以下、本発明を実施するための形態について、図面を参照しながら説明する。各図中、同一符号は、同一または同等の構成要素を示している。
図1は、本発明の一実施形態に係るOFDM送信システム10の構成例を示す図である。本実施形態に係るOFDM送信システム10は、複数の階層のデータを1つのチャンネルで伝送する階層伝送を行うものであり、以下では、A階層およびB階層という2階層のデータを伝送するものとする。また、本実施形態に係るOFDM送信システム10は、各階層のデータよりも低遅延で伝送すべきチャンネル(LCH)のデータをA階層およびB階層と同じ1つのチャンネルで伝送するものである。階層伝送の階層数は2階層に限られるものではない。
なお、次世代の地上デジタル放送では、1チャンネルの周波数帯域(約6MHz)を33あるいは35の帯域(セグメント)に分割し、中心の1~9セグメント(部分受信部)を移動受信端末向けの階層のデータの伝送に用い、残りのセグメント(非部分受信部)を固定受信端末向けの階層のデータの伝送に用いることが検討されている。
図1に示すOFDM送信システム10は、多重化装置11(11a~11c)と、再多重化装置12と、送信装置13(13a,13b)とを備える。
多重化装置11aは、A階層に対応して設けられ、A階層のデータ、具体的には、映像・音声信号と字幕信号とが入力される。多重化装置11aは、入力された映像・音声信号と字幕信号とを多重化し、所定の形式(例えば、MMT(MPEG Media Transport))のパケット(MMTP(MMT Protocol)パケット)にパケット化して、A階層用のパッケージとして出力する。より詳細には、多重化装置11と再多重化装置12との間の伝送路は、IP(Internet Protocol)伝送路であり、多重化装置11からはMMTPパケットをIPパケットに格納して再多重化装置12に出力される。したがって、以下では、多重化装置11から再多重化装置12に出力されるパケットをMMTP/IPパケットと称することがある。
多重化装置11bと多重化装置11cとはそれぞれ、B階層とLCHとに対応して設けられ、対応するB階層あるいはLCHの映像・音声信号と字幕信号とが入力される。多重化装置11b,11cはそれぞれ、多重化装置11aと同様に、入力された映像・音声信号と字幕信号とを多重化し、MMTPパケットにパケット化してB階層用のパッケージ、LCH用のパッケージとして再多重化装置12に出力する。
再多重化装置12は、多重化装置11a,11bにより多重化された複数の階層(A階層およびB階層)それぞれのデータおよび多重化装置11cにより多重化されたLCHのデータを再多重化して送信装置13に出力する。より詳細には、再多重化装置12は、多重化装置11a,11b,11cそれぞれから出力されたMMTPパケットからXMIパケットを生成し、1系統に多重化(再多重化)して送信装置13に出力する。
送信装置13は、再多重化装置12から出力されたXMIパケットを用いてOFDM信号を構成し、そのOFDM信号をアンテナ14から送信する。
ここで、図1においては、再多重化装置12からは2つの送信装置13a,13bにXMIパケットが出力される例を示している。次世代の地上デジタル放送では、時空間符号化を適用したSFN(Single Frequency Network)が検討されている。すなわち、送信装置13a,13bは、再多重化装置12からの出力に対して時空間符号化処理を施した後、アンテナ14a,14bから同じ周波数で送信する。この場合、送信装置13aから送信された信号が到達するエリアと、送信装置13bから送信された信号が到達するエリアとが重複する重複領域では、送信装置13a,13bから送信された信号が干渉する。しかしながら、次世代の地上デジタル放送では、時空間符号化処理が施されることで、重複領域の受信装置においても、送信装置13a,13bの信号の最大比合成により、受信品質の劣化を抑制することができる。
次に、再多重化装置12および送信装置13の構成について説明する。なお、多重化装置11の構成は当業者によく知られており、また、本発明と直接関係しないため、説明を省略する。
まず、再多重化装置12の構成について、図2を参照して説明する。
図2に示す再多重化装置12は、パケットフィルタ201a,201b,201cと、IPヘッダ圧縮部202a,202b,202c,202dと、TLVパケット化部203a,203b,203c,203dと、FIFO(First in, First Out)バッファ204a,204b,204c,204dと、FEC(Forward Error Correction)ブロック構成部205a,205bと、階層別フレーム構成部(フレーム構成部)206a,206bと、XMIパケット化部207a,207bと、L0シンボル構成部208と、L1シンボル構成部209と、同期制御XMIパケット構成部210と、スタッフXMIパケット構成部211と、XMIパケット送出スケジューラ部(送出部)212とを備える。
パケットフィルタ201a、IPヘッダ圧縮部202a、TLVパケット化部203a、FIFOバッファ204a、FECブロック構成部205a、階層別フレーム構成部206a、およびXMIパケット化部207aは、A階層に対応して設けられている。
パケットフィルタ201aは、多重化装置11aからA階層のMMTPパケット(MMTP/IPパケット)が入力される。パケットフィルタ201aは、入力されたMMTP/IPパケットのIPヘッダの送信元IPアドレス、宛先IPアドレス、プロトコル種別、UDP(User Datagram Protocol)ヘッダの送信元ポート番号、宛先ポート番号などに基づき、伝送するパケットを選択(パケットフィルタリング)し、選択したMMTP/IPパケットをIPヘッダ圧縮部202aに出力する。
IPヘッダ圧縮部202aは、必要に応じて、パケットフィルタ201aから出力されたMMTP/IPパケットのIPヘッダの圧縮を行い、TLVパケット化部203aに出力する。
TLVパケット化部203aは、IPヘッダ圧縮部202aから出力されたMMTP/IPパケットをTLV(Type Length Value)パケットにカプセル化してTLVパケットを生成する。
図3は、TLVパケットの構成を示す図である。なお、以下では、各フィールド(領域)に付された数字は、各フィールドのビット数の一例を示す。
図3に示すように、TLVパケットは、予約領域と、パケット種別領域と、データ長領域と、データ領域とを含む。パケット種別領域は、当該TLVパケットのパケット種別を示し、データ長領域はデータ領域に格納されるデータのサイズを示す。TLVパケット化部203aは、IPヘッダ圧縮部202aから出力されたIPパケットをデータ領域に格納する。なお、予約領域については全ビットを“1”とする。
図2を再び参照すると、TLVパケット化部203aは、生成したTLVパケットをFIFOバッファ204aに出力する。
FIFOバッファ204aは、TLVパケット化部203aから出力されたTLVパケットを格納し、格納したTLVパケットを格納順にFECブロック構成部205aに出力する。
FECブロック構成部205aは、FIFOバッファ204aから出力されたTLVパケットから、一定の周期でFECブロックを構成する。
図4は、FECブロックの構成例を示す図である。
図4に示すように、FECブロックは、FECブロックヘッダ領域と、主信号領域と、BCHパリティ領域と、スタッフビット領域と、LDPCパリティ領域とを含む。なお、図4には主信号領域とBCHパリティ領域とを一つずつ図示したが、それぞれが複数に別れている場合もある。
主信号領域には、FIFOバッファ204aから出力されたTLVパケットが格納される。FECブロックヘッダ領域は、FECブロックの主信号領域に格納される最初のTLVパケットの先頭の位置、具体的には、FECブロックに格納される最初のTLVパケットの先頭バイトの位置を、FECブロックヘッダを除いたFECブロックの先頭からのバイト数で示す情報が格納されるフィールド(先頭TLV指示フィールド)である。BCHパリティ領域、スタッフビット領域、およびLDPCパリティ領域にはすべて、ビット“1”が格納される。
なお、FECブロックのサイズは、送信装置13で行われるLDPC符号化の符号長(Short, Middle, Long)に応じて、三種類のサイズが設定される。また、主信号領域、BCHパリティ領域、スタッフビット領域、およびLDPCパリティ領域のサイズは、符号化率に応じて定まる。
FECブロック構成部205aは、FIFOバッファ204aから出力されたTLVパケットを出力順に連結して主信号領域に格納し、FECブロックごとに、先頭TLV指示フィールドの値を設定する。なお、FECブロック構成部205aは、主信号領域に格納するTLVパケットがFIFOバッファ204aに存在しない場合には、ヌルタイプのTLVパケットを主信号領域に格納する。
図2を再び参照すると、FECブロック構成部205aは、構成したFECブロックを階層別フレーム構成部206aに出力する。
階層別フレーム構成部206aは、FECブロック構成部205aから出力されたFECブロックから階層別フレームを構成する。図5は、階層別フレームの構成を示す図である。
図5に示すように、階層別フレームは、フレームヘッダ領域と、FECブロック領域とを含む。FECブロック領域には、FECブロック構成部205aから出力されたFECブロックを連結したものや、FECブロックの断片が格納される。なお、階層別フレームのサイズは、変調方式、FFTサイズ、ガードインターバル比、パイロット信号比率、およびセグメント数に応じて定まる。
図6は、図5に示すフレームヘッダ領域の構成例を示す図である。
図6に示すように、フレームヘッダ領域には、所定のビット数(図6においては、19ビット)のFECブロックポインタが含まれ、残りの領域には、ビット“1”が格納される。FECブロックポインタは、FECブロック領域の開始位置から、階層別フレームに格納するFECブロックの先頭を含む最初のFECブロックの先頭ビットの位置をビット単位で示す。
階層別フレーム構成部206aは、FECブロック構成部205aから出力されたFECブロックを出力順に連結し、FECブロック領域に格納するとともに、FECブロック領域に格納したFECブロックの位置からFECブロックポインタを算出し、フレームヘッダに格納する。
図2を再び参照すると、階層別フレーム構成部206aは、構成した階層別フレームをXMIパケット化部207aに出力する。
XMIパケット化部207aは、階層別フレーム構成部206aから出力された階層別フレームからXMIパケットを構成する。具体的には、XMIパケット化部207aは、図7に示すように、階層別フレームを所定のサイズ(図7では、10448ビット)に分割し、データユニットを構成する。上述したように、XMIパケットは、ヘッダと、データユニット領域とを含んでいる。XMIパケット化部207aは、データユニット領域にデータユニットを格納する。なお、図7に示すように、最後のデータユニットが所定のサイズ未満(図7では、10448ビット未満)となることがある。この場合、XMIパケット化部207aは、所定のサイズに満たないデータユニットに所定のビット(スタッフビット)を付加して所定のサイズにして、データユニット領域に格納する。
図2を再び参照すると、XMIパケット化部207aは、生成したXMIパケット(A階層XMIパケット(第1のパケット))をXMIパケット送出スケジューラ部212に出力する。なお、XMIパケットの構成の詳細については、後述する。
パケットフィルタ201b、IPヘッダ圧縮部202b、TLVパケット化部203b、FIFOバッファ204b、FECブロック構成部205b、階層別フレーム構成部206b、およびXMIパケット化部207bは、B階層に対応して設けられている。A階層に対応する構成とB階層に対応する構成とは同じであるため、B階層に対応する構成については説明を省略する。
パケットフィルタ201c、IPヘッダ圧縮部202c,202d、TLVパケット化部203c,203d、FIFOバッファ204c,204d、L0シンボル構成部208、およびL1シンボル構成部209は、LCHに対応して設けられている。
パケットフィルタ201cは、多重化装置11cからLCHのMMTP/IPパケットが入力される。パケットフィルタ201cは、入力されたIPパケットのIPヘッダの送信元IPアドレス、宛先IPアドレス、プロトコル種別、UDPヘッダの送信元ポート番号、宛先ポート番号などに基づき、伝送するパケットを選択(パケットフィルタリング)し、選択したMMTP/IPパケットをIPヘッダ圧縮部202cまたはIPヘッダ圧縮部202dに出力する。
IPヘッダ圧縮部202cは、必要に応じて、パケットフィルタ201cから出力されたMMTP/IPパケットのIPヘッダの圧縮を行い、TLVパケット化部203cに出力する。IPヘッダ圧縮部202dは、必要に応じて、パケットフィルタ201cから出力されたMMTP/IPパケットのIPヘッダの圧縮を行い、TLVパケット化部203dに出力する。
TLVパケット化部203cは、IPヘッダ圧縮部202cから出力されたMMTP/IPパケットをTLVパケットにカプセル化してTLVパケットを生成し、FIFOバッファ204cに出力する。TLVパケット化部203dは、IPヘッダ圧縮部202dから出力されたMMTP/IPパケットをTLVパケットにカプセル化してTLVパケットを生成し、FIFOバッファ204dに出力する。
FIFOバッファ204cは、TLVパケット化部203cから出力されたTLVパケットを格納し、格納したTLVパケットを格納順にL0シンボル構成部208に出力する。FIFOバッファ204dは、TLVパケット化部203dから出力されたTLVパケットを格納し、格納したTLVパケットを格納順にL1シンボル構成部209に出力する。
L0シンボルは、例えば、部分受信用の9セグメントで伝送され、L1シンボルは、それ以外の24あるいは26セグメントで伝送される。したがって、パケットフィルタ201cによるパケットフィルタリングも、このような割り振りに応じて行われる。
1OFDMフレームあたりのL0シンボルとL1シンボルのビット数は、セグメント数をNとした場合、8K FFTでは4×Nビット、16K FFTでは8×Nビット、32K FFTでは16×Nビットとなる。すなわち、L0シンボルに9セグメントを、L1シンボルに24セグメントを割り当てたとき、16K FFTの場合、1OFDMフレームあたりのL0シンボルは72ビット、L1シンボルは192ビットの大きさとなる。L0シンボル構成部208は、こうした大きさを持つL0シンボルに、FIFOバッファ204cから出力されたTLVパケットの各バイトをMSB(Most Significant Bit)ファーストで割り当てL0シンボルを構成し、XMIパケット送出スケジューラ部212に出力する。同じように、L1シンボル構成部209は、こうした大きさを持つL1シンボルに、FIFOバッファ204dから出力されたTLVパケットの各バイトをMSBファーストで割り当てL1シンボルを構成し、XMIパケット送出スケジューラ部212に出力する。ここでMSBファーストとは、TLVパケットを構成する各バイトの最上位ビットを先頭にビットの列とすることを言う。
同期制御XMIパケット構成部210は、送信装置13がOFDM信号(OFDMフレーム)を構成するための伝送パラメータ、OFDMフレームを送信するタイミング、TMCC情報といった伝送制御に関する情報を示す同期制御情報をデータユニット領域に格納したXMIパケット(同期制御XMIパケット)を構成し、XMIパケット送出スケジューラ部212に出力する。なお、同期制御XMIパケット構成部210は、階層別フレームを分割する所定のサイズに同期制御情報が満たない場合には、スタッフビットを同期制御情報に付加して所定のサイズにしてデータユニット領域に格納する。
スタッフXMIパケット構成部211は、データユニットと同じサイズのスタッフビットのみがデータユニット領域に格納されたXMIパケット(スタッフXMIパケット)を構成し、XMIパケット送出スケジューラ部212に出力する。スタッフXMIパケットは、変調方式や符号化率が異なる場合にも、再多重化装置12が毎秒出力するXMIパケットの数を一定とするために用いられる。
XMIパケット送出スケジューラ部212は、XMIパケット化部207aから出力されたXMIパケット(A階層XMIパケット)、XMIパケット化部207bから出力されたXMIパケット(B階層XMIパケット)、L0シンボル構成部208から出力されたL0シンボル、L1シンボル構成部209から出力されたL1シンボル、同期制御XMIパケット構成部210から出力されたXMIパケット(同期制御XMIパケット)、およびスタッフXMIパケット構成部211から出力されたXMIパケット(スタッフXMIパケット)を送信装置13に出力する。
図8は、XMIパケット送出スケジューラ部212によるXMIパケットの出力について説明するための図である。
XMIパケット送出スケジューラ部212は、OFDMフレームの先頭で、同期制御XMIパケットを1個出力する。続いて、XMIパケット送出スケジューラ部212は、各階層のXMIパケット(A階層XMIパケットおよびB階層XMIパケット)を出力する。各階層のXMIパケットを全て出力すると、XMIパケット送出スケジューラ部212は、OFDMフレームを構成するXMIパケットの数が一定数となるように、スタッフXMIパケットを出力する。なお、XMIパケット送出スケジューラ部212は、OFDMフレーム内のXMIパケットの出力の終了を示すために、例えば、少なくとも1つのスタッフXMIパケットを出力してもよい。
ここで、図8に示すように、送信装置13におけるOFDM信号の構成処理に要する時間を抑えるため、XMIパケット送出スケジューラ部212は、OFDM信号を構成するXMIパケットのうち、各階層のXMIパケットの出力割合(単位時間当たりの出力個数)が略一定となるように出力する。ここで図8に示す例において、OFDM信号におけるA階層及びB階層のXMIパケットの個数がそれぞれK個及びL個とする。ここで、L≧Kとするが、L<Kの場合も同様である。この場合XMIパケット送出スケジューラ部212は、合計(K+L)個のXMIパケットを、各階層のXMIパケットの割合が略一定となるようにK回に分けて出力する。具体的には各サイクルにおいて、A階層のXMIパケットを1個、及びB階層のXMIパケットをceil(L/K)個出力する。ceil(x)は、正数xを超える最小の正整数を表す。これをK回繰り返すことで、XMIパケット送出スケジューラ部212は、A階層及びB階層のXMIパケットをK個及びL個出力する。なお図8ではK回目におけるB階層の出力数がceil(L/K)である例を示しているが、ceil()による整数化のため、K回に至らずにB階層の出力が完了する可能性もある。また、K回目に出力する個数がceil(L/K)個とならずに所定数(端数)となる可能性がある。この場合、残った端数分を、B階層のXMIパケットを送る最後のサイクルに送りきる。端数を送る場合を除いて、XMIパケットの出力割合は一定となる。
図9は、XMIパケット送出スケジューラ部212によるXMIパケットの出力の変形例を示す図である。図9では、階層が3つである場合について説明する。なお階層数が3である場合を変形例として例示するがこれに限られず、階層数は4以上であってもよい。図9においても、図8同様、送信装置13におけるOFDM信号の構成処理に要する時間を抑えるため、XMIパケット送出スケジューラ部212は、OFDM信号を構成するXMIパケットのうち、各階層のXMIパケットの出力割合(単位時間当たりの出力個数)が略一定となるように出力する。図9では、OFDM信号におけるA階層、B階層、C階層のXMIパケットの個数がそれぞれK個、L個、M個としている。ここで、L≧KかつM≧Kとするが、そうでない大小関係の場合も同様である。この場合XMIパケット送出スケジューラ部212は、合計(K+L+M)個のXMIパケットを、各階層のXMIパケットの割合が略一定となるようにK回に分けて出力する。具体的には各サイクルにおいて、A階層のXMIパケットを1個、B階層のXMIパケットをceil(L/K)個、及びC階層のXMIパケットをceil(M/K)個出力する。なお図9ではK回目におけるB階層の出力数がceil(L/K)である例を示しているが、ceil()による整数化のため、K回に至らずにB階層の出力が完了する可能性もある。同様にK回目におけるC階層の出力数がceil(M/K)である例を示しているが、ceil()による整数化のため、K回に至らずにC階層の出力が完了する可能性もある。また、K回目に出力する個数がceil(L/K)個又はceil(M/K)個とならずに所定数(端数)となる可能性がある。この場合、残った端数分を各階層のXMIパケットを送る最後のサイクルに送りきる。端数を送る場合を除いて、XMIパケットの出力割合は一定となる。
ここで、図8および9におけるA階層XMIパケットおよびB階層XMIパケット(データユニットを伝送するXMIパケット)のデータユニット領域には、L0シンボルおよびL1シンボルを格納するために、所定のバイト数(例えば、4バイト)のチャンネル情報領域(L0シンボル格納用領域およびL1シンボル格納用領域)が設けられる。XMIパケット送出スケジューラ部212は、L0シンボル構成部208からL0シンボルが出力されると、データユニットを伝送するXMIパケットのL0シンボル格納用領域に、入力されたL0シンボルを速やかに(低遅延で)割り当て、送信装置13に出力する。また、XMIパケット送出スケジューラ部212は、L1シンボル構成部209からL1シンボルが出力されると、データユニットを伝送するXMIパケットのL1シンボル格納用領域に、入力されたL1シンボルを速やかに(低遅延で)割り当て、送信装置13に出力する。こうすることで、LCHのデータを低遅延で送信装置13に出力することができる。なお、LCHのTLVパケットが無い場合には、XMIパケット送出スケジューラ部212は、ヌルをチャンネル情報領域に格納する。
なお、上述したように、例えば、8K FFTでは、L0シンボルおよびL1シンボルのビット数は、4×Nビットとなる。ここで、Nが奇数の場合、ビット数が8の倍数とはならない(バイトアライメントが取れない)。そのため、1バイトを構成できず、XMIパケットに格納することができない状態となる。この場合、連続するLCHシンボル(L0シンボル、L1シンボル)を結合する、あるいは、LCHシンボルの末尾にヌルを付加することで、バイトアライメントを取り、XMIパケットのチャンネル情報領域(L0シンボル格納用領域およびL1シンボル格納用領域)に格納することができる。バイトアライメントのために付加されたヌルは、後述する変調部132で除去される。
次に、再多重化装置12が出力するXMIパケットの構成について、図10を参照して説明する。
図10に示すように、XMIパケットは、IPv4ヘッダ、UDPヘッダ、MMTPパケットのヘッダ(MMTPヘッダ)、およびXMIヘッダを含むヘッダと、(スタッフビットが付加された)同期制御情報、所定のビット数のデータユニット、スタッフビットが付加されて所定のビット数となったデータユニット、あるいは、所定のビット数のスタッフビットが格納されるデータユニット領域とを含む。
IPv4ヘッダは、ARIB STD-B32 第3部に規定されるIPv4ヘッダ部と同様の構成を有する。UDPヘッダは、ARIB STD-B32 第3部に規定されるUDPヘッダ部と同様の構成を有する。MMTPパケットは、ARIB STD-B60に規定されるMMTPパケットと同様の構成を有するが、そのペイロード領域にXMIパケットを格納している点が異なる。
MMTPパケットのペイロード領域(MMTPペイロード)にXMIヘッダ以下が格納される。また、MMTPパケットヘッダには、ペイロード領域に格納するデータのデータタイプを示す情報(payload_type)や、ペイロード領域に格納するデータの種類を識別するための情報(packet_id)が格納される。
図11は、XMIヘッダの構成例を示す図である。
図11に示すように、XMIヘッダは、L0先頭シンボルフラグ(L0_top_symbol_flag)、L0シンボル開始フラグ(L0_symbol_start_flag)、L1先頭シンボルフラグ(L1_top_symbol_flag)、L1シンボル開始フラグ(L1_symbol_start_flag)、フレーム番号(frame_number)と、データユニット種別(data_unit_type)と、シーケンス番号(sequence_number)と、CRC_32と、データユニット長(data_unit_length)とを含む。
L0先頭シンボルフラグは、このXMIパケットに格納するL0シンボルがOFDMフレームの先頭のシンボルであるか否かを示す。L0シンボル開始フラグは、このXMIパケットのL0シンボルが、その大きさを示す情報とともに格納されているか否かを示す。フレーム番号は、XMIパケットが格納するデータユニットが属するフレームの番号を示す。データユニット種別は、XMIパケットのデータユニット領域に格納されるのが、同期制御情報であるか、データユニットであるか、スタッフビットであるかを示す。データユニット種別の値は、例えば、XMIパケットのデータユニット領域に格納されるのが、同期制御情報である場合には‘0’となる。また、例えば、A階層~C階層の階層伝送が行われるとすると、データユニット種別の値は、XMIパケットのデータユニット領域に格納されるのが、A階層の階層別フレームのデータユニットである場合には‘1’となり、B階層の階層別フレームのデータユニットである場合には‘2’となり、C階層の階層別フレームのデータユニットである場合には‘3’となる。また、データユニット種別の値は、XMIパケットのデータユニット領域に格納されるのが、スタッフビットである場合には‘4’または‘15’となる。‘5’~‘14’は予約領域である。シーケンス番号は、OFDMフレーム内のXMIパケットの順序を示す。CRC_32には、ITU-T勧告 H222.0に従い、CRC(Cyclic Redundancy Check)が書き込まれる。データユニット長は、XMIパケットにおけるデータユニットのサイズを示す。
このように、XMIパケットのXMIヘッダには、そのXMIパケットのデータユニット領域に格納する対象の種別を示す情報が含まれている。したがって、同期制御XMIパケット構成部210は、XMIパケットの構成時に、データユニット種別に、同期制御XMIパケットに対応する値、例えば、‘0’を設定する。また、XMIパケット化部207aは、XMIパケットの構成時に、データユニット種別に、A階層のXMIパケットに対応する値、例えば、‘1’を設定する。また、XMIパケット化部207bは、XMIパケットの構成時に、データユニット種別に、B階層のXMIパケットに対応する値、例えば、‘2’を設定する。また、スタッフXMIパケット構成部211は、XMIパケットの構成時に、データユニット種別に、スタッフXMIパケットに対応する値、例えば、‘15’を設定する。こうすることで、XMIパケットに格納する対象の種別を特定することができる。
また、上述したように、階層別フレームを分割してデータユニットを生成する際に、最後のデータユニットが所定のサイズ未満となる場合、スタッフビットが付加されて所定のサイズとされる。ここで、最後のデータユニットが所定のサイズ未満(図7では、10448ビット未満)となることがある。そこで、データユニット長によりXMIパケットにおけるデータユニットのサイズを示すことで、スタッフビットが付加された場合にも、データユニットのサイズを特定することができる。
なお、上述の例においては、スタッフXMIパケットには、L0シンボルおよびL1シンボルを格納するためのチャンネル情報領域(L0シンボル格納用領域およびL1シンボル格納用領域)が設けられていない例を示している。この場合、スタッフXMIパケットが出力されている期間は、L0シンボルおよびL1シンボルを送信装置13に出力することができず、LCHの低遅延という特長を損なう原因となる。
そこで、図12に示すように、スタッフXMIパケットにも、L0シンボルおよびL1シンボルを格納するためのL0シンボル格納用領域およびL1シンボル格納用領域を設けてもよい。この場合、スタッフXMIパケット構成部211は、L0シンボル格納用領域およびL1シンボル格納用領域を備えるスタッフXMIパケット(第2のパケット)と、L0シンボル格納用領域およびL1シンボル格納用領域を備えないスタッフXMIパケット(第3のパケット)とを生成し、XMIパケット送出スケジューラ部212に出力する。以下では、L0シンボル格納用領域およびL1シンボル格納用領域を備えるスタッフXMIパケットを、L0/L1シンボルデータと称する。L0/L1シンボルデータでは、L0シンボル格納用領域およびL1シンボル格納用領域に引き続き、スタッフィングのためのダミーデータが格納され、固定長のXMIパケットとなる。
XMIパケット送出スケジューラ部212は、L0シンボル構成部208からL0シンボルが入力されると、データユニットを伝送するXMIパケットあるいはL0/L1シンボルデータのL0シンボル格納用領域に、入力されたL0シンボルを速やかに(低遅延で)割り当て、送信装置13に出力する。また、XMIパケット送出スケジューラ部212は、L1シンボル構成部209からL1シンボルが入力されると、データユニットを伝送するXMIパケットあるいはL0/L1シンボルデータのL1シンボル格納用領域に、入力されたL1シンボルを速やかに(低遅延で)割り当て、送信装置13に出力する。こうすることで、スタッフXMIパケットの送出期間においても、LCHのデータを低遅延で送信装置13に出力することができる。なお、図12においては、L0シンボル格納用領域およびL1シンボル格納用領域を備えないスタッフXMIパケットが1つ出力される例を示しているが、これに限られるものではなく、L0シンボル格納用領域およびL1シンボル格納用領域を備えないスタッフXMIパケットが2以上出力されることもあり、また、出力されないこともある。
L0シンボル格納用領域およびL1シンボル格納用領域を備えるスタッフXMIパケット(L0/L1シンボルデータ)を設ける場合、L0/L1シンボルデータでは、XMIパケット内のデータユニット種別の値は、例えば、図13に示すように、‘4’となり、‘5’~‘14’が予約領域となる。すなわち、XMIパケット内のデータユニット種別の値は、そのXMIパケットが、各階層のXMIパケット、同期制御XMIパケット、L0シンボル格納用領域およびL1シンボル格納用領域を備えるスタッフXMIパケット、L0シンボル格納用領域およびL1シンボル格納用領域を備えないスタッフXMIパケットのいずれであるかを示す。
次に、送信装置13の構成例について、図14を参照して説明する。
図14に示す送信装置13は、入力インターフェース部131と、変調部132とを備える。
入力インターフェース部131は、再多重化装置12から出力されたXMIパケットを受信し、各階層およびLCH毎に連結してフレームを構成し、変調部132に出力する。
変調部132は、同期制御情報に含まれる伝送パラメータに基づき、入力インターフェース部131から出力されたフレームからOFDM信号を構成し、構成したOFDM信号をアンテナ14から送信する。
次に、入力インターフェース部131および変調部132の構成について説明する。まず、入力インターフェース部131の構成について、図15を参照して説明する。
図15に示す入力インターフェース部131は、XMIパケット受信部301と、階層別フレーム生成部302a,302b,302cと、制御情報/TMCC情報生成部303とを備える。
XMIパケット受信部301は、再多重化装置12から出力されたXMIパケットを受信する。そして、XMIパケット受信部301は、A階層XMIパケットについては階層別フレーム生成部302aに出力し、B階層XMIパケットについては階層別フレーム生成部302bに出力する。また、XMIパケット受信部301は、A階層XMIパケットおよびB階層XMIパケットをLCHフレーム生成部302cにも出力する。さらに、XMIパケット受信部301は、同期制御情報を含む同期制御XMIパケットについては制御情報/TMCC情報生成部303に出力する。
上述したように、XMIパケットのXMIヘッダには、XMIパケットのデータユニット領域に格納されるのが、同期制御情報であるか、A階層あるいはB階層のデータユニットであるか、スタッフビットであるかを示すデータユニット種別(data_unit_type)が含まれる。XMIパケット受信部301は、データユニット種別の値を参照することで、各XMIパケットの種別を特定し、適切な出力先に出力することができる。
階層別フレーム生成部302aは、XMIパケット受信部301から出力されたA階層XMIパケットに含まれるデータユニットを連結し、A階層のフレームを生成して、変調部132に出力する。階層別フレーム生成部302bは、XMIパケット受信部301から出力されたB階層XMIパケットに含まれるデータユニットを連結し、B階層のフレームを生成して、変調部132に出力する。
LCHフレーム生成部302cは、XMIパケット受信部301から出力されたXMIパケットに含まれるL0シンボル、L1シンボルを連結し、LCHフレームを生成して、変調部132に出力する。
制御情報・TMCC情報生成部303は、XMIパケット受信部301から出力された同期制御XMIパケットに含まれる同期制御情報から、OFDMフレームを構成するための各種情報を示す制御情報、および、伝送パラメータを示すTMCC情報を生成し、変調部132に出力する。
次に、変調部132の構成について、図16を参照して説明する。
図16に示す変調部132は、A階層処理部401aと、B階層処理部401bと、LCH処理部401cと、TMCC信号生成部402と、階層合成部403と、フレーム化部404と、IFFT(Inversed Fast Fourier Transform)部405と、出力部406とを備える。
A階層処理部401aは、入力インターフェース部131からA階層のフレームが入力され、入力されたA階層のフレームに対して、フレームヘッダ分離、FECブロック変換、エネルギー拡散、BCH符号化、LDPC符号化、ビットインターリーブ、フレームヘッダ符号化、フレームヘッダ挿入、マッピングなどの所定の処理を行い、キャリアシンボルを生成する。そして、A階層処理部401aは、生成したキャリアシンボルを階層合成部403に出力する。
B階層処理部401bは、入力インターフェース部131からB階層のフレームが入力され、入力されたB階層のフレームに対して、A階層処理部401aと同様に、所定の処理を行い、キャリアシンボルを生成する。そして、B階層処理部401bは、生成したキャリアシンボルを階層合成部403に出力する。
LCH処理部401cは、入力インターフェース部131からLCHのフレームが入力され、入力されたLCHのフレームに対して、誤り訂正符号化、差動基準付加、DBPSK(Differential Binary Phase Shift Keying)変調などの所定の処理を行い、処理後の信号をフレーム化部404に出力する。
TMCC信号生成部402は、入力インターフェース部131から制御情報/TMCC情報が入力され、入力された制御情報/TMCC情報などに基づき、TMCC信号を生成する。そして、TMCC信号生成部402は、生成したTMCC信号をフレーム化部404に出力する。
階層合成部403は、A階層処理部401aから出力されたA階層のデータ(キャリアシンボル)と、B階層処理部401bから出力されたB階層のデータ(キャリアシンボル)とを階層合成し、1OFDMフレームで伝送されるデータ(データセグメント)を生成する。そして、階層合成部403は、生成したデータをフレーム化部404に出力する。
フレーム化部404は、階層合成部403から出力された階層合成後のA階層およびB階層のデータと、LCH処理部401から出力されたLCHのデータと、TMCC信号生成部402から出力されたTMCC信号と、図示しないパイロット信号とを、所定のキャリアおよびシンボル位置に配置することで、OFDMフレームを構成する。そして、フレーム化部404は、生成したOFDMフレームをIFFT部405に出力する。
IFFT部405は、フレーム化部404から出力されたOFDMフレームに対してIFFT処理を施し、周波数領域の信号から時間領域の信号に変換する。そして、IFFT部405は、IFFT処理後の信号を出力部406に出力する。
出力部406は、IFFT部405から出力された信号を送信するために必要な処理を行う。例えば、出力部406は、ガードインターバルの付加、直交変調、電力増幅などの処理を行い、処理後の信号をアンテナ14から送信する。
次に、本実施形態に係る再多重化装置12および送信装置13の動作について説明する。
図17は、再多重化装置12の動作例を示すフローチャートである。なお、図17においては、FECブロックの構成までの動作と、LCHおよびスタッフXMIパケットに関する動作とについては説明を省略し、階層毎のXMIパケット(A階層XMIパケットおよびB階層XMIパケット)の生成と、生成したXMIパケットの送信装置13への出力とについて説明する。
階層別フレーム構成部206aは、FECブロック構成部205aにより構成されたFECブロックから階層別フレーム(A階層の階層別フレーム)を構成する。また、階層別フレーム構成部206bは、FECブロック構成部205bにより構成されたFECブロックから階層別フレーム(B階層の階層別フレーム)を構成する(ステップS11)。
階層別フレーム構成部206aによりA階層の階層別フレームが構成されると、XMIパケット化部207aは、その階層別フレームをデータユニットに分割し、得られたデータユニットをデータユニット領域に格納したXMIパケット(A階層XMIパケット)を生成する。また、階層別フレーム構成部206bによりB階層の階層別フレームが構成されると、XMIパケット化部207bは、その階層別フレームをデータユニットに分割し、得られたデータユニットをデータユニット領域に格納したXMIパケット(B階層XMIパケット)を生成する(ステップS12)。そして、XMIパケット化部207a,207bは、生成した階層毎のXMIパケットをXMIパケット送出スケジューラ部212に出力する。
XMIパケット送出スケジューラ部212は、パケット化部により生成されたXMIパケットを各階層のパケットの出力割合が略一定となるように送信装置13に出力する(ステップS13)。
次に、本実施形態に係る送信装置13の動作について説明する。
図18は、送信装置13の動作例を示すフローチャートである。なお、図18においては、LCHおよびスタッフXMIパケットに関する動作については説明を省略する。
入力インターフェース部131は、再多重化装置12から送信されてきたXMIパケット(階層毎のXMIパケット)を受信する(ステップS21)。そして、XMIパケット受信部301は、受信した階層毎のXMIパケットのデータユニット領域に格納されるデータユニットから、階層毎のデータ(フレーム)を生成する。
変調部132は、入力インターフェース部131により生成された階層毎のデータ(フレーム)と、LCHのデータ(シンボル)とを所定の位置に配置してOFDM信号(OFDMフレーム)を構成し、アンテナ14から送信する(ステップS22)。
このように本実施形態によれば、再多重化装置12は、階層毎にデータをフレーム化した階層別フレームを構成するフレーム構成部(階層別フレーム構成部206a,206b)と、データユニット領域と、ヘッダとを含み、フレーム構成部により生成された階層別フレームを所定のサイズに分割したデータユニットをデータユニット領域に格納したパケット(A階層XMIパケット、B階層XMIパケット)を生成するパケット化部(XMIパケット化部207a,207b)と、パケット化部(XMIパケット化部207a,207b)により生成されたXMIパケットを各階層のパケットの出力割合が略一定となるように送信装置13に出力する送出部(XMIパケット送出スケジューラ部212)と、を備える。再多重化装置12が出力する各階層のXMIパケットの割合が略一定となるようにしているため、本実施形態によれば、各階層のXMIパケットの処理を並行して進めることができる。そのため、OFDM信号の構成処理に要する時間の増大を抑制することができる。
実施形態では特に触れていないが、再多重化装置12および送信装置13が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROMなどの記録媒体であってもよい。
あるいは、再多重化装置12および送信装置13が行う各処理を実行するためのプログラムは記憶するメモリおよびメモリに記憶されたプログラムを実行するプロセッサによって構成され、再多重化装置12および送信装置13に搭載されるチップが提供されてもよい。
また、本実施形態では、再多重化装置12および送信装置13の構成と動作について説明したが、本発明はこれに限られず、多重化された複数の階層それぞれのデータを再多重化するための方法、および再多重化装置20から出力されたパケットからOFDM信号を構成して送信する方法として構成されてもよい。
上述の実施形態は代表的な例として説明したが、本発明の趣旨および範囲内で、多くの変更および置換が可能であることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。