WO2009081785A1 - 磁気共鳴イメージング装置及び磁気共鳴イメージング方法 - Google Patents
磁気共鳴イメージング装置及び磁気共鳴イメージング方法 Download PDFInfo
- Publication number
- WO2009081785A1 WO2009081785A1 PCT/JP2008/072804 JP2008072804W WO2009081785A1 WO 2009081785 A1 WO2009081785 A1 WO 2009081785A1 JP 2008072804 W JP2008072804 W JP 2008072804W WO 2009081785 A1 WO2009081785 A1 WO 2009081785A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- echo
- resonance imaging
- magnetic resonance
- magnetic field
- target
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5615—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/543—Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/546—Interface between the MR system and the user, e.g. for controlling the operation of the MR system or for the design of pulse sequences
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5615—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
- G01R33/5616—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using gradient refocusing, e.g. EPI
Definitions
- the present invention relates to a technique for acquiring an image with enhanced magnetic susceptibility at high speed using a magnetic resonance imaging (hereinafter referred to as MRI) apparatus that obtains a tomographic image of an examination region of a subject using a nuclear magnetic resonance phenomenon.
- MRI magnetic resonance imaging
- the MRI apparatus uses a uniform static magnetic field, and the static magnetic field changes locally depending on the magnetic susceptibility of the subject.
- the effect of this local magnetic field change appears as a phase change in the image data.
- An imaging method (hereinafter, referred to as susceptibility-enhanced imaging) that emphasizes this phase change by arithmetic processing is known (Patent Document 1).
- This susceptibility-enhanced imaging is attracting attention as an effective technique for venous MR angiography because it can enhance the susceptibility of reduced hemoglobin in the blood.
- susceptibility-weighted imaging uses a phase change caused by the susceptibility, an echo signal is required when about 70 ms elapses after irradiation with an RF pulse. For this reason, since the repetition time (TR) of the pulse sequence (hereinafter simply abbreviated as “sequence”) cannot be set short, the imaging time becomes long.
- methods for measuring multiple echo signals with a single RF pulse irradiation are known as methods for shortening the imaging time in an MRI apparatus, and typical examples include the echo planar (EPI) method and the first spin echo method. There is (FSE) method.
- An example of magnetic susceptibility enhanced imaging using an echo planar method is disclosed in (Patent Document 2) in order to shorten the imaging time of magnetic susceptibility enhanced imaging.
- an object of the present invention is to obtain an image in which a region of interest on an image is optimally susceptibility-weighted in susceptibility-weighted photographing.
- the present invention controls the measurement order of a plurality of echo signals in accordance with the size of a desired region of interest of the subject.
- the target frequency in the K space is obtained corresponding to the size of the region of interest, and the measurement order of multiple echo signals is controlled so that the echo signal corresponding to the target frequency is measured at or near the target echo time.
- the MRI apparatus of the present invention includes a measurement control unit that controls measurement of a plurality of echo signals from a subject based on a predetermined pulse sequence, and data of the plurality of echo signals are arranged in K space.
- An arithmetic processing unit that acquires an image of the subject based on the K-space data, and the measurement control unit measures a plurality of echo signals corresponding to the size of the desired region of interest of the subject. It is characterized by controlling the order.
- the MRI method of the present invention includes a measurement process for measuring a plurality of echo signals from a subject based on a predetermined pulse sequence, and K space data in which data of a plurality of echo signals are arranged in K space. And an arithmetic processing step for acquiring an image of the subject based on the measurement, and in the measurement control step, the measurement order of the plurality of echo signals is controlled in accordance with the size of the desired region of interest of the subject. It is characterized by that.
- the MRI apparatus and the MRI method of the present invention it is possible to obtain an image in which the region of interest on the image is optimally susceptibility-weighted in susceptibility-weighted imaging.
- FIG. 1 is a block diagram showing the overall configuration of an example of the MRI apparatus of the present invention.
- This MRI apparatus uses a nuclear magnetic resonance (NMR) phenomenon to obtain a tomographic image of an object, and as shown in FIG. 1, a static magnetic field generation system 2, a gradient magnetic field generation system 3, and a transmission system 5
- NMR nuclear magnetic resonance
- the static magnetic field generation system 2 generates a uniform static magnetic field in the space around the subject 1 in the direction of the body axis or in the direction perpendicular to the body axis.
- the permanent magnet method or the normal conduction method is provided around the subject 1 Alternatively, a superconducting magnetic field generating means is arranged.
- the gradient magnetic field generation system 3 (gradient magnetic field generation unit) is composed of a gradient magnetic field coil 9 wound in three axial directions of X, Y, and Z, and a gradient magnetic field power source 10 for driving each gradient magnetic field coil 9.
- gradient magnetic fields Gs, Gp, Gf in the three-axis directions of X, Y, Z are applied to the subject 1.
- a slice selection gradient magnetic field pulse (Gs) is applied in one of X, Y, and Z directions to set a slice plane for the subject 1, and a phase encoding gradient magnetic field pulse is applied in the remaining two directions.
- Gp and a frequency encoding (or reading) gradient magnetic field pulse (Gf) are applied to encode position information in each direction into an echo signal.
- the sequencer 4 is a measurement control unit that controls the measurement of echo signals by repeatedly applying a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) and a gradient magnetic field pulse in a predetermined sequence.
- RF pulse high-frequency magnetic field pulse
- the sequencer 4 operates under the control of the CPU 8 and sends various commands for measuring echo signals necessary for the reconstruction of the tomographic image of the subject 1 to the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6. By controlling these systems, echo signal measurement is controlled.
- the transmission system 5 irradiates an RF pulse to cause nuclear magnetic resonance to the nuclear spins of atoms constituting the biological tissue of the subject 1, and includes a high frequency oscillator 11, a modulator 12, a high frequency amplifier 13, and a transmission side And a high-frequency coil 14a.
- the high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 at a timing according to a command from the sequencer 4, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 13 and then placed close to the subject 1.
- the subject 1 is irradiated with electromagnetic waves (RF pulses) by being supplied to the high frequency coil 14a.
- the receiving system 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and receives a high-frequency coil 14b on the receiving side, an amplifier 15, and a quadrature detector 16 and an A / D converter 17.
- the response electromagnetic wave (NMR signal) of the subject 1 induced by the electromagnetic wave irradiated from the high-frequency coil 14a on the transmission side is detected by the high-frequency coil 14b arranged close to the subject 1 and amplified by the amplifier 15
- the signals are divided into two orthogonal signals by the quadrature phase detector 16 at a timing according to a command from the sequencer 4, converted into digital quantities by the A / D converter 17, and sent to the signal processing system 7.
- the echo signal converted into the digital quantity is referred to as echo signal data or echo data.
- the signal processing system 7 has an external storage device (storage means) such as an optical disk 19 and a magnetic disk 18 and a display 20 composed of a CRT or the like, and echo data from the reception system 6 is input to the CPU 8 (arithmetic processing unit). Then, the CPU 8 executes arithmetic processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 1 as a result on the display 20 and records it on the magnetic disk 18 of the external storage device.
- the CPU 8 includes a memory corresponding to the K space and stores echo data.
- the description that the echo signal or the echo data is arranged in the K space means that the echo data is written and stored in this memory.
- the operation system 25 is used to input various control information of the MRI apparatus and control information of processing performed by the signal processing system 7, and includes a trackball or mouse 23 and a keyboard 24.
- the operation system 25 is arranged close to the display 20, and the operator interactively controls various processes of the MRI apparatus through the operation system 25 while looking at the display 20.
- the transmission-side and reception-side high-frequency coils 14a and 14b and the gradient magnetic field coil 9 are installed in the static magnetic field space of the static magnetic field generation system 2 arranged in the space around the subject 1. .
- the MRI apparatus's imaging target spin species are protons that are the main constituents of the subject as widely used in clinical practice.
- the spatial distribution of proton density and the spatial distribution of the relaxation phenomenon in the excited state By imaging the spatial distribution of proton density and the spatial distribution of the relaxation phenomenon in the excited state, the form or function of the human head, abdomen, limbs, etc. can be photographed two-dimensionally or three-dimensionally.
- FIG. Fig. 2 is a sequence chart showing the sequence shape of the gradient echo type multi-shot echo planar method.
- Gs, Gp, and Gr represent the axes of the slice selection gradient magnetic field, phase encoding gradient magnetic field, and frequency encoding gradient magnetic field, respectively.
- RF, AD, and Echo represent an RF pulse, a sampling window, and an echo signal, respectively.
- 201 is an RF pulse
- 202 is a slice selective gradient magnetic field pulse
- 203 is a slice refocusing gradient magnetic field pulse
- 204 is a phase encoding gradient magnetic field pulse
- 205 is a phase blip gradient magnetic field pulse group
- 206 is a frequency phase gradient magnetic field pulse
- 207 is a frequency encoding gradient magnetic field pulse group
- 208 is a sampling window group
- 209 is an echo signal group.
- the sequencer 4 controls the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6 to measure an echo signal.
- the sequencer 4 measures one echo signal 209 for each readout gradient magnetic field pulse 207 while changing the polarity of the readout gradient magnetic field pulse 207 for each irradiation of the RF pulse 201. This is repeatedly executed at a time interval 210 (repetition time TR), and the number of echo signals necessary for image reconstruction is measured.
- the number of echo signals necessary for image reconstruction is generally about 64, 128, or 256 depending on the matrix of the image to be created.
- the number after-(hyphen) represents a repetition number.
- FIG. 2 (a) shows the first first sequence among a plurality of repetitions, and the second and subsequent repetition sequences are the same as the first one and are omitted. In the sequence diagrams described below, the meanings of the numbers after-(hyphen) are the same.
- a plurality of echo signals are measured by one RF pulse irradiation, so an image can be acquired at a higher speed than a sequence in which one echo signal is measured by one RF pulse irradiation.
- FIG. 2 (a) since six echo signals 209 are measured by one RF pulse 201 irradiation, it can be photographed six times faster. Note that the single shot echo planar method that measures all echo signals necessary for image reconstruction by one RF pulse irradiation can further increase the speed.
- FIG. 2 (b) is a schematic diagram showing an example of the K space 211 in which echo data measured by the echo planar method is arranged.
- the horizontal axis Kx in FIG. 2 (b) corresponds to the sampling time of the echo signal
- the vertical axis Ky corresponds to the total amount of phase encoding gradient magnetic field pulses applied to the phase encoding axis when the echo signal is measured. To do.
- the arrow 212 in FIG. 2 (b) is the order in which echo signals are measured in the K space data acquired using the echo planar method, and the Ky axis direction is from bottom to top (that is, from the negative side to the positive side).
- This is an example in which echo signals are continuously measured (referred to as sequential ordering).
- Lines 212-1 solid line
- 212-2 dotted line
- 212-3 dashed line
- 210-1 first repetition
- 210-2 second repetition
- 210-3 corresponding to the echo signal groups 209-1, 209-2, and 209-3 measured in the third iteration, each line has an echo signal every two Ky-axis directions
- each line 212 includes six echo signals.
- the scanning direction of the arrow at the echo signal position corresponds to the polarity of the readout gradient magnetic field pulse group 207.
- the interval 213 in the Ky direction of arrows corresponds to the area of each phase blip gradient magnetic field 205, and by changing the starting position of each line 212 with the phase encode gradient magnetic field pulse 204, echo data Can be placed in the K space without overlapping in the Ky direction.
- FIG. 2 (c) is a schematic diagram showing another example of the K space 211 in which echo data measured by the echo planar method is arranged.
- the two-dimensional K-space data arranged in this way is converted into an image by the CPU 8 applying a two-dimensional Fourier transform (for the three-dimensional K-space data, the three-dimensional Fourier transform is applied to the 3D Convert to a dimensional image).
- a two-dimensional Fourier transform for the three-dimensional K-space data, the three-dimensional Fourier transform is applied to the 3D Convert to a dimensional image.
- the contrast of the local area in the image has a different spatial frequency depending on the size of the target part.
- the contrast of an area of 1 pixel size in the image reflects the contrast of echo data in the highest spatial frequency domain in K space (i.e., echo signals measured with a maximum or close phase encoding value).
- the contrast of an area of 10 pixels in the image contributes greatly to the contrast of 10 points of data from the higher spatial frequency in the K space.
- echo time the echo time
- FIG. 3 (a) shows the phase rotation that occurs in the echo signal after application of the RF pulse 201.
- FIG. 3 (a) shows the phase rotation that occurs in the echo signal after application of the RF pulse 201.
- FIG. 3 (a) shows the phase rotation that occurs in the echo signal after application of the RF pulse 201.
- FIG. 3 (a) shows the phase rotation that occurs in the echo signal after application of the RF pulse 201.
- FIG. 3 (a) shows the phase rotation that occurs in the echo signal after application of the RF pulse 201.
- FIG. 3 (a) shows the phase rotation that occurs in the echo signal after application of the RF pulse 201.
- FIG. 3 (a) shows the phase rotation that occurs in the echo signal after application of the RF pulse 201.
- FIG. 3 (a) shows the phase rotation that occurs in the echo signal after application of the RF pulse 201.
- FIG. 3 (a) shows the phase rotation that occurs in the echo signal after application of the RF pulse 201.
- the peak value of the echo signal obtained by the MRI apparatus becomes a curve like 302 in FIG. 3 (b) after the RF pulse 201 is applied.
- T 2 the spin itself excited by the RF pulse 201 is laterally relaxed
- a phase difference occurs in the spin due to the difference in magnetic susceptibility, and this phase difference becomes larger as the echo time becomes longer.
- this phase difference causes cancellation of the NMR signal between the tissues in the pixel, resulting in a decrease in the signal intensity of the pixel (so-called (Partial volume effect).
- An image weighted by the magnetic susceptibility effect using this partial volume effect is a magnetic susceptibility enhanced image.
- an echo signal when about 70 ms elapses is necessary. For this reason, in the conventional susceptibility-weighted imaging, the repetition time (TR) of the sequence cannot be set short, so that the imaging time becomes long.
- susceptibility-weighted imaging using the above-described echo planar method is conceivable.
- information of echo signals having different echo times is mixed with the phase change of the image data.
- the emphasis effect by the magnetic susceptibility is dispersed and weakened throughout the image, and it becomes impossible to obtain an image in which the region of interest on the image is optimally susceptibility-weighted.
- the MRI apparatus of the present invention described below solves this problem, and each embodiment of the MRI apparatus of the present invention will be described below.
- the measurement order of a plurality of echo signals is controlled in accordance with the size of a desired region of interest of the subject. That is, in response to the size of the region of interest on the image, the echo signal corresponding to the size of the region of interest is measured at an echo time that reflects the desired susceptibility effect. Control the measurement order of echo signals.
- the application order of the phase encoding gradient magnetic field that is, the position where the echo data is arranged in the K space is controlled.
- FIG. 4 is a flowchart illustrating an example of a processing flow of the entire photographing according to the present embodiment
- FIG. 5 is a flowchart illustrating an example of a detailed processing flow of a processing portion according to the present embodiment, particularly within the processing flow of FIG. It is.
- step 401 a region to be imaged is selected in the same manner as normal imaging. For example, the operator selects an imaging target region via the imaging target region selection GUI displayed on the display 20. Note that this step 401 may be omitted.
- step 402 the shooting sequence parameters are set. Similar to step 401, the operator sets the parameters of the shooting sequence via the parameter setting GUI displayed on the display 20.
- step 403 based on the parameters set in step 402, it is determined whether or not the imaging sequence is susceptibility enhanced imaging. For example, when the parameter setting GUI includes an option for susceptibility-weighted imaging and the option is selected by the operator, it may be determined that the susceptibility-weighted imaging is selected. Further, it is also possible to determine that susceptibility weighted imaging has been selected even when a gradient echo type multi-shot echo planar method is selected as a sequence and the effective TE (echo time of phase encoding zero) is set to be long. This determination is made by the CPU 8.
- step 404 If it is determined in step 404 that the susceptibility-weighted imaging is performed, the CPU 8 sets parameters necessary for the susceptibility-weighted imaging. Details of step 404 will be described later.
- step 405 the shooting sequence is executed. Based on the parameters set in step 402, in the case of susceptibility-weighted imaging, the sequencer 4 further executes the imaging sequence based on the parameters for susceptibility-weighted imaging set in step 404. And control the echo signal measurement. Details in the case of susceptibility-weighted imaging will be described later. Then, the CPU 8 writes and stores the measured echo signal data in a memory corresponding to the K space in the CPU 8. That is, the CPU 8 places the measured echo data in the K space.
- step 406 an image is reconstructed using the K space data acquired in step 405.
- the CPU 8 performs Fourier transform on the K space data acquired in step 405 to reconstruct an image.
- the CPU 8 applies 2D Fourier transform to 2D K-space data to convert it to a 2D image, and applies 3D Fourier transform to 3D K-space data to apply 3D Convert to image.
- the above is an example of the processing flow of the entire photographing.
- FIG. 5 is a flowchart showing an example of a processing flow for parameter setting necessary for susceptibility-weighted imaging.
- the size of the region of interest on the image is set.
- the target size can be set as follows, for example.
- the first method is a method in which the CPU 8 sets a target size based on information input by the operator via the operation system 25. Specifically, the pixel size (number of pixels) of the region of interest input by the operator is set as the target size. Alternatively, the actual size (mm) of the region of interest input by the operator may be set as the target size. For example, when the region of interest is a blood vessel as in MR angiography, the operator can set the target size by inputting the diameter of the target blood vessel. Alternatively, the CPU 8 may determine the pixel size or the actual size of the region of interest from the input information of the figure (line diagram) surrounding the region of interest drawn on the image by the operator and set the target size. An example of the target size setting GUI will be described later.
- the target size for each part to be imaged is stored in advance in an external storage device such as the magnetic disk 18, and the CPU 8 reads out the stored data according to the designated part to be imaged and sets the target size. May be set. For example, since the size of each part such as the diameter (Radius) of the blood vessel is little due to individual differences among patients, the target size for each part to be imaged can be set uniformly regardless of the patient. Details will be described in a second embodiment to be described later.
- a target frequency (Target Frequency) is set.
- the CPU 8 sets the position in the K space where the echo data corresponding to the target size set in step 501 is to be placed, that is, the target frequency.
- the target size is set by the pixel size (Size), based on the input information, using the matrix of the image (Matrix), the following calculation formula (Formula 1 ).
- Target Frequency ⁇ (Matrix / 2- (Size-1)) (Formula 1)
- the CPU 8 calculates the target frequency from the field of view (FOV) and the matrix (Matrix) as follows: To do.
- Target Frequency ⁇ (Matrix / 2- (Radius / (FOV / Matrix) -1)) (Formula 2)
- the target frequency determined according to the target size is set to any spatial frequency from the origin to the maximum spatial frequency in the Ky direction (phase encoding direction) of the K space.
- the target echo time is set.
- the target echo time is an echo time necessary for a desired magnetic susceptibility effect to be reflected in the phase information of the echo signal.
- This target echo time may be set by the operator via the operation system 25, or in consideration of the magnetic susceptibility for each part to be imaged, the target echo time for each part to be imaged is preliminarily set to the outside of the magnetic disk 18 or the like.
- the data may be stored in the storage device, and the CPU 8 may read the stored data and set the target echo time according to the designated imaging target region.
- An example of the target echo time is 70 msec as described above.
- this step may be before the target size setting in step 501 described above.
- the target frequency and the target echo time may be set before the start of the next step 504.
- step 504 the measurement order of each echo signal is set.
- the CPU 8 sets the measurement order of each echo signal so that the echo signal of the target frequency set in step 502 is measured at the target echo time set in step 503. Then, the CPU 8 adjusts the application amount (the area of the pulse waveform) of the phase encoding gradient magnetic field pulse 204 and the phase blip gradient magnetic field pulse 205 so that imaging is performed in the set measurement order of each echo signal.
- echo data measured at a slow echo time is arranged on the frequency side higher than the target frequency in the K space.
- step 405 magnetic susceptibility-enhanced imaging based on each parameter necessary for susceptibility-enhanced imaging set as described above will be described in detail.
- step 405 susceptibility-enhanced imaging
- susceptibility-enhanced imaging is performed, and an echo signal reflecting the susceptibility effect is measured.
- the sequencer 4 controls the measurement of each echo signal so that the echo signal measurement order set in step 504 is obtained. That is, the sequencer 4 performs imaging using a gradient echo type multi-shot echo planar method having the areas of the phase encode gradient magnetic field pulse 204 and the phase blip gradient magnetic field pulse 205 that are also adjusted in step 504, and each echo signal Control the measurement.
- Fig. 6 shows a schematic diagram of the K space where each measured echo data is placed.
- the region corresponding to the echo signal measured when the echo time is short is white, and the region is colored so that the color becomes black as the echo time increases.
- schematic diagrams of K space data are also shown.
- FIG. 6 is a schematic diagram of K-space data acquired using the gradient echo type multi-shot echo planar method described in FIG. 2, and 12 echo signals are measured by one RF pulse 201 irradiation. The case where the echo signal on the positive side in the Ky direction and the echo signal on the negative side in the Ky direction are respectively measured by repeating the sequence twice is shown.
- the size of the region of interest is set to 6 pixels, and as a result, the target frequency 601 (subscripts 1 and 2 in FIG. 6 mean the first sequence and the second sequence, respectively.
- the target frequency 601 (subscripts 1 and 2 in FIG. 6 mean the first sequence and the second sequence, respectively.
- the echo data of the echo numbers 11 and 10 measured at the echo time close to the target echo time are arranged, and the echo data separated by the echo time are sequentially arranged.
- the measurement order of the echo signals corresponding to the position in the Ky direction is on the positive side acquired in the first sequence.
- the echo data with the longest echo time is placed at the position with the highest spatial frequency in the K space, so the phase value of the area of about 1 pixel in the image reflects the phase value of the target echo time. Will do. Since the data arranged on the high spatial frequency side of the K space has the meaning and characteristics peculiar to the present embodiment, the data properties are completely different from the K space data of the conventional centric ordering.
- the target frequency can be set to any spatial frequency from the origin to the maximum spatial frequency in the phase encoding direction (Ky) of the K space. Then, the sequencer 4 controls application of the phase encode gradient magnetic field and the phase blip gradient magnetic field to control the measurement order of the plurality of echo signals.
- step 405 is susceptibility enhanced imaging.
- the magnetic susceptibility enhancement imaging using the gradient echo type multi-shot echo planar method based on this processing flow an image in which a desired region of interest having a target size is optimally susceptibility enhanced can be acquired.
- FIG. 7 shows a GUI 701 displayed on the display 20 when it is determined that susceptibility-weighted imaging is performed, and 702 is an input unit for inputting a target size.
- the target size input via the GUI 701 can be applied to either of the above-described two calculation formulas (Formula 1 and Formula 2).
- the absolute size can be selected, for example, when it is input in mm units, or when converted into the number of pixels of the image. Therefore, switching is possible by using a unit setting button or the like as shown at 703. After input, when the OK button 704 is clicked with the mouse, the input target size is set.
- the contrast of the magnetic susceptibility-enhanced image can be adjusted to a desired site structure.
- the most target echo signal of the target frequency corresponding to the target size is controlled (that is, by controlling the application of phase encoding to control the arrangement order of each echo data in the K space), the target It is possible to acquire an image in which a desired region of interest having a size is optimally susceptibility-weighted.
- the contrast related to the susceptibility weight-enhancement can be improved.
- This embodiment extends the above-described first embodiment to three-dimensional imaging. That is, in a three-dimensional space k-space having a phase encoding direction (ky) and a slice encoding (Kz) direction, echo signals corresponding to spatial frequency regions having the same distance from the origin of the Ky-Kz space are in the same range.
- the measurement order of a plurality of echo signals is controlled so as to measure at the echo time. Specifically, as a target frequency, a spatial frequency region having the same distance from the origin of the Ky-Kz space is selected, and an echo signal corresponding to the selected spatial frequency region is measured at or near the target echo time.
- the target frequency can be set to any spatial frequency in which the distance from the origin of the Ky-Kz space is from zero to the maximum spatial frequency.
- Fig. 8 (b) shows an example of echo data measured using the 3D sequence shown in Fig. 8 (a) arranged in 3D K space.
- FIG. 8B shows a Ky-Kz space (802) in the three-dimensional K space.
- the slice encode gradient magnetic field pulse 801 is applied after the slice selective gradient magnetic field pulse 202 and the echo signal group 209 is measured, there is no slice encode gradient magnetic field pulse. For this reason, echo signals having the same echo time are measured in the Kz direction, and there is no difference in echo time between echo signals.
- the phase in the high spatial frequency region which is important in susceptibility weighted imaging, differs in all spatial frequency values in the Kz direction (that is, on an arbitrary Kz value and on a straight line parallel to the Ky axis direction).
- the phases of a plurality of echo signals measured at the echo time are mixed, and the emphasis effect by the magnetic susceptibility is reduced in the z direction in the image, so that an optimum magnetic susceptibility weighted image cannot be obtained.
- FIG. 9 (a) A difference from the conventional three-dimensional sequence shown in FIG. 8A is that a slice blip gradient magnetic field pulse 902 is applied after the slice encode gradient magnetic field pulse 901.
- the echo data measured at the same or the same range of echo time is arranged, that is, concentrically.
- the sequencer 4 controls the application of the phase encode gradient magnetic field pulse 204 and the phase blip gradient magnetic field pulse 205, and the slice encode gradient magnetic field pulse 901 and the slice blip gradient magnetic field pulse 902 so that the echo data is arranged.
- FIG. 9B application control of each gradient magnetic field pulse to achieve a concentric data arrangement will be described later.
- FIG. 9 (b) schematically shows an example of K-space data acquired by executing the 3D sequence shown in Fig. 9 (a).
- FIG. 9 (b) shows a Ky-Kz space (903) in the three-dimensional K space.
- the effect of placing echo data measured at the same or the same range of echo times in the spatial frequency region of the same or the same range from the K-space origin is the magnetic susceptibility. It is possible to acquire a three-dimensional image in which the contrast due to the effect is improved in a desired region.
- the desired susceptibility effect is isotropically applied to the pixel size of the desired 3D region of interest with no bias in each 3D axis direction.
- a three-dimensional susceptibility-enhanced image with improved contrast due to the susceptibility effect in a desired region can be obtained.
- each echo signal is measured so that the echo signal of the target frequency determined according to the target size described in the first embodiment is measured at the target echo time.
- the measurement order is controlled.
- the sequencer 4 has a phase encoding gradient magnetic field pulse 204 and a phase blip gradient magnetic field pulse 205, a slice encoding gradient magnetic field pulse 901, and a slice blip gradient magnetic field pulse 902 so that the measurement sequence of each echo signal is as described above.
- the echo signals are measured by controlling the application of.
- FIG. 9 (b) schematically shows the K space in which each echo data measured with the target frequency 907 set is arranged. That is, the case where the area 907 is set as the target frequency 907 among the areas 904 to 909 in the K space is shown.
- Such 3D K-space data is obtained by applying the processing flow of FIGS. 4 and 5 described in the first embodiment to 3D measurement using the sequence shown in FIG. 9 (a). The In particular,
- step 401 the region to be imaged is set (but can be omitted)
- step 402 the imaging sequence parameters of the three-dimensional echo planar method shown in FIG.
- step 403 it is determined that the susceptibility enhancement imaging using the three-dimensional echo planar method shown in FIG.
- step 404 parameters required for susceptibility weighted imaging using the three-dimensional echo planar method shown in FIG.
- step 405 the K-space data shown in FIG. 9B is acquired by three-dimensional susceptibility-weighted imaging.
- step 404 as in the first embodiment described above,
- the target size is set
- the target frequency 907 is set
- the target echo time (the longest echo time in the case of Fig. 9 (b)) is set
- the measurement order of each echo signal is set so that the echo signal of the target frequency 907 is measured at the target echo time, and the phase encoding gradient magnetic field pulse 204 and the phase blip gradient magnetic field are corresponding to the measurement order.
- the application amounts of the pulse 205, the slice encode gradient magnetic field pulse 901, and the slice blip gradient magnetic field pulse 902 are set.
- the processing contents of these steps are the same as those shown in FIGS. 4 and 5 described in the first embodiment, detailed description thereof will be omitted.
- the result of these series of processes is the K space data in FIG. 9 (b).
- the target frequency determined according to the target size is set such that the distance from the origin of the Ky-Kz space is any spatial frequency from zero to the maximum spatial frequency.
- the same effect as in the first embodiment described above can be achieved by three-dimensional susceptibility enhancement. It can also be obtained in images. That is, since the echo signal of the target frequency is measured at the target echo time and the echo data is arranged in an area equidistant from the origin of the three-dimensional K space, it has a pixel size corresponding to the target frequency. The phase change is most strongly applied to the image data of the three-dimensional region of interest in an isotropic manner with no deviation in the three-dimensional axis directions. As a result, it is possible to acquire a three-dimensional image in which the region of interest having a pixel size corresponding to the target frequency is most strongly susceptibility-emphasized.
- the radial width of the spatial frequency region having the same distance from the origin of the Ky-Kz space is set to be smaller on the high spatial frequency side than on the low spatial frequency side.
- a control method for controlling the application amount of at least one of the slice blip gradient magnetic field pulse 902 and the phase blip gradient magnetic field pulse 205 for evenly arranging data in each divided region in the Ky-Kz plane is shown in FIG. This will be described below based on FIG.
- the radial width of each divided region is By narrowing as the high spatial frequency side is reached (that is, making the radial width of the divided region smaller on the high spatial frequency side than on the low spatial frequency side), the echo signal necessary to fill each divided region is reduced. The amount is equal and the efficiency of data placement is improved.
- the target frequency 1005 is the same as 905 in FIG. 9 (b). An example of a three-dimensional sequence for acquiring such K space data is shown in FIG. As shown in FIG.
- the radial width of each divided region of the K space becomes narrower toward the high spatial frequency region side.
- the application amount of at least one of the slice blip gradient magnetic field pulse 1002 and the phase blip gradient magnetic field pulse 1004 after the phase encode gradient magnetic field pulse 1001 is decreased for each blip, that is, as the echo number advances.
- FIG. 11 schematically shows an example of a method for acquiring K-space data for three-dimensional measurement according to the present embodiment.
- a quarter of the Ky-Kz space is shown for simplicity.
- five echo signals 209 are measured in each shot (i.e., five spatial frequency regions), and one quarter of Ky-Kz is filled. Shows the case where 12 shots of 1101-1 to 1101-12 are required.
- the circle in the figure is a point representing the Ky-Kz position of the measured echo signal, and the arrow is the direction in which the echo signal is measured.
- ⁇ (s) 2 ⁇ / S ⁇ s (Formula 3)
- the K space pitch ⁇ K between echo trains is calculated as follows.
- ⁇ K Matrix / 2 / E (Formula 4)
- ⁇ Kz (s) ⁇ K ⁇ sin ( ⁇ (s)) (Equation 5)
- the Ky-Kz space can be filled, but if the number of echo signals is small, there is a bias in the area where the echo signals are measured in the K space, so it is preferable to start measuring the echo signals in the K space. Shift points from shot to shot. For example, FIG. 11 shows a case where the starting point is shifted outward in the radial direction every three shots (in the figure, the amount of deviation is represented by the difference in shading between the circles).
- a shift amount serving as a reference for the measurement start point in each shot is calculated.
- ⁇ S (s) ⁇ K / N ⁇ (s mod N)
- a mod B represents a remainder obtained by dividing A by B.
- the effect of the first embodiment described above can be obtained even in a three-dimensional image. That is, in the three-dimensional echo planar method, the measurement order of each echo signal and the K space of the data of each echo signal so that the phase of the target echo time is most reflected in the echo signal of the target frequency corresponding to the target size. 3D in which the desired 3D region of interest with the target size is optimally susceptibility-enhanced (ie, the application of each encoding gradient and each blip gradient) is controlled. Images can be acquired.
- the K space is not divided into two in the Ky direction, and measurement is performed separately, but both echo signals on both the positive and negative sides in the Ky direction are included in one repetition of the sequence. measure.
- the phase blip gradient magnetic field and in the case of three-dimensional imaging, at least one blip gradient magnetic field to which a slice blip gradient magnetic field is added are alternately inverted in polarity. Measure the echo signal.
- FIG. 12 (a) An example of the sequence used in this embodiment is shown in FIG.
- the difference from Fig. 2 (a) is that the amount of phase encoding gradient magnetic field pulse 1201 that determines the ky direction measurement start point in each shot (between 210) and the phase blip gradient magnetic field pulse group 1202 that determines the measurement order in the ky direction Is different from the application method.
- the example of FIG. 12 (a) is a case where the echo signal is measured by the sequencer 4 by alternately inverting the polarity of the phase blip gradient magnetic field pulse for each echo.
- the echo signal of the set target frequency is measured in the set measurement order, that is, the echo signal of the target frequency is measured at the target echo time, the application amount of each phase blip gradient magnetic field pulse Is controlled.
- the echo signal corresponding to the K space high region is set to be measured before the echo signal of the target frequency, and the phase blip 1220 is applied in an amount different from the previous echo signal.
- the next blip 1221-1, 1222-1 is a pulse for the echo signal of the target frequency set in the middle of the K space and enlarged for the measurement of the echo signal corresponding to the high side opposite to the K space. The applied amount is reduced.
- the sequencer 4 controls the sequence in this way and repeats this sequence once or a plurality of times to acquire K space data.
- the necessary K space data can be acquired with a single irradiation of the RF pulse 201, and measurement can be performed in a very short time (several tens of milliseconds). It becomes possible to do.
- FIG. 12 (b) shows an example of K-space data acquired using such a sequence.
- FIG. 12 (b) shows K-space data acquired when the divided regions 1206 and 1207 are set as target frequency regions using a sequence of measuring five echo signals 209 in one iteration.
- the sequencer 4 starts measurement from an echo signal corresponding to the central region 1203 of the K space, and measures the echo signals corresponding to the target frequency region and the high spatial frequency region in order of 1204, 1205, 1206, and 1207.
- the encoder gradient magnetic field pulse 1201 and the phase blip gradient magnetic field pulse 1202 are controlled. In this case, the echo time becomes longer in the order of 1203, 1204, 1205, 1206, and 1207.
- the K space is not divided into two in the Ky direction, and each measurement is performed. Even when echo signals on both the positive and negative sides in the Ky direction are measured together, echo data measured at approximately the same time is arranged in the same spatial frequency region (however, the signs are different) in the K space. Thereby, an image in which the region of interest having a size corresponding to the target frequency is susceptibility-emphasized can be acquired.
- FIG. 12 (c) shows a case where the echo signal measurement order is switched between positive and negative in the Ky direction, and shows K space data acquired when the divided regions 1211 and 1212 are set as target frequency regions. That is, the echo data is arranged in the order of 1208, 1209, 1210, 1211, and 1212 (the echo times when the echo signals arranged in 1208 to 1212 are measured are 1208, 1209, 1210 as in FIG. 12B). , 1211 and 1212 in this order). Even if arranged in this manner, the substantial shape of the K space is the same, so the obtained image has the same result as in FIG.
- Fig. 12 (b) and Fig. 12 (c) can be combined. For example, which order can be used for each shot. In this case, it is preferable to select the order so that the echo data of the target echo time is arranged in the target positive / negative spatial frequency region.
- in susceptibility weighted imaging using a gradient echo type echo planar method echo signals on both the positive and negative sides in the Ky direction are repeated within one repetition of the sequence.
- substantially the same effect as in the first embodiment described above can be obtained.
- the same effect as in the first embodiment can be obtained in a shorter time.
- this step can be performed in the above-described step 401 or separately provided before the above-described step 501.
- the processing flow of this embodiment is the same as the processing flow of FIGS. 4 and 5 in the first embodiment described above, but the contents are different.
- an example of the processing flow of this embodiment in the case where the imaging target region selection step 500 is separately provided in the processing flow of FIG. 5 will be described, but the processing content of this step is performed in step 401 described above, and step 500 is omitted. May be.
- FIG. 13A shows an imaging target region selection window 1301 as an example of the imaging target region selection GUI.
- a plurality of imaging target regions 1302 are displayed in a list with radio buttons.
- FIG. 13 (a) is an example in which the heads A and B, the calf portions A and B, the heels, and the lower limbs are displayed as options.
- the operator selects a radio button of a desired imaging target region from among these options.
- the head A is selected.
- a target size is set based on information stored in advance for each region to be imaged.
- the target size for each part to be imaged can be determined statistically.
- a table 1304 for associating the target site (or imaging method for the imaging target site) and the target size is prepared in advance and stored in an external storage device such as the magnetic disk 18.
- the CPU 8 reads out and sets the target size corresponding to the imaging target region set in step 401 or step 500 described above.
- FIG. 13 (b) is a table 1304 in which the rough minimum size and maximum size of important tissues targeted for magnetic susceptibility enhancement imaging are stored for each imaging target region.
- the merit of using the minimum size and the maximum size is that the target frequency can be calculated by (Equation 2) for each size.
- a target frequency is set based on the target size read from the table in step 501 described above.
- minimum size Radius min
- maximum size Radius maX
- the present invention is not necessarily limited thereto, and for example, an average target size may be used.
- the average target size only one target frequency corresponding to the value is obtained, and the measurement order of each echo signal is set so that the echo signal of this target frequency is measured at the target echo time.
- a table in which target sizes for each imaging target region are registered is prepared in advance, and the target size is set by selecting the imaging target region.
- a table in which target sizes are registered for each tissue name (such as a blood vessel name) may be prepared in advance, and the target size may be set by selecting a disease or a tissue name.
- target sizes for each imaging target region and the like are prepared in a table format in advance, and imaging is performed. Since the target size and the target frequency can be automatically set in accordance with the selection of the target region and the like, an image in which a desired region of interest having the target size is optimally susceptibility-weighted can be easily obtained.
- FIG. 5 is a diagram for explaining a processing flow of the entire photographing in the first embodiment.
- FIG. 5 is a diagram for explaining a detailed processing flow of a processing portion according to the first embodiment in the processing flow of FIG.
- the conventional (a) 3D sequence chart and (b) K space data measured in the sequence, respectively.
- FIG. 6 is a diagram for explaining (a) a three-dimensional sequence chart and (b) K space data measured in the sequence according to the second embodiment.
- FIG. 10 The figure explaining the application control of each gradient magnetic field pulse so that the echo data measured in the same echo time may be arrange
- FIG. 10 is a diagram illustrating (a) a two-dimensional sequence chart and (b) K space data measured in the sequence according to the third embodiment.
- 10A and 10B are diagrams for explaining (a) an imaging target region selection window and (b) a table in which target sizes for each imaging target region are registered in the fourth embodiment.
- 1 subject 2 static magnetic field generation system, 3 gradient magnetic field generation system, 4 sequencer, 5 transmission system, 6 reception system, 7 signal processing system, 8 central processing unit (CPU), 9 gradient magnetic field coil, 10 gradient magnetic field power supply, 11 high frequency oscillator, 12 modulator, 13 high frequency amplifier, 14a high frequency coil (transmission side), 14b high frequency coil (reception side), 15 amplifier, 16 quadrature phase detector, 17 A / D converter, 18 magnetic disk, 19 optical disk , 20 display, 201 high frequency pulse, 202 slice selective gradient magnetic field pulse, 203 slice refocus selective gradient magnetic field pulse, 204 phase encode gradient magnetic field pulse, 205 phase blip gradient magnetic field pulse, 206 frequency dephase gradient magnetic field pulse, 207 frequency encode gradient Magnetic field pulse, 208 data sample window, 209 echo signal
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Signal Processing (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
そのため、磁化率による強調効果が画像全体に分散してしまい、画像上の関心領域が最適に磁化率強調された画像を得ることができないという未解決の課題があった。
本発明のMRI装置及びMRI方法の第1の実施形態を説明する。本実施形態は、被検体の所望の関心領域の大きさに対応して、複数のエコー信号の計測順序を制御する。つまり、画像上の関心領域の大きさに対応して、その関心領域の大きさに対応するエコー信号が、所望の磁化率効果が反映されるようなエコー時間に計測されるように、複数のエコー信号の計測順序を制御する。複数のエコー信号の計測順序を制御するためには、位相エンコード傾斜磁場の印加順序、つまりエコーデータがK空間上に配置される位置、を制御する。具体的には、関心領域の大きさに対応してK空間におけるターゲット周波数を求め、ターゲット周波数に対応するエコー信号を、所望の磁化率効果が反映されるようなエコー時間として設定されるターゲットエコー時間又はその近傍で計測するように、複数のエコー信号の計測順序を制御する。
以下、本実施形態を図4、5に基づいて具体的に説明する。図4は、本実施形態の撮影全体の処理フローの一例を示すフローチャートであり、図5は、図4の処理フローの内で特に本実施形態に係る処理部分の詳細処理フローの一例を示すフローチャートである。
ステップ401で、通常撮影と同様に撮影する部位が選択される。操作者が、例えばディスプレイ20に表示された撮影対象部位選択用GUIを介して、撮影対象部位を選択する。なお、本ステップ401は省略されても良い。
以上までが、撮影全体の処理フローの一例の説明である。
第1の方法は、操作者が操作系25を介して入力した情報に基づいて、CPU8がターゲットサイズを設定する方法である。具体的には、操作者が入力した関心領域のピクセルサイズ(ピクセル数)をターゲットサイズとして設定する。或いは、操作者が入力した関心領域の実際の大きさ(mm) をターゲットサイズとして設定してもよい。例えば、MRアンギオグラフィーの様に、関心領域が血管の場合、操作者は、対象となる血管の直径を入力してターゲットサイズを設定することができる。或いは、操作者が画像上に描画した関心領域を囲む図形(線図)の入力情報から、CPU8が関心領域のピクセルサイズ又は実際の大きさを求めてターゲットサイズを設定してもよい。ターゲットサイズの設定GUIの一例は後述する。
或いは、ターゲットサイズが関心領域の実際の大きさ(mm) (Radius)で設定された場合には、撮影視野(FOV)と撮影マトリクス(Matrix)から、CPU8は、以下の計算でターゲット周波数を算出する。
上記の様に、ターゲットサイズに応じて定まるターゲット周波数は、K空間のKy方向(位相エンコード方向)の、原点から最大空間周波数までの、いずれかの空間周波数に設定される。
エコー番号(Ky)=1(1),2(2),3(3),8(4),10(5),12(6),11(7),9(8),7(9),6(10),5(11),4(12)
となり、第2回目のシーケンスで取得される負側では
エコー番号(Ky)=1(-1),2(-2),3(-3),8(-4),10(-5),12(-6),11(-7),9(-8),7(-9),6(-10),5(-11),4(-12)
となり、Ky=±6の位置に、ターゲットエコー時間で計測されたエコー番号12のエコーデータが配置される。その周囲の空間周波数領域では、ターゲットエコー時間に近いエコー時間で計測されたエコー番号11, 10のエコーデータが配置され、順次エコー時間の離れたエコーデータが配置される。この計測順序では、エコー時間の最も長いエコーデータが、Ky=±6の位置に配置されるため、画像内の6ピクセル程度の領域の位相値は、ターゲットエコー時間の位相値を反映することになる。
エコー番号(Ky)=1(1),2(2),3(3),4(4),5(5),6(6),7(7),8(8),9(9),10(10),11(11),12(12)
となり、第2回目のシーケンスで取得される負側では
エコー番号(Ky)=1(-1),2(-2),3(-3),4(-4),5(-5),6(-6),7(-7),8(-8),9(-9),10(-10),11(-11),12(-12)
となる。つまり、K空間の正負両側においてKyの絶対値とエコー番号が一致する。この計測順序により、エコー時間の最も長いエコーデータが、K空間において最も空間周波数の高い位置に配置されるため、画像内の1ピクセル程度の領域の位相値は、ターゲットエコー時間の位相値を反映することになる。このようにK空間の高空間周波数側に配置されたデータは、本実施形態に特有の意味と特徴を有するので、従来のセントリックオーダリングのK空間データとは全くデータの性質が異なる。
次に、本発明のMRI装置及びMRI方法の第2の実施形態を説明する。本実施形態は、前述の第1の実施形態を3次元撮像に拡張する。つまり、位相エンコード方向(ky)とスライスエンコード(Kz)方向とを有する3次元空間k空間において、Ky-Kz空間の原点からの距離が同じ範囲の空間周波数領域に対応するエコー信号を同じ範囲のエコー時間で計測するように複数のエコー信号の計測順序を制御する。具体的には、ターゲット周波数として、Ky-Kz空間の原点からの距離が同じ範囲の空間周波数領域を選択し、選択された空間周波数領域に対応するエコー信号を、ターゲットエコー時間又はその近傍で計測するように、複数のエコー信号の計測順序を制御する。ターゲット周波数は、Ky-Kz空間の原点からの距離が、ゼロから最大空間周波数までのいずれかの空間周波数に設定可能である。以下、前述の第1の実施形態と異なる点のみを説明し、同一の点についての説明を省略する。
ステップ402で、図9(a)に示す3次元エコープレナー法の撮影シーケンスパラメータが設定され、
ステップ403で、図9(a)に示す3次元エコープレナー法を用いた磁化率強調撮影と判断され 、
ステップ404で、図9(a)に示す3次元エコープレナー法を用いた磁化率強調撮影に必要なパラメータが設定され、
ステップ405で、3次元の磁化率強調撮影で取得されたのが、図9(b)に示すK空間データである。
ステップ501で、ターゲットサイズが設定され、
ステップ502で、ターゲット周波数907が設定され、
ステップ503で、ターゲットエコー時間(図9(b)の場合は、最も長いエコー時間)が設定され、
ステップ504で、ターゲット周波数907のエコー信号がターゲットエコー時間に計測されるように、各エコー信号の計測順序が設定され、その計測順序に対応して、位相エンコード傾斜磁場パルス204及び位相ブリップ傾斜磁場パルス205と、スライスエンコード傾斜磁場パルス901及びスライスブリップ傾斜磁場パルス902と、の印加量が設定される。
これら一連の処理の結果が図9(b)のK空間データである。上記の様に、ターゲットサイズに応じて定まるターゲット周波数は、Ky-Kz空間の原点からの距離が、ゼロから最大空間周波数までのいずれかの空間周波数に設定される。
θ(s) = 2π/S×s (式3)
ΔK = Matrix/2/E (式4)
これら2つの値より、各ショットで印加するブリップ傾斜磁場の面積は、各ショットでのKy、Kz方向のK空間のステップ、
ΔKy(s) = ΔK × cos(θ(s))
ΔKz(s) = ΔK × sin(θ(s)) (式5)
に基づいて計算できる。
この状態でもKy-Kz空間を埋めることができるが、エコー信号数が少ない場合は、K空間でエコー信号を計測した領域に偏りが生じるので、好適にはK空間でエコー信号を計測し始める開始点をショット毎にシフトする。例えば、図11では3ショットおきに開始点を径方向外側にシフトした場合である(図では、ずれ量を丸印の濃淡の違いで表した)。
ΔS(s) = ΔK / N × ( s mod N ) (式6)
ここで、A mod BはAをBで除した余りを表す。この開始点ΔS(s)を基に、各ショットの回転角度θ(s)を用いて、各ショットのK空間のシフト位置Skx(s)、Sky(s)は、
Skx(s) = ΔS(s) × cos(θ(s))
Sky(s) = ΔS(s) × sin(θ(s)) (式7)
となる。これら値に基づいて、位相エンコード傾斜磁場パルス(204,1003)の出力と、スライスエンコード傾斜磁場パルス(901,1001)の出力を変える。
次に、本発明のMRI装置及びMRI方法の第3の実施形態を説明する。本実施形態は、前述の第1の実施形態において、K空間をKy方向の正負で2分割してそれぞれ計測を行うのではなく、シーケンスの一繰り返し内でKy方向の正負両側のエコー信号を共に計測する。具体的には、2次元撮像の場合には位相ブリップ傾斜磁場の、3次元撮像の場合には更にスライスブリップ傾斜磁場を加えた少なくとも一方のブリップ傾斜磁場の、極性を交互に反転させて複数のエコー信号の計測を行う。以下、前述の第1の実施形態と異なる点のみを説明し、同一の点についての説明は省略する。
次に、本発明のMRI装置及びMRI方法の第4の実施形態を説明する。本実施形態は、撮影対象部位に応じて最適なターゲット周波数を決める形態である。前述の第1の実施形態と異なる点は、撮影対象部位の選択があること、及び、前述のステップ501のターゲットサイズ設定とステップ502のターゲット周波数設定とが、撮影対象部位毎に予め記憶された情報に基づいて行われることである。以下、前述の第1の実施形態と異なる点のみを説明し、同一の点についての説明は省略する。なお、本実施形態は、前述の各実施形態と組み合わせることが可能である。
Target FrequencymaX = ±(Matrix/2-(Radiusmin/(FOV/Matrix)-1)) (式8)
Target Frequencymin = ±(Matrix/2-(RadiusmaX/(FOV/Matrix)-1)) (式9)
で計算できる。磁化率強調撮影シーケンス実行時には、CPU8は、この2つのターゲット周波数(空間周波数)の範囲のエコー信号がターゲットエコー時間又はその近傍で計測されるように、各エコー信号の計測順序を設定する。
Claims (15)
- 所定のパルスシーケンスに基づいて、被検体からの複数のエコー信号の計測を制御する計測制御部と、
前記複数のエコー信号のデータがK空間に配置されて成るK空間データに基づいて、前記被検体の画像を取得する演算処理部と、
を備えた磁気共鳴イメージング装置であって、
前記計測制御部は、前記被検体の所望の関心領域の大きさに対応して、前記複数のエコー信号の計測順序を制御することを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記演算処理部は、前記関心領域の大きさに対応して前記K空間におけるターゲット周波数を求め、
前記計測制御部は、前記ターゲット周波数に対応するエコー信号を、ターゲットエコー時間又はその近傍で計測するように、前記複数のエコー信号の計測順序を制御することを特徴とする磁気共鳴イメージング装置。 - 請求項2記載の磁気共鳴イメージング装置において、
前記パルスシーケンスは、位相エンコード傾斜磁場と位相ブリップ傾斜磁場を印加し、周波数エンコード傾斜磁場の極性を反転させて、エコー信号の計測を行うものであり、
前記計測制御部は、前記パルスシーケンスを少なくとも1回繰り返して前記複数のエコー信号の計測を行うことを特徴とする磁気共鳴イメージング装置。 - 請求項2記載の磁気共鳴イメージング装置において、
前記演算処理部は、前記K空間の位相エンコード方向(Ky)の、原点から最大空間周波数までのいずれかの空間周波数を前記ターゲット周波数に設定することを特徴とする磁気共鳴イメージング装置。 - 請求項3記載の磁気共鳴イメージング装置において、
前記計測制御部は、前記位相エンコード傾斜磁場と前記位相ブリップ傾斜磁場の印加を制御して、前記複数のエコー信号の計測順序を制御することを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記K空間は位相エンコード方向(ky)とスライスエンコード(Kz)方向とを有する3次元空間であり、
前記計測制御部は、Ky-Kz空間の原点からの距離が同じ範囲の空間周波数領域に対応するエコー信号を同じ範囲のエコー時間で計測するように前記複数のエコー信号の計測順序を制御することを特徴とする磁気共鳴イメージング装置。 - 請求項6記載の磁気共鳴イメージング装置において、
前記計測制御部は、前記ターゲット周波数として、Ky-Kz空間の原点からの距離が同じ範囲の空間周波数領域を選択し、前記選択された空間周波数領域に対応するエコー信号を、ターゲットエコー時間又はその近傍で計測するように、前記複数のエコー信号の計測順序を制御することを特徴とする磁気共鳴イメージング装置。 - 請求項6記載の磁気共鳴イメージング装置において、
前記演算処理部は、前記Ky-Kz空間の原点からの距離が、ゼロから最大空間周波数までのいずれかの空間周波数を前記ターゲット周波数に設定することを特徴とする磁気共鳴イメージング装置。 - 請求項6記載の磁気共鳴イメージング装置において、
前記パルスシーケンスは、位相エンコード傾斜磁場と位相ブリップ傾斜磁場、及び、スライスエンコード傾斜磁場とスライスブリップ傾斜磁場、を印加する3次元パルスシーケンスであり、
前記計測制御部は、前記位相エンコード傾斜磁場と前記位相ブリップ傾斜磁場、及び、前記スライスエンコード傾斜磁場と前記スライスブリップ傾斜磁場の印加を制御して、前記複数のエコー信号の計測順序を制御することを特徴とする磁気共鳴イメージング装置。 - 請求項6記載の磁気共鳴イメージング装置において、
前記計測制御部は、前記Ky-Kz空間の原点からの距離が同じ範囲の空間周波数領域の径方向の幅が、高空間周波数側が低空間周波数側よりも小さくなるように、前記位相ブリップ傾斜磁場と前記スライスブリップ傾斜磁場の少なくとも一方の印加量を制御することを特徴とする磁気共鳴イメージング装置。 - 請求項3記載の磁気共鳴イメージング装置において、
前記パルスシーケンスは、前記位相ブリップ傾斜磁場の極性を交互に反転させて前記複数のエコー信号の計測を行うものであることを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記関心領域の大きさの情報が入力される第1の入力部を備えていることを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
撮影対象部位の情報が入力される第2の入力部と、前記撮影対象部位毎の関心領域の大きさの情報を有するテーブルを記憶した記憶部と、を備え、
前記演算処理部は、入力された撮影対象部位の情報に対応して、前記記憶部から前記関心領域の大きさの情報を取得することを特徴とする磁気共鳴イメージング装置。 - 所定のパルスシーケンスに基づいて、被検体からの複数のエコー信号の計測を行う計測工程と、
前記複数のエコー信号のデータがK空間に配置されて成るK空間データに基づいて、前記被検体の画像を取得する演算処理工程と、
を備えた磁気共鳴イメージング方法であって、
前記計測制工程では、前記被検体の所望の関心領域の大きさに対応して、前記複数のエコー信号の計測順序を制御することを特徴とする磁気共鳴イメージング方法。 - 請求項14に記載の磁気共鳴イメージング方法において、
前記演算処理工程は、前記関心領域の大きさに対応して前記K空間におけるターゲット周波数を求め、
前記計測制御工程は、前記ターゲット周波数に対応するエコー信号を、ターゲットエコー時間又はその近傍で計測するように、前記複数のエコー信号の計測順序を制御することを特徴とする磁気共鳴イメージング方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009547044A JP5227338B2 (ja) | 2007-12-25 | 2008-12-16 | 磁気共鳴イメージング装置及び磁気共鳴イメージング方法 |
US12/747,439 US9081075B2 (en) | 2007-12-25 | 2008-12-16 | Magnetic resonance imaging apparatus and magnetic resonance imaging method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007-331967 | 2007-12-25 | ||
JP2007331967 | 2007-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009081785A1 true WO2009081785A1 (ja) | 2009-07-02 |
Family
ID=40801090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/072804 WO2009081785A1 (ja) | 2007-12-25 | 2008-12-16 | 磁気共鳴イメージング装置及び磁気共鳴イメージング方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9081075B2 (ja) |
JP (1) | JP5227338B2 (ja) |
WO (1) | WO2009081785A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011030625A (ja) * | 2009-07-30 | 2011-02-17 | Hitachi Medical Corp | 磁気共鳴撮像装置 |
WO2014042026A1 (ja) * | 2012-09-11 | 2014-03-20 | 株式会社 東芝 | 磁気共鳴イメージング装置及び磁気共鳴イメージング方法 |
WO2015190508A1 (ja) * | 2014-06-12 | 2015-12-17 | 株式会社 日立メディコ | 磁気共鳴イメージング装置及び水脂肪分離画像作成方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008007048B4 (de) * | 2008-01-31 | 2010-06-17 | Siemens Aktiengesellschaft | Dynamische Verzeichnungskorrektur bei EPI-Messungen in der medizinischen Magnet-Resonanz-Bildgebung |
JP6095669B2 (ja) * | 2012-08-22 | 2017-03-15 | 株式会社日立製作所 | 磁気共鳴イメージング装置及び方法 |
DE102015223658B4 (de) * | 2015-11-30 | 2017-08-17 | Siemens Healthcare Gmbh | Verfahren zum Erfassen von Magnetresonanz-Signalen eines Untersuchungsobjekts |
KR101819030B1 (ko) * | 2016-02-17 | 2018-01-16 | 삼성전자주식회사 | 자기 공명 영상 장치 및 자기 공명 영상 장치를 위한 방법 |
US20180164395A1 (en) * | 2016-12-12 | 2018-06-14 | Siemens Healthcare Gmbh | Method and apparatus for accelerated magnetic resonance imaging |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001149340A (ja) * | 1999-11-29 | 2001-06-05 | Toshiba Corp | Mri装置及びスピンの緩和時間計測方法 |
JP2001161657A (ja) * | 1999-12-08 | 2001-06-19 | Hitachi Medical Corp | 核磁気共鳴撮影装置 |
JP2003144413A (ja) * | 2001-11-15 | 2003-05-20 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
JP2004089515A (ja) * | 2002-09-02 | 2004-03-25 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501272B1 (en) * | 1998-06-17 | 2002-12-31 | Magnetic Resonance Innovations, Inc. | Application-specific optimization of echo time in MR pulse sequences for investigating materials with susceptibilities different from that of the background in which they are embedded |
US6459922B1 (en) * | 1999-03-30 | 2002-10-01 | Toshiba America Mri, Inc. | Post data-acquisition method for generating water/fat separated MR images having adjustable relaxation contrast |
US6430430B1 (en) * | 1999-04-29 | 2002-08-06 | University Of South Florida | Method and system for knowledge guided hyperintensity detection and volumetric measurement |
US6777934B2 (en) * | 1999-12-08 | 2004-08-17 | Hitachi Medical Corporation | Magnetic resonance imaging method and apparatus |
DE10003712C2 (de) * | 2000-01-28 | 2002-12-12 | Siemens Ag | Verfahren zur Selektion einer Lokalantenne |
US6658280B1 (en) * | 2002-05-10 | 2003-12-02 | E. Mark Haacke | Susceptibility weighted imaging |
WO2006118110A1 (ja) * | 2005-04-26 | 2006-11-09 | Hitachi Medical Corporation | 磁気共鳴イメージング装置および方法 |
US8072215B2 (en) * | 2006-07-06 | 2011-12-06 | Koninklijke Philips Electronics N.V. | Magnetic resonance device and method |
US9201129B2 (en) * | 2006-09-13 | 2015-12-01 | Kabushiki Kaisha Toshiba | Magnetic-resonance image diagnostic apparatus and method of controlling the same |
WO2008057578A1 (en) * | 2006-11-08 | 2008-05-15 | T2 Biosystems, Inc. | Nmr systems for in vivo detection of analytes |
US8761464B2 (en) * | 2007-07-13 | 2014-06-24 | Boad of Regents, The University of Texas System | Methods of efficient and improved phase-sensitive MRI |
-
2008
- 2008-12-16 US US12/747,439 patent/US9081075B2/en active Active
- 2008-12-16 JP JP2009547044A patent/JP5227338B2/ja active Active
- 2008-12-16 WO PCT/JP2008/072804 patent/WO2009081785A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001149340A (ja) * | 1999-11-29 | 2001-06-05 | Toshiba Corp | Mri装置及びスピンの緩和時間計測方法 |
JP2001161657A (ja) * | 1999-12-08 | 2001-06-19 | Hitachi Medical Corp | 核磁気共鳴撮影装置 |
JP2003144413A (ja) * | 2001-11-15 | 2003-05-20 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
JP2004089515A (ja) * | 2002-09-02 | 2004-03-25 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
Non-Patent Citations (1)
Title |
---|
HAACKE E.M. ET AL.: "Susceptibility Weighted Imaging(SWI)", MAGNETIC RESONANCE IN MEDICINE, vol. 52, 23 August 2004 (2004-08-23), pages 612 - 618 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011030625A (ja) * | 2009-07-30 | 2011-02-17 | Hitachi Medical Corp | 磁気共鳴撮像装置 |
WO2014042026A1 (ja) * | 2012-09-11 | 2014-03-20 | 株式会社 東芝 | 磁気共鳴イメージング装置及び磁気共鳴イメージング方法 |
JP2014073357A (ja) * | 2012-09-11 | 2014-04-24 | Toshiba Corp | 磁気共鳴イメージング装置 |
US10197655B2 (en) | 2012-09-11 | 2019-02-05 | Toshiba Medical Systems Corporation | Magnetic resonance imaging apparatus and magnetic resonance imaging method |
WO2015190508A1 (ja) * | 2014-06-12 | 2015-12-17 | 株式会社 日立メディコ | 磁気共鳴イメージング装置及び水脂肪分離画像作成方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009081785A1 (ja) | 2011-05-06 |
US20100260403A1 (en) | 2010-10-14 |
US9081075B2 (en) | 2015-07-14 |
JP5227338B2 (ja) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5227338B2 (ja) | 磁気共鳴イメージング装置及び磁気共鳴イメージング方法 | |
US9341694B2 (en) | Method and magnetic resonance system for distortion correction in magnetic resonance imaging | |
US8466679B2 (en) | Magnetic resonance imaging apparatus and method configured for susceptibility-emphasized imaging with improved signal-to-noise ratio | |
US10145923B2 (en) | Resonance imaging apparatus and diffusion weighted image acquiring method thereof | |
JP3847512B2 (ja) | 磁気共鳴イメージング装置 | |
US7847551B2 (en) | Method and magnetic resonance system to excite nuclear spins in a subject | |
JP6417406B2 (ja) | 強調磁化率コントラストによるmrイメージング | |
US6879155B2 (en) | Magnetic resonance acoustography | |
JP2017530761A (ja) | ゼロエコー時間mrイメージング | |
WO2011148783A1 (ja) | 磁気共鳴イメージング装置及び高周波磁場パルスの変調方法 | |
JP3386864B2 (ja) | 核磁気共鳴撮影方法及び装置 | |
JP4416221B2 (ja) | 磁気共鳴画像診断装置 | |
JP5278914B2 (ja) | 磁気共鳴イメージング装置及び磁化率強調画像撮影方法 | |
US9772390B2 (en) | Magnetic resonance imaging device and method for generating image using same | |
WO2016170863A1 (ja) | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 | |
US9500733B2 (en) | Method and apparatus for obtaining main magnetic field information and radio pulse related information in a magnetic resonance imaging system with different flip angles | |
WO2011026923A1 (en) | Super-resolution magnetic resonance imaging | |
CN106443532B (zh) | 层取向的优化 | |
JP5564213B2 (ja) | 磁気共鳴イメージング装置 | |
WO2009047690A2 (en) | Segmented multi-shot mri involving magnetization preparation | |
JP6013324B2 (ja) | 磁気共鳴イメージング装置及びラディアルサンプリング方法 | |
EP1379890B1 (en) | Magnetic resonance acoustography | |
JP2003144413A (ja) | 磁気共鳴イメージング装置 | |
WO2008041208A2 (en) | Segmented multi-shot mri involving magnetization preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08864855 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009547044 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12747439 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08864855 Country of ref document: EP Kind code of ref document: A1 |