WO2015190508A1 - 磁気共鳴イメージング装置及び水脂肪分離画像作成方法 - Google Patents

磁気共鳴イメージング装置及び水脂肪分離画像作成方法 Download PDF

Info

Publication number
WO2015190508A1
WO2015190508A1 PCT/JP2015/066694 JP2015066694W WO2015190508A1 WO 2015190508 A1 WO2015190508 A1 WO 2015190508A1 JP 2015066694 W JP2015066694 W JP 2015066694W WO 2015190508 A1 WO2015190508 A1 WO 2015190508A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo
image
magnetic field
signal
frequency
Prior art date
Application number
PCT/JP2015/066694
Other languages
English (en)
French (fr)
Inventor
則正 中井
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to US15/311,630 priority Critical patent/US20170097400A1/en
Priority to JP2016527837A priority patent/JPWO2015190508A1/ja
Publication of WO2015190508A1 publication Critical patent/WO2015190508A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4828Resolving the MR signals of different chemical species, e.g. water-fat imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56554Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by acquiring plural, differently encoded echo signals after one RF excitation, e.g. correction for readout gradients of alternating polarity in EPI
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/5659Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the RF magnetic field, e.g. spatial inhomogeneities of the RF magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis

Definitions

  • the present invention measures magnetic resonance (hereinafter referred to as “NMR”) signals of hydrogen nuclei (hereinafter referred to as “protons”) contained in a subject, and visualizes the density distribution, relaxation time distribution, etc. of protons.
  • NMR magnetic resonance
  • protons hydrogen nuclei
  • the present invention relates to a resonance imaging (hereinafter referred to as “MRI”) apparatus, and more particularly to a technique for acquiring an image for quantitative evaluation of fat.
  • the MRI device measures NMR signals generated by changes in the external magnetic field of the nuclear spins that make up the subject, especially human tissue, and forms the shape of the head, abdomen, limbs, etc. in two or three dimensions. It is a device that images.
  • the NMR signal is subjected to phase encoding that varies depending on the gradient magnetic field, is frequency-encoded, and is measured as time-series data.
  • the measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
  • various tissue contrasts can be obtained by changing parameters such as echo time (hereinafter referred to as ⁇ TE '') and repetition time (hereinafter referred to as ⁇ TR '') and performing image computation.
  • An image with can be obtained.
  • an image in which signals from adipose tissue are suppressed is often required.
  • a method for obtaining an image in which signals from adipose tissue are suppressed there is a method for obtaining a plurality of images having different TEs and obtaining an image in which water and fat are separated by calculation.
  • DIXON method Non-Patent Document 1
  • Non-Patent Document 2 discloses a two-point DIXON method with static magnetic field correction, in which a function for correcting the influence of static magnetic field inhomogeneity is added to the DIXON method.
  • the influence of the reception frequency characteristic may occur in the positive and negative electrodes.
  • the reception frequency characteristic is a characteristic of the receiver that the sensitivity (gain) varies depending on the reception frequency. Even if the generated echo signal has the same signal intensity, the magnitude of the echo signal changes depending on the reception frequency. This reception frequency characteristic varies depending on the connected reception coil and the object to be imaged.
  • Non-Patent Document 2 does not disclose a function of correcting the influence of reception frequency characteristics. Therefore, in the DIXON method of Non-Patent Document 2, it is difficult to create a water-fat separated image from an image obtained from two TE signals to a level at which fat can be quantitatively evaluated.
  • the imaging time must be extended and the number of imaging slices must be reduced. It is subject to restrictions such as having to.
  • An object of the present invention is to provide a magnetic resonance imaging apparatus and a water / fat separation image capable of acquiring an image capable of quantitative evaluation of fat by removing the influence of the reception frequency characteristic of the image acquired by inverting the frequency encoding gradient magnetic field. It is to provide a creation method.
  • an echo signal is acquired during application of a positive frequency encoding gradient magnetic field, and an echo signal is acquired during application of a negative frequency encoding gradient magnetic field.
  • a correction amount for correcting the influence of the reception frequency characteristic is obtained from these signals, and using this correction amount, the signal intensity of the image derived from the TE signal obtained by inverting the polarity of the frequency encoding gradient magnetic field is corrected.
  • the MRI apparatus of the present invention has the following characteristics.
  • a static magnetic field magnet a high frequency generator for generating a high frequency magnetic field pulse, a receiver having a high frequency coil for receiving an echo signal generated by nuclear magnetic resonance, a gradient magnetic field coil, and the high frequency generator according to a predetermined pulse sequence
  • a control unit for controlling the gradient magnetic field coil and the receiving unit, and a signal processing unit for processing the echo signal, the pulse sequence having different polarities at a plurality of echo times after excitation by the high-frequency magnetic field pulse.
  • a multi-echo sequence for acquiring an echo signal during application of a frequency encoding gradient magnetic field, wherein the signal processing unit receives a pair of correction echo signals acquired during application of a positive and negative frequency encoding gradient magnetic field at the same echo time.
  • Correction data is created using the frequency-encoded gradient magnetic field of the different polarity. Characterized in that it comprises a correction unit for correcting the over signal.
  • the correction unit creates the correction data using an echo signal acquired by a correction data measurement sequence executed separately from the multi-echo sequence.
  • the correction data measurement sequence is the same as the multi-echo sequence except for the application condition of the phase encoding gradient magnetic field.
  • the pair of correction echo signals is an echo signal acquired in the execution of the multi-echo sequence and an echo signal acquired in a correction data measurement sequence executed separately from the multi-echo sequence.
  • the pair of correction echo signals are signals acquired by applying a low-frequency phase encoding gradient magnetic field.
  • the high-frequency coil includes a plurality of small coils, and the correction unit generates correction data for each of the small coils, and performs correction using the correction data on echo signals received by the small coils.
  • the correction unit obtains the correction data from a ratio of data obtained by two-dimensional Fourier transform of the pair of correction echo signals for each small coil.
  • the multi-echo sequence includes a first echo time in which an echo signal from water and an echo signal from fat are in phase in the frequency-encoded gradient magnetic fields of different polarities, an echo signal from water and the fat signal It is a water fat separation sequence in which an echo signal is acquired at a second echo time having an opposite phase to the echo signal.
  • the echo signal for creating the correction data is an echo signal acquired at the same echo time as the first echo time or the second echo time.
  • the water fat separation sequence is characterized in that the first echo time is set longer than the second echo time.
  • the water / fat separation image creation method of the present invention has the following characteristics.
  • a water / fat separation image creation method for creating a plurality of types of images using echo signals generated by nuclear magnetic resonance, wherein the echo signals are frequency encoded with different polarities at a plurality of echo times after excitation by a high-frequency magnetic field pulse.
  • the pair of correction echo signals are signals acquired by applying a low-frequency phase encoding gradient magnetic field.
  • the echo signal includes a first echo time in which an echo signal from water and an echo signal from fat are in phase, and a second echo in which the echo signal from water and the echo signal from fat are in reverse phase Using the first echo signal acquired at the first echo time and the second echo signal acquired at the second echo time to create a plurality of types of images. .
  • the pair of correction echo signals are signals obtained by applying a low-frequency phase encoding gradient magnetic field at the same echo time as the first echo time or the second echo time.
  • the fat distribution ratio is calculated using the plurality of types of images.
  • an image acquired from an echo signal (hereinafter referred to as “positive echo signal”) acquired during application of the positive frequency encoding gradient magnetic field (hereinafter referred to as “positive image”).
  • the influence of the reception frequency characteristics of the image (hereinafter referred to as the ⁇ negative image '') acquired from the echo signal (hereinafter referred to as the ⁇ negative echo signal '') obtained during application of the negative frequency encoding gradient magnetic field.
  • the reception frequency characteristic for example, even when an image obtained by capturing an image of a region such as the liver at high speed under breathing stop is used, the accuracy of quantitative evaluation of fat can be improved. Further, in imaging for acquiring an image for quantitative evaluation of fat, the imaging time can be shortened or the number of imaging slices can be increased.
  • the block diagram which shows the whole structure of the MRI apparatus with which this invention is applied The block diagram which shows the structure of the signal processing part of the MRI apparatus with which this invention is applied
  • the figure which shows the gradient echo (GrE) type sequence used in the first embodiment and the second embodiment The figure which shows the example of the receiving frequency characteristic of the receiving coil Diagram explaining the effect of reception frequency characteristics on images
  • the figure which shows the example of the correction data measurement sequence used by 1st embodiment Processing flowchart for correcting reception frequency characteristics Processing flow chart for channel composition and obtaining fat content image
  • amendment data measurement sequence used by 2nd embodiment The figure which shows the gradient echo (GrE) type sequence used in the third embodiment
  • FIG. 1 is a block diagram showing the overall configuration of an MRI apparatus to which the present invention is applied.
  • An MRI apparatus to which the present invention is applied includes a static magnetic field magnet 102 that generates a static magnetic field around a subject 101, a gradient magnetic field coil 103 that generates a gradient magnetic field, and a high-frequency magnetic field pulse (hereinafter referred to as “RF”).
  • An irradiation high-frequency coil hereinafter referred to as “irradiation coil”) 104, a reception high-frequency coil (hereinafter referred to as “reception coil”) 105 that receives an NMR signal from the subject, and a subject 101.
  • a gradient magnetic field power source 107 that sends a signal to the gradient coil 103 to generate a gradient magnetic field
  • an RF transmitter 108 that sends a signal to generate an RF pulse to the irradiation coil 104
  • a reception coil 105 A signal detection unit 109 for detecting the received echo signal, a signal processing unit 110 for processing the signal detected from the signal detection unit 109, a display unit 111 for displaying an image and the like, and a control unit 112 for controlling imaging and the like And parameters necessary for imaging And an input unit 113 to force.
  • the irradiation coil 104 and the RF transmission unit 108 are collectively referred to as a high frequency generation unit, and the reception coil 105 and the signal detection unit 109 are collectively referred to as a reception unit.
  • the static magnetic field magnet 102 is a permanent magnet, a superconducting magnet, or a normal conducting magnet arranged in a wide space around the subject 101, and is parallel or perpendicular to the body axis of the subject 101. Generate a uniform static magnetic field in the direction.
  • the gradient magnetic field coil 103 applies a gradient magnetic field in the X, Y, and Z axial directions to the subject 101 in accordance with a signal from the gradient magnetic field power source 107. By applying this gradient magnetic field, the imaging section of the subject is determined, and phase encoding and frequency encoding are applied to the signal.
  • the irradiation coil 104 generates an RF pulse according to the signal from the RF transmitter 108.
  • This RF pulse excites protons contained in the living tissue in the imaging cross section of the subject 101 set by the gradient magnetic field coil 103 to induce an NMR phenomenon.
  • the receiving coil 105 receives an echo signal generated by the NMR phenomenon of protons contained in the subject 101 induced by the RF pulse irradiated from the irradiation coil 104.
  • the receiving coil 105 may be a single coil, but may be a multi-channel coil (for example, a multiple array coil or a phased array coil) in which a plurality of small coils are combined, or a single multi-channel coil.
  • the signal detection unit 109 detects an echo signal received through the reception coil 105 arranged close to the subject 101.
  • the receiving coil has a plurality of coils (channels)
  • an echo signal is detected for each channel.
  • the signal processing unit 110 performs signal processing on the echo signal detected by the signal detection unit 109 to generate an image of the subject 101. Details of the signal processing unit 110 will be described below with reference to FIG.
  • the display unit 111 displays images and shooting parameters generated by the signal processing unit 110.
  • the input unit 113 is used for an operator to input parameters such as TR and TE necessary for imaging.
  • the input parameters are displayed on the display unit 111 and sent to the control unit 112, and are used for imaging control.
  • the control unit 112 Based on the parameters input from the input unit 113, the control unit 112 generates a predetermined pulse sequence for repeatedly generating each gradient magnetic field and RF pulse for performing slice selection, phase encoding, and frequency encoding, and the gradient magnetic field.
  • the power source 107, the RF transmission unit 108, and the signal processing unit 110 are controlled.
  • the pulse sequence includes a main measurement pulse sequence for main measurement and a correction data measurement sequence for measuring correction data.
  • FIG. 2 shows the configuration of the signal processing unit 110 of the MRI apparatus of the present embodiment.
  • the signal processing unit 110 includes a signal reception unit 201, an image conversion unit 204, an image processing unit 206, and an image transmission unit 207.
  • the signal processing unit 110 includes a memory (k-space database 202, correction database 203, and image database 205) that stores data obtained by each of these units, and a memory (memory (memory (memory) that stores data acquired from the control unit). Parameter) 208).
  • These parts can be composed of CPU and memory.
  • a program for executing the function of each unit is stored in advance in the memory, and the CPU reads and executes the program in the memory. As a result, the operation of each part can be realized.
  • a program as shown in the flow of FIG. 7 or FIG. 8 is stored in advance in the memory.
  • the CPU reads the program shown in the flowchart of FIG. 7 and executes it, whereby the operation of the image conversion unit 204 is executed. Further, the CPU reads and executes the program shown in the flow of FIG. 8 from the memory, whereby the operation of the image processing unit 206 is executed.
  • the description will be made assuming that the image conversion unit 204 and the image processing unit 206 are realized as software. This processing can also be realized by hardware such as ASIC or FPGA.
  • the signal reception unit 201 stores the signal acquired by the main measurement among the echo signals detected by the signal detection unit 109 in the k-space database 202 based on the arrangement information in the k-space.
  • the signal receiving unit 201 uses the pair of correction echo signals acquired by the correction data measurement from the echo signals detected by the signal detection unit 109 or the main measurement when using the signal acquired by the main measurement.
  • the signal acquired by the low-frequency phase encoding and the signal acquired by the correction data measurement are stored in the correction database 203 based on the arrangement information in the k space.
  • the image conversion unit 204 performs Fourier transform on the k-space data stored in the k-space database 202 to convert it into an image, corrects the reception frequency characteristics with the correction data stored in the correction database 203, and stores the correction in the image database 205. .
  • This correction is performed for each coil. For example, when reception is performed by a receiving coil having a plurality of small coils (channels), the correction is performed for each small coil.
  • the image processing unit 206 performs image processing on the image stored in the image database 205.
  • Image processing includes, for example, processing for combining images for each channel of the receiving coil, processing for creating a water image and a fat image, processing for correcting unevenness in sensitivity of the receiving coil 105, and the like.
  • the image processing unit 206 passes the processed image to the image transmission unit 207.
  • the image transmission unit 207 transmits the image processed by the image processing unit 206 to the display unit 111.
  • the transmitted images include In-phase images, Out-of-phase images, water images, fat images, and fat content images.
  • Parameters stored in the memory 208 are necessary for the slice sequence, frequency encoding, and phase encoding information of the pulse sequence required by the signal reception unit 201, and the image conversion unit 204, the image processing unit 206, and the image transmission unit 207. It includes parameters such as an image matrix and filtering, and control information, and the memory 208 acquires these from the control unit 112.
  • This measurement pulse sequence is a multi-echo sequence for measuring an echo signal for each inversion of a frequency encoding gradient magnetic field pulse and obtaining a plurality of images having different TEs.
  • the correction data measurement sequence is to acquire correction data for removing the influence of the reception frequency characteristics included in each echo in the main measurement pulse sequence.
  • This is a pulse sequence in which the polarity of the frequency encoding gradient magnetic field is reversed.
  • a pair of correction echo signals acquired during application of frequency-encoded gradient magnetic fields of the same TE and different polarities to be used as correction data are the signals acquired in this measurement and the correction data measurement.
  • the acquired echo signal is used.
  • FIG. 3 shows an example of this measurement pulse sequence.
  • This pulse sequence is a sequence for obtaining two types of image data having different TEs, and is a gradient echo (GrE) type sequence method.
  • the frequency encoding gradient magnetic field is inverted from the positive electrode to the negative electrode to acquire two types of image data having different TEs.
  • this pulse sequence is applied to water fat separation imaging.
  • the control unit 112 performs the following control and executes this pulse sequence.
  • the slice selective gradient magnetic field 302 is applied simultaneously with the irradiation of the RF pulse 301 to excite only the target tomographic plane.
  • a phase encode gradient magnetic field 303 for encoding position information is applied, and at the same time, a frequency encode gradient magnetic field (prepulse) 304 in the negative direction is applied.
  • a frequency encode gradient magnetic field 305 in the positive direction is applied to generate the first echo signal after TE1 has elapsed from the RF pulse.
  • the frequency encode gradient magnetic field 306 in the negative direction is applied again to generate the next echo signal after TE2 has elapsed from the RF pulse.
  • Such a sequence is repeatedly executed for the number of phase encodings while changing the application amount of the phase encoding gradient magnetic field 303, and echo signals for the number of phase encodings are acquired.
  • the receiving coil has a plurality of channels, an echo signal is acquired for each channel.
  • the k-space database 202 stores the echo signal data of TE1 and TE2. Two types of image data with different TEs are collected by Fourier transforming k-space data.
  • this measurement may use a frequency encode gradient magnetic field having a polarity opposite to that of the frequency encode gradient magnetic field used in FIG. Specifically, after applying the frequency encode gradient magnetic field (pre-pulse) 304 in the positive direction, the frequency encode gradient magnetic field 305 may be applied in the negative direction, and then the frequency encode gradient magnetic field 306 may be applied in the positive direction.
  • TE1 is the timing at which the phase of the echo signal from the water proton (water signal) and the echo signal from the fat proton (fat signal) are opposite
  • TE2 is the phase of the water signal and the fat signal
  • the timing can be the same phase.
  • TE1 may have the water signal and the fat signal in the same phase and TE2 in the opposite phase.
  • FIG. 4 is an example of the reception frequency characteristic of the reception coil, and shows the reception frequency characteristic of each channel of the two-channel coil.
  • FIG. 5 is a diagram for explaining the influence of the reception frequency characteristic on the image.
  • 401 is the reception frequency characteristic of channel number 1
  • 402 is the reception frequency characteristic of channel number 2.
  • the gain of 63.66 [MHz] is 15.3 [dB]
  • the gain decreases as the reception frequency increases, and becomes 14.2 [dB] at 64.06 [MHz].
  • the gain of 63.66 [MHz] is 11.7 [dB]
  • the gain increases as the reception frequency increases, and becomes 12.2 [dB] at 64.06 [MHz].
  • image 5 is an image of a positive electrode
  • image 502 is an image of a negative electrode. Since the frequency encoding gradient magnetic field of images 501 and 502 is in the opposite direction, the frequency encoding of image 501 increases in frequency from left to right, whereas the frequency encoding of image 502 is frequency from left to right. Decrease.
  • a case of an image based on a signal acquired with channel number 1 will be described. As described with reference to FIG. 4, in the reception frequency characteristic of channel number 1, the gain decreases as the reception frequency increases. That is, in the image 501, the gain of the reception frequency characteristic decreases from the left to the right.
  • the gain of the reception frequency characteristic increases in the direction from left to right.
  • the gain of channel number 1 is 15.0 [dB] at 63.76 [MHz] (point b) (see FIG. 4)
  • the reception frequency increases from left to right (in other words, As it increases), the gain decreases to 14.4 [dB] (see Fig. 4) at 63.96 [MHz] (d point).
  • the gain of channel number 1 increases from the left to the right (in other words, as the reception frequency decreases).
  • the gain of the reception frequency characteristic of channel number 2 increases as the frequency increases.
  • the signal value on the left side is lower in the image 501 than in the image 502
  • the signal value on the right side is higher in the image 501 than in the image 502.
  • the two channels have been described above. However, since each channel has different reception frequency characteristics, the influence of the reception frequency characteristics for each channel occurs differently.
  • An image synthesized from signals acquired by a plurality of channels as described above is a result of synthesis of the influence of the reception frequency characteristics of each channel. As a result, the accuracy of the fat content image decreases due to the mixing of these effects.
  • This correction data measurement pulse sequence is a pulse sequence in which the frequency encode gradient magnetic field of the measurement pulse sequence is reversed and a phase encode gradient magnetic field only in a low range is applied.
  • FIG. 1 An example of the correction data measurement pulse sequence is shown in FIG.
  • the polarity of the frequency encode gradient magnetic field 604, 605, 606 is opposite to the polarity of the frequency encode gradient magnetic field 304, 305, 306 of this measurement pulse sequence, respectively, and the phase encode gradient magnetic field 603 is low.
  • This is the same as the main measurement pulse sequence of FIG. 3 except that only the phase encoding gradient magnetic field is used.
  • Such a sequence is repeatedly executed for the number of times of phase encoding only in the low band while changing the application amount of the phase encoding gradient magnetic field 603. Either the TE1 signal or the TE2 signal acquired by the correction data measurement is used for correction.
  • the echo signal used for correction is preferably acquired with the TE whose water and fat phases are closest to the same phase. It is preferable.
  • the correction data measurement of FIG. 6 of the negative echo signal at TE2 of FIG. In the correction data measurement, the echo signal obtained from the same low-frequency phase encoding as the pulse sequence and the positive echo signal at TE2 in FIG. 6 are used as correction data.
  • the main measurement pulse sequence of FIG. 3 when the timing at which the water signal and the fat signal are in phase is TE1, in the main measurement, among the positive echo signals at TE1 of FIG. 3, the correction data measurement of FIG.
  • the echo signal acquired by the same low-frequency phase encoding as the pulse sequence and the negative echo signal at TE1 in FIG. 6 are used as correction data in correction data measurement.
  • the correction data measurement pulse sequence shown in FIG. 6 is a sequence for obtaining two echo signals from excitation by one RF pulse irradiation. Although shown, the correction data measurement sequence may acquire one echo signal from one excitation.
  • Correction data measurement is performed by applying a low-frequency phase encoding gradient magnetic field including a zero phase encoding gradient magnetic field.
  • the application amount of the low-frequency phase encoding gradient magnetic field is preferably 8, more preferably 16, and further preferably 32.
  • Correction data measurement is performed immediately before or immediately after the actual measurement at the same slice position as the actual measurement, the same imaging field (FOV (Field of View)), the same frequency encoding direction, the same frequency encoding sampling points, and the same reception bandwidth. May be. Further, the correction data measurement may be performed continuously or separately from the main measurement.
  • FOV Field of View
  • the correction data measurement preferably obtains a signal for each small coil. Moreover, it is preferable to perform correction data measurement for each object to be imaged.
  • the echo signal obtained by the correction data measurement is stored in the correction database 203.
  • the correction database 203 also stores an echo signal obtained by applying the same phase encode gradient magnetic field as the low phase phase encode gradient magnetic field of the correction data measurement pulse sequence among the signals obtained in this measurement in the k-space database. Stored separately from the received signal.
  • Step S701 The k-space data stored in the k-space database 202 is converted into an image by two-dimensional Fourier transform.
  • the converted image is an Out-of-phase image acquired by applying a positive frequency encode gradient magnetic field, and an In-phase image acquired by applying a negative frequency encode gradient magnetic field.
  • Step S702 The echo data stored in the correction database 203 and having different polarities of the frequency encoding gradient magnetic field are each subjected to two-dimensional Fourier transform and converted into an image space.
  • the correction data is an echo signal acquired with a phase encoding gradient magnetic field only for a low frequency with respect to one slice.
  • Step S703 The ratio is obtained from the correction data of the positive electrode subjected to the two-dimensional Fourier transform and the correction data of the negative electrode subjected to the two-dimensional Fourier transform.
  • one may be aligned with the other.
  • a description will be given of how to obtain the ratio of correction data for correcting an In-phase image acquired by applying a negative frequency encoding gradient magnetic field so as to be aligned with the influence of the reception frequency characteristic included in the positive echo signal.
  • Step S704 Fit the correction data ratio. Since the correction data includes noise, it is performed to remove the influence of noise. Prior to fitting, noise data is excluded by threshold processing. Further, since the influence of the reception frequency characteristic on the image is generated like a signal gradient of a linear or quadratic function, the correction data ratio may be fitted by a linear or quadratic function. The ratio of correction data after fitting is indicated by Fitting ⁇ Cr (x) ⁇ .
  • Step S705 The two-dimensional Fourier-transformed image is corrected using the ratio Fitting ⁇ Cr (x) ⁇ of the corrected correction data.
  • ⁇ Cr (x) ⁇ the corrected In-phase image Image In '(x, y)
  • This corrected In-phase image In ′ (x, y) is aligned with the influence of the reception frequency characteristic included in the echo signal acquired during application of the positive frequency encoding gradient magnetic field.
  • Steps S701 to S705 are performed for each reception coil and for each slice.
  • the receiving coil is a coil having a plurality of small coils (channels)
  • steps S701 to S705 are performed for each small coil (channel) and for each slice.
  • the ratio of the correction data obtained in step S703 is the reciprocal of the right side of equation (1).
  • the image conversion unit 204 fits the reciprocal.
  • the image conversion unit 204 multiplies the reciprocal thus fitted by the image.
  • the corrected image is aligned with the influence of the reception frequency characteristic included in the negative signal.
  • the image processing unit 206 synthesizes the image for each channel using the image corrected by the image conversion unit 204 using a known method, creates a water image and a fat image, Can be processed. An example of such processing is shown in FIG.
  • Step S801 A case where In ′ (x, y) that is an In-phase image corrected by the image conversion unit 204 is synthesized and Out (x, y) that is an Out-of-phase image is synthesized is shown.
  • the image for each channel is synthesized by the following equation.
  • In Comb (x, y) is an image obtained by synthesizing the corrected In-phase image In ′ (x, y).
  • k indicates the channel number of the receiving coil, and N indicates the number of channels.
  • M k (x, y) is a sensitivity map for channel synthesis, and is created by applying a low-pass filter to In ′ (x, y). * Indicates a complex conjugate.
  • Out Comb (x, y) is an image obtained by synthesizing an Out-of-phase image Out (x, y).
  • the sensitivity map used for synthesis is the same as that used when In Comb (x, y) is synthesized.
  • Step S802 A phase map showing the phase change that occurs between different TEs due to the non-uniformity of the static magnetic field is created.
  • TE1 in FIG. 3 is an Out-of-phase image
  • TE2 is an In-phase image.
  • the phase of the combined Out-of-phase image Out Comb (x, y) is subtracted from the combined In-phase image In Comb (x, y), the phase is doubled, and the initial phase map Create ⁇ (x, y).
  • water and fat are in antiphase, so the antiphase of water and fat is eliminated by doubling.
  • equation (5) is obtained.
  • Arg indicates that the angle is obtained from complex data.
  • the phase unwrapping process is performed on the initial phase map ⁇ (x, y).
  • the phase unwrapping process is a process of eliminating a portion where the phase is spatially discontinuous because the range indicated by the phase is ⁇ to + ⁇ and making it spatially continuous. Since the initial phase map doubles the phase, the phase value ⁇ (x, y) is completed by halving the phase value after phase unwrapping.
  • the equation (6) is obtained.
  • Step S803 In-phase image In Comb (x, y) after composition, Out-of-phase image Out Comb (x, y) after composition, Water image Water (x, y) and Fat image Fat ( Create x, y).
  • the formula (7) is obtained.
  • Step S804 Using the water image Water (x, y) and the fat image Fat (x, y) or the In-phase image In Comb (x, y) and the fat image Fat (x, y), the fat content image FatRatio ( Create x, y). When expressed by the equation, the equation (8) is obtained.
  • abs represents an absolute value. The same applies to the case where the In-phase image In (x, y) and the corrected Out-of-phase image Out ′ (x, y) are combined to create a water fat separation image and an image of fat content. It is.
  • the image transmission unit 207 transmits the image-processed image to the display unit 111.
  • the images include In-phase images, Out-of-phase images, water images, fat images, fat content images, and the like.
  • FIG. 3 was used as the main measurement pulse sequence, and the pulse sequence shown in FIG. 6 was used as the correction data measurement sequence.
  • FIGS. 1-10 the results will be described with reference to FIGS.
  • Figure 9 shows an FOV 350mm, receiving bandwidth 360kHz, 256 sampling points in the frequency encoding direction, 128 sampling points in the phase encoding direction, and a nickel chloride aqueous solution phantom imaged in this measurement pulse sequence using a 4-channel receiving coil. It is an image.
  • An image 901 is an image (TE1 echo image) acquired when the frequency encoding gradient magnetic field is positive (the frequency increases from left to right) and TE1 is 3.6 ms.
  • the image 902 is an image (TE2 echo image) acquired when the frequency encoding gradient magnetic field is negative (the frequency decreases from left to right) and TE2 is 4.9 ms.
  • Table 1 shows the ROI_A and ROI_B signal average values of the TE1 echo image 901, the ROI_A and ROI_B signal average values of the TE2 echo image 902, and the ROI_A and ROI_B signals in the TE2 echo image 902 corrected for the influence of the reception frequency characteristic.
  • the average value is shown. Note that the coordinates of ROI_A and ROI_B of each echo image are the same.
  • the value of ROI_A of the TE2 echo image 902 is smaller than that of the TE1 echo image 901.
  • the value of ROI_B of the TE2 echo image 902 is larger than that of the TE1 echo image 901.
  • the signal value of the TE2 echo image 902 having a TE of 4.9 ms must be smaller than the signal value of the TE1 echo image 901 having a TE of 3.6 ms. This is due to the influence of the reception frequency characteristic, and the TE2 echo image 902 needs to be corrected.
  • FIG. 10 is an image for each channel of the receiving coil of the TE1 echo image 901 and the TE2 echo image 902 captured in this measurement.
  • Image 1001 to image 1004 are images for each channel of the receiving coil of TE1 echo image 901.
  • Image 1001, image 1002, image 1003, and image 1004 are images of 1 channel, 2 channels, 3 channels, and 4 channels, respectively. It is.
  • images 1005 to 1008 are images for each channel of the TE2 echo image 902 receiving coil, and images 1305, 1306, 1307, and 1308 are 1 channel, 2 channels, 3 channels, and 4 channels, respectively. It is an image.
  • Fig. 11 shows the correction data after two-dimensional Fourier transform.
  • correction data data (images 1101 to 1104) obtained by measuring the main measurement pulse sequence and data (images 1105 to 1108) obtained by measuring the correction data measurement pulse sequence were used.
  • An echo signal of TE TE1 was used.
  • the correction data images 1101 to 1104 are correction data in which the frequency encoding gradient magnetic field created from the 16 phase encodings in the low band of the TE1 echo image acquired in this measurement is positive.
  • An image 1101, an image 1102, an image 1103, and an image 1104 indicate 1 channel, 2 channels, 3 channels, and 4 channels, respectively.
  • Images 1105 to 1108 are images of TE1 echoes acquired during application of the negative frequency encoding gradient magnetic field using the correction data measurement pulse sequence.
  • An image 1105, an image 1106, an image 1107, and an image 1108 are 1 channel, 2 channels, 3 channels, and 4 channels, respectively.
  • the phase encoding gradient magnetic field of the correction data measurement pulse sequence used 16 phase encodings in the low band.
  • FIG. 12 shows the correction data ratio Cr (x) from the correction data shown in FIG. 11 and the correction data ratio Fitting ⁇ Cr (x) ⁇ fitted by a linear function.
  • a graph 1201, a graph 1202, a graph 1203, and a graph 1204 indicate 1 channel, 2 channels, 3 channels, and 4 channels, respectively. Note that the correction data ratio Cr (x) in the graphs 1201 to 1204 indicates only data used for fitting by threshold processing.
  • the TE2 echo channel image 1005 to 1008 is fitted with the correction data 1201 to 1204 ratio Fitting ⁇ Cr (x) ⁇ , and each channel composite image is created and the influence of the reception frequency characteristics is corrected.
  • the values of ROI_A and ROI_B of the image 902 were calculated.
  • the calculated values are shown as the average signal values of ROI_A and ROI_B in the TE2 echo image with the effect of the reception frequency characteristics corrected in Table 1.
  • both ROI_A and ROI_B were reasonable signal values attenuated by 3% compared to the TE1 echo image. Therefore, the influence of the reception frequency characteristic can be removed by this embodiment.
  • the water image, fat image, and fat content image obtained as described above from the out-of-phase image and the in-phase image whose reception frequency characteristic is corrected are frequency-encoded gradients. Since the influence of the reception frequency characteristic when the polarity of the magnetic field is reversed is corrected and removed, the accuracy is high and the error is reduced.
  • this embodiment it is possible to remove the influence of the reception frequency characteristics of the positive and negative images acquired by reversing the frequency encoding gradient magnetic field.
  • By removing the influence of the reception frequency characteristic it is possible to improve the accuracy of the quantitative evaluation of fat even when using an image acquired by imaging a region such as the liver at high speed while stopping breathing.
  • imaging for acquiring an image for quantitative evaluation of fat it is not necessary to perform measurement with a frequency-encoded gradient magnetic field having the same polarity in order to avoid the influence of the reception frequency characteristic. Can be increased.
  • the main measurement pulse sequence is the same as the main measurement pulse sequence (FIG. 3) described in the first embodiment.
  • FIG. 13 shows an example of a correction data measurement sequence used in this embodiment.
  • This correction data measurement sequence is a gradient echo (GrE) type sequence.
  • the seed of the correction data measurement sequence is the same as the seed of this measurement pulse sequence.
  • [Slice selective gradient magnetic field 1302 is applied simultaneously with the first RF pulse 1301 irradiation to excite only the intended tomographic plane. Then, a low-frequency phase encode gradient magnetic field 1303 for encoding position information is applied, and simultaneously a negative frequency encode gradient magnetic field 1304 is applied, followed by applying a positive frequency encode gradient magnetic field 1305 and an RF pulse.
  • the echo signal generated after elapse of TE is obtained as the positive echo signal.
  • the conditions after the irradiation of the next RF pulse 906 are the conditions for obtaining the above-described positive echo signal except that the negative frequency encode gradient magnetic field 1310 is applied after the positive frequency encode gradient magnetic field 1309 is applied. Similarly, a negative echo signal is obtained after TE.
  • Correction data measurement is performed by applying a low-frequency phase encoding gradient magnetic field including a zero phase encoding gradient magnetic field.
  • the application amount of the low-frequency phase encoding gradient magnetic field is preferably 8, more preferably 16, and further preferably 32.
  • the correction data measurement is performed immediately before or immediately after the main measurement with the same slice position, the same imaging field (FOV (Field of View)), the same frequency encoding direction, the same frequency encoding sampling points, and the same reception bandwidth as the main measurement. May be executed. Further, the correction data measurement may be performed continuously or separately from the main measurement.
  • FOV Field of View
  • Measure correction data for each coil For example, when a signal is received by a coil having a plurality of small coils (channels), it is preferable to acquire a signal for each small coil (channel). Moreover, it is preferable to perform correction data measurement for each object to be imaged.
  • a pair of positive and negative echo signals obtained by correction data measurement is stored in the correction database 203.
  • the image conversion unit 204 uses the correction data to remove the influence of the reception frequency characteristic
  • the image processing unit 206 uses the corrected image, synthesizes the images for each channel, creates a water image and a fat image
  • the processing for obtaining the fat content and the processing in which the image transmission unit 207 transmits the image-processed image to the display unit 111 are the same as in the first embodiment.
  • correction data is created using a pair of correction echo signals acquired during application of frequency-encoded gradient magnetic fields of different polarities with the same echo time, and the echo obtained by this measurement is measured. By correcting the signal, the same effect as in the first embodiment can be obtained.
  • ⁇ Third embodiment> In the first and second embodiments, a sequence for acquiring two images with different TEs was used as the main measurement, but in the third embodiment, it can be applied to a sequence for acquiring three images with different TEs. To do.
  • FIG. 14 shows an example of a sequence for acquiring three different TE images (this measurement pulse sequence of this embodiment). This sequence can be used, for example, in a three-point DIXON method.
  • This measurement pulse sequence in FIG. 14 is the same except that the third frequency echo gradient magnetic field 1407 is applied again to generate the third echo signal and the third echo signal is generated after TE3 has elapsed from the RF pulse. This is the same as the main measurement pulse sequence shown in FIG. Three types of image data with different TEs can be obtained from the echo signal acquired from the main measurement pulse sequence of FIG.
  • the correction data is acquired only for one set of the positive echo signal and the negative echo signal with the same TE as described in the first and second embodiments. That's fine. Then, as described in the first and second embodiments, the image conversion unit 204 uses the correction data to remove the influence of the reception frequency characteristic, and the image processing unit 206 uses the corrected image for each channel. These images are synthesized, a water image and a fat image are created, the processing for obtaining the fat content rate, and the processing for transmitting the image processed image to the display unit 111 by the image transmission unit 207 may be performed.
  • the same effect as in the first and second embodiments can be obtained even in a sequence in which three images having different main measurements are acquired.
  • the embodiments of the present invention have been described by taking the DIXON method as an example.However, if the pulse sequence acquires a plurality of signals having different TEs, the three-dimensional gradient echo method, the spin echo method, the fast spin echo method, etc.
  • the present invention can be applied. Further, the present invention can be applied even when an image obtained by high-speed imaging of a region of another organ to which fat other than the liver adheres, such as fat around the heart or visceral fat.
  • the present invention it is possible to remove the influence of the reception frequency characteristics of the positive and negative image obtained by reversing the frequency encoding gradient magnetic field.
  • By removing the influence of the reception frequency characteristic it is possible to provide an MRI apparatus that can improve the accuracy of quantitative evaluation of fat even when using an image acquired by imaging a region such as the liver at high speed while stopping breathing.
  • the influence of the reception frequency characteristics of the positive image and the negative image can be removed by inverting the frequency encoding gradient magnetic field.
  • the influence of the reception frequency characteristic for example, even when an image obtained by capturing an image of a region such as the liver at high speed under breathing stop is used, the accuracy of quantitative evaluation of fat can be improved.
  • the imaging time can be shortened or the number of imaging slices can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Signal Processing (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 脂肪の定量評価ができる画像を取得することのできる磁気共鳴イメージング装置及び水脂肪分離画像作成方を提供するために、同じエコー時間にて正極の周波数エンコード傾斜磁場印加中にエコー信号と、負極における周波数エンコード傾斜磁場印加中にエコー信号を取得し、これらの一対の補正用エコー信号から受信周波数特性の影響を補正するための補正量を求め、この補正量を用いて、周波数エンコード傾斜磁場の極性を反転して取得した正極及び負極の画像の受信周波数特性の影響を取り除く。

Description

磁気共鳴イメージング装置及び水脂肪分離画像作成方法
 本発明は、被検体に含まれる水素原子核(以下、「プロトン」という)の核磁気共鳴(以下、「NMR」という)信号を測定し、プロトンの密度分布や緩和時間分布等を映像化する磁気共鳴イメージング(以下、「MRI」という)装置に関し、特に脂肪の定量評価をするための画像を取得する際の技術に関する。
 MRI装置は、被検体、特に人体の組織を構成する原子核スピンが外部磁場の変化により発生するNMR信号を計測し、その頭部、腹部、四肢等の形態等を2次元的に或いは3次元的に画像化する装置である。撮像においては、NMR信号は、傾斜磁場によって異なる位相エンコードが付与されるとともに周波数エンコードされて、時系列データとして計測される。計測されたNMR信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。
 MRI装置で画像を得る場合、エコー時間(以下、「TE」という)や繰り返し時間(以下、「TR」という)等のパラメータを変化させたり、画像演算を行ったりすることによって、様々な組織コントラストを持つ画像を得ることができる。臨床においては、脂肪組織からの信号を抑制した画像が求められることが多々ある。脂肪組織からの信号を抑制した画像を得る方法の一例として、TEの異なる画像を複数枚取得し、演算により水と脂肪を分離した画像を得る方法があげられる。その代表的な方法として、非特許文献1に述べられている方法がある(以下、「DIXON法」という)。
 MRI装置では、磁石構造に起因する静磁場自身の空間的不均一と、静磁場空間に配置された被検体の部位ごとに磁気感受性が異なることに起因する静磁場の空間的不均一と(以下、まとめて「静磁場不均一」という)、が生じる。非特許文献2は、DIXON法に静磁場不均一の影響を補正する機能を加えた、静磁場補正付き2点DIXON法を開示している。
W. Thomas Dixon "Simple Proton Spectroscopic Imaging" RADIOLOGY, Vol.153, p.189-194, (1984) Bernard D. Coombs "Two-Point Dixon Technique for Water-Fat Signal Decomposition with B0Inhomogeneity Correction" Magnetic Resonance in Medicine, vol.38, p.884-889, (1997)
 脂肪を定量するために、例えば、肝臓領域を撮像する際、呼吸停止下で高速に撮像する必要がある。この時、最初のTEの信号を受信した後、続けて周波数エンコードの傾斜磁場の極性を反転して次のTEの信号を受信する必要がある。
 最初のTEと次のTEの信号から得られた画像は、受信周波数特性の影響が正極及び負極において逆に発生する場合がある。
 受信周波数特性とは、受信する周波数によって感度(利得)が異なるという受信器の特性であり、発生するエコー信号が同じ信号強度でも、受信する周波数によってエコー信号の大きさが変化する。この受信周波数特性は、接続した受信コイルや撮像する対象によって異なる。
 受信周波数特性の影響が正極及び負極において逆に発生する場合、画像の周波数エンコード方向には受信周波数特性の影響が混入する。非特許文献2は、受信周波数特性の影響を補正する機能を開示していない。従って、非特許文献2のDIXON法では、2つのTEの信号から得られた画像から脂肪の定量的な評価ができるレベルまで水脂肪分離画像を作成することは困難である。
 一方、受信周波数特性の影響を回避するために最初のTEの信号と次のTEの信号を同じ極性の周波数エンコード傾斜磁場で計測した場合には、撮像時間の延長や撮像スライス数を少なくしなければならないなどの制約を受けてしまう。
 本発明の目的は、周波数エンコード傾斜磁場を反転して取得した画像の受信周波数特性の影響を取り除くことにより、脂肪の定量評価ができる画像を取得することのできる磁気共鳴イメージング装置及び水脂肪分離画像作成方を提供することである。
 上記目的を達成するために、本発明では、同じTEにて、正極の周波数エンコード傾斜磁場印加中にエコー信号を取得し、負極の周波数エンコード傾斜磁場印加中にエコー信号を取得する。これらの信号から受信周波数特性の影響を補正するための補正量を求め、この補正量を用いて、周波数エンコード傾斜磁場の極性を反転して取得したTE信号由来の画像の信号強度を補正する。
 具体的には、本発明のMRI装置は、以下に示すような特徴を有する。
 静磁場磁石と、高周波磁場パルスを発生する高周波発生部と、核磁気共鳴により発生するエコー信号を受信する高周波コイルを備えた受信部と、傾斜磁場コイルと、所定のパルスシーケンスに従い前記高周波発生部、前記傾斜磁場コイル及び前記受信部を制御する制御部と、前記エコー信号を処理する信号処理部とを備え、前記パルスシーケンスは、前記高周波磁場パルスによる励起後に、複数のエコー時間で異なる極性の周波数エンコード傾斜磁場の印加中にエコー信号を取得するマルチエコーシーケンスであり、前記信号処理部は、同じエコー時間で正極及び負極の周波数エンコード傾斜磁場の印加中に取得した一対の補正用エコー信号を用いて補正データを作成し、前記異なる極性の周波数エンコード傾斜磁場の印加中に取得したエコー信号を補正する補正部を備えることを特徴とする。
 前記補正部は、前記マルチエコーシーケンスとは別に実行される補正データ計測シーケンスで取得したエコー信号を用いて前記補正データを作成することを特徴とする。
 前記補正データ計測シーケンスは、位相エンコード傾斜磁場の印加条件以外は、前記マルチエコーシーケンスと同種であることを特徴とする。
 前記一対の補正用エコー信号は、前記マルチエコーシーケンスの実行において取得したエコー信号及び前記マルチエコーシーケンスとは別に実行される補正データ計測シーケンスで取得したエコー信号であることを特徴とする。
 前記一対の補正用エコー信号は、低域の位相エンコード傾斜磁場を印加して取得した信号であることを特徴とする。
 前記高周波コイルは、複数の小型コイルからなり、前記補正部は前記小型コイル毎に補正データを作成し、前記小型コイルでそれぞれ受信したエコー信号に対し前記補正データを用いた補正を行うことを特徴とする。
 前記補正部は、前記小型コイル毎に、前記一対の補正用エコー信号を2次元フーリエ変換して得たデータの比から前記補正データを求めることを特徴とする。
 前記マルチエコーシーケンスは、前記異なる極性の周波数エンコード傾斜磁場において、水からのエコー信号と脂肪からのエコー信号とが同位相になる第一エコー時間と、前記水からのエコー信号と前記脂肪からのエコー信号とが逆位相になる第二エコー時間で、エコー信号を取得する水脂肪分離シーケンスであることを特徴とする。
 前記補正データを作成するためのエコー信号は、前記第一エコー時間又は前記第二エコー時間と同じエコー時間に取得されたエコー信号であることを特徴とする。
 前記水脂肪分離シーケンスは、前記第一エコー時間が前記第二エコー時間より長い時間に設定されていることを特徴とする。
 また、本発明の水脂肪分離画像作成方法は、以下に示すような特徴を有する。
 核磁気共鳴により発生するエコー信号を用いて複数種の画像を作成する水脂肪分離画像作成方法であって、前記エコー信号は、高周波磁場パルスによる励起後に、複数のエコー時間で異なる極性の周波数エンコード傾斜磁場の印加中に取得され、前記異なる極性の周波数エンコード傾斜磁場の印加中に取得したエコー信号を、同じエコー時間で正極及び負極の周波数エンコード傾斜磁場の印加中に取得した一対の補正用エコー信号を用いて補正することを特徴とする。
 前記一対の補正用エコー信号は、低域の位相エンコード傾斜磁場を印加して取得した信号であることを特徴とする。
 前記エコー信号は、水からのエコー信号と脂肪からのエコー信号とが同位相になる第一エコー時間と、前記水からのエコー信号と前記脂肪からのエコー信号とが逆位相になる第二エコー時間とで収集され、前記第一エコー時間で取得された第一エコー信号と前記第二エコー時間で取得された第二エコー信号とを用いて、複数種の画像を作成することを特徴とする。
 前記一対の補正用エコー信号は、前記第一エコー時間又は前記第二エコー時間と同じエコー時間で、低域の位相エンコード傾斜磁場を印加して取得した信号であることを特徴とする。
 前記複数種の画像を用いて、脂肪分布率を算出することを特徴とする。
 本発明により、周波数エンコード傾斜磁場を反転して、正極の周波数エンコード傾斜磁場印加中に取得したエコー信号(以下、「正極のエコー信号」という)から取得された画像(以下、「正極の画像」という)と、負極の周波数エンコード傾斜磁場印加中に取得したエコー信号(以下、「負極のエコー信号」という)から取得された画像(以下、「負極の画像」という)の受信周波数特性の影響を取り除くことができる。受信周波数特性の影響を除去することにより、例えば、肝臓等の領域を呼吸停止下で高速撮像して取得した画像を用いた場合にも、脂肪の定量評価の精度を向上できる。また、脂肪の定量評価の画像を取得するための撮像において、撮像時間の短縮もしくは撮像スライス数を増加することができる。
本発明が適用されるMRI装置の全体構成を示すブロック図 本発明が適用されるMRI装置の信号処理部の構成を示すブロック図 第一実施形態及び第二実施形態で用いられるグラジエントエコー(GrE)型シーケンスを示す図 受信コイルの受信周波数特性の例を示す図 画像への受信周波数特性の影響を説明する図 第一実施形態で用いられる補正データ計測シーケンスの例を示す図 受信周波数特性を補正する処理フローチャート チャンネル合成し、脂肪含有量の画像を求める処理フローチャート グラジエントエコー(GrE)型シーケンスで取得したファントム画像の例 グラジエントエコー(GrE)型シーケンスで取得した受信コイルのチャンネル毎のファントム画像の例 2次元フーリエ変換した補正データを示す図 補正データの比とフィッティングした補正データの比を示すグラフ 第二実施形態で用いられる補正データ計測シーケンスの例を示す図 第三実施形態で用いられるグラジエントエコー(GrE)型シーケンスを示す図
 以下、本発明の実施形態を、図面を用い説明する。なお、全図において、同一機能を有するものは同一符合を付け、その繰り返しの説明を省略する。
 まず、図1及び図2に基づいて、本発明が適用されるMRI装置の全体構成及び該装置の信号処理部をそれぞれ説明する。
 図1は、本発明が適用されるMRI装置の全体構成を示すブロック図である。本発明が適用されるMRI装置は、被検体101の周囲に静磁場を発生させる静磁場磁石102と、傾斜磁場を発生させる傾斜磁場コイル103と、被検体101に高周波磁場パルス(以下、「RFパルス」という)を照射する照射用高周波コイル(以下、「照射コイル」)104と、被検体からのNMR信号を受信する受信用高周波コイル(以下、「受信コイル」)105と、被検体101が横たわるベッド106と、傾斜磁場を発生させるために傾斜磁場コイル103へ信号を送る傾斜磁場電源107と、RFパルスを発生させるための信号を照射コイル104へ送るRF送信部108と、受信コイル105を通して受信したエコー信号を検出する信号検出部109と、信号検出部109から検出された信号を処理する信号処理部110と、画像等を表示する表示部111部と、撮像等を制御する制御部112と、撮像に必要なパラメータ等を入力する入力部113とを備えている。
 なお、照射コイル104とRF送信部108とを合わせて高周波発生部と称し、受信コイル105と信号検出部109とを合わせて受信部と称する。
 静磁場磁石102は、被検体101の周りのある広がりをもった空間に配置された、永久磁石・超伝導磁石・常伝導磁石のいずれかからなり、被検体101の体軸と平行または垂直な方向に均一な静磁場を発生させる。
 傾斜磁場コイル103は、傾斜磁場電源107からの信号に従って、X、Y、Zの3軸方向の傾斜磁場を、被検体101に印加する。この傾斜磁場の加え方によって、被検体の撮像断面が決定され、信号に対し位相エンコード及び周波数エンコードを付与する。
 照射コイル104は、RF送信部108の信号に応じてRFパルスを発生する。このRFパルスにより、傾斜磁場コイル103によって設定された被検体101の撮像断面の生体組織に含まれるプロトンが励起され、NMR現象が誘起される。
 受信コイル105は、照射コイル104から照射されたRFパルスにより誘起された被検体101に含まれるプロトンのNMR現象によって発生したエコー信号を受信する。受信コイル105は、一つのコイルでもよいが、小型コイルを複数組み合わせたマルチチャンネルコイル(例えば、マルチプルアレイコイルやフェイズドアレイコイル等)でもよく、1つの多チャンネルコイルであってもよい。
 信号検出部109は、被検体101に接近して配置された受信コイル105を通して受信したエコー信号を検出する。受信コイルが複数のコイル(チャンネル)を有する場合は、チャンネル毎にエコー信号を検出する。
 信号処理部110は、信号検出部109により検出されたエコー信号を信号処理し、被検体101の画像を生成する。信号処理部110の詳細は、以下、図2を用い説明する。
 表示部111は、信号処理部110が生成した画像や撮影パラメータを表示する。
 入力部113は、操作者が撮像に必要なTRやTEなどのパラメータを入力するために用いられる。入力されたパラメータは、表示部111に表示されるとともに、制御部112へ送られ、撮像の制御に用いられる。
 制御部112は、入力部113から入力されたパラメータに基づいて、スライス選択や、位相エンコード、周波数エンコードを行う各傾斜磁場やRFパルスを繰り返し発生するための所定のパルスシーケンスを生成し、傾斜磁場電源107、RF送信部108、信号処理部110を制御する。
 パルスシーケンスには、本計測のための本計測パルスシーケンスと、補正データを計測するための補正データ計測シーケンスがある。
 図2に、本実施形態のMRI装置の信号処理部110の構成を示す。信号処理部110は、信号受信部201、画像変換部204、画像処理部206、画像送信部207から構成される。また、信号処理部110は、これらの各部で得られたデータを収納するメモリ(k空間データベース202、補正データベース203、及び画像データベース205)と、制御部から取得するデータを収納するメモリ(メモリ(パラメータ)208)と、を備える。
 これらの各部はCPUとメモリで構成することができる。メモリには、各部の機能を実行するためのプログラムが予め格納されており、CPUはメモリのプログラムを読み込んで実行する。その結果、各部の動作の実現が可能となる。
 例えば、メモリには、図7や図8のフローに示されるようなプログラムが予め格納されている。CPUがメモリから図7のフローに示すプログラムを読み込んで実行することにより、画像変換部204の動作が実行される。また、CPUがメモリから図8のフローに示すプログラムを読み込んで実行することにより、画像処理部206の動作が実行される。
 以下、画像変換部204及び画像処理部206の処理手順の説明では、ソフトウェアとして実現するものとして説明するが、本実施形態は、ソフトウェアに限られるものではなく、画像変換部204及び画像処理部206の処理をASICやFPGA等のハードウェアによって実現することも可能である。
 信号受信部201は、信号検出部109で検出したエコー信号のうち本計測で取得された信号を、k空間への配置情報に基づき、k空間データベース202に格納する。一方、信号受信部201は、信号検出部109で検出したエコー信号のうち、補正データ計測で取得した一対の補正用エコー信号を、あるいは、本計測で取得した信号を利用する場合は、本計測の低域位相エンコードで取得した信号及び補正データ計測で取得した信号を、k空間への配置情報に基づき、補正データベース203に格納する。
 画像変換部204は、k空間データベース202に格納されたk空間データをフーリエ変換して画像に変換し、補正データベース203に格納された補正データで受信周波数特性を補正し、画像データベース205に格納する。この補正は、コイル毎に行われ、例えば、複数の小型コイル(チャンネル)を持つ受信コイルで受信した場合には、小型コイル毎に行われる。
 画像処理部206は、画像データベース205に格納された画像に、画像処理を施す。
 画像処理には、例えば、受信コイルのチャンネル毎の画像を合成する処理や、水画像と脂肪画像を作成する処理や、受信コイル105の感度のムラを補正する処理などがある。画像処理部206は、処理した画像を画像送信部207に渡す。
 画像送信部207は、画像処理部206で画像処理した画像を表示部111に送信する。送信される画像にはIn-phase画像、Out-of-phase画像、水画像、脂肪画像、脂肪含有率の画像などがある。
 メモリ208に格納されるパラメータは、信号受信部201が必要とするパルスシーケンスのスライスエンコード、周波数エンコード、位相エンコードの情報や、画像変換部204、画像処理部206、画像送信部207が必要とする画像マトリクスやフィルタリングなどのパラメータ、制御情報を含み、メモリ208は、これらを制御部112から取得する。
 以上、図1及び図2を用い説明した本発明の実施形態は、以下に説明する実施形態に共通である。
 以下、具体的にパルスシーケンスを用いて、本発明が実施される動作の手順、信号処理部における処理を説明する。
 <第一実施形態>
 本実施形態では、制御部112による制御のもと、本計測パルスシーケンスと、本計測で得たデータを補正するための補正データを計測する補正データ計測シーケンスを実行する。
 本計測パルスシーケンスは、周波数エンコード傾斜磁場パルスの反転ごとにエコー信号を計測し、TEの異なる複数の画像を得るためのマルチエコーシーケンスである。
 補正データ計測シーケンスは、本計測パルスシーケンスにおける各エコーに含まれる受信周波数特性の影響を取り除くための補正データを取得するもので、低域だけの位相エンコード傾斜磁場を印加し、本計測パルスシーケンスの周波数エンコード傾斜磁場の極性を逆にしたパルスシーケンスである。
 この実施形態では、補正データとして使用するための、同一TEで、異なる極性の周波数エンコード傾斜磁場の印加中に取得する一対の補正用エコー信号は、本計測で取得した信号と、補正データ計測で取得したエコー信号とを用いる。
 まず、本計測パルスシーケンスと、本計測パルスシーケンスで計測したエコー信号に含まれる受信周波数特性の影響について説明する。
 図3に本計測パルスシーケンスの例を示す。このパルスシーケンスは、TEの異なる2つの種類の画像データを得るシーケンスであり、グラジエントエコー(GrE)型シーケンス法である。このパルスシーケンスは、周波数エンコード傾斜磁場を正極から負極に反転して、TEの異なる2つの種類の画像データを取得する。典型的には、このパルスシーケンスは、水脂肪分離撮像に適用される。
 制御部112は、以下の制御を行ない、このパルスシーケンスを実行する。まず、RFパルス301の照射と同時にスライス選択傾斜磁場302を印加し目的とする断層面のみを励起する。次に、位置情報をエンコードするための位相エンコード傾斜磁場303を印加し、同時に負方向の周波数エンコード傾斜磁場(プリパルス)304を印加する。その後、正方向の周波数エンコード傾斜磁場305を印加してRFパルスからTE1経過後に最初のエコー信号を発生させる。次に、再度負方向の周波数エンコード傾斜磁場306を印加してRFパルスからTE2経過後に次のエコー信号を発生させる。
 このようなシーケンスを位相エンコード傾斜磁場303の印加量をかえながら、位相エンコードの回数分繰り返し実行し、位相エンコードの回数分のエコー信号を取得する。受信コイルが複数のチャンネルを有する場合は、チャンネル毎にエコー信号を取得する。
 k空間データベース202は、TE1とTE2のエコー信号のデータをそれぞれ格納する。k空間のデータをフーリエ変換することによって、TEの異なる2種類の画像データを収集する。
 なお、図示しないが、本計測は図3に用いた周波数エンコード傾斜磁場と逆の極性の周波数エンコード傾斜磁場を使用してよい。具体的には、周波数エンコード傾斜磁場(プリパルス)304を正方向に印加したあと、周波数エンコード傾斜磁場305を負方向に印加し、次に、周波数エンコード傾斜磁場306を正方向に印加してよい。
 DIXON法の場合、TE1は、水プロトンからのエコー信号(水信号)と脂肪プロトンからのエコー信号(脂肪信号)の位相が逆位相となるタイミングとし、TE2は、水信号と脂肪信号の位相が同位相となるタイミングとすることができる。逆に、TE1が、水信号と脂肪信号が同位相で、TE2が逆位相となるようにしてもよい。撮像時間を短くするためには、TE1が水信号と脂肪信号とが逆位相で、TE2が同位相となるタイミングとすることが好ましい。
 このようにして得られた画像データには、受信周波数特性の影響が混入している。ここで、混入される受信周波数特性の影響について、図4及び図5を用いて説明する。図4は、受信コイルの受信周波数特性の例であり、2チャンネルコイルの各チャンネルの受信周波数特性を示す。図5は、画像への受信周波数特性の影響を説明する図である。
 図4の401はチャンネル番号1の受信周波数特性であり、402はチャンネル番号2の受信周波数特性である。チャンネル番号1では63.66[MHz]の利得は15.3[dB]であり、受信周波数が高くなるにつれ利得が減少し、64.06[MHz]で14.2[dB]となる。一方、チャンネル番号2では63.66[MHz]の利得が11.7[dB]であり、受信周波数が高くなるにつれて利得が上昇し、64.06[MHz]で12.2[dB]となる。
 図4の受信周波数特性をもつ受信コイルを用いて、周波数エンコード傾斜磁場の受信の中心周波数を63.86[MHz]とし、FOVの両端までの受信バンド幅を400[KHz]で撮像すると、正極の画像と負極の画像は、図5のような関係になる。
 図5の画像501は正極の画像であり、画像502は負極の画像である。画像501と画像502は周波数エンコード傾斜磁場が逆方向なので、画像501の周波数エンコードは、左から右に向かって周波数が増加するのに対し、画像502の周波数エンコードは、左から右に向かって周波数が減少する。例えば、チャンネル番号1で取得した信号に基づく画像の場合で説明する。図4で説明したように、チャンネル番号1の受信周波数特性は、受信周波数が高くなると、利得が減少する。すなわち、画像501において、この受信周波数特性の利得は、左から右方向にいくにつれて減少する。
 一方、画像502において、この受信周波数特性の利得は、左から右に方向にいくにつれて増加する。具体的には、画像501では、63.76[MHz](b点)においてチャンネル番号1の利得は15.0[dB]であり(図4参照)、左から右方向にいくにつれて(言い換えると、受信周波数が高くなるにつれて)、利得が減少し、63.96[MHz](d点)で14.4[dB](図4参照)となる。一方、画像502では、左から右方向にいくにつれて(言い換えると、受信周波数が低くなるにつれて)、チャンネル番号1の利得が増加する。図5の画像では信号値の違いを示していないけれども、チャンネル番号1の受信周波数特性の影響が反映されると、左側の信号値は画像501の方が画像502より高くなり、逆に、右側の信号値は画像501の方が画像502より低くなる。
 一方、チャンネル番号2で取得された信号に基づく画像の場合を説明すると、図4で説明したように、チャンネル番号2の受信周波数特性の利得は、周波数が増加すると増加する。チャンネル番号2の受信周波数特性の影響が反映されると、左側の信号値は画像501が画像502より低くなり、逆に、右側の信号値は画像501が画像502より高くなる。
 以上、2つのチャンネルについて説明したが、チャンネル毎に異なる受信周波数特性を有するので、チャンネル毎の受信周波数特性の影響が異なって発生する。
 このように複数のチャンネルにより取得された信号から合成された画像は、これらの各チャンネルの受信周波数特性の影響が合成されたものになる。その結果、脂肪含有量の画像には、これらの影響の混入によって精度が低下する。
 次に、受信周波数特性の影響を取り除くための補正データ計測パルスシーケンスについて説明する。この補正データ計測パルスシーケンスは、本計測パルスシーケンスの周波数エンコード傾斜磁場を逆にし、かつ低域のみの位相エンコード傾斜磁場を印加するパルスシーケンスである。
 補正データ計測パルスシーケンスの一例を図6に示す。補正データ計測パルスシーケンスは、周波数エンコード傾斜磁場604、605、606の極性が本計測パルスシーケンスの周波数エンコード傾斜磁場304、305、306の極性とそれぞれ逆である点、位相エンコード傾斜磁場603が低域のみの位相エンコード用傾斜磁場である点以外は、図3の本計測パルスシーケンスと同様である。このようなシーケンスを位相エンコード用傾斜磁場603の印加量をかえながら、低域のみの位相エンコードの回数分繰り返し実行される。この補正データ計測で取得したTE1の信号及びTE2の信号のいずれかを補正のために用いる。
 いずれかを用いるかについては、DIXON法の場合、水と脂肪の信号の打ち消しを避けるために、補正に用いるエコー信号は、望ましくは水と脂肪の位相が最も同位相に近いTEで取得されることが好ましい。
 例えば、図3の本計測パルスシーケンスにおいて、水信号と脂肪信号の同位相となるタイミングがTE2の場合、本計測において、図3のTE2での負極のエコー信号のうち、図6の補正データ計測パルスシーケンスと同じ低域の位相エンコードから取得したエコー信号と、補正データ計測において、図6のTE2にて正極のエコー信号と、を補正データとして使用する。あるいは、図3の本計測パルスシーケンスにおいて、水信号と脂肪信号が同位相となるタイミングがTE1の場合、本計測において、図3のTE1での正極のエコー信号のうち、図6の補正データ計測パルスシーケンスと同じ低域位相エンコードで取得したエコー信号と、補正データ計測において、図6のTE1での負極のエコー信号と、を補正データとして使用する。
 上述した通り、補正データ計測で取得した二つの信号のうちいずれか一方を用いればよいので、図6に示す補正データ計測パルスシーケンスは一つのRFパルス照射による励起から二つのエコー信号を得るシーケンスを示しているが、補正データ計測シーケンスは、一つの励起から一つのエコー信号を取得するものでよい。
 補正データ計測は、ゼロ位相エンコード傾斜磁場を含む低域位相エンコード傾斜磁場を印加して行う。低域位相エンコード傾斜磁場の印加量は、8が好ましく、16がより好ましく、32がさらに好ましい。
 補正データ計測は、本計測と同じスライス位置、同じ撮像野(FOV(Field of View))、同じ周波数エンコード方向と同じ周波数エンコードのサンプリング点数、同じ受信バンド幅で、本計測の直前もしくは直後に実行されてよい。また、補正データ計測は、本計測と連続的にあるいは分離して実行してよい。
 補正データ計測は、コイル毎に行う。例えば、複数の小型コイル(チャンネル)を持つコイルで受信した場合には、補正データ計測は、小型コイル毎に信号を取得するのが好ましい。また、補正データ計測は、撮像する対象毎に行うことが好ましい。
 補正データ計測で得られたエコー信号は、補正データベース203に格納される。補正データベース203には、また、本計測で得られた信号のうち補正データ計測パルスシーケンスの低域位相エンコード傾斜磁場と同じ位相エンコード傾斜磁場を印加して取得したエコー信号が、k空間データベースに格納された信号とは別に、格納される。
 以下、図7の処理フローに基づいて、画像変換部204における補正処理を説明する。ここでは、2点DIXON法で、水信号と脂肪信号とが逆位相であるOut-of-phase画像を正極の周波数エンコード傾斜磁場を印加して取得し、水信号と脂肪信号が同位相であるIn-phase画像を負極の周波数エンコード傾斜磁場を印加して取得した場合を例にして説明する。
 (ステップS701)
 k空間データベース202に格納されたk空間データを2次元フーリエ変換して画像に変換する。変換された画像は、正極の周波数エンコード傾斜磁場を印加して取得したOut-of-phase画像と、負極の周波数エンコード傾斜磁場を印加して取得したIn-phase画像となる。
 (ステップS702)
 補正データベース203に格納された、周波数エンコード傾斜磁場の極性が異なるエコーデータをそれぞれ2次元フーリエ変換し、画像空間に変換する。補正データは、1スライスに対して、低域だけの位相エンコード傾斜磁場で取得されたエコー信号である。
 (ステップS703)
 2次元フーリエ変換した正極の補正データと2次元フーリエ変換した負極の補正データから比を求める。正極及び負極の信号に含まれる受信周波特性の影響を取り除くためには、一方を他方にそろえればよい。例として、負極の周波数エンコード傾斜磁場印加に取得したIn-phase画像を正極のエコー信号に含まれる受信周波数特性の影響にそろえるように補正するための補正データの比の求め方を説明する。xを周波数エンコード方向、yを位相エンコード方向の座標とし、フーリエ変換した正極の補正データをCp(x,y)、フーリエ変換した負極の補正データをCm(x,y)とすると、比Cr(x)は
Figure JPOXMLDOC01-appb-M000001
となる。ここで、||は絶対値を示す。
 (ステップS704)
 補正データの比をフィッティングする。補正データはノイズが含まれるためノイズの影響を除去するために行う。フィッティングに先立って、閾値処理によってノイズのデータを除外する。また、画像上における受信周波数特性の影響は1次または2次の関数の信号傾斜のように発生するため、補正データの比のフィッティングも1次もしくは2次の関数でフィッティングすればよい。フィッティング後の補正データの比はFitting{Cr(x)}で示す。
 (ステップS705)
 フィッティングした補正データの比Fitting{Cr(x)}を用いて、2次元フーリエ変換した画像を補正する。負極の周波数エンコード傾斜磁場を印加して取得したIn-phase画像を補正する場合、位相エンコード方向の座標をyとし、In-phase画像をIn(x,y)とすると、補正後のIn-phase画像In’(x,y)は
Figure JPOXMLDOC01-appb-M000002
となる。この補正後のIn-phase画像In’(x,y)は、正極の周波数エンコード傾斜磁場印加中に取得したエコー信号に含まれる受信周波数特性の影響に揃えられたことになる。
 ステップS701~ステップS705は、受信コイル毎かつスライス毎に実施される。また、受信コイルが複数の小型コイル(チャンネル)を持つコイルの場合には、ステップS701~ステップS705は小型コイル(チャンネル)毎かつスライス毎に実施される。
 なお、正極の画像を補正する場合は、ステップS703で求められる補正データの比は、式(1)の右辺の逆数となる。ステップS704にて、画像変換部204は、該逆数をフィッティングする。ステップS705にて、画像変換部204は、フィッティングした該逆数を該画像と乗算する。補正された該画像は、負極の信号に含まれる受信周波数特性の影響に揃えられることになる。
 次に、画像処理部206は、公知の方法を用いて、画像変換部204で補正された画像を使用して、チャンネル毎の画像を合成し、水画像と脂肪画像を作成し、脂肪含有率を求める処理をすることができる。このような処理の一例を図8に示す。
 (ステップS801)
 画像変換部204で補正されたIn-phase画像であるIn’(x,y)を合成し、Out-of-phase画像であるOut(x,y)を合成する場合を示す。それぞれのチャネル毎の画像の合成は以下の式で合成する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 InComb(x,y)は補正後のIn-phase画像In’(x,y)を合成した画像である。kは受信コイルのチャンネル番号を示し、Nはチャンネル数を示す。また、Mk(x,y)はチャンネル合成するための感度マップであり、In’(x,y)にローパスフィルタを施して作成する。*は複素共役を示す。
 同様に、OutComb(x,y)はOut-of-phase画像Out(x,y)を合成した画像である。合成に用いる感度マップはInComb(x,y)を合成したときと同じものを使用する。
 (ステップS802)
 静磁場の不均一によって、異なるTE間に発生する位相変化を示す位相マップを作成する。例えば、図3におけるTE1がOut-of-phase画像で、TE2がIn-phase画像とする。最初に、合成後のIn-phase画像InComb(x,y)から合成後のOut-of-phase画像OutComb(x,y)の位相を引き算し、位相を2倍して、初期位相マップΦ(x,y)を作成する。Out-of-phase画像では水と脂肪が逆位相のため、2倍することによって水と脂肪の逆位相を解消している。式で表すと式(5)となる。
Figure JPOXMLDOC01-appb-M000005
 Argは複素データから角度を求めることを示す。次に、初期位相マップΦ(x,y)を位相アンラップ処理する。位相アンラップ処理は、位相の示す範囲が-π~+πのために、位相が空間的に不連続になってしまっている箇所を解消して、空間的に連続にする処理である。初期位相マップは位相を2倍しているため、位相アンラップ後に位相の値を半分にして、位相マップφ(x,y)が完成する。式で示すと式(6)となる。
Figure JPOXMLDOC01-appb-M000006
Wrapは位相アンラップを示す。
 (ステップS803)
 合成後のIn-phase画像InComb(x,y)と合成後のOut-of-phase画像OutComb(x,y)、位相マップを用いて水画像Water(x,y)と脂肪画像Fat(x,y)を作成する。式で示すと式(7)となる。
Figure JPOXMLDOC01-appb-M000007
 (ステップS804)
 水画像Water(x,y)と脂肪画像Fat(x,y)もしくは、In-phase画像InComb(x,y)と脂肪画像Fat(x,y)を用いて、脂肪含有率の画像FatRatio(x,y)を作成する。式で示すと式(8)となる。
Figure JPOXMLDOC01-appb-M000008
 式(8)においてabsは絶対値を示す。
 なお、In-phase画像In(x,y)と補正後のOut-of-phase画像Out’(x,y)をそれぞれ合成し、水脂肪分離画像、脂肪含有率の画像を作成する場合も同様である。
 画像送信部207は、画像処理した画像を表示部111に送信する。画像にはIn-phase画像、Out-of-phase画像、水画像、脂肪画像、脂肪含有率の画像などがある。
 以下、塩化ニッケル水溶液のファントムを用いた撮影の例を用い、実際に、上述した第一実施形態の手法を適用し、受信周波数特性の影響が補正できることをエコー画像の信号値を用いて説明する。本計測パルスシーケンスとして図3を使用し、補正データ計測シーケンスとして図6に示すパルスシーケンスを用いた。以下、図9から図12を用いて結果を説明する。
 まず、本計測パルスシーケンスで計測して得られた画像と画像に含まれる受信周波数特性の影響について説明する。
 図9は、FOV350mm、受信バンド幅360kHz、周波数エンコード方向のサンプリング点数256、位相エンコード方向のサンプリング点数は128、で塩化ニッケル水溶液のファントムを4チャンネルの受信コイルを用いて本計測パルスシーケンスで撮像した画像である。画像901は周波数エンコード傾斜磁場が正極(周波数が左から右に向かって増加する)でTE1が3.6msにて取得した画像(TE1エコー画像)である。一方、画像902は周波数エンコード傾斜磁場が負極(周波数が左から右に向かって減少する)でTE2が4.9msにて取得した画像(TE2エコー画像)である。
 表1は、TE1エコー画像901のROI_AおよびROI_Bの信号平均値と、TE2エコー画像902のROI_AおよびROI_Bの信号平均値と、受信周波数特性の影響を補正したTE2エコー画像902におけるROI_AおよびROI_Bの信号平均値とを示す。なお、各エコー画像のROI_AおよびROI_Bの座標は同じである。TE2エコー画像902のROI_Aの値はTE1エコー画像901に比べて小さくなっている。一方、TE2エコー画像902のROI_Bの値はTE1エコー画像901に比べて大きくなっている。しかし、T2減衰があることが分かっているので、TEが4.9msのTE2エコー画像902の信号値はTEが3.6msのTE1エコー画像901の信号値よりも小さくなければならない。これは、受信周波数特性の影響によるものであり、TE2エコー画像902を補正する必要がある。
Figure JPOXMLDOC01-appb-T000009
 以下、TE2エコー画像902を正極のエコー信号に含まれる受信周波数特性の影響にそろえるように補正する例を説明する。
 図10は、本計測で撮像したTE1エコー画像901およびTE2エコー画像902の受信コイルのチャンネル毎の画像である。画像1001から画像1004は、TE1エコー画像901の受信コイルのチャンネル毎の画像であり、画像1001、画像1002、画像1003、画像1004は、それぞれ、1チャンネル、2チャンネル、3チャンネル、4チャンネルの画像である。また、画像1005から画像1008は、TE2エコー画像902受信コイルのチャンネル毎の画像であり、画像1305、画像1306、画像1307、画像1308は、それぞれ、1チャンネル、2チャンネル、3チャンネル、4チャンネルの画像である。
 図11に2次元フーリエ変換した補正データを示す。補正データとして、本計測パルスシーケンスを計測して得られたデータ(画像1101~1104)と補正データ計測パルスシーケンスを計測して得られたデータ(画像1105~1108)とを用いた。TE=TE1のエコー信号を使用した。
 補正データ画像1101~1104は、本計測で取得したTE1エコー画像の低域の16の位相エンコードから作成した周波数エンコード傾斜磁場が正極の補正データである。
画像1101、画像1102、画像1103、画像1104は、それぞれ、1チャンネル、2チャンネル、3チャンネル、4チャンネルを示す。
 また、画像1105~1108は、補正データ計測パルスシーケンスを用いて、負極の
周波数エンコード傾斜磁場を印加中に取得したTE1エコーの画像である。画像1105、画像1106、画像1107、画像1108は、それぞれ、1チャンネル、2チャンネル、3チャンネル、4チャンネルである。補正データ計測パルスシーケンスの位相エンコード傾斜磁場は低域の16の位相エンコードを用いた。
 図12に、図11に示した補正データから、補正データの比Cr(x)および1次関数によってフィッティングした補正データの比Fitting{Cr(x)}を示す。グラフ1201、グラフ1202、グラフ1203、グラフ1204は、それぞれ、1チャンネル、2チャンネル、3チャンネル、4チャンネルを示す。なお、グラフ1201~1204の補正データの比Cr(x)は閾値処理によってフィッティングに使用されたデータのみを示している。
 TE2エコーのチャンネルの画像1005~1008をフィッティングした補正データ1201~1204の比Fitting{Cr(x)}で、それぞれ補正し、チャンネル合成した画像を作成し、受信周波数特性の影響を補正したTE2エコー画像902のROI_AおよびROI_Bの値を算出した。
 算出した値を表1の受信周波数特性の影響を補正したTE2エコー画像におけるROI_AおよびROI_Bの信号平均値に示している。受信周波数特性の影響を補正したTE2エコー画像では、ROI_AとROI_B共にTE1エコー画像にくらべ3%減衰した妥当な信号値となった。従って、本実施形態により受信周波数特性の影響を取り除くことができた。
 以上のようにして得られた、Out-of-phase画像と受信周波数特性が補正されたIn-phase画像とから求めた、水画像、脂肪画像、及び脂肪の含有率の画像は、周波数エンコード傾斜磁場の極性を反転したときの受信周波数特性の影響が補正し除去されているため、精度が高く、誤差が低減されている。
 本実施形態により、周波数エンコード傾斜磁場を反転して取得した正極及び負極の画像の受信周波数特性の影響を取り除くことができる。受信周波数特性の影響を取り除くことにより、肝臓等の領域を呼吸停止下で高速撮像して取得した画像を用いた場合にも、脂肪の定量評価の精度を向上できる。また、脂肪の定量評価の画像を取得するための撮像において、受信周波数特性の影響を回避するために同じ極性の周波数エンコード傾斜磁場で計測する必要がなくなるので、撮像時間の短縮もしくは撮像スライス数を増加することができる。
 <第二実施形態>
 第二実施形態でも、制御部112による制御のもと、本計測パルスシーケンスと、補正データ計測パルスシーケンスを実行することは第一実施形態と同じであるが、補正データとして、本計測で取得した信号を利用せずに、本計測とTEが同じで周波数エンコード傾斜磁場パルスの極性が異なる2種のエコー信号を別途取得して利用する点が異なる。
 本計測パルスシーケンスは、第一実施形態で説明した本計測パルスシーケンス(図3)と同じである。
 本実施形態に用いる補正データ計測シーケンスは、1つのRFパルス照射による励起から一つのエコー信号を取得することを2回行う。得られる2種のエコー信号は、同じエコー時間で、異なる極性の周波数エンコード傾斜磁場の印加中に取得するものである。図13に本実施形態で使用する補正データ計測シーケンスの例を示す。この補正データ計測シーケンスはグラジエントエコー(GrE)型シーケンスである。補正データ計測シーケンスの種は、本計測パルスシーケンスの種と同一にする。
 最初のRFパルス1301の照射と同時にスライス選択傾斜磁場1302が印加されて目的とする断層面のみが励起される。そして、位置情報をエンコードするための低域のみの位相エンコード傾斜磁場1303が印加され、同時に負方向の周波数エンコード傾斜磁場1304を印加したあと、正方向の周波数エンコード傾斜磁場1305を印加してRFパルスからTE経過後に発生するエコー信号を正極のエコー信号として得る。次のRFパルス906の照射以降の条件は、正方向の周波数エンコード傾斜磁場1309を印加したあと、負方向の周波数エンコード傾斜磁場1310を印加する点以外は、上述した正極のエコー信号を得る条件と同様にして、TE経過後に負極のエコー信号を得る。これらの正極及び負極のエコー信号は同一のエコー時間で取得される。
 図9の補正データ計測シーケンスの場合、同一時間のTEは、本計測パルスシーケンスの2つのTE、すなわち、図3のTE1及びTE2のうち、いずれに設定してもよいが、補正データ計測の時間を短くするという観点からは、TE=TE1が好ましい。一方、本計測パルスシーケンスが2点DIXON法の場合には、水信号と脂肪信号との打ち消しを避けるために、補正データ計測パルスシーケンスのTEは、水信号と脂肪信号とが同位相となるTEが好ましい。例えば、本計測において水信号と脂肪信号が同位相となるタイミングがTE1であれば、TE=TE1とする。水信号と脂肪信号が同位相となるタイミングがTE2であれば、TE=TE2とする。
 補正データ計測は、ゼロ位相エンコード傾斜磁場を含む低域位相エンコード傾斜磁場を印加して行う。低域位相エンコード傾斜磁場の印加量は、8が好ましく、16がより好ましく、32がさらに好ましい。
 また、補正データ計測は本計測と同じスライス位置、同じ撮像野(FOV(Field of View))、同じ周波数エンコード方向と同じ周波数エンコードのサンプリング点数、同じ受信バンド幅で、本計測の直前もしくは直後に実行されてよい。また、補正データ計測は、本計測と連続的にあるいは分離して実行してよい。
 補正データ計測は、いずれもコイル毎に行う。例えば、複数の小型コイル(チャンネル)を持つコイルで受信した場合には、小型コイル(チャンネル)毎に信号を取得するのが好ましい。また、補正データ計測は、撮像する対象毎に行うことが好ましい。
 補正データ計測で得られた、正極及び負極のエコー信号の一対を補正データベース203に格納する。
 画像変換部204が補正データを用いて受信周波数特性の影響を取り除く処理、画像処理部206が補正された画像を使用して、チャンネル毎の画像を合成し、水画像と脂肪画像を作成し、脂肪含有率を求める処理、及び画像送信部207が、画像処理した画像を表示部111に送信する処理は、第一実施形態と同様である。
 本実施形態は、補正データ計測により、同じエコー時間で、異なる極性の周波数エンコード傾斜磁場の印加中に取得した一対の補正用エコー信号を用いて補正データを作成し、本計測で得られたエコー信号を補正することにより、第一実施形態と同様の効果が得られる。
 <第三実施形態>
 第一及び第二実施形態では、本計測として、TEの異なる2つの画像を取得するシーケンスを使用したが、第三実施形態では、TEの異なる3つの画像を取得するシーケンスにも適用できることを説明する。
 図14は、3つのTEの異なる画像を取得するシーケンスの一例を示す(本実施形態の本計測パルスシーケンス)。このシーケンスは、例えば、3点DIXON法に使用できる。
 図14の本計測パルスシーケンスは、さらに第三エコー信号を得るために、再度正方向の周波数エンコード傾斜磁場1407を印加してRFパルスからTE3経過後に3つ目のエコー信号を発生させる点以外は、図3に示す本計測パルスシーケンスと同様である。図10の本計測パルスシーケンスより取得されたエコー信号から、TEの異なる3種類の画像データを得ることができる。
 本計測で取得した画像データを補正する場合も、補正データは、第一及び第二実施形態で説明したように、同じTEで、正極のエコー信号及び負極のエコー信号の1セットのみを取得すればよい。そして、第一及び第二実施形態で説明したように、画像変換部204が補正データを用いて受信周波数特性の影響を取り除く処理、画像処理部206が補正された画像を使用して、チャンネル毎の画像を合成し、水画像と脂肪画像を作成し、脂肪含有率を求める処理、及び画像送信部207が、画像処理した画像を表示部111に送信する処理を行えばよい。
 本実施形態により、本計測が異なる3つの画像を取得するシーケンスでも第一及び第二実施形態と同じ効果が得られる。
 以上、DIXON法を例に、本発明の各実施形態を説明したが、TEの異なる複数の信号を取得するパルスシーケンスであれば、3次元グラジエントエコー法、スピンエコー法、ファーストスピンエコー法等に本発明を適用することができる。また、心臓周囲の脂肪又は内臓脂肪のように、肝臓以外の脂肪が付着した他の臓器の領域を高速撮像して取得した画像を用いた場合でも、適用できる。
 以上、本発明のいくつかの実施形態を説明したが、本発明により、周波数エンコード傾斜磁場を反転して取得した正極及び負極の画像の受信周波数特性の影響を取り除くことができる。受信周波数特性の影響を取り除くことにより、肝臓等の領域を呼吸停止下で高速撮像して取得した画像を用いた場合にも、脂肪の定量評価の精度を向上できるMRI装置を提供できる。また、受信周波数特性の影響を回避するために、同じ極性の周波数エンコード傾斜磁場を印加して信号を取得する必要性がなくなるので、本発明により、脂肪の定量評価の画像を取得するための撮像において、撮像時間の短縮もしくは撮像スライス数を増加することができる。
 本発明により、周波数エンコード傾斜磁場を反転して、正極の画像と負極の画像の受信周波数特性の影響を取り除くことができる。受信周波数特性の影響を除去することにより、例えば、肝臓等の領域を呼吸停止下で高速撮像して取得した画像を用いた場合にも、脂肪の定量評価の精度を向上できる。また、脂肪の定量評価の画像を取得するための撮像において、撮像時間の短縮もしくは撮像スライス数を増加することができる。
 101 被検体、102 静磁場磁石、103 傾斜磁場コイル、104 照射コイル(高周波発生部)、105 受信コイル(受信部)、106 ベッド、107 傾斜磁場電源、108 RF送信部(高周波発生部)、109 信号検出部(受信部)、110 信号処理部、111 表示部、112 制御部、113 入力部、201 信号受信部、202 k空間データベース、203 補正データベース、204 画像変換部、205 画像データベース、206 画像処理部、207 画像送信部、208 メモリ(パラメータ)、301 RFパルス、302 スライス選択傾斜磁場、303 位相エンコード傾斜磁場、304 周波数エンコード傾斜磁場(プリパルス)、305 周波数エンコード傾斜磁場、306 周波数エンコード傾斜磁場、401 チャンネル番号1の受信周波数特性、402 チャンネル番号2の受信周波数特性、501 正極の画像、502 負極の画像、601 RFパルス、602 スライス選択傾斜磁場、603 位相エンコード傾斜磁場、604 周波数エンコード傾斜磁場(プリパルス)、605 周波数エンコード傾斜磁場、606 周波数エンコード傾斜磁場、901 TE1エコー画像(正極の画像)、902 TE2エコー画像(負極の画像)、1001~1004 TE1エコーの各チャンネル画像、1005~1008 TE2エコーの各チャンネル画像、1101~1104 補正データ画像、1105~1108 補正データ画像、1201~1204 各チャンネルの補正データ比のグラフ、1301 RFパルス、1302 スライス選択傾斜磁場、1303 位相エンコード傾斜磁場、1304 周波数エンコード傾斜磁場(プリパルス)、1305 周波数エンコード傾斜磁場、1306 RFパルス、1307 スライス選択傾斜磁場、1308 位相エンコード傾斜磁場、1309 周波数エンコード傾斜磁場(プリパルス)、1310 周波数エンコード傾斜磁場、1401 RFパルス、1402 スライス選択傾斜磁場、1403 位相エンコード傾斜磁場、1404 周波数エンコード傾斜磁場(プリパルス)、1405 周波数エンコード傾斜磁場、1406 周波数エンコード傾斜磁場、1407 周波数エンコード傾斜磁場

Claims (15)

  1.  静磁場磁石と、高周波磁場パルスを発生する高周波発生部と、核磁気共鳴により発生するエコー信号を受信する高周波コイルを備えた受信部と、傾斜磁場コイルと、所定のパルスシーケンスに従い前記高周波発生部、前記傾斜磁場コイル及び前記受信部を制御する制御部と、前記エコー信号を処理する信号処理部と、を備えた磁気共鳴イメージング装置であって、
     前記パルスシーケンスは、前記高周波磁場パルスによる励起後に、複数のエコー時間で異なる極性の周波数エンコード傾斜磁場の印加中にエコー信号を取得するマルチエコーシーケンスであり、
     前記信号処理部は、同じエコー時間で正極及び負極の周波数エンコード傾斜磁場の印加中に取得した一対の補正用エコー信号を用いて補正データを作成し、前記異なる極性の周波数エンコード傾斜磁場の印加中に取得したエコー信号を補正する補正部を備えることを特徴とする磁気共鳴イメージング装置。
  2.  請求項1に記載の磁気共鳴イメージング装置であって、
     前記補正部は、前記マルチエコーシーケンスとは別に実行される補正データ計測シーケンスで取得したエコー信号を用いて前記補正データを作成することを特徴とする磁気共鳴イメージング装置。
  3.  請求項2に記載の磁気共鳴イメージング装置であって、
     前記補正データ計測シーケンスは、位相エンコード傾斜磁場の印加条件以外は、前記マルチエコーシーケンスと同種であることを特徴とする磁気共鳴イメージング装置。
  4.  請求項1に記載の磁気共鳴イメージング装置であって、
     前記一対の補正用エコー信号は、前記マルチエコーシーケンスの実行において取得したエコー信号及び前記マルチエコーシーケンスとは別に実行される補正データ計測シーケンスで取得したエコー信号であることを特徴とする磁気共鳴イメージング装置。
  5.  請求項4に記載の磁気共鳴イメージング装置であって、
     前記一対の補正用エコー信号は、低域の位相エンコード傾斜磁場を印加して取得した信号であることを特徴とする磁気共鳴イメージング装置。
  6.  請求項1に記載の磁気共鳴イメージング装置であって、
     前記高周波コイルは、複数の小型コイルからなり、
     前記補正部は前記小型コイル毎に補正データを作成し、前記小型コイルでそれぞれ受信したエコー信号に対し前記補正データを用いた補正を行うことを特徴とする磁気共鳴イメージング装置。
  7.  請求項6に記載の磁気共鳴イメージング装置であって、
     前記補正部は、前記小型コイル毎に、前記一対の補正用エコー信号を2次元フーリエ変換して得たデータの比から前記補正データを求めることを特徴とする磁気共鳴イメージング装置。
  8.  請求項1に記載の磁気共鳴イメージング装置であって、
     前記マルチエコーシーケンスは、前記異なる極性の周波数エンコード傾斜磁場において、水からのエコー信号と脂肪からのエコー信号とが同位相になる第一エコー時間と、前記水からのエコー信号と前記脂肪からのエコー信号とが逆位相になる第二エコー時間で、エコー信号を取得する水脂肪分離シーケンスであることを特徴とする磁気共鳴イメージング装置。
  9.  請求項8に記載の磁気共鳴イメージング装置であって、
     前記補正データを作成するためのエコー信号は、前記第一エコー時間又は前記第二エコー時間と同じエコー時間に取得されたエコー信号であることを特徴とする磁気共鳴イメージング装置。
  10.  請求項8に記載の磁気共鳴イメージング装置であって、
     前記水脂肪分離シーケンスは、前記第一エコー時間が前記第二エコー時間より長い時間に設定されていることを特徴とする磁気共鳴イメージング装置。
  11.  核磁気共鳴により発生するエコー信号を用いて複数種の画像を作成する水脂肪分離画像作成方法であって、
     前記エコー信号は、高周波磁場パルスによる励起後に、複数のエコー時間で異なる極性の周波数エンコード傾斜磁場の印加中に取得され、
     前記異なる極性の周波数エンコード傾斜磁場の印加中に取得したエコー信号を、同じエコー時間で正極及び負極の周波数エンコード傾斜磁場の印加中に取得した一対の補正用エコー信号を用いて補正することを特徴とする水脂肪分離画像作成方法。
  12.  請求項11に記載の水脂肪分離画像作成方法であって、
     前記一対の補正用エコー信号は、低域の位相エンコード傾斜磁場を印加して取得した信号であることを特徴とする水脂肪分離画像作成方法。
  13.  請求項11に記載の水脂肪分離画像作成方法であって、
     前記エコー信号は、水からのエコー信号と脂肪からのエコー信号とが同位相になる第一エコー時間と、前記水からのエコー信号と前記脂肪からのエコー信号とが逆位相になる第二エコー時間とで収集され、
     前記第一エコー時間で取得された第一エコー信号と前記第二エコー時間で取得された第二エコー信号とを用いて、複数種の画像を作成することを特徴とする水脂肪分離画像作成方法。
  14.  請求項13に記載の水脂肪分離画像作成方法であって、
     前記一対の補正用エコー信号は、前記第一エコー時間又は前記第二エコー時間と同じエコー時間で、低域の位相エンコード傾斜磁場を印加して取得した信号であることを特徴とする水脂肪分離画像作成方法。
  15.  請求項11に記載の水脂肪分離画像作成方法であって、
     前記複数種の画像を用いて、脂肪分布率を算出することを特徴とする水脂肪分離画像作成方法。
PCT/JP2015/066694 2014-06-12 2015-06-10 磁気共鳴イメージング装置及び水脂肪分離画像作成方法 WO2015190508A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/311,630 US20170097400A1 (en) 2014-06-12 2015-06-10 Magnetic resonance imaging apparatus and method for generating water-fat separation image
JP2016527837A JPWO2015190508A1 (ja) 2014-06-12 2015-06-10 磁気共鳴イメージング装置及び水脂肪分離画像作成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-121119 2014-06-12
JP2014121119 2014-06-12

Publications (1)

Publication Number Publication Date
WO2015190508A1 true WO2015190508A1 (ja) 2015-12-17

Family

ID=54833598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066694 WO2015190508A1 (ja) 2014-06-12 2015-06-10 磁気共鳴イメージング装置及び水脂肪分離画像作成方法

Country Status (3)

Country Link
US (1) US20170097400A1 (ja)
JP (1) JPWO2015190508A1 (ja)
WO (1) WO2015190508A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153169A (zh) * 2017-07-04 2017-09-12 大连锐谱科技有限责任公司 一种稳态进动梯度多回波水脂分离成像方法
KR101844514B1 (ko) 2016-09-02 2018-04-02 삼성전자주식회사 자기 공명 영상 장치 및 자기 공명 영상 획득 방법
KR20190121982A (ko) * 2018-04-19 2019-10-29 광운대학교 산학협력단 정량적 자기 공명 영상 생성 방법 및 정량적 자기 공명 영상 생성 장치
JP2020199236A (ja) * 2019-06-05 2020-12-17 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
WO2022203273A1 (ko) * 2021-03-24 2022-09-29 아주대학교산학협력단 신호강도기반 다중 에코 자기공명영상을 이용하여 고지방 복셀을 구별하고 지방분율맵을 생성하는 방법 및 장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104739409B (zh) * 2013-12-31 2018-02-13 西门子(深圳)磁共振有限公司 磁共振成像方法和装置
US10338174B2 (en) * 2016-02-11 2019-07-02 The Board Of Trustees Of The Leland Stanford Junior Univesity Robust dual echo Dixon imaging with flexible echo times
EP3413070A1 (en) * 2017-06-09 2018-12-12 Koninklijke Philips N.V. Dual-echo dixon-type water/fat separation mr imaging
EP3447517A1 (en) 2017-08-24 2019-02-27 Koninklijke Philips N.V. Dixon-type water/fat separation mr imaging
EP3761052B1 (en) * 2019-07-04 2023-02-22 Siemens Healthcare GmbH Simultaneous multi-slice 2d magnetic resonance imaging with compressed sensing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253525A (ja) * 2001-03-02 2002-09-10 Hitachi Medical Corp 磁気共鳴イメージング装置
WO2009081785A1 (ja) * 2007-12-25 2009-07-02 Hitachi Medical Corporation 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
US20100244822A1 (en) * 2009-03-31 2010-09-30 General Electric Company Method and system to perform phase correction for species separation in magnetic resonance imaging
JP2014503249A (ja) * 2010-12-02 2014-02-13 コーニンクレッカ フィリップス エヌ ヴェ マルチポイントディクソン技術を用いるmr撮像

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034004A1 (ja) * 2009-09-17 2011-03-24 株式会社 日立メディコ 磁気共鳴イメージング装置及び傾斜磁場印加方法
US8787639B2 (en) * 2010-03-03 2014-07-22 Hitachi Medical Corporation Magnetic resonance imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253525A (ja) * 2001-03-02 2002-09-10 Hitachi Medical Corp 磁気共鳴イメージング装置
WO2009081785A1 (ja) * 2007-12-25 2009-07-02 Hitachi Medical Corporation 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
US20100244822A1 (en) * 2009-03-31 2010-09-30 General Electric Company Method and system to perform phase correction for species separation in magnetic resonance imaging
JP2014503249A (ja) * 2010-12-02 2014-02-13 コーニンクレッカ フィリップス エヌ ヴェ マルチポイントディクソン技術を用いるmr撮像

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844514B1 (ko) 2016-09-02 2018-04-02 삼성전자주식회사 자기 공명 영상 장치 및 자기 공명 영상 획득 방법
US10488485B2 (en) 2016-09-02 2019-11-26 Samsung Electronics Co., Ltd. Magnetic resonance imaging apparatus and method for obtaining magnetic resonance image
CN107153169A (zh) * 2017-07-04 2017-09-12 大连锐谱科技有限责任公司 一种稳态进动梯度多回波水脂分离成像方法
CN107153169B (zh) * 2017-07-04 2020-03-27 南京拓谱医疗科技有限公司 一种稳态进动梯度多回波水脂分离成像方法
KR20190121982A (ko) * 2018-04-19 2019-10-29 광운대학교 산학협력단 정량적 자기 공명 영상 생성 방법 및 정량적 자기 공명 영상 생성 장치
KR102074397B1 (ko) 2018-04-19 2020-02-06 광운대학교 산학협력단 정량적 자기 공명 영상 생성 방법 및 정량적 자기 공명 영상 생성 장치
JP2020199236A (ja) * 2019-06-05 2020-12-17 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
JP7242472B2 (ja) 2019-06-05 2023-03-20 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
WO2022203273A1 (ko) * 2021-03-24 2022-09-29 아주대학교산학협력단 신호강도기반 다중 에코 자기공명영상을 이용하여 고지방 복셀을 구별하고 지방분율맵을 생성하는 방법 및 장치

Also Published As

Publication number Publication date
JPWO2015190508A1 (ja) 2017-04-20
US20170097400A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
WO2015190508A1 (ja) 磁気共鳴イメージング装置及び水脂肪分離画像作成方法
JP5917077B2 (ja) 磁気共鳴イメージング装置
US10180474B2 (en) Magnetic resonance imaging apparatus and quantitative magnetic susceptibility mapping method
US7863895B2 (en) System, program product, and method of acquiring and processing MRI data for simultaneous determination of water, fat, and transverse relaxation time constants
JP5449903B2 (ja) 磁気共鳴イメージング装置
US8466679B2 (en) Magnetic resonance imaging apparatus and method configured for susceptibility-emphasized imaging with improved signal-to-noise ratio
JP6014770B2 (ja) 磁気共鳴撮影装置および温度情報計測方法
US10605881B2 (en) Magnetic resonance imaging apparatus and image processing method
JP6371554B2 (ja) 磁気共鳴イメージング装置
US10203387B2 (en) MR imaging with enhanced susceptibility contrast
JP6496311B2 (ja) 温度マッピングを伴うmrイメージング
JP6038654B2 (ja) 磁気共鳴イメージング装置及び振動誤差磁場低減方法
WO2007145193A1 (ja) 磁気共鳴イメージング装置
JP3386864B2 (ja) 核磁気共鳴撮影方法及び装置
WO2010064572A1 (ja) 磁気共鳴イメージング装置および同期撮像方法
JP5808659B2 (ja) 磁気共鳴イメージング装置及びT1ρイメージング法
JP5336731B2 (ja) 磁気共鳴イメージング装置
WO2014125876A1 (ja) 磁気共鳴イメージング装置及びその処理方法
JP5684888B2 (ja) 磁気共鳴イメージング装置
JP2005021488A (ja) 磁気共鳴イメージング装置
WO2017013801A1 (ja) 磁気共鳴イメージング装置
JP2018114163A (ja) 磁気共鳴イメージング装置
JP6114846B2 (ja) 磁気共鳴イメージング装置
JP5881869B2 (ja) 磁気共鳴イメージング装置
JP5283213B2 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527837

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15311630

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15807056

Country of ref document: EP

Kind code of ref document: A1