WO2015186203A1 - 電力変換装置及び制御方法 - Google Patents

電力変換装置及び制御方法 Download PDF

Info

Publication number
WO2015186203A1
WO2015186203A1 PCT/JP2014/064801 JP2014064801W WO2015186203A1 WO 2015186203 A1 WO2015186203 A1 WO 2015186203A1 JP 2014064801 W JP2014064801 W JP 2014064801W WO 2015186203 A1 WO2015186203 A1 WO 2015186203A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
command
unit
output
power conversion
Prior art date
Application number
PCT/JP2014/064801
Other languages
English (en)
French (fr)
Inventor
祐介 荒尾
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to EP14893802.0A priority Critical patent/EP3154180B1/en
Priority to PCT/JP2014/064801 priority patent/WO2015186203A1/ja
Priority to JP2016524981A priority patent/JP6220968B2/ja
Priority to CN201480076726.1A priority patent/CN106068609B/zh
Publication of WO2015186203A1 publication Critical patent/WO2015186203A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/045Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0077Characterised by the use of a particular software algorithm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0086Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/42Jamming having variable characteristics characterized by the control of the jamming frequency or wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/45Jamming having variable characteristics characterized by including monitoring of the target or target signal, e.g. in reactive jammers or follower jammers for example by means of an alternation of jamming phases and monitoring phases, called "look-through mode"
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/80Jamming or countermeasure characterized by its function
    • H04K3/86Jamming or countermeasure characterized by its function related to preventing deceptive jamming or unauthorized interrogation or access, e.g. WLAN access or RFID reading

Definitions

  • the present invention relates to a power conversion device and a control method thereof.
  • connection unit 31 that connects a power line to the electrical device 2
  • connection detection unit 34 that determines whether or not the electrical device 2 is connected
  • the electrical device 2 receives power from the AC power supply device 3.
  • a communication unit 332 that receives authentication information indicating that it is a device to be received from the electric device 2, an authentication device information storage unit 334 that stores authentication information, and the received authentication information is authentication information stored in the authentication device information storage unit 334.
  • the device authentication unit 333 authenticates that the electric device 2 is an electric device that can receive power, and switches to stop the supply of power to the electric device 2
  • the control unit 335, the power supply switching unit 32, and the on / off switching unit 336 for switching whether or not to operate the power supply switching unit 32 are included in the AC power supply device 3 "(see summary).
  • an object of the present invention is to provide a power conversion device that prevents a diversion to an unintended use and prevents it from being stopped more than necessary.
  • the present application includes a plurality of means for solving the above-described problems.
  • a DC voltage unit that smoothes a DC voltage
  • a power conversion unit that converts a DC voltage into an AC voltage
  • the power conversion unit An output control unit that controls output; and a frequency command unit that outputs a frequency command to the output control unit, wherein the output control unit is configured such that a command frequency output by the frequency command unit is equal to or higher than a predetermined frequency.
  • the power conversion unit is controlled by using a frequency obtained by changing the command frequency as an output frequency.
  • the present invention it is possible to ensure low-frequency and low-precision driving while limiting high-accuracy output in the high-frequency region, and stop more than necessary while preventing diversion to unintended applications. It is possible to provide a power conversion device that is not allowed to occur.
  • FIG. 6 is a flowchart showing the operation of the output control unit in the first to third embodiments.
  • 6 is a diagram illustrating an example of a fluctuation component in Example 1.
  • FIG. It is the figure which showed the mode of the frequency control in Example 1.
  • FIG. 6 is a diagram illustrating an example of a fluctuation component in Example 2.
  • FIG. It is a block diagram of the power converter device in Example 3.
  • 10 is a flowchart illustrating an operation of an output control unit according to the third embodiment. The data at the time of the authentication judgment in Example 3 are shown.
  • FIG. 1 is an example of a configuration diagram of a power conversion apparatus and an AC motor 105 according to the present embodiment, and includes a three-phase AC power source 101, a DC conversion unit 102, a smoothing capacitor 103, an AC conversion unit 104, a speed command unit 106, and output control.
  • Unit 107 and frequency fluctuation generation unit 108 are examples of a configuration diagram of a power conversion apparatus and an AC motor 105 according to the present embodiment, and includes a three-phase AC power source 101, a DC conversion unit 102, a smoothing capacitor 103, an AC conversion unit 104, a speed command unit 106, and output control.
  • Unit 107 and frequency fluctuation generation unit 108 Unit
  • the three-phase AC power supply 101 is, for example, a three-phase AC voltage supplied from an electric power company or an AC voltage supplied from a generator, and outputs it to the DC converter 102.
  • the DC conversion unit 102 includes, for example, a DC conversion circuit configured by a diode and a DC conversion circuit using IGBT and a flywheel diode, and converts an AC voltage input from the three-phase AC power supply 101 into a DC voltage. Output to the smoothing capacitor 103.
  • FIG. 1 shows a direct current conversion unit formed of a diode.
  • the smoothing capacitor 103 smoothes the DC voltage input from the DC converter 102 and outputs the DC voltage to the AC converter 104.
  • the smoothing capacitor 103 may be input with a DC voltage directly from the generator without passing through the DC converter 102.
  • the AC conversion unit 104 is configured by an AC conversion circuit using, for example, an IGBT and a flywheel diode, receives the DC voltage of the smoothing capacitor 103 as an input, and converts the DC voltage into an AC voltage based on the PWM output waveform input from the output control unit 107. And output to the AC motor 105.
  • the power converter according to the present embodiment can output with high accuracy in a high-frequency region, and can be controlled with fluctuations of about 0.05% or less (for example, fluctuations of less than ⁇ 1 Hz when driven at 1800 Hz).
  • the speed command unit 106 receives, for example, a frequency target value designated by the user, calculates a command frequency that increases or decreases toward the target value, and outputs the command frequency to the output control unit 107 and the frequency fluctuation generation unit 108.
  • the output control unit 107 receives the command frequency commanded from the speed command unit 106 and the variable frequency (variation command) output from the frequency variation generation unit 108 as input, and outputs the PWM output waveform calculated using the calculated command frequency as power.
  • the data is output to the conversion unit 104.
  • the frequency fluctuation generation unit 108 receives the command frequency commanded from the speed command unit 106, calculates, for example, data that increases and decreases at random, and the calculation width is ⁇ 0. The value is adjusted to 1% and output to the output control unit 107.
  • FIG. 2 shows processing when the output control unit 107 calculates a frequency command value.
  • the output control unit 107 takes in the command frequency commanded from the speed command unit 106 as an input (S201).
  • the output control unit 107 compares the command frequency with a predetermined comparison frequency (600 Hz) (S202), and when the command frequency is equal to or higher than the comparison frequency, the variation frequency and the command frequency output from the frequency variation generation unit 108.
  • the output voltage is calculated using the command frequency after the calculation (S203).
  • the calculation of the output voltage does not change the intention even if the calculation of the fluctuation frequency is performed after the calculation using the command frequency.
  • the output control unit 107 calculates the output voltage only from the command frequency, and does not consider the fluctuation frequency (S204).
  • the flow of FIG. 2 in the speed command unit 106, the output control unit 107, and the frequency fluctuation generation unit 108 is realized by writing a program in the microcontroller.
  • it is effective to protect the above flow and prevent rewriting of the program.
  • it is possible to protect the program by making the writing physically impossible by breaking the pins of the writing board of the microcontroller physically.
  • FIG. 3 is a diagram illustrating an example of fluctuation frequency data calculated by the frequency fluctuation generation unit 108.
  • the waveform shown in (301) of FIG. 3 describes a plurality of sine waves calculated with different amplitudes and frequencies.
  • the waveform shown in (302) shows the result of superimposing all the waveforms shown in (301).
  • the waveform shown in (302) is a waveform close to 1 / f fluctuation that can be seen in the natural world, and is obtained by the following equation, for example.
  • Fratio Fluctuating frequency ratio, ⁇ : angular frequency, t: time, X • Y • Z • W: gain.
  • (Equation 1) in FIG. 3 shows each term of (Equation 1) separately, and (302) shows the Fratio that is the result of (Equation 1).
  • (Equation 1) by applying a gain to each angular frequency, a waveform having a periodically determined fluctuation is prevented from appearing.
  • (Equation 1) considers terms up to the fifth order, but even if more terms or terms are reduced, if the fluctuation component is close to random, the intended place is not changed.
  • (Equation 1) may be multiplied by an arbitrary coefficient for each term without being fixed to a power of 2.
  • FIG. 4 is a diagram showing the change over time of the output frequency obtained by the output control unit 107 calculating the command frequency output from the speed command unit 106 and the fluctuation frequency (fluctuation command) to the command frequency.
  • FIG. 4A shows a change in the command frequency and the output frequency when the power conversion apparatus gradually accelerates the AC motor 105 with the target frequency set at 1000 Hz.
  • FIG. 4B shows a state where the output control unit 107 is changing the frequency when the command frequency exceeds 600 Hz.
  • the output frequency calculated by the output control unit 107 is expressed by the following equation, for example.
  • Fout Output frequency
  • Fcommand Command frequency
  • Fratio Coefficient obtained by Equation 1
  • G Fluctuation rate
  • the output control unit 107 generates a PWM output waveform using the calculated output frequency Fout, and controls the power conversion unit.
  • the comparison frequency is 600 Hz.
  • any frequency from 100 Hz to 600 Hz may be set in advance as the comparison frequency.
  • FIG. 5 is a diagram illustrating an example of fluctuation frequency data calculated by the frequency fluctuation generation unit 108.
  • the waveform shown in (501) of FIG. 5 describes a plurality of triangular waves calculated with different amplitudes and frequencies.
  • the waveform shown in (502) shows the result of superimposing all the waveforms shown in (501).
  • the waveform shown in (502) is a waveform close to 1 / f fluctuation that can be seen in the natural world, and a triangular wave is generated by performing simple count addition and subtraction.
  • the frequency fluctuation generation unit 108 outputs the fluctuation frequency calculated as shown in FIG.
  • FIG. 6 is an example of a configuration diagram of the power conversion device and the AC motor 105 of the present embodiment.
  • the external I / O 601 is configured by a user interface such as a circuit terminal and a communication terminal, performs input / output of signals with an externally connected device, and outputs the obtained signal to the authentication unit 602.
  • the authentication unit 602 receives the information output from the external I / O 601 as an input, collates with a predetermined authentication method, and outputs the collation result to the output control unit 603.
  • the output control unit 603 receives the authentication result input from the authentication unit 602, the command frequency commanded from the speed command unit 106, and the variation frequency output from the frequency variation generation unit 108, and calculates using the calculated command frequency.
  • the PWM output waveform is output to the power converter 104.
  • FIG. 7 shows a process in which the output control unit 603 makes an authentication determination.
  • the output control unit 603 determines the collation result output from the authentication unit 602, and determines whether or not the power converter is authenticated (S701). If not authenticated, the variable frequency control of FIG. 2 (S203) shown in the first embodiment is performed (S702). In the case of being authenticated, since the fluctuation of frequency accuracy is not necessary, the output voltage is calculated only from the command frequency, and the fluctuation frequency (fluctuation command) is not taken into consideration.
  • FIG. 8 shows an example in which the authentication unit 602 performs authentication.
  • the external I / O 601 is composed of the input terminals 1 to 4, the relationship between the input High / Low signal and data is shown.
  • the input of the terminal 2 is used as a trigger, and data is captured at equal intervals.
  • the authentication unit 602 arranges the high / low of the terminals as the states of the terminals 4, 3, 2, and 1 as data 1 in FIG. 8 and becomes 0010 when expressed in binary, and becomes 2 when converted into hexadecimal.
  • the authentication unit 602 captures each data in the same way, for example, captures the data as a hexadecimal value 21FB arranged in 1 to 4 data.
  • the authentication unit 602 verifies the user authority given by the authentication by the encryption key method or the license management by various signals input from the external I / O 601, for example, the input by a general communication method. You may go.
  • variable frequency control when not authenticated, the variable frequency control is performed (S702).
  • the variable frequency control may calculate the variable frequency as an output frequency only when the command frequency is equal to or higher than the comparison frequency, or in the entire frequency range regardless of the value of the command frequency.
  • the fluctuation frequency may be calculated as the output frequency.
  • the application does not require high-precision control over the entire frequency range, the use can be continued without authentication.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)

Abstract

 高精度の周波数制御が可能な電力変換装置の意図しない用途への転用を防止しつつ、必要以上に停止させないようにする電力変換装置を提供する。例えば、直流電圧を平滑化する直流電圧部と、直流電圧を交流電圧に変換する電力変換部と、前記電力変換部の出力を制御する出力制御部と、前記出力制御部に周波数指令を出力する周波数指令部とを備え、前記出力制御部は、前記周波数指令部が出力する指令周波数が所定の周波数以上となった場合、前記指令周波数を変動させた周波数を出力周波数として、前記電力変換部を制御する構成とする。

Description

電力変換装置及び制御方法
 本発明は、電力変換装置及びその制御方法に関する。
 本技術分野の背景技術として、特開2006-19788号公報(特許文献1)がある。この公報には、「電気機器2に電力線を接続する接続部31と、電気機器2が接続されているか否かを判定する接続検出部34と、電気機器2が当該AC電源装置3から電力を受給する機器であることを示す認証情報を電気機器2から受信する通信部332と、認証情報を記憶する認証機器情報記憶部334と、受信された認証情報が認証機器情報記憶部334の認証情報と一致した場合にその電気機器2を電力を受給できる電気機器であると認証する機器認証部333と、電気機器2が認証されなかった場合に、電気機器2への電力の供給を停止する切替制御部335及び電力供給切替部32と、電力供給切替部32を動作させるか否かを切り替えるオンオフ切替部336とをAC電源装置3に備える。」と記載されている(要約参照)。
特開2006-19788号公報
 近年、電力変換装置において、高精度に高い周波数を一定出力できるものは、例えば軍事用途などの意図しない用途への転用の恐れがある。これを防ぐ手段として、例えば特許文献1の仕組みを採用し、電力変換装置が組み合わされたシステムとの認証動作を行い、結果が認証されなければ電力変換装置は出力しないようにすることができる。しかしながら、特許文献1の仕組みを採用すると、例えば、電力変換装置が壊れた場合や電力変換装置の入れ替えを行う場合には、どのような場合においても、改めて認証動作の設定が必要となり、再稼働までに時間がかかる等の弊害が出てしまう。
 そこで、本発明は、意図しない用途への転用を防止しつつ、必要以上に停止させないようにする電力変換装置を提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば直流電圧を平滑化する直流電圧部と、直流電圧を交流電圧に変換する電力変換部と、前記電力変換部の出力を制御する出力制御部と、前記出力制御部に周波数指令を出力する周波数指令部とを備え、前記出力制御部は、前記周波数指令部が出力する指令周波数が所定の周波数以上となった場合、前記指令周波数を変動させた周波数を出力周波数として、前記電力変換部を制御することを特徴とする。
 本発明によれば、高周波数領域における高精度の出力を制限しながら、低周波数領域や低精度での駆動を確保することができ、意図しない用途への転用を防止しつつ、必要以上に停止させることのない電力変換装置を提供することができる。
 上記以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例1および2における電力変換装置の構成図である。 実施例1~3における出力制御部の動作を示すフローチャートである。 実施例1におけるゆらぎ成分の例を示した図である。 実施例1における周波数制御の様子を示した図である。 実施例2におけるゆらぎ成分の例を示した図である。 実施例3における電力変換装置の構成図である。 実施例3における出力制御部の動作を示すフローチャートである。 実施例3における認証判断時のデータを示す。
 以下、実施例を図面を用いて説明する。
 本実施例では、高周波数指令となった場合に、一定以上の精度が出ないように、出力周波数をランダムに揺らがせる周波数制御の例を説明する。
 図1は、本実施例の電力変換装置と交流電動機105の構成図の例であり、三相交流電源101、直流変換部102、平滑コンデンサ103、交流変換部104、速度指令部106、出力制御部107、周波数変動生成部108を有する。
 3相交流電源101は、例えば電力会社から供給される3相交流電圧や発電機から供給される交流電圧であり、直流変換部102に出力する。直流変換部102は、例えばダイオードで構成された直流変換回路やIGBTとフライホイールダイオードを用いた直流変換回路で構成され、3相交流電源101から入力された交流電圧を、直流電圧に変換し、平滑コンデンサ103に出力する。図1では、ダイオードで構成された直流変換部を示している。
 平滑コンデンサ103は、直流変換部102から入力された直流電圧を平滑化し、交流変換部104に直流電圧を出力する。例えば発電機の出力が直流電圧の場合、平滑コンデンサ103は、直流変換部102を介さず、直接発電機から直流電圧を入力されても構わない。
 交流変換部104は、例えばIGBTとフライホイールダイオードを用いた交流変換回路で構成され、平滑コンデンサ103の直流電圧を入力とし、出力制御部107から入力されたPWM出力波形により、直流電圧を交流電圧に変換し、交流電動機105に出力する。本実施例における電力変換装置は、高周波数の領域において高精度での出力が可能であり、約0.05%以下の変動(例えば1800Hzの駆動時に±1Hz未満の変動)での制御が可能である。 速度指令部106は、例えばユーザが指定した周波数目標値を入力とし、目標値に向かって増加あるいは減少する指令周波数を演算し、出力制御部107および周波数変動生成部108に出力する。
 出力制御部107は、速度指令部106から指令された指令周波数および周波数変動生成部108が出力した変動周波数(変動指令)を入力とし、演算された指令周波数を用いて演算したPWM出力波形を電力変換部104に出力する。
 周波数変動生成部108は、速度指令部106から指令された指令周波数を入力とし、例えばランダムに増加減するデータを演算し、その演算幅が、例えば規格等で定められた指令周波数の±0.1%となるように値を調整し、出力制御部107に出力する。
 図2は、出力制御部107が、周波数指令値を演算する際の処理を示したものである。まず、出力制御部107は、速度指令部106から指令された指令周波数を入力として取り込む(S201)。出力制御部107は、指令周波数と、予め定めた比較周波数(600Hz)とを比較し(S202)、指令周波数が比較周波数以上である場合、周波数変動生成部108から出力された変動周波数と指令周波数とを演算し、演算後の指令周波数を用いて出力電圧の演算を行う(S203)。なお、出力電圧の演算は、指令周波数を用いて演算を行った後に、変動周波数の演算を行っても、その意図は変わらない。出力制御部107は、指令周波数が比較周波数未満である場合、指令周波数のみから出力電圧の演算を行い、変動周波数は加味しない(S204)。
 尚、速度指令部106、出力制御部107及び周波数変動生成部108における図2のフローは、マイクロコントローラにプログラムを書き込むことで実現される。第三者による意図しない転用を防止するためには、上記のフローを保護し、プログラムの書き換えを行えなくすることが有効である。例えば、マイクロコントローラの書き込みボードのピンを折る等物理的に破壊することにより、書き込みを物理的に不可能にすることでプログラムの保護が実現できる。
 図3は、周波数変動生成部108が演算する変動周波数データの例を示した図である。図3の(301)に示した波形は、異なる振幅及び周波数で演算した複数の正弦波が記載されている。(302)に示した波形は、(301)で示された波形をすべて重畳した結果を示している。(302)に示した波形は、自然界でも見られる1/fゆらぎに近い波形であり、例えば以下の式で得られる。
Figure JPOXMLDOC01-appb-M000001
Fratio:変動周波数割合、ω:角周波数、t:時間、X・Y・Z・W:ゲイン。
 図3の(301)は、(数1)のそれぞれの項を別々に示しており、(302)は(数1)の結果であるFratioを示している。(数1)では、角周波数にそれぞれゲインをかけることで、周期的に決まったゆらぎを持つ波形が現れないようにしている。また、(数1)は、5次までの項を考慮しているが、それ以上の項、あるいは項を減らしても、ゆらぎ成分がランダムに近ければ、その意図するところは変わらない。また、(数1)は、2の累乗値に固定されることなく、各項に任意の係数を乗算しても良い。
 図4は、出力制御部107が、速度指令部106から出力された指令周波数と、指令周波数に変動周波数(変動指令)を演算した出力周波数の時間変化を示した図である。図4(A)は、電力変換装置が、目標周波数を1000Hzとして、交流電動機105を徐々に加速していく際の、指令周波数と出力周波数の変化の様子を示している。また、図4(B)では、指令周波数が600Hzを超えた場合に、出力制御部107が周波数の変動を行っている様子を示している。
 出力制御部107が演算する出力周波数は、例えば以下の式で表される。
Figure JPOXMLDOC01-appb-M000002
 Fout:出力周波数、Fcommand:指令周波数、Fratio:数1で得られた係数、G:変動率。
 図4(B)に示した指令周波数に対する偏差割合は、(数2)のFratio×G(例としてG=3%)を示している。出力制御部107は、演算された出力周波数Foutを用いてPWM出力波形を生成し、電力変換部を制御する。
 尚、標準の誘導電動機が50/60Hzで駆動されることから、100Hzまでの駆動を高精度に行えばよい場合が多い。従って、本実施例では比較周波数を600Hzとしたが、実用上は100Hz~600Hzのいずれかの周波数を比較周波数として予め設定しておけばよい。
 本実施例では実施例1と共通する部分については、同様の符号を用い、異なる部分について詳細に説明するものとする。構成は、実施例1にて説明した図1と同様である。本実施例では、周波数変動生成部108が演算する変動周波数データの別例を示す。
 図5は、周波数変動生成部108が演算する変動周波数データの例を示した図である。図5の(501)に示した波形は、異なる振幅及び周波数で演算した複数の三角波が記載されている。(502)に示した波形は、(501)で示された波形をすべて重畳した結果を示している。(502)に示した波形は、自然界でも見られる1/fゆらぎに近い波形であり、単純なカウント加減算を行うことで三角波を生成している。図5では、三角波の加減算を行う際、それぞれの三角波の加減算の幅が一致しないようにして三角波の傾きを変え、周期的に決まったゆらぎを持つ波形が現れないようにしている。三角波を用いることで、正弦波を用いる場合に比べて演算の負荷が小さくなるという利点がある。
 周波数変動生成部108は、図5のように演算された変動周波数を、出力制御部107に出力する。
 本実施例では実施例1と共通する部分については、同様の符号を用い、異なる部分について詳細に説明するものとする。
 図6は、本実施例の電力変換装置と交流電動機105の構成図の例である。外部I/O601は、回路端子、通信端子等のユーザインターフェースで構成され、外部接続された機器と信号の入出力を行い、得られた信号を認証部602に出力する。認証部602は、外部I/O601から出力された情報を入力とし、予め決められた認証方法によって照合し、照合結果を出力制御部603に出力する。
 出力制御部603は、認証部602から入力された認証結果、速度指令部106から指令された指令周波数および周波数変動生成部108が出力した変動周波数を入力とし、演算された指令周波数を用いて演算したPWM出力波形を電力変換部104に出力する。
 図7は、出力制御部603が、認証判断を行う処理を示したものである。まず、出力制御部603は、認証部602から出力された照合結果を判定し、電力変換装置が認証されているかどうかを判定する(S701)。認証されていない場合、実施例1で示された図2(S203)の変動周波数制御を行う(S702)。認証されている場合は、周波数精度の変動は不要のため、指令周波数のみから出力電圧の演算を行い、変動周波数(変動指令)は加味しない。
 図8は、認証部602が、認証を行う例を示している。図8では、外部I/O601が入力端子1~4で構成しているとした場合に、入力されたHigh/Low信号をデータと時間の関係を示している。図8では、例えば端子2の入力をトリガとし、等間隔の時間でデータを取り込んでいる。認証部602は、図8のデータ1として、端子のHigh/Lowを端子4、3、2、1の状態として並べ、2進数表現すると0010となり、16進数に変換すると、2となる。認証部602は、各データを同様にして取り込み、例えばデータを1から4に並べた16進数の値、21FBとして取り込む。このデータが、予め決められたデータと合致していれば、認証済みとして、出力制御部603に結果を出力する。また、この認証は、電源投入時に毎回行っても良いし、一度認証されたものを内部メモリ等に記憶しても良い。また、認証部602は、外部I/O601から入力される種々の信号、例えば一般的な通信方式による入力、によって、暗号鍵方式による認証や、ライセンス管理により与えられたユーザ権限を照合するなどして行っても良い。
 また、本実施例では、認証されていない場合、変動周波数制御を行う(S702)こととした。この場合の変動周波数制御は、実施例1のように、指令周波数が比較周波数以上の場合にのみ変動周波数を演算し出力周波数としてもよいし、また、指令周波数の値に拘わらず全周波数領域において、変動周波数を演算し出力周波数としてもよい。後者の制御を行う電力変換装置の場合、周波数全域において高精度の制御が要求されないような用途であれば、認証なしで使用を継続することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
101・・・3相交流電圧、102・・・直流変換部、103・・・平滑コンデンサ、104・・・交流変換部、105・・・交流電動機、106・・・速度指令部、107・・・出力制御部、108・・・周波数変動生成部、601・・・外部I/O、602・・・認証部、603・・・出力制御部

Claims (15)

  1.  直流電圧を平滑化する直流電圧部と、
     直流電圧を交流電圧に変換する電力変換部と、
     前記電力変換部の出力を制御する出力制御部と、
     前記出力制御部に周波数指令を出力する周波数指令部と、
    を備え、
     前記出力制御部は、前記周波数指令部が出力する指令周波数が所定の周波数以上となった場合、前記指令周波数を変動させた周波数を出力周波数として、前記電力変換部を制御することを特徴とする電力変換装置。
  2.  前記出力制御部は、前記指令周波数が所定の周波数未満の場合、前記指令周波数により前記電力変換部を制御することを特徴とする請求項1に記載の電力変換装置。
  3.  複数の周期の異なる波形を重畳して所定の変動範囲以上となる変動指令を生成する周波数変動生成部を備え、
     前記指令周波数を変動させた周波数は、前記指令周波数と前記変動指令とを演算することにより生成されることを特徴とする請求項1に記載の電力変換装置。
  4.  前記周波数変動生成部は、周波数変動の範囲を、前記指令周波数の±0.1%以上とすることを特徴とする請求項3に記載の電力変換装置。
  5.  前記所定の周波数が100Hz~600Hzの範囲において設定されることを特徴とする請求項1に記載の電力変換装置。
  6.  外部からの信号または入力を受信して認証を行う認証部と、
    を備え、
     前記出力制御部は、前記認証部において予め決められた認証方法により、認証がなされた場合には、前記周波数指令部が出力する指令周波数が所定の周波数以上となった場合であっても、前記指令周波数により前記電力変換部を制御することを特徴とする請求項1に記載の電力変換装置。
  7.  前記認証部に接続され、前記外部からの信号または入力を受信する外部I/Oを備え、
     前記外部I/Oは複数の端子により構成され、前記複数の端子に入力される信号の変化に基づいて、前記認証部は認証を行うことを特徴とする請求項6に記載の電力変換装置。
  8.  前記出力制御部は、前記電力変換装置に設けられたマイクロコントローラにプログラムを書き込むことにより実現され、前記マイクロコントローラの書き込みボードは、プログラムが書き込まれた後に物理的にプログラムの書き換えが不可能とされることを特徴とする請求項1に記載の電力変換装置。
  9.  直流電圧を平滑化する直流電圧部と、
     直流電圧を交流電圧に変換する電力変換部と、
     前記電力変換部の出力を制御する出力制御部と、
     前記出力制御部に周波数指令を出力する周波数指令部と、
     外部からの信号または入力を受信して認証を行う認証部と、
    を備え、
     前記出力制御部は、前記認証部において予め決められた認証方法により認証がなされなかった場合には、前記指令周波数を変動させた周波数を出力周波数として、前記電力変換部を制御することを特徴とする電力変換装置。
  10.  前記出力制御部は、前記認証部において予め決められた認証方法により、認証がなされた場合には、前記指令周波数により前記電力変換部を制御することを特徴とする請求項9に記載の電力変換装置。
  11.  複数の周期の異なる波形を重畳して所定の変動範囲以上となる変動指令を生成する周波数変動生成部を備え、
     前記指令周波数を変動させた周波数は、前記指令周波数と前記変動指令とを演算することにより生成されることを特徴とする請求項9に記載の電力変換装置。
  12.  直流電圧を平滑化する直流電圧部と、直流電圧を交流電圧に変換する電力変換部と、前記電力変換部の出力を指令周波数に基づいて制御する出力制御部と、を備える電力変換装置の制御方法であって、
     前記指令周波数が所定の周波数以上の場合には、前記指令周波数を変動させた周波数を出力周波数として前記電力変換部を制御するステップと、
     取得した前記周波数指令が所定の周波数未満の場合には、前記指令周波数を出力周波数として前記電力変換部を制御するステップと、
     を備えることを特徴とする電力変換装置の制御方法。
  13.  前記指令周波数を変動させた周波数は、前記指令周波数と、複数の周期の異なる波形を重畳して所定の変動範囲以上とする変動指令とにより演算される周波数であることを特徴とする請求項12に記載の電力変換装置の制御方法。
  14.  前記所定の周波数が100Hz~600Hzの範囲において設定されることを特徴とする請求項12に記載の電力変換装置の制御方法。
  15.  外部からの信号又は入力を受信し、
     受信した信号又は入力に基づいて、予め決められた認証方法により認証がなされた場合には、前記指令周波数が所定の周波数以上となった場合であっても、前記指令周波数を出力周波数として前記電力変換部を制御することを特徴とする請求項12に記載の電力変換装置の制御方法。
PCT/JP2014/064801 2014-06-04 2014-06-04 電力変換装置及び制御方法 WO2015186203A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14893802.0A EP3154180B1 (en) 2014-06-04 2014-06-04 Power conversion device and control method
PCT/JP2014/064801 WO2015186203A1 (ja) 2014-06-04 2014-06-04 電力変換装置及び制御方法
JP2016524981A JP6220968B2 (ja) 2014-06-04 2014-06-04 電力変換装置及び制御方法
CN201480076726.1A CN106068609B (zh) 2014-06-04 2014-06-04 电力转换装置和控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064801 WO2015186203A1 (ja) 2014-06-04 2014-06-04 電力変換装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2015186203A1 true WO2015186203A1 (ja) 2015-12-10

Family

ID=54766302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064801 WO2015186203A1 (ja) 2014-06-04 2014-06-04 電力変換装置及び制御方法

Country Status (4)

Country Link
EP (1) EP3154180B1 (ja)
JP (1) JP6220968B2 (ja)
CN (1) CN106068609B (ja)
WO (1) WO2015186203A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491698A (ja) * 1990-08-02 1992-03-25 Hitachi Ltd インバータ装置
JPH04285496A (ja) * 1991-03-12 1992-10-09 Mitsubishi Heavy Ind Ltd インバータの周波数制御方法
JPH09322554A (ja) * 1996-05-29 1997-12-12 Sharp Corp インバータ装置の単独運転検知方法、およびインバータ装置
JP2006019788A (ja) * 2004-06-30 2006-01-19 Kyocera Mita Corp 電源装置、電源認証システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0991698A (ja) * 1995-09-19 1997-04-04 Shin Etsu Chem Co Ltd 磁気記録媒体の製造方法
CN101057436B (zh) * 2004-11-10 2011-11-30 松下电器产业株式会社 数据传送装置
DE102008061302A1 (de) * 2007-12-11 2009-06-18 Continental Teves Ag & Co. Ohg Routenführungsassistenz durch Momentunterstützung am Lenkrad
CN201197117Y (zh) * 2008-04-29 2009-02-18 新巨企业股份有限公司 变频式调压电路
EP2278410B1 (en) * 2009-07-14 2015-10-07 Ricoh Company, Ltd. Image forming apparatus capable of reducing image expansion and contraction
JP5673605B2 (ja) * 2012-05-30 2015-02-18 株式会社デンソー 電動機駆動装置、および、これを用いた電動パワーステアリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491698A (ja) * 1990-08-02 1992-03-25 Hitachi Ltd インバータ装置
JPH04285496A (ja) * 1991-03-12 1992-10-09 Mitsubishi Heavy Ind Ltd インバータの周波数制御方法
JPH09322554A (ja) * 1996-05-29 1997-12-12 Sharp Corp インバータ装置の単独運転検知方法、およびインバータ装置
JP2006019788A (ja) * 2004-06-30 2006-01-19 Kyocera Mita Corp 電源装置、電源認証システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3154180A4 *

Also Published As

Publication number Publication date
JPWO2015186203A1 (ja) 2017-04-20
CN106068609B (zh) 2018-11-06
EP3154180B1 (en) 2019-07-31
JP6220968B2 (ja) 2017-10-25
CN106068609A (zh) 2016-11-02
EP3154180A1 (en) 2017-04-12
EP3154180A4 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
JP5794274B2 (ja) マトリクスコンバータ
JP2017192197A5 (ja)
JP2016158323A (ja) アクティブフィルタを備えた高調波抑制装置
JP2011511609A (ja) 多段スイッチング電源
JP6220968B2 (ja) 電力変換装置及び制御方法
JP6158125B2 (ja) 電力変換装置
US7751214B2 (en) Power control apparatus and method
EP2757677A2 (en) Multilevel inverter
JPH0491698A (ja) インバータ装置
US8513941B2 (en) Power detection regulation device
JP2015159646A (ja) モータ制御システム
WO2016092603A1 (ja) 電力変換装置および電力変換装置の制御方法
JP6273442B2 (ja) 負荷制限時に能動型ブリッジ整流器を駆動制御するための方法、整流装置およびコンピュータプログラム製品
US8994468B2 (en) Modulation method and control device having the same
JP2020010460A (ja) インバータ制御装置
JP2015107043A (ja) 電力変換装置及び制御装置
JP6557934B2 (ja) アクティブフィルタ、制御方法及びプログラム
CN110212796B (zh) 逆变器的开关频率控制方法、装置与计算机可读存储介质
TWI514125B (zh) 電源供應器的程式化方法
WO2019163110A1 (ja) モータ駆動装置
JP2020171184A (ja) コンバータ装置、空気調和機、コンバータ装置の制御方法及びプログラム
CN108270350A (zh) 一种pfc电路的启动控制装置及方法
WO2019216138A1 (ja) 制御装置、コンバータ装置、モータ駆動装置、制御方法及びプログラム
TWI540821B (zh) 功率輸出控制電路及其操作方法
JP6392178B2 (ja) 三角波比較pwm生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016524981

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014893802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014893802

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE