WO2015182174A1 - 蒸発燃料処理装置 - Google Patents

蒸発燃料処理装置 Download PDF

Info

Publication number
WO2015182174A1
WO2015182174A1 PCT/JP2015/053736 JP2015053736W WO2015182174A1 WO 2015182174 A1 WO2015182174 A1 WO 2015182174A1 JP 2015053736 W JP2015053736 W JP 2015053736W WO 2015182174 A1 WO2015182174 A1 WO 2015182174A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
passage
fuel
purge
valve
Prior art date
Application number
PCT/JP2015/053736
Other languages
English (en)
French (fr)
Inventor
智晴 竹澤
晋祐 高倉
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US15/303,540 priority Critical patent/US9885322B2/en
Priority to CN201580019849.6A priority patent/CN106232973B/zh
Priority to JP2016523171A priority patent/JP6299867B2/ja
Publication of WO2015182174A1 publication Critical patent/WO2015182174A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03519Valve arrangements in the vent line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0872Details of the fuel vapour pipes or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • B60K2015/03026Gas tanks comprising a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03256Fuel tanks characterised by special valves, the mounting thereof
    • B60K2015/03296Pressure regulating valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03504Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems
    • B60K2015/03514Fuel tanks characterised by venting means adapted to avoid loss of fuel or fuel vapour, e.g. with vapour recovery systems with vapor recovery means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K2015/03561Venting means working at specific times

Definitions

  • the present invention relates to an evaporative fuel processing apparatus for processing evaporative fuel generated in a fuel tank during refueling using a canister, and more particularly, to an evaporative fuel of a so-called sealed fuel tank provided with a sealing valve between the fuel tank and the canister.
  • the present invention relates to a processing apparatus.
  • the evaporated fuel processing apparatus is: An evaporative fuel passage communicating the fuel tank and the canister; A blocking valve interposed in the evaporative fuel passage and opening and closing the evaporative fuel passage; A purge passage communicating the canister and the intake passage of the internal combustion engine; A first purge control valve interposed in the purge passage and opening and closing the purge passage; A tank opening passage that communicates the position of the purge passage upstream of the first purge control valve and the fuel tank; A second purge control valve interposed in the tank opening passage and opening and closing the tank opening passage; It is configured with.
  • the second purge control valve is opened so that the space in the fuel tank is directly connected to the intake passage of the internal combustion engine. Communicate. Therefore, the evaporated fuel in the fuel tank is introduced into the intake passage of the internal combustion engine without passing through the canister. Therefore, the pressure in the fuel tank can be reduced without increasing the adsorption amount of the canister.
  • the present invention it is possible to reduce the pressure in the fuel tank without increasing the adsorption amount of the canister, and it is possible to keep the adsorption amount of the canister low in preparation for the evaporated fuel from the fuel tank to the canister during refueling. it can.
  • FIG. 1 is a structural explanatory view showing an embodiment of an evaporated fuel processing apparatus according to the present invention.
  • a vehicle (not shown) is equipped with an internal combustion engine 1 and is provided with a sealed fuel tank 2, and a canister 3 is used to process evaporated fuel generated in the fuel tank 2 during refueling.
  • An evaporative fuel processing device is provided.
  • the fuel tank 2 includes a fuel supply pipe portion 5 in which a filler cap 4 is detachably attached to a fuel supply port 5a at the tip, and a fuel pump unit 7 that supplies fuel to the fuel injection device 6 of the internal combustion engine 1. Is contained in the fuel tank 2.
  • the fuel filler port 5a is covered with a fuel lid 8 that is electrically locked in order to limit the opening of the filler cap 4 when the pressure in the fuel tank 2 is high.
  • the fuel lid 8 is unlocked in a state where the pressure in the fuel tank 2 is lowered based on a signal from a lid open switch 9 provided in a driver's seat or the like. Instead of locking the fuel lid 8, the filler cap 4 itself may be locked.
  • the canister 3 has a U-turn channel formed by a synthetic resin case, and is filled with an adsorbent made of activated carbon or the like. At one end in the flow direction of the flow path having a U-turn shape, a charge port 13 serving as an inflow portion for evaporated fuel and a purge port 14 serving as an outflow portion for purge gas containing a fuel component are provided. A drain port 15 for taking in outside air at the time of purging is provided at the other end portion.
  • the charge port 13 is connected to the upper space of the fuel tank 2 through the evaporated fuel passage 16.
  • the tip of the fuel vapor passage 16 on the fuel tank 2 side is connected to the fuel tank via an FLV valve 20 that prevents liquid fuel from overflowing into the fuel vapor passage 16 when the fuel level is high. It communicates with the upper space of 2.
  • a blocking valve 21 for opening and closing the evaporated fuel passage 16 is provided in the middle of the evaporated fuel passage 16. This blocking valve 21 is used for shutting off the canister 3 and the fuel tank 2 and sealing the fuel tank 2 except when refueling, as a general rule, and is a normally closed electromagnetic that closes when no power is supplied. It consists of a valve.
  • the purge port 14 is connected to the intake system of the internal combustion engine 1, for example, the downstream side of the throttle valve 18 of the intake passage 17 via a purge passage 19.
  • the purge passage 19 is provided with a first purge control valve 23 for opening and closing the purge passage 19 in order to control the introduction of purge gas into the internal combustion engine 1.
  • the first purge control valve 23 is closed in order to prohibit the introduction of the purge gas under certain conditions such as when the engine is not warmed up or when the fuel is cut.
  • the first purge control valve 23 is also composed of a normally closed solenoid valve.
  • the drain port 15 is connected to a drain passage 25 whose tip is open to the atmosphere via a filter 24, and a drain cut valve 26 for opening and closing the drain passage 25 is provided in the drain passage 25.
  • the drain cut valve 26 is a normally open solenoid valve that is opened when the power is not supplied.
  • the drain cut valve 26 closes the system at the time of leak diagnosis, and can be closed when, for example, the breakthrough of the canister 3 is detected by some means. Is open.
  • the drain passage 25 is provided with a pressurizing pump 27 that feeds air toward the canister 3 in parallel with the drain cut valve 26.
  • the pressurizing pump 27 and the drain cut valve 26 are integrally configured as a leak diagnosis module 28.
  • a tank opening passage 31 that communicates both is provided.
  • a second purge control valve 32 for opening and closing the tank opening passage 31 is provided in the middle of the tank opening passage 31.
  • the second purge control valve 32 is a normally closed solenoid valve that is closed when not energized.
  • the second purge control valve 32 has a passage area smaller than the passage area of the blocking valve 21. Specifically, the diameter of the port opened and closed by the plunger is smaller in the second purge control valve 32 than in the blocking valve 21.
  • the blocking valve 21 has a sufficiently large passage area so as not to impair smooth lubrication.
  • the blocking valve 21, the first purge control valve 23, the second purge control valve 32, the drain cut valve 26, and the pressurizing pump 27 are various controls (for example, fuel injection amount control, injection timing control) of the internal combustion engine 1.
  • the ignition control is controlled as appropriate by the engine control unit 35 that performs control of the ignition timing, the opening degree of the throttle valve 18 and the like, and as will be described later, the pressure in the tank before the filler cap 4 is opened during refueling, and the adsorption during refueling. Processing, purge processing during engine operation, leak diagnosis of each part of the system, etc. are executed.
  • a tank pressure sensor 36 is attached to the fuel tank 2, and an evaporation line pressure (hereinafter abbreviated as “evaporation line pressure”) sensor in the vicinity of the purge port 14 of the canister 3. 37 is attached.
  • the former tank pressure sensor 36 detects the pressure in the region on the fuel tank 2 side in the system (specifically, the pressure in the upper space of the fuel tank 2) defined by the blocking valve 21 and the second purge control valve 32.
  • the latter evaporation line pressure sensor 33 detects the pressure in the region including the canister 3 in the system surrounded by the blocking valve 21, the second purge control valve 32, the drain cut valve 26, and the first purge control valve 23. .
  • a positive pressure relief valve that opens mechanically when the pressure in the fuel tank 2 becomes abnormally high and a negative pressure relief valve that opens mechanically when the pressure in the fuel tank 2 becomes abnormally low are provided. These relief valves are not shown in FIG. 1, although they can be provided as required.
  • the evaporated fuel processing apparatus of this embodiment is suitable for a hybrid vehicle capable of so-called EV traveling with the internal combustion engine 1 stopped. In this type of vehicle, there is an opportunity for purging the canister 3. Therefore, the adsorption of the evaporated fuel by the canister 3 is limited at the time of refueling.
  • the evaporated fuel generated in the fuel tank 2 with refueling is introduced into the canister 3 and adsorbed by the internal adsorbent.
  • the closing valve 21 is closed. Accordingly, the inside of the fuel tank 2 is kept in a sealed state separated from the canister 3, and the amount of adsorption of the canister 3 does not basically increase or decrease while the internal combustion engine 1 is stopped.
  • the first purge control valve 23 is appropriately opened while the blockade valve 21 is closed, and the fuel component from the canister 3 is opened. Purge is performed. That is, air is introduced from the drain port 15 due to a pressure difference with the intake system of the internal combustion engine 1, and the fuel component purged from the adsorbent 12 by this air passes through the first purge control valve 23 and the intake passage 17 of the internal combustion engine 1. Introduced into Therefore, the amount of adsorption of the canister 3 gradually decreases during the operation of the internal combustion engine 1.
  • the second purge control valve 32 is opened, and the pressure in the fuel tank 2 is adjusted in parallel with the purge of the canister 3. Opening and processing of the evaporated fuel in the fuel tank 2 (direct processing without using the canister 3) are performed.
  • the evaporated fuel in the fuel tank 2 is actively processed by the internal combustion engine 1, so that it remains in the fuel tank 2 during refueling. There is relatively less evaporated fuel.
  • the evaporative fuel in the fuel tank 2 is directly processed by the internal combustion engine 1, the evaporative fuel does not pass through the canister 3, so that the amount of adsorption of the canister 3 does not increase. Further, the pressure in the fuel tank 2 is frequently released during the operation of the internal combustion engine 1, and the increase in pressure is suppressed.
  • the second purge control valve 32 is also used for releasing the pressure in the fuel tank 2 at the start of refueling. That is, during the refueling, the sealing valve 21 is opened as described above. However, when the sealing valve 21 having a large passage area is opened while the pressure in the fuel tank 2 is high, the drain port 15 passes through the canister 3. There is concern that evaporated fuel will blow out. Therefore, in the above embodiment, when the operation of the lid open switch 9 is detected, the second purge control valve 32 is first opened while the drain cut valve 26 is open. As a result, the pressure in the fuel tank 2 is released through the canister 3. When the pressure in the fuel tank 2 approaches the atmospheric pressure, the block valve 21 is opened, and the inside of the fuel tank 2 is opened under the atmospheric pressure.
  • the initial pressure release through the canister 3 is performed slowly to some extent, and the fuel vapor is prevented from being blown through. That is, the pressure release is performed in two stages by the second purge control valve 32 and the blocking valve 21, and a quick pressure release can be realized while suppressing the escape of evaporated fuel.
  • the configuration and control of the individual block valves 21 and the second purge control valve 32 are simplified as compared with the case where the two-stage opening degree control is performed with a single block valve.
  • the second purge control valve 32 that opens when the pressure in the fuel tank 2 is high is smaller in diameter than the block valve 21, so that the thrust force of the solenoid required to open the valve under high pressure is low. There is an advantage that it can be reduced.
  • the layout in the actual vehicle is as follows. Only one pipe is required between the internal combustion engine 1 (intake passage 17) and the canister 3, and this is particularly advantageous when the canister 3 is disposed in the vicinity of the fuel tank 2.
  • the first purge control valve 23 exists downstream of the second purge control valve 32, so that evaporated fuel flows into the intake passage 17 side. There is no.
  • FIG. 2 is an operation explanatory view showing the open / closed state of each valve and the flow of gas in various modes, and based on this, the operation of the above-mentioned evaporated fuel processing device will be more specifically described below. explain.
  • FIG. 2A shows a control mode during refueling.
  • the drain cut valve 26 is opened, the first purge control valve 23 and the second purge control valve 32 are closed, and the blocking valve 21 is closed. Open.
  • the gas containing the evaporated fuel pushed out from the fuel tank 2 with refueling flows to the outside through the canister 3.
  • the evaporated fuel is adsorbed by the canister 3.
  • smooth oil supply is not impaired by using the thing with sufficient aperture
  • FIG. 2B shows a control mode in a state in which the pressure in the fuel tank 2 is released and the evaporated fuel in the fuel tank 2 is directly processed during the operation of the internal combustion engine 1.
  • the process of the evaporated fuel in the fuel tank 2 is performed in parallel with the purge of the canister 3, the drain cut valve 26 is opened, the first purge control valve 23 and the second purge control valve 32. Is opened, and the closing valve 21 is closed. Accordingly, the atmosphere passes through the canister 3 via the drain cut valve 26 and is introduced into the intake passage 17 of the internal combustion engine as purge gas.
  • the evaporated fuel in the fuel tank 2 is introduced into the intake passage 17 through the second purge control valve 32 and the first purge control valve 23. Since the blocking valve 21 is closed, the evaporated fuel does not bypass the canister 3.
  • the second purge control valve 32 is controlled to open during the period shown in FIG. 3 with respect to the opening period of the first purge control valve 23. That is, after a predetermined purge condition is established during operation of the internal combustion engine 1 and the first purge control valve 23 is opened, the second purge control valve 32 is opened after an appropriate delay period ⁇ t1. This is because when the first purge control valve 23 is opened and the second purge control valve 32 is opened in a state where the pressure in the vicinity of the second purge control valve 32 is surely a negative pressure, the backflow of the evaporated fuel is ensured.
  • the delay period ⁇ t1 is determined according to the passage area and the passage length from the first purge control valve 23 to the atmospheric opening through the canister 3, for example, on software Controlled by the timer.
  • the second purge control valve 32 is closed in advance, and after the appropriate delay period ⁇ t2, the first purge control valve 23 is closed. Closes. This is also to ensure that the evaporated fuel from the fuel tank 2 does not go to the canister 3 side.
  • the delay period ⁇ t2 is controlled from the second purge control valve 32 to the first purge control. It is determined according to the passage area and the passage length up to the valve 23, and is controlled by a timer on software, for example. Note that due to the difference in passage length, the closing-side delay period ⁇ t2 is generally shorter than the opening-side delay period ⁇ t1.
  • FIG. 2C shows an operation for releasing the pressure in the fuel tank 2 that is executed immediately before the start of refueling.
  • the drain cut valve 26 is opened, the first purge control valve 23 is closed, and the second purge is performed.
  • the control valve 32 is opened and the blocking valve 21 is closed.
  • the high pressure in the fuel tank 2 is released from the canister 3 to the outside through the second purge control valve 32 having a small passage area.
  • the second purge control valve 32 is closed and the blocking valve 21 (c) is opened, and the state shown in FIG.
  • FIG. 4 is a flowchart showing a control flow of the pressure release operation immediately before the start of refueling.
  • step 1 it is repeatedly determined whether or not the lid open switch 9 has been turned ON. When the lid open switch 9 is turned on, the process proceeds to step 2 where the second purge control valve 32 is opened. If the first purge control valve 23 and the blocking valve 21 are open, they are simultaneously closed in step 2.
  • step 3 it is determined whether or not a predetermined time T1 has elapsed since the lid open switch 9 was turned on. This predetermined time T1 corresponds to a time required to bring the pressure close to the atmospheric pressure to such an extent that no blow-through occurs when the blocking valve 21 is opened when the pressure in the fuel tank 2 is in a high pressure state.
  • step 4 the block valve 21 is opened and the second purge control valve 32 is closed.
  • the pressure in the fuel tank 2 quickly decreases.
  • step 5 the fuel lid 8 is unlocked, and the removal of the filler cap 4 is permitted.
  • the second purge control valve 32 may not be closed in step 4 but may be held in an open state together with the closing valve 21 until the end of refueling.
  • FIG. 2 are operation explanatory views for explaining a leak diagnosis of the evaporated fuel processing apparatus.
  • the inside of the system using the pressurizing pump 27 is shown. Pressure is applied, and the presence or absence of leakage is determined from the presence or absence of a subsequent pressure drop.
  • the blocking valve 21 and the second purge control valve 32 are replaced with the first purge control valve.
  • the pressurizing pump 27 is operated to pressurize the canister 3 side.
  • the system it is also possible to divide the system into two regions, the canister 3 side and the fuel tank 2 side, and sequentially perform each leak diagnosis.
  • a leak diagnosis of the region on the canister 3 side is performed by monitoring the pressure change using the evaporation line pressure sensor 33.
  • the blockade valve 21 is once opened to pressurize the entire system, the blockade valve 21 is closed again, and a leak diagnosis on the fuel tank 2 side is performed by monitoring the pressure change using the tank pressure sensor 36.
  • Example of this invention is not limited to the said Example, A various change is possible.
  • the present invention is not limited to hybrid vehicles, and can be widely applied to vehicles including an internal combustion engine and a fuel tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

 ハイブリッド車両に好適な蒸発燃料処理装置は、燃料タンク(2)とキャニスタ(3)とを連通する蒸発燃料通路(16)と、蒸発燃料通路(16)を開閉する封鎖弁(21)と、キャニスタ(3)と内燃機関(1)の吸気通路(17)とを連通するパージ通路(19)と、パージ通路(19)を開閉する第1パージ制御弁(23)と、パージ通路(19)の第1パージ制御弁(23)よりも上流側の位置と燃料タンク(2)とを連通するタンク開放通路(31)と、タンク開放通路(31)を開閉する第2パージ制御弁(32)と、を備える。キャニスタ(3)のパージ時に、第2パージ制御弁(32)を開くことで、燃料タンク(2)内の蒸発燃料が内燃機関(1)で直接に処理され、キャニスタ(3)の吸着量の増加は生じない。

Description

蒸発燃料処理装置
 この発明は、給油時に燃料タンク内で発生する蒸発燃料をキャニスタを用いて処理する蒸発燃料処理装置に関し、特に、燃料タンクとキャニスタとの間に封鎖弁を備えたいわゆる密閉型燃料タンクの蒸発燃料処理装置に関する。
 車両の燃料タンクで発生する蒸発燃料が外部へ流出することがないように、活性炭等の吸着材を用いたキャニスタに一時的に吸着させ、その後、内燃機関の運転中に、新気の導入によりキャニスタから燃料成分をパージさせて内燃機関の吸気系に導入するようにした蒸発燃料処理装置が従来から広く用いられている。そして、近年では、特許文献1に開示されているように、燃料タンクとキャニスタとを連通する蒸発燃料通路に封鎖弁を備え、基本的に給油時以外はこの封鎖弁を閉じておくことで、燃料タンクを密閉状態に保つようにした形式の蒸発燃料処理装置が種々提案されている。
 上記のような封鎖弁を備えた密閉型燃料タンクの蒸発燃料処理装置にあっては、封鎖弁が閉じられている間に燃料タンク内の圧力が高圧となる懸念があり、特許文献1では、タンク内圧が高圧である場合に、キャニスタのパージ実行中に封鎖弁を開くことで、燃料タンク内圧力を低下させることを提案している。
 しかしながら、特許文献1の技術では、燃料タンク内の圧力を低下させるために封鎖弁を開いた際に燃料タンク内から流れ出る蒸発燃料が、キャニスタを経由して内燃機関の吸気通路へ向かうので、キャニスタの吸着量が少なからず増加する懸念がある。このようにキャニスタの吸着量が増加した状態にあると、車両を停止して給油を行う際に、燃料タンクからキャニスタへ向かう多量の蒸発燃料を十分に吸着しきれなくなってしまう。
特開2004-156499号公報
 この発明に係る蒸発燃料処理装置は、
 燃料タンクとキャニスタとを連通する蒸発燃料通路と、
 この蒸発燃料通路に介装され、該蒸発燃料通路を開閉する封鎖弁と、
 上記キャニスタと内燃機関の吸気通路とを連通するパージ通路と、
 このパージ通路に介装され、該パージ通路を開閉する第1パージ制御弁と、
 上記パージ通路の上記第1パージ制御弁よりも上流側の位置と上記燃料タンクとを連通するタンク開放通路と、
 このタンク開放通路に介装され、該タンク開放通路を開閉する第2パージ制御弁と、
 を備えて構成されている。
 このような構成では、第1パージ制御弁を介してキャニスタからのパージが行われているときに、第2パージ制御弁を開くことで、燃料タンク内の空間が内燃機関の吸気通路に直接に連通する。そのため、燃料タンク内の蒸発燃料がキャニスタを経由することなく内燃機関の吸気通路に導入される。従って、キャニスタの吸着量を増加させることなく燃料タンク内の圧力を低下させることが可能となる。
 この発明によれば、キャニスタの吸着量を増加させることなく燃料タンク内の圧力を低下させることが可能となり、給油時に燃料タンクからキャニスタへ向かう蒸発燃料に備えてキャニスタの吸着量を低く保つことができる。
この発明に係る蒸発燃料処理装置の一実施例を示す構成説明図。 この蒸発燃料処理装置の動作説明図。 第1パージ制御弁と第2パージ制御弁の開弁期間の関係を示すタイムチャート。 給油開始直前の圧力開放動作の制御フローチャート。
 図1は、この発明に係る蒸発燃料処理装置の一実施例を示す構成説明図である。図示せぬ車両に、内燃機関1が搭載されているとともに、密閉型の燃料タンク2が設けられており、給油時に燃料タンク2内で発生した蒸発燃料を処理するために、キャニスタ3を用いた蒸発燃料処理装置が設けられている。上記燃料タンク2は、先端の給油口5aにフィラーキャップ4が着脱可能に装着された給油管部5を備えており、また、内燃機関1の燃料噴射装置6へ燃料を供給する燃料ポンプユニット7が燃料タンク2内部に収容されている。上記給油口5aは、燃料タンク2内の圧力が高い状態でのフィラーキャップ4の開放を制限するために、電気的にロックされるフューエルリッド8で覆われている。このフューエルリッド8は、運転席等に設けられたリッドオープンスイッチ9の信号に基づき、燃料タンク2内の圧力が低下した状態でロック解除される。なお、フューエルリッド8のロックに代えて、フィラーキャップ4自体をロックするようにしてもよい。
 上記キャニスタ3は、合成樹脂製のケースによってUターン形状に流路が形成され、その内部に活性炭等からなる吸着材が充填されたものである。Uターン形状をなす流路の流れ方向の一端部に、蒸発燃料の流入部となるチャージポート13と、燃料成分を含むパージガスの流出部となるパージポート14と、が設けられており、流れ方向の他端部に、パージの際に外気を取り込むためのドレンポート15が設けられている。
 上記チャージポート13は、蒸発燃料通路16を介して燃料タンク2の上部空間に接続されている。なお、この蒸発燃料通路16の燃料タンク2側の先端部は、燃料液面が高い位置にあるときに液体燃料が蒸発燃料通路16内に溢れ出ることを防止するFLVバルブ20を介して燃料タンク2の上部空間に連通している。そして、上記蒸発燃料通路16の通路途中には、該蒸発燃料通路16を開閉する封鎖弁21が設けられている。この封鎖弁21は、原則として給油時以外はキャニスタ3と燃料タンク2との間を遮断して燃料タンク2を密閉状態とするためのものであって、非通電時に閉となる常閉型電磁弁から構成されている。
 上記パージポート14は、内燃機関1の吸気系、例えば吸気通路17のスロットル弁18下流側に、パージ通路19を介して接続されている。上記パージ通路19には、内燃機関1へのパージガスの導入を制御するために該パージ通路19を開閉する第1パージ制御弁23が設けられている。内燃機関1の停止時のほか、未暖機時やフューエルカット時など所定の条件のときには、パージガスの導入を禁止するために、第1パージ制御弁23が閉となる。上記第1パージ制御弁23は、やはり常閉型電磁弁から構成されている。
 上記ドレンポート15には、フィルタ24を介して先端が大気開放されたドレン通路25が接続されており、かつこのドレン通路25に、該ドレン通路25を開閉するドレンカットバルブ26が設けられている。このドレンカットバルブ26は、非通電時に開となる常開型電磁弁から構成されている。このドレンカットバルブ26は、リーク診断の際に系を閉じるほか、例えば、キャニスタ3の破過を何らかの手段で検知した場合などに閉じられ得るが、基本的には開状態となってドレン通路25を開放している。また、上記ドレン通路25には、上記ドレンカットバルブ26と並列に、キャニスタ3へ向けて大気を圧送する加圧用ポンプ27が設けられている。この加圧用ポンプ27と上記ドレンカットバルブ26は、リーク診断モジュール28として一体に構成されている。
 上記蒸発燃料通路16と上記パージ通路19との間、詳しくは、蒸発燃料通路16の封鎖弁21よりも燃料タンク2側の位置とパージ通路19の第1パージ制御弁23よりも上流側(つまりキャニスタ3側)の位置との間に、両者を連通するタンク開放通路31が設けられている。そして、このタンク開放通路31の通路途中には、該タンク開放通路31を開閉する第2パージ制御弁32が設けられている。この第2パージ制御弁32は、非通電時に閉となる常閉型電磁弁から構成されている。ここで、第2パージ制御弁32としては、その通路面積が封鎖弁21の通路面積よりも小さなものが用いられる。具体的には、プランジャでもって開閉されるポートの口径が、封鎖弁21に比較して第2パージ制御弁32の方が小径となっている。なお、封鎖弁21は、円滑な給油を損なわないように、十分に大きな通路面積を有している。
 上記の封鎖弁21、第1パージ制御弁23、第2パージ制御弁32、ドレンカットバルブ26、および加圧用ポンプ27は、内燃機関1の種々の制御(例えば、燃料噴射量制御、噴射時期制御、点火時期制御、スロットル弁18の開度制御など)を行うエンジンコントロールユニット35によって適宜に制御され、後述するように、給油に際してのフィラーキャップ4開放前のタンク内圧力の低減、給油時の吸着処理、機関運転中のパージ処理、系の各部のリーク診断、などが実行される。また、系内の圧力を検出する圧力センサとして、燃料タンク2にタンク圧センサ36が取り付けられているとともに、キャニスタ3のパージポート14近傍にエバポレーションライン圧(以下、エバポライン圧と略記する)センサ37が取り付けられている。前者のタンク圧センサ36は、封鎖弁21および第2パージ制御弁32により画成される系内の燃料タンク2側の領域の圧力(具体的には燃料タンク2の上部空間の圧力)を検出し、後者のエバポライン圧センサ33は、封鎖弁21と第2パージ制御弁32とドレンカットバルブ26と第1パージ制御弁23とによって囲まれた系内のキャニスタ3を含む領域の圧力を検出する。
 なお、燃料タンク2内の圧力が異常に高圧になったときに機械的に開く正圧側リリーフ弁および燃料タンク2内の圧力が異常に低圧になったときに機械的に開く負圧側リリーフ弁を必要に応じて設けることができるが、図1には、これらのリリーフ弁は図示していない。
 上記のように構成された蒸発燃料処理装置は、基本的に、給油時に発生する蒸発燃料のみがキャニスタ3に吸着され、給油時以外は、キャニスタ3による蒸発燃料の吸着は行われない。すなわち、この実施例の蒸発燃料処理装置は、内燃機関1を停止させた状態でのいわゆるEV走行が可能なハイブリッド車両に好適なものであり、この種の車両では、キャニスタ3のパージの機会が少なくなることから、キャニスタ3による蒸発燃料の吸着を給油時に限定しているのである。
 給油中は、ドレンカットバルブ26が開いている状態において、第1パージ制御弁23および第2パージ制御弁32が閉、封鎖弁21が開、となり、燃料タンク2内とキャニスタ3のチャージポート13とが連通状態となる。従って、給油に伴って燃料タンク2内で発生した蒸発燃料は、キャニスタ3に導入され、内部の吸着材に吸着される。
 そして、給油が終わると、封鎖弁21が閉となる。従って、燃料タンク2内がキャニスタ3から分離した密閉状態に保たれ、内燃機関1の停止中は、キャニスタ3の吸着量は基本的に増減しない。
 その後、車両の運転が開始され、内燃機関1が所定の運転状態となると、封鎖弁21を閉とした状態のまま、第1パージ制御弁23が適宜に開かれ、キャニスタ3からの燃料成分のパージが行われる。つまり、内燃機関1の吸気系との圧力差によってドレンポート15から大気が導入され、この大気により吸着材12からパージされた燃料成分が、第1パージ制御弁23を通して内燃機関1の吸気通路17へと導入される。従って、内燃機関1の運転中に、キャニスタ3の吸着量は徐々に減少する。ここで、上記実施例では、第1パージ制御弁23を介したキャニスタ3のパージ中に、第2パージ制御弁32が開となり、キャニスタ3のパージと並行して、燃料タンク2内の圧力の開放ならびに燃料タンク2内の蒸発燃料の処理(キャニスタ3を使用しない直接的な処理)が行われる。
 このように上記の蒸発燃料処理装置では、内燃機関1の運転中は、燃料タンク2内の蒸発燃料が内燃機関1でもって積極的に処理されるため、給油時に燃料タンク2内に残存している蒸発燃料が比較的少なくなる。そして、この内燃機関1による燃料タンク2内の蒸発燃料の直接的な処理の際には、蒸発燃料がキャニスタ3を経由することがないので、キャニスタ3の吸着量の増加は生じない。また、内燃機関1の運転中に燃料タンク2内の圧力が頻繁に開放されることとなり、その高圧化が抑制される。
 上記第2パージ制御弁32は、さらに、給油開始時の燃料タンク2内の圧力の開放にも利用される。すなわち、給油中は上述のように封鎖弁21が開となるが、燃料タンク2内の圧力が高圧となっている状態で通路面積の大きな封鎖弁21が開くと、キャニスタ3を通してドレンポート15から外部へ蒸発燃料が吹き抜ける懸念がある。そのため、上記実施例では、リッドオープンスイッチ9の操作を検出したときに、ドレンカットバルブ26が開いている状態で、まず第2パージ制御弁32が開弁する。これにより燃料タンク2内の圧力がキャニスタ3を通して開放される。そして、燃料タンク2内の圧力が大気圧に近付いた状態において、封鎖弁21が開となり、燃料タンク2内が大気圧下に開放される。第2パージ制御弁32の通路面積ないし口径は封鎖弁21よりも小さいので、キャニスタ3を通した初期の圧力の開放がある程度緩慢に行われ、蒸発燃料の吹き抜けが抑制される。つまり、第2パージ制御弁32と封鎖弁21とによって圧力の開放が2段階に行われることになり、蒸発燃料の吹き抜けを抑制しつつ速やかな圧力開放を実現できる。なお、単一の封鎖弁でもって2段階の開度制御を行う場合に比較して、上記実施例では、個々の封鎖弁21および第2パージ制御弁32の構成ならびに制御が単純となる。しかも、燃料タンク2内の圧力が高圧である状態で開弁する第2パージ制御弁32は、封鎖弁21に比較して口径が小さいので、高圧下での開弁に必要なソレノイドの推力が少なくて済む利点がある。
 また上記実施例では、第2パージ制御弁32と第1パージ制御弁23とが燃料タンク2と吸気通路17との間に直列に配置された構成であるので、実際の車両内でのレイアウトとして、内燃機関1(吸気通路17)とキャニスタ3との間の配管が1本で済み、特にキャニスタ3を燃料タンク2の近傍に配置する場合に有利となる。また、上述した給油開始時の燃料タンク2内の圧力の開放の際に、第2パージ制御弁32の下流に第1パージ制御弁23が存在するので、吸気通路17側へ蒸発燃料が流れ込むことがない。
 次に、図2は、種々のモードにおける各弁の開閉状態やガスの流れを示した動作説明図であって、以下、これに基づいて、上記の蒸発燃料処理装置の動作をさらに具体的に説明する。
 図2の(a)は、給油中の制御モードを示しており、上述したように、ドレンカットバルブ26が開、第1パージ制御弁23および第2パージ制御弁32が閉、封鎖弁21が開、となる。給油に伴って燃料タンク2から押し出された蒸発燃料を含むガスは、キャニスタ3を経て外部へ流れる。蒸発燃料は、キャニスタ3に吸着される。なお、封鎖弁21として十分な口径のものを用いることで、円滑な給油を損なうことがない。
 図2の(b)は、内燃機関1の運転中に、燃料タンク2内の圧力の開放ならびに燃料タンク2内の蒸発燃料の直接的な処理を行っている状態の制御モードを示している。上述したように、この燃料タンク2内の蒸発燃料の処理は、キャニスタ3のパージに並行して行うものであり、ドレンカットバルブ26が開、第1パージ制御弁23および第2パージ制御弁32が開、封鎖弁21が閉、となる。従って、大気がドレンカットバルブ26を介してキャニスタ3を通過し、パージガスとなって内燃機関の吸気通路17へ導入される。同時に、燃料タンク2内の蒸発燃料が第2パージ制御弁32および第1パージ制御弁23を通して吸気通路17へ導入される。封鎖弁21は閉じているので、蒸発燃料がキャニスタ3へ迂回することはない。
 ここで、第2パージ制御弁32は、第1パージ制御弁23の開弁期間に対し、図3に示すような期間で開弁するように制御される。すなわち、内燃機関1の運転中に所定のパージ条件が成立して第1パージ制御弁23が開弁した後、適宜な遅れ期間Δt1の後、第2パージ制御弁32が開弁する。これは、第1パージ制御弁23を開いてから第2パージ制御弁32付近の圧力が確実に負圧となっている状態で第2パージ制御弁32を開くことで、蒸発燃料の逆流を確実に防止するようにしたものであって、遅れ期間Δt1は、第1パージ制御弁23からキャニスタ3を経由して大気開口部に至るまでの通路面積および通路長に応じて決定され、例えばソフトウェア上のタイマによって制御される。
 また、キャニスタ3のパージ完了あるいはパージ条件からの逸脱によりパージを終了する際には、逆に第2パージ制御弁32が先行して閉じ、適宜な遅れ期間Δt2の後、第1パージ制御弁23が閉弁する。これは、やはり、燃料タンク2からの蒸発燃料がキャニスタ3側へ向かわないないようにすることを確実にするためのものであり、遅れ期間Δt2は、第2パージ制御弁32から第1パージ制御弁23に至るまでの通路面積および通路長に応じて決定され、例えばソフトウェア上のタイマによって制御される。なお、通路長の差異により、閉じ側の遅れ期間Δt2は、一般に開き側の遅れ期間Δt1よりも短いものとなる。
 図2の(c)は、給油開始直前に実行される燃料タンク2内の圧力開放のための動作を示しており、ドレンカットバルブ26が開、第1パージ制御弁23が閉、第2パージ制御弁32が開、封鎖弁21が閉、となる。燃料タンク2内の高い圧力は、通路面積が小さい第2パージ制御弁32を介してキャニスタ3から外部へと開放される。上述したように、燃料タンク2内の圧力が大気圧に近付いた段階で第2パージ制御弁32が閉じるとともに封鎖弁21(c)が開き、図2(a)に示す状態に移行する。
 図4は、この給油開始直前の圧力開放動作の制御の流れを示したフローチャートである。ステップ1では、リッドオープンスイッチ9がON操作されたか否かを繰り返し判定する。リッドオープンスイッチ9がONとなったら、ステップ2へ進み、第2パージ制御弁32を開く。なお、第1パージ制御弁23および封鎖弁21が開状態にあった場合には、ステップ2で同時にこれらを閉とする。ステップ3では、リッドオープンスイッチ9のON操作から所定時間T1が経過したか否かを判定する。この所定時間T1は、燃料タンク2内の圧力が想定される高圧状態にあったときに、封鎖弁21開弁時に吹き抜けが生じない程度にまで大気圧に近付けるのに必要な時間に相当する。この所定時間T1が経過したときに、ステップ4へ進み、封鎖弁21を開とするとともに第2パージ制御弁32を閉とする。この封鎖弁21の開弁により燃料タンク2内の圧力は速やかに低下する。そして、ステップ5において、フューエルリッド8のロックが解除され、フィラーキャップ4の取り外しが許可される。なお、ステップ4で第2パージ制御弁32を閉弁せずに、給油終了まで封鎖弁21とともに開弁状態に保持するようにしてもよい。
 次に、図2の(d),(e)は、蒸発燃料処理装置のリーク診断を説明するための動作説明図であって、例えば車両の停車後に、加圧用ポンプ27を用いて系内を加圧し、その後の圧力低下の有無からリークの有無を判定する。ここで、封鎖弁21の開放に伴う蒸発燃料の流出を回避するために、最初に、図2(d)に示すように、封鎖弁21および第2パージ制御弁32を、第1パージ制御弁23およびドレンカットバルブ26とともに閉弁した状態において、加圧用ポンプ27を作動させ、キャニスタ3側の加圧を行う。そして、エバポライン圧センサ33によって検出されるキャニスタ3側の圧力がタンク圧センサ36によって検出される燃料タンク2側の圧力以上となった段階で、図2(e)に示すように封鎖弁21を開放し、加圧用ポンプ27によって系内全体を加圧状態とする。系内が所定の加圧状態となったら加圧用ポンプ27を停止し、エバポライン圧センサ33およびタンク圧センサ36によって、その後の圧力変化を監視する。所定時間内に所定レベルの圧力低下が検出されなければ、リークがないものと診断する。
 なお、系をキャニスタ3側と燃料タンク2側との2つの領域に分けて、各々のリーク診断を順次行うことも可能である。この場合、封鎖弁21を閉じた状態でキャニスタ3側の加圧を行った後、エバポライン圧センサ33を用いた圧力変化の監視によりキャニスタ3側の領域のリーク診断を行う。次いで、封鎖弁21を一旦開いて系内全体を加圧状態とした後、封鎖弁21を再び閉じ、タンク圧センサ36を用いた圧力変化の監視により燃料タンク2側のリーク診断を行う。
 以上、この発明の一実施例を詳細に説明したが、本発明は上記実施例に限定されるものではなく、種々の変更が可能である。また、本発明は、ハイブリッド車両に限らず、内燃機関と燃料タンクとを備えた車両に広く適用することができる。

Claims (6)

  1.  燃料タンクとキャニスタとを連通する蒸発燃料通路と、
     この蒸発燃料通路に介装され、該蒸発燃料通路を開閉する封鎖弁と、
     上記キャニスタと内燃機関の吸気通路とを連通するパージ通路と、
     このパージ通路に介装され、該パージ通路を開閉する第1パージ制御弁と、
     上記パージ通路の上記第1パージ制御弁よりも上流側の位置と上記燃料タンクとを連通するタンク開放通路と、
     このタンク開放通路に介装され、該タンク開放通路を開閉する第2パージ制御弁と、
     を備えてなる蒸発燃料処理装置。
  2.  上記第2パージ制御弁の通路面積が上記封鎖弁の通路面積よりも小さく設定されている、請求項1に記載の蒸発燃料処理装置。
  3.  内燃機関の運転中に上記第1パージ制御弁を制御して上記キャニスタのパージを行うパージ制御手段を備え、このパージ制御手段は、上記第1パージ制御弁の開弁から遅れて上記第2パージ制御弁を開弁させる、請求項1または2に記載の蒸発燃料処理装置。
  4.  上記燃料タンクの給油口が開かれる前に上記燃料タンク内の圧力を大気圧に近付けるためのタンク圧制御手段を備え、このタンク圧制御手段は、上記第2パージ制御弁を開弁した後に、上記封鎖弁を開放する、請求項1~3のいずれかに記載の蒸発燃料処理装置。
  5.  上記封鎖弁が閉、上記第1パージ制御弁および上記第2パージ制御弁が開、となる制御モードを有する、請求項1~4のいずれかに記載の蒸発燃料処理装置。
  6.  上記キャニスタのドレン通路を開閉するドレンカットバルブをさらに備える、請求項1~5のいずれかに記載の蒸発燃料処理装置。
PCT/JP2015/053736 2014-05-27 2015-02-12 蒸発燃料処理装置 WO2015182174A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/303,540 US9885322B2 (en) 2014-05-27 2015-02-12 Fuel evaporative emission processing system
CN201580019849.6A CN106232973B (zh) 2014-05-27 2015-02-12 蒸发燃料处理装置
JP2016523171A JP6299867B2 (ja) 2014-05-27 2015-02-12 蒸発燃料処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-108636 2014-05-27
JP2014108636 2014-05-27

Publications (1)

Publication Number Publication Date
WO2015182174A1 true WO2015182174A1 (ja) 2015-12-03

Family

ID=54698516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053736 WO2015182174A1 (ja) 2014-05-27 2015-02-12 蒸発燃料処理装置

Country Status (4)

Country Link
US (1) US9885322B2 (ja)
JP (1) JP6299867B2 (ja)
CN (1) CN106232973B (ja)
WO (1) WO2015182174A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029843A (ja) * 2018-08-24 2020-02-27 株式会社Subaru 蒸発燃料処理システムの診断装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6945310B2 (ja) * 2017-03-22 2021-10-06 浜名湖電装株式会社 燃料タンクシステム
JP6958086B2 (ja) * 2017-08-03 2021-11-02 株式会社デンソー 蒸発燃料処理装置
DE102017125283A1 (de) * 2017-10-27 2019-05-02 Alfmeier Präzision SE Ventilsystem für einen Kraftstofftank
CN111448093A (zh) * 2017-11-03 2020-07-24 伊顿智能动力有限公司 用于将燃料箱与净化罐隔离的蒸发排放物控制系统和方法
FR3078747B1 (fr) * 2018-03-08 2020-02-14 Continental Automotive France Detection de fuite dans un dispositif d'evaporation des vapeurs d'un carburant stocke dans un reservoir d'un moteur thermique de vehicule
BR112020025375A2 (pt) * 2018-06-11 2021-03-16 Eaton Intelligent Power Limited Sistema de respiro para emissões evaporativas de um tanque de combustível posicionado em uma linha de vapor
WO2020078584A2 (en) * 2018-10-15 2020-04-23 Eaton Intelligent Power Limited Evaporative emissions control system and method for isolating fuel tank from a purge canister
JP7031556B2 (ja) * 2018-10-26 2022-03-08 トヨタ自動車株式会社 蒸発燃料処理装置
JP7107870B2 (ja) * 2019-02-25 2022-07-27 トヨタ自動車株式会社 内燃機関の給油制御装置
JP7123013B2 (ja) * 2019-07-01 2022-08-22 愛三工業株式会社 蒸発燃料処理装置
US11698044B2 (en) * 2019-07-30 2023-07-11 Mitsubishi Jidosha Kogyo Kabushtkt Kaisha Fuel tank system
US11105284B1 (en) * 2020-10-05 2021-08-31 Ford Global Technologies, Llc Method and system for a vehicle evaporative emissions control system
WO2022218638A1 (de) * 2021-04-13 2022-10-20 Vitesco Technologies GmbH Verfahren zur überprüfung der funktionsfähigkeit eines steuerbaren absperrventils in einer tankentlüftungsanlage
WO2022218639A1 (de) * 2021-04-13 2022-10-20 Vitesco Technologies GmbH Verfahren zur überprüfung der funktionsfähigkeit eines steuerbaren absperrventils in einer tankentlüftungsanlage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217505A (ja) * 1994-02-02 1995-08-15 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JPH11193755A (ja) * 1997-12-26 1999-07-21 Suzuki Motor Corp 内燃機関の蒸発燃料制御装置
JP2013185527A (ja) * 2012-03-09 2013-09-19 Nissan Motor Co Ltd 蒸発燃料処理装置の診断装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110932B2 (ja) 2002-11-05 2008-07-02 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
CN103443437B (zh) * 2011-03-28 2015-04-15 丰田自动车株式会社 燃料罐系统
JP6015936B2 (ja) * 2012-12-26 2016-10-26 三菱自動車工業株式会社 燃料蒸発ガス排出抑止装置
JP5743113B2 (ja) * 2013-08-28 2015-07-01 三菱自動車工業株式会社 燃料タンクシステム
US9279397B2 (en) * 2013-10-31 2016-03-08 Ford Global Technologies, Llc System and methods for canister purging with low manifold vacuum
JP6287581B2 (ja) * 2014-05-27 2018-03-07 日産自動車株式会社 蒸発燃料処理装置
JP6485621B2 (ja) * 2014-09-25 2019-03-20 三菱自動車工業株式会社 蒸散燃料処理装置
US9890745B2 (en) * 2015-11-23 2018-02-13 Ford Global Technologies, Llc Systems and methods for fuel vapor canister purge routing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217505A (ja) * 1994-02-02 1995-08-15 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JPH11193755A (ja) * 1997-12-26 1999-07-21 Suzuki Motor Corp 内燃機関の蒸発燃料制御装置
JP2013185527A (ja) * 2012-03-09 2013-09-19 Nissan Motor Co Ltd 蒸発燃料処理装置の診断装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029843A (ja) * 2018-08-24 2020-02-27 株式会社Subaru 蒸発燃料処理システムの診断装置
US11111883B2 (en) 2018-08-24 2021-09-07 Subaru Corporation Diagnostic apparatus for evaporative fuel processing system

Also Published As

Publication number Publication date
CN106232973A (zh) 2016-12-14
CN106232973B (zh) 2019-10-11
US20170030302A1 (en) 2017-02-02
US9885322B2 (en) 2018-02-06
JPWO2015182174A1 (ja) 2017-06-29
JP6299867B2 (ja) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6299867B2 (ja) 蒸発燃料処理装置
JP6287581B2 (ja) 蒸発燃料処理装置
US8713994B2 (en) Methods for checking leaks from fuel vapor treating apparatuses
JP6443548B2 (ja) 蒸発燃料処理装置の診断装置
JP5998529B2 (ja) 蒸発燃料処理装置の診断装置
WO2013133236A1 (ja) 蒸発燃料処理装置の診断装置および診断方法
JP5582367B2 (ja) 蒸発燃料処理装置
JP4483523B2 (ja) 内燃機関の蒸発燃料処理装置
JP6380676B2 (ja) 蒸発燃料処理装置
US20120222657A1 (en) Evaporative emission control device for internal combustion engine
JP6251469B2 (ja) 蒸発燃料処理装置の診断装置
JP2015121113A (ja) 燃料蒸発ガス排出抑止装置
JP6252565B2 (ja) 蒸発燃料処理装置
US9617932B2 (en) Transpiration fuel treatment apparatus
JP2006138247A (ja) 燃料蒸気排出防止システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800331

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15303540

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016523171

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15800331

Country of ref document: EP

Kind code of ref document: A1