WO2015188409A1 - 基于mems惯导的双四元数动中通天线控制方法及系统 - Google Patents

基于mems惯导的双四元数动中通天线控制方法及系统 Download PDF

Info

Publication number
WO2015188409A1
WO2015188409A1 PCT/CN2014/081165 CN2014081165W WO2015188409A1 WO 2015188409 A1 WO2015188409 A1 WO 2015188409A1 CN 2014081165 W CN2014081165 W CN 2014081165W WO 2015188409 A1 WO2015188409 A1 WO 2015188409A1
Authority
WO
WIPO (PCT)
Prior art keywords
quaternion
antenna
navigation
antenna control
angular velocity
Prior art date
Application number
PCT/CN2014/081165
Other languages
English (en)
French (fr)
Inventor
于清波
门吉卓
赵书伦
郎嵘
刘晓滨
杨春香
Original Assignee
北京航天控制仪器研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航天控制仪器研究所 filed Critical 北京航天控制仪器研究所
Priority to EP14894295.6A priority Critical patent/EP3089267B1/en
Priority to US15/108,778 priority patent/US9574881B2/en
Publication of WO2015188409A1 publication Critical patent/WO2015188409A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1014Navigation satellites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • G01C21/188Compensation of inertial measurements, e.g. for temperature effects for accumulated errors, e.g. by coupling inertial systems with absolute positioning systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/247Supports; Mounting means by structural association with other equipment or articles with receiving set with frequency mixer, e.g. for direct satellite reception or Doppler radar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation

Definitions

  • the invention relates to a method for controlling a moving antenna.
  • Synchronous satellite mobile communication application system commonly known as “moving in the middle”
  • moving in the middle is a demanding and rapidly developing application in the field of satellite communications.
  • the company has truly realized the purpose of broadband and mobile communication.
  • MEMS inertial navigation the domestic MEMS-based inertial navigation (referred to as MEMS inertial navigation) mobile communication system has no mature solution.
  • MEMS inertial technology the precision of MEMS inertial guidance has steadily increased.
  • the application of the domestic mobile communication system is more and more extensive, and the market has placed an urgent need to reduce the cost of the mobile communication system. Therefore, it is very important to study the MEMS inertial navigation method for the control system of the moving antenna system.
  • the technical solution of the present invention solves the problem of: overcoming the deficiencies of the prior art, and providing a method and system for controlling a dual quaternion digital transmission antenna based on MEMS inertial navigation, which is introduced on the basis of the traditional navigation attitude quaternion
  • the new antenna controls the quaternion, which isolates the impact of the Kalman filter corrected attitude error on the servo system of the moving antenna, which can significantly shorten the star time of the moving system.
  • the technical solution of the present invention is: a dual quaternion digital transmission antenna control method based on MEMS inertial navigation, comprising the following steps:
  • the carrier attitude angle determined by the navigation posture quaternion is correspondingly subtracted from the carrier attitude angle determined by the antenna control quaternion, and the attitude angle difference is obtained.
  • generating a three-axis command angular velocity rotation vector for correcting the antenna control quaternion according to the attitude angle difference specifically:
  • the third element of the triaxial command angular velocity rotation vector takes a positive corrected command angular velocity
  • the third element of the triaxial command angular velocity rotation vector takes a negative corrected command angular velocity
  • the first element of the triaxial command angular velocity rotation vector takes a negative corrected command angular velocity; e. if the roll angle determined by the antenna control quaternion is greater than the roll angle determined by the navigation pose quaternion, then three The second element of the axis command angular velocity rotation vector takes a positive corrected command angular velocity;
  • GPS measuring the speed and position information of the carrier and sending it to the filtering unit in the dynamic antenna controller
  • MEMS gyro measuring the angular velocity information of the carrier in three-dimensional space and sending it to the inertial navigation unit and the antenna control quaternion calculation unit in the dynamic intermediate antenna controller;
  • MEMS accelerometer measuring and obtaining the specific force information of the carrier in three-dimensional space and sending it to the inertial navigation unit in the motion-through antenna controller;
  • the moving antenna controller includes: an inertial navigation solving unit, a filtering unit, an antenna control quaternion calculating unit, an antenna control command generating unit, and an antenna control quaternary correction command angular velocity generating unit, wherein:
  • Inertial solution solving unit The angular velocity information of the carrier obtained by MEMS gyro measurement in three-dimensional space is deducted from the angular velocity of the earth rotation and the movement of the carrier along the surface of the earth, and then the three-axis rotation of the carrier coordinate system relative to the geographic coordinate system is obtained.
  • the MEMS accelerometer measures the specific force information of the carrier in the three-dimensional space, after deducting the gravitational acceleration and the Coriolis acceleration, the ground acceleration of the carrier is obtained; using the three-axis rotational angular velocity of the carrier coordinate system relative to the geographic coordinate system and the carrier of the acceleration, the attitude obtained through INS solver carrier, and position and velocity information to the filtering unit; carrier triaxial coordinate system relative to the geographical coordinates of the rotating vector ⁇ t and the first direct solver INS obtained The attitude quaternion q x g 2 corresponding to the carrier attitude is sent to the antenna control quaternion calculation unit; Filter support unit acquires the corrected posture information, using the three-axis coordinate system relative to the carrier rotation vector geographic coordinate system ⁇ t posture information updating vector after the correction corresponding to the quaternion as a quaternion attitude to the navigation antenna Controlling a quaternion correction command angular velocity generation unit;
  • the Kalman filter combined navigation algorithm is used to correct the output carrier posture of the inertial navigation unit with a fixed filtering period. Horizontal attitude error and send the corrected result to the inertial navigation solution unit;
  • the antenna control quaternion calculation unit generates an antenna control quaternion, the antenna control quaternion form is 3 ⁇ 4 q 2 ], the meaning of each parameter in the antenna control quaternion and the acquisition by the inertial navigation unit
  • the attitude quaternion [q 0 q x q 2 ] corresponds to the same, and The initial value of q 2 3 ⁇ 4]
  • the three-axis rotation vector ⁇ t of the carrier coordinate system relative to the geographic coordinate system is received from the inertial navigation solution unit, and the three-axis rotation of the carrier coordinate system relative to the geographic coordinate system is utilized.
  • the vector update antenna controls the quaternion [q x q 2 ] and sends it to the antenna control quaternion correction command angular velocity generation unit; acquires the triaxial command angular velocity rotation vector from the antenna control quaternion correction command angular velocity generation unit, and uses the three
  • the axis command angular velocity rotation vector updates the antenna control quaternion [q[ q 2 3 ⁇ 4 ] again and sends it to the antenna control command generating unit;
  • the antenna control quaternion correction command angular velocity generation unit obtains the navigation posture quaternion and the antenna control quaternion from the inertial navigation solution unit and the antenna control quaternion calculation unit, respectively, and the carrier attitude angle determined by the navigation posture quaternion Corresponding to the carrier attitude angle determined by the antenna control quaternion, the attitude angle difference is obtained, and a three-axis command angular velocity rotation vector for correcting the antenna control quaternion is generated according to the attitude angle difference value and sent to the antenna control unit
  • the calculation method of the elements in the three-axis command angular velocity rotation vector is as follows:
  • the third element of the triaxial command angular velocity rotation vector takes a positive corrected command angular velocity
  • the third element of the three-axis command angular velocity rotation vector takes a negative corrected command angular velocity
  • the first element of the triaxial command angular velocity rotation vector takes a negative corrected command angular velocity
  • the second element of the three-axis command angular velocity rotation vector takes a positive corrected command angular velocity
  • the antenna control command generating unit receives the latest antenna control quaternion from the antenna control quaternion calculating unit, and obtains the servo azimuth, the servo elevation angle and the servo polarization angle of the moving antenna according to the antenna control quaternion solution, and sends To the middle of the antenna servo mechanism;
  • Transmitting antenna servo mechanism motor driver including azimuth, pitch and polarization directions and corresponding motor, servo drive in three directions according to antenna control command generation unit, servo azimuth, servo elevation and servo polarization The angles drive the motors in the respective directions, thereby controlling the three-axis rotation of the moving antenna.
  • the corrected command angular velocity in both cases a and b, the size is at least the difference between the heading angle determined by the antenna control quaternion and the heading angle determined by the navigation posture quaternion divided by the combined navigation filtering period, and It is greater than the maximum diagonal angle error allowed per second for the moving antenna; in both cases c and d, the size is at least the difference between the pitch angle determined by the antenna control quaternion and the pitch angle determined by the navigation attitude quaternion.
  • the size is at least the roll angle and navigation attitude determined by the antenna control quaternion
  • the difference between the roll angles determined by the quaternion is divided by the combined navigation filter period and is not greater than the maximum diagonal angle error allowed per second for the moving mid-pass antenna.
  • An antenna control quaternion is introduced in the method of the present invention.
  • Integrated navigation algorithm for navigation pose The error correction of the quaternion causes the pose obtained by the navigation pose quaternion to generate a jump, which will impact the antenna servo system.
  • the antenna control quaternion independent of the navigation attitude quaternion isolates the antenna servo system oscillation caused by the quaternion oscillation of the navigation attitude during the combined navigation error correction, thus ensuring the antenna when the integrated navigation algorithm corrects the inertial navigation error. Smooth operation of the servo system;
  • the initial time can be used to directly initialize the antenna control quaternion by the initial value of the navigation posture quaternary, and the antenna control quaternion
  • the antenna can be driven to complete the star function immediately.
  • the antenna control quaternion can independently control the smooth rotation of the antenna servo system, and the isolation navigation attitude error correction is brought to the antenna servo system. Impact, so that the antenna is always aligned to the satellite;
  • the inertial navigation solving unit collects the carrier rotational angular velocity information and the acceleration information measured by the MEMS gyro and the MEMS plus meter to complete the inertial navigation solution; the filtering unit collects the GPS speed information and the position information.
  • the error correction of the inertial navigation solution is completed; the antenna control quaternion calculation unit isolates the impact of the filter unit on the antenna servo system when the error correction is performed on the inertial navigation solution; the antenna control quaternion correction command angular velocity generation unit passes Comparing the attitude corresponding to the quaternion of the navigation posture with the attitude corresponding to the quaternion of the antenna control, a triaxial command angular velocity rotation vector for correcting the quaternion of the antenna control is generated; the antenna control instruction generating unit controls the antenna through real-time calculation The quaternion-corresponding attitude is used to further calculate the servo azimuth, servo elevation angle, servo real-time antenna, real-time, smooth, and stable control required by the servo system, and improve the accuracy of the star.
  • Figure 1 is a schematic block diagram of the method of the present invention
  • FIG. 2 is a schematic diagram showing a curve of antenna pointing deviation with time
  • Figure 3 is a block diagram showing the composition of the system of the present invention.
  • FIG. 1 it is a schematic diagram of the method of the present invention.
  • the method of the present invention uses navigational gesture quaternions and The antenna control quaternion cooperatively controls the antenna servo system on the carrier.
  • antenna control quaternion is introduced in the method of the present invention.
  • the form of the antenna control quaternion is [3 ⁇ 4 q x q 2 ], and the meaning of each parameter is consistent with the quaternion q x q 2 ] in the Strapdown inertial solution.
  • the antenna control quaternion is equal to the navigation pose quaternion.
  • the antenna control quaternion needs to undergo two updates in each navigation cycle, one rotation vector update of the carrier b relative to the ideal platform T at the carrier b, and one update by a constant three-axis small command angular velocity.
  • the first update is used to track carrier pose changes.
  • the purpose of the second update is to make the antenna control quaternion virtual mathematical platform catch up with the navigational quaternion virtual mathematical platform with a small angular velocity, without correcting the navigation attitude quaternion by a large amplitude to make the antenna servo
  • the attitude angle changes drastically.
  • the antenna control quaternion and the navigation pose quaternion are similar in that they all use the same rotation vector update to track the carrier pose change. The difference between them is that the navigation attitude quaternion uses Kalman filter to correct the estimation error at one time when the filter time is reached (which will impact the antenna servo system), while the antenna control quaternion slowly approaches the navigation attitude with a small command angular velocity. Quaternion (does not impact the servo system).
  • FIG. 2 it is a schematic diagram of the antenna pointing deviation as a function of time.
  • the solid line AEBGCID indicates that the antenna pointing error curve is assumed when the antenna is rotated by the navigation attitude quaternion.
  • the dotted line AEFGHI indicates the pointing deviation curve of the antenna when the antenna is controlled by the antenna to control the quaternion.
  • AB, BC, and CD respectively indicate the error correction period of the combined navigation algorithm for the quaternion of the navigation pose.
  • the antenna control quaternion and the navigation pose quaternion are simultaneously initialized.
  • the solid line dotted line of the AE segment indicates that the navigation posture quaternion and the antenna control quaternion are simultaneously updated with the same rotation vector.
  • the solid line of EB indicates that the integrated navigation algorithm corrects the quaternion of the navigation attitude, and the navigation attitude error is zero.
  • the antenna pointing error controlled by the navigation attitude quaternion changes from non-zero value to 0, to the antenna.
  • the servo system brings shocks.
  • the solid line of the BG (CI) segment indicates that the antenna pointing deviation gradually increases with time and inertial device error accumulation.
  • the EF (GH) dashed line indicates the process by which the antenna controls the quaternion pose to slowly catch up with the quaternion of the navigation pose at a small command angular velocity.
  • the dotted line of FG ( HI ) indicates that after the antenna control quaternion pose is equal to the navigation pose quaternion, the two are updated with the same rotation vector. The antenna pointing error development of the two is the same.
  • the Kalman filter is used to correct the quaternion, velocity and position of the MEMS inertial navigation to ensure long-term navigation accuracy of the MEMS inertial navigation.
  • the antenna control mode is determined according to the difference of the attitude angles; the basic principle is to approximate the navigation attitude quaternion by the antenna control quaternion, and introduce three axes for correcting the antenna control quaternion
  • the command angular velocity rotation vector is divided into the following cases:
  • the third element of the triaxial command angular velocity rotation vector takes a positive corrected command angular velocity
  • the third element of the triaxial command angular velocity rotation vector takes a negative corrected command angular velocity
  • the correction method angular velocity is obtained by the following method:
  • the correction command angular velocity of the third element of the triaxial command angular velocity rotation vector is the antenna control four.
  • the difference between the heading angle of the elementary direction and the navigational quaternion heading angle is divided by the combined navigation filtering period.
  • the command angular velocity is such that the heading angle error of the antenna control quaternion is equal to the maximum value of the heading angle error of the navigation posture quaternion.
  • the angular velocity of the command should be made larger than the antenna control quaternion heading angle and navigation attitude.
  • the difference between the quaternion heading angles is divided by the combined navigation filtering period, but the maximum value should not exceed the maximum diagonal angle error allowed by the moving antenna per second.
  • the first element of the triaxial command angular velocity rotation vector takes a negative corrected command angular velocity
  • the method of determining the angular velocity of the correction command is the same as the principle of a and b.
  • the difference is that since it is the first element, the corresponding angle is the elevation angle. Therefore, the two cases a and b should be corresponding.
  • the heading angle is replaced by the pitch angle for calculation.
  • the second element of the three-axis command angular velocity rotation vector takes a positive corrected command angular velocity
  • the method of determining the angular velocity of the correction command is the same as the principle of a and b.
  • the difference is that because it is the second element, the corresponding angle is the roll angle. Therefore, a and b should be used.
  • the corresponding heading angle is replaced by the roll angle for calculation.
  • FIG. 3 it is a schematic diagram of the composition of a dual quaternion digital transmission antenna control system based on MEMS inertial navigation.
  • Mainly include: Dynamic antenna controller, GPS, MEMS gyro, MEMS accelerometer and dynamic antenna servo.
  • GPS mainly measures the speed and position information of the acquisition carrier and sends it to the filtering unit in the dynamic antenna controller.
  • the MEMS gyro mainly measures the angular velocity information of the carrier in three-dimensional space and sends it to the inertial navigation unit and the antenna control quaternion calculation unit in the dynamic antenna controller.
  • MEMS accelerometer is mainly used to measure the specific force information of the carrier in three-dimensional space and send it to the mobile device.
  • the inertial navigation solution unit in the mid-pass antenna controller is mainly used to measure the specific force information of the carrier in three-dimensional space and send it to the mobile device.
  • the inertial navigation solution unit in the mid-pass antenna controller is mainly used to measure the specific force information of the carrier in three-dimensional space and send it to the mobile device.
  • Transmitting antenna servo mechanism motor driver including azimuth, pitch and polarization directions and corresponding motor, servo drive in three directions according to antenna control command generation unit, servo azimuth, servo elevation and servo polarization The angles drive the motors in the respective directions, thereby controlling the three-axis rotation of the moving antenna.
  • the moving antenna controller is a core part of the system of the present invention, and mainly comprises an inertial navigation solving unit, a filtering unit, an antenna control quaternion calculating unit, an antenna control command generating unit, and an antenna control quaternary correction command angular velocity generating unit. among them:
  • Inertial solution solving unit The angular velocity information of the carrier obtained by MEMS gyro measurement in three-dimensional space is deducted from the angular velocity of the earth rotation and the movement of the carrier along the surface of the earth, and then the three-axis rotation of the carrier coordinate system relative to the geographic coordinate system is obtained.
  • the MEMS accelerometer measures the specific force information of the carrier in the three-dimensional space, after deducting the gravitational acceleration and the Coriolis acceleration, the ground acceleration of the carrier is obtained; using the three-axis rotational angular velocity of the carrier coordinate system relative to the geographic coordinate system and the carrier of the acceleration, the attitude obtained through INS solver carrier, and position and velocity information to the filtering unit; carrier triaxial coordinate system relative to the geographical coordinates of the rotating vector ⁇ t and the first direct solver INS obtained
  • the attitude quaternion q x g 2 corresponding to the carrier attitude is sent to the antenna control quaternion calculation unit; the corrected carrier attitude information is obtained from the filter unit, and the three-axis rotation vector of the carrier coordinate system relative to the geographic coordinate system is utilized ⁇ t update and the posture quaternion corresponding to the corrected carrier attitude information as the navigation posture quaternion Send to the antenna control quaternion correction command angular velocity generation unit.
  • Filtering unit combines the carrier speed and position information of the GPS output, and the carrier speed and position information output by the inertial navigation unit, and the eastward speed and the northward speed of the carrier obtained by the GPS, and the output of the inertial navigation unit
  • the eastward velocity and the northward velocity of the carrier are respectively poor, and the two differences constitute the measurement of the Kalman filter.
  • the Kalman filter combined navigation algorithm is used to correct the carrier attitude information output by the inertial navigation solution unit with a fixed filtering period. The corrected result is sent to the inertial navigation solution unit.
  • Kalman filter combined navigation algorithm can be found in the book "Kalman Filtering and Integrated Navigation Principles (Second Edition)" edited by Qin Yongyuan, Zhang Hongyi and Wang Shuhua, published by Northwestern Polytechnical University Press in 2012.
  • the eight variables of the eastward and northward velocity errors, the eastward and northward misalignment angles, the rightward and forward gyro drift, and the rightward and forward accelerometer offsets are selected as state variables.
  • the antenna control quaternion calculation unit generates an antenna control quaternion, the antenna control quaternion form is qq 2 ], the meaning of each parameter in the antenna control quaternion and the posture acquired by the inertial solution solving unit
  • the quaternion [q 0 q x q 2 ] corresponds to the same, and The initial value of q 2 3 ⁇ 4]
  • the three-axis rotation vector ⁇ t of the carrier coordinate system relative to the geographic coordinate system is received from the inertial navigation solution unit, and the three-axis rotation of the carrier coordinate system relative to the geographic coordinate system is utilized.
  • the vector update antenna controls the quaternion [q x q 2 ] and sends it to the antenna control quaternion correction command angular velocity generation unit; acquires the triaxial command angular velocity rotation vector from the antenna control quaternion correction command angular velocity generation unit, and uses the three
  • the axis command angular velocity rotation vector updates the antenna control quaternion [q[ q 2 3 ⁇ 4 ] again and sends it to the antenna control command generation unit.
  • the antenna control quaternion correction command angular velocity generation unit obtains the navigation posture quaternion and the antenna control quaternion from the inertial navigation solution unit and the antenna control quaternion calculation unit, respectively, and the carrier attitude angle determined by the navigation posture quaternion Corresponding to the carrier attitude angle determined by the antenna control quaternion, the attitude angle difference is obtained, and a three-axis command angular velocity rotation vector for correcting the antenna control quaternion is generated according to the attitude angle difference value and sent to the antenna control unit The unit of calculation of the number.
  • the antenna control command generating unit receives the latest antenna control quaternion from the antenna control quaternion calculating unit, and obtains the servo azimuth, the servo elevation angle and the servo polarization angle of the moving antenna according to the antenna control quaternion solution, and sends The antenna servo mechanism is connected to the center.
  • the main operation in the inertial navigation unit is the strapdown inertial navigation algorithm.
  • the attitude solution, velocity solution and position solution are respectively performed.
  • the specific mathematical carrier of the attitude information is the navigation posture quaternion; the navigation attitude quaternion is the reference quantity of the antenna control quaternion change; the speed information is used to form the filtering quantity measurement of the filtering unit with the speed information obtained by the GPS;
  • the position information and the attitude information corresponding to the antenna control quaternion are used to calculate the servo azimuth, the servo elevation angle, and the servo polarization angle of the moving antenna.
  • the servo azimuth, servo elevation and servo polarization are calculated as follows:
  • the calculation includes a navigation system n , a carrier coordinate system b, an antenna coordinate system V, and a global coordinate system e.
  • the navigation system n takes the geographic coordinate system (X-East, y-North, Z-day); the X-axis, y-axis, and z-axis of the carrier coordinate system point to the right, front, and top of the carrier, respectively; The axis is aligned with the antenna, the z-axis points to the axial direction of the antenna, and the X-axis and the other two axes form the right-hand system.
  • the earth coordinate system e the origin is at the center of the earth, the X-axis crosses the intersection of the prime meridian and the equator, and the z-axis traverses the earth. At the North Pole, the y-axis crosses the intersection of the 90 2 meridian and the equator, which is connected to the Earth.
  • the transformation matrix between each coordinate system can be conveniently calculated: the transformation matrix of the antenna coordinate system to the carrier coordinate system is C v , and the transformation matrix of the carrier coordinate system to the navigation coordinate system is:
  • the transformation matrix to the carrier coordinate system is C
  • the transformation matrix from the antenna coordinate system to the navigation coordinate system is C:
  • the transformation matrix from the earth coordinate system to the navigation coordinate system is C:.
  • the coordinates of the satellite in the Earth's Cartesian coordinate system (X ⁇ ⁇ ) can be obtained from the satellite longitude ⁇ , and the coordinates of the easily obtained carrier in the Earth's Cartesian coordinate system are ⁇ XI Y B E zi ). Then the vector of the carrier to the satellite is
  • R is the geosynchronous orbit radius
  • L is the latitude of the carrier
  • A is the longitude of the carrier
  • the vector coordinate is converted to the carrier coordinate system b for the earth radius t , ie
  • the antenna is served at the elevation angle of
  • ra is the longitude of the carrier
  • L to ⁇ is the latitude of the carrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Astronomy & Astrophysics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Traffic Control Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

基于MEMS惯导的双四元数动中通天线控制方法,在导航姿态四元数基础上引入天线控制四元数。在导航计算机的每个中断周期,都用陀螺测得的载体系相对于理想平台坐标系的旋转矢量更新两种四元数。在每个滤波周期都用卡尔曼滤波修正导航姿态四元数的误差。根据由两种姿态四元数所确定的姿态之间的关系,确定天线控制指令角速度。最后由天线控制四元数姿态换算出的天线伺服控制角驱动伺服系统转动。基于MEMS惯导的双四元数动中通天线控制系统,以所述控制方法为控制流程,可以实现对动中通天线指向的精确控制。本发明可以有效避免卡尔曼滤波暂态过程中导航姿态四元数不稳定对动中通天线伺服系统带来的冲击,有效缩短动中通系统的对星时间。

Description

基于 MEMS惯导的双四元数动中通天线控制方法及系统 本申请要求于 2014 年 6 月 13 日提交中国专利局的申请号为 201410265808.2、 发明名称为 "基于 MEMS惯导的双四元数动中通天线控制 方法及系统"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种动中通天线控制方法。
背景技术
同步卫星的移动通信应用系统俗称 "动中通",是当前卫星通信领域需求旺 盛、 发展迅速的应用。 "动中通" 除了具有卫星通信覆盖区域广、 不受地形地域 限制、 传输线路稳定可靠的优点外, 真正实现了宽带、 移动通信的目的。
目前, 国内基于 MEMS惯性导航(简称为 MEMS惯导) 的动中通系统尚 且没有较为成熟的方案。 随着 MEMS惯性技术的发展, MEMS惯导的精度稳 步提升。 目前国内动中通系统应用越来越广泛, 市场对降低动中通系统的成本 提出了迫切需求。因此研究 MEMS惯导对动中通天线伺服系统的控制方法具有 十分重要的意义。
通常的做法, 是利用由捷联惯导解算的导航姿态四元数直接控制天线, 在 卡尔曼滤波组合导航过程中, 状态估计若得到较大的误差估计量, 那么在修正 估计量的同时, 会通过给伺服系统瞬间输入非常大的电流来驱动伺服系统瞬间 转动一个较大的角度(角度大小为卡尔曼滤波估计得到的误差估计量),这样势 必会对天线伺服系统造成较大的电学和力学冲击。 为了避免这种冲击, 只能花 费大量时间等待卡尔曼滤波稳定, 直到伺服系统能够承受由卡尔曼滤波估计的 到的误差修正量所带来的冲击时再启动动中通伺服系统, 显然这是有悖于市场 对动中通的快速对星需求的。
发明内容 本发明的技术解决问题是: 克服现有技术的不足, 提供了一种基于 MEMS 惯导的双四元数动中通天线控制方法及系统, 通过在传统导航姿态四元数的基 础上引入了新的天线控制四元数, 从而隔离了卡尔曼滤波修正姿态误差时对动 中通天线伺服系统带来的冲击, 可以显著缩短动中通系统的对星时间。
本发明的技术解决方案是:一种基于 MEMS惯导的双四元数动中通天线控 制方法, 包括如下步骤:
( 1 )在载体上同时安装 MEMS惯导、 GPS和动中通, 其中 MEMS惯导 和 G PS构成组合导航系统;
( 2 )设定天线控制四元数, 天线控制四元数的形式为 [ q q2 ¾] , 天 线控制四元数中每个参数的含义与捷联惯导解算中获取的导航姿态四元数 [q0 qx q2 ]对应一致, 天线控制四元数的初值与导航姿态四元数相同;
( 3 )在捷联惯导导航计算机的每个中断周期里, 用载体系相对于理想平台 坐标系的旋转矢量 , 分别更新导航姿态四元数和天线控制四元数;
( 4 )在所述组合导航系统的每个滤波周期内, 利用卡尔曼滤波组合导航算 法修正 MEMS惯导的导航姿态中的水平姿态误差, 从而修正导航姿态四元数;
( 5 )在捷联惯导导航计算机的每个中断周期里,将由导航姿态四元数确定 的载体姿态角与由天线控制四元数确定的载体姿态角对应相减, 得到姿态角差 值, 并根据姿态角差值产生用于校正天线控制四元数的三轴指令角速度旋转矢 量, 具体为:
a. 若由天线控制四元数确定的航向角大于由导航姿态四元数确定的航向 角, 则三轴指令角速度旋转矢量的第三个元素取正的修正指令角速度;
b. 若由天线控制四元数确定的航向角小于由导航姿态四元数确定的航向 角, 则三轴指令角速度旋转矢量的第三个元素取负的修正指令角速度;
c. 若由天线控制四元数确定的俯仰角大于由导航姿态四元数确定的俯仰 角, 则三轴指令角速度旋转矢量的第一个元素取正的修正指令角速度;
d. 若由天线控制四元数确定的俯仰角小于由导航姿态四元数确定的俯仰 角, 则三轴指令角速度旋转矢量的第一个元素取负的修正指令角速度; e. 若由天线控制四元数确定的横滚角大于由导航姿态四元数确定的横滚 角, 则三轴指令角速度旋转矢量的第二个元素取正的修正指令角速度;
f . 若由天线控制四元数确定的横滚角小于由导航姿态四元数确定的横滚 角, 则三轴指令角速度旋转矢量的第二个元素取负的修正指令角速度;
( 6 )利用三轴指令角速度旋转矢量校正天线控制四元数, 并在校正以后的 下一个捷联惯导导航计算机的中断周期, 利用校正后的天线控制四元数, 解算 得到动中通天线的伺服方位角、 伺服仰角和伺服极化角, 由此获得三个姿态方 向所对应的控制量控制动中通天线转动。
GPS: 测量获取载体的速度和位置信息并送至动中通天线控制器中的滤波 单元;
MEMS陀螺: 测量获取载体在三维空间内的角速度信息并送至动中通天线 控制器中的惯导解算单元和天线控制四元数计算单元;
MEMS加速度计: 测量获取载体在三维空间内的比力信息并送至动中通天 线控制器中的惯导解算单元;
动中通天线控制器: 包括惯导解算单元、 滤波单元、 天线控制四元数计算 单元、 天线控制指令生成单元、 天线控制四元数校正指令角速度生成单元, 其 中:
惯导解算单元: 将 MEMS 陀螺测量获取的载体在三维空间内的角速度信 息, 扣除由地球自转、 载体沿地球表面运动带来的角速度后, 得到载体坐标系 相对于地理坐标系的三轴旋转矢量 将 MEMS加速度计测量获取的载体在 三维空间内的比力信息, 扣除重力加速度、 哥氏加速度后, 得到载体的对地加 速度; 利用载体坐标系相对于地理坐标系的三轴旋转角速度和载体的对地加速 度, 经过惯导解算得到载体的姿态、 位置和速度信息并送至滤波单元; 将载体 坐标系相对于地理坐标系的三轴旋转矢量^ t以及首次惯导解算直接得到的载 体姿态所对应的姿态四元数 qx g2 ]送至天线控制四元数计算单元; 从 滤波单元获取修正后的载体姿态信息, 利用载体坐标系相对于地理坐标系的三 轴旋转矢量^ t更新与修正后的载体姿态信息所对应的姿态四元数作为导航姿 态四元数送至天线控制四元数校正指令角速度生成单元;
滤波单元: 利用 GPS 输出的载体速度和位置信息, 以及惯导解算单元输 出的载体速度和位置信息, 通过卡尔曼滤波组合导航算法, 以固定的滤波周期 修正惯导解算单元输出载体姿态中的水平姿态误差并将修正后的结果送至惯导 解算单元;
天线控制四元数计算单元: 生成天线控制四元数, 所述的天线控制四元数 的形式为 ¾ q2 ],天线控制四元数中每个参数的含义与惯导解算单元获 取的姿态四元数 [q0 qx q2 ]对应一致, 且
Figure imgf000006_0001
q2 ¾]的初值为
[q0 qx q2 ¾ ]; 从惯导解算单元每接收到一次载体坐标系相对于地理坐标系 的三轴旋转矢量^ t,就利用载体坐标系相对于地理坐标系的三轴旋转矢量 更 新天线控制四元数 [ qx q2 ]并送至天线控制四元数校正指令角速度生成 单元; 从天线控制四元数校正指令角速度生成单元获取三轴指令角速度旋转矢 量,并用所述三轴指令角速度旋转矢量再次更新天线控制四元数 [ q[ q2 ¾ ] 并送至天线控制指令生成单元;
天线控制四元数校正指令角速度生成单元: 分别从惯导解算单元和天线控 制四元数计算单元获取导航姿态四元数和天线控制四元数, 将由导航姿态四元 数确定的载体姿态角与由天线控制四元数确定的载体姿态角对应相减, 得到姿 态角差值, 并根据姿态角差值生成用于校正天线控制四元数的三轴指令角速度 旋转矢量并送至天线控制四元数计算单元, 三轴指令角速度旋转矢量中各元素 的取值方法如下:
a. 若由天线控制四元数确定的航向角大于由导航姿态四元数确定的航向 角, 则三轴指令角速度旋转矢量的第三个元素取正的修正指令角速度;
b. 若由天线控制四元数确定的航向角小于由导航姿态四元数确定的航向 角, 则三轴指令角速度旋转矢量的第三个元素取负的修正指令角速度;
C. 若由天线控制四元数确定的俯仰角大于由导航姿态四元数确定的俯仰 角, 则三轴指令角速度旋转矢量的第一个元素取正的修正指令角速度;
d. 若由天线控制四元数确定的俯仰角小于由导航姿态四元数确定的俯仰 角, 则三轴指令角速度旋转矢量的第一个元素取负的修正指令角速度;
e. 若由天线控制四元数确定的横滚角大于由导航姿态四元数确定的横滚 角, 则三轴指令角速度旋转矢量的第二个元素取正的修正指令角速度;
f . 若由天线控制四元数确定的横滚角小于由导航姿态四元数确定的横滚 角, 则三轴指令角速度旋转矢量的第二个元素取负的修正指令角速度;
天线控制指令生成单元: 从天线控制四元数计算单元接收最新的天线控制 四元数, 根据天线控制四元数解算得到动中通天线的伺服方位角、 伺服仰角和 伺服极化角, 送至动中通天线伺服机构;
动中通天线伺服机构: 包括方位向、 俯仰向和极化向的电机驱动器和相应 的电机,三个方向的电机驱动器根据天线控制指令生成单元传来的伺服方位角、 伺服仰角和伺服极化角分别驱动相应方向的电机, 由此控制动中通天线的三轴 转动。
所述的修正指令角速度, 在 a和 b两种情况下, 大小至少是天线控制四元 数确定的航向角与导航姿态四元数确定的航向角之差再除以组合导航滤波周 期, 并且不大于动中通天线每秒所允许的最大对星角度误差; 在 c和 d两种情 况下, 大小至少是天线控制四元数确定的俯仰角与导航姿态四元数确定的俯仰 角之差再除以组合导航滤波周期, 并且不大于动中通天线每秒所允许的最大对 星角度误差; 在 e和 f 两种情况下, 大小至少是天线控制四元数确定的横滚角 与导航姿态四元数确定的横滚角之差再除以组合导航滤波周期, 并且不大于动 中通天线每秒所允许的最大对星角度误差。
本发明与现有技术相比的优点在于:
( 1 )本发明方法中引入了天线控制四元数。 由于组合导航算法对导航姿态 四元数的误差修正使得由导航姿态四元数解算得到的姿态产生跳跃, 这种跳跃 将会对天线伺服系统带来冲击。 独立于导航姿态四元数的天线控制四元数隔离 了组合导航误差修正时导航姿态四元数震荡所导致的天线伺服系统震荡, 从而 保证了在组合导航算法对惯导误差进行修正时, 天线伺服系统的平稳运行;
( 2 )本发明方法中,通过利用天线控制四元数以较小的指令角速度逼近导 航姿态四元数,初始时刻可用导航姿态四元数初值直接初始化天线控制四元数, 天线控制四元数被初始化后可立刻驱动天线完成对星功能; 天线控制四元数初 始化完成后, 即可由天线控制四元数独立控制天线伺服系统平滑的转动, 隔离 导航姿态误差修正对天线伺服系统带来的冲击, 从而使天线始终稳定的对准卫 星;
( 3 )本发明系统中,惯导解算单元釆集 MEMS陀螺和 MEMS加表测量的 载体转动角速率信息和加速度信息, 完成惯导解算; 滤波单元通过釆集 GPS 的速度信息和位置信息完成对惯导解算的误差修正; 天线控制四元数计算单元 隔离了滤波单元对惯导解算进行误差修正时对天线伺服系统带来的冲击; 天线 控制四元数校正指令角速度生成单元通过对导航姿态四元数对应的姿态和天线 控制四元数对应的姿态进行比较, 产生了用于修正天线控制四元数的三轴指令 角速度旋转矢量; 天线控制指令生成单元通过实时解算天线控制四元数对应的 姿态来进一步计算动中通天线伺服系统所需要的伺服方位角、 伺服仰角、 伺服 动中通天线的实时、 平滑、 稳定控制, 提高了对星精度。
附图说明
图 1为本发明方法的原理框图;
图 2为天线指向偏差随时间变化的曲线示意图;
图 3为本发明系统的组成原理框图。
具体实施方式
如图 1所示, 为本发明方法的原理图。 本发明方法釆用导航姿态四元数和 天线控制四元数协同控制载体上的动中通的天线伺服系统。
本发明方法中引入天线控制四元数的概念。 天线控制四元数的形式为 [¾ qx q2 ], 每个参数的含义与捷联惯导解算中的四元数 qx q2 ]对 应一致。 在导航初始时刻, 天线控制四元数与导航姿态四元数相等。 天线控制 四元数在每个导航周期需要经历两次更新, 一次由载体系 b相对于理想平台系 T的旋转矢量在载体系 b下旋转矢量更新, 一次由恒定的三轴小指令角速度更 新。 第一次更新用于跟踪载体姿态变化。 第二次更新的目的是使天线控制四元 数虚拟的数学平台以很小的角速度追赶导航姿态四元数虚拟的数学平台, 而不 因瞬间较大幅度地修正导航姿态四元数使得天线伺服姿态角发生剧烈变化。
天线控制四元数和导航姿态四元数的相同之处是它们都用同样的旋转矢量 更新来跟踪载体姿态变化。 它们的不同之处是导航姿态四元数用卡尔曼滤波在 到达滤波时间时一次性修正估计误差(会冲击天线伺服系统), 而天线控制四元 数则以较小的指令角速度緩慢逼近导航姿态四元数 (不会冲击伺服系统)。
如图 2所示, 是天线指向偏差随时间变化的曲线示意图。 实线 AEBGCID 表示假设由导航姿态四元数控制天线转动时,天线指向误差曲线。虚线 AEFGHI 表示由天线控制四元数控制天线转动时, 天线的指向偏差曲线。 AB、 BC、 CD 分别表示组合导航算法对导航姿态四元数的误差修正周期。 在 A点处, 天线控 制四元数和导航姿态四元数同时初始化。 AE段实线虚线重合表示用相同的旋转 矢量 同时更新导航姿态四元数和天线控制四元数, 由于导航姿态四元数和 天线控制四元数初值相同, 因此在 ΑΒ段内, 二者始终相等, 所以 ΑΕ段实线 和虚线重合。 EB ( GC、 ID )段实线表示组合导航算法对导航姿态四元数进行 修正, 导航姿态误差归零, 由导航姿态四元数控制的天线指向误差由非零值瞬 间变为 0, 对天线伺服系统带来震荡。 BG ( CI )段实线表示随着时间推移和惯 性器件误差累积, 天线指向偏差逐渐增大。 EF ( GH )虚线表示天线控制四元 数姿态以较小的指令角速度緩慢追赶导航姿态四元数的过程。 FG ( HI )虚线表 示天线控制四元数姿态与导航姿态四元数相等后,二者以相同的旋转矢量更新, 二者对应的天线指向误差发展状况相同。
本发明方法的主要步骤如下:
( 1 )设置天线控制四元数的初值。 因独立设计天线控制四元数的目的是隔 离载体姿态误差修正时对动中通伺服系统带来的力学和电学冲击, 天线控制四 元数实际上和导航姿态四元数一样描述了载体姿态, 因此在系统启动时刻, 可 使其与捷联惯导解算四元数法中获取的导航姿态四元数相同。
( 2 )在捷联惯导的导航计算机的每个中断周期里, 用载体系相对于理想平 台坐标系的旋转矢量 , 分别更新导航姿态四元数和天线控制四元数。
( 3 )在每个滤波周期内, 利用卡尔曼滤波修正 MEMS惯导的导航姿态四 元数, 速度和位置, 从而保证 MEMS惯导的长时间导航精度。
( 4 )在每个中断周期, 将由导航姿态四元数确定的载体姿态角与由天线控 制四元数确定的载体姿态角对应相减, 得到姿态角的差值;
( 5 )在每个中断周期, 根据姿态角的差值确定天线控制方式; 基本原则是 以天线控制四元数逼近导航姿态四元数, 在此引入用于校正天线控制四元数的 三轴指令角速度旋转矢量, 分为如下几种情况:
a. 若由天线控制四元数确定的航向角大于由导航姿态四元数确定的航向 角, 则三轴指令角速度旋转矢量的第三个元素取正的修正指令角速度;
b. 若由天线控制四元数确定的航向角小于由导航姿态四元数确定的航向 角, 则三轴指令角速度旋转矢量的第三个元素取负的修正指令角速度;
修正指令角速度的大小取值方法为: 为了使修正天线控制四元数带给天线 伺服系统的冲击量达到最小, 三轴指令角速度旋转矢量的第三个元素的修正指 令角速度的大小为天线控制四元数航向角与导航姿态四元数航向角之差除以组 合导航滤波周期, 当该指令角速度的大小为天线控制四元数航向角与导航姿态 四元数航向角之差除以组合导航滤波周期时, 该指令角速度恰好使天线控制四 元数的航向角误差与导航姿态四元数的航向角误差最大值相等。 考虑到系统运 行中的不确定因素, 应使该指令角速度大于天线控制四元数航向角与导航姿态 四元数航向角之差除以组合导航滤波周期, 但其最大值不应超过每秒动中通天 线允许的最大对星角度误差。
C. 若由天线控制四元数确定的俯仰角大于由导航姿态四元数确定的俯仰 角, 则三轴指令角速度旋转矢量的第一个元素取正的修正指令角速度;
d. 若由天线控制四元数确定的俯仰角小于由导航姿态四元数确定的俯仰 角, 则三轴指令角速度旋转矢量的第一个元素取负的修正指令角速度;
上述两种情况下修正指令角速度的大小取值方法与 a, b 两种情况原理相 同, 不同的是由于是第一个元素, 与其对应的为俯仰角, 因此应将 a, b 两种 情况对应的航向角替换为俯仰角进行计算即可。
e. 若由天线控制四元数确定的横滚角大于由导航姿态四元数确定的横滚 角, 则三轴指令角速度旋转矢量的第二个元素取正的修正指令角速度;
f. 若由天线控制四元数确定的横滚角小于由导航姿态四元数确定的横滚 角, 则三轴指令角速度旋转矢量的第二个元素取负的修正指令角速度;
上述两种情况下修正指令角速度的大小取值方法与 a, b 两种情况原理相 同, 不同的是由于是第二个元素, 与其对应的为横滚角, 因此应将 a, b 两种 情况对应的航向角替换为横滚角进行计算即可。
( 6 )根据天线控制四元数对应的姿态角计算动中通天线的伺服方位角、 伺服仰角、 伺服极化角, 驱动动中通伺服系统对天线进行控制。
如图 3所示,为本发明基于 MEMS惯导的双四元数动中通天线控制系统的 组成原理图。 主要包括: 动中通天线控制器、 GPS、 MEMS 陀螺、 MEMS加 速度计和动中通天线伺服机构。
GPS 主要是测量获取载体的速度和位置信息并送至动中通天线控制器中 的滤波单元。
MEMS 陀螺主要是测量获取载体在三维空间内的角速度信息并送至动中 通天线控制器中的惯导解算单元和天线控制四元数计算单元。
MEMS 加速度计主要是测量获取载体在三维空间内的比力信息并送至动 中通天线控制器中的惯导解算单元。
动中通天线伺服机构: 包括方位向、 俯仰向和极化向的电机驱动器和相应 的电机,三个方向的电机驱动器根据天线控制指令生成单元传来的伺服方位角、 伺服仰角和伺服极化角分别驱动相应方向的电机, 由此控制动中通天线的三轴 转动。
动中通天线控制器是本发明系统的核心部分, 主要包括惯导解算单元、 滤 波单元、 天线控制四元数计算单元、 天线控制指令生成单元、 天线控制四元数 校正指令角速度生成单元, 其中:
惯导解算单元: 将 MEMS 陀螺测量获取的载体在三维空间内的角速度信 息, 扣除由地球自转、 载体沿地球表面运动带来的角速度后, 得到载体坐标系 相对于地理坐标系的三轴旋转矢量 将 MEMS加速度计测量获取的载体在 三维空间内的比力信息, 扣除重力加速度、 哥氏加速度后, 得到载体的对地加 速度; 利用载体坐标系相对于地理坐标系的三轴旋转角速度和载体的对地加速 度, 经过惯导解算得到载体的姿态、 位置和速度信息并送至滤波单元; 将载体 坐标系相对于地理坐标系的三轴旋转矢量^ t以及首次惯导解算直接得到的载 体姿态所对应的姿态四元数 qx g2 ]送至天线控制四元数计算单元; 从 滤波单元获取修正后的载体姿态信息, 利用载体坐标系相对于地理坐标系的三 轴旋转矢量^ t更新与修正后的载体姿态信息所对应的姿态四元数作为导航姿 态四元数送至天线控制四元数校正指令角速度生成单元。
滤波单元: 将 GPS输出的载体速度和位置信息, 以及惯导解算单元输出的 载体速度和位置信息进行组合, 将 GPS 获取的载体的东向速度和北向速度, 以及惯导解算单元输出的载体的东向速度和北向速度分别做差, 将两个差值构 成卡尔曼滤波的量测量, 通过卡尔曼滤波组合导航算法, 以固定的滤波周期修 正惯导解算单元输出的载体姿态信息并将修正后的结果送至惯导解算单元。 卡 尔曼滤波组合导航算法具体可参见 2012年西北工业大学出版社出版的, 由秦 永元、 张洪钺、 王淑华编著的 《卡尔曼滤波与组合导航原理(第二版)》一书。 本发明中, 选取其中东向和北向速度误差、 东向和北向失准角、 右向和前向陀 螺的漂移, 以及右向和前向加速度计的偏置量这八个量作为状态变量。
天线控制四元数计算单元: 生成天线控制四元数, 所述的天线控制四元数 的形式为 q q2 ],天线控制四元数中每个参数的含义与惯导解算单元获 取的姿态四元数 [q0 qx q2 ]对应一致, 且
Figure imgf000013_0001
q2 ¾]的初值为
[q0 qx q2 ¾ ]; 从惯导解算单元每接收到一次载体坐标系相对于地理坐标系 的三轴旋转矢量^ t,就利用载体坐标系相对于地理坐标系的三轴旋转矢量 更 新天线控制四元数 [ qx q2 ]并送至天线控制四元数校正指令角速度生成 单元; 从天线控制四元数校正指令角速度生成单元获取三轴指令角速度旋转矢 量,并用所述三轴指令角速度旋转矢量再次更新天线控制四元数 [ q[ q2 ¾ ] 并送至天线控制指令生成单元。
天线控制四元数校正指令角速度生成单元: 分别从惯导解算单元和天线控 制四元数计算单元获取导航姿态四元数和天线控制四元数, 将由导航姿态四元 数确定的载体姿态角与由天线控制四元数确定的载体姿态角对应相减, 得到姿 态角差值, 并根据姿态角差值生成用于校正天线控制四元数的三轴指令角速度 旋转矢量并送至天线控制四元数计算单元。
天线控制指令生成单元: 从天线控制四元数计算单元接收最新的天线控制 四元数, 根据天线控制四元数解算得到动中通天线的伺服方位角、 伺服仰角和 伺服极化角, 送至动中通天线伺服机构。
在惯导解算单元中运行的主要是捷联惯导算法。 在捷联惯导解算算法中, 分别进行了姿态解算、 速度解算、 位置解算。 其中, 姿态信息的具体数学载体 是导航姿态四元数; 导航姿态四元数是天线控制四元数变化的参考量; 速度信 息用于与 GPS得到的速度信息构成滤波单元的滤波量测量; 通过位置信息和 天线控制四元数对应的姿态信息来计算动中通天线的伺服方位角、 伺服仰角和 伺服极化角。 伺服方位角、 伺服仰角和伺服极化角的计算方法如下:
计算中有导航系 n, 载体坐标系 b, 天线坐标系 V和地球坐标系 e。 其中导 航系 n取地理坐标系 (X-东, y-北, Z-天); 载体坐标系的 X轴、 y轴、 z轴分别 指向载体的右、 前、 上; 天线坐标系 V中 y轴与天线指向一致, z轴指向天线 方位轴向上, X轴与另外两轴构成右手系; 地球坐标系 e, 原点位于地心, X轴 穿越本初子午线与赤道的交点, z轴穿越地球北极点, y轴穿越东经 902子午线 与赤道的交点, 该坐标系与地球固连。
根据上述坐标系的定义, 可以方便的计算出各坐标系之间的转换矩阵: 天 线坐标系至载体坐标系的转换矩阵为 Cv, 载体坐标系至导航坐标系的转换矩阵 为 :, 导航坐标系至载体坐标系的转换矩阵为 C , 天线坐标系至导航坐标系的 转换矩阵为 C:, 地球坐标系至导航坐标系的转换矩阵为 C:。
对于天线伺服方位角和伺服仰角, 可由卫星经度 ^得到卫星在地球直角坐 标系下的坐标(X ¥ ζ ), 同时易得载体在地球直角坐标系下的坐标为 {XI YB E zi) , 则载体到卫星的矢量为
Figure imgf000014_0003
Re · cos L- sin A
Re · cos L - cos A
· sin L
Figure imgf000014_0004
R为地球同步轨道半径, L为载体所在纬度, A为载体所在经度, 为地球半径 t 将矢量 坐标变换到载体坐标系 b下, 即
Figure imgf000014_0001
由上式得天线伺月良仰角为
Figure imgf000014_0002
天线伺服方位角主值为 其中 X z 是矢量 的三个分量。
对于天线伺服极化角为
Figure imgf000015_0001
其中, ra是载体经度, ,为卫星的经度, Lto∞为载体的纬度。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims

权 利 要 求 书
1、 基于 MEMS惯导的双四元数动中通天线控制方法, 其特征在于包括如 下步骤:
( 1 )在载体上同时安装 MEMS惯导、 GPS和动中通, 其中 MEMS惯导 和 G PS构成组合导航系统;
( 2 )设定天线控制四元数, 天线控制四元数的形式为 [ q; q2 ¾] , 天 线控制四元数中每个参数的含义与捷联惯导解算中获取的导航姿态四元数
[q0 qx q2 ]对应一致, 天线控制四元数的初值与导航姿态四元数相同;
( 3 )在捷联惯导导航计算机的每个中断周期里, 用载体系相对于理想平台 坐标系的旋转矢量 , 分别更新导航姿态四元数和天线控制四元数;
( 4 )在所述组合导航系统的每个滤波周期内, 利用卡尔曼滤波组合导航算 法修正 MEMS惯导的导航姿态中的水平姿态误差, 从而修正导航姿态四元数;
( 5 )在捷联惯导导航计算机的每个中断周期里,将由导航姿态四元数确定 的载体姿态角与由天线控制四元数确定的载体姿态角对应相减, 得到姿态角差 值, 并根据姿态角差值产生用于校正天线控制四元数的三轴指令角速度旋转矢 量, 具体为:
a. 若由天线控制四元数确定的航向角大于由导航姿态四元数确定的航向 角, 则三轴指令角速度旋转矢量的第三个元素取正的修正指令角速度;
b. 若由天线控制四元数确定的航向角小于由导航姿态四元数确定的航向 角, 则三轴指令角速度旋转矢量的第三个元素取负的修正指令角速度;
c. 若由天线控制四元数确定的俯仰角大于由导航姿态四元数确定的俯仰 角, 则三轴指令角速度旋转矢量的第一个元素取正的修正指令角速度;
d. 若由天线控制四元数确定的俯仰角小于由导航姿态四元数确定的俯仰 角, 则三轴指令角速度旋转矢量的第一个元素取负的修正指令角速度;
e. 若由天线控制四元数确定的横滚角大于由导航姿态四元数确定的横滚 角, 则三轴指令角速度旋转矢量的第二个元素取正的修正指令角速度; f . 若由天线控制四元数确定的横滚角小于由导航姿态四元数确定的横滚 角, 则三轴指令角速度旋转矢量的第二个元素取负的修正指令角速度;
( 6 )利用三轴指令角速度旋转矢量校正天线控制四元数, 并在校正以后的 下一个捷联惯导导航计算机的中断周期, 利用校正后的天线控制四元数, 解算 得到动中通天线的伺服方位角、 伺服仰角和伺服极化角, 由此获得三个姿态方 向所对应的控制量控制动中通天线转动。
2、 根据权利要求 1所述的基于 MEMS惯导的双四元数动中通天线控制方 法, 其特征在于: 所述步骤(5 ) 中的修正指令角速度, 在 a和 b两种情况下, 大小至少是天线控制四元数确定的航向角与导航姿态四元数确定的航向角之差 再除以组合导航滤波周期, 并且不大于动中通天线每秒所允许的最大对星角度 误差; 在 c和 d两种情况下, 大小至少是天线控制四元数确定的俯仰角与导航 姿态四元数确定的俯仰角之差再除以组合导航滤波周期, 并且不大于动中通天 线每秒所允许的最大对星角度误差; 在 e和 f 两种情况下, 大小至少是天线控 制四元数确定的横滚角与导航姿态四元数确定的横滚角之差再除以组合导航滤 波周期, 并且不大于动中通天线每秒所允许的最大对星角度误差。
3、 基于 MEMS惯导的双四元数动中通天线控制系统, 其特征在于包括: 动中通天线控制器、 GPS、 MEMS 陀螺、 MEMS加速度计和动中通天线伺服 机构, 其中:
GPS: 测量获取载体的速度和位置信息并送至动中通天线控制器中的滤波 单元;
MEMS陀螺: 测量获取载体在三维空间内的角速度信息并送至动中通天线 控制器中的惯导解算单元和天线控制四元数计算单元;
MEMS加速度计: 测量获取载体在三维空间内的比力信息并送至动中通天 线控制器中的惯导解算单元;
动中通天线控制器: 包括惯导解算单元、 滤波单元、 天线控制四元数计算 单元、 天线控制指令生成单元、 天线控制四元数校正指令角速度生成单元, 其 中:
惯导解算单元: 将 MEMS 陀螺测量获取的载体在三维空间内的角速度信 息, 扣除由地球自转、 载体沿地球表面运动带来的角速度后, 得到载体坐标系 相对于地理坐标系的三轴旋转矢量 将 MEMS加速度计测量获取的载体在 三维空间内的比力信息, 扣除重力加速度、 哥氏加速度后, 得到载体的对地加 速度; 利用载体坐标系相对于地理坐标系的三轴旋转角速度和载体的对地加速 度, 经过惯导解算得到载体的姿态、 位置和速度信息并送至滤波单元; 将载体 坐标系相对于地理坐标系的三轴旋转矢量^ t以及首次惯导解算直接得到的载 体姿态所对应的姿态四元数 qx g2 ]送至天线控制四元数计算单元; 从 滤波单元获取修正后的载体姿态信息, 利用载体坐标系相对于地理坐标系的三 轴旋转矢量^ t更新与修正后的载体姿态信息所对应的姿态四元数作为导航姿 态四元数送至天线控制四元数校正指令角速度生成单元;
滤波单元: 利用 GPS 输出的载体速度和位置信息, 以及惯导解算单元输 出的载体速度和位置信息, 通过卡尔曼滤波组合导航算法, 以固定的滤波周期 修正惯导解算单元输出载体姿态中的水平姿态误差并将修正后的结果送至惯导 解算单元;
天线控制四元数计算单元: 生成天线控制四元数, 所述的天线控制四元数 的形式为 ¾ q2 ],天线控制四元数中每个参数的含义与惯导解算单元获 取的姿态四元数 [q0 qx q2 ]对应一致, 且
Figure imgf000018_0001
q2 ¾]的初值为
[q0 qx q2 ¾ ]; 从惯导解算单元每接收到一次载体坐标系相对于地理坐标系 的三轴旋转矢量^ t,就利用载体坐标系相对于地理坐标系的三轴旋转矢量 更 新天线控制四元数 [ qx q2 ]并送至天线控制四元数校正指令角速度生成 单元; 从天线控制四元数校正指令角速度生成单元获取三轴指令角速度旋转矢 量,并用所述三轴指令角速度旋转矢量再次更新天线控制四元数 [ q[ q2 ¾ ] 并送至天线控制指令生成单元;
天线控制四元数校正指令角速度生成单元: 分别从惯导解算单元和天线控 制四元数计算单元获取导航姿态四元数和天线控制四元数, 将由导航姿态四元 数确定的载体姿态角与由天线控制四元数确定的载体姿态角对应相减, 得到姿 态角差值, 并根据姿态角差值生成用于校正天线控制四元数的三轴指令角速度 旋转矢量并送至天线控制四元数计算单元, 三轴指令角速度旋转矢量中各元素 的取值方法如下:
a. 若由天线控制四元数确定的航向角大于由导航姿态四元数确定的航向 角, 则三轴指令角速度旋转矢量的第三个元素取正的修正指令角速度;
b. 若由天线控制四元数确定的航向角小于由导航姿态四元数确定的航向 角, 则三轴指令角速度旋转矢量的第三个元素取负的修正指令角速度;
c. 若由天线控制四元数确定的俯仰角大于由导航姿态四元数确定的俯仰 角, 则三轴指令角速度旋转矢量的第一个元素取正的修正指令角速度;
d. 若由天线控制四元数确定的俯仰角小于由导航姿态四元数确定的俯仰 角, 则三轴指令角速度旋转矢量的第一个元素取负的修正指令角速度;
e. 若由天线控制四元数确定的横滚角大于由导航姿态四元数确定的横滚 角, 则三轴指令角速度旋转矢量的第二个元素取正的修正指令角速度;
f . 若由天线控制四元数确定的横滚角小于由导航姿态四元数确定的横滚 角, 则三轴指令角速度旋转矢量的第二个元素取负的修正指令角速度;
天线控制指令生成单元: 从天线控制四元数计算单元接收最新的天线控制 四元数, 根据天线控制四元数解算得到动中通天线的伺服方位角、 伺服仰角和 伺服极化角, 送至动中通天线伺服机构;
动中通天线伺服机构: 包括方位向、 俯仰向和极化向的电机驱动器和相应 的电机,三个方向的电机驱动器根据天线控制指令生成单元传来的伺服方位角、 伺服仰角和伺服极化角分别驱动相应方向的电机, 由此控制动中通天线的三轴 转动。
4、 根据权利要求 3所述的基于 MEMS惯导的双四元数动中通天线控制系 统, 其特征在于: 所述的天线控制四元数校正指令角速度生成单元生成的修正 指令角速度, 在 a和 b两种情况下, 大小至少是天线控制四元数确定的航向角 与导航姿态四元数确定的航向角之差再除以组合导航滤波周期, 并且不大于动 中通天线每秒所允许的最大对星角度误差; 在 c和 d两种情况下, 大小至少是 天线控制四元数确定的俯仰角与导航姿态四元数确定的俯仰角之差再除以组合 导航滤波周期, 并且不大于动中通天线每秒所允许的最大对星角度误差; 在 e 和 f 两种情况下, 大小至少是天线控制四元数确定的横滚角与导航姿态四元数 确定的横滚角之差再除以组合导航滤波周期, 并且不大于动中通天线每秒所允 许的最大对星角度误差。
PCT/CN2014/081165 2014-06-13 2014-06-30 基于mems惯导的双四元数动中通天线控制方法及系统 WO2015188409A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14894295.6A EP3089267B1 (en) 2014-06-13 2014-06-30 Method and system for controlling antenna of mobile communication application system based on double quaternions in mems inertial navigation
US15/108,778 US9574881B2 (en) 2014-06-13 2014-06-30 Method and system for controlling antenna of mobile communication application system based on double quaternions in MEMS inertial navigation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410265808.2A CN104064869B (zh) 2014-06-13 2014-06-13 基于mems惯导的双四元数动中通天线控制方法及系统
CN201410265808.2 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015188409A1 true WO2015188409A1 (zh) 2015-12-17

Family

ID=51552467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081165 WO2015188409A1 (zh) 2014-06-13 2014-06-30 基于mems惯导的双四元数动中通天线控制方法及系统

Country Status (4)

Country Link
US (1) US9574881B2 (zh)
EP (1) EP3089267B1 (zh)
CN (1) CN104064869B (zh)
WO (1) WO2015188409A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672131A (zh) * 2019-11-19 2020-01-10 北方工业大学 一种大失准角下惯性/偏振光组合导航系统ukf对准方法
CN110672130A (zh) * 2019-11-19 2020-01-10 北方工业大学 一种大失准角下惯性/偏振光组合导航系统ekf对准方法
CN110702109A (zh) * 2019-06-05 2020-01-17 西京学院 一种采煤机惯性导航/无线传感器网络组合定位方法
CN110705002A (zh) * 2019-08-13 2020-01-17 北京机电工程研究所 一种仿真试验的补偿系统及方法
CN111337055A (zh) * 2020-05-07 2020-06-26 成都国卫通信技术有限公司 一种卫星移动通信天线惯导的标校方法
CN112455726A (zh) * 2020-12-10 2021-03-09 长光卫星技术有限公司 一种低轨光学遥感卫星多点成像快速机动控制方法
CN113555688A (zh) * 2019-01-29 2021-10-26 上海微小卫星工程中心 一种终端天线与高轨卫星的对准方法及系统
CN113824515A (zh) * 2021-08-06 2021-12-21 星展测控科技股份有限公司 通信装置、动中通设备及伺服控制方法
CN114001705A (zh) * 2021-11-02 2022-02-01 成都国卫通信技术有限公司 一种卫通天线与载体安装误差自动校准的方法
CN114413883A (zh) * 2021-12-23 2022-04-29 上海航天控制技术研究所 卫星姿态确定精度的提升方法、存储介质和电子设备
CN114485727A (zh) * 2022-01-04 2022-05-13 中国煤炭科工集团太原研究院有限公司 一种捷联惯导系统精度自检测方法和装置
CN115675919A (zh) * 2022-10-31 2023-02-03 北京控制工程研究所 一种用于卫星主动指向超静平台的在轨标定方法
CN117719702A (zh) * 2024-02-07 2024-03-19 长光卫星技术股份有限公司 用于卫星高精度凝视的复合姿态控制方法、设备及介质
CN115675919B (zh) * 2022-10-31 2024-05-31 北京控制工程研究所 一种用于卫星主动指向超静平台的在轨标定方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596542A (zh) * 2014-12-30 2015-05-06 北京爱科迪通信技术股份有限公司 移动卫星通信的惯导系统自标定方法
CN104913790B (zh) * 2015-05-28 2017-11-28 北京航天控制仪器研究所 一种应用于动中通的惯导系统航向漂移误差闭环补偿方法
CN104880190B (zh) * 2015-06-02 2018-05-25 无锡北微传感科技有限公司 一种用于惯导姿态融合加速的智能芯片
CN104931008A (zh) * 2015-06-18 2015-09-23 西安电子科技大学 轮轨式反射面天线指向误差的确定方法
CN105021191A (zh) * 2015-07-07 2015-11-04 中国人民解放军第二炮兵工程大学 一种低成本动中通测控系统天线姿态估计方法
CN105116430B (zh) * 2015-08-21 2017-06-27 北京航天万达高科技有限公司 用于动中通的伪航向的基于卡尔曼滤波的海泊态搜星方法
CN105203129B (zh) * 2015-10-13 2019-05-07 上海华测导航技术股份有限公司 一种惯导装置初始对准方法
CN105444762B (zh) * 2015-11-10 2018-02-06 北京航天控制仪器研究所 一种用于机载动中通的惯导误差快速修正方法
CN105466456B (zh) * 2015-12-22 2018-02-23 中国电子科技集团公司第五十四研究所 动中通天线稳定陀螺动态消除零点漂移的方法
US10564177B2 (en) * 2016-08-01 2020-02-18 Samsung Electronics Co., Ltd. System and method for user activity recognition using accelerometer
CN108061560B (zh) * 2017-12-01 2021-03-26 中国兵器装备集团自动化研究所 一种动中通天线的修正惯导方法及其构成的混合导航方法
CN108337411B (zh) * 2018-01-15 2020-11-17 影石创新科技股份有限公司 移动终端与镜头组件配合实现平面拍摄的方法和镜头组件
CN108364279B (zh) * 2017-12-26 2020-06-05 中国人民解放军战略支援部队信息工程大学 确定静止轨道遥感卫星指向偏差的方法
CN108426559B (zh) * 2018-02-27 2020-07-24 北京环境特性研究所 一种天线姿态检测装置及方法
CN108986025B (zh) * 2018-06-08 2023-02-10 西北工业大学 基于不完备姿轨信息的高精度异时图像拼接及校正方法
US10830899B2 (en) * 2018-09-26 2020-11-10 Bae Systems Information And Electronic Systems Integration Inc. Visual display system for use in testing or monitoring a GPS enabled device
TWI717726B (zh) * 2019-04-30 2021-02-01 財團法人國家實驗研究院 一種繞地衛星姿態資料融合系統及其方法
CN110137698B (zh) * 2019-05-23 2020-09-18 成都信息工程大学 一种基于mems阵列透镜天线
CN110285838B (zh) * 2019-08-02 2022-12-13 中南大学 基于重力矢量时间差分的惯性导航设备对准方法
CN110488853B (zh) * 2019-08-29 2021-06-08 北京航空航天大学 一种降低转轴涡动影响的混合式惯导系统稳定控制指令的计算方法
CN110849364B (zh) * 2019-12-04 2021-05-07 成都国卫通信技术有限公司 基于动中通的自适应卡尔曼姿态估计方法
CN110926468B (zh) * 2019-12-05 2022-03-01 中国电子科技集团公司第五十四研究所 基于传递对准的动中通天线多平台航姿确定方法
CN111232247B (zh) * 2020-01-17 2023-02-07 上海埃依斯航天科技有限公司 一种高可靠性的微纳卫星测控系统
CN111319791B (zh) * 2020-02-28 2021-10-01 上海航天控制技术研究所 一种适用于火星探测的姿态控制模式管理方法
CN111967125A (zh) * 2020-06-30 2020-11-20 上海航天控制技术研究所 一种基于误差四元数的火星探测对地天线指向修正方法
CN112325881B (zh) * 2020-09-25 2022-04-12 中国船舶重工集团公司第七0七研究所 一种惯导系统姿态解算方法
CN112254725B (zh) * 2020-10-19 2022-12-20 北京航天发射技术研究所 一种基于天线转塔的高精度实时测姿装置及方法
CN112290216B (zh) * 2020-10-21 2022-06-10 迪泰(浙江)通信技术有限公司 一种移动卫星通信天线的惯导冗余跟踪方法
CN112325841B (zh) * 2020-10-26 2022-05-27 中国电子科技集团公司第五十四研究所 一种动中通天线安装误差角的估计方法
CN112467379B (zh) * 2020-10-30 2022-03-29 华为技术有限公司 一种调整天线的方法、装置和系统
CN112504275B (zh) * 2020-11-16 2022-09-02 哈尔滨工程大学 一种基于级联卡尔曼滤波算法的水面舰船水平姿态测量方法
CN112611999B (zh) * 2020-12-01 2023-12-08 中国人民解放军空军工程大学 一种基于双四元数的电磁矢量传感器阵列角度估计方法
CN112520070B (zh) * 2020-12-07 2022-03-29 上海卫星工程研究所 深空探测器推力矢量实时修正方法和系统
CN113155129B (zh) * 2021-04-02 2022-07-01 北京大学 一种基于扩展卡尔曼滤波的云台姿态估计方法
CN113405554A (zh) * 2021-06-29 2021-09-17 东风汽车集团股份有限公司 基于卫星定位系统的车辆姿态计算方法
CN113849003B (zh) * 2021-10-13 2024-04-26 复远芯(上海)科技有限公司 一种动中通天线运动隔离的控制方法
CN113968362B (zh) * 2021-11-16 2023-07-07 长光卫星技术股份有限公司 一种卫星在轨自主三轴快速机动控制方法
CN114383607B (zh) * 2021-12-15 2024-05-07 中国铁道科学研究院集团有限公司通信信号研究所 一种利用imu测试btm动态性能的方法
CN114383613B (zh) * 2022-01-18 2023-12-15 广东工业大学 一种基于北斗定向的电力线舞动监测系统和方法
CN114459479A (zh) * 2022-02-21 2022-05-10 北京航天嘉诚精密科技发展有限公司 旋转载体姿态、位置测量装置与方法
CN114583451B (zh) * 2022-04-28 2022-07-22 成都迅翼卫通科技有限公司 一种动中通对星跟踪方法、装置、系统及计算机设备
CN114579934B (zh) * 2022-05-07 2022-07-19 山东石油化工学院 单向量航姿信息提取方法
CN115149994A (zh) * 2022-05-10 2022-10-04 深圳市飞思通信技术有限公司 一种卫星跟踪方法和动中通设备
CN115655284B (zh) * 2022-10-18 2024-05-03 上海航天控制技术研究所 一种高动态下相对导航的时间对准与补偿方法
CN115655271B (zh) * 2022-12-22 2023-03-10 中国船舶集团有限公司第七〇七研究所 一种动态条件下的大范围姿态角提取方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070057842A1 (en) * 2005-08-24 2007-03-15 American Gnc Corporation Method and system for automatic pointing stabilization and aiming control device
CN102637954A (zh) * 2012-02-27 2012-08-15 西安汤达电子科技有限公司 一种应用于动中通控制中的多数据融合技术
CN103746186A (zh) * 2013-12-24 2014-04-23 山东英特力光通信开发有限公司 一种便携式Ku波段海上动中通卫星通信天线系统

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412574A (en) * 1993-05-14 1995-05-02 Hughes Aircraft Company Method of attitude determination using earth and star sensors
US5546309A (en) * 1993-10-20 1996-08-13 The Charles Stark Draper Laboratory, Inc. Apparatus and method for autonomous satellite attitude sensing
US5583774A (en) * 1994-06-16 1996-12-10 Litton Systems, Inc. Assured-integrity monitored-extrapolation navigation apparatus
FR2729116A1 (fr) * 1995-01-06 1996-07-12 Matra Marconi Space France Procede de commande d'attitude de satellite sur orbite inclinee sur l'equateur terrestre
US6000661A (en) * 1996-10-16 1999-12-14 Space Systems/Loral, Inc. Autonomous spacecraft payload base motion estimation and correction
US5959576A (en) * 1997-08-12 1999-09-28 Honeywell Inc. Satellite attitude determination using GPS and intersatellite line of sight communications
US6211822B1 (en) * 1998-07-08 2001-04-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstrations Spaceborne global positioning system for spacecraft
US6145790A (en) * 1998-09-22 2000-11-14 Hughes Electronics Corporation Attitude determination system and method
US6463366B2 (en) * 2000-03-10 2002-10-08 Schafer Corp Attitude determination and alignment using electro-optical sensors and global navigation satellites
US6237876B1 (en) * 2000-07-28 2001-05-29 Space Systems/Loral, Inc. Methods for using satellite state vector prediction to provide three-axis satellite attitude control
US6598009B2 (en) * 2001-02-01 2003-07-22 Chun Yang Method and device for obtaining attitude under interference by a GSP receiver equipped with an array antenna
JP3589990B2 (ja) * 2001-02-08 2004-11-17 三菱電機株式会社 アンテナ制御方法およびアンテナ制御装置
JP3871891B2 (ja) * 2001-02-27 2007-01-24 三菱電機株式会社 人工衛星の姿勢決定装置
US6595469B2 (en) * 2001-10-28 2003-07-22 The Boeing Company Attitude control methods and systems for multiple-payload spacecraft
US6732977B1 (en) * 2002-02-11 2004-05-11 Lockheed Martin Corporation System for on-orbit correction of spacecraft payload pointing errors
US6616104B1 (en) * 2002-06-24 2003-09-09 Lockheed Martin Corporation Spacecraft configuration and attitude steering method for highly inclined orbit (HIO) communications
US6859727B2 (en) * 2003-01-08 2005-02-22 Honeywell International, Inc. Attitude change kalman filter measurement apparatus and method
BG107622A (bg) * 2003-03-07 2004-09-30 Raysat Cyprus Limited Следяща система за плоска мобилна антенна система
US7062363B2 (en) * 2003-09-30 2006-06-13 The Boeing Company Refinement of spacecraft angular velocity and attitude estimates using star data
US7464898B1 (en) * 2003-10-14 2008-12-16 Lockheed Martin Corporation Precision thrust/sun tracking attitude control system for gimbaled thruster
US20050114023A1 (en) * 2003-11-26 2005-05-26 Williamson Walton R. Fault-tolerant system, apparatus and method
US20070103366A1 (en) * 2003-11-27 2007-05-10 Park Chan G Antenna system for tracking moving object mounted satellite and its operating method
US7904243B2 (en) * 2004-01-15 2011-03-08 The Boeing Company Real-time data aiding for enhanced GPS performance
JP4615287B2 (ja) * 2004-11-01 2011-01-19 東京計器株式会社 方位姿勢検出装置
US7624948B2 (en) * 2004-12-07 2009-12-01 Lockheed Martin Corporation Optimized land mobile satellite configuration and steering method
US7357356B1 (en) * 2005-02-28 2008-04-15 Lockheed Martin Corporation Attitude and antenna steering system for geosynchronous earth orbit (GEO) spacecraft
US20160047675A1 (en) * 2005-04-19 2016-02-18 Tanenhaus & Associates, Inc. Inertial Measurement and Navigation System And Method Having Low Drift MEMS Gyroscopes And Accelerometers Operable In GPS Denied Environments
KR100789930B1 (ko) * 2005-12-01 2008-01-02 한국전자통신연구원 이동형 위성 추적 안테나의 자세 안정화를 위한 센서 신호추정 장치 및 그 방법과, 그를 이용한 위성 추적 안테나의자세 제어 장치
JP5398120B2 (ja) * 2007-03-22 2014-01-29 古野電気株式会社 Gps複合航法装置
EP1986016A1 (en) * 2007-04-25 2008-10-29 Saab Ab Device and method for controlling a satellite tracking antenna
US8005635B2 (en) * 2007-08-14 2011-08-23 Ching-Fang Lin Self-calibrated azimuth and attitude accuracy enhancing method and system (SAAAEMS)
JP4591526B2 (ja) * 2008-03-18 2010-12-01 三菱電機株式会社 アンテナ装置
US9045239B2 (en) * 2009-01-14 2015-06-02 Space Systems/Loral, Llc Spacecraft payload orientation steering
JP5348093B2 (ja) * 2010-08-30 2013-11-20 セイコーエプソン株式会社 位置算出方法及び位置算出装置
US8472737B2 (en) * 2010-09-30 2013-06-25 The Charles Stark Draper Laboratory, Inc. Attitude estimation in compressed domain
CN102608642A (zh) * 2011-01-25 2012-07-25 北京七维航测科技股份有限公司 北斗/惯性组合导航系统
US8930047B2 (en) * 2011-07-07 2015-01-06 Raytheon Company Systems and methods for determining a positional state of an airborne array antenna using distributed accelerometers
CN102620605B (zh) * 2012-03-31 2014-07-02 北京理工大学 半实物仿真用gps和ins组合制导系统
CN103022692B (zh) * 2012-11-14 2014-09-17 广东隆伏通讯设备有限公司 一种“动中通”卫星指向、捕获与跟踪方法及其系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070057842A1 (en) * 2005-08-24 2007-03-15 American Gnc Corporation Method and system for automatic pointing stabilization and aiming control device
CN102637954A (zh) * 2012-02-27 2012-08-15 西安汤达电子科技有限公司 一种应用于动中通控制中的多数据融合技术
CN103746186A (zh) * 2013-12-24 2014-04-23 山东英特力光通信开发有限公司 一种便携式Ku波段海上动中通卫星通信天线系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3089267A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555688B (zh) * 2019-01-29 2022-05-27 上海微小卫星工程中心 一种终端天线与高轨卫星的对准方法及系统
CN113555688A (zh) * 2019-01-29 2021-10-26 上海微小卫星工程中心 一种终端天线与高轨卫星的对准方法及系统
CN110702109A (zh) * 2019-06-05 2020-01-17 西京学院 一种采煤机惯性导航/无线传感器网络组合定位方法
CN110702109B (zh) * 2019-06-05 2023-02-28 西京学院 一种采煤机惯性导航/无线传感器网络组合定位方法
CN110705002A (zh) * 2019-08-13 2020-01-17 北京机电工程研究所 一种仿真试验的补偿系统及方法
CN110705002B (zh) * 2019-08-13 2022-11-11 北京机电工程研究所 一种仿真试验的补偿系统及方法
CN110672130A (zh) * 2019-11-19 2020-01-10 北方工业大学 一种大失准角下惯性/偏振光组合导航系统ekf对准方法
CN110672131A (zh) * 2019-11-19 2020-01-10 北方工业大学 一种大失准角下惯性/偏振光组合导航系统ukf对准方法
CN111337055A (zh) * 2020-05-07 2020-06-26 成都国卫通信技术有限公司 一种卫星移动通信天线惯导的标校方法
CN111337055B (zh) * 2020-05-07 2023-06-02 成都国卫通信技术有限公司 一种卫星移动通信天线惯导的标校方法
CN112455726A (zh) * 2020-12-10 2021-03-09 长光卫星技术有限公司 一种低轨光学遥感卫星多点成像快速机动控制方法
CN112455726B (zh) * 2020-12-10 2022-04-19 长光卫星技术股份有限公司 一种低轨光学遥感卫星多点成像快速机动控制方法
CN113824515A (zh) * 2021-08-06 2021-12-21 星展测控科技股份有限公司 通信装置、动中通设备及伺服控制方法
CN113824515B (zh) * 2021-08-06 2023-12-01 星展测控科技股份有限公司 通信装置、动中通设备及伺服控制方法
CN114001705A (zh) * 2021-11-02 2022-02-01 成都国卫通信技术有限公司 一种卫通天线与载体安装误差自动校准的方法
CN114001705B (zh) * 2021-11-02 2024-03-12 成都国卫通信技术有限公司 一种卫通天线与载体安装误差自动校准的方法
CN114413883A (zh) * 2021-12-23 2022-04-29 上海航天控制技术研究所 卫星姿态确定精度的提升方法、存储介质和电子设备
CN114413883B (zh) * 2021-12-23 2023-09-05 上海航天控制技术研究所 卫星姿态确定精度的提升方法、存储介质和电子设备
CN114485727A (zh) * 2022-01-04 2022-05-13 中国煤炭科工集团太原研究院有限公司 一种捷联惯导系统精度自检测方法和装置
CN115675919A (zh) * 2022-10-31 2023-02-03 北京控制工程研究所 一种用于卫星主动指向超静平台的在轨标定方法
CN115675919B (zh) * 2022-10-31 2024-05-31 北京控制工程研究所 一种用于卫星主动指向超静平台的在轨标定方法
CN117719702A (zh) * 2024-02-07 2024-03-19 长光卫星技术股份有限公司 用于卫星高精度凝视的复合姿态控制方法、设备及介质
CN117719702B (zh) * 2024-02-07 2024-04-26 长光卫星技术股份有限公司 用于卫星高精度凝视的复合姿态控制方法、设备及介质

Also Published As

Publication number Publication date
US9574881B2 (en) 2017-02-21
EP3089267A1 (en) 2016-11-02
CN104064869A (zh) 2014-09-24
US20160349058A1 (en) 2016-12-01
CN104064869B (zh) 2016-10-05
EP3089267B1 (en) 2018-12-05
EP3089267A4 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
WO2015188409A1 (zh) 基于mems惯导的双四元数动中通天线控制方法及系统
CN108051866B (zh) 基于捷联惯性/gps组合辅助水平角运动隔离的重力测量方法
CN108318052B (zh) 一种基于双轴连续旋转的混合式平台惯导系统标定方法
CN103917850B (zh) 一种惯性导航系统的运动对准方法
CN106525073B (zh) 一种基于三轴转台的惯性空间陀螺标定试验方法
CN109211269B (zh) 一种双轴旋转惯导系统姿态角误差标定方法
CN102829781B (zh) 一种旋转式捷联光纤罗经实现的方法
CN103994763B (zh) 一种火星车的sins/cns深组合导航系统及其实现方法
CN101793523B (zh) 一种组合导航和光电探测一体化系统
CN103900607B (zh) 一种基于惯性系的旋转式捷联惯导系统转位方法
CN107450582B (zh) 一种基于星上实时规划的相控阵数传引导控制方法
CN108731674B (zh) 一种基于单轴旋转调制的惯性天文组合导航系统及计算方法
CN105184002B (zh) 一种数传天线指向角度的仿真分析方法
CN108426575B (zh) 用地球椭球模型改进的捷联惯导极地横向导航方法
CN107228665B (zh) 一种混合式惯性平台系统
CN105509768B (zh) 一种单轴寻北仪的误差标定方法
CN105588562B (zh) 一种旋转调制惯性导航系统中隔离载体角运动的方法
CN105928515B (zh) 一种无人机导航系统
CN109752000A (zh) 一种mems双轴旋转调制型捷联罗经初始对准方法
CN109459008A (zh) 一种小型中高精度光纤陀螺寻北装置及方法
CN110325822A (zh) 云台位姿修正方法和装置
CN110006453A (zh) 一种基于双轴转位机构的mems自主初始对准方法
CN108871378A (zh) 一种两套旋转惯导系统内杆臂与外杆臂误差在线动态标定方法
CN102788597A (zh) 基于空间稳定的旋转捷联惯导系统误差抑制方法
CN110986934A (zh) 一体化双轴旋转惯导天文组合导航系统的导航方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894295

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014894295

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15108778

Country of ref document: US

Ref document number: 2014894295

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE