WO2015186293A1 - 送信装置及び受信装置 - Google Patents

送信装置及び受信装置 Download PDF

Info

Publication number
WO2015186293A1
WO2015186293A1 PCT/JP2015/002301 JP2015002301W WO2015186293A1 WO 2015186293 A1 WO2015186293 A1 WO 2015186293A1 JP 2015002301 W JP2015002301 W JP 2015002301W WO 2015186293 A1 WO2015186293 A1 WO 2015186293A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
unit
data
predetermined
transport stream
Prior art date
Application number
PCT/JP2015/002301
Other languages
English (en)
French (fr)
Inventor
小西 孝明
中西 徹
洋右 飯塚
秀樹 小津
長谷川 照晃
久輝 小畠
佳孝 袴田
中村 直義
小山田 公之
Original Assignee
パナソニック株式会社
日本放送協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 日本放送協会 filed Critical パナソニック株式会社
Publication of WO2015186293A1 publication Critical patent/WO2015186293A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2385Channel allocation; Bandwidth allocation

Definitions

  • the present disclosure relates to a transmission device that transmits data using a plurality of carrier waves and a reception device that receives data using a plurality of carrier waves.
  • Patent Document 2 As a method for transmitting a large-capacity transport stream, there is a method disclosed in Patent Document 2.
  • a single transport stream is divided and multiplexed into frames, and transmitted using a plurality of carriers. This enables transmission of a transport stream having a capacity that exceeds the transmission capacity of a single carrier wave.
  • the present disclosure provides a transmission device and a reception device that can easily combine received data with a simple configuration in a system that transmits single stream data using a plurality of carrier waves.
  • the transmission device is a transmission device that inputs a transport stream and transmits it using a plurality of carrier waves.
  • the transmission apparatus includes: an input unit that inputs a transport stream in units of packets; a division unit that assigns the input transport stream to each carrier according to a predetermined allocation order in a predetermined data unit; A modulation unit that modulates a transport stream of a predetermined data unit with a predetermined modulation scheme corresponding to the assigned carrier, and data modulated with a predetermined modulation scheme corresponding to each carrier corresponds to the modulation scheme A transmission unit that transmits using a carrier wave.
  • the transmission device inputs at a predetermined timing so that the data transmission rate is virtually equal to the maximum transmission rate for a carrier having a transmission rate slower than the maximum transmission rate among the plurality of carriers.
  • a dummy slot generation unit that outputs a dummy slot to the division unit
  • a dummy slot deletion unit that deletes the dummy slot assigned to the carrier wave by the division unit.
  • the receiving device of the present disclosure is a receiving device that receives data transmitted from the transmitting device using a plurality of carriers, and separates and outputs a predetermined transport stream.
  • the receiving device a plurality of tuners provided for each of a plurality of carrier waves, a demodulator that demodulates a signal received by each tuner by a predetermined demodulation method according to the carrier wave to which the received signal is transmitted, A buffer for storing data demodulated by the demodulator for each carrier and a carrier having a transmission rate slower than the maximum transmission rate among a plurality of carriers with respect to the data stored in the buffer at a predetermined data interval.
  • a dummy slot adding unit that adds a dummy slot, a combining unit that combines the transport streams stored in the buffer for each carrier wave, and an extraction that separates and outputs a predetermined transport stream from the combined transport stream A part.
  • the transmission method of the present disclosure is a transmission method in which a transport stream is input and transmitted using a plurality of carriers.
  • the transmission method includes a first step of inputting a transport stream in units of packets, a second step of assigning the input transport stream to each carrier in a predetermined data unit in a predetermined allocation order, and a transmission stream assigned to the carrier.
  • the transmission method is predetermined so that the data transmission rate is virtually equal to the maximum transmission rate for a carrier having a transmission rate slower than the maximum transmission rate among the plurality of carriers.
  • the reception method of the present disclosure is a reception method that receives data transmitted using a plurality of carriers by the above-described transmission method, and separates and outputs a predetermined transport stream.
  • the receiving method includes a step of receiving a signal from each of a plurality of carriers, a step of demodulating with a demodulation method according to a modulation method of the received signal, a step of storing the demodulated data in a buffer for each carrier, Adding a dummy slot at a predetermined data interval to the data stored in the buffer for a carrier having a transmission rate slower than the maximum transmission rate among the carrier of A step of synthesizing the transport stream; and a step of separating and outputting a predetermined transport stream from the transport stream obtained by the synthesis.
  • the reception data synthesis process is facilitated. This facilitates the implementation of the synthesis function in the receiving device, and the configuration of the device is simplified. Also in the transmission device, the process of assigning the transport stream to the carrier becomes simple, and the configuration in the transmission device becomes simple.
  • the figure which shows the structure of the transmitter in one Embodiment of this indication The figure which shows the structure of the flame
  • the figure which shows the format of the multi-frame header in a multi-frame system The figure which shows the detail of the structure of private_data in a multi-frame header
  • a diagram for explaining the conventional problem and the concept of the present disclosure The figure which shows the structure of the principal part of a transmitter.
  • Flowchart of PCR rewriting process by PCR rewriting unit The figure explaining the multiplexing process by a multiplexing process part The figure explaining the multiplexing process with respect to the first carrier wave The figure explaining the change of the storage state of the multiplexing buffer at the time of multiplexing 8K transport stream and 2K transport stream, and transmitting using four carrier waves
  • the figure explaining the output method of the reception data of a receiver The figure explaining an example of the received channel information Flow chart of processing at channel selection The figure explaining the method of extracting and outputting desired data from the data after composition of the receiving device
  • the communication system includes a transmission device that transmits data and a reception device that receives data from the transmission device.
  • the transmission apparatus is an apparatus that can input and multiplex a plurality of transport streams (hereinafter referred to as “TS”), and can transmit using a plurality of carrier waves (systems).
  • TS transport streams
  • the number of input TSs is 15, and the number of carriers and systems is 4.
  • the first and third systems transmit data using the first and third carrier waves, and the transmission speed is 31.644 Mbps (based on the 64QAM modulation system).
  • the second and fourth systems transmit data using the second and fourth carrier waves, and the transmission rate is 42.192 Mbps (based on the 256QAM modulation system).
  • the TS is composed of a sequence of 188-byte packets (hereinafter referred to as “TS packets”).
  • TS packets As an example, the TS (transport stream) to be transmitted is MPEG-2 TS.
  • FIG. 1 shows the configuration of the transmission apparatus of this embodiment.
  • the transmitting device 100 transmits a PCR through a plurality of systems (carrier waves), a PCR rewriting unit 11 that rewrites a PCR (Program Clock Reference) value of an input TS packet, a dummy slot generating unit 13 that generates a dummy slot, and the like.
  • the transmission device 100 includes a buffer unit 20 that stores data to be divided by the division unit 15 for each carrier wave and multiplexed by the multiplexing unit 18.
  • the buffer unit 20 has a buffer set (details will be described later) for each TS, and each buffer set includes four buffers provided for each of the first to fourth carriers (for example, FIG. 7, FIG. 12, see FIG.
  • the transmission device 100 includes four QAM modulation units 19a to 19d provided for each system (carrier wave), and transmission units 21a to 21d that transmit the modulated data.
  • the QAM modulators 19a and 19c connected to the first and third systems perform 64QAM modulation
  • the QAM modulators 19b and 19d connected to the second and fourth systems perform 256QAM modulation.
  • the transmission apparatus 100 assigns a multiframe header generation unit 23 that generates a multiframe header, a frame slot allocation unit 25 that determines allocation of TS packets to slots in a frame, and allocation of TS systems (carrier waves).
  • a carrier group allocating unit 27 for determining and a carrier dividing method determining unit 29 for determining a dividing method for a system (carrier wave) are provided.
  • FIG. 2 is a diagram illustrating the configuration of a frame for multiplexing and transmitting a plurality of transport streams employed in the transmission apparatus of the present embodiment on one carrier wave.
  • FIG. 1 frame consists of 53 slots (53 packets).
  • a multi-frame header for synchronization is assigned to the head of the frame, that is, the 0th slot.
  • a TS packet (188 bytes) is assigned to the first to 52nd slots thereafter.
  • FIG. 2 shows an example in which two streams TS1 and TS2 are multiplexed in one frame.
  • TS1 is assigned to the first, fifth, sixth and 51st slots, and the second to fourth, 52nd The second slot is assigned TS2.
  • the number of frames included in the superframe is determined according to the transmission rate (that is, the modulation scheme). For example, when using a carrier that transmits data modulated by a 64QAM modulation scheme and a carrier that transmits data modulated by a 256QAM modulation scheme, the periods of the superframes of the two carriers are the same. Determine the number of frames in the superframe for each carrier. For example, as shown in FIG. 3, in a carrier that transmits data modulated by a 64QAM modulation method, the number of frames in a superframe is 3, and in a carrier that transmits data modulated by a 256QAM modulation method. The number of frames in the superframe is 4.
  • FIG. 4 is a diagram for explaining the structure of the multiple frame header.
  • the multiplex frame header includes information 51 used for synchronization, information 53 for multiplexing, private_data 55, and CRC (error detection code) 57.
  • the information 51 that can be used for synchronization includes a synchronization byte (sync_byte), frame_PID, continuity_counter, and frame_sync.
  • the synchronization byte (sync_byte) takes a value of “0x47” and is arranged at the head of the slot.
  • the synchronization byte (sync_byte) and frame_sync are used to detect the head of the multi-frame header. Based on these pieces of information, the receiving apparatus can detect a multi-frame header from the received stream.
  • the information 53 for multiplexing includes version_number, relative_ts_number_mode, frame_type, emergency_indicator, and the following information.
  • ⁇ Ts_status Indicates the valid / invalid state of each TS (TS1 to TS15).
  • ⁇ Ts_id and network_id A set of TS ID (ts_id) and network ID (network_id) values for each TS is described in order for each of TS1 to T15. Each of ts_id and network_id is described with 16 bits.
  • Receive status The reception status of each TS is shown.
  • ⁇ Relative_ts_number Information indicating which of TS1 to TS15 is stored in each of the 52 slots.
  • Information of TS stored in the first slot to the 52nd slot is stored every 4 bits from the head. For example, as shown in FIG. 2, when TS1 is stored in the first slot and TS2 is stored in the second slot, a relative number indicating TS1 is stored in the first 4 bits of relative_ts_number. In the next 4 bits, a relative number indicating TS2 is stored. By referring to relative_ts_number, it is possible to grasp which TS is stored in which slot.
  • FIG. 5 is a diagram showing the configuration of private_data 55.
  • the private_data 55 includes information for dividing and transmitting a single stream into a plurality of systems (carrier waves). Specifically, private_data includes the following information.
  • Group_id (8bit) An ID for identifying a carrier group (group) for dividing and transmitting a TS or TLV stream. For example, the broadcast station A is set to 0x00, and the broadcast station B is set to 0x01.
  • ⁇ Number_of_carriers 8bit
  • Carrier_sequence 4bit
  • ⁇ Frame_number Indicates the number of frames in one superframe. It is set to 0x03 for 64QAM and 0x04 for 256QAM.
  • Frame_position Information indicating the frame position in the super frame. That is, information indicating what number frame in the superframe. As shown in FIG.
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-209675
  • the receiving apparatus for the first received packet group (1 to 4), matches the original order of the packets with the carrier_sequence, so that the packet received on each carrier is based on the carrier_sequence. By combining, data combined in the original packet order is obtained.
  • the original order of the packets does not match the carrier_sequence, and in this case, there is a problem that data cannot be combined correctly if they are combined based on the carrier_sequence. .
  • a table specifying the synthesis order is required in consideration of the carrier_sequence, the number of carriers, the type of carrier modulation method, and the like. Therefore, when the number of carrier waves and the type of modulation method increase, the number of tables to be prepared becomes enormous, which causes a mounting problem in the receiving apparatus. Also on the transmitting device side, when dividing a packet for each carrier wave, it is necessary to consider the carrier_sequence and the arrival order of the packet on the receiving device side, and the process of assigning packets to the carrier wave becomes complicated There's a problem.
  • the transmission apparatus 100 has a low transmission rate so that the transmission rate between the carrier waves is virtually the same when the TS is divided into carrier waves.
  • a dummy slot is inserted at a predetermined interval in the carrier wave to assign the packet to the carrier wave. Thereafter, when outputting to the modulation unit, the dummy slot is deleted, and then each packet is output to the modulation unit.
  • On the receiving device side when data is received from each carrier, a dummy slot is appropriately inserted in the packet sequence received from the carrier having a low transmission rate, so that the packet obtained from each carrier is based on the carrier_sequence or the like. Are combined in order. Thereby, the synthesized data according to the original data order can be easily obtained.
  • the operation of the transmission apparatus 100 for realizing such a function will be described.
  • the transmission apparatus 100 of the present embodiment is an apparatus that receives a plurality of transport streams TS1 to TS15, multiplexes each TS, and transmits using a plurality of systems (carrier waves). Specifically, the transmission apparatus 100 allocates one TS to four systems (first carrier wave to fourth carrier wave) for each packet, and multiplexes and transmits the data of each TS for each system (carrier wave). As a result, transmission can be performed at a rate that is substantially the sum of the transmission rates of the four carrier waves, and transmission of a large amount of data that cannot be transmitted with only one carrier wave.
  • the frame slot allocation unit 25 outputs information indicating to which slot in the frame each TS is allocated.
  • the information determined by the frame slot allocation unit 25 and indicating the number of slots and the slot position to which each packet in the frame in each system is allocated is referred to as “slot multiplexing information”.
  • the carrier division method determination unit 29 determines the number of carriers (systems), the type of QAM modulation method of each carrier, information on TSs assigned to each carrier, and the order of carriers (systems) to which slots are assigned.
  • the carrier division method determining unit 29 determines a transport stream (TS) division method (for example, the contents illustrated in FIGS. 21 and 22). The receiving apparatus recognizes this division method.
  • TS transport stream
  • the carrier group assignment unit 27 outputs information on a group to which a plurality of carrier waves belong.
  • the first carrier wave to the fourth carrier wave belong to one carrier wave group.
  • the multiplex frame header generation unit 23 based on the information on the group from the carrier group allocation unit 27, the information on the TS division from the carrier division method determination unit 29, and the slot multiplexing information from the frame slot allocation unit 25, 4 and FIG. 5). ts_id network_id relative_ts_number stream_type group_id number_of_carriers carrier_sequence frame_number frame_position
  • the multiplex frame header generation unit 23 outputs the generated multiplex frame header to the dummy slot generation unit 13 and the multiplexing unit 18.
  • the PCR rewriting unit 11 rewrites the PCR value of the input packet in consideration of virtual rate conversion described later when the input packet includes a PCR (Program Clock Reference).
  • the dummy slot generator 13 outputs the input TS packet or multiplexed frame header. Further, when a predetermined condition is satisfied, the dummy slot generation unit 13 outputs a dummy slot (dummy packet) instead of the input TS packet or multiplexed frame header.
  • the dividing unit 15 divides the input stream for each carrier on the basis of the slot multiplexing information from the frame slot allocating unit 25 and outputs the divided input stream to the transmission input port 16. That is, the dividing unit 15 assigns the input TS packet to any carrier wave.
  • the dividing unit 15 acquires information on the carrier allocation order from the carrier division method determining unit 29, and determines the order in which the input TS packets are allocated to the carrier based on the allocation order.
  • the dividing unit 15 is configured to receive a multiplexed frame header from the dummy slot generating unit 13 for every 52 consecutive packets assigned to one carrier wave (system). As a result, the frame shown in FIG. 2 is output to the transmission input port 16.
  • the dummy slot deletion unit 17 deletes the dummy slot generated by the dummy slot generation unit 13 and input to the transmission input port 16.
  • the buffer unit 20 includes a buffer group for storing the TS packets that are divided into carrier waves for each input TS by the dividing unit 15.
  • the multiplexing unit 18 multiplexes the TS packet divided into each carrier for each input TS for each carrier.
  • the multiplexing unit 18 receives information from the frame slot allocation unit 25 and the multiplexed frame header generation unit 23 and performs multiplexing.
  • QAM modulators 19a and 19c are modulation means for modulating TS packets by the 64QAM modulation method.
  • the QAM modulators 19b and 19d are modulation means for modulating TS packets by the 256QAM modulation method.
  • the transmission unit 21a transmits the data modulated by the QAM modulation unit 19a (64QAM) via the first carrier wave.
  • the transmission unit 21b transmits the data modulated by the QAM modulation unit 19b (256QAM) via the second carrier wave.
  • the transmission unit 21c transmits the data modulated by the QAM modulation unit 19c (64QAM) via the third carrier wave.
  • the transmission unit 21d transmits the data modulated by the QAM modulation unit 19d (256QAM) via the fourth carrier wave.
  • the transmission apparatus 100 having the above configuration inputs a plurality of TSs 1 to 15 in units of packets via respective input ports. For each TS, the input stream is sequentially assigned to each carrier in units of packets by the dividing unit 15. Thereafter, the data of each TS is multiplexed by the multiplexing unit 18 for each carrier wave. The data multiplexed for each carrier is modulated by the QAM modulators 19a to 19d for each carrier and transmitted from the transmitters 21a to 21d.
  • the operation of each unit of the transmission device will be described in more detail.
  • the transmitting apparatus 100 has a buffer set 20-1 for storing data divided for each carrier wave by the dividing unit 15, and the buffer set 20-1 includes buffers 1 to 4. including.
  • the dividing unit 15 includes a counter that counts the number of transmitted packets for each carrier wave.
  • the counters for the first to fourth carriers are referred to as “H counter 1”, “H counter 2”, “H counter 3”, and “H counter 4”.
  • the H counters 1 to 4 count multiplex frame headers (hereinafter referred to as “TSMF (Transport Multiplexing Frame) header”) and TS packets, but do not count dummy slots.
  • TSMF Transport Multiplexing Frame
  • the dividing unit 15 includes a 4P counter 15b that is incremented by 1 every time four packets are transmitted (every period). That is, the 4P counter 15b is incremented by 1 when packets are transmitted one by one from the first carrier to the fourth carrier.
  • the 4P counter 15b counts up to 3, and is reset to 0.
  • the counter value (3) when the 4P counter 15b is reset is determined based on the number of frames per superframe for the carrier wave in which the dummy slot is generated. It is assumed that the initial value of each counter is 0.
  • the dividing unit 15 includes a PCR interval counter 15c.
  • the PCR interval counter 15c is a dividing unit from the time when the previous PCR packet is input to the time when a new PCR packet is input when the transmitting device 100 newly inputs a packet including a PCR value (hereinafter, “PCR packet”). 15 counts the total number of packets transmitted to the transmission input ports 16a to 16d. The PCR interval counter 15c is reset when a new PCR packet is input.
  • TS1 is input in packets to TS1 input port 10-1.
  • the dummy slot generation unit 13 selects any one of the TSMF header, the input TS packet, and the dummy slot (dummy packet) based on the values of the H counters 1 to 4 and the 4P counter 15 b and outputs the selected TSMF header to the division unit 15.
  • the dummy slot generation unit 13 refers to the H counter corresponding to the carrier to which the division unit 15 is allocating the input packet. If the value is 0, the dummy slot generation unit 13 outputs the TSMF header.
  • the TSMF header is acquired from the multiple frame header generation unit 23. For example, when the dividing unit 15 is about to assign an input packet to the first carrier wave, if the value of the H counter 1 is 0, the dummy slot generating unit 13 outputs a TSMF header to the dividing unit 15. Thereby, the TSMF header is arranged at the head of the frame.
  • the dummy slot generating unit 13 refers to the 4P counter 15b and the value is “3”.
  • the dummy slot is output to the dividing unit 15.
  • the modulation schemes of the first and third carriers are 64QAM (31.644 Mbps)
  • the modulation schemes of the second and fourth carriers are 256QAM (42.192 Mbps).
  • a dummy slot is inserted every three packets. Thereby, the arrangement of TS packets that facilitates data synthesis on the receiving side is realized.
  • a dummy slot is generated for the first carrier wave or the third carrier wave when the value of the 4P counter 15b is “3”.
  • the dummy slot generation unit 13 outputs the input TS packet to the division unit 15 when neither the TSMF header nor the dummy slot is output.
  • the division unit 15 Based on the information from the carrier division method determination unit 29, the division unit 15 converts the packet (TS packet, TSMF header or dummy slot) input from the dummy slot generation unit 13 out of the four first to fourth carriers. Assign to any one in turn.
  • the first carrier wave, the second carrier wave, the third carrier wave, the fourth carrier wave, the first carrier wave it is assumed that the first carrier wave, the second carrier wave, the third carrier wave, the fourth carrier wave, the first carrier wave,. That is, the dividing unit 15 outputs the input packet (TS packet, TSMF header, dummy slot) to the transmission input ports 16a to 16d corresponding to the carrier to be allocated.
  • the H counters 1 to 4 are counted up each time a TS packet or TSMF header is received from the dummy slot generation unit 13, but are not counted up when a dummy slot is received.
  • the packets output to the input ports 16a to 16d are input and stored in the buffers 1 to 4 provided for each carrier wave except for the dummy slots.
  • the dummy slot deletion unit 17 deletes a packet input to the transmission input ports 16a to 16d if it is a dummy slot. Therefore, even when a dummy slot is transmitted from the dividing unit 15, the dummy slot is not stored in the buffers 1 to 4.
  • FIG. 8 is a diagram for explaining changes in the storage state of the buffers 1 to 4 due to the above-described operations of the dummy slot generation unit 13, the division unit 15, and the dummy slot deletion unit 17.
  • TS packets are input to the transmitting apparatus 100 in the order of TS1-1, TS1-2, TS1-3, TS1-4,..., TS1-n,.
  • the input packet is assigned to the first carrier wave.
  • the dummy slot generation unit 13 outputs the TSMF header, and the division unit 15 outputs the input TSMF header to the transmission input port 16 a connected to the buffer 1.
  • the TSMF header is stored in the buffer 1.
  • the H counter 1 is counted up and becomes 1.
  • the input packet is assigned to the second carrier wave.
  • the dummy slot generation unit 13 outputs the TSMF header, and the dividing unit 15 outputs the input TSMF header to the transmission input port 16 b connected to the buffer 2.
  • the TSMF header is stored in the buffer 2.
  • the H counter 2 is counted up and becomes 1.
  • the TSMF header is stored in the buffers 3 and 4, and the H counters 3 and 4 are counted up.
  • the 4P counter 15b is incremented and becomes 1.
  • the input packet is assigned to the first carrier wave.
  • the value of the H counter 1 is 1 and not 0.
  • the value of the 4P counter is not 3. Therefore, the dummy slot generation unit 13 outputs the input TS packet (TS1-1), and the division unit 15 outputs the input TS packet (TS1-1) to the transmission input port 16a connected to the buffer 1.
  • the TS packet (TS1-1) is stored in the buffer 1 after the TSMF header. Further, the H counter 1 is counted up. Similarly, the TS packet (TS1-2) is stored in the buffer 2 at time T6.
  • the input TS packets are stored while being sequentially assigned to the buffers 1 to 4 in the same manner.
  • the H counters 1 to 4 are reset to 0 after counting up to 52. Therefore, the TSMF headers are stored periodically (every 53 packets) in the buffers 1 to 4.
  • FIG. 9 is a diagram for explaining generation and deletion of dummy slots. For convenience of explanation, FIG. 9 illustrates generation and deletion of a dummy slot for the first carrier wave.
  • the dummy slot generation unit 13 refers to the 4P counter 15b. If the value is 3, the dummy slot generation unit 13 generates a dummy slot 13b and outputs it to the division unit 15. The dividing unit 15 outputs the dummy slot 13 b received from the dummy slot generating unit 13 to the transmission input port 16 a for the first carrier wave connected to the buffer 1. At this time, the H counter 1 is not counted up. However, the PCR interval counter 15c is counted up.
  • the dummy slot deletion unit 17 deletes the dummy slot received via the transmission input port 16a. As a result, no dummy slot is stored in the buffer 1. If the packet received via the transmission input port 16a is not a dummy slot, the dummy slot deleting unit 17 transmits the packet to the buffer 1 as it is.
  • FIG. 10 is a diagram showing changes in the storage state of buffers 1 to 4 when dummy slots are generated / deleted.
  • the value of the 4P counter 15b becomes 3. Therefore, at time T13, a dummy slot 13b is generated by the dummy slot generation unit 13, and is output to the transmission input port 16a by the division unit 15. However, since the dummy slot 13b is deleted by the dummy slot deleting unit 17, nothing is input to the buffer 1.
  • the TS packet (TS1-9) is recorded in the buffer 2 next to the buffer 1.
  • a dummy slot 13b is generated by the dummy slot generation unit 13 and output to the transmission input port 16 by the division unit 15.
  • the dummy slot 13b is immediately deleted by the dummy slot deleting unit 17. For this reason, nothing is input to the buffer 3.
  • dummy data is generated every time the value of the 4P counter counts 3 in the data transmitted on the first carrier and the third carrier that transmit a signal modulated by the 64QAM modulation method.
  • the transmission apparatus side should assign packets in the prescribed assignment order. Often, the process of assigning packets to each carrier can be simplified, and the implementation becomes easier.
  • by adjusting the packet order in this way it is easy to synthesize data received from a plurality of systems on the receiving device side, and the mounting on the receiving device side can be simplified.
  • the PCR value is a count value counted by a 27 MHz clock.
  • a 16-byte error correction code is added to a 188-byte packet to generate a 204-byte packet, and the 204-byte packet is transmitted. . Therefore, the PCR value is calculated on the assumption that a 204-byte packet is transmitted. (1) In the case of a fixed bit rate In this embodiment, the PCR value is adjusted while monitoring the transmission rate of the input TS packet on the transmission device side.
  • the PCR rewriting unit 11 performs a process of rewriting the PCR value when a packet including the PCR value (hereinafter referred to as “PCR packet”) is input. The operation will be described with reference to the flowchart of FIG.
  • the PCR rewriting unit 11 When a new PCR packet is input (S21), the PCR rewriting unit 11 newly obtains the PCR value (PCRn) of the PCR packet, the PCR value (PCRn-1) of the previous PCR packet, and the previous PCR packet.
  • a correction value ( ⁇ t) is obtained based on the total number of packets (n) transmitted from reception until reception of a new PCR packet (S22). Then, the PCR value of the newly input PCR packet is corrected based on the correction value, and rewritten using the corrected PCR value (PCRn + ⁇ t) (S23).
  • the correction value ⁇ t is calculated by the following equation.
  • packet_count is the total number of packets transmitted from the previous PCR packet input until the new PCR packet is input, and is obtained from the PCR interval counter 15c.
  • packet_size is the size of one packet, specifically 204 bytes. 27000000 is the counter frequency of the receiving device.
  • PCR′n PCRn + ⁇ t (1.2)
  • the slot multiplexing information is information indicating which TS is allocated to each slot in one frame.
  • the content of the slot multiplex information is the same as relative_ts_number stored in the TSMF header.
  • the slot multiplexing information is acquired from the frame slot allocation unit 25.
  • the slot multiplexing information is set for each carrier wave.
  • FIG. 13 shows a specific example of slot multiplexing information.
  • TS1 is assigned to the first and second slots
  • TS2 is assigned to the third slot
  • TS15 is assigned to the 52nd slot.
  • a slot to which the TS is assigned is referred to as an “effective slot”. Therefore, the first and second slots are effective slots for TS1, the third slot is an effective slot for TS2, and the 52nd slot is an effective slot for TS15.
  • the method of counting by the PCR interval counter 15c is different from that in the case of the fixed bit rate described above. That is, the PCR interval counter 15c counts only the packets transmitted to the valid slot (the slot to which the TS is assigned in the slot multiplexing information).
  • packet_count2 is the total number of packets transmitted to the valid slot from when the previous PCR packet was input to when a new PCR packet is input, and is obtained from the PCR interval counter 15c.
  • the PCR interval counter 15c counts including the dummy slot.
  • valid_slot_number is the number of valid slots in all slots (53 ⁇ 4) in a frame for four carriers.
  • PCR′n PCRn + ⁇ t '(2.3)
  • bit_rate2 (packet_count3 ⁇ packet_size ⁇ 8) / ⁇ (PCRn + ⁇ t ”) ⁇ PCRn-1 ⁇ / 27000000 (3.1)
  • bit_rate2 transmission rate of the first carrier x valid_slot_number_1 / 53 + 2nd carrier transmission rate x valid_slot_number_2 / 53 + Third carrier transmission rate x valid_slot_number_3 / 53 + Fourth carrier transmission rate x valid_slot_number_4 / 53 (3.2)
  • packet_count3 is the total number of packets transmitted to the valid slot from when the previous PCR packet was input to when a new PCR packet is input, and is obtained from the PCR interval counter 15c. However, the PCR interval counter 15c does not count dummy slots. valid_s
  • PCR′n PCRn + ⁇ t ′′ (3.3)
  • the transmission apparatus 100 of the present embodiment has input ports 10-1 to 10-15 for inputting a plurality of TS1 to TS15.
  • the functions of the dummy slot generation unit 13, the division unit 15, the dummy slot deletion unit 17, and the buffers 1 to 4 described with reference to FIG. 7B are realized. Is done.
  • the multiplexing unit 18 includes multiplexing buffers 1 to 4 for storing multiplexed data for each carrier wave.
  • Multiplexing buffer 1 multiplexes and stores TS packets stored in buffer 1 in buffer sets 20-1 to 20-15 of TS1 to TS15.
  • each of the multiplexing buffers 2 to 4 multiplexes and stores the TS packets stored in the buffers 2 to 4 in the buffer sets 20-1 to 20-15 of the TS1 to TS15.
  • Which TS is multiplexed to which slot for each of the multiplexing buffers 1 to 4 is performed based on slot multiplexing information.
  • FIG. 13 is a diagram for explaining multiplexing in the multiplexing buffer 1 for storing the data for the first carrier wave.
  • the multiplexing unit 18 reads TS packets from the buffers 1 of TS 1 to T 15 based on the slot multiplexing information 61 and stores them in the multiplexing buffer 1. As a result, only the data for the first carrier wave is multiplexed in the multiplexing buffer 1. As for the TSMF header, the TSMF header in the buffer 1 is discarded so that the data sequence newly multiplexed in the multiplexing buffer 1 can be correctly managed, and a new TSMF header is added in the multiplexing buffer 1. Added.
  • the slot multiplexing information 61 indicates that TS1 is stored in the first and second slots, TS2 is stored in the third slot, and TS15 is stored in the 52nd slot.
  • TS packets for one frame are arranged in the following order according to the slot multiplexing information 61.
  • the TSMF header is arranged at the 0th position of the multiplexing buffer 1.
  • the packet TS1-1 stored in the first of the buffer 1 of TS1 is arranged in the first of the multiplexing buffer 1.
  • the packet TS1-5 stored in the second buffer 1 of the TS1 is placed in the second buffer in the multiplexing buffer 1.
  • the packet TS2-11 stored in the third buffer 1 of the TS2 is placed in the third buffer in the multiplexing buffer 1.
  • TS packets are similarly arranged according to the slot multiplexing information 61, and finally, the packet TS2-234 stored in the 52nd of the buffer 1 of the TS15 is arranged in the 52nd of the multiplexing buffer 1.
  • FIG. 14 is a diagram illustrating an example of a state in each of the multiplexing buffers 1 to 4 when two TSs are input and multiplexed and transmitted using four carrier waves.
  • 8K TS1 and 2K TS2 are input.
  • TS1 is transmitted using the entire band of the first to third carriers and a part of the fourth carrier, and TS2 is transmitted using the remaining band of the fourth carrier.
  • packets TS1-8, TS1-10, TS2-1, TS2-2,... TS2-3,... Shown with hatching added are packets inserted for adjusting the transmission rate. Does not contain valid data. For example, Null data is stored in these packets.
  • packets TS1-1, TS1-2, ... TS2-8, ... without hatching are packets containing valid data.
  • the slot multiplex information 61a is for the first to third carriers, and the slot multiplex information 61b is for the fourth carrier.
  • TS1 is assigned to all slots.
  • both TS1 and TS2 are assigned to the slot.
  • the multiplexing unit 18 refers to the slot multiplexing information 61a and the slot multiplexing information 61b, and includes packets including valid data stored in the buffers 1 to 4 for TS1 and TS2 (packets shown without hatching in FIG. 14). ) Only is selected and stored in the multiplexing buffers 1 to 4. In this way, a large-capacity 8K TS can be transmitted using the entire band of three carriers and a part of a band of one carrier, and is relatively capacity using the remaining band of one carrier. A small 2K TS can be transmitted.
  • packets from each of the buffers 1 to 4 of each TS are multiplexed to each of the multiplexing buffers 1 to 4.
  • multiplexed transmission data to be transmitted on each of the first carrier wave to the fourth carrier wave is generated for each of the multiplexing buffers 1 to 4.
  • Packets input to the multiplexing buffers 1 to 4 are sequentially output to the subsequent QAM modulators 19a to 19d.
  • one transport stream can be transmitted using a plurality of carrier waves, and even a transport stream having a large capacity that cannot be transmitted by one carrier wave. Can be transmitted. As a result, data of a large capacity such as 8K can be transmitted. Further, since a plurality of transport streams can be multiplexed and transmitted with one carrier wave, the transmission band can be used effectively. For example, it is possible to multiplex other streams in a surplus band when transmitting a large-capacity transport stream using a plurality of carriers.
  • the receiving device of the present embodiment is a device that receives and demodulates a plurality of carrier waves transmitted from the transmitting device 100 described above, and acquires the transmitted original TS data.
  • FIG. 15 is a diagram showing the configuration of the receiving apparatus of this embodiment.
  • the receiving apparatus 200 includes a plurality of tuners 31a to 31d, a plurality of QAM demodulation units 33a to 33d, a reception buffer 35, a packet synthesis unit 39, a packet extraction unit 41, and a multiple frame header detection / synthesis order determination unit 43.
  • a plurality of tuners 31a to 31d receives signals from the base station.
  • the tuners 31a to 31d receive the first to fourth carrier waves, select a desired channel, and output a signal of the selected channel to the QAM demodulation units 33a to 33d.
  • the QAM demodulation units 33a to 33d demodulate the signals received from the tuner according to the respective demodulation methods.
  • the QAM demodulation units 33a and 33c perform 64QAM demodulation.
  • the QAM demodulation units 33b and 33d demodulate 256QAM.
  • the demodulated signal is input to the reception buffer 35 and the multiple frame header detection / combination order determination unit 43.
  • the reception buffer 35 has a buffer for each carrier wave.
  • the multiple frame header detection / combination order determination unit 43 detects the multiple frame header from the received and demodulated data, and acquires a predetermined parameter from the header.
  • the multiple frame header detection / combination order determination unit 43 determines the combination order of data received from each carrier based on the parameters acquired from the multiplexed frame header.
  • the dummy slot adding unit 37 adds a dummy slot based on a predetermined condition in the demodulated data related to the first carrier wave and the third carrier wave stored in the reception buffer 35. For example, as shown in FIG. 16A, a dummy slot is inserted every three packets for the first carrier and the third carrier.
  • the packet combiner 39 combines (combines) the data received from each carrier based on the information (carrier_sequence, frame_position) extracted by the multiple frame header detection / combination order determination unit 43.
  • the packet extraction unit 41 extracts data of a desired channel from the combined data.
  • the order of the reception buffer 35, the dummy slot adding unit 37, and the packet extracting unit 41 is not limited to the order shown in FIG.
  • a dummy slot may be added to the demodulated data by the dummy slot adding unit 37 and then stored in the reception buffer 35.
  • desired data may be extracted from the demodulated data by the packet extraction unit 41, stored in the reception buffer 35, and a dummy slot adding unit 37 may add a dummy slot.
  • the channel search is a process that is executed first when the receiving apparatus 200 is newly installed, for example.
  • the tuner 31a receives the first carrier wave and outputs it to the QAM demodulator 33a.
  • the QAM demodulator 33a demodulates the received signal and outputs a transport stream (TS) (S41).
  • the multiple frame header detection / combination order determination unit 43 demodulates and detects a multiple frame header from the transport stream (TS) (S42).
  • the multiple frame header detection / combination order determination unit 43 extracts predetermined parameters from the multiple frame header (S43). For example, the following parameters are detected. ts_id network_id relative_ts_number stream_type group_id number_of_carriers carrier_sequence frame_number frame_position
  • the channel frequency information and modulation method are detected and held (S46). Each channel is searched, and the above processing is repeated until frequency information and modulation schemes for N (four) channels are obtained for data having the same group_id as the first detected group_id (S47, S48, S49). .
  • a dummy slot is inserted (every time) (S50).
  • the number of frames per superframe is 4 in the case of 256QAM modulation
  • the number of frames per superframe is 3 in the case of 64QAM modulation.
  • the TS transmitted on the first carrier and the third carrier has a modulation scheme of 64QAM
  • the TS transmitted on the second carrier and the fourth carrier has a modulation scheme of 256QAM.
  • a dummy slot is inserted every three packets for the TS transmitted by the first carrier and the third carrier.
  • the multiple frame header detection / combination order determination unit 43 determines the combination order based on the carrier_sequence, frame_number, and frame_position of each of the N (four) channels, and notifies the packet combination unit 39 of the combination order.
  • the determination of the composition order will be specifically described.
  • the multiframe header detection / combination order determination unit 43 obtains information on all channels, and then determines the number of carriers to be combined in which order by looking at number_of_carriers and carrier_sequence in each channel of the same group_id.
  • number_of_carriers and carrier_sequence of each carrier are as follows.
  • the synthesis order between the carriers is determined.
  • frame_number 64QAM: 0x03 (3 frames)
  • the packet extraction unit 41 selects and outputs only TS packets having the same ts_id and network_id from the combined TSs (S52). At this time, as shown in FIG. 18B, the packet extraction unit 41 separates TSs having the same ts_id and network_id by inserting and outputting Null data to TS packets that are not selected.
  • the PCR value is a value obtained by the equations (1.1) to (1.2).
  • the selected TS packet is stretched and output within a predetermined period (for example, a period of 3 or 4 packets). Also good.
  • a predetermined period for example, a period of 3 or 4 packets.
  • the selected TS includes a dummy slot (dummy packet)
  • a TS packet other than the dummy slot and a null packet replacing the dummy slot may be output together as shown in FIG. .
  • the PCR value is a value obtained by the equations (2.1) to (2.3).
  • FIG. 18 (e) only the selected TS packets (TS1-1, TS1-2, TS1-3, ...) are output within a predetermined period without outputting a dummy slot (FIG.
  • the multi-frame header detection / combination order determination unit 43 acquires NIT (Network Information Table) information from the TS packet and acquires channel information of all channels (S53).
  • NIT Network Information Table
  • FIG. 19 shows an example of the channel information acquired in this way.
  • a channel search operation can be executed by receiving a transport stream transmitted using a plurality of carriers.
  • 2-2-2 Operation at Channel Selection Operation at the time of channel selection in the receiving apparatus 200 will be described using the flowchart of FIG. A user designates a desired channel for the receiving apparatus 200. Based on the channel information shown in FIG. 19, the receiving apparatus 200 selects a channel having the same group_id as the designated channel by each of the tuners 31a to 31d, receives the information on the channel, and receives the channel information at the QAM demodulation units 33a to 33d. Demodulate and output TS (S61).
  • the multiple frame header detection / combination order determination unit 43 detects the multiple frame header from the demodulated transport stream (TS) and extracts the following parameters (S62). ts_id network_id relative_ts_number stream_type group_id number_of_carriers carrier_sequence frame_number frame_position
  • the dummy slot adding unit 37 inserts a dummy slot into a TS from a carrier wave to which a dummy slot needs to be added (S63). Then, the multiframe header detection / combination order determination unit 43 determines a packet combination order based on the carrier_sequence, frame_number, and frame_position of each of the N (four) channels, and notifies the packet combination unit 39 of the combination order. .
  • the packet combining unit 39 combines the packets based on the combining order (64).
  • the packet extraction unit 41 outputs only TS packets having the same ts_id and network_id from the combined TS (S65). This output operation will be specifically described with reference to FIG.
  • FIG. 21A shows a packet sequence received from each of the first to fourth carriers.
  • FIG. 21B shows details of a packet sequence received from the first carrier wave.
  • FIG. 21C shows some of the parameters extracted in step S62.
  • the packet extraction unit 41 inserts Null data and outputs data for packets other than the packet whose relative_ts_number is “2” received from the first carrier in the combined TS.
  • the receiving apparatus 200 can receive the transport stream transmitted from the transmitting apparatus 100 using a plurality of carrier waves and synthesize the received TS packets for each carrier in the correct order. it can.
  • the combining order of packets can be easily determined based on carrier_sequence, frame_number, and frame_position. That is, it becomes easy to implement a packet combining function in the receiving apparatus 200.
  • the transmission apparatus 100 of the present embodiment is a transmission apparatus that receives a transport stream (TS) and transmits it using first to fourth (plurality) carrier waves.
  • the transmitting apparatus (100) includes an input port (10-1 to 10-15) for inputting a transport stream in units of packets and a predetermined allocation order for the input transport stream in units of predetermined data (for example, in units of packets).
  • the transmission apparatus 100 performs data transmission on the first and third carriers having a transmission speed (for example, 31.644 Mbps by 64QAM) lower than the maximum transmission speed (for example, 42.192 Mbps by 256QAM) among the plurality of carriers.
  • this transmission apparatus (100) data is transmitted while maintaining the relative positional relationship between the carriers of data transmitted on different carriers by inserting a dummy slot with respect to the carrier having a lower transmission rate. Is done. This simplifies the process of assigning the transport stream to the carrier wave in the transmission apparatus, facilitates the implementation, and realizes a data arrangement that can be easily combined on the reception side, and facilitates the combining process in the reception apparatus. Therefore, the synthesis function can be easily implemented in the receiving device.
  • the transport stream may be MPEG-2 TS.
  • the transmission device (100) may further include a PCR rewriting unit (11) that rewrites a PCR (Program Clock Reference) value included in a packet of the transport stream.
  • PCR Program Clock Reference
  • the PCR rewriting unit (11) receives a packet including a PCR value, the data transmission rate of the packet is equal to the rate (42.192 Mbps ⁇ 4) obtained by multiplying the maximum transmission rate by the number of multiple carriers.
  • the PCR value is rewritten so that By rewriting the PCR value on the transmission side, there is no need to provide a PLL circuit for generating a reference clock on the reception side, and the burden on mounting on the reception device side can be reduced.
  • the transmission device (100) in (1) and (2) includes a buffer (20-1 to 20-15) provided for each of a plurality of carrier waves, and a plurality of transport streams. And a multiplexing unit (18) that multiplexes data for the transport stream.
  • the input ports (10-1 to 10-15) input a plurality of transport streams.
  • the dividing unit (15) assigns a transport stream of a predetermined data unit to each transport stream for each carrier wave.
  • the multiplexing unit (18) multiplexes data of a predetermined unit assigned for each carrier for each transport for each carrier for a predetermined transport stream. With this configuration, a plurality of transport streams can be multiplexed and transmitted.
  • the predetermined data unit may be a predetermined number of packet units or a predetermined number of frame units.
  • the receiving apparatus (200) of the present embodiment is a receiving apparatus that receives data transmitted from the transmitting apparatus (100) using a plurality of carrier waves, and separates and outputs a predetermined transport stream. .
  • a receiving apparatus (200) demodulates a plurality of tuners (31a to 31d) provided for each of a plurality of carrier waves and a signal received by each tuner by a demodulation method according to the modulation method of the received signal.
  • the reception buffer (35) for storing the data demodulated by the QAM demodulator for each carrier wave, and the maximum transmission speed (for example, 42.192 Mbps by 256QAM) in a plurality of carrier waves
  • the maximum transmission speed for example, 42.192 Mbps by 256QAM
  • a dummy slot adding unit that adds dummy slots to the data stored in the reception buffer (35) at a predetermined data interval ( 37)
  • a packet synthesizer (39) for synthesizing the transport stream stored for each carrier in the reception buffer (35), and It was and a packet extracting unit for separating and outputting (41) a predetermined transport stream from the transport stream.
  • this receiving apparatus (200) with respect to the data stored in the receiving buffer (35) for the first and third carriers having a slow transmission rate (for example, 31.644 Mbps by 64QAM), at a predetermined data interval. A dummy slot is added. Thereby, the relative positional relationship between the carrier waves of the data received via different carrier waves becomes the same as the positional relationship set on the transmission side. Therefore, the data arrangement in the reception buffer becomes a data arrangement that can be easily combined on the receiving side, and the combining processing in the receiving apparatus becomes easy. Therefore, the synthesis function can be easily implemented in the receiving device.
  • a slow transmission rate for example, 31.644 Mbps by 64QAM
  • the receiving apparatus (200) detects a header from the data demodulated by the QAM demodulator, extracts a predetermined parameter from the header, and indicates information indicating a predetermined allocation order included in the predetermined parameter (carrier sequence)
  • a header detection synthesis order determination unit (43) that determines the synthesis order of the transport streams based on the above.
  • the packet extraction unit (41) may insert null data for data other than data related to the selected channel in the transport stream obtained by the synthesis.
  • the first embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the transport stream is divided for each packet and assigned to each carrier wave.
  • the division unit is not limited to one packet unit.
  • the transport stream may be divided into a predetermined number (two or more) of packets and assigned to each carrier wave.
  • the predetermined number may be set to a value (3 or 4) equal to the number of frames included in one superframe as shown in FIG.
  • the transport stream may be divided into a predetermined number of frames and assigned to each carrier.
  • each frame may be divided and assigned to each carrier wave.
  • the transport stream may be divided into a predetermined number (two or more) frames and assigned to each carrier wave.
  • the predetermined number may be set to a value (3 or 4) equal to the number of frames included in one superframe.
  • the carrier wave that transmits data modulated by the 64QAM modulation method and the carrier wave that transmits data modulated by the 256QAM modulation method are used, but further, other modulation methods are combined. May be used.
  • a 1024 QAM modulation method may be combined in addition to a 64 QAM modulation method and a 256 QAM modulation method.
  • the number of frames (frame_number) included in one superframe is set so that the period of one superframe is the same among the modulation schemes.
  • frame_number the number of frames included in one superframe is set so that the period of one superframe is the same among the modulation schemes.
  • frame_number for each modulation method is obtained as follows.
  • FIG. 24 is a diagram for explaining an example of adding dummy slots in the case where the 4096QAM modulation scheme is assigned to a plurality of carriers from the BPSK modulation scheme.
  • the number of dummy slots added differs according to the order of the modulation scheme, and the frequency of insertion of dummy data increases as the modulation scheme has a lower transmission rate.
  • the number of carriers used for TS transmission is four, but this is only an example. In short, in order to enable transmission of a transport stream having a capacity exceeding the transmission capacity of a single carrier, the number of carriers may be plural.
  • the number of transport streams that are input to the transmission apparatus 100 and multiplexed is 15 in Embodiment 1, it is not necessary to be limited to 15.
  • the number of transport streams to be multiplexed may be set as appropriate according to the application.
  • the transmission apparatus 100 may not assume multiplexing of a plurality of transport streams, and may input a single transport stream, divide it into predetermined units, and transmit it using a plurality of carriers. It may be configured. In this case, it is only necessary to delete the multiplexing unit 18 in the configuration shown in FIG. 1 and perform only the operation described with reference to FIG. 7 for a single transport stream. At that time, the outputs of the buffers 1 to 4 are directly output to the QAM modulators 19a to 19d, respectively.
  • a transport stream that is, a TS packet is transmitted and received
  • the idea of the transmission method and the reception method disclosed in the present embodiment can be similarly applied even when a variable-length packet such as a TLV packet is transmitted instead of such a TS packet.
  • a technique for transmitting a variable-length packet such as a TLV packet in the same manner as a TS packet is disclosed in, for example, Japanese Patent Application Laid-Open No. 2013-175949. Specifically, a variable-length packet such as a TLV packet is divided and assigned to a fixed-length packet having the same size (188 bytes) as the TS packet, and information indicating the start position of the variable-length packet is included in the multiplex frame header. Describe. By processing variable-length packets in this way, it is possible to transmit in a fixed-length slot as with TS packets.
  • the constituent units 11, 13, 15, 17,... Of the transmitting apparatus 100 shown in the first embodiment and the constituent units 31a to 31d, 33a to 33d, 35, and 37 of the receiving apparatus 200 have the functions described above. May be realized by a dedicated hardware circuit (electronic circuit) designed so as to be realized. Or you may implement
  • the various buffers described above can be constituted by, for example, a semiconductor memory device (DRAM, SRAM, etc.).
  • the present disclosure is applicable to an apparatus that transmits and / or receives data using a plurality of carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Communication Control (AREA)

Abstract

 送信装置は、入力したトランスポートストリーム(TS)を所定のデータ単位で所定の割り当て順序にしたがい各搬送波に割り当てる分割部と、分割部により搬送波に割り当てられた所定のデータ単位のTSを搬送波に対応した所定の変調方式で変調する変調部と、変調部により変調されたデータを搬送波毎に送信する送信部と、を備える。送信装置は、より遅い伝送速度を持つ搬送波に対して、データ伝送速度が最大伝送速度と仮想的に等しくなるように、所定のタイミングで、入力したTSの所定のデータ単位に代えてダミースロットを分割部に出力するダミースロット生成部と、分割部によって搬送波に割り当てられたダミースロットを削除するダミースロット削除部とをさらに有する。

Description

送信装置及び受信装置
 本開示は、データを複数の搬送波を用いて送信する送信装置及びデータを複数の搬送波を用いて受信する受信装置に関する。
 従来、単一の搬送波を用いて、複数のトランスポートストリームをそれぞれ独立して多重伝送する手法が提案されている(特許文献1を参照)。
 また、近年4K/8Kのように画像データの高解像度化が進み、これらの高解像度すなわち大容量の画像を伝送する仕組みが要望されている。
 大容量のトランスポートストリームを伝送する方法として、特許文献2に開示の方法がある。特許文献2の方法では、単一のトランスポートストリームを分割してフレームに多重化し、複数の搬送波を用いて伝送している。これにより、単一の搬送波の伝送容量を超えた容量のトランスポートストリームの伝送を可能としている。
特許第3051729号 特開2012-209675号公報
 特許文献2の方法では、搬送波毎にパケットを分割する際に、所定の合成順序と受信装置側でのパケットの到達順とに基づいて、TSパケットをどの搬送波に割り当てるかを決定する。このため、送信装置側においてTSパケットの割り当て処理が複雑になり、送信装置の構成が複雑になる。また、そのようにしてパケットの搬送波への割り当てがなされた場合、受信装置側において、複数の搬送波から受信したパケットを合成する場合の合成順序が複雑になり、合成のための処理が複雑になる。このため、合成処理のための受信装置側の実装が難しくなり、装置構成が複雑になるという問題がある。
 本開示は、複数の搬送波を用いて単一のストリームデータを伝送するシステムにおいて、簡易な構成で、容易な受信データの合成処理を可能とする送信装置及び受信装置を提供する。
 本開示の送信装置は、トランスポートストリームを入力し、複数の搬送波を用いて送信する送信装置である。送信装置は、トランスポートストリームをパケット単位で入力する入力部と、入力したトランスポートストリームを所定のデータ単位で所定の割り当て順序にしたがい各搬送波に割り当てる分割部と、分割部により搬送波に割り当てられた所定のデータ単位のトランスポートストリームを、その割り当てられた搬送波に対応した所定の変調方式で変調する変調部と、各搬送波に対応した所定の変調方式で変調されたデータを、変調方式に対応した搬送波を用いて送信する送信部と、を備える。さらに、送信装置は、複数の搬送波の中の最大伝送速度よりも遅い伝送速度を持つ搬送波に対して、データ伝送速度が最大伝送速度と仮想的に等しくなるように、所定のタイミングで、入力したトランスポートストリームの所定のデータ単位に代えてダミースロットを分割部に出力するダミースロット生成部と、分割部によって搬送波に割り当てられたダミースロットを削除するダミースロット削除部とを有する。
 本開示の受信装置は、上記の送信装置から複数の搬送波を用いて送信されたデータをそれぞれ受信し、所定のトランスポートストリームを分離して出力する受信装置である。受信装置は、複数の搬送波のそれぞれに対して設けられた複数のチューナと、各チューナで受信した信号を、受信した信号が送信された搬送波に応じた所定の復調方式で復調する復調部と、復調部で復調されたデータを搬送波毎に格納するバッファと、複数の搬送波の中の最大伝送速度よりも遅い伝送速度を持つ搬送波について、バッファに格納されたデータに対して、所定のデータ間隔でダミースロットを付加するダミースロット付加部と、バッファに搬送波毎に格納されたトランスポートストリームを合成する合成部と、合成により得られたトランスポートストリームから所定のトランスポートストリームを分離して出力する抽出部とを備える。
 本開示の送信方法は、トランスポートストリームを入力し、複数の搬送波を用いて送信する送信方法である。送信方法は、トランスポートストリームをパケット単位で入力する第1のステップと、入力したトランスポートストリームを所定のデータ単位で所定の割り当て順序にしたがい各搬送波に割り当てる第2のステップと、搬送波に割り当てられた所定のデータ単位のトランスポートストリームを、その割り当てられた搬送波に対応した所定の変調方式で変調する第3のステップと、各搬送波に対応した所定の変調方式で変調されたデータを、変調方式に対応した搬送波を用いて送信する第4のステップと、を含む。さらに、送信方法は、第2のステップにおいて、複数の搬送波の中の最大伝送速度よりも遅い伝送速度を持つ搬送波に対して、データ伝送速度が最大伝送速度と仮想的に等しくなるように、所定のタイミングで、入力したトランスポートストリームの所定のデータ単位に代えてダミースロットを搬送波に割り当てる第5のステップと、第5のステップにおいて搬送波に割り当てられたダミースロットを削除する第6のステップと、を含む。
 本開示の受信方法は、上記の送信方法によって複数の搬送波を用いて送信されたデータをそれぞれ受信し、所定のトランスポートストリームを分離して出力する受信方法である。受信方法は、複数の搬送波のそれぞれからの信号を受信するステップと、受信した信号の変調方式に応じた復調方式で復調するステップと、復調したデータを搬送波毎にバッファに格納するステップと、複数の搬送波の中の最大伝送速度よりも遅い伝送速度を持つ搬送波について、前記バッファに格納されたデータに対して、所定のデータ間隔でダミースロットを付加するステップと、バッファに搬送波毎に格納されたトランスポートストリームを合成するステップと、合成により得られたトランスポートストリームから所定のトランスポートストリームを分離して出力するステップとを含む。
 本開示によれば、複数の搬送波を介して受信したデータを合成する処理において合成順序が単純になるため、受信データの合成処理が容易になる。それにより、受信装置において合成機能の実装が容易になり、装置の構成が簡単になる。また、送信装置においても、トランスポートストリームの搬送波への割り当て処理が単純になり、送信装置における構成が簡単になる。
本開示の一実施形態における送信装置の構成を示す図 多重フレーム方式におけるフレームの構成を示す図 フレームとスーパーフレームとの関係を説明した図 多重フレーム方式における多重フレームヘッダのフォーマットを示す図 多重フレームヘッダにおけるprivate_dataの構成の詳細を示す図 従来の課題及び本開示の考え方を説明するための図 送信装置の要部の構成を示す図 1つのストリームをパケット単位で搬送波毎に分割する処理におけるバッファ1~4の格納状態の変化を説明した図 ダミースロットの生成、削除を説明した図 ダミースロットの生成、削除処理に伴うバッファ1~4の格納状態の変化を説明した図 PCR書き換え部によるPCR書き換え処理のフローチャート 多重化処理部による多重化処理を説明した図 第一搬送波に対する多重化処理を説明した図 8Kのトランスポートストリームと2Kのトランスポートストリームを多重化して4つの搬送波を用いて送信する場合の多重化バッファの格納状態の変化を説明した図 本開示の一実施形態における受信装置の構成を示す図 受信装置におけるパケットの合成処理を説明した図 チャンネルサーチ処理のフローチャート 受信装置の受信データの出力方法を説明した図 受信したチャンネル情報の一例を説明した図 チャンネル選局時の処理のフローチャート 受信装置の合成後のデータから所望のデータを抽出して出力する方法を説明した図 トランスポートストリームの分割、合成方法の例を説明した図 トランスポートストリームの分割、合成方法の例を説明した図 種々の変調方式を複数の搬送波に割り当てる場合のダミースロットの付加の例を説明した図
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者(ら)は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1)
 以下、添付の図面を用いて通信システムの実施の形態を説明する。通信システムは、データを送信する送信装置と、送信装置からのデータを受信する受信装置とを含む。
1.送信装置
 1-1 送信装置の構成
 本実施形態の送信装置は、複数のトランスポートストリーム(以下「TS」という)を入力し多重化して、複数の搬送波(系統)を用いて送信可能な装置である。本実施形態では、一例として、入力するTSの数は15とし、搬送波及び系統の数は4とする。また、第1及び第3系統は第1及び第3搬送波を用いてデータを伝送するとし、その伝送速度は31.644Mbps(64QAM変調方式による)とする。第2及び第4系統は第2及び第4搬送波を用いてデータを伝送し、その伝送速度は42.192Mbps(256QAM変調方式による)とする。TSは188バイトのパケット(以下「TSパケット」という)列で構成される。伝送するTS(トランスポートストリーム)は一例としてMPEG-2 TSとする。
 図1に、本実施形態の送信装置の構成を示す。送信装置100は、入力したTSパケットのPCR(Program Clock Reference)値を書き換えるPCR書き換え部11と、ダミースロットを生成するダミースロット生成部13と、各TSを複数の系統(搬送波)を介して伝送するために系統(搬送波)毎にTSパケットを割り当てていく分割部15と、ダミースロットを削除するダミースロット削除部17と、各TSについて系統毎に分割されたTSパケットを多重化する多重化部18とを備える。送信装置100は、分割部15で搬送波毎に分割され、多重化部18で多重化されるべきデータを格納するバッファ部20を備えている。バッファ部20は、TS毎にバッファセット(詳細は後述)を有し、各バッファセットは、第1ないし第4搬送波のそれぞれに対して設けられた4つのバッファを含む(例えば、図7、図12、図13参照)。
 さらに送信装置100は、系統(搬送波)毎に設けられた4つのQAM変調部19a~19dと、変調されたデータを送信する送信部21a~21dとを備える。第1及び第3系統に接続されるQAM変調部19a、19cは64QAM変調を行い、第2及び第4系統に接続されるQAM変調部19b、19dは256QAM変調を行う。
 さらに、送信装置100は、多重フレームヘッダを生成する多重フレームヘッダ生成部23と、TSパケットのフレーム内のスロットへの割り当てを決定するフレームスロット割当部25と、TSの系統(搬送波)に対する割り当てを決定する搬送波グループ割当部27と、系統(搬送波)に対する分割方法を決定する搬送波分割方法決定部29とを備える。
 1-2 フレーム、多重化フレームヘッダ
 図2は、本実施形態の送信装置で採用する複数のトランスポートストリームを1つの搬送波に多重化して送信するためのフレームの構成を説明した図である。
 1フレームは53スロット(53パケット)で構成される。フレームの先頭すなわち第0番目のスロットには、同期のための多重フレームヘッダが割り当てられる。それ以後の第1番目から第52番目のスロットにTSパケット(188バイト)が割り当てられる。図2は、1つのフレームにおいて2つのストリームTS1、TS2が多重化されている例を示しており、第1、5、6、51番目のスロットにはTS1が割り当てられ、第2~4、52番目のスロットにはTS2が割り当てられている。
 所定数のフレーム群をスーパーフレームとして管理する。スーパーフレームに含まれるフレームの数は伝送速度(すなわち、変調方式)に応じて決定する。例えば、64QAMの変調方式で変調されたデータを伝送する搬送波と、256QAMの変調方式で変調されたデータを伝送する搬送波とを用いる場合、それら2つの搬送波のスーパーフレームの周期が同じになるように、各搬送波に対するスーパーフレーム中のフレームの数を決定する。例えば、図3に示すように、64QAMの変調方式で変調されたデータを伝送する搬送波においては、スーパーフレーム中のフレーム数は3とし、256QAMの変調方式で変調されたデータを伝送する搬送波においては、スーパーフレーム中のフレーム数は4とする。
 図4は、多重フレームヘッダの構成を説明した図である。多重フレームヘッダは、同期に用いる情報51と、多重化のための情報53と、private_data55と、CRC(誤り検出符号)57とを含む。
 同期に用い得る情報51には、同期バイト(sync_byte)、frame_PID、continuity_counter、frame_sync、が含まれる。同期バイト(sync_byte)は"0x47"の値をとり、スロットの先頭に配置される。同期バイト(sync_byte)およびframe_syncは多重フレームヘッダの先頭を検出するために使用される。これらの情報に基づいて受信装置は受信したストリームの中から多重フレームヘッダを検出することができる。
 多重化のための情報53には、version_number、relative_ts_number_mode、frame_type、emergency_indicatorや、以下の情報が含まれる。
・ts_status
 各TS(TS1~TS15)の有効/無効の状態を示す。
・ts_idとnetwork_id
 各TSについてのTSのID(ts_id)とネットワークID(network_id)の値の組を、TS1~T15それぞれについて順に記述している。ts_id、network_idはそれぞれ16ビットで記述される。
・receive status
 各TSの受信状態を示す。
・relative_ts_number
 52個の各スロットにTS1~TS15のいずれのTSが格納されるかを示す情報。先頭から4ビット毎に第1番目のスロット~第52番目のスロットに格納されるTSの情報を格納する。例えば、図2に示すように第1番目のスロットにTS1が格納され、第2番目のスロットにTS2が格納されている場合、relative_ts_numberの最初の4ビットにTS1を示す相対的な番号が格納され、次の4ビットにTS2を示す相対的な番号が格納される。relative_ts_numberを参照することで、どのスロットにどのTSが格納されているかを把握することができる。
 図5は、private_data55の構成を示した図である。private_data55は単一のストリームを複数の系統(搬送波)に分割して伝送するための情報を含む。private_dataは具体的には下記の情報を含む。
・stream_type(1bit×15)
 各ストリームが、TSであるかTLV(Type Length Value)であるかを識別する情報。「0」はTLVパケット、「1」はTSパケットまたはストリームなしを示す。例えば、TS1=0(TLVパケット)、TS2~15=1(streamなし)であれば、‘011111111111111’に設定される。
・group_id(8bit)
 TSまたはTLVのストリームを分割伝送する搬送波群(グループ)を識別するためのID。例えば、放送局Aであれば0x00に、放送局Bであれば0x01に設定される。
・number_of_carriers(8bit)
 当該多重フレームヘッダを伝送する搬送波を含んだ複数のチャンネル(搬送波)で構成される、ストリームを伝送するための搬送波群(group_id)に属する搬送波の総数。例えば放送局A(group_id=0x00)のチャンネルの総数が1であれば0x01、総数が2であれば、0x02、総数が3であれば、0x03が設定される。
・carrier_sequence(4bit)
 受信機側で複数のチャンネル(搬送波)を介して受信したデータを復調して得られる出力から、元のTSまたはTLVのストリームを再生するための合成の順序(チャンネルまたは搬送波の順序)を示す情報。例えば、number_of_carriersが3で40chのcarrier_sequenceを0、41chのcarrier_sequenceを1、50chのcarrier_sequenceが2に設定されている場合、受信機側で、40chの復調出力→41chの復調出力→50chの復調出力の順に合成する。
・frame_number(4bit)
 1つのスーパーフレームの中のフレームの数を示す。64QAMなら0x03、256QAMなら0x04に設定される。
・frame_position(4bit)
 スーパーフレーム中におけるフレーム位置を示す情報。すなわち、スーパーフレームにおいて何番目のフレームかを示す情報。図3に示すように64QAMなら0~2の値、256QAMなら0~3の値のいずれかをとる。
・CRC(32bit)
 CRC値を格納するための32bitのフィールド。CRC値はISO/IEC13818 Annex Bで定義される。
 1-3 先行技術の課題と本開示の考え方
 特許文献2(特開2012-209675号公報)において開示された複数の搬送波を用いた伝送技術の問題点について説明する。
 特許文献2の方法では、搬送波毎にパケットを分割する際に、carrier_sequence(搬送波の合成順序)と、受信装置側でのパケットの到達順とに基づいて、TSパケットをどの搬送波に割り当てるかを決定する。例えば、第1~第4搬送波の4つの搬送波を用い、carrier_sequenceが第1搬送波→第2搬送波→第3搬送波→第4搬送波の順に決定され、第1及び第3搬送波の伝送速度が31.644Mbps(64QAM)であり、第2及び第4搬送波の伝送速度が42.192Mbps(256QAM)である場合、特許文献2の方法では、図6(a)に示すように、各搬送波に対して各パケットが割り当てられる。このような割り当てでは、受信装置は、最初に受信するパケット群(1~4)については、パケットの本来の順序とcarrier_sequenceとが一致しているため、各搬送波で受信したパケットをcarrier_sequenceに基づいて合成することで、元のパケット順序で合成されたデータが得られる。
 しかし、2番目に受信したパケット群(5~8)については、パケット本来の順序とcarrier_sequenceとが一致しておらず、この場合、carrier_sequenceに基づいて合成すると、正しくデータが合成できないという問題がある。このため、受信装置側において正しく合成するためには、carrier_sequence、搬送波の数、搬送波の変調方式の種類等を考慮して合成順序を規定する必要があり、複雑な処理を要する。
 また、carrier_sequence、搬送波の数、搬送波の変調方式の種類等を考慮して合成順序を規定したテーブルが必要となる。よって、搬送波の数や変調方式の種類が増加すると、用意すべきテーブルの数も膨大なものとなり、受信装置において実装上の問題がある。また、送信装置側においても、搬送波毎にパケットを分割する際に、carrier_sequenceと、受信装置側でのパケットの到達順とを考慮する必要があり、搬送波へのパケットの割り当て処理が複雑になるという問題がある。
 そこで、本実施形態では、送信装置100は、図6(b)に示すように、TSを搬送波毎に分割する際に、仮想的に搬送波間の伝送速度が同じになるように伝送速度が低い搬送波において所定の間隔でダミースロットを挿入してパケットを搬送波に割り当てる。その後、変調部へ出力する際には、ダミースロットを削除した後、各パケットを変調部へ出力する。そして、受信装置側においては、各搬送波からデータを受信した際に、伝送速度が低い搬送波から受信したパケット列において適宜ダミースロットを挿入することで、各搬送波から得られたパケットをcarrier_sequence等に基づいて順に合成する。これにより、本来のデータ順にしたがった合成データを容易に得ることができる。以下、このような機能を実現するための送信装置100の動作を説明する。
 1-4 送信装置の動作
  1-4-1 全体動作
 図1に示す送信装置100の動作を説明する。本実施形態の送信装置100は複数のトランスポートストリームTS1~TS15を受信し、各TSを多重化して複数の系統(搬送波)を用いて送信する装置である。具体的には、送信装置100は、1つのTSについてパケット単位で4つの系統(第1搬送波~第4搬送波)に振り分け、系統(搬送波)毎に、各TSのデータを多重化して送信する。これにより、実質的に4つの搬送波の伝送レートを合計したレートでの伝送が可能になり、1つの搬送波だけでは送信できない大容量のデータの伝送を可能とする。
 フレームスロット割当部25は、各TSをフレーム内のどのスロットに割り当てるかを示す情報を出力する。以下、フレームスロット割当部25により決定された、各系統におけるフレーム内の各パケットを割り当てるスロット数及びスロット位置を示す情報を「スロット多重情報」という。
 搬送波分割方法決定部29は、搬送波(系統)の数、各搬送波のQAM変調方式の種類、各搬送波に割り当てられるTSに関する情報、スロットを割り当てる搬送波(系統)の順番を決定する。また、搬送波分割方法決定部29は、トランスポートストリーム(TS)の分割方法(例えば、図21、22に例示した内容)を決定する。受信装置は、この分割方法を認識している。
 搬送波グループ割当部27は、複数の搬送波が所属するグループに関する情報を出力する。本実施形態では、第1搬送波から第4搬送波が1つの搬送波グループに所属している。
 多重フレームヘッダ生成部23は、搬送波グループ割当部27からのグループに関する情報、搬送波分割方法決定部29からのTS分割に関する情報、フレームスロット割当部25からのスロット多重情報に基づき、下記のパラメータ(図4、図5参照)を含む多重フレームヘッダを生成する。
 ts_id
 network_id
 relative_ts_number
 stream_type
 group_id
 number_of_carriers
 carrier_sequence
 frame_number
 frame_position
多重フレームヘッダ生成部23は、生成した多重フレームヘッダをダミースロット生成部13及び多重化部18に出力する。
 PCR書き換え部11は、入力したパケットにPCR(Program Clock Reference)が含まれている場合、後述する仮想的なレート変換を考慮して、入力したパケットのPCR値を書き換える。
 ダミースロット生成部13は、入力したTSパケットまたは多重化フレームヘッダを出力する。また、ダミースロット生成部13は、所定の条件を満たす場合は、入力したTSパケットまたは多重化フレームヘッダではなく、ダミースロット(ダミーパケット)を出力する。
 分割部15は、フレームスロット割当部25からのスロット多重情報に基づき、入力ストリームをパケット単位で搬送波毎に分割し、送信用入力ポート16に出力する。すなわち、分割部15は入力したTSパケットをいずれかの搬送波に割り当てる。分割部15は、搬送波分割方法決定部29から搬送波の割り当て順に関する情報を取得し、その割り当て順に基づき、入力したTSパケットの搬送波への割り当て順を決定する。なお、分割部15は、1つの搬送波(系統)に割り当てられた連続した52個のパケット毎に、ダミースロット生成部13から多重化フレームヘッダを受けるようになっている。これにより、図2に示すフレームが、送信用入力ポート16に出力されるようになっている。
 ダミースロット削除部17は、ダミースロット生成部13により生成され送信用入力ポート16に入力されたダミースロットを削除する。
 バッファ部20は、分割部15により入力TS毎に各搬送波に分割されたTSパケットを格納するためのバッファ群を含む。
 多重化部18は、入力TS毎に各搬送波に分割されたTSパケットを、搬送波毎に多重化する。多重化部18は、フレームスロット割当部25および多重フレームヘッダ生成部23からの情報を受けて多重化を行う。
 QAM変調部19a及び19cは64QAM変調方式でTSパケットの変調を行う変調手段である。QAM変調部19b及び19dは256QAM変調方式でTSパケットの変調を行う変調手段である。
 送信部21aは、QAM変調部19a(64QAM)により変調されたデータを、第1搬送波を介して送信する。送信部21bは、QAM変調部19b(256QAM)により変調されたデータを、第2搬送波を介して送信する。送信部21cは、QAM変調部19c(64QAM)により変調されたデータを、第3搬送波を介して送信する。送信部21dは、QAM変調部19d(256QAM)により変調されたデータを、第4搬送波を介して送信する。
 以上の構成を有する送信装置100は、複数のTS1~15をそれぞれの入力ポートを介してパケット単位で入力する。各TSについて、入力されたストリームは分割部15によりパケット単位で各搬送波に順に割り当てられる。その後、搬送波毎に、多重化部18により各TSのデータが多重化される。搬送波毎に多重化されたデータは、搬送波毎に、QAM変調部19a~19dにより変調され、送信部21a~21dから送信される。以下、送信装置の各部の動作についてより詳細に説明する。
  1-4-2 TSの搬送波(系統)への分割
 以下、ダミースロット生成部13、分割部15、及びダミースロット削除部17の動作について、図7~図10を用いて具体的に説明する。説明の便宜上、一つのストリームTS1についての処理を例として説明する。すなわち、図7(a)に示すように、TS入力ポート1に、パケットTS1-1、TS1-2、TS1-3、TS1-4、…、TS1-n、・・・の順に入力されている状況における処理を説明する。
 図7(b)に示すように、送信装置100は、分割部15により搬送波毎に分割されたデータを格納するためのバッファセット20-1を有し、バッファセット20-1はバッファ1~4を含む。
 分割部15は、送出したパケットの数を搬送波毎にカウントするカウンタを含む。第1ないし第4搬送波それぞれに対するカウンタを「Hカウンタ1」、「Hカウンタ2」、「Hカウンタ3」、「Hカウンタ4」という。Hカウンタ1~4は多重フレームヘッダ(以下「TSMF(Transport Stream Multiplexing Frame)ヘッダ」という)及びTSパケットはカウントするが、ダミースロットはカウントしない。Hカウンタ1~4は52までカウントした後、0にリセットされる。
 さらに、分割部15は、4パケットの送信毎(1周期毎)に1だけカウントアップされる4Pカウンタ15bを含む。すなわち、4Pカウンタ15bは第1搬送波から第4搬送波まで順に1つずつパケットが送信されたときに1だけカウントアップされる。4Pカウンタ15bは3までカウントした後、0にリセットされる。4Pカウンタ15bがリセットされるときのカウンタ値(3)は、ダミースロットが生成される搬送波に対する1スーパーフレーム当たりのフレーム数に基づき決定される。なお、各カウンタの初期値は0であるとする。
 また、分割部15はPCR間隔カウンタ15cを備える。PCR間隔カウンタ15cは、送信装置100が新たにPCR値を含むパケット(以下「PCRパケット」)を入力したときに、前回のPCRパケットを入力してから新たなPCRパケットを入力するまでに分割部15が送信用入力ポート16a~16dに送信したパケットの総数をカウントする。PCR間隔カウンタ15cは、新たにPCRパケットが入力されるとリセットされる。
 TS1入力ポート10-1に対してTS1がパケット単位で入力される。ダミースロット生成部13は、Hカウンタ1~4及び4Pカウンタ15bの値に基づいて、TSMFヘッダ、入力TSパケットおよびダミースロット(ダミーパケット)のいずれかを選択し、分割部15に出力する。
 具体的には、ダミースロット生成部13は、分割部15が入力パケットを割り当てようとしている搬送波に対応するHカウンタを参照し、その値が0の場合、TSMFヘッダを出力する。なお、TSMFヘッダは多重フレームヘッダ生成部23から取得される。例えば、分割部15が入力パケットを第1搬送波に割り当てようとしている場合、Hカウンタ1の値が0であれば、ダミースロット生成部13はTSMFヘッダを分割部15に出力する。これにより、フレーム先頭にTSMFヘッダが配置される。
 または、分割部15が入力パケットを割り当てようとしている系統(搬送波)が第1搬送波または第3搬送波の場合、ダミースロット生成部13は、4Pカウンタ15bを参照し、その値が「3」であれば、ダミースロットを分割部15に出力する。本実施形態では、第1及び第3搬送波の変調方式が64QAM(31.644Mbps)であり、第2及び第4搬送波の変調方式が256QAM(42.192Mbps)であることから、図6(b)に示すように、第1及び第3搬送波により伝送されるフレームにおいて、3パケット毎にダミースロットを挿入する。これにより、受信側においてデータの合成が容易となる、TSパケットの配置が実現される。これを実現するために、第1搬送波または第3搬送波に対して、4Pカウンタ15bの値が「3」のときにダミースロットを生成している。
 ダミースロット生成部13は、TSMFヘッダ及びダミースロットのいずれも出力しない場合は、入力したTSパケットを分割部15に出力する。
 分割部15は、搬送波分割方法決定部29からの情報に基づき、ダミースロット生成部13から入力したパケット(TSパケット、TSMFヘッダまたはダミースロット)を、4つの第1搬送波~第4搬送波のうちのいずれかに順番に割り当てていく。ここでは、第1搬送波→第2搬送波→第3搬送波→第4搬送波→第1搬送波→…の順に割り当てるとする。すなわち、分割部15は入力したパケット(TSパケット、TSMFヘッダ、ダミースロット)を、割り当てる搬送波に対応した送信用入力ポート16a~16dに出力する。なお、Hカウンタ1~4は、ダミースロット生成部13からTSパケットまたはTSMFヘッダを受信する毎にカウントアップされるが、ダミースロットを受信した場合は、カウントアップされない。
 入力ポート16a~16dに出力されたパケットは、ダミースロットを除き、搬送波毎に設けられたバッファ1~4に入力され、格納される。
 ダミースロット削除部17は、送信用入力ポート16a~16dに入力されたパケットがダミースロットである場合、それを削除する。したがって、分割部15からダミースロットが送信された場合でも、ダミースロットがバッファ1~4に格納されることはない。
 図8は、ダミースロット生成部13、分割部15及びダミースロット削除部17の上記の動作によるバッファ1~4の格納状態の変化を説明した図である。図7(a)に示すように、送信装置100に対して、TS1-1、TS1-2、TS1-3、TS1-4、…、TS1-n、…の順にTSパケットが入力される。
 時刻T0では、バッファ1~4には未だパケットが格納されていない状態であり、Hカウンタ1~4は全て0である。
 時刻T1において、入力パケットは第1搬送波へ割り当てられる。その際、Hカウンタ1の値は0であるため、ダミースロット生成部13はTSMFヘッダを出力し、分割部15は入力したTSMFヘッダをバッファ1に接続した送信用入力ポート16aに出力する。これにより、バッファ1にTSMFヘッダが格納される。Hカウンタ1はカウントアップされ、1になる。
 時刻T2において、入力パケットは第2搬送波へ割り当てられる。その際、Hカウンタ2の値は0であるため、ダミースロット生成部13はTSMFヘッダを出力し、分割部15は入力したTSMFヘッダをバッファ2に接続した送信用入力ポート16bに出力する。これにより、バッファ2にTSMFヘッダが格納される。Hカウンタ2はカウントアップされ、1になる。
 同様にして、時刻T3、T4において、バッファ3、4にTSMFヘッダが格納され、Hカウンタ3、4はカウントアップされる。バッファ4へTSMFヘッダが送信されたときに4Pカウンタ15bがカウントアップされ、1になる。
 時刻T5において、入力パケットは第1搬送波へ割り当てられる。その際、Hカウンタ1の値は1であり、0ではない。また、4Pカウンタの値も3ではない。このため、ダミースロット生成部13は入力したTSパケット(TS1-1)を出力し、分割部15は入力したTSパケット(TS1-1)をバッファ1に接続した送信用入力ポート16aに出力する。これにより、バッファ1において、TSMFヘッダの次にTSパケット(TS1-1)が格納される。また、Hカウンタ1がカウントアップされる。同様に、時刻T6において、バッファ2にTSパケット(TS1-2)が格納される。
 以降同様にして、入力したTSパケットがバッファ1~4に順に割り振られながら格納されていく。なお、Hカウンタ1~4は、52までカウントした後0にリセットされる。よって、バッファ1~4においてTSMFヘッダが周期的(53パケット毎)に格納される。
  1-4-3 ダミースロットの生成、削除
 図9、図10を用いてダミースロットの生成、削除について説明する。図9は、ダミースロットの生成、削除を説明するための図である。説明の便宜上、図9では、第1搬送波に対するダミースロットの生成、削除を説明している。
 ダミースロット生成部13は、4Pカウンタ15bを参照し、その値が3であれば、ダミースロット13bを生成して分割部15に出力する。分割部15は、ダミースロット生成部13から受けたダミースロット13bをバッファ1に接続する第1搬送波用の送信用入力ポート16aに出力する。このとき、Hカウンタ1のカウントアップを行われない。しかしながら、PCR間隔カウンタ15cはカウントアップされる。
 ダミースロット削除部17は、送信用入力ポート16aを介して受信したダミースロットを削除する。結果として、バッファ1にダミースロットが格納されない。ダミースロット削除部17は、送信用入力ポート16aを介して受信したパケットがダミースロットでない場合は、そのままバッファ1に送信する。
 図10は、ダミースロットの生成/削除を行った際のバッファ1~4の格納状態の変化を示した図である。時刻T12においてバッファ4にTSパケット(TS1-8)が記録された時点で、4Pカウンタ15bの値は3になる。このため、時刻T13において、ダミースロット生成部13によりダミースロット13bが生成され、分割部15により送信用入力ポート16aに出力される。しかし、ダミースロット削除部17により、ダミースロット13bは削除されることから、バッファ1に対しては何も入力されない。
 時刻T14では、バッファ1の次のバッファ2にTSパケット(TS1-9)が記録される。
 時刻T15において、4Pカウンタ15bの値は3であるため、ダミースロット生成部13によりダミースロット13bが生成され、分割部15により送信用入力ポート16に出力される。しかし、ダミースロット13bはダミースロット削除部17により即座に削除される。このため、バッファ3に対しては何も入力されない。
 以上のように、本実施形態では、64QAMの変調方式により変調された信号を送信する第1搬送波及び第3搬送波において送信するデータにおいて、4Pカウンタの値が3をカウントする毎にダミースロットの生成/削除を行い、バッファ1~4へ配置するパケットの順序を調整する。このように、第1搬送波及び第3搬送波において、ダミースロットの生成/削除を行い各搬送波に割り当てるパケット順を調整することで、送信装置側において、所定の割り当て順にしたがい順にパケットを割り当てていけばよく、各搬送波へのパケットの割り当て処理を単純化でき、実装が容易になる。また、このようにパケット順が調整されることで、受信装置側においても、複数の系統から受信したデータの合成が容易となり、受信装置側の実装を簡易化できる。
  1-4-4 PCRの書き換え
 PCR書き換え部11の動作について説明する。なお、PCR値は27MHzのクロックでカウントされるカウント値である。また、本実施形態では、QAM変調部19a~19dにおける変調処理において、188バイトのパケットに16バイトの誤り訂正符号が付加されて204バイトのパケットが生成され、この204バイトのパケットが伝送される。よって、PCR値は204バイトのパケットが伝送されることを前提として計算される。
(1)固定ビットレートの場合
 本実施形態では、送信装置側において、入力したTSパケットの伝送速度をモニタしながら、PCR値を調整する。最初に、42.192(Mbps)×4(搬送波の数)の固定ビットレートでの伝送を実現する場合のPCR値の調整方法を説明する。ここで、第1及び第3搬送波については、64QAMの変調方式を用いるため伝送速度は31.644(Mbps)であるが、ダミースロットを挿入することで仮想的に42.192(Mbps)に調整している。
 PCR書き換え部11はPCR値を含むパケット(以下「PCRパケット」という)を入力したときにそのPCR値を書き換える処理を行う。図11のフローチャートを用いてその動作を説明する。
 PCR書き換え部11は、新たにPCRパケットを入力したときに(S21)、新たにPCRパケットのPCR値(PCRn)と、前回のPCRパケットのPCR値(PCRn-1)と、前回のPCRパケットを受信してから新たにPCRパケットを受信するまでに送信したパケット総数(n)とに基づき補正値(Δt)を求める(S22)。そして、新たに入力したPCRパケットのPCR値を補正値に基づき補正し、補正後のPCR値(PCRn+Δt)を用いて書き換える処理を行う(S23)。補正値Δtは次式により算出される。
 42192000×4=
(packet_count×packet_size×8)/{(PCRn+Δt)-PCRn-1}/27000000  (1.1)
ここで、packet_countは、前回のPCRパケットを入力してから新たにPCRパケットを入力するまでに送信したパケットの総数であり、PCR間隔カウンタ15cから得られる。packet_sizeは1パケットのサイズであり、具体的には204バイトである。27000000は受信装置のカウンタの周波数である。
 補正後のPCR値(PCR’n)は次式で得られる。
 PCR’n=PCRn+Δt    (1.2)
(2)可変ビットレートの場合
 上記では、42192000(bps)×4(搬送波の数)の固定ビットレートでの伝送を前提としたPCR値の補正を説明したが、以下では、可変ビットレートでの伝送の場合のPCR値の補正について以下に説明する。
 後述するように、本実施形態の多重化処理においては、スロット多重情報を参照して、フレーム中のどのスロットにどのTSを格納すればよいかを判断する。
 スロット多重情報は、1フレーム中の各スロットにどのTSを割り当てるかを示す情報である。スロット多重情報の内容はTSMFヘッダに格納されるrelative_ts_numberと同じである。スロット多重情報は、フレームスロット割当部25から取得する。スロット多重情報は搬送波毎に設定される。図13に、スロット多重情報の具体例を示している。このスロット多重情報61では、第1番目、第2番目のスロットにTS1が割り当てられ、第3番目のスロットにTS2が割り当てられ、第52番目のスロットにTS15が割り当てられている。ここで、あるTSについて、そのTSが割り当てられたスロットを「有効スロット」と称す。よって、第1番目および第2番目のスロットは、TS1に対する有効スロットであり、第3番目のスロットはTS2に対する有効スロットとなり、第52番目のスロットはTS15に対する有効スロットとなる。
 可変ビットレートの場合、PCR間隔カウンタ15cのカウントの仕方が前述の固定ビットレートの場合と異なる。すなわち、PCR間隔カウンタ15cは、有効スロット(スロット多重情報において、TSが割り当てられたスロット)に対して送信されたパケットのみをカウントする。
 受信装置側において選択されたTSを出力(抽出)する場合にダミースロットを追加する場合、可変ビットレートの場合、補正値Δt’は次式により算出される。
 bit_rate1=(packet_count2×packet_size×8)/{(PCRn+Δt’)-PCRn-1}/27000000  (2.1)
  bit_rate1=42192000×(valid_slot_number/53)      (2.2)
ここで、packet_count2は、前回のPCRパケットを入力してから新たにPCRパケットを入力するまでに、有効スロットに対して送信したパケットの総数であり、PCR間隔カウンタ15cから得られる。ここで、PCR間隔カウンタ15cはダミースロットも含めてカウントする。valid_slot_numberは、4搬送波分のフレーム中の全スロット(53×4)における有効スロットの数である。
 補正後のPCR値(PCR’n)は次式で得られる。
 PCR’n=PCRn+Δt’   (2.3)
 また、可変ビットレートの場合であって、受信装置側において所望のTSを抽出する場合にダミースロットを追加しない場合は、補正値Δt”は次式により算出される。
bit_rate2=(packet_count3×packet_size×8)/{(PCRn+Δt”)-PCRn-1}/27000000 (3.1)
bit_rate2= 第1搬送波の伝送レート×valid_slot_number_1/53
      +第2搬送波の伝送レート×valid_slot_number_2/53
      +第3搬送波の伝送レート×valid_slot_number_3/53
      +第4搬送波の伝送レート×valid_slot_number_4/53        (3.2)
ここで、packet_count3は、前回のPCRパケットを入力してから新たにPCRパケットを入力するまでに、有効スロットに対して送信したパケットの総数であり、PCR間隔カウンタ15cから得られる。ただし、PCR間隔カウンタ15cはダミースロットをカウントしない。valid_slot_number_i(i=1,2,3,4)は、第i搬送波に割当てられたフレームに対する有効スロット数である。
 補正後のPCR値(PCR’n)は次式で得られる。
 PCR’n=PCRn+Δt”              (3.3)
 以上のように、送信装置側においてPCR値を書き換えて送信することで、受信装置側において、受信パケット再生のための基準クロックを調整する必要がなく、PLL回路が不要となるため、受信装置側の構成が容易になる。
  1-4-5 多重化
 多重化部18の動作を説明する。本実施形態の送信装置100は、図1に示すように、複数のTS1~TS15を入力するため入力ポート10-1~10-15を有している。そして、各TS1~TS15について(すなわち、入力ポート毎に)、図7(b)を用いて説明したダミースロット生成部13、分割部15、ダミースロット削除部17及びバッファ1~4の機能が実現される。
 図12に示すように、多重化部18は、搬送波毎に、多重化されたデータを格納する多重化バッファ1~4を備える。多重化バッファ1は、TS1~TS15各々のバッファセット20-1~20-15におけるバッファ1に格納されたTSパケットを多重化して格納する。同様に、多重化バッファ2~4のそれぞれは、TS1~TS15各々のバッファセット20-1~20-15におけるバッファ2~4に格納されたTSパケットを多重化して格納する。各多重化バッファ1~4に対していずれのTSをどのスロットへ多重化するかは、スロット多重情報に基づいて行われる。
 図13は、第1搬送波用のデータを格納する多重化バッファ1における多重化を説明した図である。多重化部18は、TS1~T15それぞれのバッファ1から、スロット多重情報61に基づきTSパケットを読み出し、多重化バッファ1に格納していく。これにより、多重化バッファ1において第1搬送波用のデータのみが多重化される。なお、TSMFヘッダについては、多重化バッファ1内で新たに多重化されたデータ列について正しくフレーム管理ができるように、バッファ1内のTSMFヘッダは破棄され、多重化バッファ1において新たにTSMFヘッダが付加される。
 図13の例では、スロット多重情報61は、第1、第2スロットにTS1を格納し、第3スロットにTS2を格納し、第52スロットにはTS15を格納することを示している。多重化バッファ1においては、スロット多重情報61にしたがい下記の順で1フレーム分のTSパケットが配置される。
 すなわち、多重化バッファ1の第0番目にTSMFヘッダが配置される。続いて、多重化バッファ1の第1番目に、TS1のバッファ1の第1番目に格納されたパケットTS1-1が配置される。次に、多重化バッファ1の第2番目に、TS1のバッファ1の第2番目に格納されたパケットTS1-5が配置される。次に、多重化バッファ1の第3番目に、TS2のバッファ1の第3番目に格納されたパケットTS2-11が配置される。その後も同様にスロット多重情報61にしたがいTSパケットが配置され、最後に、多重化バッファ1の第52番目に、TS15のバッファ1の第52番目に格納されたパケットTS2-234が配置される。
 図14は、2つのTSを入力し多重化して4つの搬送波を用いて送信する場合の各多重化バッファ1~4における状態の例を説明した図である。ここでは、8KのTS1と、2KのTS2を入力している。TS1は、第1ないし第3搬送波の全帯域と、第4搬送波の一部の帯域を用いて伝送され、TS2は、第4搬送波の残りの帯域を用いて伝送されるとする。
 図14において、斜線ハッチングが付加されて示されたパケットTS1-8, TS1-10, TS2-1, TS2-2, TS2-3,…は、伝送レートの調整のために挿入されたパケットであり、有効なデータを含むものではない。これらのパケットには例えばNullデータが格納される。一方、斜線ハッチングが付加されていないパケットTS1-1, TS1-2, … TS2-8, …は有効なデータを含むパケットである。
 スロット多重情報61aは第1ないし第3搬送波に対するものであり、スロット多重情報61bは第4搬送波に対するものである。スロット多重情報61aでは、すべてのスロットにTS1が割り当てられている。これに対して、スロット多重情報61bでは、スロットにTS1とTS2の双方が割り当てられている。
 よって、多重化バッファ1~3にはTS1のみが格納され、多重化バッファ4にはTS1とTS2の双方が格納される。このとき、多重化前のデータが格納されるバッファに関して、TS1については、バッファ1~4に有効なデータを含むパケット(TS1-1, TS1-2, TS1-3, TS1-4,…)が格納される。
 一方、TS2については、バッファ4のみに有効なデータを含むパケット(TS2-8, TS2-10)が格納される。多重化部18は、スロット多重情報61a及びスロット多重情報61bを参照して、TS1及びTS2用それぞれのバッファ1~4に格納された有効なデータを含むパケット(図14においてハッチングなしで示されるパケット)のみを選択して多重化バッファ1~4に格納する。このようにして、大容量の8KのTSについては、3つの搬送波の全帯域と1つの搬送波の一部の帯域を用いて伝送でき、かつ、1つの搬送波の残りの帯域を用いて比較的容量の小さい2KのTSを伝送することができる。
 以上のように、多重化バッファ1~4のそれぞれに対して、各TSのバッファ1~4のそれぞれからのパケットが多重化される。これにより、多重化バッファ1~4毎に、第1搬送波~第4搬送波のそれぞれで送信する多重化された送信データが生成される。多重化バッファ1~4に入力されたパケットは順次後段のQAM変調部19a~19dへ出力される。
 以上のように本実施形態の送信装置100によれば、1つのトランスポートストリームを複数の搬送波を用いて伝送することが可能となり、1つの搬送波では伝送できない容量が大きいトランスポートストリームであっても伝送することができる。これにより、8Kのような大容量のデータの伝送が可能となる。また、複数のトランスポートストリームを多重化して1つの搬送波で送信することもできるため、伝送帯域を有効に利用することができる。例えば、複数の搬送波を用いて容量の大きいトランスポートストリームを伝送する際の余った帯域に他のストリームを多重化することができる。
2.受信装置
 2-1 受信装置の構成
 本実施形態の受信装置は、前述の送信装置100から送信された複数の搬送波を受信して復調し、送信された本来のTSデータを取得する装置である。
 図15は、本実施形態の受信装置の構成を示した図である。受信装置200は、複数のチューナ31a~31dと、複数のQAM復調部33a~33dと、受信バッファ35と、パケット合成部39と、パケット抽出部41と、多重フレームヘッダ検出・合成順決定部43とを備える。
 チューナ31a~31dは第1~4搬送波を受信して所望のチャンネルを選局し、選局したチャンネルの信号をQAM復調部33a~33dに出力する。QAM復調部33a~33dはチューナから受信した信号をそれぞれの復調方式にしたがい復調を行う。ここで、QAM復調部33a、33cは64QAMの復調を行う。QAM復調部33b、33dは256QAMの復調を行う。復調された信号は、受信バッファ35と、多重フレームヘッダ検出・合成順決定部43に入力される。受信バッファ35は、図示していないが搬送波毎にバッファを有している。
 多重フレームヘッダ検出・合成順決定部43は、受信し復調されたデータから多重フレームヘッダを検出し、ヘッダから所定のパラメータを取得する。多重フレームヘッダ検出・合成順決定部43は、多重化フレームヘッダから取得したパラメータに基づいて、各搬送波から受信したデータの合成順序を決定する。
 ダミースロット付加部37は、受信バッファ35に格納された、第1搬送波及び第3搬送波に関する復調データにおいて所定の条件に基づきダミースロットを追加する。例えば、図16(a)に示すように、第1搬送波及び第3搬送波について3パケット毎にダミースロットを挿入する。パケット合成部39は、多重フレームヘッダ検出・合成順決定部43で抽出された情報(carrier_sequence, frame_position)に基づき各搬送波から受信したデータを合成(結合)する。パケット抽出部41は、合成したデータの中から所望のチャンネルのデータを抽出する。
 なお、受信バッファ35、ダミースロット付加部37、パケット抽出部41の順序は、図15に示す順序に限定されない。例えば、復調されたデータにダミースロット付加部37によりダミースロットを付加した後、受信バッファ35に格納してもよい。または、復調されたデータからパケット抽出部41により所望のデータを抽出した後に、受信バッファ35に格納し、ダミースロット付加部37によりダミースロットを付加するようにしてもよい。
 2-2 受信装置の動作
  2-2-1 チャンネルサーチ
 図17のフローチャートを用いて、受信装置200におけるチャンネルサーチ動作について説明する。チャンネルサーチは、例えば受信装置200を新規に設置した場合に最初に実行される処理である。
 チューナ31aは第1搬送波を受信し、QAM復調部33aに出力する。QAM復調部33aは受信信号を復調してトランスポートストリーム(TS)を出力する(S41)。多重フレームヘッダ検出・合成順決定部43は、復調してトランスポートストリーム(TS)から多重フレームヘッダを検出する(S42)。多重フレームヘッダ検出・合成順決定部43は、多重フレームヘッダから所定のパラメータを抽出する(S43)。例えば、以下のパラメータが検出される。
 ts_id
 network_id
 relative_ts_number
 stream_type
 group_id
 number_of_carriers
 carrier_sequence
 frame_number
 frame_position
 多重フレームヘッダ検出・合成順決定部43は、最初に検出したチャンネルのgroup_id,number_of_carriersをそれぞれ変数G、Nとして保持する(S44)。なお、本実施形態では、N=4である。
 最初に検出したチャンネルのgroup_idと同じgroup_idを持つデータに対して(S45)、チャンネルの周波数情報と変調方式を検出して保持する(S46)。各チャンネルをサーチし、最初に検出したgroup_idと同じgroup_idを持つデータに対してN個(4つ)のチャンネルの周波数情報と変調方式が得られるまで上記の処理を繰り返す(S47、S48、S49)。
 以上のようにして4つのチャンネルの周波数情報と変調方式が得られると、ダミースロット付加部37は、受信バッファ35において、ダミースロットの付加が必要なTSに対して所定の間隔で(例えば3パケット毎に)ダミースロットを挿入する(S50)。例えば、図16(a)に示すように、256QAM変調方式の場合、1スーパーフレーム当たりのフレーム数が4であり、64QAM変調方式の場合、1スーパーフレーム当たりのフレーム数が3となる。また、第1搬送波および第3搬送波で送信されたTSは変調方式が64QAMであり、第2搬送波および第4搬送波で送信されたTSは変調方式が256QAMである。これらのことから、図16(b)に示すように、第1搬送波および第3搬送波で送信されたTSに対して、3パケット毎にダミースロットが挿入される。
 その後、多重フレームヘッダ検出・合成順決定部43は、N個(4つ)のチャンネルそれぞれのcarrier_sequence、frame_number、frame_positionに基づき合成順序を決定し、その合成順序をパケット合成部39に通知する。ここで、合成順序の決定について具体的に説明する。
 多重フレームヘッダ検出・合成順決定部43は、全チャンネルの情報を取得後、同じgroup_idの各チャンネルで、number_of_carriers、carrier_sequenceを見て、いくつの搬送波をどの順で合成するかを決定する。図16の例では、各搬送波のnumber_of_carriers、carrier_sequenceは下記のとおりである。
  第1搬送波:number_of_carriers=0x04、carrier_sequence=0x00
  第2搬送波:number_of_carriers=0x04、carrier_sequence=0x01
  第3搬送波:number_of_carriers=0x04、carrier_sequence=0x02
  第4搬送波:number_of_carriers=0x04、carrier_sequence=0x03
 まず、1)carrier_sequenceに基づき、搬送波間の合成順序(第1搬送波→第2搬送波→第3搬送波→第4搬送波)が決定される。また、2)TS内のパケットの取り出し順序は、frame_position=0x00であるフレーム(すなわち、スーパーフレームの先頭のフレーム)から順に、frame_number(64QAM:0x03(3フレーム)、256QAM:0x04(4フレーム))を参照して決定される。1)、2)で決定した順序にしたがい、図16(b)に示すように合成順序(1, 2, 3, …)が決定される。
 パケット合成部39は、合成順序に基づきパケットを合成する(51)。具体的には、frame_positionから合成を開始する位置(frame_position=0の位置)を決定し、同じgroup_idのTSパケットについて、number_of_carriers(合成する搬送波の数)とcarrier_sequence(搬送波を合成する順序)に基づき合成を行う。この場合、ダミーパケットにはNullデータを挿入して合成する。これにより、例えば、図16(b)に示す4つのTSから図16(c)に示すようにTSが合成される。
 パケット抽出部41は、合成後のTSの中から同じts_id、network_idを有するTSパケットのみを選択し、出力する(S52)。このとき、パケット抽出部41は、図18(b)に示すように、選択しなかったTSパケットにはNullデータを挿入して出力することにより同じts_id、network_idを有するTSを分離する。この場合のPCR値は式(1.1)~(1.2)で求めた値となる。
 なお、可変ビットレートでの伝送の場合は、図18(c)に示すように、選択されたTSパケットを所定期間内(例えば、3、4パケット単位の期間)で引き伸ばして出力するようにしてもよい。この場合、選択したTSにダミースロット(ダミーパケット)が含まれる場合、図18(d)に示すように、ダミースロット以外のTSパケットと、ダミースロットを置き換えたNullパケットをともに出力してもよい。この場合のPCR値は式(2.1)~(2.3)で求めた値となる。または、図18(e)に示すように、ダミースロットを出力せずに選択TSパケットのみ(TS1-1, TS1-2, TS1-3, ...)を所定期間内(図18(b)の1パケットの期間の16/3倍の期間)で引き伸ばして出力してもよい。この場合のPCR値は式(3.1)~(3.3)で求めた値となる。図18(c)~図18(e)に示すように、可変ビットレートで出力した場合、出力レートが遅くなり、高速なクロックが不要となるという利点がある。特に、搬送波の数が多くなり、より高速なクロックが必要となる場合に有効となる。
 多重フレームヘッダ検出・合成順決定部43は、TSパケットからNIT(Network Information Table)情報を取得し、全チャンネルのチャンネル情報を取得する(S53)。図19に、このようにして取得したチャンネル情報の例を示す。
 以上のようにして、複数の搬送波を用いて送信されたトランスポートストリームを受信してチャンネルサーチ動作が実行できる。
  2-2-2 選局時の動作
 図20のフローチャートを用いて、受信装置200における選局時の動作について説明する。ユーザにより受信装置200に対して所望のチャンネルが指定される。受信装置200は図19に示すチャンネル情報に基づき、指定されたチャンネルと同じgroup_idのチャンネルをチューナ31a~31dのそれぞれで選局して、そのチャンネルの情報を受信し、QAM復調部33a~33dで復調してTSを出力する(S61)。
 多重フレームヘッダ検出・合成順決定部43は、復調されたトランスポートストリーム(TS)から多重フレームヘッダを検出して以下のパラメータを抽出する(S62)。
 ts_id
 network_id
 relative_ts_number
 stream_type
 group_id
 number_of_carriers
 carrier_sequence
 frame_number
 frame_position
 ダミースロット付加部37は、ダミースロットの付加が必要な搬送波からのTSに対してダミースロットを挿入する(S63)。そして、多重フレームヘッダ検出・合成順決定部43は、N個(4つ)のチャンネルそれぞれのcarrier_sequence、frame_number、frame_positionに基づきパケットの合成順序を決定し、その合成順序をパケット合成部39に通知する。パケット合成部39はその合成順序に基づきパケットを合成する(64)。
 パケット抽出部41は、合成後のTSの中から同じts_id、network_idを有するTSパケットのみを出力する(S65)。この出力動作について図21を用いて具体的に説明する。図21(a)は、第1ないし第4搬送波のそれぞれから受信したパケット列を示す。図21(b)は、第1搬送波から受信したパケット列の詳細を示す。図21(c)は、ステップS62で抽出したパラメータの一部を示す。この場合、ユーザにより指定されたチャンネルのts_idが“0x4011”でnetwork_idが“0x0004”であるとすると、図21(c)より、そのrelative_ts_numberは“2”であり、また、このデータは第1搬送波のみに含まれていることがわかる。このため、パケット抽出部41は、合成後のTSにおいて、第1搬送波から受信したrelative_ts_numberが“2”であるパケット以外のパケットについてはNullデータを挿入して、データを出力する。
 以上のようにして、本実施形態の受信装置200は、送信装置100から複数の搬送波を用いて送信されたトランスポートストリームを受信し、搬送波毎に受信したTSパケットを正しい順序で合成することができる。特に、その合成処理において、carrier_sequence、frame_number、frame_positionに基づきパケットの合成順序を容易に決定することができる。すなわち、受信装置200におけるパケットの合成機能の実装が容易になる。
3.まとめ
(1)本実施形態の送信装置100は、トランスポートストリーム(TS)を入力し、第1ないし第4(複数)の搬送波を用いて送信する送信装置である。送信装置(100)は、トランスポートストリームをパケット単位で入力する入力ポート(10-1~10-15)と、入力したトランスポートストリームを所定のデータ単位(例えば、パケット単位)で所定の割り当て順序(carrier sequence)にしたがい各搬送波に割り当てる分割部(15)と、分割部(15)により搬送波に割り当てられた所定のデータ単位のトランスポートストリームを、その割り当てられた搬送波に対応した所定の変調方式で変調するQAM変調部(19a~19d)と、各搬送波に対応した所定の変調方式で変調されたデータを、変調方式に対応した搬送波を用いて送信する送信部(21a~21d)と、を備える。さらに、送信装置100は、複数の搬送波の中の最大伝送速度(例えば、256QAMによる42.192Mbps)よりも遅い伝送速度(例えば、64QAMによる31.644Mbps)を持つ第1、第3搬送波に対して、データ伝送速度が前記最大伝送速度と仮想的に等しくなるように、所定のタイミングで(例えば、3パケット毎に)、入力したトランスポートストリームの所定のデータ単位に代えてダミースロット(13b)を分割部に出力するダミースロット生成部(13)と、分割部(15)によって搬送波に割り当てられたダミースロットを削除するダミースロット削除部(17)とを有する。
 この送信装置(100)によれば、より伝送速度が遅い搬送波に対してダミースロットを挿入することで、異なる搬送波で送信されるデータの搬送波間の相対的な位置関係を維持したままデータが送信される。これにより、送信装置におけるトランスポートストリームの搬送波への割り当て処理が単純になり実装が容易になるとともに、受信側においても合成しやすいデータ並びが実現でき、受信装置における合成処理が容易になる。よって、受信装置において合成機能の実装が容易になる。
(2)トランスポートストリームはMPEG-2 TSであってもよい。その場合、送信装置(100)は、トランスポートストリームのパケットに含まれるPCR(Program Clock Reference)値を書き換えるPCR書き換え部(11)をさらに備えてもよい。PCR書き換え部(11)は、PCR値を含むパケットを受信したときに、当該パケットのデータ伝送速度が、最大伝送速度に複数の搬送波の数を乗じて得られる速度(42.192Mbps×4)と等しくなるように、そのPCR値を書き換える。送信側においてPCR値を書き換えることで受信側において、基準クロックを生成するためのPLL回路を設ける必要がなくなり、受信装置側の実装時の負担を軽減できる。
(3)(1)、(2)における送信装置(100)は、複数のトランスポートストリームのそれぞれに対して、複数の搬送波毎に設けられたバッファ(20-1~20-15)と、複数のトランスポートストリームについてデータを多重化する多重化部(18)と、をさらに備えてもよい。その場合、入力ポート(10-1~10-15)は、複数のトランスポートストリームを入力する。分割部(15)は、各トランスポートストリームに対して、所定のデータ単位のトランスポートストリームを搬送波毎に割り当てる。多重化部(18)は、各トランスポートについて搬送波毎に割り当てられた所定単位のデータを、所定のトランスポートストリームについて搬送波毎に多重化する。この構成により、複数のトランスポートストリームを多重化して送信することが可能となる。
(4)(1)~(3)において、所定のデータ単位は、所定数のパケット単位または所定数のフレーム単位であってもよい。
(5)本実施形態の受信装置(200)は、送信装置(100)から複数の搬送波を用いて送信されたデータをそれぞれ受信し、所定のトランスポートストリームを分離して出力する受信装置である。受信装置(200)は、複数の搬送波のそれぞれに対して設けられた複数のチューナ(31a~31d)と、各チューナで受信した信号を、受信した信号の変調方式に応じた復調方式で復調するQAM復調部(33a~33d)と、QAM復調部で復調されたデータを搬送波毎に格納する受信バッファ(35)と、複数の搬送波の中の最大伝送速度(例えば、256QAMによる42.192Mbps)よりも遅い伝送速度(例えば、64QAMによる31.644Mbps)を持つ第1、第3搬送波について、受信バッファ(35)に格納されたデータに対して、所定のデータ間隔でダミースロットを付加するダミースロット付加部(37)と、受信バッファ(35)に搬送波毎に格納されたトランスポートストリームを合成するパケット合成部(39)と、合成により得られたトランスポートストリームから所定のトランスポートストリームを分離して出力するパケット抽出部(41)とを備える。
 この受信装置(200)によれば、遅い伝送速度(例えば、64QAMによる31.644Mbps)を持つ第1、第3搬送波について、受信バッファ(35)に格納されたデータに対して、所定のデータ間隔でダミースロットが付加される。これにより、異なる搬送波を介して受信したデータの搬送波間での相対的な位置関係が送信側で設定した位置関係と同じになる。よって、受信バッファにおけるデータの並びが、受信側において合成しやすいデータ並びとなり、受信装置における合成処理が容易になる。よって、受信装置において合成機能の実装が容易になる。
(6)受信装置(200)は、QAM復調部で復調されたデータからヘッダを検出し、当該ヘッダから所定のパラメータを取り出し、所定のパラメータに含まれる所定の割り当て順序を示す情報(carrier sequence)に基づきトランスポートストリームの合成順序を決定するヘッダ検出合成順決定部(43)をさらに備えてもよい。この構成により、ヘッダ中に含まれる所定の割り当て順序を示す情報(carrier sequence)に基づき合成処理を行うことができ、容易に合成処理が行える。
(7)パケット抽出部(41)は、合成により得られたトランスポートストリームにおいて、選局されたチャンネルに関連するデータ以外のデータについてはNullデータを挿入してもよい。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
(1)実施の形態1では、図22(a)に示すように、トランスポートストリームを1パケット毎に分割して各搬送波に割り当てた。しかし、分割する単位は1パケット単位に限定されない。例えば、所定数(2以上)のパケット毎にトランスポートストリームを分割して、各搬送波に割り当ててもよい。この場合、所定数は、例えば、図22(b)に示すように1スーパーフレーム当たりに含まれるフレームの数に等しい値(3または4)に設定してもよい。
 また、図23に示すように、トランスポートストリームを所定数のフレーム単位で分割して各搬送波に割り当ててもよい。例えば、図23(a)に示すように、1フレーム毎に分割して各搬送波に割り当ててもよい。また、図23(b)に示すように、所定数(2以上)のフレーム毎にトランスポートストリームを分割して、各搬送波に割り当ててもよい。この場合、所定数は1スーパーフレーム当たりに含まれるフレームの数に等しい値(3または4)に設定してもよい。
(2)実施の形態1では、64QAM変調方式で変調されたデータを伝送する搬送波と、256QAM変調方式で変調されたデータを伝送する搬送波とを用いたが、さらに、他の変調方式を組合わせて使用してもよい。例えば、図23(c)や図23(c)に示す例のように、64QAM変調方式と256QAM変調方式に加えて1024QAM変調方式を組み合わせてもよい。複数の変調方式を組み合わせて使用する場合、変調方式間で、1スーパーフレームの周期が同じになるように1スーパーフレームに含まれるフレーム数(frame_number)を設定する。以下、このフレーム数(frame_number)の求め方について説明する。
 組み合わせて使用する種々の変調方式の次数の最大公約数をmとし、各変調方式の次数をnとすると、各変調方式で変調されたデータを伝送する場合の1スーパーフレームに含まれるフレームの数(frame_number)は次式で算出できる。
  frame_number = n/m
 例えば、32QAM変調方式(次数5)と1024QAM変調方式(次数10)のそれぞれの変調方式で変調されたデータを2つの搬送波で送信する場合を考える。それらの変調方式の次数の最大公約数は5となる。よって、それぞれの変調方式に対するframe_numberは次式のように求まる。
 32QAM変調方式に対するframe_number=5/5=1
 1024QAM変調方式に対するframe_number=10/5=2
 同様に、64QAM変調方式(次数6)と256QAM変調方式(次数8)と1024QAM変調方式(次数10)のそれぞれの変調方式で変調されたデータを3つの搬送波で送信する場合は、次式のように求まる(図22(c)参照)。
 64QAM変調方式に対するframe_number=6/2=3
 256QAM変調方式に対するframe_number=8/2=4
 1024QAM変調方式に対するframe_number=10/2=5
 図24は、BPSK変調方式から4096QAM変調方式を複数の搬送波に割り当てる場合のダミースロットの付加の例を説明した図である。変調方式の次数に応じて、ダミースロットの付加数が異なっており、伝送速度が低い変調方式ほどダミーデータの挿入される頻度が高くなっている。
(3)実施の形態1では、TSの送信に用いる搬送波の数は4としたが、これは一例である。要するに、単一の搬送波の伝送容量を超える容量のトランスポートストリームを伝送することを可能にするため、搬送波の数は複数であればよい。
(4)実施の形態1では、送信装置100に入力され、多重化されるトランスポートストリームの数は15としたが、15に限定される必要はない。多重化されるトランスポートストリームの数はアプリケーションに応じて適宜設定されてよい。
 また、送信装置100は複数のトランスポートストリームの多重化を想定していなくてもよく、単一のトランスポートストリームを入力し、所定の単位に分割して複数の搬送波を用いて伝送するように構成されてもよい。この場合は、図1に示す構成において多重化部18を削除し、単一のトランスポートストリームに対して、図7を用いて説明した動作のみを行えばよい。その際、バッファ1~4の出力はそれぞれ直接QAM変調部19a~19dに出力される。
(5)実施の形態1で示した変調方式の種類や数、変調方式と搬送波の対応は一例であり、他の種類や数、対応が考えられることは言うまでも無い。
(6)上記の実施形態では、トランスポートストリームすなわちTSパケットを送受信する例を説明した。本実施形態で開示した送信方法及び受信方法の思想は、このようなTSパケットに代えて、TLVパケットのような可変長パケットを送信する場合であっても同様に適用することができる。TLVパケットのような可変長パケットをTSパケットと同様に送信する技術については例えば特開2013-175949号公報に開示されている。具体的には、TLVパケットのような可変長パケットを分割し、TSパケットと同サイズ(188バイト)の固定長のパケットに割り当てるとともに、多重フレームヘッダ内に可変長パケットの先頭位置を示す情報を記述する。このように可変長パケットを処理することで、TSパケットと同様に固定長のスロットで送信することが可能となる。
(7)実施の形態1で示した送信装置100の各構成部11、13、15、17,…及び受信装置200の各構成部31a~31d、33a~33d、35、37は、上述した機能が実現されるよう設計された専用のハードウェア回路(電子回路)により実現されてもよい。または、上述した機能が実現されるよう設計された所定のプログラムを実行するCPUやMPU等で実現されてもよい。また、上述した種々のバッファは例えば半導体記憶装置(DRAM、SRAM等)で構成できる。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、複数の搬送波を用いてデータを送信及び/または受信する装置に適用可能である。

Claims (9)

  1.  トランスポートストリームを入力し、複数の搬送波を用いて送信する送信装置であって、
     トランスポートストリームをパケット単位で入力する入力部と、
     入力したトランスポートストリームを所定のデータ単位で所定の割り当て順序にしたがい各搬送波に割り当てる分割部と、
     前記分割部により搬送波に割り当てられた所定のデータ単位のトランスポートストリームを、その割り当てられた搬送波に対応した所定の変調方式で変調する変調部と、
     各搬送波に対応した所定の変調方式で変調されたデータを、変調方式に対応した搬送波を用いて送信する送信部と、
     前記複数の搬送波の中の最大伝送速度よりも遅い伝送速度を持つ搬送波に対して、データ伝送速度が前記最大伝送速度と仮想的に等しくなるように、所定のタイミングで、入力したトランスポートストリームの所定のデータ単位に代えてダミースロットを前記分割部に出力するダミースロット生成部と、
     前記分割部によって搬送波に割り当てられたダミースロットを削除するダミースロット削除部と、
    を備えた、ことを特徴とする送信装置。
  2.  前記トランスポートストリームはMPEG-2 TSであり、
     当該送信装置は、前記トランスポートストリームのパケットに含まれるPCR(Program Clock Reference)値を書き換えるPCR書き換え部をさらに備え、
     前記PCR書き換え部は、PCR値を含むパケットを受信したときに、当該パケットのデータ伝送速度が、前記最大伝送速度に前記複数の搬送波の数を乗じて得られる速度と等しくなるように、そのPCR値を書き換える、
    ことを特徴とする請求項1記載の送信装置。
  3.  複数のトランスポートストリームのそれぞれに対して、前記複数の搬送波毎に設けられたバッファと、
     複数のトランスポートストリームについてデータを多重化する多重化部と、をさらに備え、
     前記入力部は、複数のトランスポートストリームを入力し、
     前記分割部は、各トランスポートストリームに対して、所定のデータ単位のトランスポートストリームを搬送波毎に割り当て、
     前記多重化部は、各トランスポートについて搬送波毎に割り当てられた所定単位のデータを、所定のトランスポートストリームについて搬送波毎に多重化する、
    ことを特徴とする請求項1に記載の送信装置。
  4.  前記所定のデータ単位は、所定数のパケット単位または所定数のフレーム単位である、ことを特徴とする請求項1に記載の送信装置。
  5.  請求項1に記載の送信装置から複数の搬送波を用いて送信されたデータをそれぞれ受信して合成し、所定のトランスポートストリームを分離して出力する受信装置であって、
     前記複数の搬送波のそれぞれに対して設けられた複数のチューナと、
     前記各チューナで受信した信号を、受信した信号の変調方式に応じた復調方式で復調する復調部と、
     前記復調部で復調されたデータを搬送波毎に格納するバッファと、
     前記複数の搬送波の中の最大伝送速度よりも遅い伝送速度を持つ搬送波について、前記バッファに格納されたデータに対して、所定のデータ間隔でダミースロットを付加するダミースロット付加部と、
     前記バッファに搬送波毎に格納されたトランスポートストリームを合成する合成部と、
     合成により得られたトランスポートストリームから所定のトランスポートストリームを分離して出力する抽出部と
    を備えたことを特徴とする受信装置。
  6.  前記復調部で復調されたデータからヘッダを検出し、当該ヘッダから所定のパラメータを取り出し、前記所定のパラメータに含まれる前記所定の割り当て順序を示す情報に基づき前記トランスポートストリームの合成順序を決定するヘッダ検出合成順決定部をさらに備えたことを特徴とする請求項5記載の受信装置。
  7.  前記抽出部は、前記合成により得られたトランスポートストリームにおいて、選局されたチャンネルに関連するデータ以外のデータについてはNullデータを挿入する、ことを特徴とする請求項5記載の受信装置。
  8.  トランスポートストリームを入力し、複数の搬送波を用いて送信する送信方法であって、
     トランスポートストリームをパケット単位で入力する第1のステップと、
     入力したトランスポートストリームを所定のデータ単位で所定の割り当て順序にしたがい各搬送波に割り当てる第2のステップと、
     前記搬送波に割り当てられた所定のデータ単位のトランスポートストリームを、その割り当てられた搬送波に対応した所定の変調方式で変調する第3のステップと、
     各搬送波に対応した所定の変調方式で変調されたデータを、変調方式に対応した搬送波を用いて送信する第4のステップと、
     前記第2のステップにおいて、前記複数の搬送波の中の最大伝送速度よりも遅い伝送速度を持つ搬送波に対して、データ伝送速度が前記最大伝送速度と仮想的に等しくなるように、所定のタイミングで、入力したトランスポートストリームの所定のデータ単位に代えてダミースロットを搬送波に割り当てる第5のステップと、
     前記第5のステップにおいて搬送波に割り当てられたダミースロットを削除する第6のステップと、を含む、
    ことを特徴とする送信方法。
  9.  請求項8に記載の送信方法によって複数の搬送波を用いて送信されたデータをそれぞれ受信し、合成して、所定のトランスポートストリームを出力する受信方法であって、
     前記複数の搬送波のそれぞれからの信号を受信するステップと、
     受信した信号の変調方式に応じた復調方式で復調するステップと、
     前記復調したデータを搬送波毎にバッファに格納するステップと、
     前記複数の搬送波の中の最大伝送速度よりも遅い伝送速度を持つ搬送波について、前記バッファに格納されたデータに対して、所定のデータ間隔でダミースロットを付加するステップと、
     前記バッファに搬送波毎に格納されたトランスポートストリームを合成するステップと、
     合成により得られたトランスポートストリームから所定のトランスポートストリームを分離して出力するステップと
    を含むことを特徴とする受信方法。
PCT/JP2015/002301 2014-06-04 2015-04-30 送信装置及び受信装置 WO2015186293A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-116243 2014-06-04
JP2014116243A JP5872635B2 (ja) 2014-06-04 2014-06-04 送信装置及び受信装置

Publications (1)

Publication Number Publication Date
WO2015186293A1 true WO2015186293A1 (ja) 2015-12-10

Family

ID=54766380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002301 WO2015186293A1 (ja) 2014-06-04 2015-04-30 送信装置及び受信装置

Country Status (2)

Country Link
JP (1) JP5872635B2 (ja)
WO (1) WO2015186293A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027700A (ja) * 2014-06-27 2016-02-18 日本放送協会 送信装置及び伝送システム
CN109873692B (zh) * 2015-01-22 2021-05-14 株式会社索思未来 接收方法以及接收用lsi
KR102519588B1 (ko) 2016-03-08 2023-04-10 삼성전자주식회사 송신기 및 그의 서브 프레임 배열 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218818A (ja) * 2002-01-18 2003-07-31 Telecommunication Advancement Organization Of Japan デジタルデータの送信装置ならびに受信装置
JP2009206893A (ja) * 2008-02-28 2009-09-10 Nippon Hoso Kyokai <Nhk> パケット送信装置
US20100185920A1 (en) * 2007-06-25 2010-07-22 Jae Hyung Song Digital broadcast system, and data processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615749B2 (ja) * 2011-03-29 2014-10-29 日本放送協会 送信装置及び受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218818A (ja) * 2002-01-18 2003-07-31 Telecommunication Advancement Organization Of Japan デジタルデータの送信装置ならびに受信装置
US20100185920A1 (en) * 2007-06-25 2010-07-22 Jae Hyung Song Digital broadcast system, and data processing method
JP2009206893A (ja) * 2008-02-28 2009-09-10 Nippon Hoso Kyokai <Nhk> パケット送信装置

Also Published As

Publication number Publication date
JP2015231129A (ja) 2015-12-21
JP5872635B2 (ja) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6389585B1 (ja) 送信装置及び受信装置
JP5973746B2 (ja) 送信装置及び受信装置
US7609727B2 (en) Apparatus for transmitting/receiving communication and broadcasting data using multiplexing at transmission convergence layer
US10601631B2 (en) Divided data transmitting and receiving system
BRPI1004506A2 (pt) aparelho e método de recepção, um programa e sistema de recepção
JP5615749B2 (ja) 送信装置及び受信装置
JP5872635B2 (ja) 送信装置及び受信装置
JP5145261B2 (ja) デジタルデータ送信装置及びデジタルデータ受信装置
JP5827733B2 (ja) 送信装置
CN112313905B (zh) 接收装置及接收方法
JP6943148B2 (ja) 放送再送信装置、放送再送信方法およびモニタ方法
JP6985891B2 (ja) 再多重化装置、送信装置、チップ、およびプログラム
JP6848797B2 (ja) 放送再送信装置、放送受信装置、放送再送信方法、放送受信方法、放送再送信プログラムおよび放送受信プログラム
JP6121502B2 (ja) 受信装置
JP6063281B2 (ja) 送信装置、受信装置及びこれらのプログラム
JP6985890B2 (ja) 再多重化装置、送信装置、チップ、およびプログラム
JP7054332B2 (ja) 再多重化装置、送信装置、チップ、およびプログラム
JP6844505B2 (ja) 放送再送信装置および放送再送信方法
JP2011239059A (ja) デジタルデータ送信装置、受信装置、送信方法、受信方法及びプログラム
JP6985888B2 (ja) 再多重化装置、送信装置、チップ、およびプログラム
JP4111438B2 (ja) デジタルデータの送信装置
JP7054333B2 (ja) 再多重化装置、送信装置、チップ、およびプログラム
JP2018078549A (ja) 再多重化装置、送信装置、チップ、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803105

Country of ref document: EP

Kind code of ref document: A1