WO2015192393A1 - 像素结构及液晶显示装置 - Google Patents

像素结构及液晶显示装置 Download PDF

Info

Publication number
WO2015192393A1
WO2015192393A1 PCT/CN2014/081083 CN2014081083W WO2015192393A1 WO 2015192393 A1 WO2015192393 A1 WO 2015192393A1 CN 2014081083 W CN2014081083 W CN 2014081083W WO 2015192393 A1 WO2015192393 A1 WO 2015192393A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
main
electrode
pixel
width
Prior art date
Application number
PCT/CN2014/081083
Other languages
English (en)
French (fr)
Inventor
付延峰
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2015192393A1 publication Critical patent/WO2015192393A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells

Definitions

  • the present invention relates to the field of liquid crystal technology, and in particular to a pixel structure and a liquid crystal display device.
  • each pixel in the liquid crystal display device includes a main pixel and a sub-pixel, and the main pixel and the sub-pixel display different degrees of brightness when displaying the same picture, thereby realizing multi-domain display of the pixel.
  • the problem of color deviation at a large viewing angle existing in the liquid crystal display device is solved.
  • FIG. 1 is a schematic structural view of a conventional pixel structure
  • FIG. 2 is a cross-sectional view taken along line A-A' of FIG.
  • the size ratio relationship and positional relationship between some components are changed.
  • the pixel structure 10 includes a main pixel electrode 11, a sub-pixel electrode 12, a data line 13, a main scanning line 14, a sub-scanning line 15, a main thin film transistor 16, a sub-thin film transistor 17, and a voltage dividing capacitor 18.
  • the main pixel electrode 11 and the sub-pixel electrode 12 are each provided with slits in four directions (that is, the main pixel electrode has a slit structure).
  • the pixel structures 10 are all disposed on the array substrate 1 of the liquid crystal display device, and the liquid crystal display device further includes a color filter substrate 2.
  • the main scanning line 14 inputs a high level signal to turn on the main thin film transistor 16, and the signal of the data line 13 is simultaneously input to the main pixel electrode 11 and the sub-pixel electrode 12, at which time the main pixel electrode 11 corresponds.
  • the primary liquid crystal capacitor and the secondary liquid crystal capacitor corresponding to the sub-pixel electrode 12 are charged to the same level.
  • the main scanning line 14 inputs a low level signal
  • the main thin film transistor 16 is turned off
  • the sub-scanning line 15 inputs a high level signal
  • the sub-thin film transistor 17 is turned on, at which time a part of the charge on the sub-pixel electrode 12 is transferred to the sub-thin film transistor 17
  • the voltage is divided on the capacitor 18 such that the voltage across the secondary liquid crystal capacitor corresponding to the sub-pixel electrode 12 is lower than the voltage across the main liquid crystal capacitor.
  • the main pixel Since the liquid crystal molecules (not shown) in the main pixel are deflected by the voltage across the main liquid crystal capacitor while the main pixel electrode 11 is provided with slits in four directions, the main pixel has a four-domain display effect.
  • the liquid crystal molecules in the sub-pixel are deflected by the voltage across the sub-liquid crystal capacitor, and the sub-pixel electrode 12 is also provided with slits in four directions, and the sub-pixel also has a four-domain display effect, and the four-domain display effect is different from The four-domain display effect of the main pixel electrode 11 (the voltage across the secondary liquid crystal capacitor is different from the voltage across the main liquid crystal capacitor), and thus the pixel structure 10 achieves an eight-domain display effect of the liquid crystal display device.
  • the sub-thin film transistor 17, the sub-scanning line 15, and the voltage dividing capacitor 18 are required to reduce the voltage across the sub-liquid crystal capacitor. Therefore, the pixel structure 10 tends to have a low aperture ratio. It is necessary to increase the light output power of the backlight module to compensate for the lack of aperture ratio, which results in a high manufacturing cost of the liquid crystal display device.
  • Embodiments of the present invention provide a pixel structure, including:
  • a thin film transistor for transmitting the data signal according to the scan signal
  • a pixel electrode configured to receive a data signal, and drive the corresponding pixel to display according to the data signal
  • the pixel electrode comprises:
  • main pixel electrode including a main electrode structure and a main structure slit between the main electrode structures
  • a sub-pixel electrode comprising a sub-electrode structure and a sub-structure slit between the sub-electrode structures
  • width of the main electrode structure is different from the width of the sub-electrode structure
  • the main pixel electrode includes four main driving regions, and the main electrode structure extends from a center of the main pixel electrode to a periphery of the main pixel electrode, and the main electrode structure is in different main driving regions. Different directions of extension;
  • the sub-pixel electrode includes four sub-electrode structures extending from a center of the sub-pixel electrode to a periphery of the sub-pixel electrode, and the sub-electrode structure is in a different sub-driving region The direction of extension is different.
  • the width of the main electrode structure is greater than the width of the sub-electrode structure.
  • the width of the main structure slit is smaller than the width of the sub-structure slit.
  • the width of the main electrode structure is smaller than the width of the sub-electrode structure.
  • the width of the main structure slit is larger than the width of the sub-structure slit.
  • Embodiments of the present invention provide a pixel structure, including:
  • a thin film transistor for transmitting the data signal according to the scan signal
  • a pixel electrode configured to receive a data signal, and drive the corresponding pixel to display according to the data signal
  • the pixel electrode comprises:
  • main pixel electrode including a main electrode structure and a main structure slit between the main electrode structures
  • a sub-pixel electrode comprising a sub-electrode structure and a sub-structure slit between the sub-electrode structures
  • width of the main electrode structure is different from the width of the sub-electrode structure.
  • the width of the main electrode structure is greater than the width of the sub-electrode structure.
  • the width of the main structure slit is smaller than the width of the sub-structure slit.
  • the width of the main electrode structure is smaller than the width of the sub-electrode structure.
  • the width of the main structure slit is larger than the width of the sub-structure slit.
  • the main pixel electrode includes four main driving regions, and the main electrode structure extends from a center of the main pixel electrode to a periphery of the main pixel electrode, the main electrode structure The direction of extension in the different main drive regions is different.
  • the sub-pixel electrode includes four sub-electrode structures, and the sub-electrode structure extends from a center of the sub-pixel electrode to a periphery of the sub-pixel electrode, the sub-electrode structure The direction of extension is different in different said sub-driving regions.
  • An embodiment of the present invention further provides a liquid crystal display device, including:
  • liquid crystal layer disposed between the color film substrate and the array substrate;
  • the array substrate has a plurality of pixel structures thereon, and the pixel structure includes:
  • a thin film transistor for transmitting the data signal according to the scan signal
  • a pixel electrode configured to receive a data signal, and drive the corresponding pixel to display according to the data signal
  • the pixel electrode comprises:
  • main pixel electrode including a main electrode structure and a main structure slit between the main electrode structures
  • a sub-pixel electrode comprising a sub-electrode structure and a sub-structure slit between the sub-electrode structures
  • width of the main electrode structure is different from the width of the sub-electrode structure.
  • the width of the main electrode structure is larger than the width of the sub-electrode structure.
  • the width of the slit of the main structure is smaller than the width of the slit of the sub-structure.
  • the width of the main electrode structure is smaller than the width of the sub-electrode structure.
  • the width of the slit of the main structure is larger than the width of the slit of the sub-structure.
  • the main pixel electrode includes four main driving regions, and the main electrode structure extends from a center of the main pixel electrode toward a periphery of the main pixel electrode, the main electrode The structure extends in different directions within the main drive region.
  • the sub-pixel electrode includes four sub-electrode regions, and the sub-electrode structure extends from a center of the sub-pixel electrode toward a periphery of the sub-pixel electrode, the sub-electrode The structure has different directions of extension in different sub-driving regions.
  • the pixel structure and the liquid crystal display device of the present invention do not provide a sub-thin film transistor, a sub-scanning line, and a sub-pixel in the pixel structure by providing main electrode structures and sub-electrode structures of different widths.
  • the pressure capacitor can also realize multi-domain display, improve the aperture ratio of the pixel structure, reduce the manufacturing cost of the liquid crystal display device, and solve the problem that the existing pixel structure and the liquid crystal display device have low aperture ratio or high production cost.
  • FIG. 1 is a schematic structural view of a conventional pixel structure
  • Figure 2 is a cross-sectional view taken along line A-A' of Figure 1;
  • FIG. 3 is a schematic structural view of a first preferred embodiment of a pixel structure of the present invention.
  • Figure 4 is a cross-sectional view taken along line B-B' of Figure 3;
  • FIG. 5 is a schematic structural view of a second preferred embodiment of a pixel structure of the present invention.
  • Figure 6 is a cross-sectional view taken along line C-C' of Figure 5 .
  • FIG. 3 is a schematic structural view of a first preferred embodiment of the pixel structure of the present invention
  • FIG. 4 is a cross-sectional view taken along line B-B' of FIG.
  • the pixel structure of the preferred embodiment is disposed in a corresponding liquid crystal display device, including a color filter substrate 4, an array substrate 3, and a liquid crystal layer disposed between the color filter substrate 4 and the array substrate 3 (not shown) Out).
  • the pixel structure 30 includes a data line 31, a scan line 32, a thin film transistor 33, and a pixel electrode.
  • the data line 31 is for transmitting a data signal
  • the scan line 32 is for transmitting a scan signal
  • the thin film transistor 33 is for transmitting a data signal according to the scan signal.
  • the pixel electrode is configured to receive the data signal and drive the corresponding pixel to display according to the data signal.
  • the pixel electrode includes a main pixel electrode 34 and a sub-pixel electrode 35.
  • the main pixel electrode 34 includes a main structure 341 and a main structure slit 342 between the main electrode structures 341.
  • the sub-pixel electrode 35 includes a sub-electrode structure 351 and a sub-electrode structure. Substructure slit 352 between 351.
  • the width of the main electrode structure 341 is greater than the width of the sub-electrode structure 351, and the width of the main structure slit 352 is smaller than the width of the sub-structure slit 352.
  • the main pixel electrode 34 includes four main driving regions 343 extending from the center of the main pixel electrode 34 toward the periphery of the main pixel electrode 34, and the main electrode structures 341 are different in different extending directions in the main driving regions 343.
  • the sub-pixel electrode 35 also includes four sub-driving regions 353 extending from the center of the sub-pixel electrode 35 toward the periphery of the sub-pixel electrode 35, and the sub-electrode structures 351 are different in the extending directions in the different sub-driving regions 353.
  • the scan line 32 inputs a high level signal to turn on the thin film transistor 33, and the data signal of the data line 31 is simultaneously input to the main pixel electrode 34 and the sub-pixel electrode 35, but since the main pixel is electrically
  • the width of the 34-pole main electrode structure 341 is larger than the width of the sub-electrode structure 351 of the sub-pixel electrode 35, while the width of the main structure slit 342 of the main pixel electrode 34 is smaller than the width of the sub-structure slit 352 of the sub-pixel electrode 35.
  • the area of the main electrode structure 341 of the main pixel electrode 34 is larger than the area of the sub-electrode structure 351 of the sub-pixel electrode 35,
  • the force of the pixel electrode 34 on the corresponding liquid crystal molecule is greater than the force of the sub-liquid crystal electrode 35 on the corresponding liquid crystal molecule.
  • F is the force of the main pixel electrode 34 (or the sub-pixel electrode 35) on the corresponding liquid crystal molecule
  • U is the voltage of the data signal
  • For the relative dielectric constant
  • ⁇ 0 is the vacuum dielectric constant
  • S is the area of the main electrode structure 341 (the sub-electrode structure 351)
  • d is the main pixel electrode 34 (or the sub-pixel electrode 35) and the common electrode 41 on the color filter substrate 4. the distance.
  • the force of the pixel electrode 30 on the corresponding liquid crystal molecule is only related to the area of the electrode structure, that is, the electrode.
  • the larger the area of the structure the greater the force of the pixel electrode 30 on the corresponding liquid crystal molecules. Therefore, the area of the main electrode structure 341 of the main pixel electrode 34 is larger than the area of the sub-electrode structure 351 of the sub-pixel electrode 35, so that the force of the main pixel electrode 34 on the corresponding liquid crystal molecules is greater than that of the sub-liquid crystal electrode 35 on the corresponding liquid crystal molecules. force.
  • the main pixel electrode 34 corresponds to a brighter pixel of the display area
  • the sub-pixel electrode 35 corresponds to a darker pixel of the display area
  • the main pixel electrode 34 includes four main driving areas 343, which can be used for the same data.
  • the signal is subjected to four-domain display
  • the sub-pixel electrode 35 includes four sub-driving regions 353 for performing four-domain display on the same data signal.
  • the pixel structure 30 achieves an eight-domain display effect of the liquid crystal display device.
  • the pixel structure of the preferred embodiment is configured such that the width of the main electrode structure is larger than the width of the sub-electrode structure, and the width of the main structure slit is smaller than the width of the sub-structure slit, so that it is not necessary to separately provide the sub-pixel electrode in the pixel structure.
  • the sub-thin film transistor, the sub-scanning line, and the voltage dividing capacitor can realize multi-domain display better; therefore, the aperture ratio of the pixel structure is high, and the manufacturing cost of the entire liquid crystal display device is low.
  • FIG. 5 is a schematic structural view of a second preferred embodiment of the pixel structure of the present invention
  • FIG. 6 is a cross-sectional view taken along line C-C' of FIG.
  • the pixel structure of the preferred embodiment is disposed in a corresponding liquid crystal display device, including a color filter substrate 6, an array substrate 5, and a liquid crystal layer disposed between the color filter substrate 6 and the array substrate 5 (not shown) Out).
  • the pixel structure 50 includes a data line 51, a scan line 52, a thin film transistor 53, and a pixel electrode.
  • the data line 51 is for transmitting a data signal
  • the scan line 52 is for transmitting a scan signal
  • the thin film transistor 53 is for transmitting a data signal according to the scan signal.
  • the pixel electrode is configured to receive the data signal and drive the corresponding pixel to display according to the data signal.
  • the pixel electrode includes a main pixel electrode 54 and a sub-pixel electrode 55.
  • the main pixel electrode 54 includes a main structure 541 and a main structure slit 542 between the main electrode structures 541.
  • the sub-pixel electrode 55 includes a sub-electrode structure 551 and a sub-electrode structure. Substructure slit 552 between 551.
  • the width of the main electrode structure 541 is smaller than the width of the sub-electrode structure 551, and the width of the main structure slit 542 is greater than the width of the sub-structure slit 552.
  • the main pixel electrode 54 includes four main driving regions 543 extending from the center of the main pixel electrode 54 toward the periphery of the main pixel electrode 54, and the main electrode structures 541 are different in different extending directions in the main driving regions 543.
  • the sub-pixel electrode 55 also includes four sub-driving regions 553 extending from the center of the sub-pixel electrode 55 to the periphery of the sub-pixel electrode 55, and the sub-electrode structures 551 are different in the extending directions in the different sub-driving regions 553.
  • the principle of the display of the pixel structure 50 of the preferred embodiment is similar to that of the first preferred embodiment.
  • the pixels of the sub-pixel electrode 55 corresponding to the display area are brighter, and the pixels of the main pixel electrode 54 corresponding to the display area are compared.
  • the dark sub-pixel electrode 55 includes four sub-driving regions 553 for performing four-domain display on the same data signal.
  • the main pixel electrode 54 includes four main driving regions 543 for performing four-domain display on the same data signal.
  • the pixel structure 50 can also achieve an eight-domain display effect of the liquid crystal display device.
  • the pixel structure of the preferred embodiment is configured such that the width of the main electrode structure is smaller than the width of the sub-electrode structure, and the width of the main structure slit is larger than the width of the sub-structure slit, so that it is not necessary to separately provide the sub-pixel electrode in the pixel structure.
  • the sub-thin film transistor, the sub-scanning line, and the voltage dividing capacitor can realize multi-domain display better; therefore, the aperture ratio of the pixel structure is high, and the manufacturing cost of the entire liquid crystal display device is low.
  • the present invention also provides a liquid crystal display device comprising a color filter substrate, an array substrate, and a liquid crystal layer disposed between the color filter substrate and the array substrate, wherein the array substrate has a plurality of pixel structures.
  • the pixel structure includes a data line, a scan line, a thin film transistor, and a pixel electrode.
  • the data line is for transmitting a data signal
  • the scan line is for transmitting a scan signal
  • the thin film transistor is for transmitting a data signal according to the scan signal.
  • the pixel electrode is configured to receive the data signal and drive the corresponding pixel to display according to the data signal.
  • the pixel electrode includes a main pixel electrode including a main electrode structure and a main structure slit between the main electrode structures, and the sub-pixel electrode includes a sub-electrode structure and a sub-structure slit between the sub-electrode structures.
  • the main pixel electrode includes four main driving regions, and the main electrode structure extends from the center of the main pixel electrode to the periphery of the main pixel electrode, and the main electrode structure has different extending directions in different main driving regions.
  • the sub-pixel electrode also includes four sub-driving regions, and the sub-electrode structure extends from the center of the sub-pixel electrode to the periphery of the sub-pixel electrode, and the sub-electrode structure has different extending directions in different sub-driving regions.
  • the width of the main electrode structure of the pixel electrode of the pixel structure in the preferred embodiment is different from the width of the sub-electrode structure, that is, the width of the main electrode structure is smaller than the width of the sub-electrode structure, and the width of the main structure slit is larger than the sub-structure narrow The width of the slit; or the width of the main electrode structure is smaller than the width of the sub-electrode structure; the width of the slit of the main structure is larger than the width of the slit of the sub-structure.
  • the specific working principle of the liquid crystal display device of the preferred embodiment is the same as that of the first preferred embodiment and the second preferred embodiment of the pixel structure described above.
  • the pixel structure and the liquid crystal display device of the present invention can realize multi-domain display and enhance multi-domain display without providing sub-thin film transistors, sub-scan lines and voltage dividing capacitors in the pixel structure by setting main electrode structures and sub-electrode structures with different widths.
  • the aperture ratio of the pixel structure reduces the manufacturing cost of the liquid crystal display device, and solves the technical problems of the conventional pixel structure and the liquid crystal display device having a low aperture ratio or a high manufacturing cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一种像素结构及液晶显示装置,其包括数据线(31)、扫描线(32)、薄膜晶体管(33)以及像素电极;该像素电极包括主像素电极(34)以及次像素电极(35),主像素电极(34)的主电极结构(341)的宽度不同于次像素电极(35)的次电极结构(351)的宽度。通过设置不同宽度的主电极结构(341)以及次电极结构(351),提升了像素结构的开口率,降低了液晶显示装置的制作成本。

Description

像素结构及液晶显示装置 技术领域
本发明涉及液晶技术领域,特别是涉及一种像素结构及液晶显示装置。
背景技术
随着液晶显示技术的发展,越来越多的用户开始使用液晶显示装置进行社交娱乐活动。为了实现较好的显示效果以及显示视角,液晶显示装置中的每个像素均会包括主像素和次像素,主像素和次像素显示同一画面时的明暗程度不同,从而实现像素的多畴显示,解决了液晶显示装置存在的大视角下的颜色偏差问题。
请参照图1和图2,图1为现有的像素结构的结构示意图,图2为沿图1的A-A’截面线的截面图。为了说明需要,改变了部分元件之间的大小比例关系以及位置关系。
该像素结构10包括主像素电极11,次像素电极12、数据线13、主扫描线14、次扫描线15、主薄膜晶体管16、次薄膜晶体管17以及分压电容18。主像素电极11和次像素电极12均设置有四个方向的狭缝(即主像素电极具有狭缝结构)。该像素结构10均设置在液晶显示装置的阵列基板1上,同时液晶显示装置还包括彩膜基板2。
该像素结构具体工作时,首先主扫描线14输入高电平信号将主薄膜晶体管16打开,数据线13的信号同时输入到主像素电极11以及次像素电极12,这时主像素电极11对应的主液晶电容和次像素电极12对应的次液晶电容充电到相同水平。随后主扫描线14输入低电平信号,主薄膜晶体管16关闭,次扫描线15输入高电平信号,次薄膜晶体管17打开,这时次像素电极12上的一部分电荷通过次薄膜晶体管17转移到了分压电容18上,从而使得次像素电极12对应的次液晶电容两端的电压低于主液晶电容两端的电压。
由于主像素中的液晶分子(图中未示出)在主液晶电容两端电压的驱动下进行偏转,同时主像素电极11设置有四个方向的狭缝,因此主像素具有四畴显示效果。此外次像素中液晶分子在次液晶电容两端电压的驱动下进行偏转,次像素电极12也设置有四个方向的狭缝,次像素也具有四畴显示效果,且该四畴显示效果不同于主像素电极11的四畴显示效果(次液晶电容两端的电压不同于主液晶电容两端的电压),因此该像素结构10实现了液晶显示装置的八畴显示效果。
但是上述的像素结构10相对现有的像素结构,需要设置次薄膜晶体管17、次扫描线15以及分压电容18来降低次液晶电容两端的电压,因此这种像素结构10往往开口率较低,需要加大背光模块的出光功率来弥补开口率的不足,这样导致该液晶显示装置的制作成本较高。
故,有必要提供一种像素结构及液晶显示装置,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种像素结构及液晶显示装置,以解决现有的像素结构以及液晶显示装置的开口率较低或制作成本较高的技术问题。
技术解决方案
本发明实施例提供一种像素结构,其包括:
数据线,用于传输数据信号;
扫描线,用于传输扫描信号;
薄膜晶体管,用于根据所述扫描信号,发送所述数据信号;以及
像素电极,用于接收数据信号,并根据所述数据信号驱动相应的像素进行显示;
其中所述像素电极包括:
主像素电极,包括主电极结构以及所述主电极结构之间的主结构狭缝;以及
次像素电极,包括次电极结构以及所述次电极结构之间的次结构狭缝;
其中所述主电极结构的宽度不同于所述次电极结构的宽度;
所述主像素电极包括四个主驱动区域,所述主电极结构由所述主像素电极的中心向所述主像素电极的四周延伸,所述主电极结构在不同的所述主驱动区域内的延伸方向不同;
所述次像素电极包括四个次驱动区域,所述次电极结构由所述次像素电极的中心向所述次像素电极的四周延伸,所述次电极结构在不同的所述次驱动区域内的延伸方向不同。
在本发明所述的像素结构中,所述主电极结构的宽度大于所述次电极结构的宽度。
在本发明所述的像素结构中,所述主结构狭缝的宽度小于所述次结构狭缝的宽度。
在本发明所述的像素结构中,所述主电极结构的宽度小于所述次电极结构的宽度。
在本发明所述的像素结构中,所述主结构狭缝的宽度大于所述次结构狭缝的宽度。
本发明实施例提供一种像素结构,其包括:
数据线,用于传输数据信号;
扫描线,用于传输扫描信号;
薄膜晶体管,用于根据所述扫描信号,发送所述数据信号;以及
像素电极,用于接收数据信号,并根据所述数据信号驱动相应的像素进行显示;
其中所述像素电极包括:
主像素电极,包括主电极结构以及所述主电极结构之间的主结构狭缝;以及
次像素电极,包括次电极结构以及所述次电极结构之间的次结构狭缝;
其中所述主电极结构的宽度不同于所述次电极结构的宽度。
在本发明所述的像素结构中,所述主电极结构的宽度大于所述次电极结构的宽度。
在本发明所述的像素结构中,所述主结构狭缝的宽度小于所述次结构狭缝的宽度。
在本发明所述的像素结构中,所述主电极结构的宽度小于所述次电极结构的宽度。
在本发明所述的像素结构中,所述主结构狭缝的宽度大于所述次结构狭缝的宽度。
在本发明所述的像素结构中,所述主像素电极包括四个主驱动区域,所述主电极结构由所述主像素电极的中心向所述主像素电极的四周延伸,所述主电极结构在不同的所述主驱动区域内的延伸方向不同。
在本发明所述的像素结构中,所述次像素电极包括四个次驱动区域,所述次电极结构由所述次像素电极的中心向所述次像素电极的四周延伸,所述次电极结构在不同的所述次驱动区域内的延伸方向不同。
本发明实施例还提供一种液晶显示装置,其包括:
彩膜基板;
阵列基板;以及
液晶层,设置在所述彩膜基板和所述阵列基板之间;
其中所述阵列基板上具有多个像素结构,所述像素结构包括:
数据线,用于传输数据信号;
扫描线,用于传输扫描信号;
薄膜晶体管,用于根据所述扫描信号,发送所述数据信号;以及
像素电极,用于接收数据信号,并根据所述数据信号驱动相应的像素进行显示;
其中所述像素电极包括:
主像素电极,包括主电极结构以及所述主电极结构之间的主结构狭缝;以及
次像素电极,包括次电极结构以及所述次电极结构之间的次结构狭缝;
其中所述主电极结构的宽度不同于所述次电极结构的宽度。
在本发明所述的液晶显示装置中,所述主电极结构的宽度大于所述次电极结构的宽度。
在本发明所述的液晶显示装置中,所述主结构狭缝的宽度小于所述次结构狭缝的宽度。
在本发明所述的液晶显示装置中,所述主电极结构的宽度小于所述次电极结构的宽度。
在本发明所述的液晶显示装置中,所述主结构狭缝的宽度大于所述次结构狭缝的宽度。
在本发明所述的液晶显示装置中,所述主像素电极包括四个主驱动区域,所述主电极结构由所述主像素电极的中心向所述主像素电极的四周延伸,所述主电极结构在不同的所述主驱动区域内的延伸方向不同。
在本发明所述的液晶显示装置中,所述次像素电极包括四个次驱动区域,所述次电极结构由所述次像素电极的中心向所述次像素电极的四周延伸,所述次电极结构在不同的所述次驱动区域内的延伸方向不同。
有益效果
相较于现有的像素结构及液晶显示装置,本发明的像素结构及液晶显示装置通过设置不同宽度的主电极结构以及次电极结构,使得像素结构中不设置次薄膜晶体管、次扫描线以及分压电容也可较好的实现多畴显示,提升了像素结构的开口率,降低了液晶显示装置的制作成本;解决了现有的像素结构及液晶显示装置的开口率较低或制作成本较高的技术问题。
附图说明
图1为现有的像素结构的结构示意图;
图2为沿图1的A-A’截面线的截面图;
图3为本发明的像素结构的第一优选实施例的结构示意图;
图4为沿图3的B-B’截面线的截面图;
图5为本发明的像素结构的第二优选实施例的结构示意图;
图6为沿图5的C-C’截面线的截面图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
请参照图3和图4,图3为本发明的像素结构的第一优选实施例的结构示意图,图4为沿图3的B-B’截面线的截面图。本优选实施例的像素结构设置在相应的液晶显示装置中,该液晶显示装置包括彩膜基板4、阵列基板3以及设置在彩膜基板4和阵列基板3之间的液晶层(图中未示出)。在阵列基板3上具有多个像素结构30。
本优选实施例中,该像素结构30包括数据线31、扫描线32、薄膜晶体管33以及像素电极。该数据线31用于传输数据信号,该扫描线32用于传输扫描信号,薄膜晶体管33用于根据扫描信号,发送数据信号。像素电极用于接收数据信号,并根据数据信号驱动相应的像素进行显示。
其中像素电极包括主像素电极34和次像素电极35,主像素电极34包括主电极结构341以及主电极结构341之间的主结构狭缝342,次像素电极35包括次电极结构351以及次电极结构351之间的次结构狭缝352。
在本优选实施例中主电极结构341的宽度大于次电极结构351的宽度,主结构狭缝352的宽度小于次结构狭缝352的宽度。
主像素电极34包括四个主驱动区域343,主电极结构341由主像素电极34的中心向主像素电极34的四周延伸,主电极结构341在不同的主驱动区域343内的延伸方向不同。
次像素电极35也包括四个次驱动区域353,次电极结构351由次像素电极35的中心向次像素电极35的四周延伸,次电极结构351在不同的次驱动区域353内的延伸方向不同。
本优选实施例的像素结构30进行显示时,扫描线32输入高电平信号将薄膜晶体管33打开,数据线31的数据信号同时输入到主像素电极34以及次像素电极35,但是由于主像素电34极的主电极结构341的宽度大于次像素电极35的次电极结构351的宽度,同时主像素电极34的主结构狭缝342的宽度小于次像素电极35的次结构狭缝352的宽度。
这样虽然主像素电极34和次像素电极35上在施加相同的数据信号(或电压信号),但是主像素电极34的主电极结构341的面积大于次像素电极35的次电极结构351的面积,主像素电极34在相应液晶分子上的作用力大于次液晶电极35在相应液晶分子上的作用力,具体请参见下式:
F=E*Q=(U/d)* (C*U)= (U/d)* (ε *ε0* S/d )*U)=(U2*ε *ε0* S)/d2;
其中F为主像素电极34(或次像素电极35)在相应液晶分子上的作用力,U为数据信号的电压,ε 为相对介电常数,ε0为真空介电常数;S为主电极结构341(次电极结构351)的面积;d为主像素电极34(或次像素电极35)与彩膜基板4上公共电极41的距离。
因此可见在数据信号的电压U以及像素电极与彩膜基板4上公共电极41的距离d不变的情况下,像素电极30在相应液晶分子上的作用力只与电极结构的面积有关,即电极结构的面积越大,像素电极30在相应液晶分子上的作用力也就越大。因此主像素电极34的主电极结构341的面积大于次像素电极35的次电极结构351的面积,造成主像素电极34在相应液晶分子上的作用力大于次液晶电极35在相应液晶分子上的作用力。
这样在相同数据信号的情况下,主像素电极34对应显示区域的像素较亮,次像素电极35对应显示区域的像素较暗,同时主像素电极34包括四个主驱动区域343,可对同一数据信号进行四畴显示,次像素电极35包括四个次驱动区域353,可对同一数据信号进行四畴显示。这样该像素结构30实现了液晶显示装置的八畴显示效果。
本优选实施例的像素结构通过设置主电极结构的宽度大于次电极结构的宽度,且主结构狭缝的宽度小于次结构狭缝的宽度,使得该像素结构中不需要设置单独控制次像素电极的次薄膜晶体管、次扫描线以及分压电容,并可较好的实现多畴显示;因此该像素结构的开口率较高,整个液晶显示装置的制作成本较低。
请参照图5和图6,图5为本发明的像素结构的第二优选实施例的结构示意图,图6为沿图5的C-C’截面线的截面图。本优选实施例的像素结构设置在相应的液晶显示装置中,该液晶显示装置包括彩膜基板6、阵列基板5以及设置在彩膜基板6和阵列基板5之间的液晶层(图中未示出)。在阵列基板5上具有多个像素结构50。
本优选实施例中,该像素结构50包括数据线51、扫描线52、薄膜晶体管53以及像素电极。该数据线51用于传输数据信号,该扫描线52用于传输扫描信号,薄膜晶体管53用于根据扫描信号,发送数据信号。像素电极用于接收数据信号,并根据数据信号驱动相应的像素进行显示。
其中像素电极包括主像素电极54和次像素电极55,主像素电极54包括主电极结构541以及主电极结构541之间的主结构狭缝542,次像素电极55包括次电极结构551以及次电极结构551之间的次结构狭缝552。
在本优选实施例中主电极结构541的宽度小于次电极结构551的宽度,主结构狭缝542的宽度大于次结构狭缝552的宽度。
主像素电极54包括四个主驱动区域543,主电极结构541由主像素电极54的中心向主像素电极54的四周延伸,主电极结构541在不同的主驱动区域543内的延伸方向不同。
次像素电极55也包括四个次驱动区域553,次电极结构551由次像素电极55的中心向次像素电极55的四周延伸,次电极结构551在不同的次驱动区域553内的延伸方向不同。
本优选实施例的像素结构50进行显示的原理与第一优选实施例相似,在相同数据信号的情况下,次像素电极55对应显示区域的像素较亮,主像素电极54对应显示区域的像素较暗,同时次像素电极55包括四个次驱动区域553,可对同一数据信号进行四畴显示,主像素电极54包括四个主驱动区域543,可对同一数据信号进行四畴显示。这样该像素结构50也可实现液晶显示装置的八畴显示效果。
本优选实施例的像素结构通过设置主电极结构的宽度小于次电极结构的宽度,且主结构狭缝的宽度大于次结构狭缝的宽度,使得该像素结构中不需要设置单独控制次像素电极的次薄膜晶体管、次扫描线以及分压电容,并可较好的实现多畴显示;因此该像素结构的开口率较高,整个液晶显示装置的制作成本较低。
本发明还提供一种液晶显示装置,该液晶显示装置包括彩膜基板、阵列基板以及设置在彩膜基板和阵列基板之间的液晶层,其中阵列基板具有多个像素结构。
该像素结构包括数据线、扫描线、薄膜晶体管以及像素电极。该数据线用于传输数据信号,该扫描线用于传输扫描信号,薄膜晶体管用于根据扫描信号,发送数据信号。像素电极用于接收数据信号,并根据数据信号驱动相应的像素进行显示。
其中像素电极包括主像素电极和次像素电极,主像素电极包括主电极结构以及主电极结构之间的主结构狭缝,次像素电极包括次电极结构以及次电极结构之间的次结构狭缝。
主像素电极包括四个主驱动区域,主电极结构由主像素电极的中心向主像素电极的四周延伸,主电极结构在不同的主驱动区域内的延伸方向不同。
次像素电极也包括四个次驱动区域,次电极结构由次像素电极的中心向次像素电极的四周延伸,次电极结构在不同的次驱动区域内的延伸方向不同。
本优选实施例中的像素结构的像素电极的主电极结构的宽度不同于所述次电极结构的宽度,即主电极结构的宽度小于次电极结构的宽度,主结构狭缝的宽度大于次结构狭缝的宽度;或主电极结构的宽度小于次电极结构的宽度;主结构狭缝的宽度大于次结构狭缝的宽度。
本优选实施例的液晶显示装置的具体工作原理与上述的像素结构的第一优选实施例和第二优选实施例的工作原理相同,具体请参见上述像素结构的第一优选实施例和第二优选实施例中的相关描述。
本发明的像素结构及液晶显示装置通过设置不同宽度的主电极结构以及次电极结构,使得像素结构中不设置次薄膜晶体管、次扫描线以及分压电容也可较好的实现多畴显示,提升了像素结构的开口率,降低了液晶显示装置的制作成本;解决了现有的像素结构及液晶显示装置的开口率较低或制作成本较高的技术问题。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (19)

  1. 一种像素结构,其包括:
    数据线,用于传输数据信号;
    扫描线,用于传输扫描信号;
    薄膜晶体管,用于根据所述扫描信号,发送所述数据信号;以及
    像素电极,用于接收数据信号,并根据所述数据信号驱动相应的像素进行显示;
    其中所述像素电极包括:
    主像素电极,包括主电极结构以及所述主电极结构之间的主结构狭缝;以及
    次像素电极,包括次电极结构以及所述次电极结构之间的次结构狭缝;
    其中所述主电极结构的宽度不同于所述次电极结构的宽度;
    所述主像素电极包括四个主驱动区域,所述主电极结构由所述主像素电极的中心向所述主像素电极的四周延伸,所述主电极结构在不同的所述主驱动区域内的延伸方向不同;
    所述次像素电极包括四个次驱动区域,所述次电极结构由所述次像素电极的中心向所述次像素电极的四周延伸,所述次电极结构在不同的所述次驱动区域内的延伸方向不同。
  2. 2、根据权利要求1所述的像素结构,其中所述主电极结构的宽度大于所述次电极结构的宽度。
  3. 3、根据权利要求2所述的像素结构,其中所述主结构狭缝的宽度小于所述次结构狭缝的宽度。
  4. 4、根据权利要求1所述的像素结构,其中所述主电极结构的宽度小于所述次电极结构的宽度。
  5. 5、根据权利要求4所述的像素结构,其中所述主结构狭缝的宽度大于所述次结构狭缝的宽度。
  6. 6、一种像素结构,其包括:
    数据线,用于传输数据信号;
    扫描线,用于传输扫描信号;
    薄膜晶体管,用于根据所述扫描信号,发送所述数据信号;以及
    像素电极,用于接收数据信号,并根据所述数据信号驱动相应的像素进行显示;
    其中所述像素电极包括:
    主像素电极,包括主电极结构以及所述主电极结构之间的主结构狭缝;以及
    次像素电极,包括次电极结构以及所述次电极结构之间的次结构狭缝;
    其中所述主电极结构的宽度不同于所述次电极结构的宽度。
  7. 7、根据权利要求6所述的像素结构,其中所述主电极结构的宽度大于所述次电极结构的宽度。
  8. 8、根据权利要求7所述的像素结构,其中所述主结构狭缝的宽度小于所述次结构狭缝的宽度。
  9. 9、根据权利要求6所述的像素结构,其中所述主电极结构的宽度小于所述次电极结构的宽度。
  10. 10、根据权利要求9所述的像素结构,其中所述主结构狭缝的宽度大于所述次结构狭缝的宽度。
  11. 11、根据权利要求6所述的像素结构,其中所述主像素电极包括四个主驱动区域,所述主电极结构由所述主像素电极的中心向所述主像素电极的四周延伸,所述主电极结构在不同的所述主驱动区域内的延伸方向不同。
  12. 12、根据权利要求6所述的像素结构,其中所述次像素电极包括四个次驱动区域,所述次电极结构由所述次像素电极的中心向所述次像素电极的四周延伸,所述次电极结构在不同的所述次驱动区域内的延伸方向不同。
  13. 13、一种液晶显示装置,其包括:
    彩膜基板;
    阵列基板;以及
    液晶层,设置在所述彩膜基板和所述阵列基板之间;
    其中所述阵列基板上具有多个像素结构,所述像素结构包括:
    数据线,用于传输数据信号;
    扫描线,用于传输扫描信号;
    薄膜晶体管,用于根据所述扫描信号,发送所述数据信号;以及
    像素电极,用于接收数据信号,并根据所述数据信号驱动相应的像素进行显示;
    其中所述像素电极包括:
    主像素电极,包括主电极结构以及所述主电极结构之间的主结构狭缝;以及
    次像素电极,包括次电极结构以及所述次电极结构之间的次结构狭缝;
    其中所述主电极结构的宽度不同于所述次电极结构的宽度。
  14. 根据权利要求13所述的液晶显示装置,其中所述主电极结构的宽度大于所述次电极结构的宽度。
  15. 根据权利要求14所述的液晶显示装置,其中所述主结构狭缝的宽度小于所述次结构狭缝的宽度。
  16. 根据权利要求13所述的液晶显示装置,其中所述主电极结构的宽度小于所述次电极结构的宽度。
  17. 根据权利要求16所述的液晶显示装置,其中所述主结构狭缝的宽度大于所述次结构狭缝的宽度。
  18. 根据权利要求13所述的液晶显示装置,其中所述主像素电极包括四个主驱动区域,所述主电极结构由所述主像素电极的中心向所述主像素电极的四周延伸,所述主电极结构在不同的所述主驱动区域内的延伸方向不同。
  19. 根据权利要求13所述的液晶显示装置,其中所述次像素电极包括四个次驱动区域,所述次电极结构由所述次像素电极的中心向所述次像素电极的四周延伸,所述次电极结构在不同的所述次驱动区域内的延伸方向不同。
PCT/CN2014/081083 2014-06-19 2014-06-30 像素结构及液晶显示装置 WO2015192393A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410274149.9A CN104035247A (zh) 2014-06-19 2014-06-19 像素结构及液晶显示装置
CN201410274149.9 2014-06-19

Publications (1)

Publication Number Publication Date
WO2015192393A1 true WO2015192393A1 (zh) 2015-12-23

Family

ID=51466071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081083 WO2015192393A1 (zh) 2014-06-19 2014-06-30 像素结构及液晶显示装置

Country Status (2)

Country Link
CN (1) CN104035247A (zh)
WO (1) WO2015192393A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219747A (zh) * 2021-04-23 2021-08-06 成都中电熊猫显示科技有限公司 阵列基板、液晶显示面板及液晶显示器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460152B (zh) * 2014-12-10 2017-09-15 深圳市华星光电技术有限公司 阵列基板及显示装置
CN105223749A (zh) 2015-10-10 2016-01-06 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN105404057B (zh) * 2015-12-25 2018-04-13 深圳市华星光电技术有限公司 液晶显示面板
CN106444178A (zh) * 2016-11-10 2017-02-22 深圳市华星光电技术有限公司 一种液晶显示面板及装置
CN106707570B (zh) * 2016-12-29 2020-05-05 深圳市华星光电技术有限公司 一种阵列基板、显示面板以及短路的检测方法
CN107015403B (zh) * 2017-04-05 2019-05-31 深圳市华星光电半导体显示技术有限公司 阵列基板
CN107589602A (zh) * 2017-10-17 2018-01-16 深圳市华星光电半导体显示技术有限公司 一种具有新型像素设计的液晶显示面板
CN107843998A (zh) * 2017-11-07 2018-03-27 深圳市华星光电技术有限公司 一种液晶显示面板
CN208156379U (zh) 2018-02-26 2018-11-27 惠科股份有限公司 一种像素结构及阵列基板
CN108227316A (zh) * 2018-02-26 2018-06-29 惠科股份有限公司 显示面板及曲面显示装置
CN109521591B (zh) * 2018-12-17 2024-05-03 惠科股份有限公司 一种显示面板和显示装置
JP7216592B2 (ja) * 2019-03-27 2023-02-01 株式会社ジャパンディスプレイ 表示装置
CN111258143A (zh) * 2020-03-18 2020-06-09 Tcl华星光电技术有限公司 显示面板和显示装置
CN111443532A (zh) * 2020-04-21 2020-07-24 Tcl华星光电技术有限公司 液晶显示面板及显示装置
CN112327544A (zh) * 2020-11-05 2021-02-05 重庆惠科金渝光电科技有限公司 像素单元、显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021509A1 (en) * 2007-07-20 2009-01-22 Samsung Electronics Co., Ltd. Flat panel crystal display employing simultaneous charging of main and subsidiary pixel electrodes
CN102262326A (zh) * 2011-08-02 2011-11-30 深超光电(深圳)有限公司 面内切换型液晶显示面板
CN102879966A (zh) * 2012-10-18 2013-01-16 深圳市华星光电技术有限公司 一种阵列基板及液晶显示装置
CN102879960A (zh) * 2012-09-19 2013-01-16 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN102890363A (zh) * 2012-10-08 2013-01-23 深圳市华星光电技术有限公司 液晶显示设备及立体影像显示设备
CN103558692A (zh) * 2013-10-12 2014-02-05 深圳市华星光电技术有限公司 一种偏光式三维显示面板及其像素单元

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102902117A (zh) * 2012-07-17 2013-01-30 深圳市华星光电技术有限公司 液晶显示面板及其应用的显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021509A1 (en) * 2007-07-20 2009-01-22 Samsung Electronics Co., Ltd. Flat panel crystal display employing simultaneous charging of main and subsidiary pixel electrodes
CN102262326A (zh) * 2011-08-02 2011-11-30 深超光电(深圳)有限公司 面内切换型液晶显示面板
CN102879960A (zh) * 2012-09-19 2013-01-16 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN102890363A (zh) * 2012-10-08 2013-01-23 深圳市华星光电技术有限公司 液晶显示设备及立体影像显示设备
CN102879966A (zh) * 2012-10-18 2013-01-16 深圳市华星光电技术有限公司 一种阵列基板及液晶显示装置
CN103558692A (zh) * 2013-10-12 2014-02-05 深圳市华星光电技术有限公司 一种偏光式三维显示面板及其像素单元

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219747A (zh) * 2021-04-23 2021-08-06 成都中电熊猫显示科技有限公司 阵列基板、液晶显示面板及液晶显示器
CN113219747B (zh) * 2021-04-23 2022-11-08 成都中电熊猫显示科技有限公司 阵列基板、液晶显示面板及液晶显示器

Also Published As

Publication number Publication date
CN104035247A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2015192393A1 (zh) 像素结构及液晶显示装置
WO2016074263A1 (zh) 曲面液晶显示面板及曲面液晶显示装置
WO2016115746A1 (zh) 一种液晶显示面板及装置
WO2014190585A1 (zh) 液晶显示面板及其像素结构和驱动方法
WO2016176889A1 (zh) 阵列基板及液晶显示面板
WO2016183922A1 (zh) 一种液晶显示面板及装置
WO2014056239A1 (zh) 液晶显示装置及其驱动电路
WO2018072287A1 (zh) 一种像素结构及液晶显示面板
WO2015180218A1 (zh) 柔性拼接显示装置
WO2019080188A1 (zh) 一种像素单元及显示基板
WO2013078670A1 (zh) 液晶显示器
WO2013029259A1 (zh) 液晶显示面板及其应用的显示装置
WO2017008316A1 (zh) 一种阵列基板及液晶显示面板
WO2017219400A1 (zh) Hsd液晶显示面板及液晶显示装置
WO2016008184A1 (zh) 一种显示面板及显示装置
WO2020135023A1 (zh) 显示装置、阵列基板及其工艺方法
WO2017101176A1 (zh) 液晶显示装置
WO2016165214A1 (zh) 一种液晶显示面板
WO2018209755A1 (zh) 显示面板及显示装置
WO2014012292A1 (zh) 液晶显示面板及其应用的显示装置
WO2016026167A1 (zh) 一种液晶显示面板及阵列基板
WO2018176565A1 (zh) 一种液晶显示面板及装置
WO2015168934A1 (zh) 一种液晶显示面板及液晶显示装置
WO2016192127A1 (zh) 一种阵列基板和液晶显示面板
WO2016095252A1 (zh) Ffs阵列基板及液晶显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894944

Country of ref document: EP

Kind code of ref document: A1