WO2015182537A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2015182537A1
WO2015182537A1 PCT/JP2015/064856 JP2015064856W WO2015182537A1 WO 2015182537 A1 WO2015182537 A1 WO 2015182537A1 JP 2015064856 W JP2015064856 W JP 2015064856W WO 2015182537 A1 WO2015182537 A1 WO 2015182537A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting device
wavelength conversion
conversion member
Prior art date
Application number
PCT/JP2015/064856
Other languages
English (en)
French (fr)
Inventor
作本 大輔
草野 民男
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2015182537A1 publication Critical patent/WO2015182537A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a light emitting device provided with a light emitting element.
  • a light emitting device including a light emitting element using a light emitting diode (LED) has been advanced.
  • This light-emitting device has attracted attention with respect to power consumption or product life.
  • this light emitting device there is a device that reflects light emitted from a light emitting element by a frame, converts it into light of a specific wavelength band by a wavelength conversion unit, and takes it out (see JP 2005-228996 A).
  • Such a light emitting device includes a substrate, a light emitting element provided on the substrate, a frame provided on the substrate so as to surround the light emitting element, and a wavelength conversion member provided on the frame. Note that in the light emitting device disclosed in Japanese Patent Application Laid-Open No. 2005-228996, the wavelength conversion unit has a sheet shape.
  • the inventor of the present invention studied to collect light in a specific direction and improve luminous efficiency in the development of a light-emitting element by suppressing the light extracted outside from being diffused.
  • Japanese Patent Laid-Open No. 2005-228996 since the upper surface and the lower surface of the wavelength conversion unit are flat, light emitted from the periphery of the end of the wavelength conversion unit is reduced.
  • An object of the present invention is to provide a light emitting device capable of focusing light extracted outside in the vicinity of the end of the wavelength conversion unit and improving the light emission efficiency.
  • a light-emitting device includes a substrate, a light-emitting element provided on the substrate, and a frame provided to surround the light-emitting element on the substrate. Further, the light emitting device is provided on the frame body so as to cover the light emitting element and to be spaced from the light emitting element. And a wavelength conversion member having a peripheral region located above the height position of the upper surface in the region.
  • FIG. 1 It is a section perspective view showing an outline of a light emitting device concerning one embodiment of the present invention. It is sectional drawing of the light-emitting device which concerns on one Embodiment of this invention. It is the expanded sectional view which expanded a part A of the light-emitting device shown in FIG. It is a top view of the light-emitting device which concerns on one Embodiment of this invention, Comprising: The frame is shown.
  • FIG. 1 is a perspective view showing an overview of a light emitting device according to an embodiment of the present invention, and a part of the light emitting device is viewed in cross section.
  • FIG. 2 is a cross-sectional view of the light emitting device shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a part A of the light emitting device shown in FIG.
  • FIG. 4 is a plan view of the light emitting device, showing a state where the wavelength conversion member, the adhesive member, and the sealing member are removed.
  • the light emitting device 1 is used to illuminate an object or to display an identification.
  • the light-emitting device 1 includes a substrate 2, a light-emitting element 3 provided on the substrate 2, and a region surrounded by the inner peripheral surface provided on the substrate 2 so as to surround the light-emitting element 3 is larger in the upper part than in the lower part.
  • a frame body 4 having an inclined surface 4s, a central region f1 having a flat upper surface provided on the frame body 4 so as to cover the light emitting element 3 and spaced apart from the inclined surface 4s, and the central region f1
  • a wavelength conversion member 5 having a convex peripheral region f2 is provided.
  • the light emitting element 3 is, for example, a light emitting diode, and emits light toward the outside by recombination of electrons and holes in a pn junction using a semiconductor.
  • the substrate 2 is an insulating substrate and is made of, for example, a ceramic material such as alumina or mullite, or a glass ceramic material. Or it consists of a composite material which mixed several materials among these materials.
  • the substrate 2 can be made of a polymer resin in which metal oxide fine particles capable of adjusting the thermal expansion of the substrate 2 are dispersed.
  • the substrate 2 is formed with a wiring conductor that is electrically connected to the inside and outside of the substrate 2.
  • the wiring conductor is made of a conductive material such as tungsten, molybdenum, manganese, or copper.
  • the wiring conductor is obtained, for example, by printing a metal paste obtained by adding an organic solvent to a powder of tungsten or the like in a predetermined pattern on a ceramic green sheet serving as the substrate 2, and laminating and firing a plurality of ceramic green sheets. It is done. Note that a plating layer such as nickel or gold is formed on the surface of the wiring conductor to prevent oxidation. Further, on the upper surface of the substrate 2, in order to efficiently reflect light above the substrate 2, a metal reflective layer such as aluminum, silver, gold, copper or platinum is formed with a space between the wiring conductor and the plating layer. May be.
  • the light emitting element 3 is mounted on the substrate 2.
  • the light emitting element 3 is disposed in the central portion of the region surrounded by the frame body 4.
  • a plurality of light emitting elements 3 may be arranged in a region surrounded by the frame 4 in order to increase the light output of the light emitting device 1.
  • the light emitting element 3 is electrically connected to, for example, a brazing material or solder on a plating layer that adheres to the surface of the wiring conductor formed on the substrate 2.
  • the light emitting element 3 has a translucent base and an optical semiconductor layer formed on the translucent base.
  • the translucent substrate may be any substrate that can grow an optical semiconductor layer using a chemical vapor deposition method such as a metal organic chemical vapor deposition method or a molecular beam epitaxial growth method.
  • a material used for the translucent substrate for example, sapphire, gallium nitride, aluminum nitride, zinc oxide, zinc selenide, silicon carbide, silicon, or zirconium diboride can be used.
  • substrate is 50 micrometers or more and 1000 micrometers or less, for example.
  • the optical semiconductor layer includes a first semiconductor layer formed on the translucent substrate, a light emitting layer formed on the first semiconductor layer, and a second semiconductor layer formed on the light emitting layer.
  • the first semiconductor layer, the light emitting layer, and the second semiconductor layer are, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphide or gallium arsenide, or a group III nitride such as gallium nitride, aluminum nitride, or indium nitride.
  • a physical semiconductor or the like can be used.
  • the thickness of the first semiconductor layer is, for example, 1 ⁇ m to 5 ⁇ m
  • the thickness of the light emitting layer is, for example, 25 nm to 150 nm
  • the thickness of the second semiconductor layer is, for example, 50 nm to 600 nm.
  • the light emitting element 3 configured in this way can emit excitation light in a wavelength range of, for example, 370 nm to 420 nm.
  • the frame body 4 is made of a ceramic material, is laminated on the upper surface of the substrate 2, and is connected via, for example, a resin.
  • the frame 4 is provided so as to surround the light emitting element 3 on the substrate 2.
  • the shape of the inner wall surface of the frame body 4 is circular in plan view, the center of the inner wall surface of the frame body 4 formed in a circular shape is viewed from the center of the light emitting device 1 with respect to the upper surface of the substrate 2.
  • the light emitted from the light emitting element 3 with a rotationally symmetric light distribution can be reflected by the inner wall surface of the frame 4 with respect to a virtual line (not shown) extending in the vertical direction. Therefore, the light from the light emitting element 3 can be prevented from concentrating on a part of the wavelength conversion member 5, and the light from the light emitting element 3 can be efficiently wavelength converted by the wavelength conversion member 5.
  • the frame 4 is made of a porous material formed by sintering a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide in a desired shape.
  • a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide in a desired shape.
  • the surface of the frame 4 is preferably a diffuse reflection surface.
  • the wavelength conversion member 5 can suppress a temperature rise of a part of the wavelength conversion member 5 due to concentration of light from the light emitting element 3. And the wavelength conversion member 5 can suppress that wavelength conversion efficiency falls with the heat
  • the area surrounded by the frame 4 increases in diameter from the bottom to the top.
  • the inner peripheral surface of the frame body 4 is inclined with respect to the upper surface of the substrate 2.
  • the frame 4 has an inclined surface 4s in which the region surrounded by the inner peripheral surface is larger in the upper part than in the lower part.
  • the inclination angle of the inclined surface 4 s of the frame body 4 is set to an angle of, for example, 55 degrees or more and 70 degrees or less with respect to the upper surface of the substrate 2.
  • a step 4 a is provided inside the upper end of the frame body 4.
  • the step 4 a of the frame body 4 has a function of supporting the wavelength conversion member 5.
  • the step 4a is a part of the upper portion of the frame body 4 cut out inward along the inner circumference, and is provided continuously so as to make a round of the inner circumferential surface of the frame body 4.
  • the end of the wavelength conversion member 5 can be supported over the entire circumference.
  • the inner peripheral surface of the frame 4 at the step 4 a has a support surface 4 x that comes into contact with the lower surface of the wavelength conversion member 5, and an inner wall surface 4 y that comes into contact with a part of the side surface of the wavelength conversion member 5.
  • the inner peripheral surface of the frame 4 at the level difference 4 a faces the end of the lower surface of the wavelength conversion member 5 when the wavelength conversion member 5 is supported on the frame 4.
  • the location corresponds to the support surface 4x.
  • the length of the support surface 4x in the planar direction is set to, for example, 0.2 mm or more and 2 mm or less.
  • the portion facing the side surface of the wavelength conversion member 5 corresponds to the inner wall surface 4 y.
  • the length of the up-down direction of the inner wall surface 4y is set to 0.2 mm or more and 2.6 mm or less, for example.
  • a light-transmitting sealing member 6 is provided in a region surrounded by the frame body 4.
  • the sealing member 6 has a function of sealing the light emitting element 3 and transmitting light emitted from the light emitting element 3.
  • the sealing member 6 may be filled to a position surrounded by the frame body 4 and lower than the height position of the step 4a.
  • the sealing member 6 may be filled up to the height position of the support surface 4x in a region surrounded by the frame body 4, and the light from the light emitting element 3 is transmitted to the sealing member 6 and the wavelength conversion member 5. Can be efficiently radiated to the outside of the light emitting device 1 via the.
  • a translucent insulating resin such as a silicone resin, an acrylic resin, or an epoxy resin is used.
  • the thermal conductivity of the sealing member 6 is set to, for example, 0.14 W / (m ⁇ K) or more and 0.21 W / (m ⁇ K) or less.
  • the frame body 4 is made of a porous material, and the frame body 4 is provided with a large number of pores including the surface of the frame body 4, a part of the sealing member 6 is formed from the surface of the frame body 4 to the inside. It is fixed by entering the pores. And when a part of sealing member 6 penetrates into frame 4 and adheres, sealing member 6 and frame 4 are joined firmly by an anchor effect.
  • the intrusion region in which a part of the sealing member 6 enters the inside of the frame body 4 from the inner peripheral surface of the frame body 4 is provided continuously over the entire circumference of the inner peripheral surface of the frame body 4. Yes.
  • the intrusion area is set to, for example, 0.5 mm or more and 2 mm or less in a cross-sectional view from the inner peripheral surface of the frame body 4 toward the inside of the frame body 4.
  • the amount of impregnation of the sealing member 6 that has entered the intrusion region is set to, for example, 3 mm 3 or more and 180 mm 3 or less.
  • the heat generated by the light emitting element 3 is transmitted to the intrusion region through the sealing member 6. Then, the heat is transmitted from the intrusion region into the frame body 4 and can be radiated from the side surface of the frame body 4 to the outside through the inside of the frame body 4 where many pores exist. As a result, it is possible to suppress the heat from being trapped in the sealing member 6 and to change the electrical characteristics and light emission efficiency of the light emitting element 3, and to transmit a desired amount of light from the light emitting element 3 to the wavelength conversion member 5. Can be emitted.
  • the refractive index of the sealing member 6 is 1.4 or more and 1.6 or less, for example.
  • the wavelength conversion member 5 has a function of absorbing light emitted from the light emitting element 3 and emitting light having a wavelength spectrum different from that of the light emitting element 3.
  • the wavelength conversion member 5 emits light having a wavelength spectrum depending on the material properties of the phosphor 7 when the light emitted from the light emitting element 3 enters the inside and the phosphor 7 contained therein is excited. It is.
  • the wavelength conversion member 5 is made of, for example, a translucent insulating resin such as a fluororesin, a silicone resin, an acrylic resin, or an epoxy resin, or a translucent glass.
  • Blue phosphor emitting fluorescence of 430 nm to 490 nm for example, green phosphor emitting fluorescence of 500 nm to 560 nm, for example, yellow phosphor emitting fluorescence of 540 nm to 600 nm, for example, red phosphor emitting fluorescence of 590 nm to 700 nm Containing or adhering.
  • translucent glass is used as the wavelength conversion member 5, the airtightness of the light emitting device 1 can be improved.
  • the phosphor 7 is uniformly dispersed in the wavelength conversion member 5.
  • the thermal conductivity of the wavelength conversion member 5 is set to, for example, 0.1 W / (m ⁇ K) or more and 0.8 W / (m ⁇ K) or less.
  • the thermal expansion coefficient of the wavelength conversion member 5 is set to, for example, 0.8 ⁇ 10 ⁇ 5 / K or more and 8 ⁇ 10 ⁇ 5 / K or less.
  • the refractive index of the wavelength conversion member 5 is set to, for example, 1.3 or more and 1.6 or less.
  • the refractive index of the wavelength conversion member 5 can be adjusted by adjusting the composition ratio of the material of the wavelength conversion member 5.
  • the wavelength conversion member 5 is supported on the frame body 4 and is provided with a space between the light emitting element 3 and the sealing member 6.
  • the wavelength conversion member 5 may be provided in close contact with or adhering to the sealing member 6. Further, a part of the end portion of the wavelength conversion member 5 is located on the support surface 4 x of the frame body 4, and a part of the side surface of the wavelength conversion member 5 is surrounded by the inner wall surface 4 y of the frame body 4. .
  • the wavelength conversion member 5 is provided on the frame 4 so as to cover the light emitting element 3 and be spaced from the light emitting element 3.
  • the wavelength conversion member 5 includes a central region f1 having a flat upper surface, and a peripheral region f2 positioned around the central region f1 and having an upper portion located above the height position of the upper surface in the central region f1.
  • the upper part of the peripheral region f2 is a convex surface.
  • the wavelength conversion member 5 is set in a circular shape in plan view.
  • the central region f ⁇ b> 1 is provided at a location overlapping the light emitting element 3 as seen in a plan view.
  • the central region f1 is circular, and the peripheral region f2 is set in an annular shape.
  • the central region f1 has a diameter of 8 mm or less in plan view
  • the peripheral region f2 has an outer diameter of 10 mm or less and an inner diameter of 8 mm or more in plan view.
  • region f2 correspond.
  • the wavelength conversion member 5 has a thickness in the vertical direction of the central region f1 set to, for example, 0.3 mm or more and 3 mm or less, and a thickness in the vertical direction in the central region f1 is set to be constant.
  • the constant thickness includes a thickness difference of 0.5 ⁇ m or less.
  • the light emitting device 1 emits light emitted from the central region f1 to the outside with a rotationally symmetric light intensity and light distribution with respect to an imaginary line connecting the central portion of the central region f1 and the central portion of the light emitting element 3. Can radiate. Therefore, the light-emitting device 1 can suppress the uneven illuminance distribution on the irradiation surface, the shadow on the irradiation surface, and the irradiation unevenness.
  • the peripheral region f2 is set to a convex surface that is convex upward in a cross-sectional view.
  • a part of the light traveling to the inclined surface 4s of the frame 4 is reflected by the inclined surface 4s of the frame 4 and directly below the peripheral region f2, as shown in FIG. It progresses toward the wavelength conversion member 5.
  • the wavelength conversion member 5 in the peripheral region f2 is convex upward, and the light from the light emitting element 3 reflected by the inclined surface 4s of the frame 4 and the phosphor 7 disposed immediately below the peripheral region f2.
  • the light proceeds to the end of the sheet portion 5a while being irregularly reflected in the sheet portion 5a.
  • the light is incident on the adhesive 5b from the side surface and end of the sheet portion 5a, is not easily reflected by the convex surface of the peripheral region f2, and is efficiently radiated to the outside of the light emitting device 1.
  • the convex surface is preferably curved in the upward direction.
  • the light from the light emitting element 3 and the phosphor 7 that travels to the portion is less likely to be reflected by the convex surface of the peripheral region f2.
  • the wavelength conversion member 5 in the peripheral region f2 is convex upward, and converges light entering from below and concentrates it on a desired irradiation surface without spreading the light traveling outward. be able to.
  • the convex surface of the adhesive 5b is provided at a position where the top portion overlaps the end portion of the sheet portion 5a when the light emitting device 1 is viewed in plan.
  • the adhesive 5b causes the light from the light-emitting element 3 reflected by the inclined surface 4s of the frame body 4, the light from the phosphor 7 arranged immediately below the peripheral region f2, and the inside of the sheet portion 5a. Light from the light emitting element 3 and the phosphor 7 that travels to the end of the sheet portion 5a while being irregularly reflected can be efficiently extracted outside the light emitting device 1 through the convex surface.
  • the wavelength conversion member 5 is fixed on the step 4 a of the frame body 4 through a part of the wavelength conversion member 5.
  • the wavelength conversion member 5 is formed by adhering a sheet-like sheet portion 5a having a flat upper surface and lower surface to the frame body 4 via an adhesive material 5b and solidifying the adhesive material 5b.
  • the adhesive 5 b before thermosetting which is a part of the wavelength conversion member 5, fixes the sheet portion 5 a to the frame body 4.
  • the adhesive 5b is provided from the end of the sheet portion 5a to the upper surface of the frame body 4 through the step 4a of the frame body 4. Thereby, the sheet portion 5a can be more firmly bonded and fixed to the frame body 4 via the adhesive material 5b, and water intrusion into the light emitting device 1 via the step 4a can be suppressed.
  • the adhesive 5b may be provided so as to be disposed in the step 4a of the frame 4 from the end of the sheet portion 5a.
  • the adhesive material 5b since the edge part by the side of the inner wall surface 4y of the adhesive material 5b is fixed by the inner wall surface 4y, it is suppressed that the adhesive material 5b thermally expands in a horizontal direction, and the adhesive material 5b peels from the frame 4. Since it can suppress that and the edge part by the side of the inner wall face 4y of the adhesive material 5b can deform
  • the adhesive 5b may be provided so as to be filled from the end of the sheet portion 5a to the upper end of the step 4a. Thereby, the sheet portion 5a can be more firmly bonded and fixed to the frame body 4 through the adhesive 5b, and the above-described effects can be achieved.
  • the adhesive 5b may be provided so that the end on the side of the central region f1 overlaps the inclined surface 4s of the frame 4 when the light emitting device 1 is viewed in plan. Thereby, the light from the light emitting element 3 reflected by the inclined surface 4s of the frame body 4 is efficiently extracted to the outside of the light emitting device 1 through the upper surface of the peripheral region f2.
  • the adhesive material 5b is the same material as the sheet portion 5a.
  • the adhesive 5b and the sheet portion 5a after thermosetting are integrated and formed as one wavelength conversion member 5, and are caused by a difference in thermal expansion that occurs between the sheet portion 5a and the adhesive 5b.
  • the reflection of light caused by the thermal stress and the refractive index difference can be reduced.
  • the adhesive 5b does not need to contain the fluorescent substance 7, and also in that case, the light output and reliability of the light emitting device 1 can be improved.
  • the adhesive 5b is continuously formed along the outer periphery of the sheet portion 5a in plan view. Then, the adhesive 5b is applied from the side surface of the wavelength conversion member 5 to the inner wall surface 4y of the frame 4 in a cross-sectional view, thereby increasing the area to which the adhesive 5b is applied, and the adhesive 5b.
  • the sheet portion 5a and the frame body 4 can be firmly connected.
  • the connection strength between the wavelength conversion member 5 and the frame body 4 can be improved, and bending of the wavelength conversion member 5 is suppressed. And it can suppress effectively that the optical distance between the light emitting element 3 and the wavelength conversion member 5 fluctuates.
  • the adhesive 5b is provided from the side surface of the sheet portion 5a to the upper surface of the sheet portion 5a. And the adhesive material 5b has coat
  • the surface area of the adhesive material 5b is increased by the resin pool due to the adhesive material 5b attached to the upper surface of the sheet portion 5a, so that the light extracted from the sheet portion 5a through the surface of the adhesive material 5b is increased.
  • the light output around the end of the wavelength conversion member 5 can be improved.
  • a part of the adhesive 5b penetrates into the inside of the frame 4. That is, since the frame body 4 is provided with a large number of pores including the surface of the frame body 4, a part of the adhesive 5 b enters the frame body 4 and is fixed. Then, part of the adhesive material 5b enters and adheres to the frame body 4, so that the wavelength conversion member 5 and the frame body 4 are firmly joined by the anchor effect.
  • the height position of the upper end of the inner wall surface 4 y of the frame body 4 is located at a position lower than the convex surface portion of the wavelength conversion member 5. Therefore, the light emitted from the convex surface of the wavelength conversion member 5 is not easily blocked by the inner wall surface 4y of the frame body 4, and the operational effect is obtained that the light is easily extracted from the wavelength conversion member 5 to the outside of the light emitting device 1.
  • the difference between the height position of the upper end of the inner wall surface 4y and the height position of the uppermost end of the convex surface of the wavelength conversion member 5 is set to 0.01 mm or more and 1 mm or less, for example.
  • the frame 4 By providing the wavelength conversion member 5 that has a peripheral region f2 that is located in the periphery and whose upper portion is located above the height position of the upper surface in the central region f1, in the peripheral region f2 of the wavelength conversion member 5, the frame 4
  • the light-emitting element 3 or the phosphor that travels to the end of the sheet portion 5a while being diffusely reflected in the light reflected from the inner peripheral surface, the light from the phosphor 7 disposed immediately below the peripheral region f2, and the sheet portion 5a. 7 can be efficiently radiated to the outside of the light emitting device 1.
  • the inner peripheral surface of the frame 4 is a diffuse reflection surface
  • the incident angle from the peripheral region f2 to the outside of the light emitting device 1 can be reduced in the light diffusely reflected by the inner peripheral surface of the frame 4. Therefore, the light reflected by the peripheral region f2 can be reduced.
  • the upper portion of the peripheral region f2 is a convex surface
  • the sheet portion 5a is reflected while light is radiated by the phosphor 7 arranged immediately below the peripheral region f2 of the wavelength conversion member 5, and further the light is diffusely reflected in the sheet portion 5a. It is possible to efficiently emit light from the phosphor 7 that travels to the end portion toward the outside via the convex surface, and to improve the light output in the peripheral region f2.
  • the incident angle from the convex surface to the outside of the light emitting device 1 in the light radiated in the convex direction among the light radiated in all directions from the phosphor 7 arranged in the peripheral region f2 can be reduced.
  • the reflected light can be reduced.
  • the central region f1 Since the central region f1 has a flat upper surface, unlike the convex surface, the light from the light emitting element 3 traveling around the imaginary line connecting the light emitting element 3 and the central portion of the central region f1 is transmitted from the central region f1. The incident angle becomes smaller with respect to the upper surface, and is less likely to be reflected by the upper surface of the central region f1. Furthermore, since the thickness of the wavelength conversion member 5 in the central region f1 is thinner than that in the peripheral region f2, light emitted from the light emitting element 3 and the phosphor 7 disposed immediately below the central region f1 is emitted from the light emitting device 1. Can be efficiently radiated to the outside.
  • the light emitting device 1 can adjust the light emission direction and the light output between the central region f1 and the peripheral region f2. As a result, the light emitted immediately above the light emitting element 3 and the light emitted from the phosphor 7 disposed in the central region f1 are efficiently emitted outside the light emitting device 1 through the central region f1.
  • Light from the light emitting element 3 and the phosphor 7 that travels to the portion is efficiently radiated to the outside of the light emitting device 1 through the peripheral region f2. Therefore, the light emitting device 1 has an effect of improving the light emission efficiency by the above configuration.
  • the convex surface of the wavelength conversion member 5 is formed in an annular shape surrounding the central region f1 in plan view, so that the light emitting device 1 is in a plan view with the central region f1.
  • Light can be emitted to the outside with a light intensity that is rotationally symmetric with respect to an imaginary line that connects the central portion of the light emitting element 3.
  • the light emitting device 1 has the maximum illuminance on the virtual line on the irradiation surface, and can realize a rotationally symmetric illuminance distribution with respect to the virtual line. That is, the light-emitting device 1 has an effect of being able to suppress the uneven illuminance distribution on the irradiation surface, the shadow on the irradiation surface, and the irradiation unevenness.
  • the central region f1 of the wavelength conversion member 5 is positioned at a position overlapping at least the light emitting element 3 in a plan view, so that the light is emitted directly from the light emitting element 3.
  • the incident light with respect to the upper surface of the central region f1 has a small incident angle, and has the effect of being efficiently radiated to the outside through the central region f1.
  • a step 4 a is provided on the upper portion of the frame body 4.
  • the wavelength conversion member 5 is provided from the inner wall surface 4y as the inner side surface of the step 4a to the support surface 4x as the upper surface of the step 4a, the light emitted from the end of the wavelength conversion member 5 has a wavelength The light is reflected in the upper surface direction of the conversion member 5 and can be efficiently taken out of the light emitting device 1, and the wavelength conversion member 5 can be firmly connected to the frame body 4.
  • the substrate 2 is prepared. If the substrate 2 is made of, for example, an aluminum oxide sintered body, an organic binder, a plasticizer, a solvent, or the like is added to and mixed with the raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, or calcium oxide to obtain a mixture. obtain. And a some green sheet is produced from a mixture.
  • the raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, or calcium oxide
  • a high melting point metal powder such as tungsten or molybdenum is prepared, and an organic binder, a plasticizer, a solvent or the like is added to and mixed with the powder to obtain a metal paste. Then, using this metal paste, a metallized pattern serving as a wiring conductor and a metallized pattern for joining the frame body 4 as necessary are printed in a predetermined pattern on the ceramic green sheet serving as the substrate 2, respectively.
  • substrate 2 can be prepared by baking in the state which laminated
  • the frame 4 is prepared.
  • a ceramic material such as aluminum oxide, titanium oxide, zirconium oxide or yttrium oxide is prepared for the frame 4.
  • the mold body of the frame body 4 is filled with a raw material powder in which an organic binder, a plasticizer, a solvent or the like is added and mixed, dried, and then fired, whereby the frame body 4 having a step 4a.
  • a metallized pattern is also formed on the frame 4 as necessary on the surface to which the substrate 2 is bonded.
  • the light emitting element 3 is mounted on the upper surface of the substrate 2 by soldering so as to be electrically connected to the metallized pattern in a region surrounded by the frame 4.
  • a silicone resin is attached to the substrate 2 at a position where the frame 4 is joined so as to surround the light emitting element 3.
  • the frame 4 is mounted on the upper surface of the board
  • a silicone resin is hardened by heating at 150 degreeC, and the frame 4 is joined to the upper surface of the board
  • a silicone resin as the sealing member 6 is filled in the region surrounded by the frame 4 on the substrate 2. At this time, the sealing member 6 does not enter the frame 4. Furthermore, the region surrounded by the frame body 4 is filled with a silicone resin, and for example, by passing a time of 1 minute or longer, a part of the uncured silicone resin is removed from the inner peripheral surface of the frame body 4 into the frame body 4. Infiltrate towards the inside. Thereafter, for example, the silicone resin is heated to a temperature of 150 ° C. or higher to cure the silicone resin, thereby forming the sealing member 6 and sealing the light emitting element 3.
  • a sheet portion 5a to be the wavelength conversion member 5 is prepared.
  • the sheet portion 5a can be produced by mixing a phosphor with an uncured resin and using a sheet molding technique such as a doctor blade method, a die coater method, an extrusion method, a spin coating method, or a dip method.
  • the sheet portion 5a can also be obtained by filling the mold frame with the uncured sheet portion 5a, curing it, and taking it out.
  • the prepared sheet portion 5a is positioned on the step 4a of the frame body 4 and bonded through an adhesive 5b made of the same material as the sheet portion 5a mixed with the phosphor.
  • a resin reservoir is formed around the edge of the upper surface of the sheet portion 5a from the edge of the sheet portion 5a to the upper surface of the frame body 4 through the step 4a of the frame body 4 so as to form a curved convex surface.
  • the uncured adhesive material 5b is allowed to enter the frame body 4 by elapse of time of 1 minute or more.
  • the silicone resin is heated to a temperature of, for example, 150 ° C. or higher and 360 ° C. or lower at which the sealing member 6 is not broken, thereby curing the silicone resin. In this way, the light emitting device 1 can be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

 発光装置1であって、基板2と、基板2上に設けられた発光素子3と、基板2上に発光素子3を取り囲んで設けられた枠体4と、枠体4上に発光素子3を覆って発光素子3と間を空けて設けられた、上面が平らな中央領域f1および中央領域f1の周囲に位置し上部が中央領域f1における上面の高さ位置よりも上方に位置する周辺領域f2を有する波長変換部材5とを備えている。

Description

発光装置
 本発明は、発光素子を備えた発光装置に関するものである。
 近年、発光ダイオード(LED)を用いた発光素子を備えた発光装置の開発が進められている。この発光装置は、消費電力または製品寿命に関して注目されている。また、この発光装置として、発光素子から発せられる光を枠体で反射して波長変換部で特定の波長帯の光に変換して、外部に取り出すものがある(特開2005-228996号公報参照)。かかる発光装置は、基板と、基板上に設けられた発光素子と、基板上に発光素子を取り囲むように設けられた枠体と、枠体上に設けられた波長変換部材とを備えている。なお、特開2005-228996号公報に開示された発光装置では、波長変換部がシート状である。
 本発明の発明者は、発光素子の開発において、外部に取り出される光が発散するのを抑え、特定の方向に光を集めること、および発光効率を向上させることを検討した。特開2005-228996号公報に開示されている技術では、波長変換部の上面および下面が平坦であるため、波長変換部の端部周辺から放射される光が減少してしまう。
 本発明は、波長変換部の端部周辺において外部に取り出される光を集束して、発光効率を向上させることが可能な発光装置を提供することを目的とする。
 本発明の実施形態に係る発光装置は、基板と、前記基板上に設けられた発光素子と、前記基板上に前記発光素子を取り囲んで設けられた枠体とを備えている。また、この発光装置は、前記枠体上に前記発光素子を覆って前記発光素子と間を空けて設けられた、上面が平らな中央領域および前記中央領域の周囲に位置して上部が前記中央領域における上面の高さ位置よりも上方に位置する周辺領域を有する波長変換部材とを備えている。
本発明の一実施形態に係る発光装置の概観を示す断面斜視図である。 本発明の一実施形態に係る発光装置の断面図である。 図2に示す発光装置の一部Aを拡大した拡大断面図である。 本発明の一実施形態に係る発光装置の平面図であって、枠体を示している。
 以下に、添付図面を参照して、本発明に係る発光装置の実施形態を説明する。なお、本発明は以下の実施形態に限定されないものである。
  <発光装置の構成>
 図1は、本発明の一実施形態に係る発光装置の概観を示す斜視図であって、その一部を断面視している。図2は、図1に示す発光装置の断面図である。図3は、図2に示す発光装置の一部Aを拡大した拡大断面図である。図4は、発光装置の平面図であって、波長変換部材、接着部材および封止部材を取り除いた状態を示している。なお、発光装置1は、物体を照らしたり、識別表示したりするのに用いられる。
 発光装置1は、基板2と、基板2上に設けられた発光素子3と、基板2上に発光素子3を取り囲んで設けられた、内周面に囲まれる領域が下部よりも上部が大きくなる傾斜面4sを有する枠体4と、枠体4上に発光素子3を覆って傾斜面4sと間を空けて設けられた、上面が平らな中央領域f1、および中央領域f1の周囲に位置する凸面の周辺領域f2を有する波長変換部材5を備えている。なお、発光素子3は、例えば発光ダイオードであって、半導体を用いたpn接合中の電子と正孔とが再結合することによって、外部に向かって光を放出する。
 基板2は、絶縁性の基板であって、例えば、アルミナまたはムライト等のセラミック材料、あるいはガラスセラミック材料等からなる。または、これらの材料のうち複数の材料を混合した複合系材料から成る。また、基板2は、基板2の熱膨張を調整することが可能な金属酸化物微粒子を分散させた高分子樹脂を用いることができる。
 基板2には、基板2の内外を電気的に導通する配線導体が形成されている。配線導体は、例えばタングステン、モリブデン、マンガンまたは銅等の導電材料からなる。配線導体は、例えば、タングステン等の粉末に有機溶剤を添加して得た金属ペーストを基板2となるセラミックグリーンシートに所定パターンで印刷し、複数のセラミックグリーンシートを積層して焼成することによって得られる。なお、配線導体の表面には、酸化防止のために、例えばニッケルまたは金等の鍍金層が形成されている。また、基板2の上面には、基板2上方に効率よく光を反射させるために、配線導体および鍍金層と間を空けて、例えばアルミニウム、銀、金、銅またはプラチナ等の金属反射層を形成してもよい。
 発光素子3は、基板2上に実装される。発光素子3は、枠体4で囲まれる領域の中心部分に配置される。また、発光素子3は、発光装置1の光出力を大きくするため、枠体4で囲まれる領域に複数配置されてもよい。発光素子3は、基板2上に形成される配線導体の表面に被着する鍍金層上に、例えばろう材または半田を介して電気的に接続される。
 発光素子3は、透光性基体と、透光性基体上に形成される光半導体層とを有している。透光性基体は、有機金属気相成長法または分子線エピタキシャル成長法等の化学気相成長法を用いて、光半導体層を成長させることが可能なものであればよい。透光性基体に用いられる材料としては、例えばサファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、セレン化亜鉛、シリコンカーバイド、シリコンまたは二ホウ化ジルコニウム等を用いることができる。なお、透光性基体の厚みは、例えば50μm以上1000μm以下である。
 光半導体層は、透光性基体上に形成される第1半導体層と、第1半導体層上に形成される発光層と、発光層上に形成される第2半導体層とから構成されている。第1半導体層、発光層および第2半導体層は、例えば、III族窒化物半導体、ガリウム燐またはガリウムヒ素等のIII-V族半導体、あるいは、窒化ガリウム、窒化アルミニウムまたは窒化インジウム等のIII族窒化物半導体などを用いることができる。なお、第1半導体層の厚みは、例えば1μm以上5μm以下であって、発光層の厚みは、例えば25nm以上150nm以下であって、第2半導体層の厚みは、例えば50nm以上600nm以下である。また、このように構成された発光素子3は、例えば370nm以上420nm以下の波長範囲の励起光を発することができる。
 枠体4は、セラミック材料から成り、基板2の上面に積層されて、例えば樹脂等を介して接続されている。枠体4は、基板2上の発光素子3を取り囲むように設けられている。なお、平面視して、枠体4の内壁面の形状を円形とすると、発光装置1を平面視して、円形に形成された枠体4の内壁面の中心部から基板2の上面に対して垂直方向に延びる仮想線(図示せず)に対し、回転対称の配光分布で発光素子3が発光する光を枠体4の内壁面で反射させることができる。よって、発光素子3からの光は、波長変換部材5の一部に集中することを抑制することがき、発光素子3からの光を波長変換部材5で効率よく波長変換することができる。
 また、枠体4は、例えば酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等のセラミック材料を所望の形状に形成して焼結された多孔質材料から構成されている。枠体4を多孔質材料から構成した場合は、発光素子3からの光が、多孔質材料から成る枠体4の表面で拡散して反射される。よって、発光素子3から発せられ、枠体4の表面で反射される光は、波長変換部材5の一部に集中することなく、波長変換部材5の下面から全面に入射される。よって、枠体4の表面は、拡散反射面である方がよい。その結果、波長変換部材5は、発光素子3からの光が集中して波長変換部材5の一部が温度上昇するのを抑えることができる。そして、波長変換部材5が温度上昇による熱によって波長変換効率が低下するのを抑制することができる。
 また、枠体4で囲まれる領域は、下部から上部に向かって径が大きくなる。そして、枠体4の内周面は、基板2の上面に対して傾斜している。枠体4は、内周面に囲まれる領域が下部よりも上部が大きくなる傾斜面4sを有している。枠体4の傾斜面4sの傾斜角度は、基板2の上面に対して例えば55度以上70度以下の角度に設定されている。
 また、枠体4の上端内側には段差4aが設けられている。枠体4の段差4aは、波長変換部材5を支持する機能を有している。段差4aは、枠体4の上部の一部を内周に沿って内側に向けて切り欠いたものであって、枠体4の内周面を一周するように連続して設けられており、波長変換部材5の端部を全周にわたって支持することができる。
 段差4aにおける枠体4の内周面は、波長変換部材5の下面と当接する支持面4x、および波長変換部材5の側面の一部と当接する内壁面4yを有している。段差4aの個所における枠体4の内周面は、図2または図3に示すように、枠体4に波長変換部材5を支持した状態では、波長変換部材5の下面の端部と対向する個所が支持面4xに相当する。そして、支持面4xは、平面方向の長さが、例えば0.2mm以上2mm以下に設定されている。また、枠体4に波長変換部材5を支持した状態では、波長変換部材5の側面と対向する個所が内壁面4yに相当する。そして、内壁面4yの上下方向の長さが、例えば0.2mm以上2.6mm以下に設定されている。
 枠体4で囲まれる領域に、光透過性の封止部材6が設けられている。封止部材6は、発光素子3を封止するとともに、発光素子3から発せられる光を透過させる機能を備えている。封止部材6は、枠体4で囲まれる領域であって段差4aの高さ位置よりも低い位置まで充填されてもよい。また、封止部材6は、枠体4で囲まれる領域であって支持面4xの高さ位置以上まで充填されてもよく、発光素子3からの光は、封止部材6および波長変換部材5を介して効率よく発光装置1の外部に放射することができる。なお、封止部材6には、例えばシリコーン樹脂、アクリル樹脂またはエポキシ樹脂等の透光性の絶縁樹脂が用いられる。なお、封止部材6の熱伝導率は、例えば、0.14W/(m・K)以上0.21W/(m・K)以下に設定されている。
 枠体4は多孔質材料から構成されており、枠体4は枠体4の表面を含めて多数の気孔が設けられているので、封止部材6の一部が枠体4の表面から内部の気孔に浸入して固定される。そして、封止部材6の一部が枠体4内に浸入して固着することで、アンカー効果によって、封止部材6と枠体4とが強固に接合される。ここで、封止部材6の一部が枠体4の内周面から枠体4の内部に浸入している浸入領域は、枠体4の内周面の全周にわたって連続して設けられている。浸入領域は、枠体4の内周面から枠体4の内部に向かって、断面視して例えば0.5mm以上2mm以下に設定されている。浸入領域に浸入した封止部材6の含浸量は、例えば3mm以上180mm以下に設定されている。
 発光素子3が発した熱は、封止部材6を介して浸入領域にまで伝わる。そして、浸入領域から枠体4内に伝わり、気孔が多数存在する枠体4内を介して枠体4の側面から外部に向かって放熱することができる。その結果、封止部材6内に熱がこもって発光素子3の電気的特性や発光効率が変化するのを抑制することができ、所望する量の光を発光素子3から波長変換部材5に向かって放射することができる。なお、封止部材6の屈折率は、例えば1.4以上1.6以下である。
 波長変換部材5は、発光素子3の発する光を吸収し、発光素子3とは異なる波長スペクトルを有する光を放射する機能を有している。波長変換部材5は、発光素子3から発せられる光が内部に入射して、内部に含有される蛍光体7が励起されて、蛍光体7の材料物性に依存した波長スペクトルからなる光を発するものである。
 波長変換部材5は、例えばフッ素樹脂、シリコーン樹脂、アクリル樹脂もしくはエポキシ樹脂等の透光性の絶縁樹脂、または透光性のガラスからなり、その絶縁樹脂またはガラスの中やそれらの表面に、例えば430nm以上490nm以下の蛍光を発する青色蛍光体、例えば500nm以上560nm以下の蛍光を発する緑色蛍光体、例えば540nm以上600nm以下の蛍光を発する黄色蛍光体、例えば590nm以上700nm以下の蛍光を発する赤色蛍光体を含有したり付着させたりしている。波長変換部材5として透光性ガラスが用いられる場合には、発光装置1の気密性を向上させることができる。
 また、蛍光体7は、波長変換部材5中に均一に分散するようにしている。なお、波長変換部材5の熱伝導率は、例えば0.1W/(m・K)以上0.8W/(m・K)以下に設定されている。波長変換部材5の熱膨張率は、例えば0.8×10-5/K以上8×10-5/K以下に設定されている。波長変換部材5の屈折率は、例えば1.3以上1.6以下に設定されている。例えば、波長変換部材5の材料の組成比を調整することで、波長変換部材5の屈折率を調整することができる。
 波長変換部材5は、枠体4上に支持されているとともに、発光素子3および封止部材6と間を空けて設けられている。なお、波長変換部材5は、封止部材6と密着して、または接着して設けられてもよい。また、波長変換部材5の端部の一部は、枠体4の支持面4x上に位置しており、波長変換部材5の側面の一部が枠体4の内壁面4yによって取り囲まれている。
 波長変換部材5は、枠体4上で発光素子3を覆って発光素子3と間を空けて設けられている。波長変換部材5は、上面が平らな中央領域f1、および中央領域f1の周囲に位置して上部が中央領域f1における上面の高さ位置よりも上方に位置する周辺領域f2を有している。周辺領域f2は、上部が凸面である。波長変換部材5は、平面視して円形状に設定されている。中央領域f1は、平面透視して、発光素子3と重なる箇所に設けられている。中央領域f1は、円形状であって、周辺領域f2は、環状に設定されている。中央領域f1は、平面視して、直径が8mm以下であって、周辺領域f2は、平面視して、外径が10mm以下であって、内径が8mm以上である。なお、中央領域f1の直径と周辺領域f2の内径とは一致している。
 波長変換部材5は、中央領域f1の上下方向の厚みが、例えば0.3mm以上3mm以下に設定されており、且つ中央領域f1における上下方向の厚みが一定に設定されている。ここで、厚みが一定とは、厚みの差が0.5μm以下のものを含む。波長変換部材5の中央領域f1の上下方向の厚みを一定にすることにより、中央領域f1直下における波長変換部材5内で励起される光の量を一様になるように調整することができ、波長変換部材5における輝度むらを抑制することができる。また、波長変換部材5は、平面視にて中央領域f1と発光素子3の中央部とが一致するように設けられてもよい。その結果、発光装置1は、中央領域f1から放射される光を中央領域f1の中央部と発光素子3の中央部とを結ぶ仮想線に対して回転対称の光強度および配光分布で外部に放射することができる。よって、発光装置1は、照射面における照度分布の偏り、照射面における陰影、および照射むらを抑制することができる。
 周辺領域f2は、図2および図3に示すように、断面視して、上に凸となる凸面に設定されている。発光素子3から発せられた光のうち、枠体4の傾斜面4sに進行した光の一部は、図3に示すように、枠体4の傾斜面4sで反射して周辺領域f2の直下の波長変換部材5に向かって進行する。周辺領域f2における波長変換部材5は、上に凸となっており、枠体4の傾斜面4sで反射された発光素子3からの光、および周辺領域f2の直下に配置された蛍光体7からの光が、シート部5a内を乱反射しながらシート部5aの端部まで進行する。そして、その光はシート部5aの側面および端部上から接着材5bに入射され、周辺領域f2の凸面では反射され難く、発光装置1の外部に効率よく放射される。
 凸面は、上方向に向かって曲面状であることが好ましい。枠体4の傾斜面4sで反射された発光素子3からの光、および周辺領域f2の直下に配置された蛍光体7からの光、さらにはシート部5a内を乱反射しながらシート部5aの端部まで進行する発光素子3や蛍光体7からの光は、周辺領域f2の凸面でより反射され難くなる。また、周辺領域f2における波長変換部材5は、上に凸となっており、下方から進入してきた光を集束して、さらに外部に進行する光を広がらせずに、所望の照射面に集中させることができる。なお、接着材5bの凸面は、発光装置1を平面視して頂部がシート部5aの端部に重なる位置に設けられることが好ましい。これにより、接着材5bは、枠体4の傾斜面4sで反射された発光素子3からの光、および周辺領域f2の直下に配置された蛍光体7からの光、さらにはシート部5a内を乱反射しながらシート部5aの端部まで進行する発光素子3や蛍光体7からの光を、凸面を介して発光装置1の外部に効率よく取り出すことができる。
 枠体4の段差4a上に、波長変換部材5が波長変換部材5の一部を介して固定されている。波長変換部材5は、上面および下面が平坦なシート状のシート部5aが接着材5bを介して枠体4に接着されて、接着材5bが固化することによって形成されている。ここで、波長変換部材5の一部である、熱硬化前の接着材5bは、シート部5aを枠体4に固着するものである。接着材5bは、シート部5aの端部上から枠体4の段差4aを介して、枠体4の上面にかけて設けられている。これにより、シート部5aは、接着材5bを介してより強固に枠体4に接着固定されるとともに、段差4aを介した発光装置1内への浸水を抑制することができる。
 また、接着材5bは、シート部5aの端部上から枠体4の段差4a内に配置されるように設けられてもよい。これにより、接着材5bは、内壁面4y側の端部が内壁面4yによって固定されることから、接着材5bが水平方向に熱膨張することが抑制され、接着材5bが枠体4から剥がれることを抑制できるとともに、接着材5bの内壁面4y側の端部が変形することを抑制できることから、シート部5aの側面および端部上から接着材5bを介して発光装置1の外部に光を所望の効率で放射することができる。なお、接着材5bは、シート部5aの端部上から段差4aの上端部まで充填されるように設けられてもよい。これにより、シート部5aは、接着材5bを介してより強固に枠体4に接着固定されるとともに、前述の作用効果を奏することができる。
 また、接着材5bは、発光装置1を平面視して、中央領域f1側の端部が枠体4の傾斜面4sと重なるように設けられてもよい。これにより、枠体4の傾斜面4sで反射された発光素子3からの光は、周辺領域f2の上面を介して発光装置1の外部に効率よく取り出される。
 接着材5bは、シート部5aと同じ材料である。その結果、熱硬化後の接着材5bとシート部5aとは、一体化して1つの波長変換部材5として形成されるとともに、シート部5aと接着材5bとの間で生じる、熱膨張差に起因した熱応力や屈折率差に起因した光の反射を低減することができる。なお、接着材5bは、蛍光体7が含有されていなくてもよく、その場合にも発光装置1の光出力や信頼性を向上することができる。
 接着材5bは、平面視してシート部5aの外周に沿って連続して形成されている。そして、接着材5bは、断面視して、波長変換部材5の側面から枠体4の内壁面4yにまで被着することで、接着材5bが被着する面積を大きくし、接着材5bを介してシート部5aと枠体4とを強固に接続することができる。その結果、波長変換部材5と枠体4との接続強度を向上させることができ、波長変換部材5の撓みが抑制される。そして、発光素子3と波長変換部材5との間の光学距離が変動するのを効果的に抑制することができる。
 また、接着材5bは、シート部5aの側面からシート部5aの上面にかけて設けられている。そして、接着材5bは、シート部5aの側面の上端を被覆している。さらに、シート部5aの上面に被着している接着材5bは、上方に突出して膨らむ樹脂溜まりを設けて周囲よりも厚みを大きくすることで、枠体4とシート部5aとの接続強度を向上させることができるとともに、発光装置1内への浸水を抑制することができる。また、シート部5aの上面に被着している接着材5bによる樹脂溜まりによって接着材5bの表面積が増加することにより、シート部5aから接着材5bの表面を介して外部に取り出される光が増加し、波長変換部材5の端部周辺における光出力を向上させることができる。
 また、接着材5bは、一部が枠体4の内部にまで浸入している。即ち、枠体4は、枠体4の表面を含めて多数の気孔が設けられているため、接着材5bの一部が枠体4内に浸入して固定される。そして、接着材5bの一部が枠体4内に浸入して固着することで、アンカー効果によって、波長変換部材5と枠体4とが強固に接合されている。
 また、枠体4の内壁面4yの上端の高さ位置が、波長変換部材5の凸面の箇所よりも低い個所に位置している。そのため、波長変換部材5の凸面から放射される光が枠体4の内壁面4yで遮られ難くなり、波長変換部材5から発光装置1の外部に光が取り出されやすくなるという作用効果を奏する。なお、内壁面4yの上端の高さ位置と、波長変換部材5の凸面の最上端の高さ位置との差は、例えば0.01mm以上1mm以下に設定されている。
 本発明の一実施形態に係る発光装置によれば、枠体4上に発光素子3を覆って発光素子3と間を空けて設けられた、上面が平らな中央領域f1と、中央領域f1の周囲に位置し上部が中央領域f1における上面の高さ位置よりも上方に位置する周辺領域f2を有する、波長変換部材5を備えることで、波長変換部材5の周辺領域f2において、枠体4の内周面で反射した光、および周辺領域f2の直下に配置された蛍光体7からの光、さらにはシート部5a内を乱反射しながらシート部5aの端部まで進行する発光素子3や蛍光体7からの光を効率よく発光装置1の外部に放射させることができる。
 また、枠体4の内周面が拡散反射面である場合には、枠体4の内周面で拡散反射される光における、周辺領域f2から発光装置1の外部への入射角を小さくできることから、周辺領域f2で反射される光を低減できる。さらに、周辺領域f2の上部を凸面とした場合は、波長変換部材5の周辺領域f2の直下に配置される蛍光体7によって放射される光、さらにはシート部5a内を乱反射しながらシート部5aの端部まで進行する蛍光体7からの光を、凸面を介して外部に向かって効率よく放出することができ、周辺領域f2における光出力を向上させることができる。即ち、周辺領域f2に配置される蛍光体7から全方向に放射される光のうち、凸面方向に放射される光における、凸面から発光装置1の外部への入射角を小さくできることから、凸面で反射される光を低減できる。
 また、中央領域f1は上面が平坦であるため、凸面とは異なり、発光素子3と中央領域f1の中央部とを結ぶ仮想線の周囲を進行する発光素子3からの光は、中央領域f1の上面に対して入射角が小さくなり、中央領域f1の上面で反射され難くなる。さらに、中央領域f1における波長変換部材5の厚さは、周辺領域f2と比べて薄いことから、発光素子3および中央領域f1の直下に配置される蛍光体7から放射される光を発光装置1の外部に効率よく放射させることができる。よって、発光装置1は、中央領域f1と周辺領域f2とで光の出射方向や光出力を調整することができる。その結果、発光素子3から直上に放射される光、および中央領域f1に配置される蛍光体7から放射される光は、中央領域f1を介して効率よく発光装置1の外部に放射されるとともに、発光素子3から枠体4の内周面で反射される光、および周辺領域f2に配置される蛍光体7から放射される光、さらにはシート部5a内を乱反射しながらシート部5aの端部まで進行する発光素子3や蛍光体7からの光は、周辺領域f2を介して効率よく発光装置1の外部に放射される。よって、発光装置1は、上記の構成によって発光効率が向上するという作用効果を奏する。
 また、本実施形態に係る発光装置1は、波長変換部材5の凸面は、平面視して、中央領域f1を取り囲んだ環状にすることで、発光装置1は、平面視にて中央領域f1と発光素子3の中央部とを結ぶ仮想線に対して回転対称となる光強度で外部に光を放射することができる。その結果、発光装置1は、照射面における仮想線上の照度が最大となり、仮想線に対して回転対称の照度分布を実現できる。即ち、発光装置1は、照射面における照度分布の偏り、照射面における陰影、および照射むらを抑制することができるという作用効果を奏する。
 また、本実施形態に係る発光装置1は、波長変換部材5の中央領域f1は、平面視して、少なくとも発光素子3と重なる箇所に位置していることで、発光素子3から直上に放射される光は、中央領域f1の上面に対する入射角が小さくなり、中央領域f1を介して効率よく外部に放射されるという作用効果を奏する。
 本実施形態に係る発光装置1は、枠体4の上部には、段差4aが設けられている。そして、波長変換部材5が段差4aの内側の側面としての内壁面4yから段差4aの上面としての支持面4xにかけて設けられていることで、波長変換部材5の端部から放射される光は波長変換部材5の上面方向に反射され、発光装置1の外部に効率的に取り出すことができるとともに、波長変換部材5を強固に枠体4に接続することができる。
 なお、本発明は上述の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
  <発光装置の製造方法>
 ここで、図1に示す発光装置1の製造方法を説明する。まず、基板2を準備する。基板2が、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム、酸化珪素、酸化マグネシウムまたは酸化カルシウム等の原料粉末に、有機バインダー、可塑剤または溶剤等を添加混合して混合物を得る。そして、混合物から複数のグリーンシートを作製する。
 また、タングステンまたはモリブデン等の高融点金属粉末を準備し、この粉末に有機バインダー、可塑剤または溶剤等を添加混合して金属ペーストを得る。そして、この金属ペーストを用いて、基板2となるセラミックグリーンシートに配線導体となるメタライズパターンおよび必要に応じて枠体4を接合するためのメタライズパターンをそれぞれ所定パターンで印刷し、それらパターンが印刷された複数のセラミックグリーンシートを積層した状態で焼成することで、基板2を準備することができる。
 一方で、枠体4を準備する。枠体4には、酸化アルミニウム、酸化チタン、酸化ジルコニウムまたは酸化イットリウム等のセラミック材料を準備する。そして、枠体4の型枠内に、原料粉末に有機バインダー、可塑剤または溶剤等が添加混合された混合物を充填して乾燥させた後にこれを焼成することで、段差4aを有する枠体4を準備することができる。この枠体4にも、基板2を接合する面に必要に応じてメタライズパターンを形成しておく。
 次に、基板2の上面であって枠体4で囲まれる領域に、メタライズパターンと電気的に接続されるように発光素子3を半田で実装する。そして、基板2には、発光素子3を取り囲むように枠体4が接合される位置に、シリコーン樹脂を付着する。そして、枠体4を、シリコーン樹脂を介して基板2の上面に載置する。そして、シリコーン樹脂を、150℃で加熱することによって硬化させて、枠体4をシリコーン樹脂によって基板2の上面に接合する。
 そして、基板2上の枠体4で囲まれた領域に、例えば封止部材6としてのシリコーン樹脂を充填する。このときは、枠体4内には、封止部材6が浸入していない。さらに、枠体4で囲まれる領域にシリコーン樹脂を充填して、例えば1分以上の時間を経過させることで、未硬化のシリコーン樹脂の一部を枠体4の内周面から枠体4内の内部に向かって浸入させる。その後、例えば150℃以上の温度にシリコーン樹脂を熱して、シリコーン樹脂を硬化させることで、封止部材6を形成して発光素子3を封止する。
 次に、波長変換部材5となるシート部5aを準備する。シート部5aは、未硬化の樹脂に蛍光体を混合して、例えばドクターブレード法、ダイコーター法、押出し法、スピンコート法またはディップ法等のシート成形技術を用いて作製することができる。また、シート部5aは、未硬化のシート部5aを型枠に充填し、硬化して取り出すことによっても得ることができる。
 そして、準備したシート部5aを枠体4の段差4a上に位置合わせして、蛍光体を混合したシート部5aと同じ材料の接着材5bを介して接着する。このとき、シート部5aの上面の端部周辺に、シート部5aの端部上から枠体4の段差4aを介して、枠体4の上面にかけて、曲面状の凸面となるように樹脂溜まりを設ける。さらに、例えば1分以上の時間を経過させることで、未硬化の接着材5bを枠体4内に浸入させる。その後、例えば150℃以上であって封止部材6が破壊されない360℃以下の温度にシリコーン樹脂を熱して、シリコーン樹脂を硬化させる。このようにして、発光装置1を製造することができる。

Claims (4)

  1.  基板と、
    前記基板上に設けられた発光素子と、
    前記基板上に前記発光素子を取り囲んで設けられた枠体と、
    前記枠体上に前記発光素子を覆って前記発光素子と間を空けて設けられた、上面が平らな中央領域および前記中央領域の周囲に位置して上部が前記中央領域における上面の高さ位置よりも上方に位置する周辺領域を有する波長変換部材とを備えた発光装置。
  2.  請求項1に記載の発光装置であって、
    前記周辺領域は、上部が凸面であり、前記凸面は、平面視して前記中央領域を取り囲んだ環状であることを特徴とする発光装置。
  3.  請求項1または請求項2に記載の発光装置であって、
    前記中央領域は、平面視して前記発光素子と重なる箇所に位置していることを特徴とする発光装置。
  4.  請求項1ないし請求項3のいずれかに記載の発光装置であって、
    前記枠体の上部の内側に段差が設けられており、前記波長変換部材が前記段差の側面から前記段差の上面にかけて設けられていることを特徴とする発光装置。
PCT/JP2015/064856 2014-05-28 2015-05-25 発光装置 WO2015182537A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014109788 2014-05-28
JP2014-109788 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015182537A1 true WO2015182537A1 (ja) 2015-12-03

Family

ID=54698868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064856 WO2015182537A1 (ja) 2014-05-28 2015-05-25 発光装置

Country Status (1)

Country Link
WO (1) WO2015182537A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303373A (ja) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd 発光装置の製造方法と該発光装置を用いた照明器具
WO2011149052A1 (ja) * 2010-05-27 2011-12-01 京セラ株式会社 発光装置および照明装置
JP2013012516A (ja) * 2011-06-28 2013-01-17 Nichia Chem Ind Ltd 発光装置及びその製造方法
WO2013108738A1 (ja) * 2012-01-17 2013-07-25 京セラ株式会社 発光装置
WO2014068804A1 (ja) * 2012-10-31 2014-05-08 パナソニック株式会社 発光装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303373A (ja) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd 発光装置の製造方法と該発光装置を用いた照明器具
WO2011149052A1 (ja) * 2010-05-27 2011-12-01 京セラ株式会社 発光装置および照明装置
JP2013012516A (ja) * 2011-06-28 2013-01-17 Nichia Chem Ind Ltd 発光装置及びその製造方法
WO2013108738A1 (ja) * 2012-01-17 2013-07-25 京セラ株式会社 発光装置
WO2014068804A1 (ja) * 2012-10-31 2014-05-08 パナソニック株式会社 発光装置及びその製造方法

Similar Documents

Publication Publication Date Title
JP5393796B2 (ja) 発光装置
JP5393802B2 (ja) 発光装置
WO2012011528A1 (ja) 発光装置および照明装置
US8624491B2 (en) Light emitting device
JP2012114336A (ja) 発光装置および照明装置
WO2013015140A1 (ja) 照明装置
WO2011125428A1 (ja) 発光装置
JP5748575B2 (ja) 発光装置
JP5683366B2 (ja) 発光装置
JP2014160811A (ja) 発光装置
JP5748599B2 (ja) 照明装置
WO2013035529A1 (ja) 発光装置
JP5717622B2 (ja) 照明装置
JP2012094678A (ja) 発光装置
JP5683352B2 (ja) 発光装置及びこれを用いた照明装置
JP6294119B2 (ja) 発光装置
WO2015182537A1 (ja) 発光装置
JP2013105801A (ja) 発光装置
JP2014123598A (ja) 発光装置
JP5261578B2 (ja) 発光装置
JP2013110297A (ja) 発光装置
WO2011037184A1 (ja) 発光装置
JP2013115150A (ja) 発光装置
JP5806153B2 (ja) 発光装置
JP2013021027A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15799468

Country of ref document: EP

Kind code of ref document: A1