WO2015186466A1 - インホイールモータ駆動装置 - Google Patents

インホイールモータ駆動装置 Download PDF

Info

Publication number
WO2015186466A1
WO2015186466A1 PCT/JP2015/063295 JP2015063295W WO2015186466A1 WO 2015186466 A1 WO2015186466 A1 WO 2015186466A1 JP 2015063295 W JP2015063295 W JP 2015063295W WO 2015186466 A1 WO2015186466 A1 WO 2015186466A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
lubricating oil
motor
drive device
wheel
Prior art date
Application number
PCT/JP2015/063295
Other languages
English (en)
French (fr)
Inventor
雪島 良
鈴木 稔
朋久 魚住
Original Assignee
Ntn株式会社
雪島 良
鈴木 稔
朋久 魚住
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 雪島 良, 鈴木 稔, 朋久 魚住 filed Critical Ntn株式会社
Priority to EP15802570.0A priority Critical patent/EP3154170A4/en
Priority to US15/314,675 priority patent/US20170197502A1/en
Priority to CN201580027521.9A priority patent/CN106464087A/zh
Publication of WO2015186466A1 publication Critical patent/WO2015186466A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/12Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of electric gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/14Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing the motor of fluid or electric gearing being disposed in or adjacent to traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0409Features relating to lubrication or cooling or heating characterised by the problem to increase efficiency, e.g. by reducing splash losses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0421Guidance of lubricant on or within the casing, e.g. shields or baffles for collecting lubricant, tubes, pipes, grooves, channels or the like
    • F16H57/0423Lubricant guiding means mounted or supported on the casing, e.g. shields or baffles for collecting lubricant, tubes or pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0476Electric machines and gearing, i.e. joint lubrication or cooling or heating thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/03Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/325Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising a carrier with pins guiding at least one orbital gear with circular holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0421Guidance of lubricant on or within the casing, e.g. shields or baffles for collecting lubricant, tubes, pipes, grooves, channels or the like
    • F16H57/0426Means for guiding lubricant into an axial channel of a shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/043Guidance of lubricant within rotary parts, e.g. axial channels or radial openings in shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0441Arrangements of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/045Lubricant storage reservoirs, e.g. reservoirs in addition to a gear sump for collecting lubricant in the upper part of a gear case
    • F16H57/0452Oil pans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0469Bearings or seals
    • F16H57/0471Bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0482Gearings with gears having orbital motion
    • F16H57/0486Gearings with gears having orbital motion with fixed gear ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an in-wheel motor drive device in which, for example, an output shaft of an electric motor and a wheel bearing are connected via a speed reducer.
  • a conventional in-wheel motor drive device has a structure disclosed in Patent Document 1, for example.
  • the in-wheel motor driving device 101 disclosed in Patent Document 1 includes a motor unit 103 that generates a driving force inside a casing 102 that is attached to a vehicle body via a suspension device (suspension), and A wheel bearing portion 104 connected to the wheel, and a speed reducer portion 105 disposed between the motor portion 103 and the wheel bearing portion 104 to decelerate the rotation of the motor portion 103 and transmit it to the wheel bearing portion 104. It has.
  • the motor unit 103 includes a stator 106 fixed to the casing 102, a rotor 107 disposed opposite to the stator 106 in the radial direction with a gap, and a rotor 107 disposed in the radial direction of the rotor 107 so as to rotate integrally with the rotor 107.
  • a radial gap motor provided with a motor rotation shaft 108.
  • the cycloid reducer includes a reducer input shaft 110 having a pair of eccentric portions 109a and 109b, a pair of curved plates 111a and 111b disposed on the eccentric portions 109a and 109b of the reducer input shaft 110, and curved plates 111a and 111b.
  • the main part is composed of a plurality of inner pins 114 that transmit the motion to the reducer output shaft 113.
  • a lubrication mechanism that supplies lubricating oil to the motor unit 103 and the speed reducer unit 105 is provided.
  • the lubricating mechanism includes a rotary pump 115 for pumping the lubricating oil, and has a structure in which the lubricating oil circulates inside the motor unit 103 and the speed reducer unit 105.
  • the lubrication mechanism that circulates from the rotary pump 115 to the inside of the motor unit 103 includes the rotary pump 115, the oil passage 116 at the upper portion of the casing, the oil passage 117 of the motor rotating shaft 108, the oil hole 118 of the rotor 107, the oil passage 119 at the lower portion of the casing,
  • the oil tank 120 and the oil passage 121 under the casing are the main components. Open arrows in the lubrication mechanism indicate the flow of the lubricating oil.
  • the lubricating oil stored in the oil tank 120 is sucked into the rotary pump 115 from the oil passage 121 at the lower part of the casing and supplied to the inside of the motor unit 103.
  • Lubricating oil pumped from the rotary pump 115 passes through the oil passage 116 at the upper part of the casing and the oil passage 117 of the motor rotating shaft 108 and is discharged from the oil hole 118 of the rotor 107 with the pump pressure and centrifugal force to cool the stator 106.
  • the lubricating oil discharged from the oil hole 118 of the rotor 107 is discharged to the oil tank 120 from the oil passage 119 at the lower part of the casing along the inner wall surface of the casing 102.
  • the above-described conventional in-wheel motor drive device 101 must be housed in the wheel of the vehicle, and it is necessary to suppress the unsprung weight. Further, in order to secure a large cabin space, the downsizing can be performed. It is an essential requirement. Due to the downsizing of the in-wheel motor drive device itself, it is difficult to secure a sufficient volume for the oil tank 120 disposed below the casing 102. Will accumulate.
  • the lubricating oil is a viscous fluid and the rotor 107 rotates at a high speed of 15,000 min ⁇ 1 or more, as shown in FIG. 12, the lubricating oil contacting the rotor 107 (shaded in the figure) Lubricating oil in the region ⁇ ) is dragged in the rotational direction of the rotor 107 and scraped up. Further, when the rotational speed of the rotor 107 increases, the amount of lubricating oil that contacts the rotor 107 increases, and the load acting between the rotor 107 and the lubricating oil also increases due to the viscosity of the lubricating oil. Resistance increases.
  • the lubricating oil stored in the motor unit 103 is scraped up in the rotational direction of the rotor 107 (see the solid line arrow in the figure), and the oil level M becomes horizontal. Will be greatly inclined.
  • the oil tank 120 disposed below the casing 102 corresponds to the vehicle traveling direction in order to cope with the suspension configuration of the vehicle, the unevenness of the lubricating oil due to inertia during acceleration and deceleration of the vehicle, and the oil level change during climbing. It is arranged behind (right side in the figure). For this reason, as described above, when the oil level M of the lubricating oil is greatly inclined, the lubricating oil is difficult to flow into the oil tank 120.
  • the amount of the lubricating oil in the oil tank 120 decreases as the rotary pump 115 rotates.
  • the amount of lubricating oil discharged from the rotary pump 115 decreases, and it may become difficult for the rotary pump 115 to discharge the required amount of lubricating oil by the motor unit 103 and the speed reducer unit 105.
  • the present invention has been proposed in view of the above-described problems, and the object of the present invention is to improve the lubrication performance in the motor unit, thereby improving the quality and durability of the in-wheel motor drive device. Is to provide.
  • the present invention provides an in-wheel motor drive device including a motor unit, a wheel bearing unit, a casing, and a lubrication mechanism for supplying lubricating oil to the motor unit.
  • the motor unit is composed of a stator fixed to the casing and a rotor provided on the motor rotation shaft, and a shielding plate for reducing agitation resistance of lubricating oil generated by rotation of the rotor is provided in the motor unit. It is characterized by that.
  • the stirring resistance of the lubricating oil generated by the rotation of the rotor can be reduced.
  • the agitation resistance of the lubricating oil it is possible to reduce the inclination of the oil surface of the lubricating oil stored in the motor part, so that the lubricating oil stored in the motor part can easily flow into the oil tank.
  • the amount of discharge of the rotary pump can be secured, and the lubrication performance of the motor unit in the in-wheel motor drive device can be improved.
  • the motor unit according to the present invention is composed of a rotor that is opposed to the stator in the radial direction with a gap, and has oil holes for discharging the lubricating oil supplied by the lubrication mechanism on the inboard side and the outboard side of the rotor.
  • the shielding plate is preferably configured to be fixed to the casing in a state of being disposed in close proximity so as to face at least one of the oil holes of the rotor. In this way, by restricting the amount of lubricating oil dragged by the rotation of the rotor to the lubricating oil interposed between the rotor and the shielding plate, the dragging of the lubricating oil can be easily reduced.
  • the side closer to the outside of the vehicle is defined as the outboard side
  • the side closer to the center of the vehicle is defined as the inboard side.
  • the shielding plate in the present invention has a configuration in which a large number of small holes are formed in the shape of dots. If it does in this way, it will become easy to flow the lubricating oil which exists in the rotor side of a shielding board to the anti-rotor side of a shielding board via a small hole, and can reduce the stirring resistance of lubricating oil further.
  • the shielding plate in the present invention has a half donut shape facing the lower half of the rotor.
  • the lubricating oil stored inside the motor unit has a lower oil level than the lower half of the rotor, so that the shielding plate can be configured with the minimum necessary size.
  • the shielding plate in the present invention is preferably made of an insulating material. In this way, it becomes easy to dispose the shielding plate close to the rotor.
  • the lubrication mechanism in the present invention preferably has a pump and an oil tank for pumping the lubricating oil. If it does in this way, lubricating oil can be easily supplied to a motor part.
  • the stirring resistance of the lubricating oil generated by the rotation of the rotor can be reduced.
  • the agitation resistance of the lubricating oil it is possible to reduce the inclination of the oil surface of the lubricating oil stored in the motor part, so that the lubricating oil stored in the motor part can easily flow into the oil tank.
  • the discharge amount of the rotary pump can be secured. As a result, the performance of the motor unit in the in-wheel motor drive device can be improved, and an in-wheel motor drive device with high quality and excellent durability can be realized.
  • FIG. 1 is a longitudinal sectional view showing an overall configuration of an in-wheel motor drive device in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line PP in FIG. 1. It is a principal part expanded sectional view which shows the reduction gear part of FIG. It is explanatory drawing which shows the load which acts on the curve board of FIG. It is a cross-sectional view which shows the rotary pump of FIG. It is the figure which looked at the shielding board of FIG. 1 from the axial direction. It is a principal part expanded sectional view which shows the inside of the motor part of FIG.
  • FIG. 2 is a cross-sectional view taken along line QQ in FIG. 1. It is a top view which shows schematic structure of the electric vehicle carrying an in-wheel motor drive device.
  • FIG. 1 is a longitudinal sectional view showing an overall configuration of an in-wheel motor drive device in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line PP in FIG. 1. It is
  • FIG. 10 is a rear sectional view showing the electric vehicle of FIG. 9. It is a longitudinal cross-sectional view which shows the whole structure of the conventional in-wheel motor drive device. It is a principal part expanded sectional view which shows the inside of the motor part of FIG.
  • FIG. 12 is a cross-sectional view taken along the line RR in FIG. 11.
  • FIG. 9 is a schematic plan view of the electric vehicle 11 on which the in-wheel motor drive device 21 is mounted
  • FIG. 10 is a schematic cross-sectional view of the electric vehicle 11 as viewed from the rear.
  • the electric vehicle 11 includes a chassis 12, a front wheel 13 as a steering wheel, a rear wheel 14 as a drive wheel, and an in-wheel motor drive device 21 that transmits driving force to the rear wheel 14.
  • the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower part of the chassis 12 via a suspension device (suspension) 12b.
  • the suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body when turning, etc., is provided at the connecting portion of the left and right suspension arms.
  • the suspension device 12b is an independent suspension type in which the left and right wheels can be moved up and down independently in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface.
  • the electric vehicle 11 is provided with the in-wheel motor drive device 21 that drives the left and right rear wheels 14 inside the wheel housing 12a, thereby eliminating the need to provide a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. Therefore, there is an advantage that a wide cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled.
  • the in-wheel motor drive device 21 is required to be downsized in order to secure a large cabin space.
  • the in-wheel motor drive device 21 of this embodiment has the following structure. 1 is a longitudinal sectional view showing a schematic configuration of an in-wheel motor drive device 21, FIG. 2 is a sectional view taken along line PP in FIG. 1, FIG. 3 is an enlarged sectional view showing a reduction gear section B, and FIG. FIG. 5 is a cross-sectional view showing the rotary pump 51. FIG. 5 is an explanatory view showing the load acting on the plate 26a. Before describing the characteristic configuration of this embodiment, the overall configuration of the in-wheel motor drive device 21 will be described.
  • the in-wheel motor drive device 21 includes a motor part A that generates a driving force, a speed reducer part B that decelerates and outputs the rotation of the motor part A, and an output from the speed reducer part B.
  • a wheel bearing portion C that transmits to a rear wheel 14 (see FIGS. 9 and 10) serving as a drive wheel is provided.
  • the motor portion A and the speed reducer portion B are housed in a casing 22, and the wheel housing 12a of the electric vehicle 11 is provided. (See FIG. 10).
  • the casing 22 is a divided structure including a motor housing in which the motor part A is accommodated and a speed reducer housing in which the speed reducer part B is accommodated, and is fastened and integrated by bolts.
  • the motor portion A is a stator 23a fixed to the casing 22, a rotor 23b disposed to face the inner side in the radial direction of the stator 23a with a gap, and a radial inner side of the rotor 23b so as to rotate integrally with the rotor 23b.
  • a radial gap motor including a motor rotating shaft 24.
  • the stator 23a is configured by winding a coil 23d around the outer periphery of a magnetic core 23c, and the rotor 23b is configured by a permanent magnet or a magnetic material.
  • the rotor 23b rotates at a high speed of 15,000 min ⁇ 1 or more by energizing the coil 23d of the stator 23a.
  • the rotor 23b of the motor rotating shaft 24 is held by a holder portion 24d that extends integrally outward in the radial direction.
  • the holder portion 24d has a configuration in which a concave groove in which the rotor 23b is fitted and fixed is formed in an annular shape.
  • the motor rotating shaft 24 is rotatable with respect to the casing 22 by one end in the axial direction (right side in FIG. 1) on the rolling bearing 36a and the other end in the axial direction (left side in FIG. 1) by the rolling bearing 36b. It is supported by.
  • the reduction gear input shaft 25 has a substantially central portion on the one side in the axial direction (right side in FIG. 1) as a rolling bearing 37a and an end portion on the other side in the axial direction (left side in FIG. 1) as a rolling bearing 37b. Is supported so as to be freely rotatable.
  • the reduction gear input shaft 25 has eccentric portions 25 a and 25 b in the reduction gear portion B.
  • the two eccentric portions 25a and 25b are provided with a 180 ° phase shift in order to cancel the centrifugal force due to the eccentric motion.
  • the reduction gear input shaft 25 and the above-described motor rotation shaft 24 are connected by spline fitting, and the driving force of the motor part A is transmitted to the reduction gear part B.
  • the speed reducer portion B includes curved plates 26a and 26b as revolving members that are rotatably held by the eccentric portions 25a and 25b of the speed reducer input shaft 25, and a plurality of outer portions that engage with the outer peripheral portions of the curved plates 26a and 26b.
  • a pin 27, a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a, 26b to the speed reducer output shaft 28, and a counterweight 29 provided on the speed reducer input shaft 25 adjacent to the eccentric portions 25a, 25b are provided. .
  • the reduction gear output shaft 28 has a flange portion 28a and a shaft portion 28b.
  • a plurality of inner pins 31 are fixed to the flange portion 28a at equal intervals on a circumference centered on the rotational axis of the reduction gear output shaft 28.
  • the shaft portion 28 b is connected to a hub wheel 32 as an inner member of the wheel bearing portion C so as to be able to transmit torque by spline fitting, and transmits the output of the speed reducer portion B to the rear wheel 14.
  • the reduction gear output shaft 28 is rotatably supported on the outer pin housing 60 by a rolling bearing 46.
  • the curved plates 26 a and 26 b have a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer periphery, and through holes that penetrate from one end face to the other end face 30a and 30b.
  • a plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plates 26a, 26b, and receive the inner pin 31 described above.
  • the through hole 30b is provided at the center of the curved plates 26a and 26b and is fitted to the eccentric portions 25a and 25b.
  • the curved plates 26a and 26b are supported by the rolling bearing 41 so as to be rotatable with respect to the eccentric portions 25a and 25b.
  • the rolling bearing 41 is formed directly on the inner peripheral surface of the inner ring 42 that is fitted to the outer peripheral surfaces of the eccentric portions 25a and 25b and has the inner raceway surface 42a formed on the outer peripheral surface, and the through holes 30b of the curved plates 26a and 26b.
  • the cylindrical roller bearing includes an outer raceway surface 43, a plurality of cylindrical rollers 44 disposed between the inner raceway surface 42 a and the outer raceway surface 43, and a cage 45 that holds the cylindrical rollers 44.
  • the inner ring 42 has flange portions 42b that protrude radially outward from both axial end portions of the inner raceway surface 42a.
  • the outer pins 27 are provided at equal intervals on the circumference around the rotation axis of the speed reducer input shaft 25.
  • the outer pin 27 is rotatably held by the outer pin housing 60 by a needle roller bearing 27a, and the outer pin housing 60 is attached to the casing 22 in a floating state (not shown) that is prevented from rotating and elastically supported. . Thereby, the contact resistance between the curved plates 26a and 26b can be reduced.
  • the counterweight 29 is substantially fan-shaped and has a through hole that engages with the speed reducer input shaft 25.
  • the counterweights 29a and 25b The eccentric portions 25a and 25b are arranged 180 ° out of phase with each other at adjacent positions. Assuming that the center point in the rotational axis direction between the two curved plates 26a and 26b is G (see FIG. 3), the distance between the central point G and the center of the curved plate 26a is L 1 on the right side of the central point G.
  • the motion conversion mechanism includes a plurality of inner pins 31 that are held by the speed reducer output shaft 28 and extend in the axial direction, and through holes 30a provided in the curved plates 26a and 26b.
  • the inner pins 31 are provided at equal intervals on the circumference centering on the rotational axis of the reduction gear output shaft 28, and one axial end thereof is fixed to the flange 28 a of the reduction gear output shaft 28. Yes. Further, in order to reduce the frictional resistance with the curved plates 26a, 26b, needle roller bearings 31a are provided at positions where they contact the inner wall surfaces of the through holes 30a of the curved plates 26a, 26b.
  • the through hole 30a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter dimension of the through hole 30a is larger than the outer diameter dimension of the inner pin 31 (the maximum outer diameter including the needle roller bearing 31a) by a predetermined dimension. Is set.
  • the stabilizer 31b is provided in the axial direction other side edge part of the inner pin 31. As shown in FIG.
  • the stabilizer 31b includes an annular ring portion 31c and a cylindrical portion 31d extending in the axial direction from the inner peripheral surface of the annular portion 31c.
  • the ends on the other axial side of the plurality of inner pins 31 are fixed to the annular portion 31c. Since the load applied to some of the inner pins 31 from the curved plates 26a, 26b is supported by all the inner pins 31 via the flanges 28a and the stabilizers 31b, the stress acting on the inner pins 31 is reduced, and the durability is improved. Can be improved.
  • Axis O 2 of the eccentric portion 25a is eccentric by the eccentricity e from the axis O of the reduction gear input shaft 25.
  • the outer periphery of the eccentric portion 25a is attached is curved plates 26a, the eccentric part 25a is so rotatably supports the curve plate 26a, the axial center O 2 is also the axis of the curved plate 26a.
  • the outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated concave portions 26c that are depressed in the radial direction at equal intervals in the circumferential direction.
  • a plurality of outer pins 27 that engage with the recesses 26c are arranged in the circumferential direction around the axis O.
  • the curved plates 26a through hole 30a has a plurality circumferentially disposed about the axis O 2.
  • An inner pin 31 that is coupled to the reduction gear output shaft 28 that is disposed coaxially with the axis O is inserted through each through hole 30a. Since the inner diameter of the through-hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolving motion of the curved plate 26a, and the inner pin 31 extracts the rotational motion of the curved plate 26a.
  • the reduction gear output shaft 28 is rotated.
  • the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. .
  • the resultant force Fs of the plurality of loads Fi and Fj is applied to the speed reducer input shaft 25.
  • the direction of the resultant force Fs changes depending on geometrical conditions such as the corrugated shape of the curved plate 26a, the number of concave portions 26c, and the influence of centrifugal force.
  • the angle ⁇ between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the rotation axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. Fluctuates.
  • the directions and magnitudes of the loads Fi and Fj change during one rotation (360 °) of the speed reducer input shaft 25.
  • the resultant force Fs acting on the speed reducer input shaft 25 is also different from the direction of the load.
  • the size varies.
  • the wheel bearing 33 of the wheel bearing portion C is fitted to a hub wheel 32 in which an inner raceway surface 33 f is directly formed on the outer peripheral surface and a small diameter step portion 32 a on the outer peripheral surface of the hub wheel 32.
  • the inner ring 33a having the inner raceway surface 33g formed on the outer peripheral surface constitutes an inner member, fitted and fixed to the inner peripheral surface of the casing 22, and the outer raceway surfaces 33h and 33i are formed on the inner peripheral surface.
  • the rear wheel 14 is connected and fixed to the hub wheel 32 of the wheel bearing 33 by a bolt 34.
  • the lubrication mechanism supplies lubricating oil to the motor part A and cools the reducing part B to cool the motor part A.
  • the lubrication mechanism includes a rotary pump 51, oil passages 22a, 24a, 24b and an oil hole 24c provided in the motor part A, an oil passage 25c provided in the reduction gear part B, and The oil holes 25d and 25e and the oil tank 22d disposed below the casing 22 are mainly configured.
  • the suction port 55 and the discharge port 56 of the rotary pump 51 described above are provided in the motor housing of the casing 22.
  • the oil tank 22 d is provided integrally with the motor housing of the casing 22.
  • the oil passage 22a provided in the casing 22 extends radially outward from the rotary pump 51, bends in the axial direction, further bends, extends radially inward, and is connected to the oil passage 24a.
  • the oil passage 24a extends along the axial direction inside the motor rotating shaft 24 and is connected to the oil passage 25c.
  • the oil passage 24b of the motor rotating shaft 24 communicates with an oil passage 24a extending along the axial direction, and extends toward the holder portion 24d located on the radially outer side to communicate with a gap 24e with the rotor 23b.
  • the oil hole 24c is formed in the end face of the holder part 24d on the inboard side and the outboard side, communicates with the gap 24e between the holder part 24d and the rotor 23b, and opens inside the motor part A.
  • the oil passage 25c extends along the axial direction inside the reduction gear input shaft 25.
  • the oil hole 25d communicates with an oil passage 25c extending along the axial direction, extends toward the outer peripheral surface of the speed reducer input shaft 25, and opens inside the speed reducer portion B.
  • the oil hole 25e communicates with an oil passage 25c extending along the axial direction, and opens from the shaft end of the speed reducer input shaft 25 to the inside of the speed reducer part B.
  • an oil passage 22b communicating with the inside of the motor part A and the inside of the speed reducer part B is provided, and the bottom part of the casing 22 at the position of the motor part A Is provided with an oil passage 22f for discharging the lubricating oil inside the motor part A to the oil tank 22d.
  • the oil tank 22d is rearward in the vehicle traveling direction at a position below the casing 22 in order to cope with a suspension configuration of the vehicle, a deviation of lubricating oil due to inertia during acceleration and deceleration of the vehicle, and an oil level change during climbing (FIG. 8). It is arranged on the right side of).
  • an oil passage 22 e for returning the lubricating oil from the oil tank 22 d to the rotary pump 51 is provided in the casing 22.
  • the rotary pump 51 for forcibly circulating the lubricating oil is provided between the oil passage 22e and the oil passage 22a of the casing 22.
  • the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the speed reducer output shaft 28 (see FIG. 1), an outer rotor 53 that rotates following the rotation of the inner rotor 52, and a pump chamber. 54, a cycloid pump including a suction port 55 communicating with the oil passage 22e and a discharge port 56 communicating with the oil passage 22a.
  • the inner rotor 52 has a tooth profile composed of a cycloid curve on the outer peripheral surface. Specifically, the shape of the tooth tip portion 52a is an epicycloid curve, and the shape of the tooth gap portion 52b is a hypocycloid curve.
  • the inner rotor 52 is fitted to the outer peripheral surface of a cylindrical portion 31d (see FIGS. 1 and 3) provided in the stabilizer 31b and rotates integrally with the speed reducer output shaft 28.
  • the outer rotor 53 has a tooth profile formed of a cycloid curve on the inner peripheral surface. Specifically, the shape of the tooth tip portion 53a is a hypocycloid curve, and the shape of the tooth gap portion 53b is an epicycloid curve.
  • the outer rotor 53 is rotatably supported by the casing 22.
  • Inner rotor 52 rotates around a rotation center c 1
  • the outer rotor 53 rotates around a rotation center c 2. Since the inner rotor 52 and the outer rotor 53 rotate about different rotation centers c 1 and c 2 , the volume of the pump chamber 54 changes continuously. As a result, the lubricating oil flowing in from the suction port 55 is pumped from the discharge port 56 to the oil passage 22a.
  • the white arrow given in the lubrication mechanism indicates the flow of the lubricating oil.
  • the lubricating oil pumped from the rotary pump 51 passes through the oil passages 22a and 24a, and a part of the lubricating oil is supplied with the oil passage 24b and the gap 24e by the centrifugal force and the pump pressure accompanying the rotation of the motor rotating shaft 24. Then, the rotor 23b is cooled. Furthermore, lubricating oil is discharged from the oil holes 24c of the holder portion 24d to cool the stator 23a. In this way, the motor part A is cooled.
  • the lubricating oil pumped from the rotary pump 51 passes through the oil passages 22a, 24a, 25c, and a part thereof is caused by the centrifugal force and the pump pressure accompanying the rotation of the speed reducer input shaft 25.
  • the oil is discharged from the oil holes 25d and 25e to the speed reducer part B.
  • the lubricating oil discharged from the oil hole 25d is supplied into the bearing from an oil hole 42c (see FIG. 3) provided in the inner ring 42 of the cylindrical roller bearing 41 that supports the curved plates 26a and 26b.
  • the lubricating oil that has cooled the motor part A and lubricated the speed reducer part B travels down the inner wall surface of the casing 22 due to gravity.
  • the lubricating oil that has moved to the lower part of the speed reducer part B moves from the oil passage 22b to the motor part A.
  • the lubricating oil that has moved to the lower part of the motor part A is discharged from the oil passage 22f together with the lubricating oil from the speed reducer part B, and is temporarily stored in the oil tank 22d.
  • the oil tank 22d is provided, even if lubricating oil that cannot be completely discharged by the rotary pump 51 is temporarily generated, it can be stored in the oil tank 22d. As a result, an increase in torque loss of the reduction gear unit B can be prevented.
  • the overall configuration of the in-wheel motor drive device 21 in this embodiment is as described above, and the characteristic configuration will be described in detail below.
  • the idea was to provide the motor part A with a shielding plate 70 that reduces the stirring resistance of the lubricating oil generated by the rotation of the rotor 23b.
  • the shielding plate 70 has a semi-doughnut shape, and an attachment hole 71 is provided in the inner periphery thereof, and a large number of small holes 72 are formed in a dotted shape over the entire surface excluding the attachment part. ing.
  • the shielding plate 70 is fixed to the inner wall surface of the casing 22 by screwing using an attachment hole 71 in the inner periphery thereof. By this attachment, the shielding plate 70 is disposed close to the lower half of the rotor 23b so as to face the oil hole 24c of the holder portion 24d.
  • the material of the shielding plate 70 may be either a non-magnetic metal or an insulating resin.
  • the two shielding plates 70 are arranged on both the inboard side and the outboard side of the holder portion 24d of the rotor 23b, but only on either the inboard side or the outboard side.
  • One shielding plate 70 may be disposed.
  • the in-wheel motor drive device 21 must be housed in the wheel of the vehicle, it is necessary to suppress the unsprung weight, and further downsizing is an essential requirement in order to secure a large cabin space. Due to the downsizing of the in-wheel motor drive device itself, it is difficult to secure a sufficient volume for the oil tank 22d disposed below the casing 22, so that the lubricating oil is contained inside the motor part A. Will accumulate.
  • the lubricating oil is a viscous fluid and the rotor 23b rotates at a high speed of 15,000 min ⁇ 1 or more, the lubricating oil that contacts the holder portion 24d of the rotor 23b is dragged in the rotational direction of the rotor 23b. It is scraped up.
  • the shielding plate 70 since the shielding plate 70 is disposed close to the holder portion 24d of the rotor 23b, the amount of lubricating oil dragged by the rotation of the rotor 23b is reduced to the holder portion 24d of the rotor 23b. Is limited to the lubricating oil (lubricating oil in the shaded region ⁇ in FIG. 7) interposed between the shielding plate 70 and the conventional in-wheel motor drive device 101 (see FIG. 12). The drag of the lubricating oil can be reduced.
  • the shielding plate 70 of this embodiment has a large number of small holes 72 formed in the form of dots, the shielding plate 70 is discharged from the oil holes 24c of the holder portion 24d of the rotor 23b as shown in FIG.
  • Lubricating oil existing on the rotor side of the rotor easily flows through the small holes 72 to the inside of the motor part A on the side opposite to the rotor of the shielding plate 70.
  • the amount of lubricating oil interposed between the holder portion 24d of the rotor 23b and the shielding plate 70 does not increase, which contributes to reduction of lubricating oil drag and reduction of stirring resistance.
  • the shielding plate 70 is shielded by forming a half donut shape facing the lower half of the rotor 23b.
  • the plate 70 can be configured with the minimum necessary size.
  • the shielding plate 70 When the shielding plate 70 is disposed close to the holder portion 24d of the rotor 23b in the axial direction, it is necessary to consider the axial deflection of the rotor 23b that rotates at high speed. What is necessary is just to set the axial clearance between the holder part 24d of the rotor 23b and the shielding plate 70 to such an extent that interference with the rotor 23b due to the axial deflection of the rotor 23b can be avoided.
  • the outer peripheral portion of the shielding plate 70 is also arranged close to the coil 23d of the stator 23a.
  • the material of the shielding plate 70 is a non-magnetic metal, it is necessary to set the radial clearance between the stator 23a and the coil 23d to a minimum dimension that prevents current from flowing through the shielding plate 70. For this reason, it is effective that the material of the shielding plate 70 is an insulating resin. If the shielding plate 70 is made of resin, it becomes easy to place the shielding plate 70 close to the coil 23d of the stator 23a, and the restriction of the lubricating oil interposed between the holder portion 24d of the rotor 23b and the shielding plate 70 is ensured. It becomes.
  • the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a, and the rotor 23b made of a permanent magnet or a magnetic material rotates. .
  • the reduction gear input shaft 25 connected to the motor rotation shaft 24 rotates
  • the curved plates 26 a and 26 b revolve around the rotation axis of the reduction gear input shaft 25.
  • the outer pin 27 engages with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the speed reducer input shaft 25.
  • the inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate.
  • the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28.
  • the rotation of the speed reducer input shaft 25 is decelerated by the speed reducer portion B and transmitted to the speed reducer output shaft 28, even when the low torque, high speed type motor portion A is employed, the rear wheel 14 The necessary torque can be transmitted.
  • the reduction ratio of the reduction gear B is calculated as (Z A ⁇ Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b.
  • a very large reduction ratio of 1/11 can be obtained.
  • the reduction gear unit B that can obtain a large reduction ratio without using a multistage configuration, a compact and high reduction ratio in-wheel motor drive device 21 can be obtained.
  • the needle roller bearings 27a and 31a are provided on the outer pin 27 and the inner pin 31, the frictional resistance between the curved plates 26a and 26b is reduced. Transmission efficiency is improved.
  • the oil passage 24b is provided in the motor rotating shaft 24, the oil hole 25d is provided in the eccentric portions 25a and 25b, and the oil hole 25e is provided in the shaft end of the speed reducer input shaft 25.
  • the present invention is not limited to this, and the motor rotation shaft 24 and the reduction gear input shaft 25 can be provided at arbitrary positions.
  • the example of the cycloid pump was shown as the rotary pump 51, not only this but the rotary pump driven using the rotation of the reduction gear output shaft 28 is employable. Further, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
  • the example in which two curved plates 26a and 26b of the speed reducer part B are provided with a 180 ° phase shift has been shown.
  • the number of curved plates can be arbitrarily set.
  • the motion conversion mechanism has shown the example comprised by the inner pin 31 fixed to the reduction gear output shaft 28, and the through-hole 30a provided in the curve boards 26a and 26b, it was not restricted to this but a reduction gear It is possible to adopt an arbitrary configuration that can transmit the rotation of the part B to the hub wheel 32.
  • it may be a motion conversion mechanism constituted by an inner pin fixed to the curved plates 26a and 26b and a hole formed in the reduction gear output shaft 28.
  • a radial gap motor is adopted as the motor part A, but the present invention is not limited to this, and a motor having an arbitrary configuration can be applied.
  • it may be an axial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the stator with an axial gap inside the stator.
  • the electric vehicle 11 shown in FIG. 9 and FIG. 10 shows an example in which the rear wheel 14 is a driving wheel.
  • the present invention is not limited to this, and the front wheel 13 may be a driving wheel. May be.
  • “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Power Transmission Devices (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

 モータ部Aと、減速機部Bと、車輪用軸受部Cと、ケーシング22と、モータ部Aおよび減速機部Bに潤滑油を供給する潤滑機構とを備え、モータ部Aのモータ回転軸24が偏心部25a,25bを有する減速機入力軸25を回転駆動し、減速機部Bが減速機入力軸25の回転を減速して減速機出力軸28に伝達し、車輪用軸受部Cが減速機出力軸28に連結されたインホイールモータ駆動装置21であって、モータ部Aは、ケーシング22に固定されたステータ23aと、モータ回転軸24に設けられたロータ23bとで構成され、ロータ23bの回転により発生する潤滑油の撹拌抵抗を低減する遮蔽板70をモータ部Aに設ける。

Description

インホイールモータ駆動装置
 本発明は、例えば、電動モータの出力軸と車輪用軸受とを減速機を介して連結したインホイールモータ駆動装置に関する。
 従来のインホイールモータ駆動装置は、例えば、特許文献1に開示された構造のものがある。この特許文献1に開示されたインホイールモータ駆動装置101は、図11に示すように、懸架装置(サスペンション)を介して車体に取り付けられるケーシング102の内部で駆動力を発生させるモータ部103と、車輪に接続される車輪用軸受部104と、モータ部103と車輪用軸受部104との間に配置され、モータ部103の回転を減速して車輪用軸受部104に伝達する減速機部105とを備えている。
 前述の構成からなるインホイールモータ駆動装置101において、装置のコンパクト化の観点から、モータ部103には低トルクで高回転の小型モータが採用されている。このモータ部103は、ケーシング102に固定されたステータ106と、そのステータ106の径方向内側に隙間をもって対向配置されたロータ107と、そのロータ107の径方向内側に配置されてロータ107と一体回転するモータ回転軸108とを備えるラジアルギャップモータである。
 一方、車輪用軸受部104で車輪を駆動するために大きなトルクが必要となることから、減速機部105には、コンパクトで高い減速比が得られるサイクロイド減速機が採用されている。サイクロイド減速機は、一対の偏心部109a,109bを有する減速機入力軸110と、減速機入力軸110の偏心部109a,109bに配置される一対の曲線板111a,111bと、曲線板111a,111bの外周面に係合して曲線板111a,111bに自転運動を生じさせる複数の外ピン112と、曲線板111a,111bの貫通孔の内周面に係合して曲線板111a,111bの自転運動を減速機出力軸113に伝達する複数の内ピン114とで主要部が構成されている。
 特許文献1で開示されたインホイールモータ駆動装置101では、モータ部103および減速機部105に潤滑油を供給する潤滑機構が設けられている。潤滑機構は、潤滑油を圧送するための回転ポンプ115を備え、潤滑油がモータ部103および減速機部105の内部を循環する構造を有する。回転ポンプ115からモータ部103の内部を循環する潤滑機構は、回転ポンプ115、ケーシング上部の油路116、モータ回転軸108の油路117、ロータ107の油孔118、ケーシング下部の油路119、油タンク120およびケーシング下部の油路121を主な構成としている。潤滑機構内に付した白抜き矢印は潤滑油の流れを示す。
 前記構成からなる潤滑機構では、回転ポンプ115が回転すると、油タンク120に貯溜した潤滑油が、ケーシング下部の油路121から回転ポンプ115に吸い込まれてモータ部103の内部に供給される。回転ポンプ115から圧送された潤滑油は、ケーシング上部の油路116およびモータ回転軸108の油路117を通り、ポンプ圧力および遠心力でもってロータ107の油孔118から吐出してステータ106を冷却する。ステータ106の冷却後、ロータ107の油孔118から吐出した潤滑油は、ケーシング102の内壁面を伝ってケーシング下部の油路119から油タンク120へ排出される。
特開2011-189919号公報
 ところで、前述した従来のインホイールモータ駆動装置101は、車両のホイール内部に収めなければならず、また、ばね下重量を押さえる必要があり、さらに、広い客室スペースを確保するために、小型化が必須の要件となる。このようなインホイールモータ駆動装置自体の小型化のため、ケーシング102の下方に配置された油タンク120について十分な容積を確保することが困難であることから、モータ部103の内部に潤滑油が貯溜することになる。
 ここで、モータ部103および減速機部105で必要な潤滑油量を確保するため、潤滑油の封入量を多くすると、図11に示すように、モータ部103の内部に貯溜する潤滑油の油面Mが高くなってロータ107の一部が潤滑油に浸漬することになる。また、回転ポンプ115は減速機出力軸113と同期して回転するため、モータ起動直後、モータ回転速度の増加と共に回転ポンプ115の回転速度も増加し、回転ポンプ115から吐出する潤滑油量も増加する。そのため、ロータ107の油孔118から吐出する潤滑油量も増加する。
 また、潤滑油は粘性のある流体であり、しかも、ロータ107が15,000min-1以上の高速で回転するため、図12に示すように、ロータ107に接触する潤滑油(図中の網掛け領域αにある潤滑油)は、ロータ107の回転方向に引き摺られて掻き上げられる。また、ロータ107の回転速度が増加すると、ロータ107に接触する潤滑油量が増加すると共に、潤滑油の粘性によりロータ107と潤滑油との間に作用する荷重も増加するため、潤滑油の撹拌抵抗が増加する。
 この撹拌抵抗の増加により、図13に示すように、モータ部103の内部に貯溜する潤滑油は、ロータ107の回転方向(図中の実線矢印参照)に掻き上げられて油面Mが水平よりも大きく傾くことになる。ここで、ケーシング102の下方に配置された油タンク120は、車両のサスペンション構成や、車両の加速および減速時の慣性による潤滑油の偏り、登坂時の油面変化に対応するため、車両進行方向の後方(図中の右側寄り)に配置されている。このことから、前述したように潤滑油の油面Mが大きく傾くと、潤滑油が油タンク120に流れ込み難くなる。
 このように、モータ部103の内部に貯溜する潤滑油が油タンク120に流れ込み難くなると、回転ポンプ115の回転に伴って油タンク120での潤滑油量が減少することになる。その結果、回転ポンプ115から吐出される潤滑油量が減少し、回転ポンプ115は、モータ部103および減速機部105で必要な潤滑油量を吐出することが困難となる可能性がある。
 そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、モータ部での潤滑性能を改善することにより、高品質で耐久性に優れたインホイールモータ駆動装置を提供することにある。
 前述の目的を達成するための技術的手段として、本発明は、モータ部と、車輪用軸受部と、ケーシングと、モータ部に潤滑油を供給する潤滑機構とを備えたインホイールモータ駆動装置であって、モータ部は、ケーシングに固定されたステータと、モータ回転軸に設けられたロータとで構成され、ロータの回転により発生する潤滑油の撹拌抵抗を低減する遮蔽板をモータ部に設けたことを特徴とする。
 本発明では、モータ部に設けられた遮蔽板により、ロータに接触する潤滑油の引き摺りを低減することができるので、ロータの回転で発生する潤滑油の撹拌抵抗を低減することができる。このように、潤滑油の撹拌抵抗を低減することにより、モータ部の内部に貯溜する潤滑油の油面の傾きも小さくできるので、モータ部の内部に貯溜する潤滑油が油タンクに流れ込み易くなり、回転ポンプの吐出量を確保でき、インホイールモータ駆動装置におけるモータ部の潤滑性能を改善することができる。
 本発明におけるモータ部は、ステータの径方向内側に隙間をもって対向配置されたロータからなり、そのロータのインボード側およびアウトボード側に、潤滑機構により供給された潤滑油を吐出する油孔を備え、遮蔽板は、ロータの油孔の少なくとも一方と対向するように近接配置された状態でケーシングに固定された構成とすることが望ましい。このようにすれば、ロータの回転で引き摺られる潤滑油量をロータと遮蔽板との間に介在する潤滑油に制限することで、潤滑油の引き摺りを容易に低減させることができる。ここで、インホイールモータ駆動装置を車両に組み付けた状態で、車両の外側寄りとなる側をアウトボード側、車両の中央寄りとなる側をインボード側と定義する。
 本発明における遮蔽板は、多数の小孔が散点状に形成された構成とすることが望ましい。このようにすれば、遮蔽板のロータ側に存在する潤滑油が小孔を介して遮蔽板の反ロータ側へ流れ易くなり、潤滑油の撹拌抵抗をより一層低減させることができる。
 本発明における遮蔽板は、ロータの下半分と対向する半ドーナツ状をなす構成とすることが望ましい。このようにすれば、モータ部の内部に貯溜する潤滑油は、ロータの下半分より低い油面となることから、遮蔽板を必要最小限の大きさで構成することができる。
 本発明における遮蔽板は、絶縁材料で構成されていることが望ましい。このようにすれば、遮蔽板をロータに近接配置することが容易となる。
 本発明における潤滑機構は、潤滑油を圧送するためのポンプと油タンクを有していることが望ましい。このようにすれば、モータ部に潤滑油を容易に供給することができる。
 本発明によれば、モータ部に設けられた遮蔽板により、ロータに接触する潤滑油の引き摺りを低減することができるので、ロータの回転で発生する潤滑油の撹拌抵抗を低減することができる。このように、潤滑油の撹拌抵抗を低減することにより、モータ部の内部に貯溜する潤滑油の油面の傾きも小さくできるので、モータ部の内部に貯溜する潤滑油が油タンクに流れ込み易くなり、回転ポンプの吐出量を確保できる。その結果、インホイールモータ駆動装置におけるモータ部の性能を改善することができ、高品質で耐久性に優れたインホイールモータ駆動装置を実現することができる。
本発明の実施形態で、インホイールモータ駆動装置の全体構成を示す縦断面図である。 図1のP-P線に沿う断面図である。 図1の減速機部を示す要部拡大断面図である。 図1の曲線板に作用する荷重を示す説明図である。 図1の回転ポンプを示す横断面図である。 図1の遮蔽板を軸方向から見た図である。 図1のモータ部の内部を示す要部拡大断面図である。 図1のQ-Q線に沿う断面図である。 インホイールモータ駆動装置を搭載した電気自動車の概略構成を示す平面図である。 図9の電気自動車を示す後方断面図である。 従来のインホイールモータ駆動装置の全体構成を示す縦断面図である。 図11のモータ部の内部を示す要部拡大断面図である。 図11のR-R線に沿う断面図である。
 本発明に係るインホイールモータ駆動装置の実施形態を図面に基づいて詳述する。
 図9は、インホイールモータ駆動装置21を搭載した電気自動車11の概略平面図で、図10は、電気自動車11を後方から見た概略断面図である。図9に示すように、電気自動車11は、シャシー12と、操舵輪としての前輪13と、駆動輪としての後輪14と、後輪14に駆動力を伝達するインホイールモータ駆動装置21とを装備する。図10に示すように、後輪14は、シャシー12のホイールハウジング12aの内部に収容され、懸架装置(サスペンション)12bを介してシャシー12の下部に固定されている。
 懸架装置12bは、左右に延びるサスペンションアームによって後輪14を支持すると共に、コイルスプリングとショックアブソーバとを含むストラットによって、後輪14が地面から受ける振動を吸収してシャシー12の振動を抑制する。さらに、左右のサスペンションアームの連結部分には、旋回時などの車体の傾きを抑制するスタビライザが設けられている。懸架装置12bは、路面の凹凸に対する追従性を向上させ、後輪14の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させることができる独立懸架式としている。
 電気自動車11は、ホイールハウジング12aの内部に、左右それぞれの後輪14を駆動するインホイールモータ駆動装置21を設けることによって、シャシー12上にモータ、ドライブシャフトおよびデファレンシャルギヤ機構などを設ける必要がなくなるので、客室スペースを広く確保でき、かつ、左右の後輪14の回転をそれぞれ制御することができるという利点を有する。電気自動車11の走行安定性およびNVH特性を向上させるためにばね下重量を抑える必要があり、さらに、広い客室スペースを確保するためにインホイールモータ駆動装置21の小型化が求められる。
 そこで、この実施形態のインホイールモータ駆動装置21は、以下の構造を具備する。図1はインホイールモータ駆動装置21の概略構成を示す縦断面図、図2は図1のP-P線に沿う断面図、図3は減速機部Bを示す拡大断面図、図4は曲線板26aに作用する荷重を示す説明図、図5は回転ポンプ51を示す横断面図である。なお、この実施形態の特徴的な構成を説明する前にインホイールモータ駆動装置21の全体構成を説明する。
 図1に示すように、インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速機部Bと、減速機部Bからの出力を駆動輪としての後輪14(図9および図10参照)に伝達する車輪用軸受部Cとを備え、モータ部Aと減速機部Bはケーシング22に収納されて、電気自動車11のホイールハウジング12a(図10参照)内に取り付けられる。ケーシング22は、モータ部Aが収容されたモータハウジングと減速機部Bが収容された減速機ハウジングとからなる分割構造で、ボルトにより締結一体化されている。
 モータ部Aは、ケーシング22に固定されたステータ23aと、ステータ23aの径方向内側に隙間をもって対向するように配置されたロータ23bと、ロータ23bの径方向内側に配置されてロータ23bと一体回転するモータ回転軸24とを備えたラジアルギャップモータである。ステータ23aは磁性体コア23cの外周にコイル23dを巻回することによって構成され、ロータ23bは永久磁石または磁性体で構成されている。ロータ23bは、ステータ23aのコイル23dへの通電により15,000min-1以上の高速で回転する。
 モータ回転軸24は、径方向外側へ一体的に延びるホルダ部24dによりロータ23bが保持されている。このホルダ部24dは、ロータ23bが嵌め込み固定された凹溝を環状に形成した構成としている。モータ回転軸24は、その軸方向一方側端部(図1の右側)が転がり軸受36aに、軸方向他方側端部(図1の左側)が転がり軸受36bによって、ケーシング22に対して回転自在に支持されている。
 減速機入力軸25は、その軸方向一方側略中央部(図1の右側)が転がり軸受37aに、軸方向他方側端部(図1の左側)が転がり軸受37bによって、減速機出力軸28に対して回転自在に支持されている。この減速機入力軸25は、減速機部B内に偏心部25a,25bを有する。2つの偏心部25a,25bは、偏心運動による遠心力を互いに打ち消し合うために、180°位相をずらして設けられている。減速機入力軸25と前述のモータ回転軸24とは、スプライン嵌合によって連結されてモータ部Aの駆動力が減速機部Bに伝達される。
 減速機部Bは、減速機入力軸25の偏心部25a,25bに回転自在に保持される公転部材としての曲線板26a,26bと、曲線板26a,26bの外周部に係合する複数の外ピン27と、曲線板26a,26bの自転運動を減速機出力軸28に伝達する運動変換機構と、偏心部25a,25bに隣接して減速機入力軸25に設けられたカウンタウェイト29とを備える。
 減速機出力軸28は、フランジ部28aと軸部28bとを有する。フランジ部28aには、減速機出力軸28の回転軸心を中心とする円周上に複数の内ピン31が等間隔に固定されている。また、軸部28bは車輪用軸受部Cの内方部材としてのハブ輪32にスプライン嵌合によってトルク伝達可能に連結され、減速機部Bの出力を後輪14に伝達する。この減速機出力軸28は、転がり軸受46によって外ピンハウジング60に回転自在に支持されている。
 図2および図3に示すように、曲線板26a,26bは、外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有し、一方側端面から他方側端面に貫通する貫通孔30a,30bを有する。貫通孔30aは、曲線板26a,26bの自転軸心を中心とする円周上に等間隔に複数個設けられており、前述の内ピン31を受け入れる。また、貫通孔30bは、曲線板26a,26bの中心に設けられており、偏心部25a,25bに嵌合する。
 曲線板26a,26bは、転がり軸受41によって偏心部25a,25bに対して回転自在に支持されている。転がり軸受41は、偏心部25a,25bの外周面に嵌合し、外周面に内側軌道面42aが形成された内輪42と、曲線板26a,26bの貫通孔30bの内周面に直接形成された外側軌道面43と、内側軌道面42aと外側軌道面43の間に配置される複数の円筒ころ44と、円筒ころ44を保持する保持器45とを備える円筒ころ軸受である。また、内輪42は、内側軌道面42aの軸方向両端部から径方向外側に突出する鍔部42bを有する。
 外ピン27は、減速機入力軸25の回転軸心を中心とする円周上に等間隔に設けられている。曲線板26a,26bが公転運動すると、曲線形状の波形と外ピン27とが係合して、曲線板26a,26bに自転運動を生じさせる。外ピン27は、針状ころ軸受27aによって外ピンハウジング60に回転自在に保持され、この外ピンハウジング60がケーシング22に回り止めされかつ弾性支持されたフローティング状態(図示省略)で取り付けられている。これにより、曲線板26a,26bとの間の接触抵抗を低減することができる。
 カウンタウェイト29は、略扇形状で、減速機入力軸25と嵌合する貫通孔を有し、曲線板26a,26bの回転によって生じる不釣合い慣性偶力を打ち消すために、偏心部25a,25bと隣接する位置に偏心部25a,25bと180°位相をずらして配置される。2枚の曲線板26a,26b間の回転軸心方向の中心点をG(図3参照)とすると、その中心点Gの右側について、中心点Gと曲線板26aの中心との距離をL、曲線板26a、転がり軸受41および偏心部25aの質量の和をm、曲線板26aの重心の回転軸心からの偏心量をεとし、中心点Gとカウンタウェイト29との距離をL、カウンタウェイト29の質量をm、カウンタウェイト29の重心の回転軸心からの偏心量をεとすると、L×m×ε=L×m×εを満たす関係となっている。L×m×ε=L×m×εの関係は、不可避的に生じる誤差を許容する。中心点Gの左側の曲線板26bとカウンタウェイト29との間にも同様の関係が成立する。
 運動変換機構は、減速機出力軸28に保持されて軸方向に延びる複数の内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成されている。内ピン31は、減速機出力軸28の回転軸心を中心とする円周上に等間隔に設けられており、その軸方向一方側端部が減速機出力軸28のフランジ28aに固定されている。また、曲線板26a,26bとの摩擦抵抗を低減するために、曲線板26a,26bの貫通孔30aの内壁面に当接する位置に針状ころ軸受31aが設けられている。貫通孔30aは、複数の内ピン31それぞれに対応する位置に設けられ、貫通孔30aの内径寸法は、内ピン31の外径寸法(針状ころ軸受31aを含む最大外径)より所定寸法大きく設定されている。
 内ピン31の軸方向他方側端部には、スタビライザ31bが設けられている。スタビライザ31bは、円環形状の円環部31cと、円環部31cの内周面から軸方向に延びる円筒部31dとを含む。複数の内ピン31の軸方向他方側端部は、円環部31cに固定されている。曲線板26a,26bから一部の内ピン31に負荷される荷重はフランジ28aおよびスタビライザ31bを介して全ての内ピン31によって支持されるため、内ピン31に作用する応力を低減させ、耐久性を向上させることができる。
 曲線板26a,26bに作用する荷重の状態を図4に基づいて説明する。偏心部25aの軸心Oは減速機入力軸25の軸心Oから偏心量eだけ偏心している。偏心部25aの外周には、曲線板26aが取り付けられ、偏心部25aは曲線板26aを回転自在に支持するので、軸心Oは曲線板26aの軸心でもある。曲線板26aの外周は波形曲線で形成され、径方向に窪んだ波形の凹部26cを周方向等間隔に有する。曲線板26aの周囲には、凹部26cと係合する外ピン27が、軸心Oを中心として周方向に複数配設されている。
 図4において、減速機入力軸25と共に偏心部25aが紙面上で反時計周りに回転すると、偏心部25aは軸心Oを中心とする公転運動を行うので、曲線板26aの凹部26cが、外ピン27と周方向に順次当接する。この結果、矢印で示すように、曲線板26aは、複数の外ピン27から荷重Fiを受けて、時計回りに自転する。
 また、曲線板26aには貫通孔30aが軸心Oを中心として周方向に複数配設されている。各貫通孔30aには、軸心Oと同軸に配置された減速機出力軸28と結合する内ピン31が挿通する。貫通孔30aの内径は、内ピン31の外径よりも所定寸法大きいため、内ピン31は曲線板26aの公転運動の障害とはならず、内ピン31は曲線板26aの自転運動を取り出して減速機出力軸28を回転させる。このとき、減速機出力軸28は、減速機入力軸25よりも高トルクかつ低回転数になり、図4に矢印で示すように、曲線板26aは、複数の内ピン31から荷重Fjを受ける。これら複数の荷重Fi,Fjの合力Fsが減速機入力軸25にかかる。
 合力Fsの方向は、曲線板26aの波形形状、凹部26cの数などの幾何学的条件や遠心力の影響により変化する。具体的には、自転軸心Oと軸心Oとを結ぶ直線Yと直角であって自転軸心Oを通過する基準線Xと、合力Fsとの角度αは概ね30°~60°で変動する。複数の荷重Fi、Fjは、減速機入力軸25が1回転(360°)する間に荷重の方向や大きさが変り、その結果、減速機入力軸25に作用する合力Fsも荷重の方向や大きさが変動する。減速機入力軸25が反時計周りに1回転すると、曲線板26aの波形の凹部26cが減速されて1ピッチ時計回りに回転して図4の状態になり、これを繰り返す。
 図1に示すように、車輪用軸受部Cの車輪用軸受33は、外周面に内側軌道面33fが直接形成されたハブ輪32と、ハブ輪32の外周面の小径段部32aに嵌合され、外周面に内側軌道面33gが形成された内輪33aとで内方部材を構成し、ケーシング22の内周面に嵌合固定され、内周面に外側軌道面33h、33iが形成された外輪33bと、ハブ輪32および内輪33aの内側軌道面33f,33gおよび外輪33bの外側軌道面33h,33iの間に配置された転動体としての複数の玉33cと、隣接する玉33cの間隔を保持する保持器33dと、車輪用軸受33の軸方向両端部を密封するシール部材33eとを備えた複列アンギュラ玉軸受である。この車輪用軸受33のハブ輪32にボルト34で後輪14が連結固定される。
 次に、全体的な潤滑機構を説明する。この潤滑機構は、モータ部Aを冷却するためにモータ部Aに潤滑油を供給すると共に減速機部Bに潤滑油を供給するものである。潤滑機構は、図1に示すように、回転ポンプ51と、モータ部Aに配設された油路22a,24a,24bおよび油孔24cと、減速機部Bに配設された油路25cおよび油孔25d,25eと、ケーシング22の下方に配置された油タンク22dとを主な構成としている。前述した回転ポンプ51の吸入口55および吐出口56は、ケーシング22のモータハウジングに設けられている。また、油タンク22dは、ケーシング22のモータハウジングに一体的に設けられている。
 ケーシング22に設けられた油路22aは、回転ポンプ51から径方向外側へ延びて屈曲した上で軸方向に延び、さらに屈曲した上で径方向内側へ延びて油路24aに接続される。油路24aは、モータ回転軸24の内部を軸線方向に沿って延びて油路25cに接続される。モータ回転軸24の油路24bは、軸線方向に沿って延びる油路24aと連通し、径方向外側に位置するホルダ部24dに向かって延びてロータ23bとの隙間24eに連通する。油孔24cは、ホルダ部24dのインボード側およびアウトボード側の端面に形成され、ホルダ部24dとロータ23bとの間の隙間24eと連通し、モータ部Aの内部に開口する。
 油路25cは、減速機入力軸25の内部を軸線方向に沿って延びている。油孔25dは、軸線方向に沿って延びる油路25cと連通し、減速機入力軸25の外周面に向かって延びて減速機部Bの内部に開口する。油孔25eは、軸線方向に沿って延びる油路25cと連通し、減速機入力軸25の軸端から減速機部Bの内部に開口する。
 ケーシング22のモータ部Aと減速機部Bとの間には、モータ部Aの内部と減速機部Bの内部とに連通する油路22bが設けられ、モータ部Aの位置におけるケーシング22の底部には、モータ部Aの内部の潤滑油を油タンク22dに排出するための油路22fが設けられている。油タンク22dは、車両のサスペンション構成や、車両の加速および減速時の慣性による潤滑油の偏り、登坂時の油面変化に対応するため、ケーシング22の下方位置で車両進行方向の後方(図8の右側寄り)に配置されている。また、油タンク22dから回転ポンプ51へ潤滑油を還流させるための油路22eがケーシング22に設けられている。潤滑油を強制的に循環させるための回転ポンプ51は、ケーシング22の油路22eと油路22aとの間に設けられている。
 図5に示すように、回転ポンプ51は、減速機出力軸28(図1参照)の回転を利用して回転するインナロータ52と、インナロータ52の回転に伴って従動回転するアウタロータ53と、ポンプ室54と、油路22eに連通する吸入口55と、油路22aに連通する吐出口56とを備えるサイクロイドポンプである。この回転ポンプ51をケーシング22内に配置することによって、インホイールモータ駆動装置21の大型化を防止することができる。
 インナロータ52は、外周面にサイクロイド曲線で構成された歯形を有する。具体的には、歯先部分52aの形状がエピサイクロイド曲線、歯溝部分52bの形状がハイポサイクロイド曲線となっている。インナロータ52は、スタビライザ31bに設けられた円筒部31d(図1および図3参照)の外周面に嵌合して減速機出力軸28と一体回転する。アウタロータ53は、内周面にサイクロイド曲線で構成された歯形を有する。具体的には、歯先部分53aの形状がハイポサイクロイド曲線、歯溝部分53bの形状がエピサイクロイド曲線となっている。アウタロータ53は、ケーシング22に回転自在に支持されている。
 インナロータ52は、回転中心cを中心として回転し、一方、アウタロータ53は、回転中心cを中心として回転する。インナロータ52およびアウタロータ53はそれぞれ異なる回転中心c,cを中心として回転するので、ポンプ室54の容積は連続的に変化する。これにより、吸入口55から流入した潤滑油が吐出口56から油路22aに圧送される。
 前述した構成の潤滑機構による潤滑油の流れを説明する。図1において、潤滑機構内に付した白抜き矢印は潤滑油の流れを示す。モータ部Aの冷却として、回転ポンプ51から圧送された潤滑油は油路22a,24aを経由し、その一部がモータ回転軸24の回転に伴う遠心力およびポンプ圧力によって油路24bおよび隙間24eを経てロータ23bを冷却する。さらに、ホルダ部24dの油孔24cから潤滑油が吐出されてステータ23aを冷却する。このようにして、モータ部Aの冷却が行われる。
 一方、減速機部Bの潤滑として、回転ポンプ51から圧送された潤滑油は油路22a,24a,25cを経由し、その一部が減速機入力軸25の回転に伴う遠心力およびポンプ圧力によって油孔25d,25eから減速機部Bに吐出する。油孔25dから吐出した潤滑油は、曲線板26a,26bを支持する円筒ころ軸受41の内輪42に設けた油孔42c(図3参照)から軸受内部へ供給される。さらに、曲線板26a,26bと内ピン31および外ピン27との当接部分などを潤滑しながら、外ピンハウジング60に設けられた油路60aを経由して径方向外側へ移動する。油孔25eから吐出した潤滑油は、減速機入力軸25を支持する転がり軸受37bなどに供給される。このようにして、減速機部Bの潤滑が行われる。
 モータ部Aの冷却および減速機部Bの潤滑を行った潤滑油は、ケーシング22の内壁面を伝って重力により下部へ移動する。減速機部Bの下部へ移動した潤滑油は、油路22bからモータ部Aへ移動する。また、モータ部Aの下部へ移動した潤滑油は、減速機部Bからの潤滑油と共に、油路22fから排出されて油タンク22dに一時的に貯溜される。このように、油タンク22dが設けられているので、回転ポンプ51によって排出しきれない潤滑油が一時的に発生しても、油タンク22dに貯溜しておくことができる。その結果、減速機部Bのトルク損失の増加を防止することができる。
 この実施形態におけるインホイールモータ駆動装置21の全体構成は、前述のとおりであるが、その特徴的な構成を以下に詳述する。
 この実施形態のインホイールモータ駆動装置21では、ロータ23bの回転により発生する潤滑油の撹拌抵抗を低減する遮蔽板70をモータ部Aに設けることを着想した。遮蔽板70は、図6に示すように、半ドーナツ状をなし、その内周部に取付孔71が設けられ、取り付け部位を除く全面に亘って多数の小孔72が散点状に形成されている。
 遮蔽板70は、図7および図8に示すように、その内周部の取付孔71を利用してねじ止めによりケーシング22の内壁面に固定される。この取り付けにより、遮蔽板70は、ロータ23bの下半分でホルダ部24dの油孔24cと対向するように近接配置されている。この遮蔽板70の素材は、非磁性を有する金属あるいは絶縁性を有する樹脂のいずれであってもよい。
 また、この実施形態では、ロータ23bのホルダ部24dのインボード側およびアウトボード側の両方に2枚の遮蔽板70を配置しているが、インボード側あるいはアウトボード側のいずれか一方のみに1枚の遮蔽板70を配置してもよい。
 インホイールモータ駆動装置21は、車両のホイール内部に収めなければならず、また、ばね下重量を押さえる必要があり、さらに、広い客室スペースを確保するために、小型化が必須の要件となる。このようなインホイールモータ駆動装置自体の小型化のため、ケーシング22の下方に配置された油タンク22dについて十分な容積を確保することが困難であることから、モータ部Aの内部に潤滑油が貯溜することになる。
 ここで、モータ部Aおよび減速機部Bで必要な潤滑油量を確保するため、潤滑油の封入量を多くすると、図1に示すように、モータ部Aの内部に貯溜する潤滑油の油面Nが高くなってロータ23bの一部が潤滑油に浸漬することになる。また、回転ポンプ51は減速機出力軸28と同期して回転するため、モータ起動直後、モータ回転速度の増加と共に回転ポンプ51の回転速度も増加し、回転ポンプ51から吐出される潤滑油量も増加する。そのため、ロータ23bのホルダ部24dの油孔24cから吐出する潤滑油量も増加する。
 また、潤滑油は粘性のある流体であり、しかも、ロータ23bが15,000min-1以上の高速で回転するため、ロータ23bのホルダ部24dに接触する潤滑油は、ロータ23bの回転方向に引き摺られて掻き上げられる。この実施形態のインホイールモータ駆動装置21では、ロータ23bのホルダ部24dに対して遮蔽板70が近接配置されていることから、ロータ23bの回転で引き摺られる潤滑油量をロータ23bのホルダ部24dと遮蔽板70との間に介在する潤滑油(図7の網掛け領域βにある潤滑油)に制限し、従来のインホイールモータ駆動装置101の場合(図12参照)よりも少なくすることで、潤滑油の引き摺りを低減させることができる。
 このように、潤滑油の引き摺りを低減することができることから、ロータ23bの回転で発生する潤滑油の撹拌抵抗を低減することができる。この潤滑油の撹拌抵抗を低減することにより、図8に示すように、モータ部Aの内部に貯溜する潤滑油がロータ23bの回転方向(図中の実線矢印方向)に掻き上げられても、その潤滑油の油面Nの傾きを従来のインホイールモータ駆動装置101の場合(図13参照)よりも小さくすることができる。その結果、油タンク22dが車両進行方向の後方(図中の右側寄り)に配置されていても、潤滑油は油タンク22dに流れ込み易くなり、その油タンク22dの潤滑油量を十分に確保することで、回転ポンプ51の吐出量を確保でき、インホイールモータ駆動装置21におけるモータ部Aの潤滑性能を改善することができる。
 この実施形態の遮蔽板70は、多数の小孔72が散点状に形成されていることから、図7に示すように、ロータ23bのホルダ部24dの油孔24cから吐出して遮蔽板70のロータ側に存在する潤滑油が小孔72を介して遮蔽板70の反ロータ側であるモータ部Aの内部へ流れ易くなる。その結果、ロータ23bのホルダ部24dと遮蔽板70との間に介在する潤滑油量が増加することはなく、潤滑油の引き摺りの低減および撹拌抵抗の低減に寄与する。
 また、モータ部Aの内部に貯溜する潤滑油は、ロータ23bの下半分より低い油面Nとなることから、遮蔽板70をロータ23bの下半分と対向する半ドーナツ状とすることにより、遮蔽板70を必要最小限の大きさで構成することができる。
 この遮蔽板70を軸方向でロータ23bのホルダ部24dに近接配置するに際しては、高速で回転するロータ23bの軸方向振れを考慮する必要がある。このロータ23bの軸方向振れによるロータ23bとの干渉を回避できる程度に、ロータ23bのホルダ部24dと遮蔽板70との間の軸方向すきまを設定すればよい。
 また、遮蔽板70の外周部はステータ23aのコイル23dにも近接配置されることになる。遮蔽板70の素材を非磁性の金属とする場合、ステータ23aのコイル23dとの径方向すきまを、遮蔽板70に電流が流れない最小限寸法に設定する必要がある。このことから、遮蔽板70の素材を絶縁性の樹脂とすることが有効である。遮蔽板70を樹脂で構成すれば、遮蔽板70をステータ23aのコイル23dに近接配置することが容易となり、ロータ23bのホルダ部24dと遮蔽板70との間に介在する潤滑油の制限が確実となる。
 最後に、この実施形態におけるインホイールモータ駆動装置21の全体的な作動原理を説明する。
 図1~図3に示すように、モータ部Aは、例えば、ステータ23aのコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石又は磁性体によって構成されるロータ23bが回転する。これにより、モータ回転軸24に連結された減速機入力軸25が回転すると、曲線板26a,26bは減速機入力軸25の回転軸心を中心として公転運動する。このとき、外ピン27が、曲線板26a,26bの曲線形状の波形と係合して、曲線板26a,26bを減速機入力軸25の回転とは逆向きに自転回転させる。
 貫通孔30aに挿通する内ピン31は、曲線板26a,26bの自転運動に伴って貫通孔30aの内壁面と当接する。これにより、曲線板26a,26bの公転運動が内ピン31に伝わらず、曲線板26a,26bの自転運動のみが減速機出力軸28を介して車輪用軸受部Cに伝達される。このとき、減速機入力軸25の回転が減速機部Bによって減速されて減速機出力軸28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、後輪14に必要なトルクを伝達することが可能となる。
 この減速機部Bの減速比は、外ピン27の数をZ、曲線板26a,26bの波形の数をZとすると、(Z-Z)/Zで算出される。図2に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と非常に大きな減速比を得ることができる。このように、多段構成とすることなく大きな減速比を得ることができる減速機部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27および内ピン31に針状ころ軸受27a,31a(図3参照)を設けたことにより、曲線板26a,26bとの間の摩擦抵抗が低減されるので、減速機部Bの伝達効率が向上する。
 この実施形態においては、油路24bをモータ回転軸24に設け、油孔25dを偏心部25a,25bに設け、油孔25eを減速機入力軸25の軸端に設けた場合を例示したが、これに限ることなく、モータ回転軸24や減速機入力軸25の任意の位置に設けることができる。また、回転ポンプ51としてサイクロイドポンプの例を示したが、これに限ることなく、減速機出力軸28の回転を利用して駆動するあらゆる回転型ポンプを採用することができる。さらに、回転ポンプ51を省略して、遠心力のみによって潤滑油を循環させるようにしてもよい。
 減速機部Bの曲線板26a,26bを180°位相をずらして2枚設けた例を示したが、この曲線板の枚数は任意に設定することができ、例えば、曲線板を3枚設ける場合は、120°位相をずらして設けるとよい。運動変換機構は、減速機出力軸28に固定された内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成された例を示したが、これに限ることなく、減速機部Bの回転をハブ輪32に伝達可能な任意の構成とすることができる。例えば、曲線板26a,26bに固定された内ピンと減速機出力軸28に形成された穴とで構成される運動変換機構であってもよい。この実施形態のインホイールモータ駆動装置21においては、サイクロイド式の減速機を採用した例を示したが、これに限ることなく、遊星減速機、2軸並行減速機、その他の減速機を適用可能であり、また、減速機を採用しない、所謂ダイレクトモータタイプであってもよい。
 この実施形態における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから後輪14に伝達される。したがって、前述のように減速された動力は高トルクに変換されたものとなっている。また、モータ部Aに電力を供給してモータ部を駆動させ、モータ部Aからの動力を後輪14に伝達させる場合を示したが、これとは逆に、車両が減速したり坂を下ったりするようなときは、後輪14側からの動力を減速機部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電してもよい。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させたり、車両に備えられた他の電動機器などの作動に用いてもよい。
 この実施形態においては、モータ部Aにラジアルギャップモータを採用した例を示したが、これに限ることなく、任意の構成のモータを適用可能である。例えば、ケーシングに固定されるステータと、ステータの内側の軸方向の隙間を開けて対向する位置に配置されるロータとを備えるアキシャルギャップモータであってもよい。さらに、図9および図10に示した電気自動車11は、後輪14を駆動輪とした例を示したが、これに限ることなく、前輪13を駆動輪としてもよく、4輪駆動車であってもよい。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー等をも含むものとして理解すべきである。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。

Claims (6)

  1.  モータ部と、車輪用軸受部と、ケーシングと、前記モータ部に潤滑油を供給する潤滑機構とを備えたインホイールモータ駆動装置であって、
     前記モータ部は、ケーシングに固定されたステータと、前記モータ回転軸に設けられたロータとで構成され、前記ロータの回転により発生する潤滑油の撹拌抵抗を低減する遮蔽板を前記モータ部に設けたことを特徴とするインホイールモータ駆動装置。
  2.  前記モータ部は、ステータの径方向内側に隙間をもって対向配置されたロータからなり、前記ロータのインボード側およびアウトボード側に、前記潤滑機構により供給された潤滑油を吐出する油孔を備え、前記遮蔽板は、ロータの油孔の少なくとも一方と対向するように近接配置された状態で前記ケーシングに固定されている請求項1に記載のインホイールモータ駆動装置。
  3.  前記遮蔽板は、多数の小孔が散点状に形成されている請求項1又は2に記載のインホイールモータ駆動装置。
  4.  前記遮蔽板は、ロータの下半分と対向する半ドーナツ状をなす請求項1~3のいずれか一項に記載のインホイールモータ駆動装置。
  5.  前記遮蔽板は、絶縁材料で構成されている請求項1~4のいずれか一項に記載のインホイールモータ駆動装置。
  6.  前記潤滑機構は、潤滑油を圧送するためのポンプと油タンクを有している請求項1~5のいずれか一項に記載のインホイールモータ駆動装置。
PCT/JP2015/063295 2014-06-04 2015-05-08 インホイールモータ駆動装置 WO2015186466A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15802570.0A EP3154170A4 (en) 2014-06-04 2015-05-08 In-wheel motor drive device
US15/314,675 US20170197502A1 (en) 2014-06-04 2015-05-08 In-wheel motor drive device
CN201580027521.9A CN106464087A (zh) 2014-06-04 2015-05-08 轮内电动机驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-115845 2014-06-04
JP2014115845A JP2015231275A (ja) 2014-06-04 2014-06-04 インホイールモータ駆動装置

Publications (1)

Publication Number Publication Date
WO2015186466A1 true WO2015186466A1 (ja) 2015-12-10

Family

ID=54766544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063295 WO2015186466A1 (ja) 2014-06-04 2015-05-08 インホイールモータ駆動装置

Country Status (5)

Country Link
US (1) US20170197502A1 (ja)
EP (1) EP3154170A4 (ja)
JP (1) JP2015231275A (ja)
CN (1) CN106464087A (ja)
WO (1) WO2015186466A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107289115A (zh) * 2016-04-01 2017-10-24 舍弗勒技术股份两合公司 轮内驱动总成
EP3429070A4 (en) * 2016-03-08 2019-10-16 NTN Corporation DRIVING DEVICE FOR VEHICLES
EP3896310A4 (en) * 2018-12-14 2022-09-14 NTN Corporation VEHICLE DRIVE DEVICE
WO2023132093A1 (ja) * 2022-01-05 2023-07-13 日立Astemo株式会社 回転電機及びこれを備えた車両駆動装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6865699B2 (ja) * 2015-06-19 2021-04-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 電気車両および電気車両用の駆動システム
US11336138B2 (en) 2016-05-09 2022-05-17 Borgwarner Inc. Hybrid rotor module cooling
CN111033971B (zh) * 2017-09-08 2022-04-05 日本电产株式会社 驱动装置
US10823276B2 (en) * 2018-01-26 2020-11-03 Borgwarner Inc. Drive train design for electric driven vehicles
CN108400670B (zh) * 2018-04-28 2024-05-03 合肥巨一动力系统有限公司 一种具有冷却水道的电机减速器集成壳体
CN109235322A (zh) * 2018-09-30 2019-01-18 武汉宝久创美科技有限公司 一种道闸的控制装置
CN109228845A (zh) * 2018-10-23 2019-01-18 展欣(宁波)新能源科技有限公司 一种散热增强型轮毂电机驱动桥
CN109372953B (zh) * 2018-12-20 2024-03-08 张骞 一种双向输出的行星减速电机
JP2020110027A (ja) * 2019-01-07 2020-07-16 日本電産株式会社 モータ、および駆動装置
JP2020122549A (ja) * 2019-01-31 2020-08-13 株式会社小松製作所 作業機械
CN110053466B (zh) * 2019-04-26 2020-12-08 杭州申昊科技股份有限公司 一种两驱差速轮驱动单元结构
FR3113425B1 (fr) 2020-08-14 2022-07-22 Bontaz Centre R & D Distributeur fluidique a fonctionnement ameliore
CN112202259B (zh) * 2020-09-29 2021-06-11 上海电气集团股份有限公司 一种电机转子冷却系统及电驱动总成
CN113719584A (zh) * 2021-08-18 2021-11-30 中国航发贵阳发动机设计研究所 一种航空发动机飞附机匣液压泵接口减速器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197772A (ja) * 2005-01-17 2006-07-27 Toyota Motor Corp 回転電機
JP2011111059A (ja) * 2009-11-27 2011-06-09 Ntn Corp インホイールモータ駆動装置
JP2011189919A (ja) * 2010-03-17 2011-09-29 Ntn Corp インホイールモータ駆動装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956272B1 (en) * 2007-02-07 2010-01-20 Nissan Motor Company Limited Gear unit and lubricating oil splash preventing method
JP5549086B2 (ja) * 2009-03-10 2014-07-16 日産自動車株式会社 ドライブユニット
DE112009004739T5 (de) * 2009-04-17 2013-01-17 Toyota Jidosha Kabushiki Kaisha Elektrische drehmaschine
JP2011188686A (ja) * 2010-03-10 2011-09-22 Toyota Motor Corp 電動機の冷却機構
JP5575055B2 (ja) * 2010-06-24 2014-08-20 株式会社日本自動車部品総合研究所 回転電機
JP5705598B2 (ja) * 2011-03-09 2015-04-22 Ntn株式会社 モータの診断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197772A (ja) * 2005-01-17 2006-07-27 Toyota Motor Corp 回転電機
JP2011111059A (ja) * 2009-11-27 2011-06-09 Ntn Corp インホイールモータ駆動装置
JP2011189919A (ja) * 2010-03-17 2011-09-29 Ntn Corp インホイールモータ駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3154170A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3429070A4 (en) * 2016-03-08 2019-10-16 NTN Corporation DRIVING DEVICE FOR VEHICLES
US10840768B2 (en) 2016-03-08 2020-11-17 Ntn Corporation Drive device for vehicle with stator coil temperature detector
CN107289115A (zh) * 2016-04-01 2017-10-24 舍弗勒技术股份两合公司 轮内驱动总成
CN107289115B (zh) * 2016-04-01 2021-08-17 舍弗勒技术股份两合公司 轮内驱动总成
EP3896310A4 (en) * 2018-12-14 2022-09-14 NTN Corporation VEHICLE DRIVE DEVICE
WO2023132093A1 (ja) * 2022-01-05 2023-07-13 日立Astemo株式会社 回転電機及びこれを備えた車両駆動装置

Also Published As

Publication number Publication date
JP2015231275A (ja) 2015-12-21
CN106464087A (zh) 2017-02-22
EP3154170A4 (en) 2018-02-21
EP3154170A1 (en) 2017-04-12
US20170197502A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
WO2015186466A1 (ja) インホイールモータ駆動装置
WO2015186467A1 (ja) インホイールモータ駆動装置
WO2015141387A1 (ja) インホイールモータ駆動装置
JP2016114184A (ja) サイクロイド減速機およびこれを備えたインホイールモータ駆動装置
JP2009262616A (ja) モータ駆動装置およびインホイールモータ駆動装置
JP2016014445A (ja) インホイールモータ駆動装置
JP2009012569A (ja) インホイールモータ駆動装置
WO2016047442A1 (ja) インホイールモータ駆動装置
WO2015046087A1 (ja) インホイールモータ駆動装置
WO2015060135A1 (ja) インホイールモータ駆動装置
WO2016017351A1 (ja) サイクロイド減速機およびこれを備えたインホイールモータ駆動装置
JP2016179799A (ja) 車両用モータ駆動装置
WO2015046086A1 (ja) インホイールモータ駆動装置
JP2016160980A (ja) 車両用モータ駆動装置
JP2008275094A (ja) インホイールモータ駆動装置
JP2016151321A (ja) インホイールモータ駆動装置
JP6333579B2 (ja) インホイールモータ駆動装置
JP6396150B2 (ja) インホイールモータ駆動装置
WO2015137088A1 (ja) インホイールモータ駆動装置
JP6396173B2 (ja) インホイールモータ駆動装置
JP2009058005A (ja) インホイールモータ駆動装置
JP2008207585A (ja) インホイールモータ駆動装置
WO2015141389A1 (ja) インホイールモータ駆動装置
JP2016097771A (ja) インホイールモータ駆動装置
JP2016164429A (ja) インホイールモータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15314675

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015802570

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015802570

Country of ref document: EP