WO2015186527A1 - 軸受の排油構造 - Google Patents

軸受の排油構造 Download PDF

Info

Publication number
WO2015186527A1
WO2015186527A1 PCT/JP2015/064583 JP2015064583W WO2015186527A1 WO 2015186527 A1 WO2015186527 A1 WO 2015186527A1 JP 2015064583 W JP2015064583 W JP 2015064583W WO 2015186527 A1 WO2015186527 A1 WO 2015186527A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
bearing
passage
oil drainage
recovery chamber
Prior art date
Application number
PCT/JP2015/064583
Other languages
English (en)
French (fr)
Inventor
善哉 篠原
秀則 有澤
山下 誠二
田中 勝也
吉田 毅
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201580029749.1A priority Critical patent/CN106662150B/zh
Priority to EP15803544.4A priority patent/EP3153727A4/en
Publication of WO2015186527A1 publication Critical patent/WO2015186527A1/ja
Priority to US15/368,033 priority patent/US20170328236A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/04Filling or draining lubricant of or from machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/26Systems consisting of a plurality of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N31/00Means for collecting, retaining, or draining-off lubricant in or on machines or apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/52Axial thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/98Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/02Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/14Bearings

Definitions

  • the present invention relates to a drainage structure of a bearing that rotatably supports a rotating shaft.
  • lubricating oil supplied to a bearing that supports the rotating shaft is passed through an oil drain pipe connected to an outer peripheral portion of a bearing housing that houses the bearing. To discharge outside the device.
  • the lubricating oil in the bearing housing is swung at a high speed around the bearing, particularly on the outer periphery, under the influence of the rotation of the rotating shaft. Therefore, in the oil drainage structure as described above, the lubricating oil that forms the swirl flow is likely to stay in the middle of the oil drainage path, and the oil drainage performance is reduced. Therefore, in order to suppress the rotation of the lubricating oil in the bearing housing, for example, it has been proposed to provide a protrusion on the inner peripheral wall of the bearing housing (see, for example, Patent Document 1).
  • an object of the present invention is to provide a bearing oil drainage structure that can ensure good oil drainage by effectively suppressing swirling of lubricating oil drained from a bearing. is there.
  • the oil drainage structure of the bearing according to the present invention is provided on at least one bearing that rotatably supports the rotating shaft and radially outside the bearing, and accommodates the bearing.
  • An oil drain passage for discharging lubricating oil from the bearing to the oil recovery chamber is provided, and a partition wall for dividing the oil drain passage in the circumferential direction is provided in the oil drain passage.
  • a swirling flow is formed by providing the partition wall that divides the discharge passage in the circumferential direction, that is, the rotation direction of the rotating shaft, in the oil discharge passage that discharges the lubricating oil from the bearing to the oil recovery chamber. Since the lubricating oil collides with the partition walls and the turning of the lubricating oil is effectively suppressed, the retention of the lubricating oil in the oil recovery chamber is suppressed, and the oil drainage is improved.
  • each of the divided oil passages divided by the partition wall in the oil discharge passage is preferably formed as an oval hole whose cross-sectional shape is an oval having a major axis in the circumferential direction.
  • the oil discharge passage is inclined in a direction of an oil outlet port through which the lubricating oil discharged to the oil recovery chamber is led out. According to this configuration, the lubricating oil discharged through the oil discharge passage and discharged into the oil recovery chamber is rectified in the outlet direction, so that the oil discharge performance is further improved.
  • a thrust bearing is provided as the at least one bearing.
  • the lubricating oil turns at a particularly high speed in the vicinity of the outer periphery of the bearing. Therefore, the effect of improving the oil drainage by suppressing the turning of the lubricating oil is extremely large.
  • the oil drainage structure of the bearing can be applied to, for example, a gas turbine engine.
  • a gas turbine engine according to the present invention is a gas turbine engine provided with the oil discharge structure of the bearing described above, wherein the rotating shaft is a rotor that connects a compressor and a turbine of the gas turbine engine,
  • the bearing is a bearing that supports the rotor.
  • the bearing and the oil recovery chamber are disposed radially inward of the intake passage of the compressor.
  • the oil drainage structure of the bearing described above it is possible to reduce the size of the oil drainage structure, particularly the oil recovery chamber, by ensuring good oil drainage. Therefore, a sufficient area of the intake passage of the compressor disposed in the vicinity of the bearing can be ensured.
  • FIG. 1 is a partially cutaway side view showing a gas turbine engine to which a bearing oil drainage structure according to an embodiment of the present invention is applied.
  • FIG. 2 is an enlarged longitudinal sectional view showing the vicinity of a bearing disposed on the inner diameter side of the intake passage of FIG. 1.
  • FIG. 3 is a plan view schematically showing an oil recovery chamber and an oil outlet path of FIG. 2.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2. It is sectional drawing which shows typically an example of channel
  • FIG. 1 shows a schematic configuration of a gas turbine engine (hereinafter simply referred to as a gas turbine) GT to which a bearing oil drainage structure according to an embodiment of the present invention is applied.
  • the gas turbine GT compresses the introduced air A by the compressor 1 and guides it to the combustor 3.
  • the fuel is injected into the combustor 3 and combusted together with the air A.
  • the high-temperature and high-pressure combustion gas obtained by this combustion is used.
  • the turbine 5 is connected to the compressor 1 via a rotor 9 that is a rotating shaft, and the compressor 1 is driven by the turbine 5.
  • the compressor 1 side in the axis C direction of the gas turbine GT may be referred to as “front side” and the turbine 5 side may be referred to as “rear side”.
  • an axial flow type compressor is used as the compressor 1.
  • a large number of moving blades are disposed on the outer peripheral surface of the front portion of the rotor 9 constituting the rotating shaft of the gas turbine GT, and a large number of stationary blades are disposed on the inner peripheral surface of the engine housing 13. Yes.
  • the compressor 1 compresses the air A sucked from the intake passage 17 by a combination of the moving blades and the stationary blades.
  • the entire rotor 9 is rotatably supported by the engine housing 13 by a plurality of bearings arranged separately in the axial direction.
  • the oil drainage structure of the bearing portion 19 disposed radially inward of the intake passage 17 of the compressor 1 will be described.
  • the bearing portion 19 includes a thrust bearing 21 and a radial bearing 23.
  • the thrust bearing 21 and the radial bearing 23 are arranged side by side along the axial direction C of the rotor 9.
  • the thrust bearing 21 is disposed on the front side and the radial bearing 23 is disposed on the rear side.
  • the thrust bearing 21 rotatably supports the rotor 9 while receiving an axial load of the rotor 9 via a disc-shaped thrust collar 25 protruding radially from the outer peripheral surface of the rotor 9.
  • the radial bearing 23 rotatably supports the rotor 9 while receiving the radial load of the rotor 9 via the outer peripheral surface of the rotor 9.
  • a cylindrical bearing housing 27 is provided outside the bearings 21 and 23 in the radial direction.
  • the thrust bearing 21 and the radial bearing 23 are supported by the engine housing 13 via a bearing housing 27.
  • An oil supply passage 31 for supplying the lubricating oil OL to the thrust bearing 21 and the radial bearing 23 is formed in a part in the circumferential direction of the peripheral wall 29 of the bearing housing 27.
  • An oil guide pipe 33 is connected to the oil supply passage 31 formed in the peripheral wall 29 of the bearing housing 27 from the front.
  • the lubricating oil OL is introduced from the oil tank 35 into the oil supply passage 31 through the oil guide pipe 33.
  • the lubricating oil OL introduced into the oil supply passage 31 is supplied to the bearings 21 and 23 through a branch oil supply passage 37 that branches in the radial direction from the oil supply passage 31 formed in the bearing housing 27.
  • Lubricating oil OL supplied to the bearings 21 and 23 is applied to a part of the bearing housing 27 in the radial direction (a circumferential part different from the circumferential part in which the oil supply passage 31 is formed).
  • An oil recovery chamber 39 for recovery is provided.
  • the oil recovery chamber 39 is located radially inward of the intake passage 17 that is a passage through which the air A is sucked into the compressor 1.
  • the oil outlet port 40 of the oil recovery chamber 39 is connected to an oil outlet pipe 43 that forms an oil outlet path 41 for leading the recovered lubricating oil OL to the outside (the oil tank 35 in this example).
  • the oil outlet port 40 is an opening provided in front of the oil recovery chamber 39.
  • the oil lead-out path 41 leads the lubricating oil OL forward from the oil recovery chamber 39 in a direction substantially perpendicular to the rotation direction R of the rotor 9 that is the rotation shaft.
  • the oil outlet passage 41 extends substantially parallel to the axis C direction in a plan view.
  • the oil outlet passage 41 is provided so as to be inclined from the direction of the axis C toward the front outer diameter side.
  • the bearing chamber 45 and the oil recovery chamber 39 which are inner spaces of the bearing housing 27 are part of the circumferential direction of the peripheral wall 29 of the bearing housing 27 (the circumference different from the part of the circumferential direction in which the oil supply passage 31 is formed). Are communicated with each other through an oil discharge passage 47 formed in the direction portion).
  • the oil drainage passage 47 is a passage that penetrates the peripheral wall 29 of the bearing housing 27 in the radial direction, that is, a passage that opens to the inner peripheral surface and the outer peripheral surface of the bearing housing 27.
  • the lubricating oil OL is discharged from the bearings 21 and 23 to the oil recovery chamber 39 through the oil discharge passage 47.
  • the structure of the first oil discharge passage 47A will be mainly described in detail.
  • the first oil drain passage 47 ⁇ / b> A is provided with a partition wall 51 that divides the first oil drain passage 47 ⁇ / b> A in the circumferential direction Q of the peripheral wall 29 of the bearing housing 27.
  • the first oil discharge passage 47 ⁇ / b> A is divided into two divided oil discharge passages 53 and 53 by one partition wall 51.
  • the first oil discharge passage 47 ⁇ / b> A has two divided oil discharge passages 53, 53 arranged in the circumferential direction Q via the partition wall 51.
  • each divided oil drainage passage 53 is formed as an oval hole whose cross-sectional shape is an oval having a major axis in the circumferential direction Q.
  • the circumferential oil dimension of the first oil passage 47A is set to be large, so that the lubricating oil OL turning in the rotational direction R can be reliably obtained.
  • the cross-sectional shape of each divided oil discharge passage 53 is not limited to the illustrated example, and may be circular, for example.
  • each divided oil passage 53 may be an oblong hole having a major axis in the axial direction, but in that case, the circumferential dimension of the entire cross section of the first oil passage 47A is It is preferable to set it larger than the axial dimension.
  • the number of the partition walls 51 that divide the first oil discharge passage 47A in the circumferential direction is not limited to one.
  • the first oil discharge passage 47 ⁇ / b> A may be divided into three divided oil discharge passages 53 by two partition walls 51.
  • the shape and arrangement of the partition wall 51 are not limited to these examples as long as the partition wall 51 is provided so as to prevent the flow of the lubricating oil OL in the circumferential direction Q (rotation direction R) in the first drain oil passage 47A.
  • the first oil discharge passage 47A may have four divided oil discharge passages 53 divided by an X-shaped partition wall 51 inclined with respect to the circumferential direction Q.
  • the entire cross section of the first oil discharge passage 47A is preferably symmetrical in the circumferential direction Q and the front-rear direction.
  • the aspect of the partition wall 51 shown in FIG. 4 is the example shown in the figure as long as the lubricating oil flowing from the bearing chamber 45 into the first drain oil passage 47A can be prevented from being distributed in the circumferential direction Q. It is not limited. Therefore, the position of the outer diameter side end 51a of the bearing housing 27 of the partition wall 51 may not coincide with the position of the outer diameter side end 47Aa of the bearing housing 27 of the first oil drain passage 47A (that is, the outer peripheral surface of the bearing housing 27). Good. That is, in the illustrated example, the radial positions of the outer diameter side ends 51a and 47Aa are the same, but the radial position of the outer diameter side end 51a of the partition wall 51 is the outer diameter side end of the first oil discharge passage 47A. The inner diameter side or the outer diameter side from the radial position of 47Aa may be used.
  • the first oil discharge passage 47 ⁇ / b> A is formed to be inclined in the direction of the oil outlet port 40 of the oil recovery chamber 39, in other words, in the direction of outlet of the oil outlet passage 41. That is, in the illustrated example, the first oil drain passage 47 ⁇ / b> A is inclined to the front outer diameter side with respect to the radial direction of the bearing housing 27.
  • the first oil discharge passage 47A may be provided in parallel to the radial direction, but by inclining as in the present embodiment, the lubricating oil OL discharged to the oil recovery chamber 39 is rectified in the outlet direction. The lubricating oil OL can be guided from the oil recovery chamber 39 to the oil outlet passage 41 more smoothly.
  • the first oil drain passage 47A is formed substantially along the radial direction with respect to the circumferential direction Q, that is, without being inclined.
  • the partition wall 51 provided in the first oil discharge passage 47A is also formed substantially along the radial direction with respect to the circumferential direction Q, that is, without being inclined.
  • the oil discharge passage 47 is arranged around the oil discharge passage 47 (first oil discharge passage 47A) for discharging the lubricating oil OL from the thrust bearing 21 to the oil recovery chamber 39.
  • the partition wall 51 that is divided in the direction Q, that is, the rotation direction of the rotation shaft, the rotation of the lubricating oil OL in the oil recovery chamber 39 is effectively suppressed. That is, as shown in FIG. 4, the lubricating oil OL supplied from the oil supply hole 55 for supplying oil to the thrust bearing 21 flows along the rotation direction R of the rotating shaft, and lubricates the thrust bearing 21 (thrust pad 21a).
  • the lubricating oil OL moves to the outer diameter side by centrifugal force and forms a high-speed swirling flow.
  • the lubricating oil OL that has reached the first oil discharge passage 47A collides with not only the peripheral wall 47Ab on the side facing the rotation direction R of the first oil discharge passage 47A but also the partition wall 51, and from the two divided oil discharge passages 53. It flows into the oil recovery chamber 39 in a state where the swirl component is greatly suppressed.
  • the example in which the oil discharge structure in which the partition wall is provided in the oil discharge passage is applied to the structure for discharging the lubricating oil OL supplied to the thrust bearing 21 has been described.
  • the thrust bearing 21 uses a larger amount of lubricating oil than the radial bearing 23.
  • the lubricating oil rotates at a particularly high speed in the vicinity of the outer periphery of the bearing. This is because the effect of improving oil drainage by suppressing the turning is particularly great.
  • the oil discharge structure according to the present embodiment can also be applied to a structure for discharging the lubricating oil OL supplied to the radial bearing 23 of FIG.
  • the oil drainage structure of the present embodiment it is possible to reduce the size of the oil drainage structure, in particular, the oil recovery chamber 39, by ensuring good oil drainage of the bearing. Therefore, as illustrated in the present embodiment, in the gas turbine GT, the thrust bearing 21 disposed radially inward of the intake passage 17 of the compressor 1 and the radially inward of the intake passage 17 of the compressor 1 are disposed.
  • the oil drainage structure is applied to the bearing portion having the oil recovery chamber 39, the area of the intake passage 17 of the compressor 1 can be sufficiently secured.
  • the oil drainage structure described above can also be applied to the oil drainage structure of a bearing that supports the other part of the rotor 9 of the gas turbine GT.
  • the gas turbine engine is described as an example of a device including a bearing that rotatably supports the rotating shaft.
  • the present invention is not limited to the gas turbine engine, and the bearing that rotatably supports the rotating shaft. It is applicable also to the other apparatus provided with.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Supercharger (AREA)
  • Sliding-Contact Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 回転軸(9)を回転可能に支持する少なくとも一つの軸受(21)と、前記軸受の径方向外側に設けられて、前記軸受を収容する円筒状の軸受ハウジング(27)と、前記軸受ハウジングの径方向外方に設けられて、前記軸受に供給された潤滑油を回収するオイル回収室(39)と、前記軸受ハウジング(27)の周壁(29)を径方向に貫通して、前記軸受から前記オイル回収室(39)へ潤滑油を排出する排油通路(47)とを備える軸受の排油構造において、前記排油通路(47)に、この排油通路を周方向に分割する隔壁(51)を設ける。

Description

軸受の排油構造 関連出願
 本出願は、2014年6月4日出願の特願2014-116010の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、回転軸を回転可能に支持する軸受の排油構造に関する。
 高速で回転する回転軸を備える装置、例えばガスタービンエンジンにおいては、一般に、回転軸を支持する軸受に供給された潤滑油を、軸受を収容する軸受ハウジングの外周部に接続された排油管を介して装置外へ排出する。
 一方、軸受ハウジング内の潤滑油は、回転軸の回転の影響を受けて、軸受の周辺、特に外周側において高速で旋回する。したがって、上記のような排油構造では、旋回流を形成する潤滑油が、排油経路の途中で滞留しやすく、排油性能が低下する。そこで、このような軸受ハウジング内での潤滑油の旋回を抑制するために、例えば、軸受ハウジングの内周壁に突起を設けることが提案されている(例えば、特許文献1参照)。
特開2000-265990号公報
 しかしながら、軸受ハウジング内に突起を設けた場合、回転方向における突起の後方では潤滑油流れの乱れが生じるので、排油性が十分に向上しない。
 上記の課題を解決するために、本発明の目的は、軸受から排出される潤滑油の旋回を効果的に抑止することにより、良好な排油性を確保できる軸受の排油構造を提供することにある。
 前記した目的を達成するために、本発明に係る軸受の排油構造は、回転軸を回転可能に支持する少なくとも一つの軸受と、前記軸受の径方向外側に設けられて、前記軸受を収容する円筒状の軸受ハウジングと、前記軸受ハウジングの径方向外方に設けられて、前記軸受に供給された潤滑油を回収するオイル回収室と、前記軸受ハウジングの周壁を径方向に貫通して、前記軸受から前記オイル回収室へ潤滑油を排出する排油通路とを備え、前記排油通路に、この排油通路を周方向に分割する隔壁が設けられている。
 この構成によれば、軸受からオイル回収室へ潤滑油を排出する排油通路に、この排出通路を周方向、つまり回転軸の回転方向に分割する隔壁を設けることにより、旋回流を形成していた潤滑油が隔壁に衝突して潤滑油の旋回が効果的に抑制されるので、オイル回収室内での潤滑油の滞留が抑制され、排油性が向上する。
 本発明の一実施形態において、前記排油通路における隔壁によって分割された各分割排油通路が、その断面形状が周方向に長径を有する長円形である長円孔として形成されていることが好ましい。この構成によれば、排油通路の周方向寸法を大きく設定することにより、軸受ハウジング内で旋回する潤滑油を確実に排油通路内へ導入することができる。
 本発明の一実施形態において、前記排油通路が、前記オイル回収室に排出された潤滑油を外部へ導出するオイル導出口の方向に傾斜していることが好ましい。この構成によれば、排油通路を通過してオイル回収室に排出される潤滑油が導出方向に整流されるため、排油性がさらに向上する。
 本発明の一実施形態において、前記少なくとも一つの軸受としてスラスト軸受を備えることが好ましい。大径のスラスト軸受では、軸受外周付近において潤滑油が特に高速で旋回するので、潤滑油の旋回を抑制することによる排油性向上の効果はきわめて大きい。
 上記の軸受の排油構造は、例えば、ガスタービンエンジンに適用することができる。すなわち、本発明に係るガスタービンエンジンは、上記の軸受の排油構造を備えるガスタービンエンジンであって、前記回転軸が、当該ガスタービンエンジンの圧縮機とタービンとを連結するロータであり、前記軸受が、前記ロータを支持する軸受である。その場合、前記軸受および前記オイル回収室が、前記圧縮機の吸気通路の径方向内方に配置されていることが好ましい。
 上記の軸受の排油構造によれば、良好な排油性が確保されることにより、排油構造の小型化、特にはオイル回収室の小型化が可能となる。したがって、軸受の近傍に配置される圧縮機の吸気通路の面積を十分に確保することができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の一実施形態に係る軸受の排油構造を適用したガスタービンエンジンを示す部分破断側面図である。 図1の吸気通路の内径側に配置された軸受の近傍を拡大して示す縦断面図である。 図2のオイル回収室およびオイル導出路を模式的に示す平面図である。 図2のIV-IV線に沿った断面図である。 図2の排油通路の通路断面形状の一例を模式的に示す断面図である。 図2の排油通路の通路断面形状の一例を模式的に示す断面図である。 図2の排油通路の通路断面形状の一例を模式的に示す断面図である。 図2の排油通路の傾斜角度を模式的に示す縦断面図である。
 以下、本発明に係る実施形態を図面に従って説明するが、本発明は本実施形態に限定されるものではない。
 図1に、本発明の一実施形態に係る軸受の排油構造が適用されるガスタービンエンジン(以下、単にガスタービンと称する。)GTの概略構成を示す。ガスタービンGTは、導入した空気Aを圧縮機1で圧縮して燃焼器3に導き、燃料を燃焼器3内に噴射して空気Aと共に燃焼させ、この燃焼によって得られた高温高圧の燃焼ガスによりタービン5を駆動する。タービン5は圧縮機1に回転軸であるロータ9を介して連結されており、タービン5によって圧縮機1が駆動される。以下の説明において、ガスタービンGTの軸心C方向における圧縮機1側を「前側」と呼び、タービン5側を「後側」と呼ぶ場合がある。
 本実施形態では、圧縮機1として軸流型のものを用いている。圧縮機1において、ガスタービンGTの回転軸を構成するロータ9の前部の外周面に、多数の動翼が配置されるとともに、エンジンハウジング13の内周面に多数の静翼が配置されている。圧縮機1は、これら動翼と静翼との組み合わせにより、吸気通路17から吸入した空気Aを圧縮する。
 ロータ9の全体は、軸方向に隔離して配置された複数の軸受部によってエンジンハウジング13に回転可能に支持されている。以下、圧縮機1の吸気通路17の径方向内方に配置された軸受部19の排油構造について説明する。
 図2に示すように、軸受部19は、スラスト軸受21とラジアル軸受23とを備えている。スラスト軸受21とラジアル軸受23は、ロータ9の軸心方向Cに沿って並べて配置されている。図示の例では、スラスト軸受21が前方に、ラジアル軸受23が後方に配置されている。スラスト軸受21は、ロータ9の外周面から径方向に突出する円盤状のスラストカラー25を介して、ロータ9の軸方向荷重を受けながらロータ9を回転可能に支持する。ラジアル軸受23は、ロータ9の外周面を介して、ロータ9の径方向荷重を受けながら、ロータ9を回転可能に支持する。
 これら軸受21,23の径方向外方には、円筒状の軸受ハウジング27が設けられている。スラスト軸受21およびラジアル軸受23は、軸受ハウジング27を介してエンジンハウジング13に支持されている。軸受ハウジング27の周壁29の周方向の一部には、スラスト軸受21およびラジアル軸受23に潤滑油OLを供給する給油路31が形成されている。軸受ハウジング27の周壁29に形成された給油路31には、前方から導油管33が接続されている。潤滑油OLは、オイルタンク35から、導油管33を介して給油路31へ導入される。給油路31へ導入された潤滑油OLは、軸受ハウジング27内に形成された給油路31から径方向に分岐する分岐給油路37を経て各軸受21,23に供給される。
 軸受ハウジング27の径方向外方における周方向の一部(給油路31が形成されている周方向の一部とは異なる周方向部分)には、軸受21,23に供給された潤滑油OLを回収するオイル回収室39が設けられている。オイル回収室39は、圧縮機1内に空気Aを吸入する通路である吸気通路17の径方向内方に位置する。オイル回収室39のオイル導出口40には、回収された潤滑油OLを外部(この例ではオイルタンク35)へ導出するオイル導出路41を形成するオイル導出管43が接続されている。図示の例では、オイル導出口40は、オイル回収室39の前方に設けられた開口である。また、オイル導出路41は、潤滑油OLを、オイル回収室39から前方へ、回転軸であるロータ9の回転方向Rにほぼ直交する方向に導出する。換言すれば、図3に模式的に示すように、オイル導出路41は、平面視で軸心C方向にほぼ平行に延びている。また、図2に示す例では、オイル導出路41は、軸心C方向から前方外径側へ傾斜するように設けられている。
 軸受ハウジング27の内方空間である軸受室45とオイル回収室39とは、軸受ハウジング27の周壁29の周方向の一部(給油路31が形成されている周方向の一部とは異なる周方向部分)に形成された排油通路47を介して互いに連通している。排油通路47は軸受ハウジング27の周壁29を径方向に貫通する通路、つまり軸受ハウジング27の内周面および外周面に開口する通路である。この排油通路47を介して、軸受21,23からオイル回収室39へ潤滑油OLが排出される。本実施形態では、排油通路47として、スラスト軸受21の外周側に位置する第1排油通路47Aと、ラジアル軸受23の軸方向両端部の外周側にそれぞれ位置する第2排油通路47Bおよび第3排油通路47Cが設けられている。以下、主として第1排油通路47Aの構造について詳細に説明する。
 図4に示すように、第1排油通路47Aには、この第1排油通路47Aを、軸受ハウジング27の周壁29の周方向Qに分割する隔壁51が設けられている。図示の例では、第1排油通路47Aは、1つの隔壁51によって2つの分割排油通路53,53に分割されている。換言すれば、第1排油通路47Aは、隔壁51を介して周方向Qに並ぶ2つの分割排油通路53,53を有している。
 図5Aに示すように、各分割排油通路53は、その断面形状が周方向Qに長径を有する長円形である長円孔として形成されている。各分割排油通路53の通路断面形状を周方向Qに長径を有する長円形として、第1排油通路47Aの周方向寸法を大きく設定することにより、回転方向Rに旋回する潤滑油OLを確実に第1排油通路47A内へ導入することができる。もっとも、各分割排油通路53の通路断面形状は図示の例に限定されず、例えば、円形でもよい。また、各分割排油通路53の通路断面形状が、軸方向に長径を有する長円孔であってもよいが、その場合にも、第1排油通路47A全体の断面の周方向寸法を、軸方向寸法よりも大きく設定することが好ましい。
 第1排油通路47Aを周方向に分割する隔壁51の数は1つに限定されない。例えば、図5Bに示すように、第1排油通路47Aは、2つの隔壁51によって3つの分割排油通路53に分割されていてもよい。また、隔壁51の形状、配置は、第1排油通路47A内における潤滑油OLの周方向Q(回転方向R)の流れを妨げるように設けられていればこれらの例に限定されない。例えば、図5Cに示すように、第1排油通路47Aは、周方向Qに対して傾斜するX字形状の隔壁51によって分割された4つの分割排油通路53を有していてもよい。第1排油通路47Aにおいて隔壁51および分割排油通路53の数、形状、配置をどのように設定する場合にも、オイル回収室39へ排出される潤滑油OLの流れを均一にするために、第1排油通路47Aの断面全体として周方向Qおよび前後方向に対称であることが好ましい。
 図4に示す隔壁51の態様は、軸受室45内から第1排油通路47Aへ流入する潤滑油が周方向Qに偏って分布することを防止できるように設けられていれば図示の例に限定されない。したがって、隔壁51の、軸受ハウジング27外径側端51aの位置は、第1排油通路47Aの軸受ハウジング27外径側端47Aaの位置(つまり軸受ハウジング27の外周面)と一致していなくともよい。すなわち、図示の例ではこれら外径側端51a,47Aaの径方向位置は一致しているが、隔壁51の外径側端51aの径方向位置は、第1排油通路47Aの外径側端47Aaの径方向位置より内径側でもよく、外径側でもよい。
 図2に示すように、第1排油通路47Aは、オイル回収室39のオイル導出口40の方向、換言すればオイル導出路41の導出方向に傾斜して形成されている。すなわち、図示の例では、第1排油通路47Aは、軸受ハウジング27の径方向に対して、前方外径側に傾斜している。第1排油通路47Aは、径方向に平行に設けられてもよいが、本実施形態のように傾斜させることにより、オイル回収室39に排出される潤滑油OLが導出方向に整流されるので、潤滑油OLをより円滑にオイル回収室39からオイル導出路41へ導くことができる。図6に示す、軸受ハウジング27の径方向に対する第1排油通路47Aの傾斜角度αの好ましい範囲は、20°≦α≦40°であり、より好ましくは25°≦α≦35°である。本実施形態では、α=30°としている。
 なお、図4に示すように、第1排油通路47Aは、周方向Qに対してはほぼ径方向に沿って、つまり傾斜せずに形成されている。第1排油通路47Aに設けられる隔壁51も、周方向Qに対してはほぼ径方向に沿って、つまり傾斜せずに形成されている。
 本実施形態に係る軸受の排油構造によれば、スラスト軸受21からオイル回収室39へ潤滑油OLを排出する排油通路47(第1排油通路47A)に、この排油通路47を周方向Q、つまり回転軸の回転方向に分割する隔壁51を設けることにより、オイル回収室39内における潤滑油OLの旋回が効果的に抑制される。すなわち、図4に示すように、スラスト軸受21へ給油する給油孔55から供給された潤滑油OLは、回転軸の回転方向Rに沿って流れ、スラスト軸受21(スラストパッド21a)を潤滑する。その後、潤滑油OLは、遠心力により外径側へ移動し、高速の旋回流を形成する。第1排油通路47Aに到達した潤滑油OLは、第1排油通路47Aの回転方向Rに対向する側の周壁47Abのみならず、隔壁51に衝突して、2つの分割排油通路53からオイル回収室39へ、旋回成分が大幅に抑制された状態で流入する。
 これに対し、隔壁51が設けられておらず、潤滑油OLが大きな旋回成分を有する状態でオイル回収室39へ流入した場合には、図3に破線で示すように、潤滑油OLの大部分はオイル回収室39の内壁39aに衝突し、その一部はオイル導出路41と反対の方向(後側)へ流れるため潤滑油OLが滞留し、排油性が低下する。しかし、本実施形態では、上記のように潤滑油OLの旋回成分が大幅に抑制された状態でオイル回収室39へ流入するので、図3に実線で示すように潤滑油OLの大部分がオイル導出路41へ直接流入し、オイル回収室39内での潤滑油OLの滞留が抑制されるので、排油性が向上する。
 なお、本実施形態では、排油通路に隔壁を設ける排油構造を、スラスト軸受21に供給された潤滑油OLを排出するための構造に適用した例を説明した。これは、スラスト軸受21の方がラジアル軸受23よりも多量の潤滑油を使用し、しかも、大径のスラスト軸受21では、軸受外周付近において潤滑油が特に高速で旋回するので、潤滑油OLの旋回を抑制することによる排油性向上の効果が特に大きいからである。もっとも、本実施形態に係る排油構造は、図2のラジアル軸受23に供給される潤滑油OLを排出するための構造にも適用することができる。
 また、本実施形態の排油構造によれば、軸受の良好な排油性が確保されることにより、排油構造の小型化、特にオイル回収室39の小型化が可能になる。したがって、本実施形態で例示したように、ガスタービンGTにおいて、圧縮機1の吸気通路17の径方向内方に配置されたスラスト軸受21および圧縮機1の吸気通路17の径方向内方に配置されたオイル回収室39を有する軸受部に上記排油構造を適用した場合、圧縮機1の吸気通路17の面積を十分に確保することができる。もっとも、上記の排油構造は、ガスタービンGTのロータ9の他の部分を支持する軸受の排油構造にも適用することができる。
 また、本実施形態では、回転軸を回転可能に支持する軸受を備える装置としてガスタービンエンジンを例として説明したが、本発明は、ガスタービンエンジンに限らず、回転軸を回転可能に支持する軸受を備える他の装置にも適用することができる。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1 圧縮機
5 タービン
9 ロータ(回転軸)
17 吸気通路
21 スラスト軸受
23 ラジアル軸受
27 軸受ハウジング
29 軸受ハウジングの周壁
39 オイル回収室
40 オイル導出口
41 オイル導出路
47 排油通路
51 隔壁
A 空気
GT ガスタービンエンジン
OL 潤滑油

Claims (6)

  1.  回転軸を回転可能に支持する少なくとも一つの軸受と、
     前記軸受の径方向外側に設けられて、前記軸受を収容する円筒状の軸受ハウジングと、
     前記軸受ハウジングの径方向外方に設けられて、前記軸受に供給された潤滑油を回収するオイル回収室と、
     前記軸受ハウジングの周壁を径方向に貫通して、前記軸受から前記オイル回収室へ潤滑油を排出する排油通路と、
    を備え、
     前記排油通路に、この排油通路を周方向に分割する隔壁が設けられている、
     軸受の排油構造。
  2.  請求項1に記載の軸受の排油構造において、前記排油通路における隔壁によって分割された各分割排油通路が、その断面形状が周方向に長径を有する長円形である長円孔として形成されている軸受の排油構造。
  3.  請求項1または2に記載の軸受の排油構造において、前記排油通路が、前記オイル回収室に排出された潤滑油を外部へ導出するオイル導出口の方向に傾斜している軸受の排油構造。
  4.  請求項1から3のいずれか一項に記載の軸受の排油構造において、前記少なくとも一つの軸受としてスラスト軸受を備える軸受の排油構造。
  5.  請求項1から4のいずれか一項に記載の軸受の排油構造を備えるガスタービンエンジンであって、
     前記回転軸が、当該ガスタービンエンジンの圧縮機とタービンとを連結するロータであり、
     前記軸受が、前記ロータを支持する軸受である、
     ガスタービンエンジン。
  6.  請求項5に記載のガスタービンエンジンであって、前記軸受および前記オイル回収室が、前記圧縮機の吸気通路の径方向内方に配置されているガスタービンエンジン。
PCT/JP2015/064583 2014-06-04 2015-05-21 軸受の排油構造 WO2015186527A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580029749.1A CN106662150B (zh) 2014-06-04 2015-05-21 轴承的排油结构
EP15803544.4A EP3153727A4 (en) 2014-06-04 2015-05-21 Oil discharging structure for bearing
US15/368,033 US20170328236A1 (en) 2014-06-04 2016-12-02 Oil discharging structure for bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-116010 2014-06-04
JP2014116010A JP6375149B2 (ja) 2014-06-04 2014-06-04 軸受の排油構造

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/368,033 Continuation US20170328236A1 (en) 2014-06-04 2016-12-02 Oil discharging structure for bearing

Publications (1)

Publication Number Publication Date
WO2015186527A1 true WO2015186527A1 (ja) 2015-12-10

Family

ID=54766602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064583 WO2015186527A1 (ja) 2014-06-04 2015-05-21 軸受の排油構造

Country Status (5)

Country Link
US (1) US20170328236A1 (ja)
EP (1) EP3153727A4 (ja)
JP (1) JP6375149B2 (ja)
CN (1) CN106662150B (ja)
WO (1) WO2015186527A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336328A1 (en) * 2016-12-14 2018-06-20 Toyota Jidosha Kabushiki Kaisha Turbocharger for internal combustion engine and internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018004771T5 (de) * 2017-08-25 2020-06-10 Ihi Corporation Turbolader
WO2019147778A1 (en) * 2018-01-26 2019-08-01 Siemens Aktiengesellschaft Journal bearing assembly with drainage facilitation element
US11162421B2 (en) 2019-10-22 2021-11-02 Pratt & Whitney Canada Corp. Bearing cavity and method of evacuating oil therefrom
KR102400636B1 (ko) * 2020-11-06 2022-05-23 한국생산기술연구원 저온 터빈 베어링 윤활제 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052352U (ja) * 1983-08-24 1985-04-12 三菱重工業株式会社 排気タ−ビン過給機の軸受装置
JPS63227931A (ja) * 1987-03-17 1988-09-22 Mitsubishi Heavy Ind Ltd ガスタ−ビン用燃料ガス圧縮装置
JP2005180427A (ja) * 2003-12-17 2005-07-07 United Technol Corp <Utc> ガスタービンエンジン用の分岐式排油システム
US20080066444A1 (en) * 2006-09-14 2008-03-20 Cornelius Charles C Seal for a turbine engine
EP1923541A2 (en) * 2006-11-14 2008-05-21 Rolls-Royce Corporation Lubrication scavenge system
JP2010065682A (ja) * 2008-09-11 2010-03-25 Rolls Royce Plc 潤滑剤排出構成

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3542316A1 (de) * 1985-09-09 1987-03-12 Kraftwerk Union Ag Einrichtung zur leckoel-freien lageroel-abfuehrung an gleitlagern fuer umlaufende wellen hochtouriger maschinen
DE3535107A1 (de) * 1985-10-02 1987-04-09 Mtu Muenchen Gmbh Versorgungssystem von lagern
US5605045A (en) * 1995-09-18 1997-02-25 Turbodyne Systems, Inc. Turbocharging system with integral assisting electric motor and cooling system therefor
EP1619356B1 (de) * 2004-07-23 2016-03-16 BorgWarner, Inc. Axiallager für einen Turbolader
CN101600854A (zh) * 2006-09-14 2009-12-09 索拉透平公司 用于涡轮发动机的密封结构
JP4833793B2 (ja) * 2006-10-23 2011-12-07 川崎重工業株式会社 常圧タービンにおける潤滑装置
JP4387402B2 (ja) * 2006-12-22 2009-12-16 株式会社神戸製鋼所 軸受及び液冷式スクリュ圧縮機
WO2009095985A1 (ja) * 2008-01-28 2009-08-06 Ihi Corporation 過給機
US8739528B2 (en) * 2009-04-24 2014-06-03 Mitsubishi Heavy Industries, Ltd. Hybrid exhaust turbine turbocharger
JP5522113B2 (ja) * 2011-04-13 2014-06-18 株式会社豊田自動織機 ターボチャージャ
GB201210146D0 (en) * 2012-06-08 2012-07-25 Rolls Royce Plc Oil scavenge arrangement
US9151163B2 (en) * 2012-11-29 2015-10-06 Mtu Aero Engines Gmbh Turbomachine rotor disk
FR3011880B1 (fr) * 2013-10-10 2015-10-23 Snecma Dispositif de transfert d'huile entre deux referentiels en rotation l'un par rapport a l'autre, et turbomachine a helices pour aeronef avec un tel dispositif
US10316856B2 (en) * 2015-12-01 2019-06-11 General Electric Company Casing for use in a turbofan engine and method of scavenging fluid therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052352U (ja) * 1983-08-24 1985-04-12 三菱重工業株式会社 排気タ−ビン過給機の軸受装置
JPS63227931A (ja) * 1987-03-17 1988-09-22 Mitsubishi Heavy Ind Ltd ガスタ−ビン用燃料ガス圧縮装置
JP2005180427A (ja) * 2003-12-17 2005-07-07 United Technol Corp <Utc> ガスタービンエンジン用の分岐式排油システム
US20080066444A1 (en) * 2006-09-14 2008-03-20 Cornelius Charles C Seal for a turbine engine
EP1923541A2 (en) * 2006-11-14 2008-05-21 Rolls-Royce Corporation Lubrication scavenge system
JP2010065682A (ja) * 2008-09-11 2010-03-25 Rolls Royce Plc 潤滑剤排出構成

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153727A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336328A1 (en) * 2016-12-14 2018-06-20 Toyota Jidosha Kabushiki Kaisha Turbocharger for internal combustion engine and internal combustion engine
CN108223111A (zh) * 2016-12-14 2018-06-29 丰田自动车株式会社 用于内燃机的增压器及内燃机

Also Published As

Publication number Publication date
EP3153727A1 (en) 2017-04-12
CN106662150B (zh) 2019-03-12
JP2015230035A (ja) 2015-12-21
US20170328236A1 (en) 2017-11-16
JP6375149B2 (ja) 2018-08-15
CN106662150A (zh) 2017-05-10
EP3153727A4 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
WO2015186527A1 (ja) 軸受の排油構造
JP4251211B2 (ja) ターボチャージャの軸受構造
JP5667651B2 (ja) ミストセパレータ
JP6288267B2 (ja) 軸受構造、および、過給機
RU2687474C2 (ru) Компрессор газотурбинного двигателя, содержащий лопатки с изменяемым углом установки
JP6660293B2 (ja) 過給機、および、過給機給油システム
JP5709898B2 (ja) 回転機械
US9797407B2 (en) Aircraft engine
CN112154261B (zh) 轴承构造以及增压器
WO2018235679A1 (ja) ガスタービンエンジン
WO2017010450A1 (ja) 多円弧軸受および過給機
KR101805322B1 (ko) 압축기 및 가스 터빈
JP2014009701A (ja) 軸受装置
CN108700085A (zh) 压缩机叶轮和涡轮增压器
WO2019187023A1 (ja) 回転機械、及びターボチャージャー
JP2010223249A (ja) 浮動式すべり軸受装置及びこれを備える内燃機関のターボチャージャ
US20180156268A1 (en) Bearing structure and turbocharger
JP7259397B2 (ja) タービン
JP6079058B2 (ja) ターボチャージャー用転がり軸受装置
JP5987799B2 (ja) ターボチャージャのオイル排出構造
JP2013224627A (ja) 軸流ファン
JP2016113937A (ja) ターボチャージャ用軸受機構
JP6989002B2 (ja) 軸受および過給機
JP7561247B1 (ja) ガスタービンの軸封構造
US20200132078A1 (en) Centrifugal compressor and seal unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015803544

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803544

Country of ref document: EP