WO2015182574A1 - Reic遺伝子を発現する制限増殖型アデノウイルス - Google Patents

Reic遺伝子を発現する制限増殖型アデノウイルス Download PDF

Info

Publication number
WO2015182574A1
WO2015182574A1 PCT/JP2015/065004 JP2015065004W WO2015182574A1 WO 2015182574 A1 WO2015182574 A1 WO 2015182574A1 JP 2015065004 W JP2015065004 W JP 2015065004W WO 2015182574 A1 WO2015182574 A1 WO 2015182574A1
Authority
WO
WIPO (PCT)
Prior art keywords
reic
adenovirus
region
sequence
dna
Prior art date
Application number
PCT/JP2015/065004
Other languages
English (en)
French (fr)
Inventor
裕巳 公文
保友 那須
昌実 渡部
チェオク ユン
Original Assignee
国立大学法人岡山大学
桃太郎源株式会社
漢陽大学校産学協力団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学, 桃太郎源株式会社, 漢陽大学校産学協力団 filed Critical 国立大学法人岡山大学
Priority to KR1020167036170A priority Critical patent/KR102365331B1/ko
Priority to EP15798816.3A priority patent/EP3150706B1/en
Priority to CN201580027897.XA priority patent/CN106459930B/zh
Priority to US15/313,674 priority patent/US10071126B2/en
Priority to JP2016523496A priority patent/JP6566214B2/ja
Publication of WO2015182574A1 publication Critical patent/WO2015182574A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/761Adenovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4747Apoptosis related proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10033Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector
    • C12N2710/10042Use of virus, viral particle or viral elements as a vector virus or viral particle as vehicle, e.g. encapsulating small organic molecule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10332Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2820/00Vectors comprising a special origin of replication system
    • C12N2820/007Vectors comprising a special origin of replication system tissue or cell-specific

Definitions

  • the present invention relates to a restricted propagation adenovirus that highly expresses REIC (REIC / Dkk-3) protein.
  • Non-patent Document 1 Non-patent Document 1
  • Non-Patent Document 3 Representative examples of drugs for cancer using restricted-proliferating viruses that have been reported in clinical trials to date are Telomelysin (non-patent document 2) with adenovirus type 5 as the skeleton and herpes simplex virus type 1 as the skeleton There is Talimogene laherparepvec (T-VEC, former name Oncovex) (Non-Patent Document 3).
  • Non-Patent Document 1 it has come to be considered that it is important to have a function to activate anti-cancer immunity for drugs against cancer using various viruses.
  • Non-Patent Document 2 genes such as cytokines that activate anti-cancer immunity are not encoded, and cancer cell death due to the proliferation of the adenovirus is local in the region where Telomelysin is administered.
  • cytokines that activate anti-cancer immunity
  • T-VEC activation of anti-cancer immunity can be expected by cancer cell death / antigenization of cancer cells by proliferation of the herpesvirus in the administered region and expression of cytokine GM-CSF.
  • the cytokine GM-CSF has an anti-cancer immune activation effect that induces differentiation of dendritic cells, which are cancer antigen-presenting cells (Non-patent Document 1), and induces immunosuppressive cells at high doses to prevent cancer. It has also been reported that there is a possibility of attenuating the immune function and worsening the disease state (Non-patent Document 4), which may limit the therapeutic effect of T-VEC.
  • REIC REIC / Dkk-3 gene
  • REIC has an effect of activating anticancer immunity and an effect of inducing cell death in cancer cells by endoplasmic reticulum stress during gene expression.
  • Patent Document 4 it has been reported that a partial fragment of the REIC gene has the same effect as full-length REIC (Patent Document 4), and an adenovirus expressing the REIC / Dkk-3 gene has also been reported (Patent Documents 5 and 5).
  • Non-patent document 11 Non-patent document 11).
  • An object of the present invention is to provide a restricted growth type adenovirus having a strong anticancer activity.
  • the inventors of the present invention have created their own restricted growth type adenovirus by effectively combining the previously reported technology groups of restricted growth type adenovirus (Patent Documents 1 and 2 and Non-Patent Documents 5 to 10). . Furthermore, a REIC gene that expresses a REIC protein having the unique anti-cancer immunity activation effect (Non-patent Document 11) was newly encoded in this adenovirus. As a result, a highly innovative anticancer virus preparation that has both uniqueness and novelty, and that is expected to have an anticancer action that surpasses the group of drugs against cancer using existing restricted-proliferation viruses. The development was successful and the present invention was completed.
  • the present invention is as follows. [1] Restricted growth type adenovirus containing the ITR (inverted terminal repeat) sequence of the type 5 adenovirus genome, and inserted with HRE sequence, hTERT promoter, decorin-encoding DNA and RGD sequence-encoding DNA. In addition, a restricted growth type adenovirus into which full-length REIC DNA or REIC C domain DNA is further inserted and which specifically propagates in cancer cells and expresses REIC protein or REIC C domain protein.
  • ITR inverted terminal repeat
  • hTERT promoter is a hTERT promoter modified by addition of c-Myc binding site and Sp1 binding site,
  • Six HRE sequences consisting of the base sequence represented by SEQ ID NO: 3 are inserted upstream of the hTERT promoter, (iii) a part of the E1A region, lacking the Rb binding region (Retinoblastoma gene binding region) of the type 5 adenovirus genome sequence shown in SEQ ID NO: 4;
  • a part of the E1B region wherein the portion encoding E1B-19kDa of the type 5 adenovirus genome sequence shown in SEQ ID NO: 4 has been deleted;
  • a part of the E3 region is deleted,
  • a DNA construct consisting of a promoter sequence, DNA encoding decorin and a polyA addition sequence is inserted into the E3 region;
  • DNA encoding a peptide comprising an RGD sequence is inserted into the E
  • REIC is full-length REIC.
  • a cancer therapeutic agent comprising the restricted growth type adenovirus according to any one of [1] to [6] as an active ingredient.
  • Restricted growth type adenovirus grows specifically in cancer cells, expresses REIC protein, and the expressed REIC protein induces cancer cell death by endoplasmic reticulum stress.
  • the cancer therapeutic agent according to [7] which induces cancer immune activity.
  • the restricted growth type adenovirus of the present invention is an improvement over the conventional restricted growth type adenovirus and has a stronger anticancer effect than the conventional one. Furthermore, the restricted growth type adenovirus inserted with REIC DNA is not only the anticancer effect of the restricted growth type adenovirus itself, but also the action that activates the anticancer immunity of REIC, and the endoplasmic reticulum stress during gene expression causes the cancer cell to Together with the action of inducing death, these actions work together to exert a synergistic and powerful therapeutic effect against cancer.
  • oncolic adenovirus It is a figure which shows the structure of oncolic adenovirus. It is a figure which shows the arrangement
  • the present invention is a restriction-proliferating adenovirus that contains REIC (REIC / Dkk-3) DNA and can be used for expression of REIC protein.
  • Restricted growth type adenovirus is an adenovirus that is genetically modified and grows only in cancer cells. Although it does not act on normal cells, it can grow only in cancer cells, lyse the cancer cells, and effectively kill the cancer cells. Restricted growth adenovirus is also called oncolytic adenovirus or lytic adenovirus.
  • the restricted growth type of the present invention can be used by inserting a foreign gene, it can also be referred to as a restricted growth type adenovirus vector.
  • the full-length REIC DNA or REIC DNA fragment is introduced into the restricted growth adenovirus, and not only the cancer-killing cell effect of the restricted growth adenovirus itself, but also the effect of activating anticancer immunity, Synergistic cancer-killing cell effects can be achieved by the effects of REIC on cancer cells, such as the effect of inducing cell death in cancer cells by endoplasmic reticulum stress during gene expression.
  • a restriction-propagating adenovirus is referred to as an oncolytic adenovirus (oncolytic Ad)
  • an oncolytic Ad-REIC a restriction-proliferating adenovirus that contains full-length REIC DNA and can express full-length REIC
  • an oncolytic Ad-REIC a restriction-proliferating adenovirus that contains full-length REIC DNA and can express full-length REIC
  • an oncolytic Ad-REIC a restriction-proliferating adenovirus that contains full-length REIC DNA and can express full-length REIC
  • an oncolytic Ad-REIC the restriction-proliferating adenovirus that contains DNA and can express the REIC C domain
  • an oncolytic Ad-REIC domain a restriction-proliferating adenovirus that contains DNA and can express the REIC C domain
  • the restricted growth type adenovirus used in the present invention has a type 5 adenovirus backbone whose growth is restricted by a human telomerase reverse transcriptase (hTERT) promoter.
  • the restricted-proliferation adenovirus of the present invention includes an ITR (inverted terminal repeat) of type 5 adenovirus, and further comprises DNA encoding decorin, a protein that suppresses tumor formation and growth, Modifications (insertion and deletion of specific sequences) have been made.
  • Decorin DNA is expressed by the CMV promoter.
  • the genome sequence of type 5 adenovirus is described in Virology, 186 (1), 1992, pp. 280-285, and is registered under GenBank Accession No. M73260.
  • the genome sequence of type 5 adenovirus is shown in SEQ ID NO: 4.
  • the adenovirus genome has ITR (inverted terminal repeat) at both ends, and has an E1A region, an E1B region, an E2 region, an E3 region, and an E4 region in order from the 5 ′ side as an initial transcription region.
  • ITR inverted terminal repeat
  • hTERT human telomerase reverse transcriptase
  • the modified hTERT promoter has one or more c-Myc binding sites (cacgtg, cacgcg or catgcg) and / or one or more Sp1 binding sites (gggcgg, ccgccc, ctccgcctc, cccagcccc, gggcgg, ggggcgg or cccccgccc (SEQ ID NO:
  • the wild-type hTERT promoter contains two c-Myc binding sites and five Sp1 binding sites
  • the hTERT promoter of the restricted growth adenovirus of the present invention is, for example, one more c- A Myc binding site and 5 Sp1 binding sites are added, including a total of 3 c-Myc binding sites and 10 Sp1 binding sites, which are located at the 3 ′ end of the hTERT promoter.
  • a modified hTERT promoter sequence may be included in the hTERT promoter sequence as shown in FIG.
  • “E-box” indicates c-Myc binding sequence.
  • the hTERT promoter further includes one c-Myc binding site and five Sp1 binding sites, for example, two c-Myc binding sites and five
  • a wild-type hTERT promoter having one Sp1 binding site may be bound to one c-Myc binding site and an hTERT promoter containing five Sp1 binding sites.
  • a pGL2-hTERT vector containing a binding site and five Sp1 binding sites may be cut with EcoRI and HindIII and then inserted into pSEAP-TERT treated with the same restriction enzymes to produce pSEAP-mTERT.
  • the modified hTERT promoter is described in Japanese Patent No. 4327844 and EUNHEE KIM et al., Human Gene Therapy 14: 1415-1428 (October 10, 2003).
  • HRE Hypoxia responsive region
  • HRE is a DNA element that responds to hypoxia possessed by a gene activated in hypoxia (hypoxia), and includes ACGTG as a consensus sequence.
  • the restriction-propagating adenovirus used in the present invention contains a sequence of 5 to 40 bases including the consensus sequence. In normal tissues, the oxygen concentration is about 2 to 9%, but cancer cells are in a hypoxic state of about 1.3%. For this reason, the restricted-proliferating adenovirus containing HRE is promoted in cancer cells.
  • HRE sequence examples include a sequence containing the above consensus sequence of a human vascular endothelial growth factor (hVEGF) gene (GenBank Accession No. M63971), and specifically, the 1379th position of the hVEGF gene Examples include the base sequence of the 1412th base from the base (SEQ ID NO: 3). Two or more HREs may be used in combination, and 3 to 12 HREs can be used together. For example, 6 connected (HRE ⁇ 6) or 12 connected (HRE ⁇ 12) (Oh-Joon Kwon et al., Clin Cancer Res; 16 (24) December 15, 2010, pp.60716082). Preferably, six connected (HRE ⁇ 6) are used. HRE may be linked upstream of the hTERT promoter, for example immediately upstream.
  • the E1A region is partially deleted.
  • the E1A region is present at the 342th to 1545th positions of the type 5 adenovirus genome (SEQ ID NO: 4), and the E1A protein binds to the RB (Retinoblastoma) gene product.
  • the E1A region is an indispensable region for adenovirus replication, and the restriction-proliferating adenovirus of the present invention lacks the Rb binding region (Retinoblastoma gene binding region) of the E1A region and retains the replication ability itself.
  • a partial deletion of the E1A region in the restricted growth adenovirus of the present invention is referred to as including a mutated active E1A gene.
  • the mutated active E1A gene consists of a nucleotide sequence coding for the Rb (retinoblastoma protein) binding site, a mutation in which the 45th Glu residue is replaced with Gly, and the 121-127th amino acid sequence entirely. It has a mutation substituted for Gly.
  • the adenovirus that has lost its ability to bind to Rb is active in normal cells. Can suppress adenovirus replication, but tumor cells with suppressed Rb function can be actively replicated to selectively kill cancer cells.
  • the recombinant adenovirus of the present invention containing a mutation at the Rb binding site described above has a greatly increased cancer cell specificity.
  • the mutation in the Rb binding site is, for example, a part of the E1A region, which is 24 Rb binding regions (Retinoblastoma gene binding region) of 923 to 946 in the type 5 adenovirus genome sequence shown in SEQ ID NO: 4. ( ⁇ E1A (24 bp)) (Candelaria Gomez-Manzano et al., Oncogene (2004) 23, pp.1821-1828).
  • the E1B region is partially deleted.
  • the E1B region is present in the 1714th to 3509th region of the type 5 adenovirus genome (SEQ ID NO: 4), and the E1B-55kDa protein, which is the gene product of the E1B region, is involved in virus replication by binding to the p53 protein. .
  • a partial deletion of the E1B region is also referred to as having an inactive portion in the E1B region, and the restricted-proliferating adenovirus of the present invention is an inactivated E1B 19 kDa gene, E1B 55 kDa gene, or E1B 19 kDa / E1B It has a 55 kDa gene, preferably an inactivated E1B 19 kDa and E1B 55 kDa gene.
  • the term “deactivation” as used in connection with a gene means that the transcription and / or decoding of the gene is not normal and the function of the normal protein protein encoded by the gene is It means not appearing.
  • an inactivated E1B 19 kDa gene is a gene in which a mutation (substitution, addition, partial deletion, or total deletion) is generated in the gene and an active E1B 19 kDa protein cannot be produced.
  • the E1B 19kDa gene is deleted, the cell apoptotic ability can be increased, and when the E1B 55kDa gene is deleted, it has tumor cell specificity (Korea Patent Application No. 100528727).
  • This deletion of the nucleotide sequence results in the deletion of the 19 kDa E1B-19 kDa, which is the trans-splicing product of the 55 kDa E1B protein, and this deletion is called ⁇ E1B (19 kDa) (Jaesung Kim et al., Cancer Gene Therapy (2002) 9, pp.725-736).
  • a stop codon may be introduced so that only E1B (19 kDa) in the E1B region is not expressed.
  • the E3 region is deleted. All or part of the DNA encoding the E3 protein may be deleted.
  • the E3 region is present at the 27858th to 30839th positions of the type 5 adenovirus genome (SEQ ID NO: 4).
  • the E3 region is not necessary for adenovirus growth, and foreign genes can be inserted into the E3 region.
  • the E3 region may be partially deleted, and a foreign gene may be inserted into that portion.
  • DNA encoding decorin described below can be inserted into this portion.
  • Decorin is a protein belonging to SLRP (small leucin rich proteoglycan) and is composed of 10-12 leucine-rich repeats. The core part is arched, and there are several types of extracellular matrix. Binds to growth factors or decorin receptors.
  • Decorin inhibits the activity of tumor growth factor (TGF- ⁇ ), prevents collagen fibrosis, participates in the matrix matrix assembly, suppresses tumor cell growth, Acts as a natural antagonist on formation and growth.
  • a promoter is linked upstream of the DNA encoding decorin, and a poly A addition sequence (polyadenylation sequence, polyA) is linked downstream of the DNA encoding decorin.
  • the promoter is preferably one that operates in animal cells, more preferably mammalian cells, and can regulate the transcription of the decorin gene, and is a promoter derived from a mammalian virus and a promoter derived from the genome of a mammalian cell.
  • U6 promoter H1 promoter, CMV (Cytomegalovirus) promoter, adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, HSV tk promoter, RSV promoter, EF1 alpha promoter, metallothionein promoter, ⁇ -actin Promoter, human IL-2 gene promoter, human IFN gene promoter, human IL-4 gene promoter, human lymphotoxin gene promoter, human GM-CSF gene promoter, inducible promoter, cancer ⁇ different promoters (e.g., TERT promoter, PSA promoter, PSMA promoter, CEA promoter, E2F promoter and AFP promoter) and a tissue-specific promoter (e.g., albumin promoter) including, but not limited thereto.
  • tissue-specific promoter e.g., albumin promoter
  • a CMV promoter or a cancer cell specific promoter is used.
  • a cancer cell specific promoter it is preferable to use the TERT promoter or the E2F promoter.
  • TERT telomere reverse transcriptase
  • the wild type human hTERT human reverse transcriptase
  • the m-hTERT promoter described in (2) above may be used.
  • polyadenylation sequence polyA
  • the origin of the poly A addition sequence is not limited, and a poly A addition sequence derived from a growth hormone gene, such as a poly A addition sequence derived from a bovine growth hormone gene (BGH polyA) or a poly derived from a human growth hormone gene A addition sequence, SV40 virus-derived poly A addition sequence, human and rabbit ⁇ -globin gene-derived poly A addition sequence, and the like.
  • BGH polyA bovine growth hormone gene
  • poly A addition sequence derived from a human growth hormone gene A addition sequence
  • SV40 virus-derived poly A addition sequence SV40 virus-derived poly A addition sequence
  • human and rabbit ⁇ -globin gene-derived poly A addition sequence and the like.
  • Adenoviruses containing DNA encoding decorin are described in Japanese Patent Application Laid-Open No. 2008-531010, I-K Choi et al., “Gene Therapy” (2010) 17, 190-201.
  • SEQ ID NO: 5 shows the base sequence of DNA encoding decorin (GenBank Accession No. NM_001920.3).
  • the base sequence of the CMV promoter (GenBank Accession No. X17403) is shown in SEQ ID NO: 6
  • the base sequence of the BGH polyA additional sequence is shown in SEQ ID NO: 7.
  • a DNA construct comprising a promoter sequence, a DNA encoding decorin, and a polyA addition sequence containing a DNA encoding decorin may be inserted into the E1A region, E1B region or E3 region, and preferably inserted into the E3 region.
  • the E1A region, E1B region and E3 region of the type 5 adenovirus genome are partially deleted.
  • a DNA construct in which a CMV promoter, a DNA encoding decorin, and a polyA addition sequence are linked in this order may be inserted into the deletion portion.
  • the DNA construct can be inserted into the type 5 adenovirus genome simultaneously with partial deletion of the E1A region, E1B region and E3 region by homologous recombination.
  • it may be inserted into the part of the type 5 adenovirus genome sequence shown in SEQ ID NO: 4 in (6) above where the nucleotides 2859 to 30479 are deleted.
  • DNA encoding a peptide containing an RGD (Arg-Gly-Asp) sequence is inserted.
  • the peptide containing the RGD sequence include peptides consisting of 4 (GRGDS (SEQ ID NO: 8)) to 15 amino acids including RGD, such as CDCRGDCFC (SEQ ID NO: 9) and GSCDCRGDCFCSG (SEQ ID NO: 10).
  • GGSDS SEQ ID NO: 8
  • DNA encoding a peptide containing the RGD sequence is inserted into, for example, the E3 region, and specifically, inserted between the 32676th base and the 32676th base of the type 5 adenovirus genome E3 region. .
  • restricted-proliferation adenovirus By containing DNA encoding a peptide containing the RGD sequence, restricted-proliferation adenovirus can be easily introduced into cancer cells.
  • Adenoviruses containing RGD sequences are described, for example, in Hao Wu et al., J Gene Med 2011; 13: 658-669.
  • the restricted-proliferation adenovirus of the present invention having the above characteristics (1) to (8) includes an ITR (inverted terminal repeat) sequence of the genome of type 5 adenovirus, DNA encoding HRE sequence, hTERT promoter, decorin and It has a structure in which a DNA encoding a peptide containing an RGD sequence is inserted.
  • ITR inverted terminal repeat
  • FIG. 1A An example of the structure of the restricted propagation adenovirus of the present invention is shown in FIG. 1A.
  • FIG. 1D shows the mutation of the restriction-proliferating adenovirus of the present invention from the wild type 5 adenovirus, and further shows the insertion positions of decorin DNA and REIC DNA.
  • FIG. 1B and FIG. 1C show the structure of a restriction-propagating adenovirus into which REIC DNA is inserted.
  • the structure of the restriction-proliferating adenovirus shown in FIG. 1A is the structure shown in FIG. 1D, in which a DNA construct in which a CMV promoter, a DNA encoding decorin, and a polyA addition sequence are linked in this order is inserted into the E3 region.
  • a part of the E1A region of the type 5 adenovirus genome is deleted, a part of the E1B region is deleted, and a part of the E3 region is further deleted.
  • the HTERT promoter modified with the HRE sequence is included upstream of the E1A region, the DNA encoding the peptide containing the RGD sequence is included downstream of the E3 region, and further, the promoter, DNA encoding decorin, and polyA are included in the E3 region. Constructs consisting of sequences are included.
  • the restricted propagation adenovirus of the present invention shown in FIG. 1A has the following structural features.
  • the hTERT promoter is modified by adding a c-Myc binding site and an Sp1 binding site.
  • Six HRE sequences consisting of the base sequence represented by SEQ ID NO: 3 are inserted upstream of the hTERT promoter.
  • a DNA construct comprising a promoter sequence, a DNA encoding decorin and a polyA addition sequence is inserted into the E3 region.
  • DNA encoding a peptide containing the RGD sequence is inserted into the E3 region.
  • a multicloning site (insertion site) for inserting a foreign gene may be included in the E1A region, E1B region, or E3 region.
  • a foreign gene such as REIC DNA described later can be inserted into the multicloning site.
  • the restriction-proliferating adenovirus of the present invention has a structure represented by ITR- ⁇ E1A- ⁇ E1B-promoter-decorin DNA-polyA addition sequence-RGD sequence-ITR, and “promoter-decorin DNA-poly The construct consisting of “A additional sequence” is inserted into the deleted E3 region.
  • the structure (gene map) of such a restricted growth adenovirus is shown in FIG.
  • Oncolytic Ad-REIC or oncolytic Ad-REIC domain can be produced by inserting full-length REIC DNA or REIC DNA domain into the above-mentioned restricted-proliferative adenovirus (Oncolic Ad).
  • REIC DNA The base sequence of REIC DNA is represented by SEQ ID NO: 11.
  • the amino acid sequence of the REIC protein encoded by REICREDNA is represented by SEQ ID NO: 12.
  • REIC is sometimes referred to as REIC / Dkk-3.
  • the base sequence of REIC ⁇ C domain DNA is represented by SEQ ID NO: 13
  • the amino acid sequence of REIC C domain protein encoded by the domain is represented by SEQ ID NO: 14.
  • REIC DNA or REIC C domain DNA contained in the restricted growth adenovirus of the present invention hybridizes under stringent conditions with DNA having a base sequence complementary to the base sequence represented by SEQ ID NO: 11 or 13. Soy DNA, base sequence represented by SEQ ID NO: 11 or 13, BLAST (Basic Local Alignment Search Tool at the National Center for Biological Information), etc.
  • DNA encoded or the protein encoded by the DNA e.g., Having a sequence identity of at least 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97% or more when calculated using default or default parameters
  • one or more or several (1 to 10 preferably the amino acid sequence of the DNA encoded or the protein encoded by the DNA
  • “stringent conditions” are, for example, “1XSSC, 0.1% SDS, 37 ° C.” conditions, and more severe conditions are “0.5 XSSC, 0.1% SDS, 42 ° C.” conditions. There are more severe conditions such as “0.2XSSC, 0.1% SDS, 65 ° C.”. Thus, isolation of DNA having high homology with the probe sequence can be expected as the hybridization conditions become more severe.
  • the above combinations of SSC, SDS, and temperature conditions are examples, and the necessary stringency can be realized by appropriately combining the probe concentration, the probe length, the hybridization reaction time, and the like.
  • “Stringent conditions” can be appropriately determined by those skilled in the art as conditions under which DNA having high sequence identity hybridizes.
  • the REIC DNA contained in the DNA construct of the present invention is a DNA encoding the protein represented by SEQ ID NO: 2.
  • REIC® DNA or REIC® C domain DNA can be obtained from human cells, human tissues, etc. based on the sequence information of SEQ ID NOs: 11-14.
  • a CMV (cytomegarovirus) promoter is linked upstream of the full-length REIC DNA or REIC C domain DNA, and a poly A addition sequence (polyadenylation sequence, polyA) is linked downstream.
  • the origin of the poly A addition sequence (polyadenylation sequence, polyA) is not limited, and a poly A addition sequence derived from a growth hormone gene, such as a poly A addition sequence derived from a bovine growth hormone gene (BGA polyA) or a poly derived from a human growth hormone gene A addition sequence, SV40 virus-derived poly A addition sequence, human and rabbit ⁇ -globin gene-derived poly A addition sequence, and the like. Inclusion of the poly A addition sequence in the DNA construct increases transcription efficiency.
  • the base sequence of the CMV promoter (GenBank Accession No. X17403) is shown in SEQ ID NO: 6, and the base sequence of the BGH polyA addition sequence (GenBank Accession No. M57764) is shown in SEQ ID NO: 7.
  • a DNA construct comprising a CMV promoter sequence, a DNA encoding REIC DNA or REIC DNA domain, and a polyA addition sequence, including DNA encoding REIC DNA or REIC DNA domain, is inserted into the E1A region, E1B region or E3 region. Preferably, it is inserted into the E1 region (E1A or E1B region).
  • the above DNA construct can be inserted into the E1A region, E1B region or E3 region of the type 5 adenovirus genome by homologous recombination.
  • it may be inserted into the E1 region of the above-mentioned restricted propagation adenovirus.
  • homologous recombination it is possible to insert only a DNA construct consisting of a CMV promoter sequence, a DNA encoding a REIC DNA, or a REIC C domain DNA, and a polyA addition sequence, including DNA encoding REIC DNA or REIC C domain DNA.
  • it is a construct that contains the E1 region, and is a homologous construct that contains a DNA construct containing REIC DNA or REIC C domain DNA in the E1 region, and has deleted part of the E1A region and part of the E1B region. It may be inserted by recombination.
  • E1A and E1B regions of the type 5 adenovirus are partially deleted ( ⁇ E1A (24 bp) and ⁇ E1B (19 kDa)), and the type 5 adenovirus contains REIC DNA or REIC C domain DNA.
  • DNA constructs can be inserted.
  • a DNA construct comprising a CMV promoter sequence, a DNA encoding a REIC DNA or REIC C domain DNA, and a polyA addition sequence, including a DNA encoding a REIC DNA or REIC C domain DNA is, for example, pE1sp1B-HmT which is an E1 shuttle vector It may be inserted into the E1 region by homologous recombination using -Rd19 / CMV-REIC-polA ((left homology part: 22-341) (right homology part: 3523-5790)). By using this shuttle vector, the following DNA construct is inserted into the 342th to 3522th positions of the type 5 adenovirus genome sequence.
  • a DNA construct consisting of a CMV promoter sequence, DNA encoding REIC DNA or REIC C domain DNA, and a polyA addition sequence is inserted into the E1 region, and the Rb binding site of the E1A region is deleted, and E1B- A construct lacking the 19kDa coding part.
  • E1A region and E1B region of type 5 adenovirus were partially deleted ( ⁇ E1A (24 bp) and ⁇ E1B (19 kDa)), and type 5 adenovirus was transferred to CMV promoter sequence, REIC DNA or REIC DNA domain DNA. And a DNA construct comprising a polyA addition sequence can be inserted.
  • a DNA construct consisting of a CMV promoter sequence, a DNA encoding REIC DNA or REIC C domain DNA, and a polyA addition sequence is obtained between the 3524th and 3525th positions of the type 5 adenovirus genome sequence, or the 3523rd and 3524th positions. It may be inserted between the th.
  • FIGS. 1B and 1C The structures of restricted-proliferating adenovirus inserted with DNA encoding REIC DNA or REIC C domain DNA are shown in FIGS. 1B (Oncolytic Ad-REIC) and C (Oncolytic AD-REIC domain).
  • the structures shown in FIGS. 1B and 1C are derived from a DNA encoding a CMV promoter sequence, REIC DNA or REIC C domain DNA, and a polyA addition sequence in the E1 region of the restriction-proliferating adenovirus (Oncortic Ad) shown in FIG. 1A.
  • the DNA construct is inserted at position 3524.
  • Restricted growth type adenovirus of the present invention (Oncolic Ad), restricted growth type adenovirus containing full-length REIC (DNA (Oncolytic Ad-REIC), or restricted growth type adenovirus containing REIC C domain DNA (Ad-REIC C domain) can be prepared according to the description above and the cited references.
  • Oncolic Ad restricted growth adenovirus of the present invention
  • restriction-propagating adenovirus containing the full-length REIC DNA of the present invention can be used in humans and other mammals.
  • Administration to a subject results in delivery to the subject's cancer cells.
  • Cancer cells are killed by the action of oncolytic adenovirus, full-length REIC protein or REIC C domain protein is expressed in cancer cells, and cell death is selectively induced in cancer cells by endoplasmic reticulum stress at the time of expression and cancer It activates immunity, suppresses tumor cell growth, and exerts a therapeutic effect on cancer.
  • the anti-cancer immune activity by REIC not only acts locally on cancer cells, but also leads to strong anti-cancer immune activation throughout the body.
  • Restricted growth adenovirus containing full-length REIC DNA Oncolic Ad-REIC
  • restricted growth adenovirus containing REIC C domain DNA Oncortic Ad-REC domain
  • the anti-cancer effect by anti-cancer immunity activity etc. acts synergistically, and a stronger anti-cancer effect can be obtained.
  • the present invention includes a virus preparation for cancer treatment containing such a restricted-proliferating adenovirus (oncolytic Ad, oncolytic Ad-REIC, oncolytic Ad-REIC domain).
  • cancer to be treated examples include, but are not limited to, for example, brain / nerve tumor, skin cancer, stomach cancer, lung cancer, liver cancer, lymphoma / leukemia, colon cancer, pancreatic cancer, anal / rectal cancer, esophageal cancer, uterine cancer, breast cancer, Examples include adrenal cancer, renal cancer, renal pelvic and ureteral cancer, bladder cancer, prostate cancer, urethral cancer, penile cancer, testicular cancer, bone and osteosarcoma, leiomyoma, rhabdomyosarcoma, mesothelioma and the like.
  • the restricted growth type adenovirus (oncolytic Ad, oncolytic Ad-REIC, oncolytic Ad-REIC domain) of the present invention can be used for the treatment of primary cancer and metastatic cancer.
  • the restricted-proliferation adenovirus of the present invention is a method that can be used in the field of gene therapy, for example, blood vessels such as intravenous administration and intraarterial administration. It can be administered by internal administration, oral administration, intraperitoneal administration, intrathoracic administration, intratracheal administration, intrabronchial administration, subcutaneous administration, transdermal administration, and the like.
  • the therapeutically effective dose of the restricted growth adenovirus of the present invention may be administered.
  • a therapeutically effective amount can be readily determined by one skilled in the art of gene therapy.
  • the dose can be appropriately changed depending on the severity of the disease state, sex, age, weight, habits, etc. of the subject. Contains carriers, diluents and excipients commonly used in the pharmaceutical field. For example, lactose and magnesium stearate are used as carriers and excipients for tablets.
  • aqueous solution for injection isotonic solutions containing physiological saline, glucose and other adjuvants are used, and suitable solubilizers such as polyalcohols such as alcohol and propylene glycol, nonionic surfactants, etc. You may use together.
  • suitable solubilizers such as polyalcohols such as alcohol and propylene glycol, nonionic surfactants, etc. You may use together.
  • oily liquid sesame oil, soybean oil and the like are used, and as a solubilizing agent, benzyl benzoate, benzyl alcohol and the like may be used in combination.
  • Oncolytic Ad Oncolytic Ad
  • REIC-C REIC C domain
  • DCN decorin
  • pCA14 / REIC and pCA14 / REIC-C vectors were digested with BglII, and then the CMV-REIC-polA and AMV-REIC-C-polA expression cassettes were previously digested with BglII p ⁇ E1sp1B-HmT-Rd19 shuttle vector (Kim E et al., Hum Gene Ther 2003; 14: 1415-1428; Kim JH et al., J Natl Cancer Inst 2006; 98: 1482-1493) and cloned into p ⁇ E1sp1B-HmT-Rd19 / REIC and p ⁇ E1sp1B-HmT- Rd19 / REIC-C adenovirus E1 shuttle vector was obtained.
  • E3 shuttle vector was linearized with XmnI and adenovirus total vector del-RGD linearized with SpeI together with BJ5183 The E. coli strain was cotransformed and homologous recombination was performed. As a result, an adenoviral vector del-RGD / DCN having no replication ability was obtained.
  • the newly constructed p ⁇ E1sp1B-HmT-Rd19 / REIC and p ⁇ E1sp1B-HmT-Rd19 / REIC-C adenovirus E1 shuttle vectors were linearized by XmnI digestion and then co-combined with BJ5183 E. coli strain along with de1-RGD / DCN digested with BstBI. Transformation and homologous recombination were performed. As a result, tumor-specific oncolytic adenovirus expressing REIC or REIC-C and decorin was obtained. Plasmid DNA was digested with PacI, introduced into 293A cells and propagated.
  • Example 2 Expression method of REIC protein in various cells by addition of oncolytic Ad, oncolytic Ad-REIC and oncolytic Ad-REIC domain
  • MOI multiplicity of infection
  • mice monoclonal antibody human REIC / Dkk-3 antibody (1: 1000 dilution) (primary antibody) was reacted, thoroughly washed with 0.1% Tween-20-containing TBS (T-TBS), and then labeled with horseradish peroxidase. Reaction with the next antibody. Further, after washing with T-TBS, color was developed using an ECL kit (Amersham Pharmacia Biotech, Chandler, AZ) which is a chemiluminescence detection method kit. A band of REIC protein is observed around 60 kDa by Western blot.
  • FIG. 3 shows the expression of Western blot analysis of REIC protein in various cells by adding oncolytic Ad (adenovirus), oncolytic Ad-REIC, and oncolytic Ad-REIC domain.
  • oncolytic Ad-REIC By adding oncolytic Ad-REIC in various cells, it is possible to express REIC protein equivalent to or higher than conventional Ad-REIC. Since REIC protein has an effect of activating anticancer immunity in vivo (WO2009 / 119874), oncolytic Ad-REIC is also expected to activate anticancer immunity in vivo. .
  • Example 3 Method for Confirming Cell Death Induction Rate in Various Cells by Addition of Oncolytic Ad and Oncolytic Ad-REIC
  • MOI multipleplicity of infection
  • FIG. 4 shows cell death induction rates in various cells by the addition of oncolytic Ad and oncolytic Ad-REIC. As shown in FIG. 4, oncolic Ad-REIC significantly induced cell death compared to other compounds.
  • Example 4 Method for Treatment Effect of Oncolytic Ad and Oncolytic Ad-REIC on Human Prostate Cancer
  • PC3 human prostate cancer cells 2 ⁇ 10 6 cells / 0.1 ml PBS were administered by subcutaneous injection to the right thigh of adult male nude mice.
  • Ten days after the tumor volume reached 200 to 300 mm 3 adenovirus was administered intratumorally (Day 0 in FIG. 5).
  • Tumor volume was calculated using the formula 1/2 (w1 x w2 x w2). In this formula, w1 represents the maximum tumor diameter and w2 represents the minimum tumor diameter.
  • Example 5 Method of NK cell induction effect of oncolytic Ad and oncolytic Ad-REIC PC3 human prostate cancer cells 2 ⁇ 10 6 cells / 0.1 ml PBS were administered by subcutaneous injection to the left and right thighs of adult male nude mice. This mouse is a mouse tumor model with at least two tumor sites. Ten days after the bilateral tumor volume was 200-300 mm 3 , adenovirus was administered into the right tumor. Three days after vector injection, natural killer (NK) cells in peripheral lymphocytes were measured by flow cytometry using an anti-NK cell antibody (eBioscience Inc., 10255 Science Center Drive, San Diego, CA 92121, USA).
  • NK natural killer
  • Example 6 Induction Method of Antigen-Specific Immune Response by Oncolytic Ad and Oncolytic Ad-REIC A cancer-bearing model in an immunocompetent mouse was prepared, and anticancer was performed after oncolytic Ad-REIC or oncolytic Ad was administered into the tumor Studies were conducted to identify cancer-specific CTL cells responsible for immunity. Cancer-bearing mice by subcutaneous transplantation of malignant thymoma cells [EG-7] (1.0 x 10 6 cells) introduced with the foreign antigen OVA (ovalbumin) gene into C57 / BL6 mice with normal immune system A model was created.
  • EG-7 malignant thymoma cells
  • OVA ovalbumin
  • oncolytic Ad-REIC or oncolytic Ad was injected into the tumor (dosage was 1.0 ⁇ 10 6 pfu / tumor).
  • tumors were collected, and the kinetics of the proportion of specific CD8-positive CTLs against OVA in the tumor-infiltrating lymphocytes (TIL), CD8 antibody, OVA tetramer (H-2 kb restricted OVA epitope) The antibody was recognized by flow cytometry.
  • results The results are shown in FIG. As shown in FIG. 7, the frequency of tetramer-positive CD8 cells was increased in the tumor of mice administered with oncolytic Ad-REIC. That is, administration of oncolytic Ad-REIC induced a stronger OVA antigen-specific immune response than when oncolytic Ad was administered. Based on the results of this experiment, it is considered possible to induce a cancer antigen-specific immune response by administering oncolytic Ad-REIC that encodes the REIC gene and expresses the REIC protein into the tumor.
  • the restricted growth adenovirus of the present invention can be used for cancer treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 強力な抗癌作用を有する制限増殖型アデノウイルスの提供を目的とする。 5型アデノウイルスのゲノムのITR(inverted terminal repeat)配列を含み、HRE配列、hTERTプロモーター、デコリンをコードするDNA及びRGD配列を含むペプチドをコードするDNAが挿入された制限増殖型アデノウイルスに、さらに全長REIC DNA又はREIC CドメインDNAが挿入され、癌細胞で特異的に増殖しREICタンパク質又はREIC Cドメインタンパク質を発現する制限増殖型アデノウイルス。

Description

REIC遺伝子を発現する制限増殖型アデノウイルス
 本発明は、REIC(REIC/Dkk-3)タンパク質を高発現する制限増殖型アデノウイルスに関する。
 これまでに、制限増殖型(癌細胞で特異的に増殖するように遺伝子改変した)各種ウイルスを用いた癌に対する医薬品の臨床治験が報告されている(非特許文献1)。これらの医薬品を用いた癌の治療においては一定の成果が上がっている一方、その効果が限定的であることが多く、さらに有効な医薬品の開発が望まれている。
 現在までに臨床治験の結果が報告されている制限増殖型ウイルスを用いた癌に対する医薬品の代表例として、adenovirus type 5を骨格とするTelomelysin(非特許文献2)とherpes simplex virus type 1を骨格とするTalimogene laherparepvec(T-VEC,旧名Oncovex)(非特許文献3)がある。
 近年、非特許文献1に示されるように、各種ウイルスを用いた癌に対する医薬品については、抗癌免疫を活性化するような機能を持たせることが重要であると考えられるようになってきた。この観点から考えると、Telomelysin(非特許文献2)については、抗癌免疫を活性化させるサイトカイン等の遺伝子がコードされておらず、Telomelysinを投与した局所においては当該アデノウイルスの増殖による癌細胞死が誘導できるものの、全身における強力な抗癌免疫活性化という作用が期待できない。このことが、Telomelysinの治療効果を限定的なものにしている可能性がある。
 また、T-VECについては、投与した局所における当該ヘルペスウイルスの増殖による癌細胞死・癌細胞の抗原化とサイトカインGM-CSFの発現による抗癌免疫の活性化が期待できる。しかしながらサイトカインGM-CSFには、癌抗原提示細胞である樹状細胞を分化誘導させるという抗癌免疫活性化作用の他に(非特許文献1)、高用量では免疫抑制系細胞を誘導し抗癌免疫機能を減弱させ、病状を悪化させる可能性があることも報告されており(非特許文献4)、このことがT-VECの治療効果を限定的なものにしている可能性がある。
 すなわち、現存の制限増殖型ウイルスを用いた癌に対する医薬品のこれらの問題点を踏まえた上で、さらに有効な当該医薬品の開発が望まれている。上記問題点を解決するための制限増殖型アデノウイルスとして種々の変異を含む制限増殖型アデノウイルスについて報告されていた(特許文献1及び2並びに非特許文献5~10)。
 一方、細胞の不死化に関連した遺伝子として、REIC(REIC/Dkk-3)遺伝子が知られており、がん細胞ではこの遺伝子の発現が抑制されていることが報告されており、REIC遺伝子を癌治療に用いることも報告されている(特許文献3)。REICは抗癌免疫を活性化する作用、遺伝子発現時に小胞体ストレスにより癌細胞に細胞死を誘導する作用を有する。また、REICの遺伝子の部分断片が全長REICと同様の効果を有することも報告され(特許文献4)、さらにREIC/Dkk-3遺伝子を発現するアデノウイルスについても報告されていた(特許文献5及び非特許文献11)。
特許第4327844号公報 特表2008-531010号公報 国際公開第WO2001/038523号 国際公開第WO2012/002582号 国際公開第WO2012/161352号
R.V. Dave et al., Surgeon 2014, Feb 4 John Nemunaitis et al., Molecular Therapy, Vol.18, No.2, 429-434, Feb. 2010 Neil N. Senzer et al., Journal of Clinical Oncology, Vol. 27, No. 34, December 1, 2009, 5763-5771 G. Parmiani et al., Annals of Oncology 18; 226-232, 2007 Oh-Joon Kwon et al., Clin Cncer Res; 16(24) December 15, 2010 Eunhee Kim et al., Human Gene Therapy 14:1415-1428 (October 10, 2003), 1415-1427 Candelaria Gomez-Manzano et al., Onvogene (2004)23, 1821-1828 Jaesung Kim et al., Cancer Gene Therapy(2002)9, 725-736 I-K Choi et al., Gene Therapy(2010) 17, 190-201 Hao Wu et al., J Gene Med 2011; 13: 658-669 Watanabe M et al., Oncology Letters 7: 595-601, 2004
 本発明は、強力な抗癌作用を有する制限増殖型アデノウイルスの提供を目的とする。
 本発明者らは、従来報告されている制限増殖型アデノウイルスの技術群(上記特許文献1及び2並びに非特許文献5~10)を有効に組み合わせることにより独自の制限増殖型アデノウイルスを作製した。さらに、このアデノウイルスに、独特の抗癌免疫活性化作用を有するREICタンパク質(上記非特許文献11)を発現するREIC遺伝子を新たにコードした。これにより、独自性・新規性を兼ね備えた、かつ、既存の制限増殖型ウイルスを用いた癌に対する医薬品群を凌駕する抗癌作用を持つことが期待される進歩性の高い、抗癌ウイルス製剤の開発に成功し、本発明を完成させるに至った。
 すなわち、本発明は以下のとおりである。
[1] 5型アデノウイルスのゲノムのITR(inverted terminal repeat)配列を含み、HRE配列、hTERTプロモーター、デコリンをコードするDNA及びRGD配列を含むペプチドをコードするDNAが挿入された制限増殖型アデノウイルスに、さらに全長REIC DNA又はREIC CドメインDNAが挿入され、癌細胞で特異的に増殖しREICタンパク質又はREIC Cドメインタンパク質を発現する制限増殖型アデノウイルス。
[2] プロモーター配列、デコリンをコードするDNA及びpolyA付加配列からなるDNAコンストラクトが5型アデノウイルスのE3領域中に挿入されている、[1]の制限増殖型アデノウイルス。
[3](i) hTERTプロモーターがc-Myc結合部位及びSp1結合部位の付加により修飾されたhTERTプロモーターであり、
(ii) hTERTプロモーターの上流に配列番号3で表される塩基配列からなるHRE配列が6つ挿入され、
(iii) E1A領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列のRb結合領域(Retinoblastoma遺伝子結合領域)を欠失しており、
(iv) E1B領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列のE1B-19kDaをコードする部分が欠失しており、
(v) E3領域の一部が欠失しており、
(vi) プロモーター配列、デコリンをコードするDNA及びpolyA付加配列からなるDNAコンストラクトがE3領域中に挿入され、
(vii) RGD配列を含むペプチドをコードするDNAが、E3領域中に挿入され、かつ
(viii) CMVプロモーター配列、REIC DNA又はREIC CドメインDNAをコードするDNA、並びにpolyA付加配列からなるDNAコンストラクトがE1領域中に挿入されている[1]又は[2]の制限増殖型アデノウイルス。
[4] (iii) E1A領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列の第923~946のRb結合領域(Retinoblastoma遺伝子結合領域)である24個の塩基を欠失しており、
(iv) E1B領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列の第1722~1986のE1B-19kDaをコードする部分の塩基が欠失しており、
(v) E3領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列の第28592~30479の塩基が欠失している、
[3]の制限増殖型アデノウイルス。
[5] REICが全長REICである、[1]~[4]のいずれかの制限増殖型アデノウイルス。
[6] REICがREICのCドメインである、[1]~[4]のいずれかの制限増殖型アデノウイルス。
[7] [1]~[6]のいずれかの制限増殖型アデノウイルを有効成分として含む、癌治療剤。
[8] 制限増殖型アデノウイルスが癌細胞中で特異的に増殖し、REICタンパク質を発現し、発現したREICタンパク質が小胞体ストレスにより癌細胞の細胞死を誘導し、さらにREICタンパク質が全身的抗癌免疫活性を誘導する、[7]の癌治療剤。
 本明細書は本願の優先権の基礎である日本国特許出願2014-110672号の明細書および/または図面に記載される内容を包含する。
 本発明の制限増殖型アデノウイルスは従来の制限増殖型アデノウイルスを改良し、従来のものよりも強力な抗癌作用を有する。さらにREIC DNAを挿入した該制限増殖型アデノウイルスは、制限増殖型アデノウイルス自体の抗癌作用のみならず、REICの抗癌免疫を活性化する作用、遺伝子発現時に小胞体ストレスにより癌細胞に細胞死を誘導する作用を併せ持ち、これらの作用が協働し、癌に対して相乗的な強力な治療効果を発揮する。
オンコリティックアデノウイルスの構造を示す図である。 m-hTERTプロモーターの配列を示す図である。 オンコリティックアデノウイルスの添加による各細胞でのREICタンパク質の発現を示す図である。 オンコリティックアデノウイルス(オンコリティックAd及びオンコリティックAd-REIC)の添加による各細胞での細胞死誘導率を示す図である。 オンコリティックアデノウイルス(オンコリティックAd及びオンコリティックAd-REIC)を投与した場合の各マウスにおける腫瘍体積の変化を示す図である。 オンコリティックアデノウイルス(オンコリティックAd及びオンコリティックAd-REIC)を投与した場合の各マウスにおけるNK細胞誘導を示す図である。 オンコリティックアデノウイルス(オンコリティックAd及びオンコリティックAd-REIC)を投与した場合の抗原特異的免疫応答誘導を腫瘍浸潤リンパ球(TIL)の解析の結果により示す図である。
 以下、本発明を詳細に説明する。
 本発明は、REIC(REIC/Dkk-3) DNAを含み、REICタンパク質の発現に用いることができる制限増殖型アデノウイルスである。
 制限増殖型アデノウイルスは、遺伝子改変され、癌細胞の中のみで増殖するアデノウイルスをいう。正常の細胞には作用しないが、癌細胞の中でのみ増殖し癌細胞を溶解させ、癌細胞を効果的に殺すことができる。制限増殖型アデノウイルスをオンコリティック(oncolytic)アデノウイルスや溶解性アデノウイルスとも呼ぶ。また、本発明の制限増殖型は外来遺伝子を挿入して用いることができるので、制限増殖型アデノウイルスベクターと言うこともできる。
 本発明においては、制限増殖型アデノウイルスに全長REIC DNA又はREIC DNA断片を導入しており、上記の制限増殖型アデノウイルス自体の殺癌細胞効果のみならず、抗癌免疫を活性化する効果、遺伝子発現時に小胞体ストレスにより癌細胞に細胞死を誘導する効果等のREICの癌細胞に対する効果により相乗的な殺癌細胞効果を奏することができる。
 本発明において、制限増殖型アデノウイルスをオンコリティックアデノウイルス(オンコリティックAd)と呼び、全長REIC DNAを含み全長REICを発現し得る制限増殖型アデノウイルスをオンコリティックAd-REICと呼び、REIC CドメインDNAを含みREIC Cドメインを発現し得る制限増殖型アデノウイルスをオンコリティックAd-REIC domainと呼ぶ。
 本発明で用いる制限増殖型アデノウイルスは、ヒトテロメラーゼ逆転写酵素(hTERT)プロモーターにより増殖が制限される5型アデノウイルスの骨格を有する。本発明の制限増殖型アデノウイルスは5型アデノウイルスのITR(inverted terminal repeat)を含み、さらに、腫瘍の形成と成長を抑制するタンパク質であるデコリンをコードするDNAを含むことを特徴とし、その他の修飾(特定の配列の挿入及び欠失)がなされている。デコリンDNAはCMVプロモーターにより発現する。5型アデノウイルスのゲノム配列は、Virology, 186 (1), 1992, pp.280-285に記載され、また、GenBank Accession No.M73260で登録されている。5型アデノウイルスのゲノム配列を配列番号4に示す。アデノウイルスのゲノムは両端にITR(inverted terminal repeat)を有し、初期転写領域として5'側から順に、E1A領域、E1B領域、E2領域、E3領域及びE4領域を有する。
 以下に本発明の制限増殖型アデノウイルスの特徴を示す。
(1)5型アデノウイルスのITR(inverted terminal repeat)を含む。ITRは100~200塩基からなりアデノウイルスDNAのDNA複製及びパッケージングに必須なエレメントである。
(2)ヒトテロメラーゼ逆転写酵素(hTERT)プロモーターを含む。hTERTプロモーターは、5型アデノウイルスゲノムのE1領域の上流に含まれ、例えばE1領域の直ぐ上流に連結される。hTERTプロモーターは好ましくは修飾されている。修飾されたhTERTプロモーターをm-hTERTプロモーターと呼ぶ。修飾されたhTERTプロモーターは、1つ以上のc-Myc結合部位(cacgtg、cacgcg又はcatgcg)及び/又は1つ以上のSp1結合部位(gggcgg, ccgccc, ctccgcctc, cccagcccc, gggcgg, ggggcgg又はcccccgcccc(配列番号1)を含む。野生型hTERTプロモーターには2つのc-Myc結合部位と5つのSp1結合部位が含まれている。本発明の制限増殖型アデノウイルスのhTERTプロモーターは、例えば、さらに1つのc-Myc結合部位と5つのSp1結合部位が付加され、合計で3個のc-Myc結合部位及び10個のSp1結合部位を含む。c-Myc結合部位及びSp1結合部位はhTERTプロモーターの3'末端に含まれていても、5'末端に含まれていても、さらに、hTERTプロモーター配列の内部に含まれていてもよい。修飾されたhTERTプロモーターの一例の配列を図2及び配列番号2に示す。図1において「E-box」はc-Myc結合配列を示す。hTERTプロモーターに1つのc-Myc結合部位及び5つのSp1結合部位をさらに含ませたm-hTERTプロモーター(配列番号2)を製造するためには、例えば、2つのc-Myc結合部位及び5つのSp1結合部位が存在する野生型hTERTプロモーターに、1つのc-Myc結合部位及び5つのSp1結合部位が入っているhTERTプロモーターを結合させればよい。このためには、まず1つのc-Myc結合部位及び5つのSp1結合部位が含まれたpGL2-hTERTベクターをEcoRIとHindIIIで切断した後、同種の制限酵素で処理されたpSEAP-TERTに挿入してpSEAP-mTERTを製造すればよい。該修飾されたhTERTプロモーターについては、特許第4327844号公報及びEUNHEE KIM et al., Human Gene Therapy 14: 1415-1428 (October 10, 2003)に記載されている。
(3)低酸素応答性領域(Hypoxia Responsive Element: HRE)を含む。HREは低酸素状態(ハイポキシア)で活性化される遺伝子が有する、ハイポキシアに応答するDNAエレメントであり、コンセンサス配列としてACGTGを含む。本発明で用いる制限増殖型アデノウイルスは前記コンセンサス配列を含む5~40塩基の配列を含む。正常組織では酸素濃度は2~9%程度であるが、癌細胞は約1.3%と低酸素状態にある。このため、HREを含む制限増殖アデノウイルスは癌細胞で増殖が促進される。HRE配列として例えば、ヒト血管内皮増殖細胞(human vascular endothelial growth factor:hVEGF)遺伝子(GenBank Accession No. M63971)の前記コンセンサス配列を含む配列が挙げられ、具体的には、hVEGF遺伝子の第1379番目の塩基から1412番目の塩基の塩基配列(配列番号3)が挙げられる。HREは複数個を連結して用いてもよく、3~12個を連結して用いることができ、例えば、6個連結したもの(HRE×6)や12個連結したもの(HRE×12)を用いることができる(Oh-Joon Kwon et al., Clin Cancer Res; 16(24) December 15, 2010, pp.60716082)。好ましくは6個連結したもの(HRE×6)を用いる。HREはhTERTプロモーターの上流、例えば直ぐ上流に連結させればよい。
(4)E1A領域が部分的に欠失している。E1A領域は5型アデノウイルスゲノム(配列番号4)の第342番目~第1545番目に存在し、E1Aタンパク質はRB(Retinoblastoma)遺伝子産物と結合する。E1A領域はアデノウイルスの複製に必須の領域であり、本発明の制限増殖型アデノウイルスは、E1A領域のRb結合領域(Retinoblastoma遺伝子結合領域)が欠失しており、複製能自体は保持している。本発明の制限増殖型アデノウイルスにおけるE1A領域の部分的な欠失を、変異された活性のE1A遺伝子を含むという。ここで、変異された活性のE1A遺伝子は、Rb(retinoblastomaタンパク質)結合部位をコーディングするヌクレオチド配列中で、45番目Glu残基がGlyに置換された変異及び121~127番目アミノ酸配列が全体的にGlyに置換された変異を有する。腫瘍細胞では、p53蛋白質の変異だけではなく、Rbの突然変異あるいはRb関連信号メカニズムが相当部分損傷されているため、Rbとの結合能が消失されたアデノウイルスは、正常細胞では、Rbの活性によりアデノウイルスの複製が抑制されるが、Rbの機能が抑制された腫瘍細胞では、活発に複製されて、癌細胞を選択的に殺傷することができる。したがって、上述のRb結合部位における変異を含む本発明の組み換えアデノウイルスは、癌細胞特異性が非常に大きく増大される。また、Rb結合部位における変異は、例えば、E1A領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列の第923~946のRb結合領域(Retinoblastoma遺伝子結合領域)である24個の塩基を欠失させることでも可能である(ΔE1A(24bp))(Candelaria Gomez-Manzano et al., Oncogene (2004) 23, pp.1821-1828)。
(5)E1B領域が部分的に欠失している。E1B領域は5型アデノウイルスゲノム(配列番号4)の第1714番目~第3509番目に存在し、E1B領域の遺伝子産物であるE1B-55kDaタンパク質はp53タンパク質と結合することによりウイルスの複製に関与する。E1B領域の部分的な欠失をE1B領域において非活性化部分を有するともいい、本発明の制限増殖型アデノウイルスは、非活性化されたE1B 19kDa遺伝子、E1B 55kDa遺伝子、またはE1B 19kDa/E1B 55kDa遺伝子を有し、好ましくは、非活性化されたE1B 19kDa及びE1B 55kDa遺伝子を有する。本明細書において、遺伝子と関連して使用される用語「非活性化」は、その遺伝子の転写及び/又は解読が正常的になされず、その遺伝子によりコーディングされる正常的なタンパク白質の機能が現れないことを意味する。例えば、非活性化E1B 19kDa遺伝子は、その遺伝子に変異(置換、付加、部分的欠失、または全体的欠失)が発生され、活性のE1B 19kDaタンパク質を生成できない遺伝子である。E1B 19kDa遺伝子が欠失された場合は、細胞アポトーシス能を増加させることができて、E1B 55kDa遺伝子が欠失された場合は、腫瘍細胞特異性を有するようにする(大韓民国特許出願第100528727号)。例えば、E1B領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列の第1722~1986の塩基を欠失させればよい。この塩基配列の欠失により、55kDaのE1Bタンパク質のトランススプライシング産物である19kDaのE1B-19kDaをコードする部分が欠失することになるので、この欠失をΔE1B(19kDa)と呼ぶ(Jaesung Kim et al., Cancer Gene Therapy (2002) 9, pp.725-736)。また、E1B領域のE1B(19kDa)のみが発現しないようにストップコドンを導入してもよい。
(6)E3領域が欠失している。E3タンパク質をコードするDNAの全部又は一部が欠失していればよい。E3領域は5型アデノウイルスゲノム(配列番号4)の第27858番目~第30839番目に存在する。E3領域はアデノウイルスの増殖には不要であり、E3領域に外来遺伝子を挿入することができる。この際、E3領域を部分的に欠失させ、その部分に外来遺伝子を挿入すればよい。例えば、E3領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列の第28592~30479の塩基を欠失させればよい(ΔE3)。この部分に、例えば後述のデコリンをコードするDNAを挿入することができる。
(7)腫瘍の形成と成長を抑制するタンパク質であるデコリン(Decorin:DCN)をコードするDNAが挿入されている。デコリンはSLRP(small leucin rich proteoglycan)に属するタンパク質であって、10~12個のロイシンリッチリピートから構成されており、コア部位は、アーチ状になっており、細胞外基質に存在する数種の成長因子又はデコリン受容体と結合する。デコリンは、腫瘍成長因子(TGF-β)の活性を抑制することにより、コラーゲンの繊維化を防ぎ、細胞外基質の構成(matrix assembly)に関与して、腫瘍細胞の成長を抑制し、腫瘍の形成と成長に天然拮抗剤(antagonist)として作用する。制限増殖型アデノウイルスにデコリンを導入することにより癌細胞へ導入されやすくなり、殺腫瘍細胞活性が増加する。本発明の制限増殖型アデノウイルスにおいて、デコリンをコードするDNAの上流にプロモーターが連結され、デコリンをコードするDNAの下流に、ポリA付加配列(ポリアデニル化配列、polyA)が連結される。プロモーターは、好ましくは、動物細胞、より好ましくは、哺乳動物細胞で作動し、デコリン遺伝子の転写を調節することができるものであって、哺乳動物ウイルス由来のプロモーター及び哺乳動物細胞のゲノム由来のプロモーターを含み、例えば、U6プロモーター、H1プロモーター、CMV(Cytomegalo virus)プロモーター、アデノウイルス後期プロモーター、ワクシニアウイルス7.5Kプロモーター、SV40プロモーター、HSVのtkプロモーター、RSVプロモーター、EF1アルファプロモーター、メタロチオネインプロモーター、β-アクチンプロモーター、ヒトIL-2遺伝子のプロモーター、ヒトIFN遺伝子のプロモーター、ヒトIL-4遺伝子のプロモーター、ヒトリンホトキシン遺伝子のプロモーター、ヒトGM-CSF遺伝子のプロモーター、誘導性(inducible)プロモーター、癌細胞特異的プロモーター(例えば、TERTプロモーター、PSAプロモーター、PSMAプロモーター、CEAプロモーター、E2Fプロモーター及びAFPプロモーター)及び組織特異的プロモーター(例えば、アルブミンプロモーター)を含むが、これに限定されるものではない。好ましくは、CMVプロモーターまたは癌細胞特異的プロモーターを用いる。癌細胞特異的プロモーターを利用する場合、TERTプロモーター又はE2Fプロモーターを利用することが好ましい。TERT(telomere reverse transcriptase)プロモーターとして野生型ヒトhTERT(human telomere reverse transcriptase)プロモーター又は上記(2)のm-hTERTプロモーターを用いてもよい。ポリA付加配列(ポリアデニル化配列、polyA)の由来は限定されず、成長ホルモン遺伝子由来のポリA付加配列、例えばウシ成長ホルモン遺伝子由来のポリA付加配列(BGH polyA)やヒト成長ホルモン遺伝子由来ポリA付加配列、SV40ウイルス由来ポリA付加配列、ヒトやウサギのβグロビン遺伝子由来のポリA付加配列等が挙げられる。ポリA付加配列をDNAコンストラクトに含ませることにより、転写効率が増大する。
 デコリンをコードするDNAを含むアデノウイルスについては、特開2008-531010号公報、I-K Choi et al., Gene Therapy (2010)17, 190-201に記載されている。デコリンをコードするDNAの塩基配列(GenBank Accession No. NM_001920.3)を配列番号5に示す。また、CMVプロモーターの塩基配列(GenBank Accession No. X17403)を配列番号6に、BGH polyA付加配列の塩基配列(GenBank Accession No. M57764)を配列番号7に示す。
 デコリンをコードするDNAを含む、プロモーター配列、デコリンをコードするDNA及びpolyA付加配列からなるDNAコンストラクトは、E1A領域、E1B領域又はE3領域に挿入すればよく、好ましくはE3領域に挿入する。下記のように本発明のアデノウイルスベクターにおいては、5型アデノウイルスゲノムのE1A領域、E1B領域及びE3領域が部分的に欠失している。CMVプロモーター、デコリンをコードするDNA及びpolyA付加配列をこの順番で連結したDNAコンストラクトは、該欠失部分に挿入すればよい。例えば、上記DNAコンストラクトを相同組換えにより、E1A領域、E1B領域及びE3領域が部分的に欠失させると同時に5型アデノウイルスゲノムに挿入することができる。例えば、上記(6)の配列番号4に示す5型アデノウイルスゲノム配列の第28592~30479の塩基を欠失させた部分に挿入すればよい。
(8)RGD(Arg-Gly-Asp)配列を含むペプチドをコードするDNAが挿入されている。RGD配列を含むペプチドとしては、RGDを含む4(GRGDS(配列番号8)等)~15個アミノ酸からなるペプチドが挙げられ、例えば、CDCRGDCFC(配列番号9)やGSCDCRGDCFCSG(配列番号10)で表されるペプチドが挙げられる。RGD配列を含むペプチドをコードするDNAは、例えば、E3領域中に挿入され、具体的には5型アデノウイルスゲノムE3領域の第32676番目の塩基と第32677番目の塩基の間に挿入すればよい。RGD配列を含むペプチドをコードするDNAを含むことにより、制限増殖型アデノウイルスが癌細胞へ導入されやすくなる。RGD配列を含むアデノウイルスについては、例えば、Hao Wu et al., J Gene Med 2011; 13: 658-669に記載されている。
 上記特徴(1)~(8)を有する本発明の制限増殖型アデノウイルスは、5型アデノウイルスのゲノムのITR(inverted terminal repeat)配列を含み、HRE配列、hTERTプロモーター、デコリンをコードするDNA及びRGD配列を含むペプチドをコードするDNAが挿入された構造を有する。
 本発明の制限増殖型アデノウイルスの構造の例を図1Aに示す。図1Dには本発明の制限増殖型アデノウイルスの野生型の5型アデノウイルスからの変異が図示され、さらに、デコリンDNA及びREIC DNAの挿入位置が図示されている。図1B及び図1CがREIC DNAが挿入された制限増殖型アデノウイルスの構造を示す。図1Aに示す制限増殖型アデノウイルスの構造は図1Dに示す構造において、E3領域にCMVプロモーター、デコリンをコードするDNA及びpolyA付加配列をこの順番で連結したDNAコンストラクトが挿入されている。図1Aに構造を示す制限増殖型アデノウイルスにおいては、5型アデノウイルスゲノムのE1A領域の一部が欠失し、E1B領域の一部が欠失し、さらにE3領域の一部が欠失し、E1A領域の上流にHRE配列と修飾されたhTERTプロモーターが含まれ、E3領域の下流にRGD配列を含むペプチドをコードするDNAが含まれ、さらに、E3領域にプロモーター、デコリンをコードするDNA及びpolyA配列からなるコンストラクトが含まれている。
 例えば、図1Aに示す本発明の制限増殖型アデノウイルスは、以下の構造的特徴を有する。
(i) hTERTプロモーターがc-Myc結合部位及びSp1結合部位の付加により修飾されたhTERTプロモーターである。
(ii) hTERTプロモーターの上流に配列番号3で表される塩基配列からなるHRE配列が6つ挿入されている。
(iii) E1A領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列のRb結合領域(Retinoblastoma遺伝子結合領域)を欠失している。例えば、配列番号4に示す5型アデノウイルスゲノム配列の第923~946のRb結合領域(Retinoblastoma遺伝子結合領域)である24個の塩基を欠失している。
(iv) E1B領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列のE1B-19kDaをコードする部分の塩基が欠失している。例えば、配列番号4に示す5型アデノウイルスゲノム配列の第1722~1986のE1B-19kDaをコードする部分の塩基が欠失している。
(v) E3領域の一部が欠失している。例えば、配列番号4に示す5型アデノウイルスゲノム配列の第28592~30479の塩基が欠失している。
(vi) プロモーター配列、デコリンをコードするDNA及びpolyA付加配列からなるDNAコンストラクトがE3領域中に挿入されている。
(vii) RGD配列を含むペプチドをコードするDNAが、E3領域中に挿入されている。
 また、E1A領域、E1B領域又はE3領域中に外来遺伝子を挿入するためのマルチクローニング部位(挿入部位)を有していてもよい。該マルチクローニング部位には、後記のREIC DNA等の外来遺伝子を挿入することができる。
 上記の各エレメントは、機能的に連結している必要がある。ここで、機能的に連結しているとは、それぞれのエレメントがその機能を発揮して、発現させようとする遺伝子の発現が増強されるように連結していることをいう。
 例えば、本発明の制限増殖型アデノウイルスは、ITR-ΔE1A-ΔE1B-プロモーター-デコリンDNA-ポリA付加配列-RGD配列-ITRで表される構造を有しており、「プロモーター-デコリンDNA-ポリA付加配列」からなるコンストラクトは、欠失されたE3領域に挿入されている。このような制限増殖型アデノウイルスの構造(遺伝子地図)を図1に示す。
 上記の制限増殖型アデノウイルス(オンコリティックAd)に全長REIC DNA又はREIC CドメインDNAを挿入することにより、オンコリティックAd-REIC又はオンコリティックAd-REIC domainを作製することができる。
 REIC DNAの塩基配列は、配列番号11に表される。また、REIC DNAがコードするREICタンパク質のアミノ酸配列は配列番号12に表される。本発明において、REICをREIC/Dkk-3と呼ぶこともある。
 また、REIC CドメインDNAの塩基配列は配列番号13に表され、該ドメインがコードするREIC Cドメインタンパク質のアミノ酸配列は配列番号14に表される。
 また、本発明の制限増殖型アデノウイルスに含まれるREIC DNA又はREIC CドメインDNAは、配列番号11又は13に表される塩基配列に相補的な塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズするDNA、配列番号11又は13に表される塩基配列と、BLAST(Basic Local Alignment Search Tool at the National Center for Biological Information(米国国立生物学情報センターの基本ローカルアラインメント検索ツール))等(例えば、デフォルトすなわち初期設定のパラメータを用いて)を用いて計算したときに、少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の配列同一性を有しているDNA、又は前記DNAによりコードされるタンパク質のアミノ酸配列に対して1又は複数若しくは数個(1~10個、好ましくは1~5個、さらに好ましくは1個若しくは2個)のアミノ酸が置換、欠失及び/又は付加されたアミノ酸配列からなるタンパク質をコードするDNAなどのうち、抗癌免疫を活性化する作用、遺伝子発現時に小胞体ストレスにより癌細胞に細胞死を誘導する作用を有するタンパク質をコードするものである。ここで、「ストリンジェントな条件」とは、例えば、「1XSSC、0.1% SDS、37℃」程度の条件であり、より厳しい条件としては「0.5XSSC、0.1% SDS、42℃」程度の条件であり、さらに厳しい条件としては「0.2XSSC、0.1% SDS、65℃」程度の条件である。このようにハイブリダイゼーションの条件が厳しくなるほどプローブ配列と高い相同性を有するDNAの単離を期待し得る。ただし、上記のSSC、SDS及び温度の条件の組み合わせは例示であり、プローブ濃度、プローブの長さ、ハイブリダイゼーションの反応時間などを適宜組み合わせることにより、必要なストリンジェンシーを実現することが可能である。「ストリンジェントな条件」は、当業者ならば配列同一性が高いDNAがハイブリダイズする条件として適宜決定することができる。さらに、本発明のDNAコンストラクトに含まれるREICのDNAは、配列番号2に表されるタンパク質をコードするDNAである。
 REIC DNA又はREIC CドメインDNAは、配列番号11~14の配列情報に基づいて、ヒト細胞、ヒト組織等から得ることができる。
 全長REIC DNA又はREIC CドメインDNAの上流にはCMV(cytomegarovirus)プロモーターが連結され、下流には、ポリA付加配列(ポリアデニル化配列、polyA)が連結される。ポリA付加配列(ポリアデニル化配列、polyA)の由来は限定されず、成長ホルモン遺伝子由来のポリA付加配列、例えばウシ成長ホルモン遺伝子由来のポリA付加配列(BGA polyA)やヒト成長ホルモン遺伝子由来ポリA付加配列、SV40ウイルス由来ポリA付加配列、ヒトやウサギのβグロビン遺伝子由来のポリA付加配列等が挙げられる。ポリA付加配列をDNAコンストラクトに含ませることにより、転写効率が増大する。CMVプロモーターの塩基配列(GenBank Accession No. X17403)を配列番号6に、BGH polyA付加配列の塩基配列(GenBank Accession No. M57764)を配列番号7に示す。
 REIC DNA又はREIC CドメインDNAをコードするDNAを含む、CMVプロモーター配列、REIC DNA又はREIC CドメインDNAをコードするDNA、並びにpolyA付加配列からなるDNAコンストラクトは、E1A領域、E1B領域又はE3領域に挿入すればよく、好ましくはE1領域(E1A又はE1B領域)に挿入する。例えば、上記DNAコンストラクトを相同組換えにより、5型アデノウイルスゲノムのE1A領域、E1B領域又はE3領域に挿入することができる。
 例えば、上記の制限増殖型アデノウイルスのE1領域中に挿入すればよい。相同組換えの際、REIC DNA又はREIC CドメインDNAをコードするDNAを含む、CMVプロモーター配列、REIC DNA又はREIC CドメインDNAをコードするDNA、並びにpolyA付加配列からなるDNAコンストラクトのみを挿入することもできるが、E1領域を含むコンストラクトであって、E1領域にREIC DNA又はREIC CドメインDNAを含むDNAコンストラクトを挿入し、かつE1A領域の一部及びE1B領域の一部を欠失させたコンストラクトを相同組換えにより挿入してもよい。この相同組換えにより、5型アデノウイルスのE1A領域及びE1B領域を部分的に欠失(ΔE1A(24bp)及びΔE1B(19kDa))させるとともに、5型アデノウイルスにREIC DNA又はREIC CドメインDNAを含むDNAコンストラクトを挿入することができる。
 例えば、具体的には配列番号4に示す5型アデノウイルスゲノム配列の第342番目と第3522番目の塩基の間に相同組換えにより挿入すればよい。REIC DNA又はREIC CドメインDNAをコードするDNAを含む、CMVプロモーター配列、REIC DNA又はREIC CドメインDNAをコードするDNA、並びにpolyA付加配列からなるDNAコンストラクトは、例えば、E1シャトルベクターであるpE1sp1B-HmT-Rd19/CMV-REIC-polA((左側homology部分:22-341)(右側homology部分:3523-5790))を用いて相同組換えにより、E1領域に挿入すればよい。このシャトルベクターを用いることにより、5型アデノウイルスゲノム配列の第342番目~3522番目に、以下のDNAコンストラクトが挿入される。
 E1領域にCMVプロモーター配列、REIC DNA又はREIC CドメインDNAをコードするDNA、並びにpolyA付加配列からなるDNAコンストラクトが挿入されており、かつE1A領域のRb結合部位が欠失し、E1B領域のE1B-19kDaをコードする部分が欠失したコントストラクト。
 この結果、5型アデノウイルスのE1A領域及びE1B領域を部分的に欠失(ΔE1A(24bp)及びΔE1B(19kDa))させるとともに、5型アデノウイルスに、CMVプロモーター配列、REIC DNA又はREIC CドメインDNAをコードするDNA、並びにpolyA付加配列からなるDNAコンストラクトを挿入することができる。
 また、例えば、CMVプロモーター配列、REIC DNA又はREIC CドメインDNAをコードするDNA、並びにpolyA付加配列からなるDNAコンストラクトを5型アデノウイルスゲノム配列の第3524番目と3525番目の間、又は3523番目と3524番目の間に挿入してもよい。
 REIC DNA又はREIC CドメインDNAをコードするDNAを挿入した制限増殖型アデノウイルスの構造を図1B(オンコリティックAd-REIC)及びC(オンコリティックAD-REIC domain)に示す。図1B及びCに示す構造は、図1Aに構造を示す制限増殖型アデノウイルス(オンコリティックAd)のE1領域にCMVプロモーター配列、REIC DNA又はREIC CドメインDNAをコードするDNA、並びにpolyA付加配列からなるDNAコンストラクトが3524の位置に挿入されている。
 上記の各エレメントは、機能的に連結している必要がある。ここで、機能的に連結しているとは、それぞれのエレメントがその機能を発揮して、発現させようとする遺伝子の発現が増強されるように連結していることをいう。
 本発明の制限増殖型アデノウイルス(オンコリティックAd)、全長REIC DNAを含む制限増殖型アデノウイルス(オンコリティックAd-REIC)又はREIC CドメインDNAを含む制限増殖型アデノウイルス(Ad-REIC C domain)は上記記載及び引用した文献の記載に従って作製することができる。
 本発明の制限増殖型アデノウイルス(オンコリティックAd)をヒトやその他の哺乳動物である被験体に投与することにより、被験体の癌細胞にデリバリーされ、癌細胞中で増殖し、癌細胞を死滅させる。
 また、本発明の全長REIC DNAを含む制限増殖型アデノウイルス(オンコリティックAd-REIC)及びREIC CドメインDNAを含む制限増殖型アデノウイルス(オンコリティックAd-REC domain)をヒトやその他の哺乳動物である被験体に投与することにより、被験体の癌細胞にデリバリーされる。オンコリティックアデノウイルスの作用で癌細胞を死滅させるとともに、癌細胞中で全長REICタンパク質又はREIC Cドメインタンパク質が発現し、発現時の小胞体ストレスにより癌細胞に選択的に細胞死を誘導すると共に癌免疫を活性化し、腫瘍細胞増殖を抑制し、癌治療効果を発揮する。また、REICによる抗癌免疫活性は、癌細胞に局所的に作用するだけでなく、全身における強力な抗癌免疫活性化をもたらす。全長REIC DNAを含む制限増殖型アデノウイルス(オンコリティックAd-REIC)及びREIC CドメインDNAを含む制限増殖型アデノウイルス(オンコリティックAd-REC domain)は制限増殖型アデノウイルス自体の殺癌効果とREICの抗癌免疫活性等による抗癌効果が相乗的に作用し、より強い抗癌効果を得ることができる。本発明は、このような制限増殖型アデノウイルス(オンコリティックAd、オンコリティックAd-REIC、オンコリティックAd-REIC domain)を含む癌治療用ウイルス製剤を包含する。治療対象となる癌としては、限定されないが、例えば、脳・神経腫瘍、皮膚癌、胃癌、肺癌、肝癌、リンパ腫・白血病、結腸癌、膵癌、肛門・直腸癌、食道癌、子宮癌、乳癌、副腎癌、腎癌、腎盂尿管癌、膀胱癌、前立腺癌、尿道癌、陰茎癌、精巣癌、骨・骨肉腫、平滑筋腫、横紋筋腫、中皮腫等が挙げられる。本発明の制限増殖型アデノウイルス(オンコリティックAd、オンコリティックAd-REIC、オンコリティックAd-REIC domain)は原発性癌の治療にも転移性癌の治療にも用いることができる。
 本発明の制限増殖型アデノウイルス(オンコリティックAd、オンコリティックAd-REIC、オンコリティックAd-REIC domain)は、遺伝子治療の分野において使用可能な方法、例えば、静脈内投与や動脈内投与などの血管内投与、経口投与、腹腔内投与、胸腔内投与、気管内投与、気管支内投与、皮下投与、経皮投与等により投与することができる。
 本発明の制限増殖型アデノウイルス(オンコリティックAd、オンコリティックAd-REIC、オンコリティックAd-REIC domain)は、治療上有効量を投与すればよい。治療上の有効量は、遺伝子治療分野の当業者であれば容易に決定することができる。さらに、投与量は、被験者の病態の重篤度、性別、年齢、体重、習慣等によって適宜変更することができる。製剤分野において通常用いられる担体、希釈剤、賦形剤を含む。たとえば、錠剤用の担体、賦形剤としては、乳糖、ステアリン酸マグネシウムなどが使用される。注射用の水性液としては、生理食塩水、ブドウ糖やその他の補助薬を含む等張液などが使用され、適当な溶解補助剤、例えばアルコール、プロピレングリコールなどのポリアルコール、非イオン界面活性剤などと併用しても良い。油性液としては、ゴマ油、大豆油などが使用され、溶解補助剤としては安息香酸ベンジル、ベンジルアルコールなどを併用してもよい。
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1 オンコリティックアデノウイルス(Oncolytic Adenovirus:Oncolytic Ad)の作製
 E1領域及びE3領域において、それぞれ、REIC若しくはREIC Cドメイン(REIC-C)並びにデコリン(DCN)を発現するオンコリティックアデノウイルスを作製するために、最初にREIC又はREIC Cを発現するpCA14 Ad E1シャトルベクターを作製した。REIC又はREIC C遺伝子をpShuttole/REIC又はREIC-CからNheI-blunt-HindIIIを用いて切り出し、あらかじめXbaI-blunt-HindIII で消化しておいたpCA14 Ad E1シャトルベクターにサブクローニングした。pCA14/REIC及びpCA14/REIC-CベクターをBglIIで消化し、次いでCMV-REIC-polA及びAMV-REIC-C-polA発現カセットをあらかじめBglIIで消化しておいたpΔE1sp1B-HmT-Rd19シャトルベクター(Kim E et al., Hum Gene Ther 2003;14:1415-1428;Kim JH et al., J Natl Cancer Inst 2006;98:1482-1493)にクローニングし、pΔE1sp1B-HmT-Rd19/REIC及びpΔE1sp1B-HmT-Rd19/REIC-CアデノウイルスE1シャトルベクターを得た。pSP72-E3/DCN(I-K Choi et al., Gene Therapy 2010;17:190-201.) E3シャトルベクターをXmnIを用いて線状化し、SpeIで線状化したアデノウイルストータルベクターdel-RGDと共にBJ5183大腸菌株を共形質転換し相同組換えを行った。その結果、複製能力のないアデノウイルスベクターdel-RGD/DCNを得た。新たに構築したpΔE1sp1B-HmT-Rd19/REIC及びpΔE1sp1B-HmT-Rd19/REIC-CアデノウイルスE1シャトルベクターをXmnI消化により線状化し、次いでBstBIで消化したde1-RGD/DCNと共にBJ5183大腸菌株を共形質転換し相同組換えを行った。その結果、REIC若しくはREIC-C並びにデコリンを発現する腫瘍特異的オンコリティックアデノウイルスを得た。プラスミドDNAをPacIで消化し、293A細胞に導入し増殖させた。
 アデノウイルスの精製、タイター測定及び質の分析はYoo JY et al., Mol Ther 2007;15:295-302の記載に従って行った。
 REICを含まないオンコリティックアデノウイルスベクターをオンコリティックAdと、全長REIC DNAを含むオンコリティックアデノウイルスベクターをオンコリティックAd-REICと、REIC CドメインDNAを含むオンコリティックアデノウイルスベクターをオンコリティックAd-REIC domainと呼ぶ。
実施例2 オンコリティックAd、オンコリティックAd-REIC及びオンコリティックAd-REIC domainの添加による各種細胞でのREICタンパク質の発現
方法
 Ad-REIC処理後のREICタンパク質発現を測定するため、細胞を平底6ウェルプレートに播き24時間インキュベートした。細胞を図に記載のMOI(multiplicity of infection)でアデノウイルスを完全培地(300μl)中で1時間感染処理し、PBS(phosphate buffered saline)で2回洗浄し、溶解バッファー(50 mM HEPES, pH 7.4, 250 mM NaCl, 1 mM EDTA, 1% NP-40, 1 mM DTT, 1 mM PMSF, 5 μg/ml leupeptin, 5 μg/ml aprotinin, 2 mM Na3VO4, 1 mM NaF, 10 mM β-GP)を用いて溶解させ、REICタンパク質を抽出した。
 遠心分離後、上清を同容積の4 x SDSサンプルバッファーで希釈し、95℃で5分間加熱した。サンプル(タンパク質5μg)を10% SDS-PAGEゲル上で分離し、ポリフッ化ビニリデン(PVDF)膜に電気泳動転写した。転写したブロットを5%脱脂ミルクパウダー、0.1% Tween-20含有TBS(Tris buffered saline)を用いて室温で1時間ブロッキングした。次いで、マウスモノクローナル抗体ヒトREIC/Dkk-3抗体(1:1000希釈)(一次抗体)を反応させ、0.1% Tween-20含有TBS(T-TBS)で十分洗浄した後西洋ワサビペルオキシダーゼで標識した二次抗体と反応させた。さらにを、T-TBSで洗浄後、化学発光検出法キットであるECLキット(Amersham Pharmacia Biotech, Chandler, AZ)を用いて発色させた。REICタンパク質のバンドはウエスタンブロットで60kDa付近に認められる。
結果
 図3に、オンコリティックAd(アデノウイルス)、オンコリティックAd-REIC、オンコリティックAd-REIC domainの添加による各種細胞でのREICタンパク質のウエスタンブロット分析での発現を示す。
 各種細胞においてオンコリティックAd-REICを添加することにより、従来のAd-REICと同等かそれ以上のREICタンパク質の発現が可能となる。REICタンパク質には、生体内で抗癌免疫を活性化する作用が認められる為(WO2009/119874号公報)、オンコリティックAd-REICについても生体内で抗癌免疫を活性化する作用が期待される。
実施例3 オンコリティックAd及びオンコリティックAd-REICの添加による各種細胞での細胞死誘導率の確認
方法
 Ad-REIC処理後の殺細胞率を調べるために、細胞を平底6ウェルプレートに播き24時間インキュベートした。細胞を図に記載のMOI(multiplicity of infection)でアデノウイルスで完全培地(300μl)中で1時間処理し、新鮮培地1700μlを添加した。図に示した日数経過後、死細胞率(%)を5視野の顕微鏡観察により測定した。なお、図4~6において、データは平均±標準偏差で表す。統計的有意差検定は分散分析又はMann-Whitney Uテストで行った。p<0.05で有意差があると判断した。
結果
 オンコリティックAd及びオンコリティックAd-REICの添加による各種細胞での細胞死誘導率を図4に示す。図4に示すように、オンコリティックAd-REICは他の化合物に比べ有意に細胞死を誘導した。
実施例4 オンコリティックAd及びオンコリティックAd-REICのヒト前立腺癌治療効果
方法
 PC3ヒト前立腺癌細胞2 x 106個/0.1ml PBSを成体雄ヌードマウスの右大腿部に皮下注射により投与した。腫瘍体積が200~300mm3になった10日後に、アデノウイルスを腫瘍内投与した(図5のDay 0)。腫瘍体積は式1/2 (w1 x w2 x w2)を用いて計算した。この式において、w1は最大腫瘍直径を、w2は最少腫瘍直径を示す。
結果
 結果を図5に示す。図5に示すように、オンコリティックAd-REICを用いた場合、治療効果は用量依存的に認められた。他の治療群に比較して、オンコリティックAd-REIC(107)の効果が大きかった。実験に供したすべてのマウスに対して明確な毒性は認められなかった。
実施例5 オンコリティックAd及びオンコリティックAd-REICのNK細胞誘導効果
方法
 PC3ヒト前立腺癌細胞2 x 106個/0.1ml PBSを成体雄ヌードマウスの左右の大腿部に皮下注射により投与した。このマウスは少なくとも2か所の腫瘍部位を有するマウス腫瘍モデルである。両側の腫瘍体積が200~300mm3になった10日後に、アデノウイルスを右側の腫瘍内に投与した。ベクター注射3日後に、末梢リンパ球中のナチュラルキラー(NK)細胞を抗NK細胞抗体(eBioscience Inc., 10255 Science Center Drive, San Diego, CA 92121, USA)を用いたフローサイトメトリーにより測定した。
結果
 結果を図6に示す。図6に示すように、オンコリティックAd-REICを用いた場合、他の治療群に比較して、NK細胞誘導効果は有意に大きかった。
実施例6 オンコリティックAd及びオンコリティックAd-REICによる抗原特異的免疫応答の誘導
方法
 免疫正常マウスでの担癌モデルを作製し、オンコリティックAd-REIC又はオンコリティックAdを腫瘍内投与後に、抗癌免疫を担う癌特異的CTL細胞を同定する研究を行った。正常の免疫系を持つC57/BL6マウスに、外来抗原であるOVA(卵白アルブミン)遺伝子を導入した悪性胸腺腫細胞[EG-7]株(1.0 x 106 cells)を皮下移植して担癌マウスモデルを作成した。腫瘍径が100mm3以上になった時点で、オンコリティックAd-REIC又はオンコリティックAdを腫瘍内へ注入した(投与量は1.0 x 106pfu/tumor)。治療後3日目に腫瘍を回収し、腫瘍内浸潤リンパ球(TIL)において、OVAに対する特異的CD8陽性CTLが占める割合の動態を、CD8抗体、OVAテトラマー(H-2kb拘束性にOVAエピトープを認識する抗体)を用いてフローサイトメトリーで解析した。
結果
 結果を図7に示す。図7に示すように、オンコリティックAd-REIC投与のマウスの腫瘍内において、テトラマー陽性のCD8細胞の頻度が上昇していた。すなわち、オンコリティックAd-REIC を投与することにより、オンコリティックAdを投与した場合と比べて、より強いOVA抗原特異的免疫応答が誘導された。本実験の結果を踏まえて、REIC遺伝子をコードしREICタンパク質を発現するオンコリティックAd-REICを腫瘍内に投与することにより、癌抗原特異的免疫応答を誘導することが可能であると考えられる。
 本発明の制限増殖型アデノウイルスは癌治療に用いることができる。
配列番号1、2、3、8、9、10 合成
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (8)

  1.  5型アデノウイルスのゲノムのITR(inverted terminal repeat)配列を含み、HRE配列、hTERTプロモーター、デコリンをコードするDNA及びRGD配列を含むペプチドをコードするDNAが挿入された制限増殖型アデノウイルスに、さらに全長REIC DNA又はREIC CドメインDNAが挿入され、癌細胞で特異的に増殖しREICタンパク質又はREIC Cドメインタンパク質を発現する制限増殖型アデノウイルス。
  2.  プロモーター配列、デコリンをコードするDNA及びpolyA付加配列からなるDNAコンストラクトが5型アデノウイルスのE3領域中に挿入されている、請求項1記載の制限増殖型アデノウイルス。
  3. (i) hTERTプロモーターがc-Myc結合部位及びSp1結合部位の付加により修飾されたhTERTプロモーターであり、
    (ii) hTERTプロモーターの上流に配列番号3で表される塩基配列からなるHRE配列が6つ挿入され、
    (iii) E1A領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列のRb結合領域(Retinoblastoma遺伝子結合領域)を欠失しており、
    (iv) E1B領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列のE1B-19kDaをコードする部分の塩基が欠失しており、
    (v) E3領域の一部が欠失しており、
    (vi) プロモーター配列、デコリンをコードするDNA及びpolyA付加配列からなるDNAコンストラクトがE3領域中に挿入され、
    (vii) RGD配列を含むペプチドをコードするDNAが、E3領域中に挿入され、かつ
    (viii) CMVプロモーター配列、REIC DNA又はREIC CドメインDNAをコードするDNA、並びにpolyA付加配列からなるDNAコンストラクトがE1領域中に挿入されている請求項1又は2に記載の制限増殖型アデノウイルス。
  4. (iii) E1A領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列の第923~946のRb結合領域(Retinoblastoma遺伝子結合領域)である24個の塩基を欠失しており、
    (iv) E1B領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列の第1722~1986のE1B-19kDaをコードする部分の塩基が欠失しており、
    (v) E3領域の一部であって、配列番号4に示す5型アデノウイルスゲノム配列の第28592~30479の塩基が欠失している、
    請求項3記載の制限増殖型アデノウイルス。
  5.  REICが全長REICである、請求項1~4のいずれか1項に記載の制限増殖型アデノウイルス。
  6.  REICがREICのCドメインである、請求項1~4のいずれか1項に記載の制限増殖型アデノウイルス。
  7.  請求項1~6のいずれか1項に記載の制限増殖型アデノウイルを有効成分として含む、癌治療剤。
  8.  制限増殖型アデノウイルスが癌細胞中で特異的に増殖し、REICタンパク質を発現し、発現したREICタンパク質が小胞体ストレスにより癌細胞の細胞死を誘導し、さらにREICタンパク質が全身的抗癌免疫活性を誘導する、請求項7記載の癌治療剤。
     
PCT/JP2015/065004 2014-05-28 2015-05-26 Reic遺伝子を発現する制限増殖型アデノウイルス WO2015182574A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167036170A KR102365331B1 (ko) 2014-05-28 2015-05-26 Reic 유전자를 발현하는 제한 증식형 아데노바이러스
EP15798816.3A EP3150706B1 (en) 2014-05-28 2015-05-26 Conditionally replicating adenovirus to express reic gene
CN201580027897.XA CN106459930B (zh) 2014-05-28 2015-05-26 表达reic基因的条件复制型腺病毒
US15/313,674 US10071126B2 (en) 2014-05-28 2015-05-26 Conditionally replicating adenovirus to express REIC gene
JP2016523496A JP6566214B2 (ja) 2014-05-28 2015-05-26 Reic遺伝子を発現する制限増殖型アデノウイルス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014110672 2014-05-28
JP2014-110672 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015182574A1 true WO2015182574A1 (ja) 2015-12-03

Family

ID=54698900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065004 WO2015182574A1 (ja) 2014-05-28 2015-05-26 Reic遺伝子を発現する制限増殖型アデノウイルス

Country Status (6)

Country Link
US (1) US10071126B2 (ja)
EP (1) EP3150706B1 (ja)
JP (1) JP6566214B2 (ja)
KR (1) KR102365331B1 (ja)
CN (1) CN106459930B (ja)
WO (1) WO2015182574A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3115891A1 (en) 2013-03-14 2014-09-25 Salk Institute For Biological Studies Oncolytic adenovirus compositions
CN108367082A (zh) * 2016-01-08 2018-08-03 桃太郎源株式会社 使用REIC/Dkk-3基因和检查点抑制剂的组合疗法
CN108699566B (zh) 2016-02-23 2023-06-30 萨克生物研究学院 对病毒动力学影响最小的治疗性腺病毒中的外源基因表达
EP3390428B1 (en) 2016-02-23 2019-09-25 Salk Institute for Biological Studies High throughput assay for measuring adenovirus replication kinetics
AU2017375633C1 (en) 2016-12-12 2023-04-27 Salk Institute For Biological Studies Tumor-targeting synthetic adenoviruses and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531010A (ja) * 2005-02-25 2008-08-14 インダストリー−ユニバーシティ コオペレーション ファウンデーション ヨンセイ ユニバーシティ デコリン遺伝子を含む遺伝子伝達システム及びこれを含む薬剤学的抗腫瘍組成物
JP4327844B2 (ja) * 2003-02-27 2009-09-09 ユン,チェ−オク 改善された癌細胞特異性と活性を有する変形されたテロメア逆転写酵素のプロモーターおよびこれを含む組み換えベクター
WO2012002582A1 (ja) * 2010-07-01 2012-01-05 国立大学法人岡山大学 REIC/Dkk-3タンパク質の部分領域ポリペプチド
WO2012161352A1 (ja) * 2011-05-25 2012-11-29 国立大学法人岡山大学 Reic発現アデノウイルスベクター
JP2013543386A (ja) * 2010-10-08 2013-12-05 インダストリー−ユニバーシティー コーポレーション ファウンデーション ハンヤン ユニバーシティー 組み換えられた遺伝子発現調節配列を有する腫瘍特異的発現の改善された遺伝子伝達システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040175362A1 (en) * 1999-05-12 2004-09-09 Curiel David T. Infectivity-enhanced conditionally-replicative adenovirus and uses thereof
CN1296967A (zh) 1999-11-23 2001-05-30 上海博容基因开发有限公司 一种新的多肽——人耳聋相关基因14和编码这种多肽的多核苷酸
US20030099616A1 (en) * 2001-07-25 2003-05-29 Irving John M. Dual specificity tumor killing vectors driven by the telomerase promoter
CN1793343A (zh) * 2005-11-28 2006-06-28 陈智博 具有肿瘤靶向性和肿瘤自杀性的溶瘤性抗癌重组腺病毒
US8716602B2 (en) * 2010-11-01 2014-05-06 Eaton Corporation Cable grommet for use with a raised floor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4327844B2 (ja) * 2003-02-27 2009-09-09 ユン,チェ−オク 改善された癌細胞特異性と活性を有する変形されたテロメア逆転写酵素のプロモーターおよびこれを含む組み換えベクター
JP2008531010A (ja) * 2005-02-25 2008-08-14 インダストリー−ユニバーシティ コオペレーション ファウンデーション ヨンセイ ユニバーシティ デコリン遺伝子を含む遺伝子伝達システム及びこれを含む薬剤学的抗腫瘍組成物
WO2012002582A1 (ja) * 2010-07-01 2012-01-05 国立大学法人岡山大学 REIC/Dkk-3タンパク質の部分領域ポリペプチド
JP2013543386A (ja) * 2010-10-08 2013-12-05 インダストリー−ユニバーシティー コーポレーション ファウンデーション ハンヤン ユニバーシティー 組み換えられた遺伝子発現調節配列を有する腫瘍特異的発現の改善された遺伝子伝達システム
WO2012161352A1 (ja) * 2011-05-25 2012-11-29 国立大学法人岡山大学 Reic発現アデノウイルスベクター

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GOMEZ-MANZANO, C. ET AL.: "A novel E1A-E1B mutant adenovirus induces glioma regression in vivo.", ONCOGENE, vol. 23, no. 10, 2004, pages 1821 - 1828, XP055241314 *
HIROMI KUMON: "Gene therapy for prostate cancer: current status and future prospects", JAPANESE JOURNAL OF CLINICAL MEDICINE, vol. 69, no. 5, 2011, pages 544 - 549, XP008185649 *
KIM, J. ET AL.: "Evaluation of E1B gene - attenuated replicating adenoviruses for cancer gene therapy.", CANCER GENE THER., vol. 9, no. 9, 2002, pages 725 - 736, XP008057984 *
See also references of EP3150706A4 *
WU, H . ET AL.: "RGD peptide-modified adenovirus expressing hepatocyte growth factor and X-linked inhibitor of apoptosis improves islet transplantation.", J. GENE MED., vol. 13, no. 12, 2011, pages 658 - 669, XP055241332 *
YOSUKE SHIMAZU ET AL.: "REIC/Dkk-3 Idenshi Hatsugen Adenovirus to Integrin Sogaiyaku cRGD no Heiyo Koka no Kento", THE JAPAN SOCIETY FOR NEURO-ONCOLOGY PROGRAM SHOROKUSHU, vol. 32 nd, 17 December 2014 (2014-12-17), pages 100, XP008185705 *

Also Published As

Publication number Publication date
EP3150706A4 (en) 2018-01-17
US20170202892A1 (en) 2017-07-20
JP6566214B2 (ja) 2019-08-28
EP3150706B1 (en) 2019-07-10
JPWO2015182574A1 (ja) 2017-05-25
KR20170012397A (ko) 2017-02-02
EP3150706A1 (en) 2017-04-05
CN106459930A (zh) 2017-02-22
US10071126B2 (en) 2018-09-11
KR102365331B1 (ko) 2022-02-22
CN106459930B (zh) 2020-03-03

Similar Documents

Publication Publication Date Title
JP3875990B2 (ja) 組換えアデノウイルスベクターおよび使用方法
FI118011B (fi) Menetelmä replikaatiokyvyn suhteen puutteellisen yhdistelmä-DNA-adenoviruksen tuottamiseksi
JP6639412B2 (ja) アルブミン結合部分を含んでなるアデノウイルス
JP6566214B2 (ja) Reic遺伝子を発現する制限増殖型アデノウイルス
JP5807236B2 (ja) 組み換えられた遺伝子発現調節配列を有する腫瘍特異的発現の改善された遺伝子伝達システム
JP4982680B2 (ja) デコリン遺伝子を含む薬剤学的抗腫瘍組成物
US20100151576A1 (en) Targeted tumor therapy by use of recombinant adenovirus vectors that selectively replicate in hypoxic regions of tumors
Witlox et al. Evolving gene therapy approaches for osteosarcoma using viral vectors
US20210154329A1 (en) ANTI-TUMOR COMPOSITION COMPRISING GM-CSF GENE, Flt3L-TRAIL FUSION GENE, shRNA INHIBITING TGF-ß EXPRESSION, AND shRNA INHIBITING HSP EXPRESSION
WO2015128313A1 (en) Rna viruses for immunovirotherapy
US9222107B2 (en) REIC-expressing adenovirus vector
WO2003006640A1 (fr) Virus a proliferation specifique dans les cellules tumorales, qui peut exprimer un antioncogene avec une grande efficacite, et utilisation de ce virus
JP2006508635A (ja) 治療用または診断用試薬を送達するためのターゲティングタンパク質
JP2006502726A (ja) 改善された免疫療法
KR20120010697A (ko) 복합 유전자 치료용 항종양 조성물
JP2004505633A (ja) アデノウイルスe1b−55k単一アミノ酸変異体および使用方法
US9850500B2 (en) Recombinant adenoviruses capable of regulating angiogenesis
WO2008074189A1 (fr) Adénovirus recombinant comprenant un gène khp50 recombinant et son procédé de préparation et ses utilisations
JP4431091B2 (ja) 組換えアデノウイルスベクターおよび使用方法
JP7406263B2 (ja) 改変アデノウイルス及びこれを含む医薬
KR20240003051A (ko) Cd55 및 cd59를 동시 발현하는 항암 바이러스
Edelstein et al. 981. Gene Therapy Clinical Trials Worldwide 1989-2003: An Overview
Center 581. A Chimeric Fusion of the Human Achaete Scute Homolog 1 (hASH1) and the Enhancer of Zeste Homolog 2 (EZH2) Promoters Is a Promising Regulator of Suicide Gene Therapy in Small Cell Lung Cancer (SCLC)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15313674

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016523496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015798816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015798816

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167036170

Country of ref document: KR

Kind code of ref document: A