh) 燃料削减率输出系统、燃料削减率输出方法以及存储介质
JP2018147234A (ja) 保守計画作成装置および方法
WO2016098320A1 (ja) 運用管理サーバ、運用管理システムおよび運用管理方法
JP2015041315A (ja) 制御装置および制御方法
JPWO2020121436A1 (ja) 制御装置、制御方法、およびプログラム
JP2023065487A (ja) 給湯システム、クラウドサーバ、沸上げスケジュール管理方法及びプログラム
JP6203144B2 (ja) 空調管理装置、空調管理方法、及びプログラム
JP7121324B2 (ja) 電力制御システムおよびヒートポンプシステム
JP6534038B2 (ja) 需要電力制御装置および需要電力制御方法
JP4664842B2 (ja) エネルギープラントの最適運用システムと方法、およびプログラム
JP2016065661A (ja) 予想エネルギー消費量算出特性式の校正方法及び空調熱源システム
JP2019037041A (ja) 発電制御システム、プログラム、及び制御方法
JP2018013934A (ja) 電力価格予測装置
JP5627102B2 (ja) 電力使用量予測装置および電力使用量予測方法
JP2017033665A (ja) 制御機器の制御方法、制御システム、及び制御機器
JPH10301603A (ja) タービン最適負荷配分方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894861

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014894861

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014894861

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE