WO2015190457A1 - 組換えブレビバチルス属細菌を用いた組換え蛋白質の製造方法 - Google Patents

組換えブレビバチルス属細菌を用いた組換え蛋白質の製造方法 Download PDF

Info

Publication number
WO2015190457A1
WO2015190457A1 PCT/JP2015/066561 JP2015066561W WO2015190457A1 WO 2015190457 A1 WO2015190457 A1 WO 2015190457A1 JP 2015066561 W JP2015066561 W JP 2015066561W WO 2015190457 A1 WO2015190457 A1 WO 2015190457A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
brevibacillus
culture
domain
temperature
Prior art date
Application number
PCT/JP2015/066561
Other languages
English (en)
French (fr)
Inventor
博幸 金丸
輝明 武居
修 小田原
健幸 土舘
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to US15/315,116 priority Critical patent/US10435732B2/en
Priority to CN201580030581.6A priority patent/CN106459953A/zh
Priority to EP15807051.6A priority patent/EP3153581B1/en
Priority to JP2016527806A priority patent/JP6697383B2/ja
Publication of WO2015190457A1 publication Critical patent/WO2015190457A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/08Bacillus brevis

Definitions

  • the present invention relates to a method for producing a recombinant protein using a recombinant microorganism.
  • Non-patent Document 1 Production of recombinant proteins using recombinant microorganisms is used for the production of various heterologous proteins.
  • Various culture conditions have been studied for improving the productivity of recombinant proteins.
  • Increasing the cell growth rate is an effective means for improving the productivity per unit time.
  • the growth rate of bacterial cells increases as the culture temperature increases within a range in which microorganisms can grow.
  • plasmids introduced for the expression of heterologous proteins are difficult to be stably retained in the cells at high culture temperatures and are easily removed from the cells. The production of replacement protein is reduced.
  • the culture temperature is low, the plasmid can be stably maintained, but in this case, the cell growth rate is lowered and the productivity is lowered.
  • affinity chromatography having antibody binding ability is generally used. Chromatography using a carrier for antibody purification obtained by immobilizing proteins such as protein A, protein G, and protein L on an appropriate resin. Graphography is most often used. Protein A is particularly often used as a ligand having antibody binding ability.
  • An affinity carrier having a protein as a ligand is required to have high quality as a material for producing a pharmaceutical product.
  • Protein ligands themselves are required to have the same level of quality as protein drugs, and the production cost is high, so that affinity carriers cannot be supplied at low cost.
  • the production cost of the affinity carrier accounts for a large proportion of the manufacturing cost of the antibody drug, which greatly hinders the manufacturing cost of the antibody drug. Therefore, a method for procuring high-quality and low-cost protein ligands is desired.
  • Patent Document 1 In order to stably produce a large amount of a partial sequence of protein A, the present inventors have used a Brevibacillus bacterium as a host, efficiently secreted and expressed the partial sequence of protein A, and cultured A method has been found that can be stably accumulated in a liquid and easily separated and recovered with high purity (Patent Document 1).
  • the present invention when producing a recombinant protein using a Brevibacillus bacterium, the growth rate of the bacterial cell during culture is increased while the plasmid is stably held in the bacterial cell, and the production amount of the recombinant protein is improved.
  • the present invention provides a method for producing a recombinant protein.
  • the present inventors have surprisingly found that a high temperature culture process in which the first half of the culture is cultured at a high temperature and a low temperature culture process in which the second half of the culture is performed at a lower temperature.
  • the inventors found that the growth rate of Brevibacillus bacteria can be increased while the plasmid is stably held in the cells, and the production amount of the recombinant protein can be improved, thereby completing the present invention.
  • the present invention provides a high-temperature culture step of culturing a Brevibacillus bacterium having a gene encoding a recombinant protein at 32 ° C. or higher, and a low temperature for culturing the Brevibacillus bacterium at a temperature below 32 ° C. after the high-temperature culture step.
  • the present invention relates to a method for producing a recombinant protein including a culture step.
  • transition from the high-temperature culture step to the low-temperature culture step is carried out between the early and middle logarithmic growth phases in the growth of Brevibacillus bacteria.
  • the recombinant protein is an antibody binding protein.
  • the antibody-binding protein is an E domain, D domain, A domain, B domain, or C domain of protein A, a C domain or D domain of protein G, a B domain of protein L, or a conjugate or functional variant thereof. Preferably there is.
  • the recombinant protein is a physiologically active protein.
  • the physiologically active protein is preferably a peptide hormone or a precursor thereof.
  • the recombinant protein is an antibody or antibody-like molecule.
  • the growth rate of the bacterial cell is increased while the plasmid is stably held in the bacterial cell, and the production amount of the recombinant protein can be reduced while suppressing the cost. Can be improved.
  • the method of the present invention can also be scaled up to an industrial scale.
  • FIG. 3 is a schematic diagram of an expression plasmid Spa′-pNK3260. This is the nucleotide sequence of DNA encoding the promoter, Shine-Dalgarno (SD) sequence, signal peptide and protein A (SPA ') contained in Spa'-pNK3260.
  • SD Shine-Dalgarno
  • SPA ' signal peptide and protein A
  • the present invention relates to a high temperature culture step of culturing Brevibacillus bacteria having a gene encoding a recombinant protein at 32 ° C. or higher, and a low temperature culture step of culturing the Brevibacillus bacteria at less than 32 ° C. after the high temperature culture step.
  • the present invention relates to a method for producing a recombinant protein.
  • Examples of the recombinant protein include antibody-binding proteins, antibodies, antibody-like molecules, enzymes, and other useful physiologically active proteins.
  • An antibody-binding protein is a protein that can bind to a portion other than the antigen recognition site of an antibody (for example, an Fc portion).
  • the structure is not particularly limited as long as it is a protein that can bind to a portion other than the antigen recognition site of the antibody.
  • proteins include the E domain, D domain, A domain, B domain, or C domain of protein A, the C domain or D domain of protein G, the B domain of protein L, or a conjugate or function thereof. Specific variants.
  • Protein A is a kind of cell wall protein produced by the Gram-positive bacterium Staphylococcus aureus and is a protein having a molecular weight of about 42,000. Its structure consists of seven functional domains (signal sequence S from the amino terminus, immunoglobulin binding domain E, immunoglobulin binding domain D, immunoglobulin binding domain A, immunoglobulin binding domain B, immunoglobulin binding domain C, Staphylococcus aureus) (Proc. Natl. Acad. Sci. USA, 1983, 80: 697-701, Gene, 1987, 58: 283-295, J. Bio. Chem., 1984, 259) : 1695-1702).
  • the relative affinity of protein A for the immunoglobulin binding domain is determined by pH, Staphylococcus aureus strain species (Infec. Immuno., 1987, 55: 843-847), and immunoglobulin classes (IgG, IgM, IgA, IgD).
  • IgE immunoglobulin classes
  • subclasses IgG1, IgG2, IgG3, IgG4, IgA1, IgA2), etc., and are known to depend on many factors, particularly in the immunoglobulin class, human IgG1, human IgG2, human IgG4 and mouse IgG2a, mouse It shows strong binding to the Fc part of IgG2b and mouse IgG3.
  • E domain As the E domain, D domain, A domain, B domain, and C domain of protein A, proteins having the amino acid sequences shown in SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO: 5, respectively. Can be mentioned.
  • Protein G is a kind of cell wall protein produced by Streptococcus bacteria of Groups C and G, and has a molecular weight of about 59,000. Its structure consists of five functional domains (from the amino terminus, signal sequence SS, albumin binding domain by repeats of sequences A and B, immunoglobulin binding domain by repeats of sequences C and D, transmembrane domain W, transmembrane domain M). It is configured.
  • the immunoglobulin binding domain of protein G exhibits extensive binding to the Fc portion of mammalian IgG compared to that of protein A (J. Immunol., 1984, 133: 969-974, J. Biol. Chem., 1999, 266: 399-405).
  • Examples of the C domain or D domain of protein G include proteins having the amino acid sequences shown in SEQ ID NO: 6, SEQ ID NO: 7, and SEQ ID NO: 8, respectively.
  • Protein L is one type of protein produced by Peptostreptococcus magnus and has a molecular weight of about 79,000.
  • the structure consists of 6 functional domains (from the amino terminus, signal sequence SS, amino terminal domain A, immunoglobulin binding domain B, 5 repeats, unknown function domain 2 repeats, transmembrane domain W, transmembrane domain M) It is composed of
  • the immunoglobulin binding domain of this protein L binds to the kappa light chain of immunoglobulin. (J. Biol. Chem., 1989, 264: 19740-19746, J. Biol. Chem., 1992, 267: 12820-12825).
  • the B domain of protein L has the amino acid sequence shown in SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17.
  • Examples include proteins.
  • a functional variant of an antibody binding protein is a protein having an activity of binding to an antibody among variants of an antibody binding protein.
  • the sequence identity between the functional variant of the antibody-binding protein and the C domain of protein A shown in SEQ ID NO: 5 is preferably 60% or more, more preferably 65% or more, and 70% or more. More preferably 75% or more, still more preferably 80% or more, still more preferably 85% or more, particularly preferably 90% or more, 95 % Or more is most preferable.
  • the antibody-binding protein conjugate is a protein obtained by linking antibody-binding proteins in series. Different antibody binding proteins may be linked, or the same antibody binding protein may be linked. Examples of the number of antibody binding proteins to be linked include 2, 3, 4, 5, 6, 7, 8, 9, and 10. Examples of the conjugate include a protein having the amino acid sequence shown in SEQ ID NO: 18, including 5 functional variants of the C domain of protein A.
  • antibody or antibody-like molecule examples include full-length antibodies such as IgG, IgM, IgA, IgD, and IgE, and partially fragmented antibodies composed of antigen-binding sites thereof.
  • Examples of the enzyme include amylase, protease, cellulase, lipase, cholesterol oxidase, alcohol dehydrogenase, amino acid dehydrogenase, D-amino acid oxidase, L-amino acid oxidase, aminotransferase, esterase, acylase, amidase, hydantoinase, hydantoin Examples include racemase, decarbamylase, nitrilase, nitrile hydratase, N-acyl amino acid racemase, D-succinylase, L-succinylase, carbamyl amino acid racemase, amino acid amide racemase, aminopeptidase, oxygenase and the like.
  • physiologically active proteins are proteins used as pharmaceutical active ingredients, such as insulin, interferon, interleukin, erythropoietin, growth hormone, peptide hormones, cytokines, growth factors, hematopoietic factors, and precursors thereof, and These receptor proteins are mentioned.
  • the gene encoding the recombinant protein is not particularly limited as long as it has a base sequence encoding the recombinant protein.
  • the DNA containing the gene can be obtained by a commonly used known method, for example, a polymerase chain reaction (hereinafter abbreviated as PCR) method. Moreover, it is also possible to synthesize
  • Expression vectors can be used to express recombinant proteins in Brevibacillus bacteria.
  • the expression vector contains a gene encoding the recombinant protein.
  • a promoter for expressing the gene a promoter that can function in Brevibacillus bacteria can be used.
  • the promoter may be any one that can function in bacteria belonging to the genus Brevibacillus, but is not limited to Escherichia coli, Bacillus subtilis, Brevibacillus genus, Staphylococcus genus, Streptococcus genus, Streptomyces genus, Corynebacterium genus
  • a promoter derived from a bacterium such as (Corynebacterium) and operable in Brevibacillus bacteria is preferred.
  • Brevibacillus genus cell wall protein middle wall protein (MWP), the same protein outer wall protein (OWP), or Brevibacillus choshinensis HPD31 cell wall protein HWP (Ebisu. S et al. J. Bacteriol.
  • 199.172 131.172: More preferred is the promoter of the gene encoding 1320).
  • Specific examples include the P5 promoter region of Brevibacillus brevis cell wall protein MWP and the P2 promoter region of Brevibacillus brevis cell wall protein MWP.
  • the expression vector preferably further includes a Shine-Dalgarno sequence and a signal sequence that can function in Brevibacillus bacteria downstream of the promoter.
  • Shine-Dalgarno sequences are derived from bacteria such as Escherichia coli, Bacillus subtilis, Brevibacillus genus, Staphylococcus genus, Streptococcus genus, Streptomyces genus, and Corynebacterium genus, and operate in Brevibacillus genus bacteria Possible Shine-Dalgarno sequence is preferred, upstream of the gene encoding Brevibacillus bacterial cell wall protein middle wall protein (MWP), the same protein outer wall protein (OWP), or Brevibacillus choshinensis HPD31 cell wall protein HWP The Shine-Dalgarno sequence present in is more preferred.
  • the expression vector may optionally include a marker sequence.
  • the expression vector may contain a DNA sequence encoding a secretory signal peptide downstream of the Shine-Dalgarno sequence.
  • the DNA sequence encoding the secretory signal peptide need not be identical to the original DNA sequence as long as it encodes the same amino acid when translated in Brevibacillus brevis.
  • Examples of the secretory signal peptide are derived from bacteria such as Escherichia coli, Bacillus subtilis, Brevibacillus genus, Staphylococcus genus, Streptococcus genus, Streptomyces genus, Corynebacterium genus, and the like in the genus Brevibacillus genus.
  • the secretory signal peptide of Brevibacillus genus cell wall protein middle wall protein (MWP), the same protein outer wall protein (OWP), or Brevibacillus choshinensis HPD31 cell wall protein HWP is preferred. More preferred. Moreover, what improved the amino acid sequence of the conventional secretion signal peptide can also be used.
  • secretory signal peptide examples include the middle wall protein (MWP) signal peptide, Met-Lys-Lys-Val-Val-Asn-Ser-Val-Leu-Ala-Ser-Ala-Leu-Ala-Leu-Thr.
  • MFP middle wall protein
  • the signal peptide inherent to the protein A that is, Met-Lys-Lys-Lys-Asn-Ile-Tyr-Ser-Ile-Arg-Lys-Leu-Gly-Val-Gly-Ile-Ala-Ser-Val- Thr-Leu-Gly-Thr-Leu-Leu-Ile-Ser-Gly-Gly-Val-Thr-Pro-Ala-Ala-Asn-Ala (SEQ ID NO: 21) can also be used.
  • DNA encoding the promoter, Shine-Dalgarno sequence, and secretory signal peptide can be obtained from, for example, Brevibacillus bacteria.
  • Brevibacillus brevis 47 strain JCM6285
  • Brevibacillus brevis 47K strain FERM BP-23008
  • Brevibacillus brevis 47-5 strain FERM BP-1664
  • Brevibacillus choshinensis HPD31 strain (FERM) BP-1087
  • the promoter, the Shine-Dalgarno sequence, the signal peptide sequence, and the gene encoding the recombinant protein are operably linked in a bacterium belonging to the genus Brevibacillus.
  • the expression vector is preferably a plasmid vector.
  • plasmid vectors useful for the expression of genes of the genus Brevibacillus include, for example, pUB110 known as a Bacillus subtilis vector, pHY500 (JP-A-2-31682), pNY700 (JP-A-4-278091). Gazette), pHY4831 (J. Bacteriol. 1987. 12239-1245), pNU200 (Shigezo Tsujitaka, Journal of Japanese Society of Agricultural Chemistry 1987.61: 669-676), pNU100 (Appl. Microbiol. Biotechnol., 1989, 30:75). -80), pNU211 (J.
  • the recombinant protein may be produced by either a method of secreting it in Brevibacillus bacteria or a method of not secreting it, but since it is easy to separate and purify, a method of secreting it into the culture medium is preferred.
  • Brevibacillus bacteria can be used as a host cell used for obtaining a transformant.
  • Brevibacillus bacteria are not particularly limited, but Brevibacillus agri, Brevibacillus bolsterensis, Brevibacillus brevis, Brevibacillus centroporus, Brevibacillus choshinensis, Brevibacillus formosas, Brevibacillus invocatus, Breviba Including Bacillus latyrosporus, Brevibacillus limnophilus, Brevibacillus parabrevis, Brevibacillus reuszeli, Brevibacillus thermolver.
  • the bacterium belonging to the genus Brevibacillus is Brevibacillus brevis 47 strain (JCM6285), Brevibacillus brevis 47K strain (FERM BP-2308), Brevibacillus brevis 47-5 strain (FERM BP-1664), Brevibacillus Brevis 47-5Q (JCM8970), Brevibacillus choshinensis HPD31 (FERM BP-1087), Brevibacillus choshinensis HPD31-S (FERM BP-6623), Brevibacillus choshinensis HPD31-OK (FERM) BP-4573) and Brevibacillus choshinensis strain SP3 (manufactured by Takara).
  • the above-mentioned Brevibacillus brevis 47 strain Brevibacillus brevis 47-5Q strain, Brevibacillus choshinensis HPD31 strain, Brevibacillus choshinensis SP3 strain, Brevibacillus choshinensis HPD31-OK strain, Brevibacillus choshinensis strain
  • the HPD31-S strain is suitable.
  • a mutant strain such as a protease-deficient strain or a high-expressing strain of the aforementioned Brevibacillus bacterium may be used.
  • mutant strains include, for example, Brevibacillus choshinensis HPD31-OK, which is a protease mutant derived from Brevibacillus choshinensis HPD31 (JP-A-6-296485), and Brevibacillus Brevis 47K strain (Konishi, H. et al. Appl Microbiol. Biotechnol. 1990.34: 297-302).
  • Brevibacillus brevis 47K strain (FERM BP-2308), Brevibacillus brevis 47-5 strain (FERM BP-1664), Brevibacillus choshinensis HPD31 strain (FERM BP-1087), Brevibacillus Chousinensis HPD31-S strain (FERM P BP-6623) and Brevibacillus choshinensis HPD31-OK strain (FERM BP-4573) are registered in the National Institute of Advanced Industrial Science and Technology (IPOD; 305-8566) It is deposited with each of the above-mentioned deposit numbers in Tsukuba City, Ibaraki Pref.
  • Brevibacillus brevis 47 strain JCM6285
  • Brevibacillus brevis 47-5Q strain JCM8970
  • the aforementioned Brevibacillus genus bacteria can be used as it is without adding mutations, etc.
  • Brevibacillus genus bacteria with superior production and quality of recombinant proteins can be obtained from the aforementioned Brevibacillus bacteria. It can also be used for the production of recombinant proteins.
  • heterologous protein When a heterologous protein is highly expressed in microorganisms including Brevibacillus bacteria, it often forms an inactive protein without being correctly folded, especially when a protein with many disulfide bonds is highly expressed. Insoluble in many cases.
  • expressing the target protein it is known that the insolubilization of the target protein and the decrease in the secretion efficiency can be suppressed by the action of chaperone protein, disulfide bond isomerase and / or proline isomerase, etc. Yes.
  • a widely attempted method is a method in which a protein having disulfide redox activity such as PDI (protein disulfide isomerase) and / or DsbA is allowed to act (JP-A 63-294796, JP-A-5-336986). is there.
  • PDI protein disulfide isomerase
  • DsbA DsbA
  • a method for producing a protein having a correct disulfide bond by introducing a gene encoding a protein having disulfide redox activity into a host organism and simultaneously expressing the target protein and a protein having disulfide redox activity is also known.
  • Japanese Patent Laid-Open No. 2000-83670 Japanese Patent Laid-Open No. 2001-514490, etc.
  • chaperone proteins are used during the protein expression. It is also possible to co-express enzymes that promote folding, such as disulfide bond oxidoreductases and / or disulfide isomerases. Specifically, DsbA of Escherichia coli (Bardwell, JCA, et al. Cell.), which is involved in protein disulfide bonds and is considered to be related to protein disulfide isomerase when the protein is expressed in Brevibacillus bacteria. 1991.67: 582-589, Kamitani.S et al.
  • Transformation of Brevibacillus genus host cells with a gene encoding a recombinant protein can be performed by the known method of Takahashi et al. (Takahashi. W et al. J. Bacteriol. 1983.156: 1130-1134), Takagi et al. The method (Takagi. H. et al. 1989. Agric. Biol. Chem, 53: 3099-3100) or the method of Okamoto et al. (Okamoto. A. et al. 1997. Biosci. Biotechnol. Biochem. 61: 202-203) be able to.
  • the medium used for culture of Brevibacillus bacteria is not particularly limited as long as the recombinant protein can be produced with high efficiency and high yield.
  • carbon sources and nitrogen sources such as glucose, sucrose, glycerol, polypeptone, meat extract, yeast extract and casamino acid can be used.
  • inorganic salts such as potassium salt, sodium salt, phosphate, magnesium salt, manganese salt, zinc salt and iron salt may be added.
  • anti-foaming effects such as soybean oil, lard oil, surfactants, etc., or changing the permeability of the cell membrane material, is expected to improve the production of recombinant protein per cell A compound to be prepared may be added.
  • the use of a surfactant is preferable because the effect of the present invention may be enhanced.
  • the surfactant is not particularly limited as long as it does not adversely affect the growth of recombinant Brevibacillus bacteria and / or recombinant protein production, and is preferably a polyoxyalkylene glycol surfactant.
  • a nutrient substance required for growth may be added.
  • Antibiotics such as penicillin, erythromycin, chloramphenicol and neomycin may be added.
  • a known protease inhibitor may be added in order to suppress degradation or lowering of the target protein by a host-derived protease present outside or inside the cell.
  • protease inhibitor for example Phenylmethane sulfonyl fluoride (PMSF), Benzamidine, 4- (2-aminoethyl) -benzenesulfonyl fluoride (AEBSF), Antipain, Chymostatin, Leupeptin, Pepstatin A, Phosphoramidon, Aprotinin, Ethylene diamine tetra acetic acid (EDTA) Etc.
  • PMSF Phenylmethane sulfonyl fluoride
  • AEBSF 4- (2-aminoethyl) -benzenesulfonyl fluoride
  • Antipain Chymostatin, Leupeptin, Pepstatin A, Phosphoramidon, Aprotinin, Ethylene diamine tetra acetic acid (EDTA) Etc.
  • the concentration of the carbon source contained in the medium at the start of the culture is preferably 1% or more or 10% or less, and more preferably 1 to 10% for the first time. More preferably, a carbon source is additionally added as appropriate so that the concentration of the carbon source is 10% or less, 5% or less, 3% or less, particularly 1% or less during the culture. Additional methods for adding the carbon source include divided addition or continuous addition.
  • Examples of the culture include aerobic culture performed under aerated stirring conditions, or anaerobic culture in which aeration is blocked, and aerobic culture is preferable. Moreover, although it can culture
  • the production method of the present invention includes a high-temperature culture step of culturing Brevibacillus bacteria at 32 ° C. or higher, and a low-temperature culture step of culturing at less than 32 ° C. after the high-temperature culture step.
  • Brevibacillus bacteria are cultured in a liquid medium or a solid medium.
  • the Brevibacillus bacteria are cultured at a temperature of 32 ° C. or higher from the start of the culture.
  • the culture temperature in the high-temperature culture step is preferably 32 to 60 ° C, more preferably 32 to 50 ° C, and further preferably 32 to 40 ° C. When the temperature exceeds 60 ° C., the cell growth tends to be poor, and when the temperature is less than 32 ° C., the cell growth rate tends to be slow.
  • the culture temperature in the low-temperature culture step is preferably 10 ° C. or higher and lower than 32 ° C., more preferably 15 ° C. or higher and lower than 32 ° C., further preferably 20 ° C. or higher and lower than 32 ° C., more preferably 25 ° C. or higher and 32 ° C. It is even more preferable that the temperature is less than ° C. When the temperature is 32 ° C. or higher, plasmid retention in the bacterial cells tends to be unstable, and when the temperature is lower than 10 ° C., the bacterial cell growth tends to be poor.
  • the transition from the high-temperature culture step to the low-temperature culture step is performed between the early and middle logarithmic growth phases in the growth of Brevibacillus bacteria.
  • the growth rate of the bacterial cells during culture is increased while the plasmid is stably maintained in the bacterial cells, and the recombinant protein There is an effect that the production amount can be improved.
  • the logarithmic growth phase is the time required for all cells contained in the culture system to divide and proliferate at regular intervals, and the total number of cells contained in the entire culture system doubles. This is the period in which the logarithm of the number of cells is linear with respect to the axis. Since the reaching cell density of Brevibacillus bacteria varies depending on the type of medium used, the logarithmic growth phase cannot be defined by the absolute value of the turbidity of the medium. Therefore, the logarithmic growth phase is defined as an index of the relative turbidity (%) of the medium when the turbidity of the medium in which the cell density is maximum in the medium used is 100%.
  • the initial period of the logarithmic growth phase in the growth of Brevibacillus bacteria is a period in which the relative turbidity of the medium is 1 to 35%, and the middle period of the logarithmic growth phase in the growth of Brevibacillus bacteria. Is a period in which the relative turbidity of the medium is greater than 35% and less than 70%.
  • the transition from the high temperature culture step to the low temperature culture step is preferably performed when the relative turbidity is 1 to 70%, more preferably 5 to 60%, using the above-described index. More preferably, it is carried out when it is 10 to 50%, and even more preferably it is carried out when it is 15 to 40%.
  • the transition from the high temperature culture process to the low temperature culture process is performed by changing the set temperature of the culture apparatus and lowering the temperature of the liquid medium used in the high temperature culture process. Usually, it is not necessary to change the medium when shifting from the high temperature culture step to the low temperature culture step, but the medium may be changed.
  • the turbidity of the medium is the absorbance of the medium measured at a wavelength of 600 nm using a spectrophotometer.
  • the recombinant protein Since the produced recombinant protein is accumulated in large amounts outside the cell, that is, in the culture supernatant, the recombinant protein can be recovered and purified from the culture supernatant. Moreover, the recombinant protein which exists in a microbial cell and a microbial cell surface layer can also collect
  • Protein recovered from the culture supernatant and bacterial cells has the affinity of salting out using ammonium sulfate or sodium sulfate, concentration using ethanol or acetone, gel filtration, ion exchange, hydroxyapatite, and recombinant protein. Purification can be performed using chromatography or the like.
  • a restriction enzyme recognition site for PstI on the 5 ′ side and XbaI on the 3 ′ side of the sequence encoding the 5-linked domain was prepared.
  • the sequence of the prepared DNA fragment is shown in SEQ ID NO: 22.
  • the prepared DNA fragment was digested with PstI and XbaI (both manufactured by Takara), and fractionated and purified by agarose gel electrophoresis.
  • pNCMO2 manufactured by Takara
  • Takara which is a plasmid vector for Brevibacillus bacteria, was purified and recovered after digestion with PstI and XbaI.
  • plasmid vector pNCMO2-C-G29A Both were mixed and ligated using Ligation High (manufactured by TOYOBO) to construct plasmid vector pNCMO2-C-G29A.
  • Ligation High manufactured by TOYOBO
  • Brevibacillus choshinensis SP3 strain manufactured by Takara was transformed to prepare Brevibacillus choshinensis SP3 (pNCMO2-C-G29A).
  • the culture broth was collected 46 hours after the start of the culture, and the plasmid retention rate of Brevibacillus choshinensis in the culture broth was measured by the method described below.
  • the collected culture solution is appropriately diluted with 0.9% physiological saline, and 100 ⁇ l of the diluted solution is applied on a standard agar medium (manufactured by Nissui Pharmaceutical Co., Ltd.) plate, followed by stationary culture at 30 ° C. for 20 hours. did.
  • the colony obtained on the plate was replicated on a standard agar plate containing 60 ppm of neomycin, and after standing at 30 ° C. for 24 hours, the presence or absence of plasmid was judged from the presence or absence of colony growth.
  • the culture solution is collected 67 hours after the start of the culture, the cells are removed by centrifugation (15,000 rpm, 25 ° C., 5 minutes), and then the recombinant protein C ⁇ in the culture supernatant is analyzed by high performance liquid chromatography. G29A concentration was measured. Table 1 shows the results of recombinant protein C-G29A concentration and plasmid retention at each culture temperature.
  • Example 1 Temperature Shift Culture 1 of Brevibacillus choshinensis SP3 (pNCMO2-C-G29A) Brevibacillus choshinensis SP3 (pNCMO2-C-G29A) obtained in Production Example 1 is added to A medium (however, 4.8% of glucose is added continuously from 6 hours to 30 hours after the start of culture) 750 ppm of Disperse CC-118 was added, and the cells were cultured under aerobic conditions while controlling the pH from 7.0 to 7.2. Cultivation was performed at a culture temperature of 36 ° C. from the start of culture to 13.5 hours, and after the relative turbidity of the medium became 33%, the temperature was shifted to 30 ° C. and cultured until the end of the culture. .
  • the culture solution was collected 41 hours after the start of the culture, and the concentration of the recombinant protein C-G29A in the culture supernatant was measured in the same manner as in Reference Example 1.
  • the culture solution was collected 41 hours after the start of the culture, and the turbidity at 600 nm was analyzed using a spectrophotometer.
  • the culture solution was collected 46 hours after the start of the culture, and the plasmid retention rate was measured in the same manner as in Reference Example 1. The results are shown in Table 2.
  • Comparative Example 1 Cultivation 1 of Brevibacillus choshinensis SP3 (pNCMO2-C-G29A) The same operation as in Example 1 was performed, except that the culture was performed at a constant temperature of 30 ° C. from the start to the end of the culture. The results are shown in Table 2.
  • Example 1 As shown in Table 2, in Example 1 where the culture temperature was shifted, the concentration of recombinant protein C-G29A in the culture supernatant was greatly increased as compared with Comparative Example 1 which was cultured at 30 ° C. constant. Moreover, in Example 1, compared with the comparative example 1, the turbidity used as the parameter
  • Example 2 Temperature shift culture 2 of Brevibacillus choshinensis SP3 (pNCMO2-C-G29A) Brevibacillus choshinensis SP3 (pNCMO2-C-G29A) obtained in Production Example 1 is added to the A medium with 750 ppm of disturbed CC-118, and the pH is adjusted to 7.0 to 7.7 under aerobic conditions. The cells were cultured while being controlled at 2. Culturing was performed under conditions where the culture temperature was cultured at 34 ° C. from the start of culture to 13.5 hours, and after the relative turbidity of the medium reached 22%, the temperature was shifted to 30 ° C. and cultured until the end of the culture. .
  • the culture broth was collected and the recombinant protein C-G29A concentration in the culture supernatant was measured in the same manner as in Reference Example 1.
  • the culture solution was collected 37 hours after the start of the culture, and the turbidity at 600 nm was analyzed using a spectrophotometer. Further, the culture solution was collected 41 hours after the start of the culture, and the plasmid retention rate was measured in the same manner as in Reference Example 1. The results are shown in Table 3.
  • Example 2 Culture 2 of Brevibacillus choshinensis SP3 (pNCMO2-C-G29A) The same operation as in Example 2 was performed except that the culture was performed at a constant temperature of 30 ° C. from the start to the end of the culture. The results are shown in Table 3.
  • Example 2 in which the culture temperature was shifted, the concentration of recombinant protein C-G29A in the culture supernatant was significantly increased as compared with Comparative Example 2 in which the culture was constantly performed at 30 ° C. Further, in Example 2, as compared with Comparative Example 2, turbidity serving as an index of the amount of bacterial cells was also increased.
  • Table 1 in the constant culture at 34 ° C., the plasmid retention rate after 46 hours from the start of culture was extremely low at 44%, whereas when the temperature was shifted from 34 ° C. to 30 ° C., the culture started Even after 41 hours, the plasmid was 100% stable.
  • a double-stranded DNA fragment containing the MWP P2 promoter having the base sequence shown in SEQ ID NO: 25 was prepared according to a conventional method, and its ends were digested with restriction enzymes MunI and HindIII (both manufactured by Takara). These two DNA fragments were ligated using T4 DNA ligase (manufactured by Takara) to construct pNK3260.
  • Staphylococcus aureus cowan I strain (JCM2179) Staphylococcus aureus cowan I strain (JCM2179) was prepared using T2 liquid medium (polypeptone 1%, Yeast extract 0.2%, glucose 1%, fish meat extract 0.5%, pH 7.0) and cultured with shaking at 37 ° C. overnight. The cells were collected from the obtained culture broth by centrifugation, and washed twice with 10 mM Tris-HCl buffer (pH 8.0). The cells were suspended in the same buffer, lysed with 1% SDS, heated at 60 ° C.
  • Staphylococcus aureus cowan I strain (JCM2179) is obtained from RIKEN BioResource Center, Microbial Materials Development Office (JCM) (3-1-1 Takanodai, Tsukuba, Ibaraki 305-0074) I can do it.
  • PCR was performed using these two oligonucleotide primers Primer-3 and Primer-4, and a signal sequence from protein A (S domain)
  • S domain a DNA fragment (about 0.9 kbp) encoding a portion excluding the cell wall binding domain (X domain) (hereinafter referred to as SPA ′) was amplified.
  • the obtained DNA fragment was digested with restriction enzymes NcoI and BamHI, and then separated and recovered from an agarose gel.
  • the Brevibacillus expression vector pNK3260 constructed in Production Example 2 was similarly digested with restriction enzymes NcoI and BamHI, purified and recovered, and dephosphorylated by alkaline phosphatase treatment.
  • FIG. 2 shows DNA encoding the promoter, SD sequence, signal peptide and protein A (SPA ') contained in Spa'-pNK3260.
  • the nucleotide sequence shown in SEQ ID NO: 28 represents a promoter, SD sequence, signal peptide and DNA encoding protein A (SPA ′) contained in Spa′-pNK3260, and SEQ ID NO: 29 represents signal peptide and protein A (SPA ′).
  • SEQ ID NO: 28 represents a promoter
  • SEQ ID NO: 29 represents signal peptide and protein A (SPA ′).
  • MWP-P2 is the P2 promoter region of Brevibacillus brevis cell wall protein MWP
  • SDM is the SD sequence of Brevibacillus brevis cell wall protein MWP
  • SP ′ is the Brevibacillus brevis cell wall.
  • spam ′ is a DNA sequence encoding SPA ′
  • Nm is a neomycin resistance gene coding region
  • Rep / pUB110 is a replica of vector pNK3260 Means the starting point.
  • P2-35 and “P2-10” mean the ⁇ 35 region and the ⁇ 10 region of the P2 promoter of Brevibacillus brevis cell wall protein MWP, respectively.
  • Example 3 Temperature-shift culture of Brevibacillus choshinensis HPD31-OK (Spa'-pNK3260) Brevibacillus choshinensis HPD31-OK (Spa'-pNK3260) obtained in Production Example 3 was added to A medium ( However, the continuous addition of glucose was carried out by adding 5.0% from 6 to 48 hours after the start of the culture), and 750 ppm of Dissolve CC-118 was added, and the pH was adjusted to 7 under aerobic conditions. The cells were cultured while being controlled from 0.0 to 7.2. Cultivation was performed at a culture temperature of 34 ° C.
  • Example 3 As shown in Table 4, in Example 3 in which the culture temperature was shifted, the recombinant protein SPA 'concentration in the culture supernatant was greatly increased as compared with Comparative Example 3 in which the culture was constantly performed at 30 ° C. Moreover, in Example 3, as compared with Comparative Example 3, turbidity, which is an index of the amount of bacterial cells, was greatly increased.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、プラスミドを菌体内に安定に保持した状態で培養時の菌体の増殖速度を増大させ、組換え蛋白質の生産量を向上させることのできる、組換え蛋白質の製造方法を提供する。本発明は、組換え蛋白質をコードする遺伝子を有するブレビバチルス属細菌を32℃以上で培養する高温培養工程、および前記高温培養工程後、前記ブレビバチルス属細菌を32℃未満で培養する低温培養工程を含む、組換え蛋白質の製造方法を提供する。

Description

組換えブレビバチルス属細菌を用いた組換え蛋白質の製造方法
本発明は、組換え微生物を使用した組換え蛋白質の製造方法に関する。
組換え微生物を使用した組換え蛋白質の生産は、種々の異種蛋白質の製造に用いられている(非特許文献1)。組換え蛋白質の生産性向上のために種々の培養条件が検討されているが、単位時間当たりの生産性向上のためには、菌体増殖速度の増大が有効な手段となる。一般的に、微生物が生育可能な範囲内であれば、培養温度が高くなるほど菌体の増殖速度は増大することが知られている。しかしながら、組換え微生物において、異種蛋白質の発現のために導入するプラスミドは、培養温度が高いと菌体内で安定に保持されにくく菌体から脱落しやすいため、迅速に菌体が増殖しても組換え蛋白質の生産量は低下する。一方、培養温度が低いとプラスミドを安定に保持させることができるが、その場合には菌体増殖速度が低下し、生産性が低下する。
ところで、遺伝子組換え技術を用いて生産される蛋白質医薬品のうち、抗体医薬品は急速にその需要を拡大している。
抗体医薬品の製造には、一般に抗体結合能を有するアフィニティークロマトグラフィーが使用されており、プロテインA、プロテインG及びプロテインLなどの蛋白質を適当な樹脂に固定化して得られる抗体精製用担体による、クロマトグラフィーが最も多く使用されている。抗体結合能を有するリガンドとしては、プロテインAが特に多く使用されている。
蛋白質をリガンドとするアフィニティー担体は、医薬品製造用資材として高い品質が求められる。蛋白質からなるリガンド自体も蛋白質医薬品と同等レベルの品質を要求され、生産コストが高いので、アフィニティー担体を安価に供給できない状況となっている。抗体医薬品の製造コストのうち、アフィニティー担体の生産コストが占める割合は大きく、抗体医薬品の製造コスト低減に大きな足かせとなっている。よって、蛋白質からなるリガンドを高品質で安価に調達する方法が望まれている。
本発明者らは、これまでに、プロテインAの部分配列を安定的かつ大量に生産するために、ブレビバチルス属細菌を宿主に使い、プロテインAの部分配列を効率良く大量に分泌発現し、培養液中に安定的に蓄積させ、容易に高純度で分離回収できる方法を見出している(特許文献1)。
国際公開第06/004067号
Kay Terpe.Appl Microbaiol Biotechnol 72:211-222(2006)
本発明はブレビバチルス属細菌を用いて組換え蛋白質を製造する際に、プラスミドを菌体内に安定に保持した状態で培養時の菌体の増殖速度を増大させ、組換え蛋白質の生産量を向上させることのできる、組換え蛋白質の製造方法を提供する。
本発明者らは、上記課題を解決するために鋭意検討を行った結果、驚くべきことに、培養前半は高温で培養を行う高温培養工程と、培養後半はより低温で培養を行う低温培養工程を組み合わせることで、プラスミドを菌体内に安定に保持したままブレビバチルス属細菌の菌体の増殖速度を増大させ、組換え蛋白質の生産量を向上させることができることを見出し、本発明を完成した。
すなわち、本発明は、組換え蛋白質をコードする遺伝子を有するブレビバチルス属細菌を32℃以上で培養する高温培養工程、および前記高温培養工程後、前記ブレビバチルス属細菌を32℃未満で培養する低温培養工程を含む、組換え蛋白質の製造方法に関する。
高温培養工程から低温培養工程への移行がブレビバチルス属細菌の生育における対数増殖期初期から中期の間に行われることが好ましい。
組換え蛋白質が抗体結合性蛋白質であることが好ましい。
抗体結合性蛋白質がプロテインAのEドメイン、Dドメイン、Aドメイン、Bドメイン、またはCドメイン、プロテインGのCドメインまたはDドメイン、プロテインLのBドメイン、もしくはそれらの連結体または機能的変異体であることが好ましい。
組換え蛋白質が生理活性蛋白質であることが好ましい。
生理活性蛋白質がペプチドホルモンまたはその前駆体であることが好ましい。
組換え蛋白質が抗体または抗体様分子であることが好ましい。
本発明によれば、ブレビバチルス属細菌を用いた組換え蛋白質の製造において、プラスミドを菌体内に安定に保持したまま菌体の増殖速度を増大させ、コストを抑えながら組換え蛋白質の生産量を向上させることができる。本発明の方法は工業的規模にスケールアップすることも可能である。
発現プラスミドSpa’-pNK3260の模式図である。 Spa’-pNK3260に含まれるプロモーター、シャインダルガノ(SD)配列、シグナルペプチドおよびプロテインA(SPA’)をコードするDNAの塩基配列である。
本発明は、組換え蛋白質をコードする遺伝子を有するブレビバチルス属細菌を32℃以上で培養する高温培養工程、および前記高温培養工程後、前記ブレビバチルス属細菌を32℃未満で培養する低温培養工程を含む、組換え蛋白質の製造方法に関する。
組換え蛋白質としては、例えば抗体結合性蛋白質、抗体、抗体様分子、酵素、その他の有用生理活性蛋白質が挙げられる。
抗体結合性蛋白質は、抗体の抗原認識部位以外の部分(例えば、Fc部分)と結合可能な蛋白質である。抗体の抗原認識部位以外の部分と結合し得る蛋白質であれば、その構造は特に限定されない。このような蛋白質としては、例えば、プロテインAのEドメイン、Dドメイン、Aドメイン、Bドメイン、またはCドメイン、プロテインGのCドメインまたはDドメイン、プロテインLのBドメイン、もしくはそれらの連結体または機能的変異体が挙げられる。
プロテインAとは、グラム陽性細菌スタフィロコッカス・アウレウスによって生産される細胞壁蛋白質の1種であり、約42,000の分子量を有する蛋白質である。その構造は7つの機能ドメイン(アミノ末端からシグナル配列S、イムノグロブリン結合ドメインE、イムノグロブリン結合ドメインD、イムノグロブリン結合ドメインA、イムノグロブリン結合ドメインB、イムノグロブリン結合ドメインC、スタフィロコッカス・アウレウス細菌細胞壁結合ドメインX)から構成されている(Proc.Natl.Acad.Sci.USA,1983,80:697-701、Gene,1987,58:283-295、J.Bio.Chem.,1984,259:1695-1702)。
プロテインAのイムノグロブリン結合ドメインに対する相対親和性は、pH、スタフィロコッカス・アウレウス菌株種(Infec.Immun.,1987,55:843-847)、またイムノグロブリンのクラス(IgG、IgM、IgA、IgD、IgE)及びサブクラス(IgG1、IgG2、IgG3、IgG4、IgA1、IgA2)などの多くの因子に依存することが知られ、特にイムノグロブリンのクラスではヒトIgG1、ヒトIgG2、ヒトIgG4及びマウスIgG2a、マウスIgG2b,マウスIgG3のFc部分と強い結合を示す。
プロテインAのEドメイン、Dドメイン、Aドメイン、Bドメイン、Cドメインとしては、それぞれ、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5に示されるアミノ酸配列を有する蛋白質が挙げられる。
プロテインGとは、グループC及びGのストレプトコッカス属細菌(Streptococcus)によって生産される細胞壁蛋白質の1種であり、約59,000の分子量を有する蛋白質である。その構造は5つの機能ドメイン(アミノ末端から、シグナル配列SS、配列AおよびBの繰り返しによるアルブミン結合ドメイン、配列CおよびDの繰り返しによるイムノグロブリン結合ドメイン、細胞壁貫通ドメインW、細胞膜貫通ドメインM)から構成されている。
プロテインGのイムノグロブリン結合ドメインは、プロテインAのそれと比較して、広範に哺乳動物IgGのFc部分と結合を示す(J.Immunol.,1984,133:969-974、J.Biol.Chem.,1991,266:399-405)。
プロテインGのCドメインまたはDドメインとしては、それぞれ、配列番号6、配列番号7、配列番号8に示されるアミノ酸配列を有する蛋白質が挙げられる。
プロテインLとは、ペプトストレプトコッカス・マグニウス(Peptostreptococcus magnus)によって生産される蛋白質の1種であり、約79,000の分子量を有する蛋白質である。その構造は6つの機能ドメイン(アミノ末端から、シグナル配列SS、アミノ末端ドメインA、イムノグロブリン結合ドメインBの5回繰り返し、機能不明ドメインCの2回繰り返し、細胞壁貫通ドメインW、細胞膜貫通ドメインM)から構成されている。
このプロテインLのイムノグロブリン結合ドメインはイムノグロブリンのκ軽鎖と結合を示す。(J.Biol.Chem.,1989,264:19740-19746、J.Biol.Chem.,1992,267:12820-12825)。
プロテインLのBドメインとしては、配列番号9、配列番号10、配列番号11、配列番号12、配列番号13、配列番号14、配列番号15、配列番号16、配列番号17に示されるアミノ酸配列を有する蛋白質が挙げられる。
抗体結合性蛋白質の機能的変異体は、抗体結合性蛋白質の変異体のうち、抗体に結合する活性を有する蛋白質である。抗体結合性蛋白質の機能的変異体と、配列番号5に示すプロテインAのCドメインとの配列同一性は、60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることがさらに好ましく、75%以上であることがさらにより好ましく、80%以上であることがなお好ましく、85%以上であることがさらになお好ましく、90%以上であることが特に好ましく、95%以上であることが最も好ましい。
抗体結合性蛋白質の連結体は、抗体結合性蛋白質を直列に連結して得られる蛋白質である。異なる抗体結合性蛋白質を連結してもよく、同じ抗体結合性蛋白質を連結してもよい。連結される抗体結合性蛋白質の数としては、例えば2個、3個、4個、5個、6個、7個、8個、9個、10個が挙げられる。連結体としては、プロテインAのCドメインの機能的変異体5個を含む、配列番号18に示されるアミノ酸配列を有する蛋白質が挙げられる。
抗体、または抗体様分子としては、IgG、IgM、IgA、IgD、IgEなどの完全長抗体、およびそれらの抗原結合部位からなる部分断片化抗体などが挙げられる。
酵素としては、例えばアミラーゼ、プロテアーゼ、セルラーゼ、リパーゼ、コレステロールオキシダーゼ、アルコール脱水素酵素、アミノ酸脱水素酵素、D-アミノ酸オキシダーゼ、L-アミノ酸オキシダーゼ、アミノ基転移酵素、エステラーゼ、アシラーゼ、アミダーゼ、ヒダントイナーゼ、ヒダントインラセマーゼ、デカルバミラーゼ、ニトリラーゼ、ニトリルヒドラターゼ、N-アシルアミノ酸ラセマーゼ、D-スクシニラーゼ、L-スクシニラーゼ、カルバミルアミノ酸ラセマーゼ、アミノ酸アミドラセマーゼ、アミノペプチダーゼ、オキシゲナーゼなどが挙げられる。
その他の有用生理活性蛋白質とは、医薬活性成分として用いられる蛋白質であり、例えばインシュリン、インターフェロン、インターロイキン、エリスロポエチン、成長ホルモン、ペプチドホルモン、サイトカイン、成長因子、造血因子、およびこれらの前駆体、およびそれらの受容体蛋白質などが挙げられる。
組換え蛋白質をコードする遺伝子は、組換え蛋白質をコードする塩基配列を有していれば特に限定されない。前記遺伝子を含むDNAは、通常用いられる公知の方法、例えば、ポリメラーゼ・チェーン・リアクション(以下、PCRと略す)法で取得できる。また、公知の化学合成法で合成することも可能であり(Nucleic acids Res.1984.12:4359)、DNAライブラリーからも取得できる。当該DNAにおいて、コドンが縮重コドンで置換されていてもよい。
ブレビバチルス属細菌で組換え蛋白質を発現させるために、発現ベクターを使用できる。発現ベクターは、組換え蛋白質をコードする遺伝子を含む。当該遺伝子を発現させるプロモーターとして、ブレビバチルス属細菌で機能しうるプロモーターを使用できる。
当該プロモーターは、ブレビバチルス属細菌で機能しうるものであればいかなるものでもよいが、大腸菌、枯草菌、ブレビバチルス属、スタフィロコッカス属、ストレプトコッカス属、ストレプトミセス属(Streptomyces)、コリネバクテリウム属(Corynebacterium)等の細菌に由来し、ブレビバチルス属細菌内にて作動可能なプロモーターが好ましい。ブレビバチルス属細菌細胞壁蛋白質middle wall protein(MWP)、同蛋白質であるouter wall protein(OWP)、またはブレビバチルス・チョウシネンシスHPD31細胞壁蛋白質HWP(Ebisu.Sら.J.Bacteriol.1990.172:1312-1320)をコードする遺伝子のプロモーターがより好ましい。具体例として、ブレビバチルス・ブレビス細胞壁蛋白質MWPのP5プロモーター領域や、ブレビバチルス・ブレビス細胞壁蛋白質MWPのP2プロモーター領域が挙げられる。
発現ベクターは、前記プロモーターの下流に、ブレビバチルス属細菌で機能しうるシャインダルガノ配列及びシグナル配列をさらに含むことが好ましい。シャインダルガノ配列は、大腸菌、枯草菌、ブレビバチルス属、スタフィロコッカス属、ストレプトコッカス属、ストレプトミセス属(Streptomyces)、コリネバクテリウム属(Corynebacterium)等の細菌由来でブレビバチルス属細菌内にて作動可能なシャインダルガノ配列が好ましく、ブレビバチルス属細菌細胞壁蛋白質middle wall protein(MWP)、同蛋白質であるouter wall protein(OWP)、または、ブレビバチルス・チョウシネンシスHPD31細胞壁蛋白質HWPをコードする遺伝子の上流に存在するシャインダルガノ配列がより好ましい。発現ベクターは、所望によりマーカー配列を含んでもよい。
発現ベクターは、シャインダルガノ配列の下流に分泌シグナルペプチドをコードするDNA配列を含んでいても良い。分泌シグナルペプチドをコードするDNA配列は、ブレビバチルス・ブレビス内で翻訳されたときに同一のアミノ酸をコードしている限り、本来のDNA配列と同一である必要性はない。分泌シグナルペプチドとしては、例えば、大腸菌、枯草菌、ブレビバチルス属、スタフィロコッカス属、ストレプトコッカス属、ストレプトミセス属(Streptomyces)、コリネバクテリウム属(Corynebacterium)等の細菌由来で、ブレビバチルス属細菌内にて作動可能な分泌シグナルペプチドが好ましく、ブレビバチルス属細菌細胞壁蛋白質middle wall protein(MWP)、同蛋白質であるouter wall protein(OWP)または、ブレビバチルス・チョウシネンシスHPD31細胞壁蛋白質HWPの分泌シグナルペプチドがより好ましい。また従来の分泌シグナルペプチドのアミノ酸配列を改良したものも使用できる。
分泌シグナルペプチドの具体例としては、middle wall protein(MWP)のシグナルペプチド、Met-Lys-Lys-Val-Val-Asn-Ser-Val-Leu-Ala-Ser-Ala-Leu-Ala-Leu-Thr-Val-Ala-Pro-Met-Ala-Phe-Ala(配列番号19)をMet-Lys-Lys-Arg-Arg-Val-Val-Asn-Asn-Ser-Val-Leu-Leu-Leu-Leu-Leu-Leu-Ala-Ser-Ala-Leu-Ala-Leu-Thr-Val-Ala-Pro-Met-Ala-Phe-Ala(配列番号20)の下線部のように塩基性や疎水性アミノ酸残基など付加または消失させた分泌シグナルペプチドも使用できる。また従来からブレビバチルス属の分泌蛋白質において使われている分泌シグナルペプチドも使用できる。
さらに該プロテインAが本来有するシグナルペプチド、すなわち、Met-Lys-Lys-Lys-Asn-Ile-Tyr-Ser-Ile-Arg-Lys-Leu-Gly-Val-Gly-Ile-Ala-Ser-Val-Thr-Leu-Gly-Thr-Leu-Leu-Ile-Ser-Gly-Gly-Val-Thr-Pro-Ala-Ala-Asn-Ala(配列番号21)も使用できる。
上記のプロモーター、シャインダルガノ配列、および分泌シグナルペプチドをコードするDNAは、例えば、ブレビバチルス属細菌から得ることができる。好ましくは、ブレビバチルス・ブレビス47株(JCM6285)、ブレビバチルス・ブレビス47K株(FERM BP-2308)、ブレビバチルス・ブレビス47-5株(FERM BP-1664)、ブレビバチルス・チョウシネンシスHPD31株(FERM BP-1087)、ブレビバチルス・チョウシネンシスHPD31-S株(FERM BP-6623)、またはブレビバチルス・チョウシネンシスHPD31-OK株(FERM BP-4573)の染色体DNAを鋳型として、公知のPCR法で特異的に増やすことにより取得できる。
発現ベクターにおいては、前記プロモーター、前記シャインダルガノ配列、前記シグナルペプチド配列、および組換え蛋白質をコードする遺伝子が、ブレビバチルス属細菌内において作動可能に連結されていることが好ましい。
発現ベクターは、プラスミドベクターが好ましい。ブレビバチルス属細菌の遺伝子の発現に有用なプラスミドベクターとして具体的には、例えば、枯草菌ベクターとして公知であるpUB110、またはpHY500(特開平2-31682号公報)、pNY700(特開平4-278091号公報)、pHY4831(J.Bacteriol.1987.1239-1245)、pNU200(鵜高重三、日本農芸化学会誌1987.61:669-676)、pNU100(Appl.Microbiol.Biotechnol.,1989,30:75-80)、pNU211(J.Biochem.,1992,112:488-491)、pNU211R2L5(特開平7-170984号公報)、pNH301(Shiga.Y.ら.Appl.Environ.Microbiol.1992.58:525-531.)、pNH326、pNH400(Ishihara.Tら、1995.J.Bacteriol,177:745-749)、pHT210(特開平6-133782号公報)、pHT110R2L5(Appl.Microbiol.Biotechnol.,1994,42:358-363)、または大腸菌とブレビバチルス属細菌とのシャトルベクターであるpNCMO2(特開2002-238569号公報)が挙げられる。また、ブレビバチルス属細菌で機能するプロモーターとシャインダルガノ配列と目的蛋白質をコードするDNA配列とを含んだ発現ベクター、または、それらの各配列を含む遺伝子断片を染色体中へ直接組み込み、発現させる方法(特開平9-135693号公報)を用いてもよい。
組換え蛋白質は、ブレビバチルス属細菌において分泌させる方法、または分泌させない方法のいずれで生産されてもよいが、分離精製が容易であることから、培養液中へ分泌させる方法が好ましい。
組換え蛋白質を培養液中へ分泌させるためには、組換え蛋白質をコードする遺伝子の上流にブレビバチルス属細菌で機能するシグナルペプチドをコードするDNAを付加または連結するのが好ましい。
形質転換体を得るために用いる宿主細胞としては、任意のブレビバチルス属細菌を使用し得る。ブレビバチルス属細菌は、特に限定されないが、ブレビバチルス・アグリ、ブレビバチルス・ボルステレンシス、ブレビバチルス・ブレビス、ブレビバチルス・セントロポラス、ブレビバチルス・チョウシネンシス、ブレビバチルス・フォルモサス、ブレビバチルス・インボカツス、ブレビバチルス・ラチロスポラス、ブレビバチルス・リムノフィルス、ブレビバチルス・パラブレビス、ブレビバチルス・レウスゼリ、ブレビバチルス・サーモルバー等を含む。
好ましくは、ブレビバチルス属細菌が、ブレビバチルス・ブレビス47株(JCM6285)、ブレビバチルス・ブレビス47K株(FERM BP-2308)、ブレビバチルス・ブレビス47-5株(FERM BP-1664)、ブレビバチルス・ブレビス47-5Q株(JCM8970)、ブレビバチルス・チョウシネンシスHPD31株(FERM BP-1087)、ブレビバチルス・チョウシネンシスHPD31-S株(FERM BP-6623)、ブレビバチルス・チョウシネンシスHPD31-OK株(FERM BP-4573)およびブレビバチルス・チョウシネンシスSP3株(Takara社製)からなる群より選択される。特に上記のブレビバチルス・ブレビス47株、ブレビバチルス・ブレビス47-5Q株、ブレビバチルス・チョウシネンシスHPD31株、ブレビバチルス・チョウシネンシスSP3株、ブレビバチルス・チョウシネンシスHPD31-OK株、ブレビバチルス・チョウシネンシスHPD31-S株が適している。
上記ブレビバチルス属細菌のプロテアーゼ欠損株や高発現株のような変異株を使用してもよい。変異株として、例えば、ブレビバチルス・チョウシネンシスHPD31株由来のプロテアーゼ変異株であるブレビバチルス・チョウシネンシスHPD31-OK株(特開平6-296485号公報)、ヒト唾液アミラーゼ高生産株であるブレビバチルス・ブレビス47K株(Konishi,H.ら.Appl Microbiol.Biotechnol.1990.34:297-302)が挙げられる。また前記ブレビバチルス属細菌群に含まれるいずれかの株の変異体を使用してもよい。
上記微生物のうち、ブレビバチルス・ブレビス47K株(FERM BP-2308)、ブレビバチルス・ブレビス47-5株(FERM BP-1664)、ブレビバチルス・チョウシネンシスHPD31株(FERM BP-1087)、ブレビバチルス・チョウシネンシスHPD31-S株(FERM BP-6623)、及びブレビバチルス・チョウシネンシスHPD31-OK株(FERM BP-4573)は、独立行政法人産業技術総合研究所特許生物寄託センター(IPOD;〒305-8566 茨城県つくば市東1丁目1-1中央第6)に、上記それぞれの受託番号にて寄託されている。また、ブレビバチルス・ブレビス47株(JCM6285)及びブレビバチルス・ブレビス47-5Q株(JCM8970)は、独立行政法人 理化学研究所バイオリソースセンター 微生物材料開発室(JCM;〒305-0074 茨城県つくば市高野台3-1-1)から入手することができる。前述したブレビバチルス属細菌は変異等を加えることなくそのまま用いることが可能であり、その他に、前述したブレビバチルス属細菌から、さらに組換え蛋白質の生産量や品質が優れるブレビバチルス属細菌を取得して、組換え蛋白質の生産に用いることも可能である。
ブレビバチルス属細菌を含めた微生物において異種蛋白質を高発現させた場合、正しくフォールディングされずに不活性型の蛋白質を形成することが多く、特にジスルフィド結合の多い蛋白質を高発現させた場合、細胞内外にて不溶性化することも多い。一方で、目的蛋白質を発現させる際、シャペロン蛋白質やジスルフィド結合異性化酵素および/またはプロリン異性化酵素などを作用させることによって、目的蛋白質の不溶性化や分泌効率の低下を抑えられることが知られている。広く試みられている方法は、PDI(プロテインジスルフィドイソメラーゼ)および/またはDsbAなどのジスルフィド酸化還元活性を有する蛋白質を作用させる方法(特開昭63-294796号公報、特開平5-336986号公報)である。
さらに、ジスルフィド酸化還元活性を有する蛋白質をコードする遺伝子を宿主生物に導入し、目的蛋白質とジスルフィド酸化還元活性を有する蛋白質とを同時に発現させて正しいジスルフィド結合を有する蛋白質を生産する方法も知られている(特開2000-83670号公報、特表2001-514490号公報等)。
本発明による組換え蛋白質の発現の場合も、過度な蛋白質合成が行われることによる宿主細胞への負担を軽減し、蛋白質分泌をスムーズに行わせるために、当該蛋白質発現の際、数種類のシャペロン蛋白質、ジスルフィド結合酸化還元酵素、および/またはジスルフィド異性化酵素のようなフォールディングを促進する酵素を同時発現させることも可能である。具体的に挙げれば、ブレビバチルス属細菌において当該蛋白質発現時に、蛋白質のジスルフィド結合に関与し、プロテインジスルフィドイソメラーゼの類縁と考えられている大腸菌のDsbA(Bardwell,J.C.A.ら.Cell.1991.67:582-589、Kamitani.Sら.EMBO.J.1992.11:57-62.)および/または、DnaK、DnaJ、GrpE(特開平9-180558号公報)などのシャペロン蛋白質を同時に発現させることもできる。その他、ポリペプチドの正確なジスルフィド結合に関与している酵素PDI(特願2001-567367号公報)、ジスルフィド酸化還元酵素(特開2003-169675号公報)(Kontinen,V,P.ら Molecular Microbiology.1993.8:727-737)、および/またはジスルフィド異性化酵素のようなフォールディングを促進する酵素を当該蛋白質と同時に発現させ、更に分泌効率を向上させることもできる。
組換え蛋白質をコードする遺伝子による、ブレビバチルス属細菌の宿主細胞の形質転換は、公知のTakahashiらの方法(Takahashi.Wら.J.Bacteriol.1983.156:1130-1134)や、Takagiらの方法(Takagi.H.ら.1989.Agric.Biol.Chem,53:3099-3100)、またはOkamotoらの方法(Okamoto.A.ら 1997.Biosci.Biotechnol.Biochem.61:202-203)により行うことができる。
ブレビバチルス属細菌の培養に用いる培地は、組換え蛋白質を高効率、高収量で生産できるものであれば特に限定されない。具体的にはグルコース、蔗糖、グリセロール、ポリペプトン、肉エキス、酵母エキス、カザミノ酸などの炭素源や窒素源を使用することができる。その他、カリウム塩、ナトリウム塩、リン酸塩、マグネシウム塩、マンガン塩、亜鉛塩、鉄塩等の無機塩類を添加してもよい。また、必要であれば、大豆油、ラード油、界面活性剤等の消泡効果のある、または、細胞膜の物質透過性を変化させ、菌体当たりの組換え蛋白質の分泌生産量の向上が期待される化合物を添加してもよい。界面活性剤の使用は、本発明の効果を増強する場合があり好ましい。界面活性剤としては、組換えブレビバチルス属細菌の生育および/または組換え蛋白質生産に悪影響を及ぼさない限り、特に制限されないが、好ましくはポリオキシアルキレングリコール系の界面活性剤である。栄養要求性の宿主細胞を用いる場合は、生育に要求される栄養物質を添加してもよい。ペニシリン、エリスロマイシン、クロラムフェニコール、ネオマイシンなどの抗生物質を添加してもよい。菌体内外に存在する宿主由来のプロテアーゼによる当該目的蛋白質の分解や低分子化を抑えるために、公知のプロテアーゼ阻害剤を添加してもよい。プロテアーゼ阻害剤として、例えばPhenylmethane sulfonyl fluoride(PMSF)、Benzamidine、4-(2-aminoethyl)-benzenesulfonyl fluoride(AEBSF)、Antipain、Chymostatin、Leupeptin、Pepstatin A、Phosphoramidon、Aprotinin、Ethylene diamine tetra acetic acid(EDTA)などが挙げられる。
培養開始時に培地に含まれる炭素源の濃度は、1%以上、または10%以下が好ましく、初発1~10%がより好ましい。培養途中に炭素源の濃度が10%以下、5%以下、3%以下、特には1%以下となるように適宜炭素源を追加的に添加することがさらに好ましい。炭素源の追加的な添加方法として、分割添加または連続添加が挙げられる。
培養は、通気攪拌条件で行う好気的培養、または通気を遮断した嫌気的培養が挙げられ、好気的培養が好ましい。また、pHは4から9で培養できるが、5から8であることが好ましい。また、回分式、連続式のいずれの培養方法でもよい。
本発明の製造方法は、ブレビバチルス属細菌を32℃以上で培養する高温培養工程、および前記高温培養工程後、32℃未満で培養する低温培養工程を含む。高温培養工程、および低温培養工程では、液体培地、または固体培地でブレビバチルス属細菌を培養する。
ブレビバチルス属細菌を32℃以上で培養する高温培養工程では、培養開始から、32℃以上の温度でブレビバチルス属細菌を培養する。高温培養工程における培養温度は、32~60℃であることが好ましく、32~50℃であることがより好ましく、32~40℃であることがさらに好ましい。60℃を超えると菌体増殖が悪くなる傾向があり、32℃未満では菌体増殖速度が遅くなる傾向がある。
高温培養工程後、32℃未満で培養する低温培養工程では、32℃未満の温度でブレビバチルス属細菌を培養する。低温培養工程における培養温度は、10℃以上32℃未満であることが好ましく、15℃以上32℃未満であることがより好ましく、20℃以上32℃未満であることがさらに好ましく、25℃以上32℃未満であることがさらにより好ましい。32℃以上であると菌体内でのプラスミド保持が不安定になる傾向があり、10℃未満では菌体増殖が悪くなる傾向がある。
高温培養工程から低温培養工程への移行が、ブレビバチルス属細菌の生育における対数増殖期初期から中期の間に行われることが好ましい。対数増殖期初期から中期の間に高温培養工程から低温培養工程へ移行することにより、プラスミドを菌体内に安定に保持した状態で、培養時の菌体の増殖速度を増大させ、組換え蛋白質の生産量を向上させることができるという効果を奏する。
なお、一般的に対数増殖期とは、培養系に含まれるすべての細胞が一定の間隔で細胞分裂して増殖し、培養系全体に含まれる細胞の総数がそれぞれ2倍ずつになるために時間軸に対して細胞数の対数が直線となる期間のことである。使用する培地の種類によってブレビバチルス属細菌の到達菌体密度が異なるため、対数増殖期を培地の濁度の絶対値で定義することはできない。そこで、対数増殖期を、使用する培地で菌体密度が最大となった培地の濁度を100%とした場合の培地の相対濁度(%)を指標として定義する。当該指標を用いた場合、ブレビバチルス属細菌の生育における対数増殖期の初期とは、培地の相対濁度が1~35%の期間であり、ブレビバチルス属細菌の生育における対数増殖期の中期とは、培地の相対濁度が35%より大きく、70%以下の期間である。
高温培養工程から低温培養工程への移行は、前述した指標を用いた場合、相対濁度が1~70%である時に行われることが好ましく、5~60%である時に行われることがより好ましく、10~50%である時に行われることがさらに好ましく、15~40%である時に行われることがさらにより好ましい。
高温培養工程から低温培養工程への移行は、培養装置の設定温度を変更し、高温培養工程で使用された液体培地の温度を低下させることにより行われる。通常、高温培養工程から低温培養工程への移行に際して培地の交換は必要ないが、培地を交換してもよい。
なお、培地の濁度は、分光光度計を用いて600nmの波長で測定される培地の吸光度である。
生産された組換え蛋白質は、菌体外、すなわち培養上清中に大量に蓄積されるので、組換え蛋白質は培養上清中から回収し精製できる。また菌体内、及び菌体表層に存在する組換え蛋白質も、例えば超音波やフレンチプレス、アルカリ処理、SDS処理などの公知の方法により菌を破砕して、回収できる。培養上清や菌体から回収された蛋白質は、硫酸アンモニウムや硫酸ナトリウムなどを用いた塩析、エタノールやアセトンなどを用いた濃縮、ゲル濾過、イオン交換、ハイドロキシアパタイト、組換え蛋白質が有する親和性を利用したクロマトグラフィーなどを用いて精製できる。
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらに限定されない。本実施では、組換えDNAの作製や操作などは特に断わらない限り下記の実験書に従って実施した。(1)T.Maniatis,E.F.Fritsch,J.Sambrook著、「モレキュラー・クローニング/ア・ラボラトリー・マニュアル(Molecular Cloning/A Laboratory Manual)」、第2版(1989)、Cold Spring Harbor Laboratory刊(米国)。(2)村松正實編著「ラボマニュアル遺伝子工学」、第3版(1996)、丸善株式会社刊。また、本実施例で用いる試薬、制限酵素等については特に明記しない限り、市販品を用いた。
(製造例1)プロテインAのCドメインの機能的変異体の5連結体を発現した形質転換体の調製
プロテインAのCドメインの29番目のGlyをAlaに改変し5連結したタンパク質のアミノ酸配列(配列番号18、以下C-G29Aとする。)から逆翻訳を行い、該タンパク質をコードするDNA配列を設計した。該タンパク質のコドン使用頻度が、ブレビバチルス・チョウシネンシスHPD31株で大量に発現している細胞表層タンパク質であるHWP(J.Bacteriol.,172,p.1312-1320,1990)のコドン使用頻度に近くなるように、かつ、5個の各ドメインをコードする塩基配列の配列同一性が低くなるように考慮して、コドンを分配した。また、5連結ドメインをコードする配列の5’側にPstI、および、3’側にXbaIの制限酵素認識部位を作製した。作製したDNA断片の配列を配列番号22に記した。作製したDNA断片をPstIおよびXbaI(ともにTakara社製)で消化し、アガロースゲル電気泳動で分画、精製した。一方、ブレビバチルス属細菌用のプラスミドベクターであるpNCMO2(Takara社製)を、PstIおよびXbaIにより消化後、精製回収した。両者を混合後、Ligation High(TOYOBO社製)を用いて連結して、プラスミドベクターpNCMO2-C-G29Aを構築した。このプラスミドベクターを用いて、ブレビバチルス・チョウシネンシスSP3株(Takara社製)の形質転換を行い、ブレビバチルス・チョウシネンシスSP3(pNCMO2-C-G29A)を作製した。
(参考例1)ブレビバチルス・チョウシネンシスSP3(pNCMO2-C-G29A)の培養温度の違いによる組換え蛋白質C-G29A生産量とプラスミド保持率の比較
製造例1にて得られたブレビバチルス・チョウシネンシスSP3(pNCMO2-C-G29A)を、A培地(ペプトン1.5%、酵母エキス0.4%、グルコース2%、リン酸塩0.38%、MgSO・7HO 0.02%、MnSO・4HO 0.002%、FeSO・7HO 0.002%、ZnSO・7HO 0.0002% pH7.2、培養開始後6時間目から48時間目にかけてグルコース3.8%分を連続添加)にディスホームCC-118を750ppm添加し、28、30、32、34、36℃の各培養温度にて、好気的条件下でpHを7.0から7.2に制御しながら培養を行った。
培養開始から46時間後に培養液を採取し、培養液中のブレビバチルス・チョウシネンシスのプラスミド保持率を以下に示す方法により測定した。まず、採取した培養液を0.9%の生理食塩水で適宜希釈し、希釈液100μlを標準寒天培地(日水製薬株式会社製)プレートにて塗布した後、30℃で20時間静置培養した。プレート上に得られたコロニーを、ネオマイシンを60ppm含んだ標準寒天培地プレート上にレプリカし、30℃で24時間静置培養した後のコロニーの生育の有無からプラスミド保持の有無を判断した。
また、培養開始から67時間後に培養液を採取し、遠心分離(15,000rpm、25℃、5分間)により菌体を除去した後、高速液体クロマトグラフィーで培養上清中の組換え蛋白質C-G29A濃度を測定した。各培養温度における組換え蛋白質C-G29A濃度とプラスミド保持率の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1に示すように、培養温度が28℃および30℃の場合には、プラスミドが100%安定に保持されていたのに対し、培養温度が32℃以上の場合には、プラスミド保持率が低下し、培養上清中の組換え蛋白質C-G29A濃度も低下した。
(実施例1)ブレビバチルス・チョウシネンシスSP3(pNCMO2-C-G29A)の温度シフト培養1
製造例1にて得られたブレビバチルス・チョウシネンシスSP3(pNCMO2-C-G29A)を、A培地(ただしグルコースの連続添加は、培養開始6時間後から30時間後にかけて4.8%分を添加することで行った)にディスホームCC-118を750ppm添加し、好気的条件下でpHを7.0から7.2に制御しながら培養した。培養は、培養温度を培養開始から13.5時間目まで36℃で培養し、培地の相対濁度が33%になった後、30℃に温度シフトして培養終了まで培養する条件により行った。
培養開始から41時間後に培養液を採取し、参考例1と同様に培養上清中の組換え蛋白質C-G29A濃度を測定した。また、培養開始から41時間後に培養液を採取し、分光光度計を用いて600nmにおける濁度を分析した。また、培養開始から46時間後に培養液を採取し、参考例1と同様にプラスミド保持率を測定した。結果を表2に示す。
(比較例1)ブレビバチルス・チョウシネンシスSP3(pNCMO2-C-G29A)の培養1
培養を、培養開始から終了まで30℃の一定温度の条件で行った以外は、実施例1と同じ操作を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
表2に示すように、培養温度をシフトさせた実施例1では、30℃一定培養の比較例1と比較して、培養上清中の組換え蛋白質C-G29A濃度が大きく増加した。また、実施例1では比較例1と比較して、菌体量の指標となる濁度も増加した。また、表1に示すように、36℃一定培養では、培養開始46時間後のプラスミド保持率が25%と極めて低かったのに対し、36℃から30℃に温度シフトした場合には、培養開始46時間後でもプラスミドを100%安定に保持できていた。
(実施例2)ブレビバチルス・チョウシネンシスSP3(pNCMO2-C-G29A)の温度シフト培養2
製造例1にて得られたブレビバチルス・チョウシネンシスSP3(pNCMO2-C-G29A)を、A培地にディスホームCC-118を750ppm添加し、好気的条件下でpHを7.0から7.2に制御しながら培養した。培養は、培養温度を培養開始から13.5時間目まで34℃で培養し、培地の相対濁度が22%になった後、30℃に温度シフトして培養終了まで培養する条件により行った。
培養開始から37時間後に培養液を採取し、参考例1と同様に培養上清中の組換え蛋白質C-G29A濃度を測定した。また、培養開始から37時間後に培養液を採取し、分光光度計を用いて600nmにおける濁度を分析した。また、培養開始から41時間後に培養液を採取し、参考例1と同様にプラスミド保持率を測定した。結果を表3に示す。
(比較例2)ブレビバチルス・チョウシネンシスSP3(pNCMO2-C-G29A)の培養2
培養を、培養開始から終了まで30℃の一定温度の条件で行った以外は、実施例2と同じ操作を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
表3に示すように、培養温度をシフトさせた実施例2では、30℃一定培養の比較例2と比較して、培養上清中の組換え蛋白質C-G29A濃度が有意に増加した。また、実施例2では比較例2と比較して、菌体量の指標となる濁度も増加した。また、表1に示すように、34℃一定培養では、培養開始46時間後のプラスミド保持率が44%と極めて低かったのに対し、34℃から30℃に温度シフトした場合には、培養開始41時間後でもプラスミドを100%安定に保持できていた。
(製造例2)ブレビバチルス発現ベクターpNK3260の構築
pNH326(J.Bacteriol.,1995,177:745-749)に含まれるMWPのP5プロモーターをMWPのP2プロモーターに変換して、ブレビバチルス発現ベクターpNK3260を以下のように構築した。まず、pNH326を鋳型として、配列番号23および24に示した塩基配列を有する2つのオリゴヌクレオチドプライマーPrimer-1およびPrimer-2を用いてPCRを行い、pNH326のうちMWPのP5プロモーターを除く部分を増幅し、その末端を制限酵素EcoRIとHindIII(共にTakara社製)とで消化した。次に、配列番号25に示した塩基配列を有するMWPのP2プロモーターを含む2本鎖DNA断片を定法に従い調製し、その末端を制限酵素MunIおよびHindIII(共にTakara社製)で消化した。これら2つのDNA断片をT4DNAリガーゼ(Takara社製)を用いて連結し、pNK3260を構築した。
(製造例3)スタフィロコッカス・アウレウス・コワンI株(JCM2179)由来のプロテインAをコードするDNA配列のクローニング
スタフィロコッカス・アウレウス・コワンI株(JCM2179)を、T2液体培地(ポリペプトン1%、酵母エキス0.2%、グルコース1%、魚肉エキス0.5%、pH7.0)で37℃一晩振とう培養した。得られた培養液から菌体を遠心分離により回収後、10mMのトリス-塩酸緩衝液(pH8.0)で2度洗浄した。菌体を同緩衝液に懸濁後、1%SDSで溶菌し、60℃にて30分間加熱後、フェノール抽出及びエタノール沈殿等の定法により全ゲノムDNAを抽出した。なお、スタフィロコッカス・アウレウス・コワンI株(JCM2179)は独立行政法人 理化学研究所バイオリソースセンター 微生物材料開発室(JCM)(〒305-0074 茨城県つくば市高野台3-1-1)より入手することが出来る。
次に、プロテインA遺伝子のDNA配列情報(Shuttleworth,H.Lら.Gene,1987,58:283-295.)を基に、配列番号26及び27に示した塩基配列を有する2つのオリゴヌクレオチドプライマーPrimer-3およびPrimer-4を調製した。上記のスタフィロコッカス・アウレウス・コワンI株(JCM2179)のゲノムDNAを鋳型とし、これら2つのオリゴヌクレオチドプライマーPrimer-3およびPrimer-4を用いてPCRを行い、プロテインAからシグナルシーケンス(Sドメイン)及び細胞壁結合ドメイン(Xドメイン)を除いた部分(これ以降SPA’と称する)をコードするDNA断片(約0.9kbp)を増幅した。得られたDNA断片は、制限酵素NcoI及びBamHIにより消化した後、アガロースゲルより分離回収した。
一方、製造例2で構築したブレビバチルス発現ベクターpNK3260もまた同様に制限酵素NcoI及びBamHIにより消化後、精製回収してアルカリフォスファターゼ処理により脱リン酸化処理を行った。
制限酵素処理後のSPA’をコードする上記DNA断片と上記発現ベクターpNK3260とをT4DNAリガーゼを用いて連結し、図1に示すSPA’発現プラスミドSpa’-pNK3260を構築した。図2には、Spa’-pNK3260に含まれるプロモーター、SD配列、シグナルペプチドおよびプロテインA(SPA’)をコードするDNAを示した。配列番号28に示した塩基配列は、Spa’-pNK3260に含まれるプロモーター、SD配列、シグナルペプチドおよびプロテインA(SPA’)をコードするDNAを示し、配列番号29はシグナルペプチドおよびプロテインA(SPA’)をコードするDNAがコードするアミノ酸配列を示す。
図1および図2において、「MWP-P2」はブレビバチルス・ブレビス細胞壁蛋白質MWPのP2プロモーター領域、「SDM」はブレビバチルス・ブレビス細胞壁蛋白質MWPのSD配列、「SP’」はブレビバチルス・ブレビス細胞壁蛋白質MWPのシグナルペプチド配列を一部改変した改変型シグナルペプチド配列、「spa’」はSPA’をコードするDNA配列、「Nm」はネオマイシン耐性遺伝子コード領域、「Rep/pUB110」はベクターpNK3260の複製開始点を意味する。また図2において、「P2-35」および「P2-10」は、それぞれ、ブレビバチルス・ブレビス細胞壁蛋白質MWPのP2プロモーターの-35領域および-10領域を意味する。
Spa’-pNK3260を、ブレビバチルス・チョウシネンシスHPD31-OK株(FERM BP-4573)に電気導入することで、形質転換体ブレビバチルス・チョウシネンシスHPD31-OK(Spa’-pNK3260)を作製した。
(実施例3)ブレビバチルス・チョウシネンシスHPD31-OK(Spa’-pNK3260)の温度シフト培養
製造例3にて得られたブレビバチルス・チョウシネンシスHPD31-OK(Spa’-pNK3260)を、A培地(ただしグルコースの連続添加は、培養開始6時間後から48時間後にかけて5.0%分を添加することで行った)にディスホームCC-118を750ppm添加し、好気的条件下でpHを7.0から7.2に制御しながら培養した。培養は、培養温度を培養開始から13.5時間目まで34℃で培養し、培地の相対濁度が21%になった後、30℃に温度シフトして培養終了まで培養する条件により行った。培養開始から48時間後に培養液を採取し、参考例1と同様に培養上清中の組換え蛋白質SPA’濃度を測定した。また、培養開始から48時間後に培養液を採取し、分光光度計を用いて600nmにおける濁度を分析した。結果を表4に示す。
(比較例3)ブレビバチルス・チョウシネンシスHPD31-OK(Spa’-pNK3260)の培養
培養を、培養開始から終了まで30℃の一定温度の条件で行った以外は、実施例3と同じ操作を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
表4に示すように、培養温度をシフトさせた実施例3では、30℃一定培養の比較例3と比較して、培養上清中の組換え蛋白質SPA’濃度が大きく増加した。また、実施例3では比較例3と比較して、菌体量の指標となる濁度も大きく増加した。

Claims (7)

  1. 組換え蛋白質をコードする遺伝子を有するブレビバチルス属細菌を32℃以上で培養する高温培養工程、および
    前記高温培養工程後、前記ブレビバチルス属細菌を32℃未満で培養する低温培養工程
    を含む、組換え蛋白質の製造方法。
  2. 高温培養工程から低温培養工程への移行がブレビバチルス属細菌の生育における対数増殖期初期から中期の間に行われる、請求項1に記載の組換え蛋白質の製造方法。
  3. 組換え蛋白質が抗体結合性蛋白質である、請求項1または2に記載の組換え蛋白質の製造方法。
  4. 抗体結合性蛋白質がプロテインAのEドメイン、Dドメイン、Aドメイン、Bドメイン、またはCドメイン、プロテインGのCドメインまたはDドメイン、プロテインLのBドメイン、もしくはそれらの連結体または機能的変異体である、請求項3に記載の組換え蛋白質の製造方法。
  5. 組換え蛋白質が生理活性蛋白質である、請求項1または2に記載の組換え蛋白質の製造方法。
  6. 生理活性蛋白質がペプチドホルモンまたはその前駆体である、請求項5に記載の組換え蛋白質の製造方法。
  7. 組換え蛋白質が抗体または抗体様分子である、請求項1または2に記載の組換え蛋白質の製造方法。
PCT/JP2015/066561 2014-06-09 2015-06-09 組換えブレビバチルス属細菌を用いた組換え蛋白質の製造方法 WO2015190457A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/315,116 US10435732B2 (en) 2014-06-09 2015-06-09 Method for producing recombinant proteins using recombinant brevibacillus
CN201580030581.6A CN106459953A (zh) 2014-06-09 2015-06-09 使用重组短芽孢杆菌属细菌的重组蛋白质制造方法
EP15807051.6A EP3153581B1 (en) 2014-06-09 2015-06-09 Method for producing recombinant proteins using recombinant brevibacillus
JP2016527806A JP6697383B2 (ja) 2014-06-09 2015-06-09 組換えブレビバチルス属細菌を用いた組換え蛋白質の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-118817 2014-06-09
JP2014118817 2014-06-09

Publications (1)

Publication Number Publication Date
WO2015190457A1 true WO2015190457A1 (ja) 2015-12-17

Family

ID=54833547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066561 WO2015190457A1 (ja) 2014-06-09 2015-06-09 組換えブレビバチルス属細菌を用いた組換え蛋白質の製造方法

Country Status (5)

Country Link
US (1) US10435732B2 (ja)
EP (1) EP3153581B1 (ja)
JP (1) JP6697383B2 (ja)
CN (1) CN106459953A (ja)
WO (1) WO2015190457A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121701A1 (ja) * 2015-01-26 2016-08-04 株式会社カネカ 免疫グロブリンκ鎖可変領域含有タンパク質精製用アフィニティー分離マトリックス
WO2017169751A1 (ja) * 2016-03-29 2017-10-05 イムラ・ジャパン株式会社 低温菌及び中温菌由来酵素の製造方法
KR20190074439A (ko) 2017-12-20 2019-06-28 목원대학교 산학협력단 암모니아 산화능을 지닌 브레비바실러스 sp. ATB1111 균주
WO2019203248A1 (ja) * 2018-04-16 2019-10-24 Jsr株式会社 イムノグロブリン結合性ポリペプチド、及びそれを用いたアフィニティー担体
US10808013B2 (en) 2015-01-26 2020-10-20 Kaneka Corporation Mutant immunoglobulin K chain variable region-binding peptide
US10844112B2 (en) 2016-05-09 2020-11-24 Kaneka Corporation Method for purifying antibody or antibody fragment containing κ-chain variable region

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055418A (zh) * 2017-06-20 2018-12-21 江西嘉博生物工程有限公司 一种重组短短芽孢杆菌的构建方法
AU2019358330B2 (en) * 2018-09-07 2024-08-15 Unichem Laboratories Limited An improved process for the preparation of recombinant lectin protein

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080274525A1 (en) * 2007-05-02 2008-11-06 Bramucci Michael G Method for the production of 2-butanol
WO2010001960A1 (ja) * 2008-07-03 2010-01-07 株式会社カネカ 組換えブレビバチルス属細菌による組換え蛋白質の製造方法
CN101691560A (zh) * 2008-12-19 2010-04-07 华南理工大学 大肠杆菌及其可溶性表达转谷氨酰胺酶酶原的方法
WO2013068602A2 (en) * 2012-03-19 2013-05-16 Richter Gedeon Nyrt. Method for the production of polypeptides

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2546083C (en) * 2003-11-11 2014-01-21 Higeta Shoyu Co., Ltd. Novel brevibacillus choshinensis and method for producing protein using the microorganism as host
US8597908B2 (en) 2004-07-06 2013-12-03 Kaneka Corporation Process for producing protein A-like protein with use of Brevibacillus genus bacterium
WO2009101672A1 (ja) * 2008-02-12 2009-08-20 Itoham Foods Inc. 高発現分泌インスリン前駆体を含む融合タンパク質、それをコードするdnaおよびインスリンの製造方法
US8784819B2 (en) * 2009-09-29 2014-07-22 Ibio Inc. Influenza hemagglutinin antibodies, compositions and related methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080274525A1 (en) * 2007-05-02 2008-11-06 Bramucci Michael G Method for the production of 2-butanol
WO2010001960A1 (ja) * 2008-07-03 2010-01-07 株式会社カネカ 組換えブレビバチルス属細菌による組換え蛋白質の製造方法
CN101691560A (zh) * 2008-12-19 2010-04-07 华南理工大学 大肠杆菌及其可溶性表达转谷氨酰胺酶酶原的方法
WO2013068602A2 (en) * 2012-03-19 2013-05-16 Richter Gedeon Nyrt. Method for the production of polypeptides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153581A4 *
YAN J. B. ET AL.: "High-level expression and purification of Escherichia coli oligopeptidase B", PROTEIN EXPR. PURIF., vol. 47, no. 2, 2006, pages 645 - 650, XP024908788, ISSN: 1046-5928 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121701A1 (ja) * 2015-01-26 2016-08-04 株式会社カネカ 免疫グロブリンκ鎖可変領域含有タンパク質精製用アフィニティー分離マトリックス
US10808013B2 (en) 2015-01-26 2020-10-20 Kaneka Corporation Mutant immunoglobulin K chain variable region-binding peptide
US10858392B2 (en) 2015-01-26 2020-12-08 Kaneka Corporation Affinity separation matrix for purifying protein containing immunoglobulin K chain variable region
WO2017169751A1 (ja) * 2016-03-29 2017-10-05 イムラ・ジャパン株式会社 低温菌及び中温菌由来酵素の製造方法
US10844112B2 (en) 2016-05-09 2020-11-24 Kaneka Corporation Method for purifying antibody or antibody fragment containing κ-chain variable region
KR20190074439A (ko) 2017-12-20 2019-06-28 목원대학교 산학협력단 암모니아 산화능을 지닌 브레비바실러스 sp. ATB1111 균주
WO2019203248A1 (ja) * 2018-04-16 2019-10-24 Jsr株式会社 イムノグロブリン結合性ポリペプチド、及びそれを用いたアフィニティー担体

Also Published As

Publication number Publication date
EP3153581A1 (en) 2017-04-12
EP3153581B1 (en) 2019-08-28
CN106459953A (zh) 2017-02-22
JP6697383B2 (ja) 2020-05-20
US10435732B2 (en) 2019-10-08
US20170211116A1 (en) 2017-07-27
JPWO2015190457A1 (ja) 2017-04-20
EP3153581A4 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2015190457A1 (ja) 組換えブレビバチルス属細菌を用いた組換え蛋白質の製造方法
US8148494B2 (en) Signal peptide for the production of recombinant proteins
Panda et al. Brevibacillus as a biological tool: a short review
EP2251425B1 (en) Process for producing protein A-like protein with use of Brevibacillus genus bacterium
CN101389750B (zh) 用于直接表达肽的改进的细菌宿主细胞
US20080254511A1 (en) Process for the fermentative production of proteins
US20080076158A1 (en) Process for the fermentative production of proteins
An et al. Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide
WO2015190458A1 (ja) 組換えブレビバチルス属細菌による組換え蛋白質の製造方法
KR20050029001A (ko) 포자 외막단백질을 이용한 목적단백질의 표면발현 방법
US8415120B2 (en) Phosphate limited inducible promoter and a Bacillus expression system
KR20140004219A (ko) 대장균에서 이형 단백질 생산을 위한 새로운 발현 및 분비 벡터 시스템
JP2015077152A (ja) 組換えブレビバチルス属細菌による組換え蛋白質の製造方法
JP4839143B2 (ja) 組換え微生物
CN109988802B (zh) 一种高效分泌表达人源fgf21蛋白的表达盒及其应用
JP5881352B2 (ja) σD因子抑制解除株及びそれを用いたタンパク質の製造方法
WO2008047936A1 (fr) INHIBITEUR D'ENZYMES LYTIQUES, INHIBITEUR DE LYSE, INHIBITEUR DE LA DÉGRADATION DE L'ACIDE POLY-γ-GLUTAMIQUE, ET PROCÉDÉ DE PRODUCTION DE L'ACIDE POLY-γ-GLUTAMIQUE
JP3734593B2 (ja) 新規発現プラスミドベクター及び該発現プラスミドベクターを保有するバチルス属細菌を用いた異種遺伝子産物の製造法
JP2010162001A (ja) プロテアーゼ活性が低下した細菌、及びそれを用いたタンパク質製造方法
JP2018011515A (ja) 大腸菌を用いた遺伝子組換えタンパク質の製造方法
KR100365492B1 (ko) 방어항원유전자가도입된재조합벡터,형질전환균주와이를이용한신규한재조합방어항원의제조방법
JP2010220539A (ja) 胞子形成能が欠損した細菌、及びそれを用いたタンパク質製造方法
RU2188233C2 (ru) Штамм бактерий bacillus subtilis pbcole2-продуцент гибридного колицина e2, используемый для получения ветеринарного препарата
JP2005500851A (ja) ビタミンb12の製造方法
WO2022191223A1 (ja) 原核生物細胞から標的タンパク質を抽出する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527806

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15315116

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015807051

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015807051

Country of ref document: EP