WO2015182543A1 - 懸架コイルばね - Google Patents

懸架コイルばね Download PDF

Info

Publication number
WO2015182543A1
WO2015182543A1 PCT/JP2015/064882 JP2015064882W WO2015182543A1 WO 2015182543 A1 WO2015182543 A1 WO 2015182543A1 JP 2015064882 W JP2015064882 W JP 2015064882W WO 2015182543 A1 WO2015182543 A1 WO 2015182543A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil spring
end winding
seat
suspension coil
spring
Prior art date
Application number
PCT/JP2015/064882
Other languages
English (en)
French (fr)
Inventor
博信 佐山
Original Assignee
三菱製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱製鋼株式会社 filed Critical 三菱製鋼株式会社
Priority to ES15798841T priority Critical patent/ES2849601T3/es
Priority to BR112016026700-1A priority patent/BR112016026700B1/pt
Priority to MX2016014430A priority patent/MX2016014430A/es
Priority to CN201580025118.2A priority patent/CN106457947B/zh
Priority to EP15798841.1A priority patent/EP3127727B1/en
Priority to US15/307,083 priority patent/US10300756B2/en
Priority to KR1020187016169A priority patent/KR20180066277A/ko
Priority to KR1020167029571A priority patent/KR102059115B1/ko
Priority to CA2946377A priority patent/CA2946377C/en
Publication of WO2015182543A1 publication Critical patent/WO2015182543A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/14Resilient suspensions characterised by arrangement, location or kind of springs having helical, spiral or coil springs only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/14Resilient suspensions characterised by arrangement, location or kind of springs having helical, spiral or coil springs only
    • B60G11/16Resilient suspensions characterised by arrangement, location or kind of springs having helical, spiral or coil springs only characterised by means specially adapted for attaching the spring to axle or sprung part of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/062Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper the spring being arranged around the damper
    • B60G15/063Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper the spring being arranged around the damper characterised by the mounting of the spring on the damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/28Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram at least one of the arms itself being resilient, e.g. leaf spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/025Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by having a particular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/047Wound springs characterised by varying pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/06Wound springs with turns lying in cylindrical surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/12Attachments or mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/12Attachments or mountings
    • F16F1/123Attachments or mountings characterised by the ends of the spring being specially adapted, e.g. to form an eye for engagement with a radial insert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/062Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper the spring being arranged around the damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/14Independent suspensions with lateral arms
    • B60G2200/142Independent suspensions with lateral arms with a single lateral arm, e.g. MacPherson type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/12Wound spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/30Spring/Damper and/or actuator Units
    • B60G2202/31Spring/Damper and/or actuator Units with the spring arranged around the damper, e.g. MacPherson strut
    • B60G2202/312The spring being a wound spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/124Mounting of coil springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/124Mounting of coil springs
    • B60G2204/1242Mounting of coil springs on a damper, e.g. MacPerson strut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/426Coil springs having a particular shape, e.g. curved axis, pig-tail end coils

Definitions

  • the present invention relates to a suspension coil spring used for a strut type suspension device for automobiles.
  • a strut-type suspension device that has been widely used as a suspension device for automobiles includes a shock absorber having a cylinder and a rod that is slidably supported by the cylinder as a strut for positioning the wheel.
  • a coil spring is provided on the outer periphery of the rod and cylinder.
  • the upper end side of the rod is connected to the vehicle body via a strut mount or the like, and the lower end side of the cylinder is rigidly connected to a knuckle that rotatably supports the wheel.
  • the knuckle is pivotally connected to the vehicle body via a lower arm.
  • the suspension coil spring is disposed so as to be in a compressed state between an upper seat to which the upper end of the rod is fixed and a lower seat to which the lower end of the cylinder is fixed.
  • Such a strut-type suspension device has the advantage that the number of parts is small, the structure is simple, and the installation space is small as compared with other independent suspension devices.
  • a bending moment is generated due to a deviation between the strut shaft and the load input shaft (the axis connecting the tire ground contact point and the strut upper mount point).
  • This bending moment causes a lateral force (lateral force) that is different from the sliding direction of the shock absorber, increases the friction of the rod, impedes the smooth operation of the shock absorber, and deteriorates the riding comfort of the automobile. It becomes.
  • Patent Document 1 proposes a configuration in which a suspension coil spring is eccentric with respect to a strut and has a pigtail end winding provided in an eccentric manner.
  • Patent Document 2 proposes a suspension coil spring configured such that the spring center line has an S shape in an unloaded state.
  • Patent Document 3 proposes a suspension coil spring in which a plurality of protrusions are provided on the end winding portion, and the protrusions selectively come into contact with the spring seat depending on the load applied.
  • Patent Document 4 proposes a suspension coil spring in which a strong contact portion is provided on each of the upper and lower end windings.
  • the suspension coil spring disclosed in Patent Document 3 has a problem that it is necessary to provide a plurality of protrusions on the end winding portion, and the manufacturing process becomes complicated.
  • the strong contact portion is one point on the strand of the end winding, so that the point of action (upper load position) of the spring reaction force on the upper seat is particularly the center of the end winding. May not be possible, and it may be difficult to reduce the bending moment.
  • the amount of torsion in the compressed state is caused by the mismatch between the load input shaft and the central axis of the suspension coil spring, especially when the height is increased with respect to the outer diameter (width) of the suspension coil spring. There is a problem that becomes larger.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a suspension coil spring that can reduce the amount of bending in a compressed state and the friction generated in the shock absorber.
  • a suspension coil spring mounted between an upper seat and a lower seat in a strut-type suspension device for an automobile, An upper cigar seat seated on the upper seat; A spring effective portion having one or more windings formed such that a portion with the largest curvature is located on the vehicle exterior side in the mounted state; A suspension coil spring comprising: a lower end winding that contacts and sits on the lower seat at a lower contact point located on the vehicle outer side from the lower end winding center point .
  • FIG. 1 is a front view of a suspension coil spring according to an embodiment of the present invention.
  • FIG. 2 is a side view showing a configuration of a strut type suspension device to which a suspension coil spring according to an embodiment of the present invention is assembled.
  • FIG. 3 is a perspective view of a suspension coil spring according to an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining the shape of the spring effective portion of the suspension coil spring according to the embodiment of the present invention.
  • FIG. 5A is a diagram for explaining the operation of the suspension coil spring according to the embodiment of the present invention.
  • FIG. 5B is a diagram for explaining the operation of the suspension coil spring according to the embodiment of the present invention.
  • FIG. 5C is a diagram for explaining the operation of the suspension coil spring according to the embodiment of the present invention.
  • FIG. 6 is a perspective view showing a first modification of the suspension coil spring according to the embodiment of the present invention.
  • FIG. 7 is a perspective view showing a second modification of the suspension coil spring according to the embodiment of the present invention.
  • FIG. 1 and 3 are views illustrating a suspension coil spring 10 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a strut type suspension device 12 (hereinafter simply referred to as a suspension device 12) in which the suspension coil spring 10 is assembled.
  • a portion excluding the support portion at the upper end of the suspension coil spring 10 is indicated by a two-dot chain line.
  • the IN direction of the white arrow indicates the vehicle body side
  • the OUT direction indicates the vehicle exterior side.
  • the suspension device 12 includes a shock absorber 14 as a strut for positioning the wheel 44.
  • the shock absorber 14 includes a cylinder 16 in which a fluid such as gas or oil is sealed, and a rod 18 that is connected to a piston (not shown) slidably disposed in the cylinder 16 and protrudes upward from the cylinder 16. It has.
  • the upper end of the rod 18 is elastically connected to the vehicle body 30 of the automobile via the strut mount 20.
  • An upper seat 22 is disposed on the upper end side of the rod 18, and a lower seat 24 is disposed on the middle portion of the cylinder 16.
  • the suspension coil spring 10 is disposed in a compressed state between the upper seat 22 and the lower seat 24 at the outer peripheral position of the shock absorber 14. As a result, a spring reaction force WR is generated in the suspended coil spring 10 in the mounted state.
  • the axis on which the spring reaction force WR acts is referred to as a spring reaction force axis AR.
  • the lower end of the shock absorber 14 is rigidly connected to a knuckle 26 that supports the wheel 44 in a rotatable manner.
  • the knuckle 26 is pivotally coupled to the vehicle body 30 via the lower arm 28.
  • the wheel 44 that is pivotally supported by the knuckle 26 supports the vehicle body 30 via the shock absorber 14 and the suspension coil spring 10, and supports the vehicle body 30 via the lower arm 28.
  • FIG. 1 is a front view illustrating a suspension coil spring 10 in a free state.
  • the suspension coil spring 10 an upper end winding portion 32 that is seated on the upper seat 22 is formed above the spring effective portion 11, and a lower end winding portion 34 that is seated on the lower seat 24 is formed below.
  • the suspension coil spring 10 is configured so that the outline m of the spring effective portion 11 is in a straight line in a free state in which no load is applied, but is not limited thereto. Further, in the free state, the front view outer diameter D of the portion of the coil other than the upper end winding portion 32, the lower end winding portion 34 and the transition portion to each end winding portion of the spring effective portion 11 is a constant size. Although formed, it is not limited to this.
  • the suspension coil spring 10 is mounted on the suspension device 12 in a compressed state with the upper end winding portion 32 seated on the upper seat 22 and the lower end winding portion 34 seated on the lower seat 24.
  • the upper seat 22 and the lower seat 24 of the suspension device 12 are formed in a substantially disc shape, and rib-shaped mounting portions 22 a and 24 a are formed at the respective central positions.
  • the upper end winding portion 32 of the suspension coil spring 10 is mounted on the upper seat 22 such that the mounting portion 22a is inserted therein.
  • the lower end winding part 34 is attached to the lower seat 24 so that the attachment part 24a is inserted therein. With this configuration, the suspension coil spring 10 is positioned between the upper seat 22 and the lower seat 24.
  • the center position of the upper end winding portion 32 is referred to as an upper end winding center point CMU, and the center position of the lower end winding portion 34 is referred to as a lower end winding center point CML (see FIG. 3).
  • a line segment that passes through the upper end winding center point CMU and extends in the longitudinal direction of the vehicle body is referred to as an upper longitudinal direction line FBU, and a line segment that passes through the upper end winding center point CMU and extends in the vehicle body left and right direction. This is referred to as the upper left / right direction line RLU.
  • a line segment that passes through the lower end winding center point CML and extends in the longitudinal direction of the vehicle body is referred to as a lower longitudinal direction line FBL, and passes through the lower end winding center point CML and extends in the lateral direction of the vehicle body.
  • This line segment is referred to as a lower left / right direction line RLL.
  • the lower seat 24 and the lower end winding portion 34 are located on the lower end winding portion 34 on the vehicle outer side from the center point CML of the lower end winding portion 34. It forms so that it may contact substantially in the lower contact point P3 of a location.
  • the fact that the lower seat 24 and the lower end winding part 34 substantially contact at one lower contact point P3 means a position other than the lower contact point P3 of the lower end winding part 34 (hereinafter referred to as the lower contact point P3). Even if the position other than P3 is in contact with the lower seat 24, the load acting on the position other than P3 is smaller than the load acting on the lower contact point P3.
  • the lower end winding portion 34 has a reverse pitch that forms an angle ⁇ with respect to a direction orthogonal to the outline m of the spring effective portion 11 (the spring element wire is wound so that the pitch decreases). To be done). Further, as shown in FIG. 3, the lower contact portion P3 is provided at a position on the lower left-right direction line RLL and at a distance L from the lower end winding center point CML to the vehicle outer side.
  • the number of turns of the upper end winding portion 32 is 0.5 (180 ° winding) and is bent at a portion connected to the spring effective portion 11, and FIG. 1 and FIG.
  • the upper end winding portion 32 has a substantially semicircular arc shape and is configured to be positioned on the vehicle outer side with respect to the upper front-rear direction line FBU. Further, the upper contact portions P1, P2 of the upper end winding portion 32 are provided on the upper front-rear direction line FBU and spaced apart from each other by 180 °, and a line segment connecting the upper contact portions P1, P2 and the upper front-rear direction line The FBU is configured to overlap.
  • the upper contact portion P ⁇ b> 1 of the upper end winding portion 32 is an end portion of a spring wire constituting the suspension coil spring 10.
  • the upper contact portion P2 is a portion connected to the spring effective portion 11 at a position of 0.5 turns from the upper contact portion P1 (a position wound 180 ° from the upper contact portion P1).
  • the upper end winding part 32 is configured to be substantially symmetric with respect to the upper left-right direction line RLU.
  • the upper contact portions P ⁇ b> 1 and P ⁇ b> 2 substantially contact the upper seat 22 more strongly than other portions of the upper end winding portion 32, and the suspension device 12. It is attached to.
  • the upper contact portions P1 and P2 are located on the upper front-rear direction line FBU, and the substantially center position between the upper contact portion P1 and the upper contact portion P2 is the upper end winding. It becomes the center point CMU.
  • the upper seat 22 and the upper end winding portion 32 substantially contact only at the two upper contact points P1 and P2, and the positions other than the upper contact points P1 and P2 of the upper end winding portion 32 (hereinafter referred to as “the upper end winding portion 32”). Even if the position other than P1 and P2 is in contact with the upper seat 22, the load acting on the position other than P1 and P2 is smaller than the load acting on the upper contact points P1 and P2.
  • AS is a strut shaft that is the central axis of the shock absorber 14
  • AK is a kingpin axis that is the steering central axis of the wheel 44
  • AL is a lower arm axis that is the central axis of the lower arm 28
  • AA is the shock absorber 14 from the road surface. It is a load input shaft.
  • a road surface reaction force W from the road surface acts on the suspension device 12 in the vertical direction from the center position of the contact surface of the wheel 44. Furthermore, the load axial force WU that opposes the road surface reaction force W acts on the suspension device 12 from the upper end of the shock absorber 14 along the load input axis AA.
  • a lower arm axial force WC which is a combined force of the road surface reaction force W and the load axial force WU, acts on the root portion of the lower arm 28 along the lower arm axis AL.
  • the load acting on the position other than P3 at the time of this contact is smaller than the load acting on the lower contact point P3. Therefore, even when a position other than P3 is in contact with the lower seat 24, the spring reaction force WR mainly acts on the lower contact point P3 or a position close thereto.
  • the lower contact point P3 where the lower seat 24 and the lower end winding portion 34 substantially contact or its proximity point is the lower working point of the spring reaction force WR.
  • the lower acting point of the spring reaction force WR can be moved by adjusting the angle ⁇ of the lower end winding portion 34 and the spring reaction force axis AR and the load input axis AA are substantially coincident (AR ⁇ AA). In the position. With such a configuration, it is possible to cancel the load axial force WU with the spring reaction force WR, avoid the occurrence of a lateral force in the shock absorber 14, and suppress the occurrence of friction.
  • the substantially center position of the upper contact portions P1, P2 is the upper end winding center point CMU, and the upper end winding portion 32 is substantially the same as the upper seat 22. Since the contact is made at a point, the upper end winding portion 32 is configured to be swingable with respect to the upper seat 22 about the upper front-rear direction line FBU connecting the upper contact points P1, P2.
  • the upper acting point of the spring reaction force WR is located at the substantially upper end winding center point CMU and does not deviate from this position.
  • the suspension coil spring 10 When the suspension coil spring 10 is mounted on the suspension device 12, the suspension coil spring 10 is displaced with respect to the upper seat 22 by inputting the road surface reaction force W from the road surface via the wheels 44 to the suspension device 12 ( FIG. 5A to FIG. 5C). At this time, the upper end winding part 32 swings about the upper front-rear direction line FBU connecting the upper contact points P1 and P2, so that in addition to the upper contact points P1 and P2, the positions other than P1 and P2 and the upper seat 22 It is possible to come into contact.
  • the load acting on the positions other than P1 and P2 at the time of this contact is smaller than the load acting on the upper contact points P1 and P2. Therefore, even if a position other than P1 and P2 contacts the upper seat 22, the spring reaction force WR mainly acts on the center position of the upper contact points P1 and P2, that is, the position of the upper end winding center point CMU. Therefore, a substantially uniform load is applied to the bearing portion 42 of the strut mount 20, and the mount is prevented from being twisted.
  • FIG. 4 is a diagram for explaining the shape of the spring effective portion 11 of the suspension coil spring 10 according to the present embodiment.
  • the spring effective portion 11 has a first spring portion 11a on the vehicle outer side and a second spring portion 11b on the vehicle body side.
  • the first spring portion 11a and the second spring portion 11b are alternately formed approximately every half turn (0.5 turns).
  • the curvature at Po located on the outermost side of the first spring part 11a is the other position of the first spring part 11a, all the positions of the second spring part 11b, and the first spring part 11a and the second spring part. 11b is formed so as to be larger than the curvature at all positions of the portion connecting with 11b.
  • the curvature of the first spring portion 11a at Po is larger than the curvature of Pi at the most vehicle body side of the second spring portion 11b.
  • the first spring portion 11a and the second spring portion 11b, each having a gradually changing curvature, are smoothly connected to each other, and the spring effective portion 11 is formed in a substantially egg shape when viewed from above.
  • the shape of the spring effective portion 11 is obtained based on, for example, a curvature change calculation formula represented by the following formula (1).
  • H is the coil radius in the longitudinal direction of the vehicle body
  • W is the coil radius in the lateral direction of the vehicle body.
  • the shape of the spring effective portion 11 is formed on the basis of a combination of shapes changed by using W, H, and a as variables.
  • the spring effective portion 11 when the spring effective portion 11 is formed in a perfect circle shape in a top view, in addition to being a strut type suspension device, the lower contact portion P3 is biased toward the vehicle exterior, so that the compressed state In this case, the amount of torsion that the vehicle body side protrudes becomes larger. If the amount of bending of the suspension coil spring 10 is large, the direction of action of the spring reaction force WR deviates from the load input axis AA, and friction is generated in the shock absorber 14, preventing the smooth operation of the shock absorber 14 and riding comfort of the automobile. Will get worse. Moreover, if the amount of torsion is large, the stress increase location will generate
  • the suspension coil spring 10 has the above-described shape, thereby reducing the amount of bending of the spring effective portion 11 toward the vehicle body in the compressed state. Therefore, the friction generated in the shock absorber 14 is reduced, and the riding comfort of the automobile is kept comfortable. In addition, in the compressed state, a local stress increase portion does not occur in the spring effective portion 11, and the suspension coil spring 10 can be used for a long time.
  • FIG. 5A to 5C are diagrams illustrating the state of the suspension coil spring 10 when road surface reaction forces W of different magnitudes are input from the wheels 44.
  • FIG. FIG. 5A shows a case where a road surface reaction force W A
  • FIG. 5B shows a road surface reaction force W B (> W A )
  • FIG. 5C shows a case where a road surface reaction force W C (> W B ) is inputted.
  • the suspension coil spring 10 is deformed according to the change in the road surface reaction force W, but the amount of torsion during compression is reduced.
  • the suspension coil spring 10 When the road surface reaction force W changes, the suspension coil spring 10 is deformed according to the magnitude of the road surface reaction force W. With the deformation of the suspension coil spring 10, the contact states of the lower end winding portion 34 with respect to the lower seat 24 and the upper end winding portion 32 with respect to the upper seat 22 change.
  • the lower seat 24 and the lower end winding portion 34 are provided at a position below the one provided on the lower end winding portion 34. It is comprised so that it may contact substantially in the side contact point P3. As a result, the lower end winding part 34 also comes into strong contact with the lower side seat 24 at the lower contact point P3, and even if the suspension coil spring 10 is deformed according to the magnitude of the road surface reaction force W, the lower left-right direction line RLL A position that is above and separated from the lower end winding center point CML toward the vehicle outer side is maintained.
  • the upper seat winding portion 32 and the upper seat 22 are in strong contact with each other at the upper contact points P1 and P2, so the upper seat 22 is connected to the upper front-rear direction line connecting the upper contact point P1 and the upper contact point P2. Swings around the FBU. For this reason, even if the suspension coil spring 10 is deformed according to the magnitude of the road surface reaction force W, the upper front-rear direction line FBU always maintains a position passing through the upper end winding center point CMU.
  • FIGS. 1 to 5C are views showing suspension coil springs 60 and 70, which are modifications of the suspension coil spring 10, respectively. 6 and 7, the components corresponding to the configuration of the suspension coil spring 10 illustrated in FIGS. 1 to 5C are denoted by the same reference numerals and description thereof is omitted.
  • the suspension coil spring 60 of the modification shown in FIG. 6 has the upper end winding portion 32 formed in about 0.6 turns.
  • the suspension coil spring 60 is configured such that the upper front-rear direction line SFBU1, which is a line segment connecting the upper contact points P1 ', P2', and the upper front-rear direction line FBU are parallel to each other.
  • the upper end winding portion 32 having approximately 0.6 turns is formed so as to be substantially symmetric with respect to the upper left-right direction line RLU.
  • the upper front-rear direction line SFBU1 is formed so as to be separated from the upper end winding center point CMU by a dimension indicated by an arrow ⁇ M1 in the vehicle body side direction from the upper end winding center point CMU.
  • the suspension coil spring 70 of the modification shown in FIG. 7 has the upper end winding portion 32 formed in about 0.4 turns.
  • the suspension coil spring 70 is configured such that the upper front-rear direction line SFBU2, which is a line segment connecting the upper contact points P1 ", P2", and the upper front-rear direction line FBU are parallel to each other.
  • the upper end winding portion 32 having about 0.4 turns is formed so as to be substantially symmetric with respect to the upper left-right direction line RLU.
  • the upper front-rear direction line SFBU2 is formed so as to be separated from the upper end winding center point CMU by a dimension indicated by an arrow ⁇ M2 in the drawing in the vehicle outer side direction from the upper end winding center point CMU.
  • the upper contact points P1, P2 are the upper end winding center point CMU.
  • the amount of separation from the bearing becomes larger, the friction at the sliding portion of the shock absorber 14 increases, and the load (spring reaction force) acts on the bearing portion of the strut mount 20 to increase the possibility that the mount will be twisted. .
  • the suspension coil spring 10 can be used in a compressed state even when the coil outer diameter is reduced or the size is reduced by reducing the number of turns. The amount of bending is reduced.
  • the suspension device 12 including the suspension coil spring 10 can reduce the generation of friction in the shock absorber 14, suppress the strut mount 20 from being twisted, and can comfortably maintain the riding comfort of the automobile.
  • the lower end winding portion 34 is set to a reverse pitch, whereby the lower end winding portion 34 comes into substantial contact with the lower seat 24 substantially at one point, so that the spring reaction force axis AR is inclined. It has a configuration.
  • the spring reaction force axis AR may be inclined by making the lower end winding portion flat and forming an inclined portion on the lower seat.
  • the said embodiment it was set as the structure which the upper part winding part 32 and the upper part seat 22 contact strongly at two points (upper contact part P1, P2) by making the upper part winding part 32 into 0.5 turns.
  • the projection may be formed at a position corresponding to the upper contact portions P1 and P2 of the upper end winding portion 32 or the upper seat 22.
  • Suspension coil spring 11 Spring effective portion 11a First spring portion 11b Second spring portion 12 Suspension device 14 Shock absorber 20 Strut mount 22 Upper seat 24 Lower seat 30 Vehicle body 32 Upper seat winding portion 34 Lower seat winding Part 42 Bearing 44 Wheel AA Load input axis AL Lower arm axis AR Spring reaction axis AS Strut axis CA Coil axis CMU Upper end winding center point CML Lower end winding center point FBU Upper front / rear direction line FBL Lower front / rear direction line FBM Front / rear Direction line m Outline line RLU Upper left / right direction line RLL Lower left / right direction line RLM Left / right direction line SFBU1. SFBU2 Upper front-rear direction line W Road surface reaction force WU Load axial force WC Lower arm axial force WR Spring reaction force P1, P2 Upper contact portion P3 Lower contact portion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

【課題】圧縮状態における胴曲がり量及びショックアブソーバに生じるフリクションを低減可能な懸架コイルばねを提供すること。 【解決手段】自動車用のストラット型懸架装置(12)における上側座(22)と下側座(24)との間に装着される懸架コイルばね(10)であって、前記上側座(22)に着座する上側座巻(32)と、装着状態において、曲率の最も大きい部位が車外側に位置するように形成された巻きを1つ以上有するばね有効部(11)と、下側座巻(34)中心点より車外側に位置する一箇所の下側接触点(P3)で前記下側座(24)に接触して着座する下側座巻(34)と、を有する懸架コイルばね(10)。

Description

懸架コイルばね
 本発明は、自動車用のストラット型懸架装置に用いられる懸架コイルばねに関する。
 近年、自動車用の懸架装置として広く普及しているストラット型懸架装置は、シリンダ及びシリンダに摺動可能に支持されるロッドを有するショックアブソーバをホイールに対する位置決め用の支柱(ストラット)として構成され、懸架コイルばねがロッド及びシリンダの外周に設けられている。
 上記構成において、ロッドの上端側はストラットマウント等を介して車体に連結され、シリンダの下端側はホイールを回転可能に支持するナックルに剛体結合されている。ナックルは、ロアーアームを介して車体にピボット結合されている。また、懸架コイルばねは、ロッドの上端が固定される上側座と、シリンダの下端が固定される下側座との間に圧縮状態となるように配設される。
 このようなストラット型懸架装置は、他の独立懸架式のものと比較して、部品点数が少なく構造が簡単であると共に、設置スペースが小さくて済むというメリットがある。
 しかしながら、ストラット型懸架装置では、ストラット軸と荷重入力軸(タイヤ接地点とストラットのアッパマウント点とを結んだ軸)とのずれにより、曲げモーメントが発生する。この曲げモーメントは、ショックアブソーバの摺動方向とは異なる横方向の力(横力)を生じさせ、ロッドの摩擦を増大させてショックアブソーバの円滑な動作を妨げ、自動車の乗り心地を悪化させる要因となる。
 このような曲げモーメントを低減するために、様々な形状の懸架コイルばねが提案されている。例えば特許文献1には、懸架コイルばねをストラットに対して偏心させると共に、偏心させて連設したピッグテイル座巻を有する構成が提案されている。特許文献2には、ばね中心線が無負荷状態においてS字形状となるように構成された懸架コイルばねが提案されている。
 また、特許文献3には、座巻部に複数の突起が設けられ、負荷される荷重の大きさにより選択的に突起部がばね座に接触する懸架コイルばねが提案されている。さらに、特許文献4には、上側座巻及び下側座巻にそれぞれ強当たり部が設けられた懸架コイルばねが提案されている。
実公昭58-032970号公報 特許2642163号 特許4336203号 欧州特許公開728602号公報
 しかしながら、特許文献1に開示されている懸架コイルばねは、ストラットに対して偏心しているため、小型化が難しい可能性がある。また、懸架コイルばねの下部にピッグテイル座巻を偏心させて連設するという構成では、十分な曲げモーメント低減効果が得られない可能性がある。特許文献2に開示されている懸架コイルばねは、S字形状にするために一定のスペースが必要となり、小型化が困難であるという問題点がある。
 また、特許文献3に開示されている懸架コイルばねは、座巻部に複数の突起を設ける必要があり、製造工程が複雑化するという問題点がある。特許文献4に開示されている懸架コイルばねは、強当たり部が座巻の素線上一点であるため、特にばね反力の上側座に対する作用点(上側荷重位置)を座巻の中心にすることができず、曲げモーメントの低減が困難な可能性がある。
 さらに、ストラット型懸架装置では、荷重入力軸と懸架コイルばねの中心軸との不一致により、特に懸架コイルばねの外径(幅)に対して高さを大きくした場合に、圧縮状態における胴曲がり量が大きくなるという問題がある。
 本発明は上記に鑑みてなされたものであって、圧縮状態における胴曲がり量及びショックアブソーバに生じるフリクションを低減可能な懸架コイルばねを提供することを目的とする。
 上記課題は、第1の観点からは、
 自動車用のストラット型懸架装置における上側座と下側座との間に装着される懸架コイルばねであって、
 前記上側座に着座する上側座巻と、
 装着状態において、曲率の最も大きい部位が車外側に位置するように形成された巻きを1つ以上有するばね有効部と、
 下側座巻中心点より車外側に位置する一箇所の下側接触点で前記下側座に接触して着座する下側座巻と、を有する
ことを特徴とする懸架コイルばねによって解決される。
 本発明の実施形態によれば、圧縮状態における胴曲がり量及びショックアブソーバに生じるフリクションを低減可能な懸架コイルばねを提供できる。
図1は、本発明の一実施形態である懸架コイルばねの正面図である。 図2は、本発明の一実施形態である懸架コイルばねが組み付けられたストラット型懸架装置の構成を示す側面図である。 図3は、本発明の一実施形態である懸架コイルばねの斜視図である。 図4は、本発明の一実施形態である懸架コイルばねのばね有効部の形状を説明するための図である。 図5Aは、本発明の一実施形態である懸架コイルばねの動作を説明するための図である。 図5Bは、本発明の一実施形態である懸架コイルばねの動作を説明するための図である。 図5Cは、本発明の一実施形態である懸架コイルばねの動作を説明するための図である。 図6は、本発明の一実施形態である懸架コイルばねの第1変形例を示す斜視図である。 図7は、本発明の一実施形態である懸架コイルばねの第2変形例を示す斜視図である。
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
 図1及び図3は、本発明の一実施形態である懸架コイルばね10を例示する図である。また、図2は、懸架コイルばね10が組み付けられたストラット型懸架装置12(以下、単に懸架装置12という)を例示する図である。なお、図2では、懸架コイルばね10の上端の支持部分を除く部分については、二点鎖線で示されている。また、以下に示す図面において、白抜き矢印のIN方向は車体側を示し、OUT方向は車外側を示している。
 まず、懸架装置12の構成について説明する。
 懸架装置12は、図2に示されるように、車輪44を位置決めするための支柱(ストラット)としてショックアブソーバ14を備えている。ショックアブソーバ14は、ガス、オイル等の流体が封入されたシリンダ16と、シリンダ16内に摺動可能に配置されているピストン(図示省略)に連結されてシリンダ16から上方へ突出するロッド18とを備えている。
 ロッド18は、上端部がストラットマウント20を介して自動車の車体30に弾性的に連結されている。また、ロッド18の上端側には、上側座22が配設され、シリンダ16の中段部分には下側座24が配設されている。
 懸架コイルばね10は、ショックアブソーバ14の外周位置に、上側座22と下側座24との間に圧縮状態で配置される。この結果、装着状態の懸架コイルばね10には、ばね反力WRが発生する。以下の説明では、ばね反力WRが作用する軸線をばね反力軸ARというものとする。
 ショックアブソーバ14の下端部は、車輪44を回転可能に支持するナックル26に剛体結合されている。ナックル26は、ロアーアーム28を介して自動車の車体30にピボット結合されている。
 このような構成により、ナックル26に軸支される車輪44は、ショックアブソーバ14及び懸架コイルばね10を介して車体30を支持すると共に、ロアーアーム28を介して車体30を支持する。
 次に、懸架コイルばね10の構成について説明する。
 図1は、自由状態の懸架コイルばね10を例示する正面図である。懸架コイルばね10は、ばね有効部11の上側に上側座22に着座する上側座巻部32が形成され、下側に下側座24に着座する下側座巻部34が形成されている。
 本実施形態に係る懸架コイルばね10は、荷重が負荷されない自由状態において、ばね有効部11の外形線mが一直線となるよう構成されているが、これに限定されるものではない。また、自由状態において、ばね有効部11の上側座巻部32、下側座巻部34及び各座巻部への移行部を除く部分のコイルの正面視外径Dは、一定の大きさに形成されているが、これに限定されるものではない。
 懸架コイルばね10は、上側座巻部32が上側座22に着座し、下側座巻部34が下側座24に着座し、圧縮された状態で懸架装置12に装着される。懸架装置12の上側座22及び下側座24は、図2に示すように、略円板状に形成されており、それぞれの中央位置にはリブ状の装着部22a,24aが形成されている。懸架コイルばね10の上側座巻部32は、装着部22aが内部に挿入されるように上側座22に装着される。また、下側座巻部34は、装着部24aが内部に挿入されるように下側座24に装着される。このような構成により、懸架コイルばね10は上側座22と下側座24との間で位置決めされる。
 ここで、懸架コイルばね10の上側座巻部32及び下側座巻部34の構成、上側座巻部32と上側座22との接触位置及び下側座巻部34と下側座24との接触位置について説明する。
 なお、以下の説明において、上側座巻部32の中心位置を上側座巻中心点CMUといい、下側座巻部34の中心位置を下側座巻中心点CMLという(図3参照)。
 また、上側座巻中心点CMUを通り自動車の車体前後方向に延在する線分を上側前後方向線FBUといい、上側座巻中心点CMUを通り自動車の車体左右方向に延在する線分を上側左右方向線RLUという。同様に、下側座巻中心点CMLを通り自動車の車体前後方向に延在する線分を下側前後方向線FBLといい、下側座巻中心点CMLを通り自動車の車体左右方向に延在する線分を下側左右方向線RLLという。
 本実施形態に係る懸架コイルばね10は、下側座24と下側座巻部34とが、下側座巻部34上で下側座巻部34の中心点CMLより車外側に位置する一箇所の下側接触点P3で実質的に接触するように形成されている。
 ここで、下側座24と下側座巻部34とが、一箇所の下側接触点P3で実質的に接触するとは、下側座巻部34の下側接触点P3以外の位置(以下、P3以外位置という)が下側座24と接触しても、このP3以外位置に作用する荷重が下側接触点P3に作用する荷重に比べて小さいことをいう。
 下側座巻部34は、図1に示すように、ばね有効部11の外形線mに直交する方向に対して角度αを形成する逆ピッチ(ピッチが減少するようにばね素線が巻き回されること)とされている。また、下側接触部P3は、図3に示すように、下側左右方向線RLL上で、かつ下側座巻中心点CMLよりも車外側に距離Lだけ離間した位置に設けられている。
 また、本実施形態に係る懸架コイルばね10は、上側座巻部32の巻数が、0.5巻(180°巻)であり、ばね有効部11に連結する部分で屈曲し、図1及び図3に示す上側接触部P1,P2で主に上側座22に接触するように形成されている。
 図3に示すように、上側座巻部32は、略半円弧形状で上側前後方向線FBUよりも車外側に位置するように構成されている。また、上側座巻部32の上側接触部P1,P2は、上側前後方向線FBU上であって互いに180°離間して設けられ、上側接触部P1,P2を結ぶ線分と、上側前後方向線FBUとが重なるように構成されている。
 ここで、上側座巻部32の上側接触部P1は、懸架コイルばね10を構成するばね素線の端部である。また、上側接触部P2は、上側接触部P1から0.5巻の位置(上側接触部P1から180°巻かれた位置)で、ばね有効部11に連結される部分である。上側座巻部32は、上側左右方向線RLUに対して略対称となるように構成されている。
 上記構成により、懸架コイルばね10の上側座巻部32は、実質的に上側接触部P1,P2のみが、上側座巻部32の他の部位よりも強く上側座22に接触して懸架装置12に装着される。懸架コイルばね10の懸架装置12への装着状態において、上側接触部P1,P2は上側前後方向線FBU上に位置し、上側接触部P1と上側接触部P2との略中央位置が、上側座巻中心点CMUとなる。
 ここで、上側座22と上側座巻部32とが、二箇所の上側接触点P1,P2のみで実質的に接触するとは、上側座巻部32の上側接触点P1,P2以外の位置(以下、P1,P2以外位置という)が上側座22と接触しても、このP1,P2以外位置に作用する荷重が上側接触点P1,P2に作用する荷重に比べて小さいことをいう。
 次に図2に基づいて、懸架コイルばね10を装着した懸架装置12に作用する荷重について説明する。
 図2において、ASはショックアブソーバ14の中心軸であるストラット軸、AKは車輪44の操舵中心軸であるキングピン軸、ALはロアーアーム28の中心軸であるロアーアーム軸、またAAは路面からショックアブソーバ14への荷重入力軸である。
 懸架装置12には、路面からの路面反力Wが車輪44の接触面の中心位置から鉛直方向に作用する。さらに、路面反力Wに対抗する荷重軸線力WUは、懸架装置12に対し、ショックアブソーバ14の上端から荷重入力軸AAに沿って作用する。路面反力Wと荷重軸線力WUとの合成力であるロアーアーム軸力WCは、ロアーアーム軸ALに沿ってロアーアーム28の根元部に作用する。
 路面から車輪44を介しての路面反力Wが懸架装置12に入力され、下側座24に対して懸架コイルばね10が変位した場合、下側接触点P3に加え、P3以外位置が下側座24と接触することが考えられる。
 しかしながら、この接触時にP3以外位置に作用する荷重は、下側接触点P3に作用する荷重に比べて小さいものとなる。従って、P3以外位置が下側座24と接触する場合であっても、ばね反力WRは主に下側接触点P3又はこれに近い位置に作用することになる。
 ここで、荷重軸線力WUが作用する荷重入力軸AAと、懸架コイルばね10のばね反力WRが作用するばね反力軸ARに注目する。
 本実施形態において、下側座24と下側座巻部34が実質的に接触する下側接触点P3又はその近接点は、ばね反力WRの下側の作用点となる。このばね反力WRの下側作用点は、下側座巻部34の角度α等の調整で移動可能であり、ばね反力軸ARと荷重入力軸AAとを略一致(AR≒AA)させる位置に設けられている。このような構成により、荷重軸線力WUをばね反力WRで打ち消して、ショックアブソーバ14に横力が生じるのを回避し、フリクションの発生を抑制することが可能になっている。
 一方、本実施形態に係る懸架コイルばね10は、上側接触部P1,P2の略中央位置が上側座巻中心点CMUとなっており、また上側座巻部32は上側座22と実質的に二点で接触しているため、上側座巻部32は上側接触点P1,P2を結ぶ上側前後方向線FBUを中心として上側座22に対して揺動可能な構成となっている。
 このため、本実施形態に係る懸架コイルばね10を懸架装置12に用いた場合、ばね反力WRの上側作用点は略上側座巻中心点CMUに位置し、この位置から外れることはない。
 懸架コイルばね10を懸架装置12に装着した場合、路面から車輪44を介しての路面反力Wが懸架装置12に入力されることにより、懸架コイルばね10は上側座22に対して変位する(図5A~図5C参照)。この際、上側座巻部32は上側接触点P1,P2を結ぶ上側前後方向線FBUを中心として揺動するため、上側接触点P1,P2に加え、P1,P2以外位置と上側座22とが接触することが考えられる。
 しかしながら、この接触時にP1,P2以外位置に作用する荷重は、上側接触点P1,P2に作用する荷重に比べて小さい。従って、P1,P2以外位置が上側座22と接触しても、ばね反力WRは主に上側接触点P1,P2の中央位置、つまり上側座巻中心点CMUの位置に作用することになる。したがって、ストラットマウント20の軸受部42に略均一な荷重が掛かり、マウントのこじりが抑えられる。
 次に、本実施形態に係る懸架コイルばね10のばね有効部11の形状について説明する。
 図4は、本実施形態に係る懸架コイルばね10のばね有効部11の形状を説明するための図である。
 図4に示すように、ばね有効部11は、車外側の第1ばね部11a、車体側の第2ばね部11bを有する。ばね有効部11は、第1ばね部11aと第2ばね部11bとが略半巻き(0.5巻き)ごとに交互に形成されている。
 ここで、第1ばね部11aの最も車外側に位置するPoにおける曲率が、第1ばね部11aの他の位置、第2ばね部11bの全ての位置及び第1ばね部11aと第2ばね部11bとを連結する部分の全ての位置における曲率よりも大きくなるように形成されている。とりわけ、第1ばね部11aのPoにおける曲率が、第2ばね部11bの最も車体側に位置するPiにおける曲率より大きいことが特徴となっている。ばね有効部11は、それぞれ曲率が徐々に変化する第1ばね部11aと第2ばね部11bとが滑らかに連結され、上面視で略卵型に形成されている。
 ばね有効部11の形状は、例えば下式(1)で表される曲率変化計算式に基づいて求められる。
 (X/W)+(Y/H)=1   ・・・(1)
 Hは車体前後方向のコイル半径であり、Wは車体左右方向のコイル半径である。ばね有効部11形状は、W,H,aを変数として変化させた形状の組み合わせをベースに形成される。
 ここで、例えばばね有効部11が上面視で真円状に形成されている場合には、ストラット型懸架装置であることに加え、下側接触部P3が車外側に偏っているため、圧縮状態において車体側が突出する胴曲がり量がより大きくなる。懸架コイルばね10の胴曲がり量が大きいと、ばね反力WRの作用方向が荷重入力軸AAからずれ、ショックアブソーバ14にフリクションが生じ、ショックアブソーバ14の円滑な動作が妨げられて自動車の乗り心地が悪化することとなる。また、胴曲がり量が大きいと、ばね有効部11に応力増大箇所が局所的に発生し、懸架コイルばね10の耐久性を低下させてしまう。
 しかし、本実施形態に係る懸架コイルばね10は、上記した形状を有することにより、圧縮状態におけるばね有効部11の車体側への胴曲がり量が低減されている。したがって、ショックアブソーバ14に生じるフリクションが低減され、自動車の乗り心地が快適に保たれる。また、圧縮状態においてばね有効部11に局所的な応力増大箇所が発生することがなく、懸架コイルばね10の長期使用が可能となる。
 次に、懸架装置12に車輪44から路面反力Wが入力された場合の懸架コイルばね10の状態について説明する。
 図5A~図5Cは、車輪44から異なる大きさの路面反力Wが入力された場合の懸架コイルばね10の状態を例示する図である。図5Aは路面反力W、図5Bは路面反力W(>W)、図5Cは路面反力W(>W)が入力された場合を示している。
 図5A~図5Cに示すように、懸架コイルばね10は、路面反力Wの変化に応じて変形するが、圧縮時の胴曲がり量が低減される。
 路面反力Wが変化することにより、懸架コイルばね10は路面反力Wの大きさに応じて変形する。この懸架コイルばね10の変形に伴い、下側座24に対する下側座巻部34、上側座22に対する上側座巻部32の各接触状態は変化する。
 しかしながら、本実施形態に係る懸架コイルばね10は懸架装置12に装着された状態において、下側座24と下側座巻部34とが、下側座巻部34に設けられた一箇所の下側接触点P3で実質的に接触するよう構成されている。これにより下側座巻部34も下側座24と下側接触点P3において強く接触し、懸架コイルばね10が路面反力Wの大きさに応じて変形しても、下側左右方向線RLL上で、かつ下側座巻中心点CMLよりも車外側に離間した位置を維持する。
 また、上側座巻部32についても、懸架装置12に装着された状態において、上側座22と上側座巻部32とが上側座巻部32に設けられた二箇所の上側接触点P1、P2のみで実質的に接触している。
 よって、上側座巻部32と上側座22とは上側接触点P1、P2の2点で強く接触しているため、上側座22はこの上側接触点P1と上側接触点P2を結ぶ上側前後方向線FBUを中心として揺動する。このため、懸架コイルばね10が路面反力Wの大きさに応じて変形しても、上側前後方向線FBUは常に上側座巻中心点CMUを通る位置を維持する。
 したがって、路面反力Wが変化してもばね反力軸ARが延出する方向(図5A~図5C)に一点鎖線の矢印で示す方向)が大きく変化することがない。そのため、荷重入力軸AAとばね反力軸ARとが一致した状態が維持され、ショックアブソーバ14におけるフリクションの発生が防止され、ストラットマウント20のこじりが抑制される。
 次に、上記した懸架コイルばね10の変形例について説明する。
 図6及び図7は、それぞれ懸架コイルばね10の変形例である懸架コイルばね60,70を示す図である。なお、図6及び図7において、図1乃至図5Cに示した懸架コイルばね10の構成に対応する構成については、同一符号を付してその説明を省略する。
 図6に示す変形例の懸架コイルばね60は、上側座巻部32が約0.6巻に形成されている。懸架コイルばね60は、上側接触点P1‘,P2’を結ぶ線分である上側前後方向線SFBU1と、上側前後方向線FBUとが平行になるように構成されている。また、約0.6巻とされた上側座巻部32は、上側左右方向線RLUに対して略対称となるよう形成されている。さらに、上側前後方向線SFBU1は、上側座巻中心点CMUから、上側座巻中心点CMUよりも車体側方向に図中矢印ΔM1で示す寸法だけ離間するように形成されている。
 図7に示す変形例の懸架コイルばね70は、上側座巻部32が約0.4巻に形成されている。懸架コイルばね70は、上側接触点P1’’,P2’’を結ぶ線分である上側前後方向線SFBU2と、上側前後方向線FBUとが平行になるように構成されている。また、約0.4巻とされた上側座巻部32は、上側左右方向線RLUに対して略対称となるように形成されている。さらに、上側前後方向線SFBU2は、上側座巻中心点CMUから、上側座巻中心点CMUよりも車外側方向に図中矢印ΔM2で示す寸法だけ離間するように形成されている。
 上側座巻部32の巻数が0.4巻未満になった場合、及び上側座巻部32の巻数が0.6巻を超える場合には、上側接触点P1,P2が上側座巻中心点CMUからの離間量が大きくなり、ショックアブソーバ14の摺動部におけるフリクションが増大し、ストラットマウント20の軸受部に偏った荷重(ばね反力)が作用してマウントのこじりが生じる可能性が高くなる。
 これに対し、上側座巻部32を0.4巻以上0.6巻以下とすると、ショックアブソーバ14の摺動部におけるフリクションが低減され、マウントのこじりが生じる可能性が低減される。
 以上で説明したように、本実施形態に係る懸架コイルばね10は、例えばコイル外径を小さくしたり、巻き数を減らすことで小型化及び軽量化された場合であっても、圧縮状態における胴曲がり量が低減される。また、この懸架コイルばね10を備える懸架装置12は、ショックアブソーバ14におけるフリクションの発生が低減されると共に、ストラットマウント20のこじりが抑制され、自動車の乗り心地を快適に維持することができる。
 以上、本発明の好ましい実施形態について詳述したが、本発明は上記した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。
 例えば、上記実施形態では下側座巻部34を逆ピッチとし、これにより下側座巻部34が下側座24に対して実質的に一点で強く接触することによりばね反力軸ARが傾く構成となっている。しかしながら、下側座巻部をフラットにすると共に下側座に傾斜部を形成することにより、ばね反力軸ARを傾ける構成であってもよい。
 また、上記実施形態では上側座巻部32を0.5巻等にすることにより、二点(上側接触部P1,P2)で上側座巻部32と上側座22とが強く接触する構成とした。しかしながら、上側座巻部32又は上側座22の上側接触部P1,P2に対応する位置に突起を形成する構成としてもよい。この構成とすることにより、上側座巻部32と上側座22とを確実に二点で強く接触させることが可能となる。
 本国際出願は、2014年5月28日に出願された日本国特許出願2014-109767号に基づく優先権を主張するものであり、日本国特許出願2014-109767号の全内容を本国際出願に援用する。
10,60,70 懸架コイルばね
11 ばね有効部
11a 第1ばね部
11b 第2ばね部
12 懸架装置
14 ショックアブソーバ
20 ストラットマウント
22 上側座
24 下側座
30 車体
32 上側座巻部
34 下側座巻部
42 軸受部
44 車輪
AA 荷重入力軸
AL ロアーアーム軸
AR ばね反力軸
AS ストラット軸
CA コイル軸
CMU 上側座巻中心点
CML 下側座巻中心点
FBU 上側前後方向線
FBL 下側前後方向線
FBM 前後方向線
m 外形線
RLU 上側左右方向線
RLL 下側左右方向線
RLM 左右方向線
SFBU1.SFBU2 上側前後方向線
W 路面反力
WU 荷重軸線力
WC ロアーアーム軸力
WR ばね反力
P1,P2 上側接触部
P3 下側接触部

Claims (4)

  1.  自動車用のストラット型懸架装置における上側座と下側座との間に装着される懸架コイルばねであって、
     前記上側座に着座する上側座巻と、
     装着状態において、曲率の最も大きい部位が車外側に位置するように形成された巻きを1つ以上有するばね有効部と、
     下側座巻中心点より車外側に位置する一箇所の下側接触点で実質的に前記下側座に接触して着座する下側座巻と、を有する
    ことを特徴とする懸架コイルばね。
  2.  前記上側座巻は、上側座巻中心点を通り前記自動車の左右方向に延在する線分に対して略対称に設けられており、前記自動車の前後方向に離間して設けられた二箇所の上側接触点で実質的に前記上側座に接触して着座する
    ことを特徴とする請求項1に記載の懸架コイルばね。
  3.  前記上側座巻は、0.4巻以上0.6巻以下であり、前記二箇所の上側接触点が、前記自動車の前後方向に延在する線分に平行な線分上に形成されている
    ことを特徴とする請求項2に記載の懸架コイルばね。
  4.  前記下側座巻は、逆ピッチに形成されている
    ことを特徴とする請求項1に記載の懸架コイルばね。
PCT/JP2015/064882 2014-05-28 2015-05-25 懸架コイルばね WO2015182543A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES15798841T ES2849601T3 (es) 2014-05-28 2015-05-25 Resorte helicoidal de suspensión
BR112016026700-1A BR112016026700B1 (pt) 2014-05-28 2015-05-25 Mola helicoidal de suspensão
MX2016014430A MX2016014430A (es) 2014-05-28 2015-05-25 Resorte helicoidal para suspension.
CN201580025118.2A CN106457947B (zh) 2014-05-28 2015-05-25 悬架螺旋弹簧
EP15798841.1A EP3127727B1 (en) 2014-05-28 2015-05-25 Suspension coil spring
US15/307,083 US10300756B2 (en) 2014-05-28 2015-05-25 Suspension coil spring
KR1020187016169A KR20180066277A (ko) 2014-05-28 2015-05-25 현가 코일 스프링
KR1020167029571A KR102059115B1 (ko) 2014-05-28 2015-05-25 현가 코일 스프링
CA2946377A CA2946377C (en) 2014-05-28 2015-05-25 Suspension coil spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-109767 2014-05-28
JP2014109767A JP5981958B2 (ja) 2014-05-28 2014-05-28 懸架コイルばね及びストラット型懸架装置

Publications (1)

Publication Number Publication Date
WO2015182543A1 true WO2015182543A1 (ja) 2015-12-03

Family

ID=54698872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064882 WO2015182543A1 (ja) 2014-05-28 2015-05-25 懸架コイルばね

Country Status (10)

Country Link
US (1) US10300756B2 (ja)
EP (1) EP3127727B1 (ja)
JP (1) JP5981958B2 (ja)
KR (2) KR102059115B1 (ja)
CN (1) CN106457947B (ja)
BR (1) BR112016026700B1 (ja)
CA (1) CA2946377C (ja)
ES (1) ES2849601T3 (ja)
MX (1) MX2016014430A (ja)
WO (1) WO2015182543A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6613095B2 (ja) 2015-10-01 2019-11-27 日本発條株式会社 懸架用コイルばね
US10598242B2 (en) * 2016-05-20 2020-03-24 Sealy Technology, Llc Coil springs with non-linear loading responses and mattresses including the same
DE102018220235A1 (de) * 2018-11-26 2020-05-28 Ford Global Technologies, Llc Einzelradaufhängung für ein Kraftfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095311U (ja) * 1983-12-08 1985-06-28 日産自動車株式会社 ストラツト式懸架装置
JPH0249703U (ja) * 1988-09-30 1990-04-06
JP2000104772A (ja) * 1998-07-31 2000-04-11 Chuo Spring Co Ltd 自動車用懸架コイルばね

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832970A (ja) 1981-08-19 1983-02-26 Mitsubishi Electric Corp 配電器の取付装置
JPS5832970U (ja) 1981-08-25 1983-03-03 泰東製綱株式会社 オツタ−ボ−ド
JPS59190528A (ja) * 1983-04-12 1984-10-29 Mitsubishi Motors Corp 異形断面つる巻きバネ
JPS60237235A (ja) * 1984-05-10 1985-11-26 Chuo Spring Co Ltd コイルばね
JPS60241535A (ja) * 1984-05-12 1985-11-30 Sanko Senzai Kogyo Kk コイルばね
JPS61167728A (ja) * 1985-01-18 1986-07-29 Murata Hatsujo Kk コイルばね
DE3743450A1 (de) 1987-12-08 1989-06-29 Muhr & Bender Radaufhaengung
FR2678035B1 (fr) * 1991-06-20 1995-04-14 Valeo Ressort a boudin, notamment pour amortisseur de torsion.
DE4203658C2 (de) * 1992-02-08 1995-07-13 Bayerische Motoren Werke Ag Schraubenfederabstützung, insbesondere an einem Fahrzeugfederbein
FR2730673B1 (fr) * 1995-02-17 1997-05-09 Allevard Sa Dispositif de suspension du type mac pherson pour vehicule
FR2742830B1 (fr) * 1995-12-21 1999-04-16 Ace Engineering Ressort helicoidal notamment pour suspension de vehicules automobiles
JPH1156119A (ja) 1997-08-25 1999-03-02 Kazuo Yoshitake 温室カーテン開閉装置
JP4601108B2 (ja) * 2000-01-28 2010-12-22 中央発條株式会社 湾曲コイルばね及び該湾曲コイルばねの製造方法
JP2002178736A (ja) * 2000-12-14 2002-06-26 Chuo Spring Co Ltd 自動車用懸架コイルばね及び該懸架コイルばねを備えたストラット型懸架装置
US6481701B2 (en) * 2001-03-09 2002-11-19 Delphi Technologies, Inc. Spring having coils of varying diameters
US20020190452A1 (en) * 2001-06-19 2002-12-19 Barry Drager Coil spring having non-circular coils
US20050051937A1 (en) * 2001-11-27 2005-03-10 Masahiro Umezawa Compression coil spring device having discontinuous support structure
JP4212311B2 (ja) * 2002-07-17 2009-01-21 中央発條株式会社 懸架コイルばね
US20040169324A1 (en) * 2003-02-28 2004-09-02 Bottene Marlon V. Strut spring seat
FR2860752B1 (fr) * 2003-10-09 2006-03-17 Allevard Rejna Autosuspensions Suspension de vehicule a raideur variable
FR2860753B1 (fr) * 2003-10-09 2007-07-27 Allevard Rejna Autosuspensions Suspension de vehicule
JP2005226673A (ja) * 2004-02-10 2005-08-25 Nhk Spring Co Ltd コイルばね及び懸架装置
JP4862561B2 (ja) * 2006-08-30 2012-01-25 マツダ株式会社 サスペンション装置のコイルスプリング取付構造
EP1935678A3 (de) * 2006-12-18 2010-04-14 Muhr und Bender KG Radaufhängung
JP5268261B2 (ja) * 2007-01-26 2013-08-21 日本発條株式会社 コイルばね
CN102016344B (zh) * 2008-05-07 2012-09-05 株式会社东乡制作所 异形截面螺旋弹簧
US8061696B2 (en) * 2008-09-18 2011-11-22 Yang Min Enterprise Corporation Shock-absorbing spring for vehicles
JP5313210B2 (ja) * 2010-06-30 2013-10-09 三菱製鋼株式会社 コイルばね
DE202013002175U1 (de) * 2013-03-07 2013-03-15 Audi Ag Schraubenfeder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095311U (ja) * 1983-12-08 1985-06-28 日産自動車株式会社 ストラツト式懸架装置
JPH0249703U (ja) * 1988-09-30 1990-04-06
JP2000104772A (ja) * 1998-07-31 2000-04-11 Chuo Spring Co Ltd 自動車用懸架コイルばね

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3127727A4 *

Also Published As

Publication number Publication date
JP2015231751A (ja) 2015-12-24
BR112016026700A2 (pt) 2017-08-15
CA2946377C (en) 2018-06-12
KR102059115B1 (ko) 2019-12-24
ES2849601T3 (es) 2021-08-19
US10300756B2 (en) 2019-05-28
EP3127727A4 (en) 2017-04-19
JP5981958B2 (ja) 2016-08-31
CA2946377A1 (en) 2015-12-03
CN106457947A (zh) 2017-02-22
CN106457947B (zh) 2019-11-01
KR20160138192A (ko) 2016-12-02
EP3127727A1 (en) 2017-02-08
MX2016014430A (es) 2017-02-23
EP3127727B1 (en) 2020-12-09
BR112016026700A8 (pt) 2021-06-22
BR112016026700B1 (pt) 2022-08-16
US20170050486A1 (en) 2017-02-23
KR20180066277A (ko) 2018-06-18

Similar Documents

Publication Publication Date Title
JP5873891B2 (ja) 懸架コイルばね及びストラット型懸架装置
JP5293770B2 (ja) サスペンション構造、サスペンションリンク配置方法
US20110248465A1 (en) Rear wheel suspension, the coil spring of which has a tilted line of action of force
US10688843B2 (en) Vehicle torsion beam suspension and vehicle torsion beam
WO2015182543A1 (ja) 懸架コイルばね
JP2016047722A (ja) 懸架コイルばね及びストラット型懸架装置
JP2008056002A (ja) サスペンション装置のコイルスプリング取付構造
JP2005226673A (ja) コイルばね及び懸架装置
JP4211667B2 (ja) トーションビーム式サスペンション装置
JP6348766B2 (ja) 車両用サスペンション
JP2010260513A (ja) サスペンションアーム
JP6497343B2 (ja) 車両のサスペンション構造
JP2006248256A (ja) トレーリングアーム構造
JP2008201306A (ja) スタビライザ装置
JP5326528B2 (ja) ダブル・ジョイント式サスペンション
JP2010047041A (ja) サスペンション用ブッシュ
JP2007168753A (ja) ストラット式サスペンション装置
JP2006143001A (ja) アクスルブラケットおよびそれを用いたサスペンション装置
KR20090119290A (ko) 차량용 스테빌라이저 바
JP2008114696A (ja) スタビライザ連結構造
KR20080006198A (ko) 자동차의 전륜 현가장치
JP2010090960A (ja) ブッシュ
JP2010247672A (ja) 車両用サスペンション

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2946377

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015798841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015798841

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167029571

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15307083

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/014430

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: IDP00201608096

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016026700

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016026700

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161114