WO2015181427A1 - Péptido derivado de socs1 para su uso en complicaciones crónicas de la diabetes - Google Patents

Péptido derivado de socs1 para su uso en complicaciones crónicas de la diabetes Download PDF

Info

Publication number
WO2015181427A1
WO2015181427A1 PCT/ES2015/070415 ES2015070415W WO2015181427A1 WO 2015181427 A1 WO2015181427 A1 WO 2015181427A1 ES 2015070415 W ES2015070415 W ES 2015070415W WO 2015181427 A1 WO2015181427 A1 WO 2015181427A1
Authority
WO
WIPO (PCT)
Prior art keywords
diabetic
sequence
diabetes
polypeptide
retina
Prior art date
Application number
PCT/ES2015/070415
Other languages
English (en)
French (fr)
Inventor
Jesús EGIDO DE LOS RÍOS
Carmen GÓMEZ GUERRERO
Rafael SIMÓ CANONGE
Cristina HERNÁNDEZ PASCUAL
Original Assignee
Fundació Hospital Universitari Vall D'hebron - Institut De Recerca
Instituto De Investigación Sanitaria Fundación Jiménez Díaz
Universidad Autónoma de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundació Hospital Universitari Vall D'hebron - Institut De Recerca, Instituto De Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid filed Critical Fundació Hospital Universitari Vall D'hebron - Institut De Recerca
Priority to US15/314,395 priority Critical patent/US10532082B2/en
Priority to JP2017514978A priority patent/JP6681387B2/ja
Priority to CA2950348A priority patent/CA2950348A1/en
Priority to PL15738128T priority patent/PL3178485T3/pl
Priority to MX2016015514A priority patent/MX369378B/es
Priority to EP15738128.6A priority patent/EP3178485B1/en
Priority to BR112016027936A priority patent/BR112016027936A2/pt
Priority to ES15738128T priority patent/ES2715412T3/es
Priority to CN201580040669.6A priority patent/CN107074922A/zh
Publication of WO2015181427A1 publication Critical patent/WO2015181427A1/es
Priority to US16/689,924 priority patent/US20200138903A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention is related to a SOCS1 derived peptide useful for the prevention and treatment of chronic diabetes complications, especially ocular, renal, nervous and vascular complications.
  • the chapter on ocular complications of diabetes includes diabetic retinopathy and macular edema.
  • the present invention is also considered potentially effective for other diseases of the retina, apart from diabetic retinopathy, in which neurodegeneration plays a fundamental role such as neurodegenerative diseases of the retina of character acquired or inherited.
  • Diabetes mellitus is a systemic disease of great prevalence, which frequently causes lesions in various organs, especially retina, kidney, nerves and the vascular system. Its complications are usually divided into: a) acute complications, such as hypoglycemia, ketoacidosis and hyperosmolar coma; b) chronic or late complications, divided in turn into microangiopathic (nephropathy, retinopathy, and neuropathy), macroangiopathic (cardiovascular disease) and diabetic foot (macro and microangioangiopathy).
  • acute complications such as hypoglycemia, ketoacidosis and hyperosmolar coma
  • chronic or late complications divided in turn into microangiopathic (nephropathy, retinopathy, and neuropathy), macroangiopathic (cardiovascular disease) and diabetic foot (macro and microangioangiopathy).
  • diabetes The enormous socio-health impact of diabetes is due to these chronic complications, mainly ocular (retinopathy), renal (nephropathy) and vascular (atherosclerosis) complications.
  • the diabetic foot is one of the most frequent effects of diabetes that produces an important morbidity and a high risk of amputation and whose treatment requires a multidisciplinary approach.
  • Diabetic retinopathy is the most frequent complication of diabetes and one of the leading causes of blindness worldwide.
  • diabetic retinopathy In the etiopathogenesis of diabetic retinopathy hyperglycemia is involved per se and the metabolic pathways directly related to it, causing damage to the capillary bed located in the internal retina (microangiopathic lesion).
  • diabetic retinopathy has been considered as a microangiopathic retinal disease.
  • neurodegeneration is an early phenomenon in the pathogenesis of diabetic retinopathy that participates in the development of microvascular disorders. At present there are no specific treatments for the initial stages of diabetic retinopathy.
  • AMD age-related macular degeneration
  • glaucoma glaucoma
  • retinitis pigmentosa retinitis pigmentosa
  • Neurodegenerative diseases of the retina refer to the conditions of the retina characterized by progressive neuronal loss.
  • neurodegeneration In the case of diabetic retinopathy, neurodegeneration (loss of effective neurons) occurs in the early stages of the disease and produces functional abnormalities, such as loss of color discrimination and contrast sensitivity. These alterations can be detected by electrophysiological studies in diabetic patients, even with less than two years of diabetes, that is, before the microvascular lesions can be detected under ophthalmological examination. In addition, the implied time delay of multifocal electroretinogram (mfERG-IT) predicts the development of early microvascular anomalies. On the other hand, neuroretinal degeneration initiates and / or activates several metabolic and signaling pathways that will participate both in the microangiopathic process and in the disruption of the hemato-retinal barrier (BRB).
  • BRB hemato-retinal barrier
  • the BRB is a structure of the eye of great importance in many of the diseases of the retina and in particular it is a crucial element in the pathogenesis of diabetic retinopathy.
  • the BRB is constituted by the internal BRB and the external BRB.
  • the internal BRB is formed by the tight junctions of the endothelial cells.
  • External BRB is made up of the retinal pigment epithelium (RPE), whose cells are also connected by tight junctions.
  • RPE retinal pigment epithelium
  • Diabetic macular edema is due to the disruption of BRB.
  • AMD Another disease of the retina that is frequent due to a deterioration of the BRB that results in retinal edema.
  • BRB alteration also occurs in a wide variety of eye situations, such as uveitis, trauma, infraocular surgery, vascular retinopathies, hereditary dystrophies, etc. (Cunha-Vaz et al., "The Blood-Retinal Barrier in Retinal Disease", European Ophthalmic Review -2009, Vol. No. 3, pp. 10:5-108).
  • JAK / STAT signaling pathway (Janus Kinase / Signal Transducers and Activators of Transcription) is an important intracellular mechanism by which hyperglycemia and other factors contribute to the development of diabetes and its complications. JAK / STAT controls numerous cellular processes, such as proliferation, migration and differentiation, as well as the expression of inflammatory mediators. An increase in the expression and activation of members of the JAK / STAT pathway in atheroma plaques, in renal biopsies of diabetic patients and in animal models of retinopathy and diabetic nephropathy has been described.
  • the SOCS (Suppressors Of Cytokine Signaling) family of proteins is the main endogenous mechanism of negative regulation of the JAK / STAT pathway and alterations in expression levels have been linked to different immune and inflammatory diseases.
  • Experimental studies in animals with genetic modifications for members of the SOCS family have demonstrated a protective effect on pancreatic ⁇ cells, with reduced incidence of diabetes (Flodstróm-Tullberg et al., Diabetes 2003; 52: 2696-700) and associated renal damage ⁇ Ortiz-Mu ⁇ oz et al., J Am SocNephrol 2010; 21: 763-72), as well as an anti-atherosclerotic effect (Ortiz-Mu ⁇ oz et al., ArteriosclerThromb Vasc Biol 2009; 29: 525-531; Wesoly et al., Acta Biochim Pol 2010; 57 (3) .251-260; Liang et al., Int J Mol Med. 2013 May; 31
  • SOCS protein mimetic peptides have been previously described in experimental allergic encephalomyelitis, a multiple sclerosis model (Mujtaba et ai, J Immunol 2005; 175: 5077-5086; Jager et al., J Neuroimmunol2011; 232: 108- 118) and also in models of peripheral nerve damage (Girolami et al., ExpNeurol 2010; 223: 173-182) and viral infection by poxvirus (Ahmed et al., J Virol 2009; 83: 1402-1415). SOCS polypeptides have also been described as inhibitors of cytokine-induced signaling, particularly in inflammation and viral or bacterial infections (US2009 / 0209458).
  • Publication WO2010 / 151495 describes SOCS-1 or SOCS-3 antagonistic peptides, useful as antivirals.
  • a soluble peptide containing the SOCS1 / SOCS3 sequence and a membrane translocation sequence and its potential use for the treatment of immune diseases is described.
  • peptides of this type have also been described, for use in neuron differentiation.
  • several synthetic peptides of the SOCS-box region of these peptides are used as antimicrobial agents.
  • a polypeptide corresponding to a region of the SOCS1 protein is effective for the treatment of chronic complications of diabetes in vivo in animal models of diabetes. Additionally, it has been found that said polypeptide is efficient in the treatment of neurodegenerative diseases of the retina.
  • the present invention relates to an isolated polypeptide containing
  • chronic complications of diabetes are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease
  • neurodegenerative diseases of the retina are selected from the group consisting of diabetic retinopathy, glaucoma and retinitis pigmentosa.
  • the present invention relates to a composition
  • a composition comprising a therapeutically effective amount of a polypeptide of the first aspect, and at least one pharmaceutically acceptable carrier or excipient, for use in the prevention or treatment of chronic complications of the diabetes and / or neurodegenerative diseases of the retina
  • chronic complications of diabetes are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and arterial disease peripheral
  • neurodegenerative diseases of the retina are selected from the group consisting of diabetic retinopathy, glaucoma and retinitis pigmentosa.
  • the present invention relates to an isolated polynucleotide encoding
  • chronic complications of diabetes are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, microangiopathies diabetics, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease
  • neurodegenerative diseases of the retina are selected from the group consisting of diabetic retinopathy, glaucoma and retinitis pigmentosa.
  • a further aspect of the invention is the use of an isolated polypeptide containing a) the sequence of SEQ ID NO 2 (DTHFRTFRSHADYRRI); or
  • chronic diabetes complications are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, angiopathies diabetics, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease
  • neurodegenerative diseases of the retina are selected from the group consisting of diabetic retinopathy, glaucoma and pigmentary retinitis.
  • the invention also relates to an isolated polynucleotide encoding
  • chronic complications of diabetes are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, microangiopathies diabetics, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease, and where neurodegenerative diseases of the Retina are selected from the group consisting of diabetic retinopathy, glaucoma and retinitis pigmentosa.
  • chronic complications of diabetes are selected from the group consisting of diabetic retinopathy, macular edema, nephropathy diabetic, diabetic angiopathies, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease, and where neurodegenerative diseases of the retina are selected from the group consisting of diabetic retinopathy, glaucoma and pigmentary retinitis.
  • the invention relates to a method of treatment, which comprises the administration of a therapeutically effective amount of a polypeptide of the first aspect to a patient with chronic diabetes complications and / or suffering from a neurodegenerative retinal disease.
  • chronic complications of diabetes are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease
  • said neurodegenerative diseases of the retina are selected from the group consisting of diabetic retinopathy, glaucoma and retinitis pigmentosa.
  • These compounds act as topical neuroprotectors of the retina. It should be noted that the topical administration of peptides for use according to the invention, not only reach the retina, but also achieve effective concentrations to prevent the evolution of diabetic retinopathy.
  • FIGURES Figure 1 Evolution of glycemia and weight in the diabetic retinopathy model. Blood glucose levels (A) and body weight (B) throughout the study. Peptide inhibitor treatment did not affect these parameters.
  • Figure 2 Effect of topical administration (eye drops) of the peptide derived from SOCS1 on glial activation: Quantification of glial activation based on the measurement of GFAP staining (Glial f shine acidic protein) in the retina between representative samples of a diabetic mouse treated with the vehicle [D-Sham], a diabetic mouse treated with eye drops containing the peptide derived from SOCS1 [D-SOCSM1S1] and a non-diabetic mouse [control (db / +)].
  • GFAP staining Gaal f shine acidic protein
  • Figure 3 Effect of topical administration (eye drops) of the SOCS1 derived peptide on apoptosis. Percentage of positive cells using the TUNEL (Terminal Transferase dUTP Nick-EndLabeling) technique in the neuroretin of a representative mouse from each group, vehicle-treated diabetic mice [D-Sham], non-diabetic mice [control (db / +)] and diabetic mice treated with peptide derived from SOCS1 [D-SOCSM1 S1]. The results are expressed as the mean ⁇ SD. *: p ⁇ 0.01 compared to the other groups.
  • TUNEL Terminal Transferase dUTP Nick-EndLabeling
  • Figure 4 Treatment with the SOCS1 derived peptide improves ERG abnormalities.
  • A Amplitude (upper panel) and implicit time (lower panel) of wave a in the experimental groups.
  • B Amplitude (upper panel) and implicit time of wave b (lower panel) in the experimental groups.
  • FIG. 5 Treatment with the SOCS1-derived peptide prevents the disruption of diabetes-induced BRB. Quantification of albumin extravasation in arbitrary fluorescence units (UA) evaluated in a representative diabetic mouse treated with vehicle [D-Sham], a diabetic mouse treated with the peptide derived from SOCS1 [D-SOCSM1S1] and a non-diabetic mouse [ control (db / +)]. The results are expressed as mean ⁇ SD * ⁇ 0.01 compared to other groups.
  • FIG. 6 Treatment with the peptide derived from SOCS1 improves glutamate metabolism in diabetic mice.
  • A Quantification of GLAST immunofluorescence in arbitrary units (UA). The results are expressed as mean ⁇ SD.
  • B Concentration of retinal glutamate measured by UPLC in experimental groups. The results are expressed as mean ⁇ SD. * p ⁇ 0.001 compared to the other groups. ** p ⁇ 0.01 compared to the control group.
  • Figure 7 SOCS1 derived peptide reduces the expression of inflammatory genes in diabetic retinopathy.
  • FIG. 8 SOCS1 derived peptide inhibits STAT activation in diabetic kidneys.
  • Phosphorylated STAT1 and STAT3 were immunodetected in kidney sections of diabetic mice. The quantification of positive staining in glomerular and tubulointerstitial compartments is shown. The results are the mean ⁇ SD. * p ⁇ 0.02 vs control group.
  • Figure 9 Renoprotective effect of the SOCS1 derived peptide in diabetic mice.
  • A Semi-quantitative evaluations of glomerular lesions (Hyper, hypercellularity, MM, mesangial matrix; Dil, capillary dilation), fibrosis and tubular degeneration (Tub) and fibrosis and interstitial inflammation (Int).
  • B Morphometric analysis of the glomerular area.
  • C Quantification of the PAS + mesangial area. The results are the mean ⁇ SD. * p ⁇ 0.05 vs control group.
  • FIG. 10 SOCS1-derived peptide prevents renal fibrosis in diabetic nephropathy.
  • A Quantitative analysis of collagen content in the glomerular and tubulointerstitial compartments in renal samples of diabetic mice (control and SOCS1).
  • B RT-PCR analysis of mRNA expression of extracellular matrix proteins (fibronectin and type I collagen), pro-fibrotic factor (TGF- ⁇ ) and tubular lesion marker (Kim-1) in the renal cortex The data is the mean ⁇ SEM. * p ⁇ 0.05 vs control group.
  • Figure 11 Anti-inflammatory effect of the SOCS1 derived peptide in diabetic kidneys.
  • A Immunoperoxidase detection of macrophage infiltration (F4 / 80) and T lymphocytes (CD3) in kidney samples from diabetic mice. Quantification of positive cells in glomeruli and interstitial tubule is shown.
  • B RT-PCR analysis of chemokine mRNA expression (CCL2 and CCL5) and TNFa cytokine in the renal cortex. The data is the mean ⁇ SEM. * p ⁇ 0.05 vs control group.
  • Figure 12 Anti-atherosclerotic effect of the miS1 peptide in experimental diabetes.
  • A Evolution of the size of atheroma plaques over time in aortic cross sections of diabetic mice.
  • B Quantification of inflammatory content (staining of Moma2 macrophages) and stability markers of plaque (staining of collagen fibers with Syrian red and vascular cells with a-actin) in atherosclerotic lesions of diabetic mice. *, p ⁇ 0.05 vs control group.
  • Figure 13 In vitro effects of the SOCS1 derived peptide and its inactive mutant control.
  • A Activation of STAT1 and STAT3 in macrophages stimulated with cytokines in the presence of different concentrations of the SOCS1 derived peptide or the mutant peptide.
  • B Production of the CCL2 chemotactic protein in macrophages and VSMC.
  • C Macrophage migration test. *, p ⁇ 0.05 vs baseline conditions; #, p ⁇ 0.05 vs cytokine stimulation.
  • a first aspect of the invention is an isolated polypeptide containing
  • chronic diabetes complications are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease
  • neurodegenerative diseases of the retina are selected from the group consisting of diabetic retinopathy, age-related macular degeneration, glaucoma and pigmentary retinitis.
  • amino acids of any of the sequences mentioned in the present invention may be modified, for example they may be phosphorylated. According to a particular embodiment, only one amino acid in the sequence is modified, preferably phosphorylated. According to a preferred embodiment, tyrosine (Y) is the phosphorylated amino acid.
  • % identity or “identical by at least one%", in relation to amino acid sequences, means the percentage of identity determined by the following method: the alignment of two amino acid sequences is performed through the service https://www.ebi.ac.uk/Tools/msa/clustalw2/, applying the default settings of this service.
  • SEQ ID NO 1 would be a variant to the sequence of SEQ ID NO as defined herein.
  • chronic complications of diabetes within the framework of the present invention, will be understood as encompassing, but not necessarily limited to, ocular, renal, nervous and vascular complications or disorders, the term “vascular” being understood herein as encompassing both cardiovascular and cerebrovascular complications. Specifically, it would include selected complications between diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, including microangiopathies and macroangiopathies, such as diabetic atherosclerosis, diabetic foot and peripheral arterial disease.
  • the peptide of the invention is for use in the prevention or treatment of chronic diabetes complications, these being selected from the group consisting of ocular, renal, nervous and cardiovascular complications or disorders in diabetic patients.
  • the chronic complications of diabetes are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease.
  • the chronic complication of diabetes is an eye disorder, in particular diabetic retinopathy.
  • the peptide of the invention is also useful in the treatment of neurodegenerative diseases of the retina.
  • the term "neurodegenerative diseases of the retina" within the framework of the present invention, will be understood to encompass those ocular pathologies characterized by the presence of inflammation of the glia (glial activation or reactive gliosis) by progressive neuronal death by apoptosis of the neurons of the retina, specifically of the photoreceptors, which as a consequence can cause blindness.
  • diseases include but are not limited to diabetic retinopathy, glaucoma and retinitis pigmentosa.
  • said diseases are selected. from a group consisting of diabetic retinopathy, glaucoma and retinitis pigmentosa.
  • the neurodegenerative retinal disease is diabetic retinopathy.
  • neurosensory part of the retina is responsible for the visual cycle.
  • the peptide "for topical use in the treatment and / or prevention" will be understood to encompass, but is not necessarily limited to the topical ocular use in the treatment and / or prevention, specifically, of a neurodegenerative retinal disease selected from the group consisting of diabetic retinopathy, glaucoma and retinitis pigmentosa.
  • the variant to the sequence SEQ ID NO 2 is identical in at least 90%, even more preferably in approximately 94%, a figure that would correspond, for example, with the replacement of one amino acid with another in the sequence SEQ ID NO 2, or the addition of an amino acid to the sequence SEQ ID NO 2.
  • the variant would be SEQ ID NO 1 (DTHFRTFRSHSDYRRI).
  • Other species of mammals such as Ratus Norvergicus, G shore g shore gorilla, Oryctolagus cuniculus, Pan troglodytes, Pongo abelii, Cavia porcellus or Sus scrofa, have SEQ ID NO 1 or SEQ ID NO 2, since this sequence is very conserved between some mammalian species and others.
  • such sequence SEQ ID NO 2, or its identical variants in a percentage as defined above is linked to a region of cellular permeability.
  • the cell permeability region is joined by the amino terminal end of SEQ ID NO 2 or its identical variants.
  • Any polypeptide comprising said sequence or its identical variants as defined above is included within the scope of the invention.
  • the polypeptide essentially consists of a) the sequence of SEQ ID NO 2; or
  • the variant will consist of the sequence SEQ ID NO 1.
  • essentially consists within the framework of the present invention refers to the inclusion of a maximum of 8 additional amino acids (ie, a maximum of 50% more) to the defined sequences or their homologous variants, in accordance with embodiments a maximum of 7, 6, 5, 4, 3, 2 or 1 additional amino acids, which may be independently linked to the amine end of the sequence, the acid end or anywhere in the sequence, becoming part of the sequence .
  • sequence may or may not be linked to a region of cellular permeability as defined above.
  • the polypeptide consists of the sequence SEQ ID NO 2; It may or may not be linked to a region of cellular permeability as defined above.
  • polypeptide for use in ocular complications in diabetic patients, or for use in degenerative retinal diseases such as diabetic retinopathy
  • polypeptide containing the sequence of SEQ ID NO 2 or its identical variants as defined above. essentially consists of or is:
  • c) a variant to the sequences of a) or b) that is at least 85% identical to the amino acid sequence of the SOCS1 protein of murine origin or to the amino acid sequence of the SOCS1 protein of human origin.
  • At least one of the amino acids of the SOCS1 protein of human or murine origin, or a variant identical thereto, it may be modified, preferably phosphorylated.
  • the phosphorylated amino acid or one of the phosphorylated amino acids will be a tyrosine (Y).
  • the SOCS1 protein according to the previous definitions may be linked to a region of cellular permeability, preferably to a lysine-palmitate group.
  • the cell permeability region is joined by the N-terminal end of the polypeptide, the cell permeability region being more preferably a lysine palmitate group.
  • the identical variant in at least 85% includes the SOCS1 proteins of other mammals, such as Ratus Norvergicus, Gorilla, Oryctolagus cuniculus, Pan troglodytes, Pongo abelii, Cavia porcellus or Sus Scrofa.
  • the variant to the SOCS1 sequences of human or murine origin are identical in at least 90%, even more preferably in approximately 94%, to said sequences. All the preferred embodiments indicated for this first aspect of the invention are also applicable to the rest of aspects of the invention, detailed below.
  • a further aspect of the invention is the use of an isolated polypeptide containing a) the sequence of SEQ ID NO 2 (DTHFRTFRSHADYRRI); or
  • compositions comprising a therapeutically effective amount of a polypeptide according to any of the above definitions, and at least one vehicle or an excipient.
  • compositions for use in the prevention or treatment of chronic complications of diabetes and / or neurodegenerative diseases of the retina, where chronic diabetes complications are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease, and where neurodegenerative diseases of the retina are selected from the group consisting of diabetic retinopathy, glaucoma and pigmentary retinitis, according to the definitions given above.
  • chronic diabetes complications are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease
  • neurodegenerative diseases of the retina are selected from the group consisting of diabetic retinopathy, glaucoma and pigmentary retinit
  • the composition is suitable or is intended for use in the prevention or treatment of ocular disorders in diabetic patients and / or neurodegenerative diseases of the retina, preferably diabetic retinopathy. It could also be used for other retinal diseases that occur with neurodegeneration, glaucoma and retinitis pigmentosa.
  • the carrier or excipient is a pharmaceutically acceptable carrier or excipient suitable for ophthalmic administration.
  • compositions according to the present invention comprise at least one pharmaceutically acceptable carrier or excipient.
  • pharmaceutically acceptable carrier or excipient refers to molecular substances or entities next to which the peptide of the invention is administered.
  • Such vehicles or excipients will be suitable for the route of administration chosen, and will be apparent to a person skilled in the art depending on the route of administration.
  • the vehicles may be sterile liquids, such as water or oils, including those derived from petroleum, animal, vegetable or synthetic origin, excipients, disintegrants, wetting agents, or diluents. Suitable vehicles and excipients are described for example in "Remington's Pharmaceutical Sciences” by E. W. Martin, which is incorporated by reference to the present application.
  • compositions according to the present invention can be administered by any known route, including oral, gastroenteric, parenteral, rectal, respiratory and topical, in particular ophthalmic.
  • the compositions may also contain other suitable active ingredients or adjuvants that will be apparent to the person skilled in the art.
  • the compositions could containing only a single polypeptide according to the invention or two or more polypeptides according to the invention.
  • the vehicle or excipient In the case of the ophthalmic route, the vehicle or excipient must be suitable for this route of administration.
  • the compositions in this case will be conveniently prepared, either as an aqueous solution or suspension, in a pharmaceutically acceptable ophthalmic base vehicle or solution.
  • the polypeptide according to the invention may contain other adjuvants, such as antimicrobial agents, preservatives, chelating agents, tonicity regulating agents, pH regulating agents, including buffer solutions, viscous agents, etc.
  • the subject receives compounds that help retinal neuroprotection (such as the peptide of the invention) in the early stages of diabetic retinopathy when functional abnormalities can be detected (i.e. chromatic discrimination, contrast sensitivity and electroretingraphic anomalies), aggressive treatments of the disease can be avoided. So, if the retina is protected from the consequences of chronic hyperglycemia, major complications can be minimized or even never appear, which is a real improvement in the quality of life of diabetic patients. On the other hand, the peptide prevents the disorganization of BRB. Topical ocular administration of the peptides represents a real advantage, avoiding more aggressive treatments.
  • Treatment in the early stages of diabetic retinopathy has the real advantage that additional complications are avoided, namely microaneurysms, microhemorrhages, hard exudates, macular edema and neovascularization.
  • the peptide will be contained in a concentration range of 1-12 mg / mL.
  • the peptide will be contained in a concentration of at least 5 mg / mL, in particular embodiments it will be contained in a concentration of at least 8 mg / mL, at least 9 mg / mL, at least 10 mg / mL, according to a preferred embodiment at a concentration of 10 mg / mL ⁇ 5%, that is, 10 mg / mL ⁇ 0.5 mg / mL.
  • the peptide will be contained in a concentration of between 1 and 5 mg / mL, according to a particular embodiment it will be contained in a concentration of between 1 and 3 mg / mL, according to embodiments. preferred, at a concentration of 2 mg / mL ⁇ 10% or ⁇ 5%, that is, ⁇ 0.2 mg / mL or ⁇ 0.1 mg / mL.
  • the composition according to the invention is suitable for the administration of a daily dose of between 10 and 200 of the peptide per eye.
  • the peptide will be administered in a daily dose of between 30 and 70 ⁇ g per eye, according to a preferred embodiment in a daily dose of between 40 and 60 ⁇ g per eye, preferably between 45 and 55
  • the composition will be suitable for the administration of a daily dose of between 1 and 16 mg of the peptide for each kg of weight of the patient or subject to which the administration is performed, according to particular embodiments. between 2 and 10 mg of the peptide for each kg of weight of the patient or subject, preferably between 2.5 and 3.5 of the peptide for each kg of weight of the patient or subject.
  • Another aspect of the invention relates to an isolated polynucleotide encoding a) the amino acid sequence SEQ ID NO 2; or
  • chronic complications of diabetes are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease
  • neurodegenerative diseases of the retina are selected from the group consisting of diabetic retinopathy, glaucoma and pigmentary retinitis., according to the definitions provided above.
  • the isolated polynucleotide encodes
  • chronic complications of diabetes are selected from the group consisting of diabetic retinopathy, macular edema, diabetic nephropathy, diabetic angiopathies, diabetic microangiopathies, diabetic macroangiopathies, diabetic atherosclerosis, diabetic foot and peripheral arterial disease
  • neurodegenerative diseases of the Retina are selected from the group consisting of diabetic retinopathy, glaucoma and retinitis pigmentosa, according to the definitions provided above.
  • the polynucleotide defined above is suitable or intended for topical use in the prevention or treatment of the aforementioned diseases.
  • the aforementioned polynucleotide is suitable or is intended for use in the prevention or treatment of ocular disorders in diabetic patients and / or neurodegenerative diseases of the retina, more preferably for use in the prevention or treatment of diabetic retinopathy.
  • a 16 amino acid peptide was synthesized (SEQ ID NO 1: DTHFRTFRSHSDYRRI, AspThrHisPheArgThrPheArg Ser His Ser AspTyrArgArglle), which corresponds to the sequence "kinase inhibitory region" of the murine SOCS1 protein, linked to a region of cell permeability lysate ) by the N-terminal end of the peptide sequence (residue D, aspartic acid), in which the tyrosine (Y) is phosphorylated.
  • the derivative peptide formed by SEQ ID NO 1 and the lysine palmitate group will be referred to as miS1 or D-SOCSMIS1.
  • a mutated non-functional peptide was also synthesized by replacing F (Phe) with A (Ala): SEQ ID NO 3, DTHARTARSHSDYRRI, AspThrHisAlaArgThrAla Arg Ser His Ser AspTyrArgArglle; also linked to the lysine palmitate cell permeability region, for use as a control of the experiments.
  • the peptides were dissolved ( ⁇ 1% DMSO in saline) and sterilized by filtration.
  • mice Two experimental models were used, namely an experimental model of type 2 diabetes (db / db mice) and another type 1 diabetes (streptozotocin injection in apoE mice).
  • the mice were kept in standard-sized cages under controlled conditions of temperature (20 ° C) and humidity (60%), with light / dark cycles of 12 hours and with access to food (standard diet) and water ad libitum.
  • Diabetic mice (db / db) of 8 weeks received the eye-shaped miS1 peptide (5 ⁇ _ drops in each eye; 10 mg / mL; twice daily for 15 days; n 7 mice).
  • diabetic mice treated with the non-functional peptide Mut (n 7), vehicle-treated and non-diabetic (db / +) were used.
  • Eye drops were administered directly on the upper surface of the cornea of each eye using a micropipette. Weight and blood glucose (colorimetric assay) were monitored throughout the study period.
  • the drop with the miS1 peptide or vehicle was administered approximately two hours before necropsy.
  • the animals were euthanized by cervical dislocation and enucleated eyes were immediately frozen and 8mm dorsoventral sections were cut to analyze retinal morphology and other immunohistochemical analyzes.
  • Glial activation was assessed by immunofluorescence of GFAP (Glial f shine acidic protein) following the methodology described in other studies (Bogdanov et al. PLoS One. 2014; 9: e97302).
  • the fixed sections were blocked (1% BSA and 10% goat serum in PBS, 2h at RT) and incubated with anti-GFAP antibodies (dilution 1: 500, 16h at 4 ° C) followed by a secondary antibody (goat anti - Rabbit, conjugated with Alexa 488, dilution 1: 200). Samples were contrasted with Hoesch and mounted for confocal microscope analysis.
  • glutamate metabolism was evaluated.
  • the glutamate concentration was determined by ultra-high resolution liquid chromatography (UPLC) (Acquity-UPLC, Waters) MassTrak aminoacid system).
  • GLAST Glutamate / Aspartate transporter
  • paraffin sections were dewaxed in xylene and rehydrated in a gradual series of ethanol.
  • the sections were fixed in acidic methanol (-20 ° C) for 1 minute and washed with 0.01 M phosphate buffer saline (PBS) at pH 7.4. After that, antigen recovery was performed.
  • the sections were immersed in an antigenic recovery solution (10 mM sodium citrate, pH 6.0) and heated in a pressure cooker at 150 ° C for 4 minutes. Sections were incubated in blocking solution (0.5% BSA, and 10% goat serum in PBS) for 1 hour at room temperature. Sections were incubated with the primary antibody, rabbit anti-GLAST (1: 200, Abcam) overnight at 4 ° C.
  • RNA was extracted with RNeasy Mini Kit with DNAse digestion (QIAGEN, IZASA Distributors, Barcelona, Spain) according to the manufacturer's instructions.
  • RNA (1 ⁇ g) was used for reverse transcription with random hexanucleotide primers and Applied Biosystems reagents (Applied Biosystems, Madrid, Spain) in a reaction volume of 20 ⁇ .
  • Real-time PCR was performed in an ABI Prism 7000 Sequence Detection System (Perkin-Elmer Applied Biosystems; Madrid, Spain) with SYBR Green Supermix; Applied Biosystems, Madrid, Spain). Each sample was tested in triplicate and a negative control was included in each experiment. Human S18 was used as a control of endogenous gene expression.
  • the AACt method was used to obtain the relative quantification (RQ).
  • Electroretinograms (ERG) records were performed in anesthetized and dark-adapted mice (12h overnight).
  • Focal electroretinograms (Ferg) records were measured using a Micron III Focal ERG system (Phoenix Research Labs, Pleasanton, CA). The records were taken with an electrode integrated in the mouse corneal lens mounted on the focal ERG, a reference electrode placed on the head between the eyes, and a ground electrode placed on the tail.
  • the light stimuli were projected on the optical discs and the largest available light point (1.5 mm in diameter) was used.
  • the ERG responses of both eyes were recorded in response to 20ms white light stimuli.
  • the intensities of the white light stimuli were 800, 3200 and 12800 cd « s « m-2 and for each intensity, an average of 6-10 consecutive light flashes were performed.
  • the ERG signals were amplified, the filtered band was between 0.5 and 1000 Hz, and analyzed with LabScribe-2 software (BioSeb, Vitrolles, France) in order to calculate the amplitude and the implied time of wave a and wave b, as recommended by the International Society of Clinical Vision Electrophysiology (ISCEV) (Marmor et al Doc Ophtalmol 108: 107 to 144). ERG records were made at the beginning and on the day before euthanasia. Treatment of BRB disruption caused by diabetes by topical ocular treatment with a peptide derived from SOCS1
  • Diabetic mice (db / db) of 8 weeks received the peptide eye drops miS1 (drops of 5 in each eye; 10 mg / mL; twice daily for 15 days; n 7 mice).
  • Weight and glycemia were monitored throughout the study period. On day 15, the animals were euthanized by cervical dislocation. BRB disruption was assessed by determining albumin permeability. The paraffin sections were dewaxed in xylene and rehydrated in a gradual series of ethanol.
  • the sections were fixed in acidic methanol (-20 ° C) for 1 minute and washed with 0.01 M PBS solution at pH 7.4. Sections were incubated in a blocking solution (2.5% dry non-fat milk) for 30 minutes at room temperature. Sections were incubated with a primary antibody, sheep anti-human serum albumin (1: 500, Abcam) overnight at 4 ° C. After washing in PBS, the sections were incubated with a secondary antibody Alexa 594 donkey anti-sheep (1: 200, Molecular Probes) for 1 hour at room temperature. The sections were washed in PBS, counterstained with Hoechst (1: 500, Sigma-Aldrich) and placed in Fluorescent Mounting Medium (Prolong, Invitrogen) with coverslips. Albumin immunofluorescence was analyzed by confocal laser microscopy (Olympus FluoView TM FV1000 confocal Microscope, Hamburg, Germany).
  • treated peptide m ⁇ S1: 65 ⁇ g / day, 200 ⁇ , intraperitoneal, every 2 days during 8 weeks
  • mice were monitored throughout the study period.
  • renal cortex paraffin sections, 5 ⁇
  • glomerular and tubulointerstitial morphology was studied using PAS stains and Masson's trichrome and the lesions were evaluated semiquantitatively and double blind on a 0-3 scale.
  • Renal fibrosis was determined by staining with red picrosirio and inflammatory infiltrating cells (F4 / 80 + macrophages and CD3 + T lymphocytes) by immunohistochemistry.
  • the root / arch zone (cryocuts series of 8 ⁇ from the valves to an extension of 1000 ⁇ ) was stained with Oil-red-O / hematoxylin and the area of the atherosclerotic lesion (Metamorph program) was quantified.
  • the stability of the plate was assessed by staining collagen fibers with picrosyrie red and immunofluorescence of ⁇ -actin.
  • the inflammatory component was determined by immunohistochemistry for monocyte / macrophages (Moma2).
  • the biochemical parameters in serum glycated hemoglobin, cholesterol and creatinine
  • urine albumin and creatinine
  • RAW264.7 macrophages and vascular smooth muscle cells (VSMC) grown in medium with 10% fetal bovine serum were used.
  • the cells were synchronized (24h without serum), pre-incubated for 90 min with different concentrations of peptides (miS1 or its control, 50-150 ⁇ g / mL) and stimulated with cytokines (IFNy 103 U / mL; IL-6 102 U / mL).
  • STAT activation was analyzed by Western blotting for the phosphorylated STAT1 / STAT3 isoforms.
  • the expression of chemokines dependent on the JAK STAT pathway (CCL2) was determined by ELISA.
  • Cell viability was analyzed by MTT colorimetric assay and macrophage migration by chemotaxis assay.
  • results are expressed as the standard media terror of the total number of animals per group and at least 3 independent cell cultures.
  • results are expressed as the standard media terror of the total number of animals per group and at least 3 independent cell cultures.
  • GraphPadPrism program ANOVA, Tukey and Student t test; significance with P ⁇ 0.05.
  • EXAMPLE 1 EFFECT OF THE PEPTIDE OF THE INVENTION ON THE NEURODEGENERATION OF THE RETINA
  • GLAST is the main glutamate transporter expressed by Müller cells, since it is responsible for at least 50% of glutamate uptake in the mammalian retina (Figure 6A upper panel). GLAST content was regulated downwards in the retinas of diabetic mice treated with vehicle [D-Sham]. In diabetic mice treated with the peptide derived from SOCS1 [D-SOCSM 1S1], down-regulation GLAST was avoided ( Figure 6A lower panel). Consequently, intraretinal glutamate levels were reduced but without reaching statistical significance ( Figure 6B). Therefore, among the mechanisms by which the miS1 peptide is neuroprotective of the retina, it should be noted that it prevents the increase of glutamate and the reduction of the GLAST glutamate transporter.
  • the miS1 peptide prevented the increase in diabetes-induced L L-1 ⁇ (Figure 7). It should be noted that this cytokine plays a crucial role in the pathogenesis of diabetic retinopathy.
  • peptide of the invention is useful in the treatment of other diseases that occur with retinal neurodegeneration such as glaucoma and retinitis pigmentosa since these diseases, as well as diabetes-induced retinal neurodegeneration, are characterized by the presence of glial inflammation and progressive neuronal death by apoptosis.
  • EXAMPLE 3 EFFECT OF THE PEPTIDE OF THE INVENTION ON NEPHROPATHY AND THE FORMATION OF ATEROMA PLATES IN DIABETIC MOUSES
  • LDL cholesterol (mg / dL) 557 ⁇ 19 597 ⁇ 61 HDL cholesterol (mg / dL) 12 ⁇ 1 1 1 ⁇ 1
  • Triglycerides (mg / dL) 72 ⁇ 5 89 ⁇ 23
  • Kidney-body mass ratio (mg / g) 20.5 ⁇ 1.1 16.4 ⁇ 1.3 (p ⁇ 0.05)
  • Serum creatinine (mg / dL) 0.40 ⁇ 0.04 0.24 ⁇ 0.04 (p ⁇ 0.02)
  • the miS1 peptide prevented the activation of STAT1 and STAT3 in VSMC, as can be seen in the immunofluorescence images.
  • the secretion of the monocyte chemotactic protein CCL2 was analyzed, the expression of which depends on the JAK / STAT pathway.
  • Preincubation with the miS1 inhibitor peptide, but not with the Mut peptide, managed to significantly reduce (30-40%) the production of cytokine-induced CCL2, both in VSMC and in macrophages.
  • chemotaxis assays demonstrated the anti-migratory effect of the miS1 inhibitor peptide in macrophages.
  • the animal and cellular models used in the examples of the present invention are accepted in the medical and pharmaceutical sector as models that allow extrapolating the data obtained through its use to human diseases.
  • the mouse deficient in the gene of apolipoprotein E is characterized by having a reverse transport of deficient cholesterol that determines a systemic hypercholesterolemia with high accumulation of lipids and cholesterol in adipose and peripheral tissues.
  • This mouse model develops spontaneously (in an accelerated way if it is fed with a fatty diet) atheromatous lesions with some characteristics similar to human lesions. Therefore, it is one of the most widely used models in cardiovascular research.
  • the induction of type 1 diabetes in apoE mice is an experimental model that combines hyperglycemia and hyperlipidemia (two risk factors in these pathologies) and is characterized by a rapid development of atherosclerosis and nephropathy as a consequence of diabetes.
  • the db / db mouse is characterized by a deficiency in the leptin receptor, spontaneous development of type 2 diabetes and obesity at 4-8 weeks of age and a subsequent retinal neurodegeneration process very similar to what occurs in the initial stages of diabetic retinopathy in diabetic patients.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Zoology (AREA)
  • Diabetes (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)

Abstract

Péptido derivado de SOCS1 para su uso en complicaciones crónicas de la diabetes, especialmente complicaciones oculares, renales, nerviosas y vasculares, así como composiciones que lo contienen y polinucleótidos aislados que lo codifican.La presente invención también se refiere al péptido derivado de SOCS1 para su uso tópico en el tratamiento y/o prevención de enfermedades neurodegenerativas de la retina, en particular en las primeras etapas de la retinopatía diabética y otras enfermedades de la retina en lasque la neurodegeneración juega un papel esencial.

Description

PÉPTIDO DERIVADO DE SOCS1 PARA SU USO EN COMPLICACIONES
CRÓNICAS DE LA DIABETES
OBJETO DE LA INVENCIÓN
La presente invención está relacionada con un péptido derivado de SOCS1 útil para la prevención y tratamiento de complicaciones crónicas de la diabetes, especialmente complicaciones oculares, renales, nerviosas y vasculares. Dentro del capítulo de las complicaciones oculares de la diabetes se incluyen la retinopatía diabética y el edema macular. Dado el carácter neuroprotector del péptido derivado de SOCS1 , la presente invención también se considera potencialmente efectiva para otras enfermedades de la retina, aparte de la retinopatía diabética, en las que la neurodegeneración desempeña un papel fundamental como son las enfermedades neurodegenerativas de la retina de carácter adquirido o hereditario.
ANTECEDENTES DE LA INVENCIÓN
La diabetes mellitus es una enfermedad sistémica de gran prevalencia, que causa frecuentemente lesiones en diversos órganos, especialmente retina, riñon, nervios y el sistema vascular. Sus complicaciones suelen dividirse en: a) complicaciones agudas, como hipoglucemia, cetoacidosis y coma hiperosmolar; b) complicaciones crónicas o tardías, divididas a su vez en microangiopáticas (nefropatía, retinopatía, y neuropatía), macroangiopáticas (enfermedad cardiovascular) y pie diabético (macro y microangioangiopatía).
El enorme impacto socio-sanitario de la diabetes es debido a estas complicaciones crónicas, principalmente oculares (retinopatía), renales (nefropatía) y vasculares (aterosclerosis). Los abordajes actuales para tratar la diabetes, como el control estricto de la glucosa y la hipertensión, consiguen frenar la evolución de la enfermedad pero no evitan en muchos casos la aparición de complicaciones crónicas, en especial la retinopatía, los eventos cardiovasculares o la progresión de los pacientes a insuficiencia renal e incluso entrada en programas de diálisis y transplante. El pie diabético es una de las afectaciones más frecuentes de la diabetes que produce una importante morbilidad y un alto riesgo de amputación y cuyo tratamiento requiere abordaje multidisciplinario. La retinopatía diabética es la complicación más frecuente de la diabetes y una de las principales causas de ceguera en todo el mundo. En la etiopatogenia de la retinopatía diabética interviene la hiperglucemia per se y las vías metabólicas directamente relacionadas con ella, provocando daño en el lecho capilar situado en la retina interna (lesión microangiopática). Clásicamente, la retinopatía diabética se ha considerado como una enfermedad microangiopática de la retina. Sin embargo, la evidencia actual indica que la neurodegeneración es un fenómeno precoz en la patogenia de la retinopatía diabética que participa en el desarrollo de las alteraciones microvasculares. En la actualidad no existen tratamientos específicos para las fases iniciales de la retinopatía diabética. Además, los tratamientos específicos indicados en fases avanzadas de la enfermedad (fotocoagulación con láser, inyecciones intravítreas de agentes como los anticuerpos anti-VEGF -"Vascular endothelial growth factor"- o corticoides o la vitrectomía) tienen una efectividad limitada y una elevada tasa de efectos secundarios. Para prevenir la retinopatía diabética o tratarla en fases iniciales (neurodegeneración) serían necesarios abordajes terapéuticos no invasivos. En este sentido la administración tópica ocular (colirio) sería la vía más adecuada debido a su carácter no invasivo ya que evitaría los efectos secundarios sistémicos.
Además de la retinopatía diabética existen otras enfermedades que cursan con neurodegeneración de la retina como la degeneración macular asociada a la edad (AMD), el glaucoma y la retinitis pigmentosa. Las enfermedades neurodegenerativas de la retina se refieren a las condiciones de la retina caracterizadas por la pérdida neuronal progresiva.
Un análisis en profundidad de estas enfermedades, sus sitios críticos, así como de las posibles formas de protección y caminos que conducen a la recuperación, se pueden extraer de Schmidt et al., "Neurodegenerative Diseases of the Retina and Potential for the Protection and Recovery", Current Neuropharmacology - 2008, Vol. No. 6, pp.: 164-178.
En el caso de la retinopatía diabética, la neurodegeneración (pérdida de neuronas efectivas) se produce en las primeras etapas de la enfermedad y produce anormalidades funcionales, tales como la pérdida de la discriminación cromática y la sensibilidad al contraste. Estas alteraciones pueden detectarse mediante estudios electrofisiológicos en pacientes diabéticos, incluso con menos de dos años de duración de la diabetes, es decir, antes de que las lesiones microvasculares puedan detectarse bajo examen oftalmológico. Además, el retraso en tiempo implícito de electrorretinograma multifocal (mfERG-IT) predice el desarrollo de anomalías microvasculares tempranas. Por otra parte, la degeneración neurorretinal inicia y/o activa varias rutas metabólicas y de señalización que participarán tanto en el proceso microangiopático como en la disrupción de la barrera hemato-retiniana (BRB). La BRB es una estructura del ojo de gran importancia en muchas de las enfermedades de la retina y en especial es un elemento crucial en la patogénesis de la retinopatía diabética. La BRB está constituida por la BRB interna y la BRB externa. La BRB interna está formada por las uniones estrechas de las células endoteliales. La BRB externa está constituida por el epitelio pigmentario de la retina (RPE), cuyas células también están conectadas por uniones estrechas. El edema macular diabético es debido a la disrupción de la BRB. Otra enfermedad de la retina que es frecuente debida a un deterioro de la BRB que resulta en edema retiniano es la AMD. Además, la alteración de la BRB se produce también en una amplia variedad de situaciones oculares, tales como uveítis, trauma, cirugía infraocular, retinopatías vasculares, distrofias hereditarias, etc. (Cunha-Vaz et al., "The Blood-Retinal Barrier in Retinal Disease", European Ophthalmic Review -2009, Vol. No. 3, pp.:105-108).
En los últimos años se está dedicando gran esfuerzo para conocer los mecanismos moleculares implicados en el desarrollo de las complicaciones de la diabetes, así como estudiar su potencial terapéutico. La vía de señalización JAK/STAT (Janus Kinase/Signal Transducers and Activators of Transcription) es un importante mecanismo intracelular por el que la hiperglucemia y otros factores contribuyen al desarrollo de la diabetes y sus complicaciones. JAK/STAT controla numerosos procesos celulares, como proliferación, migración y diferenciación, así como la expresión de mediadores inflamatorios. Se ha descrito un aumento en la expresión y activación de miembros de la vía JAK/STAT en placas de ateroma, en biopsias renales de pacientes diabéticos y en modelos animales de retinopatía y nefropatía diabética.
La familia de proteínas SOCS (Suppressors Of Cytokine Signaling) es el principal mecanismo endógeno de regulación negativa de la vía JAK/STAT y alteraciones en los niveles de expresión se han relacionado con diferentes enfermedades inmunes e inflamatorias. Estudios experimentales en animales con modificaciones genéticas para miembros de la familia SOCS han demostrado un efecto protector en las células β pancreáticas, con reducción de la incidencia de diabetes (Flodstróm-Tullberg et al., Diabetes 2003;52:2696-700) y del daño renal asociado {Ortiz-Muñoz et al., J Am SocNephrol 2010;21:763-72), así como un efecto anti-aterosclerótico (Ortiz-Muñoz et al., ArteriosclerThromb Vasc Biol 2009;29:525-531 ;Wesoly et al., Acta Biochim Pol 2010; 57 (3) .251-260; Liang et al., Int J Mol Med. 2013 May;31(5):1066-74). Esto sugiere un potencial terapéutico de estas proteínas endógenas en las complicaciones de la diabetes.
El uso de péptidos miméticos de proteínas SOCS se ha descrito previamente en la encefalomielitis alérgica experimental, un modelo de esclerosis múltiple (Mujtaba et ai, J Immunol 2005; 175:5077-5086; Jager et al., J Neuroimmunol2011;232:108-118) y también en modelos de daño en nervios periféricos (Girolami et al., ExpNeurol 2010;223:173-182) e infección viral por poxvirus (Ahmed et al., J Virol 2009;83:1402- 1415). Asimismo se han descrito polipéptidos SOCS como inhibidores de la señalización inducida por citoquinas, en particular en inflamación e infecciones virales o bacterianas (US2009/0209458). La publicación WO2010/151495 describe péptidos antagonistas de SOCS-1 o SOCS-3, útiles como antivirales. En US8,420,096 se describe un péptido soluble conteniendo la secuencia de SOCS1/SOCS3 y una secuencia de translocación de membrana y su potencial uso para tratamiento de enfermedades inmunes. En US2009253618 se han descrito asimismo péptidos de este tipo, para su uso en la diferenciación de neuronas. En US2009030179 se emplean como agentes antimicrobianos varios péptidos sintéticos de la región SOCS-box de estos péptidos.
A pesar de la investigación existente en este campo, y haberse postulado la relación entre la vía de señalización JAK/STAT, las proteínas SOCS y la diabetes, hasta la fecha no se ha descrito la administración efectiva de ningún péptido per se para la prevención o el tratamiento de complicaciones oculares, renales o vasculares de la diabetes. No se ha relacionado en ningún caso los péptidos miméticos SOCS con trastornos oculares.
DESCRIPCIÓN RESUMIDA DE LA INVENCIÓN
Se ha encontrado que un polipéptido correspondiente a una región de la proteína SOCS1 tiene eficacia para el tratamiento de complicaciones crónicas de la diabetes in vivo en modelos animales de diabetes. Adicionalmente, se ha encontrado que dicho polipéptido es eficiente en el tratamiento de enfermedades neurodegenerativas de la retina.
Así, en un primer aspecto, la presente invención se refiere a un polipéptido aislado que contiene
a) la secuencia de SEQ ID NO 2 (DTHFRTFRSHADYRRI); o
b) una variante a la secuencia de a) que sea idéntica en al menos el 85 % a la SEQ ID NO 2, basándose en la identidad de la totalidad de los aminoácidos de dicha secuencia;
para la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina, donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria.
En un segundo aspecto, la presente invención se refiere a una composición que comprende una cantidad terapéuticamente eficaz de un polipéptido del primer aspecto, y al menos un vehículo o un excipiente farmacéuticamente aceptable, para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria.
En un tercer aspecto, la presente invención se refiere a un polinucleótido aislado que codifica
a) la secuencia de aminoácidos SEQ ID NO 2; o
b) una variante a la secuencia de a) o b) que sea homologa en al menos el 85% a la secuencia SEQ ID NO 2; para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria.
Un aspecto adicional de la invención es el uso de un polipéptido aislado que contiene a) la secuencia de SEQ ID NO 2 (DTHFRTFRSHADYRRI); o
b) una variante a la secuencia de a) que sea idéntica en al menos el 85 % a la SEQ ID NO 2, basándose en la identidad de la totalidad de los aminoácidos de dicha secuencia;
para la preparación de un medicamento para la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria.
La invención también se refiere a un polinucleótido aislado que codifica
a) la secuencia de aminoácidos SEQ ID NO 2; o
b) una variante a la secuencia de a) que sea homologa en al menos el 85% a la secuencia SEQ ID NO 2;
para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria.
Asimismo se refiere al uso de un polinucleótido aislado que codifica
a) la secuencia de aminoácidos SEQ ID NO 2; o
b) una variante a la secuencia de a) que sea homologa en al menos el 85% a la secuencia SEQ ID NO 2;
para la preparación de un medicamento para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria. Un último aspecto, la invención se refiere a un método de tratamiento, el cual comprende la administración de una cantidad terapéuticamente eficaz de un polipéptido del primer aspecto a un paciente con complicaciones crónicas de la diabetes y/o que padece una enfermedad neurodegenerativas de la retina donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde dicha enfermedades neurodegenerativa de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria. Estos compuestos actúan como neuroprotectores tópicos de la retina. Cabe destacar que la administración tópica de péptidos para uso de acuerdo con la invención, no sólo llegan a retina, sino que también logran concentraciones eficaces para prevenir la evolución de la retinopatía diabética.
BREVE DESCRIPCIÓN DE LAS FIGURAS Figura 1 : Evolución de la glucemia y el peso en el modelo de retinopatía diabética. Niveles de glucosa en sangre (A) y peso corporal (B) a lo largo del estudio. El tratamiento con péptido inhibidor no afectó estos parámetros.
Figura 2: Efecto de la administración tópica (gotas oculares) del péptido derivado de SOCS1 en la activación glial: Cuantificacion de la activación glial basada en la medida de la tinción de GFAP (Glial f ¡brillar acidic protein) en la retina entre muestras representativas de un ratón diabético tratado con el vehículo [D-Sham], un ratón diabético tratado con gotas oculares que contienen el péptido derivado de SOCS1 [D-SOCSM1S1] y un ratón no diabético [control (db/+)].
Figura 3: Efecto de la administración tópica (gotas oculares) del péptido derivado de SOCS1 sobre la apoptosis. Porcentaje de células positivas mediante la técnica de TUNEL (Terminal Transferase dUTP Nick-EndLabeling) en la neurorretina de un ratón representativo de cada grupo, ratones diabéticos tratados con vehículo [D- Sham], ratones no diabéticos [control (db/+)] y ratones diabéticos tratados con péptido derivado de SOCS1 [D-SOCSM1 S1]. Los resultados se expresan como la media ± SD. *: p<0.01 en comparación con los otros grupos.
Figura 4: El tratamiento con el péptido derivado de SOCS1 mejora las anomalías del ERG. (A) Amplitud (panel superior) y tiempo implícito (panel inferior) de la onda a en los grupos experimentales. (B) Amplitud (panel superior) y tiempo implícito de la onda b (panel inferior) en los grupos experimentales.
Figura 5: El tratamiento con el péptido derivado de SOCS1 impide la disrupción de la BRB inducida por la diabetes. Cuantificacion de la extravasación de albúmina en unidades arbitrarias de fluorescencia (U.A.) evaluada en un ratón diabético representativo tratado con vehículo [D-Sham], un ratón diabético tratado con el péptido derivado de SOCS1 [D-SOCSM1S1] y un ratón no diabético [control (db/+)]. Los resultados se expresan como media ± DE *<0.01 en comparación con otros grupos.
Figura 6: El tratamiento con el péptido derivado de SOCS1 mejora el metabolismo del glutamato en ratones diabéticos. (A) Cuantificacion de la inmunofluorescencia de GLAST en unidades arbitrarias (U.A.). Los resultados se expresan como media ± DE. (B) Concentración de glutamato de la retina medida por UPLC en los grupos experimentales. Los resultados se expresan como media ± DE. *p<0.001 en comparación con los otros grupos. ** p <0.01 en comparación con el grupo control. Figura 7: El péptido derivado de SOCS1 reduce la expresión de genes inflamatorios en la retinopatía diabética. Cuantificación de la expresión del ARNm I L-1 β por RT-PCR en ratones diabéticos tratados con vehículo [D-Sham], ratones no diabéticos [control (db/+)] y ratones diabéticos tratados con péptido derivado de SOCS1 [D-SOCSM1 S1]. Los resultados se expresan como media ± DE. * p<0.05 en comparación con los otros grupos. RQ: cuantificación relativa.
Figura 8: El péptido derivado de SOCS1 inhibe la activación de STAT en los ríñones diabéticos. Se inmunodetectó STAT1 y STAT3 fosforilados en secciones de riñon de ratones diabéticos. Se muestra la cuantificación de la tinción positiva en compartimentos glomerulares y tubulointersticiales. Los resultados son la media ± SD. * p<0.02 vs grupo control.
Figura 9: Efecto renoprotector del péptido derivado de SOCS1 en ratones diabéticos. (A) Evaluaciones semicuantitativas de las lesiones glomerulares (Hyper, hipercelularidad, MM, matriz mesangial; Dil, dilatación capilar), fibrosis y degeneración tubular (Tub) y la fibrosis y la inflamación intersticial (Int). (B) Análisis morfométrico del área glomerular. (C) Cuantificación del área mesangial PAS+. Los resultados son la media ± SD. * p <0.05 vs grupo control.
Figura 10: El péptido derivado de SOCS1 previene la fibrosis renal en la nefropatía diabética. (A) Análisis cuantitativo del contenido de colágeno en los compartimentos glomerular y tubulointersticial en muestras renales de ratones diabéticos (control y SOCS1). (B) Análisis RT-PCR de la expresión del ARNm de las proteínas de la matriz extracelular (fibronectina y colágeno tipo I), el factor pro-fibrótico (TGF-β) y el marcador de lesión tubular (Kim-1) en la corteza renal. Los datos son la media ± SEM. * p<0.05 vs grupo control.
Figura 11 : Efecto antiinflamatorio del péptido derivado de SOCS1 en los ríñones diabéticos. (A) Detección inmunoperoxidasa de la infiltración de macrofagos (F4/80) y linfocitos T (CD3) en muestras de riñon de ratones diabéticos. Se muestra la cuantificación de células positivas en glomérulos y túbulo intersticial. (B) Análisis RT- PCR de la expresión del ARNm de quimiocinas (CCL2 y CCL5) y la citoquina TNFa en la corteza renal. Los datos son la media ± SEM. * p<0.05 vs grupo control.
Figura 12: Efecto anti-aterosclerótico del péptido miS1 en la diabetes experimental. (A) Evolución del tamaño de las placas de ateroma a lo largo del tiempo en cortes transversales de aorta de ratones diabéticos. (B) Cuantificación del contenido inflamatorio (tinción de macrofagos Moma2) y de marcadores de estabilidad de la placa (tinción de fibras de colágeno con rojo sirio y de células vasculares con a- actina) en las lesiones ateroscleróticas de ratones diabéticos. *, p<0.05 vs grupo control.
Figura 13: Efectos in vitro del péptido derivado de SOCS1 y su control mutante inactivo. (A) Activación de STAT1 y STAT3 en macrófagos estimulados con citoquinas en presencia de diferentes concentraciones del péptido derivado de SOCS1 o del péptido mutante. (B) Producción de la proteína quimiotáctica CCL2 en macrófagos y VSMC. (C) Ensayo de migración de macrófagos. *, p<0.05 vs condiciones básales; #, p<0.05 vs estimulación con citoquinas.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Tal y como indicado anteriormente, un primer aspecto de la invención es un polipéptido aislado que contiene
a) la secuencia de SEQ ID NO 2 (DTHFRTFRSHADYRRI); o
b) una variante a la secuencia de a) que sea idéntica en al menos el 85 % a la SEQ ID NO 2, basándose en la identidad de la totalidad de los aminoácidos de dicha secuencia;
para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes diabetes y/o de enfermedades neurodegenerativas de la retina donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, degeneración macular asociada a la edad, glaucoma y retinitis pigmentaria.
Uno o más de los aminoácidos de cualquiera de las secuencias mencionadas en la presente invención, en particular las SEQ ID NO 1 , SEQ ID NO 2 y SEQ ID NO 3, pueden estar modificados, por ejemplo pueden encontrarse fosforilados. Según una realización particular, solo un aminoácido de la secuencia se encuentra modificado, preferiblemente fosforilado. Según una realización preferida, es la tirosina (Y) el aminoácido fosforilado. En el marco de la presente invención el término "% de identidad" o "idéntica en al menos un %", en relación con secuencias de aminoácidos, significa el porcentaje de identidad determinado mediante el siguiente método: el alineamiento de dos secuencias aminoacídicas se realiza mediante el servicio https://www.ebi.ac.uk/Tools/msa/clustalw2/, aplicando los ajustes por defecto de este servicio. Así, por ejemplo la SEQ ID NO 1 sería una variante a la secuencia de SEQ ID NO según lo aquí definido.
El término "complicaciones crónicas de la diabetes", en el marco de la presente invención, se entenderá que engloba, pero no necesariamente se limita a, complicaciones o trastornos oculares, renales, nerviosos y vasculares, entendiéndose aquí el término "vasculares" como englobando complicaciones tanto cardiovasculares como cerebrovasculares. De manera concreta, incluiría complicaciones seleccionadas entre retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, incluyendo microangiopatías y macroangiopatías, tales como aterosclerosis diabética, pie diabético y enfermedad arterial periférica.
Así, el péptido de la invención es para uso en la prevención o tratamiento de complicaciones crónicas de la diabetes, seleccionándose éstas del grupo formado por complicaciones o trastornos oculares, renales, nerviosos y cardiovasculares en pacientes diabéticos.
Por lo tanto, en una realización particular, las complicaciones crónicas de la diabetes se seleccionan del grupo formado por retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica. Según una realización preferida, la complicación crónica de la diabetes es un trastorno ocular, en particular retinopatía diabética.
El péptido de la invención también es útil en el tratamiento de enfermedades neurodegenerativas de la retina. El término "enfermedades neurodegenerativas de la retina", en el marco de la presente invención, se entenderá que engloba aquellas patologías oculares que se caracterizan por la presencia de inflamación de la glía (activación glial o gliosis reactiva) por la muerte neuronal progresiva por apoptosis de las neuronas de la retina, en concreto de los fotorreceptores, que como consecuencia pueden ocasionar ceguera. Ejemplos de dichas enfermedades incluyen pero no se limitan a retinopatía diabética, glaucoma y retinitis pigmentaria. De acuerdo una realización particular de la presente invención, dichas enfermedades se seleccionan de un grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria. Según una realización preferida, la enfermedad neurodegenerativa de la retina es retinopatía diabética.
En el sentido de la invención, el término "neuroprotección" se entenderá que engloba, pero no necesariamente se limita a cualquier tipo de tratamiento profiláctico o método que puede ser utilizado con el fin de que las neuronas que constituyen la neurorretina permanezcan preservadas y en un estado fisiológico correspondiente al de un sujeto animal sano (incluyendo humanos). La "neurorretina" es la parte neurosensorial de la retina y es la responsable del ciclo visual.
En particular, el péptido "para uso tópico en el tratamiento y/o prevención" de acuerdo con la invención, se entenderá que engloba, pero no necesariamente se limita al uso tópico ocular en el tratamiento y/o prevención, de manera concreta, de una enfermedad neurodegenerativa de la retina seleccionada de entre el grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria.
De acuerdo con una realización particular, la variante a la secuencia SEQ ID NO 2 es idéntica en al menos un 90%, aún más preferiblemente en aproximadamente un 94%, cifra que se correspondería por ejemplo con el reemplazo de un aminoácido por otro en la secuencia SEQ ID NO 2, o la adición de un aminoácido a la secuencia SEQ ID NO 2. Según una realización particular, la variante sería la SEQ ID NO 1 (DTHFRTFRSHSDYRRI). Otras especies de mamíferos, tales como Ratus Norvergicus, G orilla g orilla gorilla, Oryctolagus cuniculus, Pan troglodytes, Pongo abelii, Cavia porcellus o Sus scrofa, presentan la SEQ ID NO 1 o SEQ ID NO 2, ya que esta secuencia está muy conservada entre unas especies mamíferos y otras.
De acuerdo con una realización preferida, tal secuencia SEQ ID NO 2, o sus variantes idénticas en un porcentaje según lo definido anteriormente, está unida a una región de permeabilidad celular. Dicha región de permeabilidad celular puede seleccionarse de entre diferentes secuencias de permeabilidad descritas, generalmente pequeños péptidos de naturaleza catiónica o hidrofóbica, como TAT (SEQ ID NO 4: YGRKKRRQRRR), Antp (SEQ ID NO 5: RQIKIWFQNRRMKW), PTD-5 (SEQ ID NO 6: RRQRRTSKLMKR), SEQ ID NO 7: 8K (K=Lys) y SEQ ID NO 8: 6R (R=Arg). Más preferentemente, la región de permeabilidad celular es lisina-palmitato. Aún más preferiblemente, la región de permeabilidad celular está unida por el extremo amino terminal de la SEQ ID NO 2 o sus variantes idénticas. En el alcance de la invención se incluye cualquier polipéptido que comprenda la mencionada secuencia o sus variantes idénticas según lo definido anteriormente. Sin embargo, según una realización preferida, el polipéptido consiste esencialmente en a) la secuencia de SEQ ID NO 2; o
b) una variante a la secuencia de a) que sea idéntica en al menos el 85 % a la SEQ ID NO 2, basándose en la identidad de la totalidad de los aminoácidos de dicha secuencia.
En particular, la variante consistirá en la secuencia SEQ ID NO 1.
El término "consiste esencialmente" en el marco de la presente invención se refiere a la inclusión de un máximo de 8 aminoácidos adicionales (o sea, un máximo de un 50% más) a las secuencias definidas o sus variantes homologas, de acuerdo con realizaciones preferidas un máximo de 7, 6, 5, 4, 3, 2 o 1 aminoácidos adicionales, que pueden estar unidos independientemente al extremo amina de la secuencia, al extremo ácido o en cualquier lugar de la secuencia, pasando a formar parte de la secuencia.
En cualquiera de los casos anteriores, la secuencia puede o no estar unida a una región de permeabilidad celular como definida anteriormente.
Según una realización particular, el polipéptido consiste en la secuencia SEQ ID NO 2; puede o no estar unido a una región de permeabilidad celular como definida anteriormente.
En el caso de que el polipéptido sea para uso en complicaciones oculares en pacientes diabéticos, o para su uso en enfermedades degenerativas de la retina tales como retinopatía diabética, el polipéptido que contiene la secuencia de SEQ ID NO 2 o sus variantes idénticas según definido anteriormente, según una realización particular consiste esencialmente en o es:
a) la proteína SOCS1 de origen humano (UniProt: 015524);
b) la proteína SOCS1 de origen murino (UniProt: 035716); o
c) una variante a las secuencias de a) o b) que sea idéntica en al menos el 85% a la secuencia de aminoácidos de la proteína SOCS1 de origen murino o a la secuencia de aminoácidos de la proteína SOCS1 de origen humano.
Al igual que cualquiera de las realizaciones particulares anteriores, al menos uno de los aminoácidos de la proteína SOCS1 de origen humano o murino, o una variante idéntica de las mismas, puede encontrarse modificado, preferiblemente fosforilado. De acuerdo con una realización preferida, el aminoácido fosforilado o uno de los aminoácidos fosforilados será una tirosina (Y). Asimismo, la proteína SOCS1 según las definiciones previas, puede encontrarse unida a una región de permeabilidad celular, preferiblemente a un grupo lisina-palmitato. De acuerdo con una realización preferida, la región de permeabilidad celular se encuentra unida por el extremo N- terminal del polipéptido, siendo más preferiblemente la región de permeabilidad celular un grupo lisina-palmitato.
La variante idéntica en al menos el 85% incluye las proteínas SOCS1 de otros mamíferos, tales como Ratus Norvergicus, Gorilla, Oryctolagus cuniculus, Pan troglodytes, Pongo abelii, Cavia porcellus o Sus Scrofa.
De acuerdo con realizaciones particulares, la variante a las secuencias de SOCS1 de origen humano o murino son idénticas en al menos un 90%, aún más preferiblemente en aproximadamente un 94%, a dichas secuencias. Todas las realizaciones preferidas indicadas para este primer aspecto de la invención son aplicables también al resto de aspectos de la invención, detallados a continuación.
Un aspecto adicional de la invención es el uso de un polipéptido aislado que contiene a) la secuencia de SEQ ID NO 2 (DTHFRTFRSHADYRRI); o
b) una variante a la secuencia de a) que sea idéntica en al menos el 85 % a la SEQ ID NO 2, basándose en la identidad de la totalidad de los aminoácidos de dicha secuencia;
para la preparación de un medicamento para la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina, donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria.. De acuerdo con otro aspecto de la invención, esta se refiere a una composición que comprende una cantidad terapéuticamente eficaz de un polipéptido de acuerdo con cualquiera de las definiciones anteriores, y al menos un vehículo o un excipiente farmacéuticamente aceptables, para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina, donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria, según las definiciones dadas anteriormente.
En una realización preferida de la invención la composición es adecuada o está destinada a su uso en la prevención o tratamiento de trastornos oculares en pacientes diabéticos y/o de enfermedades neurodegenerativas de la retina preferentemente retinopatía diabética. También podría ser utilizada para otras enfermedades de la retina que cursen con neurodegeneración, glaucoma y retinitis pigmentaria.
Así según una realización particular, el vehículo o excipiente es un vehículo o excipiente farmacéuticamente aceptable adecuado para la administración por vía oftálmica.
Las composiciones según la presente invención comprenden al menos un vehículo o excipiente farmacéuticamente aceptables. El término "vehículo o excipiente farmacéuticamente aceptable" se refiere a sustancias o entidades moleculares junto a los cuales es administrado el péptido de la invención. Tales vehículos o excipientes serán adecuados para la vía de administración elegida, y serán evidentes a un experto de la materia dependiendo de la vía de administración. Los vehículos pueden ser líquidos estériles, tales como agua o aceites, incluyendo aquellos derivados de petróleo, de origen animal, vegetal o sintético, excipientes, disgregantes, agentes humectantes, o diluyentes. Vehículos y excipientes adecuados se describen por ejemplo en "Remington's Pharmaceutical Sciences" de E. W. Martin, el cual se incorpora por referencia a la presente solicitud.
Las composiciones según la presente invención pueden ser administradas por cualquier vía conocida, incluyendo vía oral, vía gastroentérica, vía parenteral, vía rectal, vía respiratoria y vía tópica, en particular por vía oftálmica. Asimismo las composiciones podrán contener otros principios activos o adyuvantes adecuados que serán evidentes al experto en la materia. Asimismo las composiciones podrían contener únicamente un solo polipéptido según la invención o dos o más polipéptidos según la invención.
En el caso de la vía oftálmica, el vehículo o excipiente debe ser adecuado para esta vía de administración. Las composiciones en este caso serán preparadas de manera conveniente, bien como una solución o una suspensión acuosa, en un vehículo o solución base oftálmico farmacéuticamente aceptable. Además del principio activo, en este caso el polipéptido según la invención, puede contener otros adyuvantes, tales como agentes antimicrobianos, conservantes, agentes quelantes, agentes reguladores de la tonicidad, agentes reguladores del pH, incluyendo soluciones tampón, agentes viscosantes, etc.
Si el sujeto recibe compuestos que ayudan a la neuroprotección de la retina (como el péptido de la invención) en las primeras etapas de la retinopatía diabética cuando las anomalías funcionales pueden ser detectadas (es decir, la discriminación cromática, la sensibilidad al contraste y las anomalías electrorretinográficas), los tratamientos agresivos de la enfermedad se pueden evitar. Así que, si la retina está protegida de las consecuencias de la hiperglucemia crónica, las complicaciones mayores se pueden minimizar o incluso no aparecer nunca, lo que supone una mejora real de la calidad de vida de los pacientes diabéticos. Por otra parte, el péptido previene la desorganización de la BRB. La administración tópica ocular de los péptidos representa una ventaja real, evitando tratamientos más agresivos.
El tratamiento en las primeras etapas de la retinopatía diabética tiene la ventaja real de que se evitan complicaciones adicionales, a saber, microaneurismas, microhemorragias, exudados duros, edema macular y neovascularización.
En las composiciones según la invención el péptido estará contenido en un rango de concentración de 1-12 mg/mL. En el caso particular de administración por vía ocular, el péptido estará contenido en una concentración de al menos 5 mg/mL, en realizaciones particulares estará contenido en una concentración de al menos 8 mg/mL, al menos 9 mg/mL, al menos 10 mg/mL, de acuerdo con una realización preferida en una concentración de 10mg/mL ± 5%, es decir, 10 mg/mL ± 0.5 mg/mL. En el caso particular de administración por vía intraperitoneal, el péptido estará contenido en una concentración de entre 1 y 5 mg/mL, de acuerdo con una realización particular estará contenido en una concentración de entre 1 y 3 mg/mL, de acuerdo con realizaciones preferidas, en una concentración de 2 mg/mL ± 10% o ± 5%, es decir, ± 0.2 mg/mL o ± 0.1 mg/mL. La composición de acuerdo con la invención es adecuada para la administración de una dosis diaria de entre 10 y 200 del péptido por cada ojo. De acuerdo con una realización particular, el péptido se administrará en una dosis diaria de entre 30 y 70 μg por cada ojo, de acuerdo con una realización preferida en una dosis diaria de entre 40 y 60 μg por cada ojo, preferiblemente entre 45 y 55 por cada ojo. En el caso de administración por vía intraperitoneal o vía oral, la composición será adecuada para la administración de una dosis diaria de entre 1 y 16 mg del péptido por cada kg de peso del paciente o sujeto al que se realiza la administración, según realizaciones particulares entre 2 y 10 mg del péptido por cada kg de peso del paciente o sujeto, preferiblemente entre 2,5 y 3.5 del péptido por cada kg de peso del paciente o sujeto.
Otro aspecto de la invención se refiere a un polinucleótido aislado que codifica a) la secuencia de aminoácidos SEQ ID NO 2; o
b) una variante a la secuencia de a) que sea homologa en al menos el 85% a la secuencia SEQ ID NO 2;
para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina, donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria., según las definiciones anteriormente proporcionadas.
Según una realización particular, el polinucleótido aislado codifica
a) la secuencia de aminoácidos SEQ ID NO 2 unida a un grupo lisina; o
b) una variante a la secuencia de a) que sea idéntica en al menos el 85% a la secuencia SEQ ID NO 2, unida a un grupo lisina;
para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina, donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria, según las definiciones anteriormente proporcionadas.
El polinucleótido anteriormente definido es adecuado o está destinado para uso tópico en la prevención o tratamiento de las enfermedades anteriormente mencionadas.
Preferiblemente el polinucleótido anteriormente definido es adecuado o está destinado para su uso en la prevención o tratamiento de trastornos oculares en pacientes diabéticos y/o de enfermedades neurodegenerativas de la retina, más preferiblemente para su uso en la prevención o tratamiento de la retinopatía diabética.
A continuación se incluyen una serie de ejemplos ilustrativos, no limitativos de la presente invención.
EJEMPLOS
Materiales y métodos
Péptidos:
Se sintetizó un péptido de 16 aminoácidos (SEQ ID NO 1 : DTHFRTFRSHSDYRRI, AspThrHisPheArgThrPheArg Ser His Ser AspTyrArgArglle), que se corresponde con la secuencia "kinase inhibitory región" de la proteína SOCS1 murina, unido a una región de permeabilidad celular (lisina-palmitato) por el extremo N-terminal de la secuencia peptídica (residuo D, ácido aspártico), en el cual la tirosina (Y) está fosforilada. A lo largo de los ejemplos se denominará miS1 o D-SOCSMIS1 al péptido derivado formado por SEQ ID NO 1 y el grupo lisina-palmitato. En algunos casos éste se conjugó con un marcador fluorescente para posibilitar su posterior seguimiento en tejidos y células. Asimismo se sintetizó también un péptido no funcional mutado (Mut) reemplazando F (Phe) por A (Ala): SEQ ID NO 3, DTHARTARSHSDYRRI, AspThrHisAlaArgThrAla Arg Ser His Ser AspTyrArgArglle; unido igualmente a la región de permeabilidad celular lisina-palmitato, para su uso como control de los experimentos. Los péptidos se disolvieron (<1 % DMSO en solución salina) y se esterilizaron por filtración.
Animales:
Se emplearon dos modelos experimentales, concretamente un modelo experimental de diabetes tipo 2 (ratones db/db) y otro de diabetes tipo 1 (inyección de estreptozotocina en ratones apoE). Los ratones se mantuvieron en jaulas de tamaño estándar en condiciones controladas de temperatura (20°C) y humedad (60%), con ciclos de luz/oscuridad de 12 horas y con acceso a comida (dieta estándar) y agua ad libitum. Estos estudios se han realizado según la legislación española vigente en cuanto al empleo, protección y cuidado de los animales de experimentación (Real Decreto 53/2013), siguiendo recomendaciones de la CEE (86/609/CEE) y ARVO (Associationfor Research in Vision and Ophthalmology) y han sido aprobados previamente por los Comités Éticos de las dos instituciones participantes (IIS- FundaciónJiménez Díaz/Universidad Autónoma de Madrid e Instituí de Recerca Hospital Universitari Valí d'Hebron).
Tratamiento de la neurodegeneracion de la retina causada por la diabetes mediante tratamiento tópico ocular con un péptido derivado de SOCS1
Ratones diabéticos (db/db) de 8 semanas recibieron el péptido miS1 en forma de colirio (gotas de 5 μΙ_ en cada ojo; 10 mg/mL; dos veces al día durante 15 días; n=7 ratones). Como controles se emplearon ratones diabéticos tratados con el péptido no funcional Mut (n=7), tratados con vehículo y no diabéticos (db/+). El colirio se administró directamente sobre la superficie superior de la córnea de cada ojo utilizando una micropipeta. Se controló el peso y la glucemia (ensayo colorimétrico) a lo largo del periodo de estudio. En el día 15, la gota con el péptido miS1 o vehículo se administró aproximadamente dos horas antes de la necropsia. Se realizó eutanasia a los animales por dislocación cervical y los ojos enucleados se congelaron inmediatamente y se cortaron secciones dorsoventrales de 8mm para analizar la morfología de la retina y otros análisis inmunohistoquímicos.
La activación glial se evaluó mediante inmunofluorescencia de GFAP (Glial f ¡brillar acidic protein) siguiendo la metodología descrita en otros estudios (Bogdanov et al. PLoS One. 2014;9:e97302). Las secciones fijadas se bloquearon (1 % BSA y 10% suero de cabra en PBS, 2h a RT) y se incubaron con anticuerpos anti-GFAP (dilución 1 :500, 16h a 4°C) seguido de un anticuerpo secundario (cabra anti-conejo, conjugado con Alexa 488, dilución 1 :200). Las muestras se contrastaron con Hoesch y se montaron para análisis en microscopio confocal. Las imágenes de muestras de diabéticos y controles se tomaron con idénticos parámetros y se analizó la distribución topográfica del mareaje GFAP en una escala de 0 a 5 (Anderson et al. Clin Ophthalmol 2008;2(4):801-16). La puntuación 1 indica ausencia de activación glial (inmunofluorescencia positiva para GFAP restringida a la capa de células ganglionares) mientras que la puntuación 5 representa la máxima activación glial (inmunofluorescencia para GFAP se extiende desde la capa de células ganglionares hasta el margen externo de la capa nuclear externa). La apoptosis se determinó mediante inmunohistoquímica TUNEL (Terminal Transferase dUTP Nick-EndLabeling; kit de fluorescencia) utilizando el método descrito anteriormente (Bogdanov et al. PLoS One. 2014;9:e97302) y posterior cuantificación en un microscopio de fluorescencia. Las secciones de retina se permeabilizaron mediante incubación a temperatura ambiente durante 5 min con una solución de Proteinasa K de 20 μg/ml, recién preparada. Las células apoptóticas se identificaron utilizando fluorescencia verde [Alexa Fluor 594 goat-anti-rabbit (Invitrogen) (1 :200 dilution prepared in PBS)]. Para la evaluación por microscopía de fluorescencia, se empleó una longitud de onda de excitación en el intervalo de 450 - 565 nm (e.g., 488 nm) y para la detección se empleó el intervalo de 515 - 565 nm (verde). Los resultados se presentan como el porcentaje de células positivas TUNEL con respecto a las células de tinción Hoestchst obtenidas por Image J software.
Para investigar los mecanismos por los que el péptido miS1 produce neuroprotección se evaluó el metabolismo del glutamato. La concentración de glutamato se determinó mediante cromatografía líquida de ultra-alta resolución (UPLC) (Acquity-UPLC, Waters) MassTrak aminoacid system). El GLAST (Glutamate/Aspartate transporter) se evaluó mediante inmunofluorescencia.
Las secciones de parafina se desparafinaron en xileno y se rehidrataron en una serie gradual de etanol. Las secciones fueron fijadas en metanol ácido (-20 °C) durante 1 minuto y se lavaron con solución salina tampón fosfato (PBS) 0.01 M a pH 7.4. Después de eso, se realizó la recuperación de antígenos. Las secciones se sumergieron en una solución de recuperación antígénica (citrato sódico 10 mM, pH 6.0) y se calentó en una olla a presión a 150°C durante 4 minutos. Las secciones se incubaron en solución de bloqueo (BSA al 0.5%, y 10% de suero de cabra en PBS) durante 1 hora a temperatura ambiente. Las secciones fueron incubadas con el anticuerpo primario, conejo anti-GLAST (1 :200, Abcam) durante la noche a 4 °C. Después de un lavado en PBS, las secciones se incubaron con un anticuerpo secundario Alexa 488 cabra anti-conejo (1 :200, Molecular Probes) durante 1 hora a temperatura ambiente. Las secciones se lavaron en PBS, se contratiñeron con Hoechst (1 :500, Sigma-Aldrich) y se colocaron en Medio de Montaje Fluorescente (Prolong, Invitrogen) con cubreobjetos. La inmunofluorescencia GLAST se cuantificó mediante microscopía confocal láser (Olympus FluoView ™ FV1000 confocal Microscopio, Hamburgo, Alemania) utilizando el software ImageJ. Se evaluó la expresión de I L- β, TNF-α e IL-6. El ARN total se extrajo con RNeasy Mini Kit with DNAse digestión (QIAGEN, Distribuidores IZASA, Barcelona, España) según las instrucciones del fabricante. El ARN (1 μg) se utilizó para la transcripción inversa con cebadores hexanucleótidos aleatorios y reactivos Applied Biosystems (Applied Biosystems, Madrid, España) en un volumen de reacción de 20 μΙ. La PCR en tiempo real se realizó en un ABI Prism 7000 Sequence Detection System (Perkin- Elmer Applied Biosystems; Madrid, España) con SYBR Green Supermix; Applied Biosystems, Madrid, España). Cada muestra se ensayó por triplicado y se incluyó un control negativo en cada experimento. S18 humano se utilizó como control de la expresión del gen endógeno. Se utilizó el método AACt para obtener la cuantificación relativa (RQ).
Se realizaron registros de electrorretinogramas (ERG) en ratones anestesiados y adaptados a la oscuridad (12h durante la noche). Se midieron registros de electroretinogramas focales (Ferg) utilizando un sistema Micron III Focal ERG (Phoenix Research Labs, Pleasanton, CA). Los registros fueron tomados con un electrodo integrado en la lente corneal del ratón montado en el ERG focal, un electrodo de referencia colocado en la cabeza entre los ojos, y un electrodo de tierra colocado en la cola. Por otra parte, para asegurar que todas las retinas centrales habían sido estimuladas, los estímulos de luz se proyectaron en los discos ópticos y se utilizó el punto de luz más grande disponible (1 ,5 mm de diámetro). Las respuestas ERG de ambos ojos se registraron en respuesta a 20ms estímulos de luz blanca. Las intensidades de los estímulos de luz blanca estaban en 800, 3200 y 12800 cd«s«m-2 y para cada intensidad, se realizaron un promedio de 6-10 destellos de luz consecutivas. Las señales ERG fueron amplificadas, la banda filtrada fue entre 0.5 y 1000 Hz, y se analizó con LabScribe-2 software (BioSeb, Vitrolles, Francia) con el fin de calcular la amplitud y el tiempo implícito de la onda a y la onda b, como se recomienda por la Sociedad Internacional de Electrofisiología Clínica de la Visión (ISCEV) (Marmor et al Doc Ophtalmol 108:. 107 a 144). Los registros de ERG se realizaron al inicio y en el día antes de eutanasia. Tratamiento de la disrupción de la BRB causada por la diabetes mediante tratamiento tópico ocular con un péptido derivado de SOCS1
Ratones diabéticos (db/db) de 8 semanas recibieron el péptido miS1 en forma de colirio (gotas de 5 en cada ojo; 10 mg/mL; dos veces al día durante 15 días; n=7 ratones). Como controles se emplearon ratones diabéticos tratados con vehículo (n=7) y no diabéticos (db/+) (n=7). Se controló el peso y la glucemia (ensayo colorí métrico) a lo largo del periodo de estudio. En el día 15 se realizó la eutanasia a los animales por dislocación cervical. La disrupción de la BRB se evaluó mediante la determinación de la permeabilidad a la albúmina. Las secciones de parafina se desparafinaron en xileno y se rehidrataron en una serie gradual de etanol. Las secciones fueron fijadas en metanol ácido (-20 °C) durante 1 minuto y se lavó con solución PBS 0.01 M a pH 7.4. Las secciones se incubaron en una solución de bloqueo (2,5% de leche seca no grasa) durante 30 minutos a temperatura ambiente. Las secciones fueron incubadas con un anticuerpo primario, ovejas anti-albúmina de suero humano (1 :500, Abcam) durante la noche a 4 °C. Después de un lavado en PBS, las secciones se incubaron con un anticuerpo secundario Alexa 594 burro anti-oveja (1 :200, Molecular Probes) durante 1 hora a temperatura ambiente. Las secciones se lavaron en PBS, se contratiñeron con Hoechst (1 :500, Sigma-Aldrich) y se colocaron en Medio de Montaje Fluorescente (Prolong, Invitrogen) con cubreobjetos. La inmunofluorescencia de la albúmina se analizó mediante microscopía confocal láser (Olympus FluoView™ FV1000 confocal Microscopio, Hamburgo, Alemania).
Tratamiento de la nefropatía y aterosclerosis causada por la diabetes mediante tratamiento intraperitoneal con un péptido derivado de SOCS1
Ratones macho deficientes en apolipoproteína E (apoE) de 8 semanas de edad se hicieron diabéticos por inyección de estreptozotocina (125mg/kg peso en 10mM citrato pH 4.5, dos días consecutivos). Después de 2 semanas, los animales con glucemia superior a 350 mg/dL se distribuyeron aleatoriamente en dos grupos (n=9 animales por grupo): tratados (péptido m¡S1 : 65 μg/día, 200μί, intraperitoneal, cada 2 días durante 8 semanas) y controles (vehículo). Se controló el peso y la glucemia (ensayo colorimétrico) a lo largo del periodo de estudio.
Al final del estudio, los animales anestesiados se perfundieron con salino y se sacrificaron, procesando los tejidos inmediatamente. En corteza renal (cortes en parafina, 5μηι) se estudió la morfología glomerular y tubulointersticial mediante tinciones de PAS y tricrómico de Masson y las lesiones se evaluaron de forma semicuantitativa y a doble ciego en escala 0-3. La fibrosis renal se determinó mediante tinción de rojo picrosirio y las células infiltrantes inflamatorias (macrofagos F4/80+ y linfocitos T CD3+) por inmunohistoquímica. En la aorta, la zona de raíz/arco (criocortes seriados de 8 μηι desde las válvulas hasta una extensión de 1000 μηι) se tiñó con Oil- red-O/hematoxilina y se cuantifico el área de la lesión aterosclerotica (programa Metamorph). La estabilidad de la placa se valoró por tinción de fibras de colágeno con rojo picrosirio e inmunofluorescencia de α-actina. El componente inflamatorio se determinó mediante inmunohistoquímica para monocito/macrófagos (Moma2). Utilizamos el programa Image Pro-Plus para cuantificar las tinciones positivas. Los parámetros bioquímicos en suero (hemoglobina glicada, colesterol y creatinina) y orina (albúmina y creatinina) se determinaron mediante kits comerciales convencionales.
Estudios in vitro
Se emplearon macrófagos RAW264.7 y células de músculo liso vascular (VSMC) cultivadas en medio con 10% suero bovino fetal. Las células se sincronizaron (24h sin suero), se preincubaron durante 90 min con diferentes concentraciones de péptidos (miS1 o su control, 50-150 μg/mL) y se estimularon con citoquinas (IFNy 103 U/mL; IL- 6 102 U/mL). La activación de STAT se analizó mediante Western blot para las isoformas STAT1/STAT3fosforiladas. La expresión de quimioquinas dependientes de la vía JAK STAT (CCL2) se determinó mediante ELISA. La viabilidad celular se analizó por ensayo colorimétrico MTT y la migración de macrófagos por ensayo de quimiotaxis.
Análisis estadístico
Los resultados se expresan como la mediaierror estándar del total de animales por grupo y de al menos 3 cultivos celulares independientes. Para el análisis estadístico utilizamos el programa GraphPadPrism (test ANOVA, Tukey y t de Student; significación con P<0.05).
EJEMPLO 1 : EFECTO DEL PÉPTIDO DE LA INVENCIÓN SOBRE LA NEURODEGENERACIÓN DE LA RETINA
En el modelo de diabetes tipo 2 (ratones db/db) se administró de forma local el péptido miS1 en forma de colirio (50 μg en 5 μ\-/ο\ο, dos veces al día) durante 15 días. La evolución del peso corporal y los niveles de glucosa se muestran en la Figura 1. La activación glial se midió con el marcador GFAP (Figura 2). Como era de esperar, en ratones no diabéticos [control (db/+)] la expresión de GFAP se limita principalmente a la capa de células ganglionares de la retina (GCL) (Figura 2). Los ratones diabéticos tratados con vehículo [D-Sham] presentaron significativamente mayor expresión de GFAP que los ratones no diabéticos equiparados por edad. Así, el 100% de los ratones diabéticos presentaron una puntuación GFAP ≥3. La administración del péptido derivado de SOCS1 durante dos semanas resultó en una disminución significativa de gliosis reactiva, y la puntuación de GFAP de los ratones tratados con péptido derivado de SOCS1 [D-SOCSMIS1] fue≤ 3 en todos los casos (Figura 2). El porcentaje de células apoptóticas en capas de la retina (ONL, INL, y GCL) en ratones diabéticos [D-Sham] fue significativamente mayor en comparación al observado en retinas de los controles no diabéticos [control (db/+)] de la misma edad (Figura 3). Los ratones diabéticos tratados con péptido derivado de SOCS1 [D-SOCSMIS1] presentaron una tasa significativamente menor de la apoptosis que los ratones diabéticos tratados con vehículo [D-Sham]. No se observaron diferencias en el porcentaje de células apoptóticas entre los ratones diabéticos tratados con el péptido derivado de SOCS1 [D-SOCSMIS1] y los ratones no diabéticos. El tratamiento con el péptido derivado de SOCS1 aminora la reducción de la amplitud de la onda a y la onda b inducida por la diabetes, así como el aumento del tiempo implícito de la onda a y la onda b (Figura 4).
GLAST es el principal transportador de glutamato expresado por las células de Müller, ya que es el responsable al menos el 50% de la captación de glutamato en la retina de mamíferos (Figura 6A panel superior). El contenido de GLAST se reguló a la baja en las retinas de ratones diabéticos tratados con vehículo [D-Sham]. En los ratones diabéticos tratados con el péptido derivado de SOCS1 [D-SOCSM 1S1], la regulación a la baja GLAST fue evitada (Figura 6A panel inferior). En consecuencia, se redujeron los niveles de glutamato intrarretinianos pero sin alcanzar significación estadística (Figura 6B). Por lo tanto, entre los mecanismos por los que el péptido miS1 es neuroprotector de la retina, cabe destacar que evita el incremento del glutamato y la reducción del trasportador del glutamato GLAST.
Además, el péptido miS1 previno el incremento de I L-1 β inducido por la diabetes (Figura 7). Cabe destacar que esta citoquina juega un papel crucial en la patogénesis de la retinopatía diabética.
En conclusión, la administración en gotas oculares del péptido miS1 en ratones diabéticos previno la neurodegeneración de la retina, determinada por una reducción significativa (aproximadamente un 80%) de la tinción de proteína glial GFAP y de la apoptosis en comparación con los grupos que recibieron péptido Mut o vehículo. El efecto neuroprotector del péptido derivado de SOCS1 también se evidenció mediante el examen funcional de la retina (ERG).
Estos resultados demuestran que el péptido de la invención es útil en el tratamiento de otras enfermedades que cursen con neurodegeneración de la retina como el glaucoma y la retinitis pigmentaria puesto que estas enfermedades, al igual que la neurodegeneración de la retina inducida por la diabetes, se caracterizan por la presencia de inflamación de la glía y muerte neuronal progresiva por apoptosis.
EJEMPLO 2. EFECTO DEL PÉPTIDO DE LA INVENCIÓN SOBRE LA PERMABILIDAD DE LA BARRERA HEMATORETINIANA
En el modelo de diabetes tipo 2 (ratones db/db) se administró de forma local el péptido miS1 en forma de colirio (50 μg en 5 μ\-/ο\ο, dos veces al día) durante 15 días. La evolución del peso corporal y los niveles de glucosa se muestran en la Figura 1. La permeabilidad vascular se evaluó midiendo la extravasación de albúmina. Se observó una extravasación de albúmina superior en ratones db/db tratados con vehículo [D-Sham] comparado con animales control [control (db/+)]. El tratamiento con el péptido derivado de SOCS1 , miS1 , previno la extravasación de albúmina en ratones db/db [D-SOCSM1S1] (Figura 5). Estos resultados demuestran que el péptido de la invención es útil en el tratamiento del edema macular diabético puesto que dicha patología se produce por la disrupción de la barrera hematoretiniana, caracterizándose por la extravasación de fluido al espacio extravascular (agua y solutos; entre los solutos el más abundante es la albúmina) y el péptido derivado de SOCS1 según la invención impide dicha disrupción.
EJEMPLO 3: EFECTO DEL PÉPTIDO DE LA INVENCIÓN SOBRE LA NEFROPATÍA Y LA FORMACIÓN DE PLACAS DE ATEROMA EN RATONES DIABÉTICOS
En el modelo de diabetes tipo 1 (estreptozotocina en ratones apoE) se realizó el tratamiento sistémico con péptido miS1 (65 μg/día, cada 2 días) durante 8 semanas. En la Tabla 1 se muestran los parámetros clínicos y metabólicos al final del estudio. Todos los ratones diabéticos presentaron niveles equivalentes de hiperglucemia (glucosa y hemoglobina glicada (HbA1c) y colesterol, lo que indica que el efecto protector del péptido no es debido a una posible acción sobre el control de la glucemia de estos animales. El tratamiento con miS1 también mejoró significativamente la función renal de los ratones diabéticos, observándose un 28% de descenso en los niveles de albuminuria. Además, la pérdida de peso originada por la diabetes crónica fue menos acusada en el grupo tratado con péptido miS1.
El análisis histológico en cortes renales de los ratones diabéticos demostró una disminución en la activación renal de STAT1 y STAT3 (Figura 8) junto con una mejora de las lesiones glomerulares (hipercelularidad, expansión mesangial e hipertrofia glomerular) y tubulointersticiales (atrofia, degeneración e infiltrado) en el grupo tratado con péptido miS1 en comparación con los diabéticos que recibieron vehículo (Figura 9). El péptido miS1 redujo significativamente la fibrosis tubulointersticial (Figura 10) y el infiltrado inflamatorio de linfocitos y macrófagos (Figura 1 1). En otra serie de experimentos estudiamos las propiedades anti-ateroscleróticas del tratamiento con péptido miS1 en los ratones diabéticos. La tinción de las placas de ateroma con Oil- red-O/hematoxilina y su posterior cuantificación mostraron una significativa reducción en el tamaño y extensión de las lesiones en los ratones diabéticos tratados con péptido miS1 (50% reducción en comparación con el grupo control que recibió vehículo; Figura 12A). El análisis de la composición de la placa demostró una disminución en el número de macrófagos en las lesiones de los animales tratados, así como un mayor contenido de colágeno y células vasculares (Figura 12B), indicando por tanto que el tratamiento redujo la inflamación y mejoró la estabilidad de las placas de ateroma de los animales diabéticos.
Tabla 1 : Datos metabólicos y renales en ratones con diabetes tipo 1
Parámetro Control SOCS1
Peso (g) 21.3 ± 0.9 21.9 ± 0.6
Glucosa en sangre (mg/dL) 528 ± 12 549 ± 29
GHbAl c (ug/mL) 470 ± 74 503 ± 76
Colesterol total (mg/dL) 583 ± 19 611 ± 59
Colesterol LDL (mg/dL) 557 ± 19 597 ± 61 Colesterol HDL (mg/dL) 12 ± 1 1 1 ± 1
Triglicéridos (mg/dL) 72 ± 5 89 ± 23
AST (U/L) 226 ± 16 176 ± 20
ALT (U/L) 106 ± 6 97 ± 17
Relación riñón-masa corporal (mg/g) 20.5 ± 1.1 16.4 ± 1.3 (p<0.05)
Creatinina sérica (mg/dL) 0.40 ± 0.04 0.24 ± 0.04 (p<0.02)
Relación albúmina urinaria-creatinina
22.6 ± 1.4 16.2 ± 6 1.1 (p<0.01) (ug/umol)
EJEMPLO 4: ESTUDIOS IN VITRO
En los estudios in vitro se emplearon macrófagos murinos y cultivos primarios de células de músculo liso vascular de ratón (Figura 13). En ambos casos la activación de la vía JAK STAT se indujo por estimulación con las citoquinas proinflamatorias IFNy e IL-6. La preincubación de macrófagos con concentraciones crecientes (50-150 ug/mL) del péptido inhibidor miS1 redujo de forma dosis-dependiente la activación de STAT1 y STA3 (determinada por los niveles de fosforilación de ambas proteínas en un ensayo de Western blot). Por el contrario, una dosis similar de péptido Mut (150 ug/mL) no causó ningún efecto, confirmándose así la especificidad del péptido inhibidor miS1. De forma similar, el péptido miS1 previno la activación de STAT1 y STAT3 en VSMC, como puede verse en las imágenes de inmunofluorescencia. Para determinar las consecuencias funcionales de la inhibición por el péptido miS1 se analizó la secreción de la proteína quimiotáctica de monocitos CCL2, cuya expresión depende de la vía JAK/STAT. La preincubación con el péptido inhibidor miS1 , pero no con el péptido Mut, logró reducir significativamente (30-40%) la producción de CCL2 inducida por citoquinas, tanto en VSMC como en macrófagos. Por último, mediante ensayos de quimiotaxis se comprobó el efecto anti-migratorio del péptido inhibidor miS1 en macrófagos. No se observaron variaciones en la viabilidad celular de VSMC y macrófagos en ninguna de las condiciones experimentales estudiadas, lo que indica la no-toxicidad del péptido a las concentraciones empleadas. EJEMPLO 5: JUSTIFICACIÓN DE QUE LOS DATOS APORTADOS SON EXTRAPOLABLES A HUMANOS
Los modelos animales y celulares usados en los ejemplos de la presente invención son aceptados en el sector médico y farmacéutico como modelos que permiten extrapolar los datos obtenidos mediante su uso a enfermedades humanas. Por un lado, el ratón deficiente en el gen de apolipoproteína E se caracteriza por tener un transporte reverso de colesterol deficiente que determina una hipercolesterolemia sistémica con alta acumulación de lípidos y colesterol en tejidos adiposos y periféricos. Este modelo de ratón desarrolla espontáneamente (de forma acelerada si se alimenta con dieta grasa) lesiones ateromatosas con algunas características similares a las lesiones humanas. Por ello, es uno de los modelos más ampliamente utilizado en investigación cardiovascular. En segundo lugar, la inducción de diabetes tipo 1 en los ratones apoE es un modelo experimental que combina hiperglucemia e hiperlipidemia (dos factores de riesgo en estas patologías) y que se caracteriza por un desarrollo rápido de aterosclerosis y nefropatía como consecuencia de la diabetes. Por último, el ratón db/db se caracteriza por una deficiencia en el receptor de leptina, desarrollo espontáneo de diabetes tipo 2 y obesidad a las 4-8 semanas de edad y un posterior proceso de neurodegeneración de la retina muy similar al que ocurre en las etapas iniciales de la retinopatía diabética en los pacientes diabéticos.

Claims

REIVINDICACIONES
1) Un polipéptido aislado que comprende
a) la secuencia de SEQ ID NO 2; o
b) una variante a la secuencia de a) que sea idéntica en al menos el 85 % a la SEQ ID NO 2, basándose en la identidad de la totalidad de los aminoácidos de dicha secuencia;
para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina, donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria.
2) Un polipéptido para uso según la reivindicación 1 , donde la complicación crónica de la diabetes y/o la enfermedad neurodegenerativa de la retina es la retinopatía diabética.
3) Un polipéptido para uso según una cualquiera de las reivindicaciones 1 o 2, donde la secuencia SEQ ID NO 2 o su variante idéntica en al menos el 85% está unida a una región de permeabilidad celular.
4) Un polipéptido para uso según la reivindicación 3, en el cual la región de permeabilidad celular es lisina-palmitato. 5) Un polipéptido para uso según una cualquiera de las reivindicaciones 3 y 4, en el cual la región de permeabilidad celular está unida por el extremo N-terminal de la secuencia peptídica (residuo D, ácido aspártico).
6) Un polipéptido para uso según una cualquiera de las reivindicaciones 1 a 3, que consiste esencialmente en
a) la secuencia de SEQ ID NO 2; o b) una variante a la secuencia de a) que sea idéntica en al menos el 85 % a la SEQ ID NO 2, basándose en la identidad de la totalidad de los aminoácidos de dicha secuencia.
7) Un polipéptido para uso según una cualquiera de las reivindicaciones 2 a 6, el cual consiste esencialmente en
a) la proteína SOCS1 de origen murino (UniProt: 035716);
b) la proteína SOCS1 de origen humano (UniProt: 015524); o
c) una variante a la secuencia de a) o b) que sea homologa en al menos el 85% a la secuencia de aminoácidos de la proteína SOCS1 de origen murino o a la secuencia de aminoácidos de la proteína SOCS1 de origen humano.
8) Un polipéptido para uso según una cualquiera de las reivindicaciones 1 a 6, que consiste en la secuencia SEQ ID NO 2 unida a una región de permeabilidad celular.
9) Un polipéptido para uso según una cualquiera de las reivindicaciones 1 a 7, en el cual se encuentra fosforilado al menos un aminoácido de su secuencia. 10) Un polipéptido para uso según la reivindicación 9, donde al menos uno de los aminoácidos fosforilados es un aminoácido tirosina (Y).
1 1) Un polipéptido para uso según una cualquiera de las reivindicaciones 1 a 10, donde un aminoácido tirosina (Y) está fosforilado.
12) Una composición que comprende una cantidad terapéuticamente eficaz de un polipéptido tal y como se define en una cualquiera de las reivindicaciones 1 a 1 1 , y al menos un vehículo o un excipiente farmacéuticamente aceptables, para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes o en la prevención o tratamiento de una enfermedad neurodegenerativa de la retina, donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria. 13) Una composición según la reivindicación 12, adecuada para su uso por vía oral, vía gastroentérica, vía parenteral, vía rectal, vía respiratoria o vía tópica, en particular por vía oftálmica.
14) Una composición según una cualquiera de las reivindicaciones 12 y 13, para su uso en la prevención o tratamiento de la retinopatía diabética.
15) Una composición según la reivindicación 14, donde el vehículo es un vehículo oftálmico farmacéuticamente aceptable.
16) Un polinucleótido aislado que codifica a) la secuencia de aminoácidos SEQ ID NO 2; o b) una variante a la secuencia de a) que sea idéntica en al menos el 85% a la secuencia SEQ ID NO 2, basándose en la identidad de la totalidad de los nucleótidos de dicha secuencia; para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina, donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, , glaucoma y retinitis pigmentaria.
17) Un polinucleótido aislado que codifica a) la secuencia de aminoácidos SEQ ID NO 2 unida a un grupo lisina; o b) una variante a la secuencia de a) que sea idéntica en al menos el 85% a la secuencia SEQ ID NO 2, unida a un grupo lisina, basándose en la identidad de la totalidad de los nucleótidos de dicha secuencia; para su uso en la prevención o tratamiento de complicaciones crónicas de la diabetes y/o de enfermedades neurodegenerativas de la retina, donde las complicaciones crónicas de la diabetes se seleccionan del grupo que consiste en retinopatía diabética, edema macular, nefropatía diabética, angiopatías diabéticas, microangiopatías diabéticas, macroangiopatías diabéticas, aterosclerosis diabética, pie diabético y enfermedad arterial periférica, y donde las enfermedades neurodegenerativas de la retina se seleccionan del grupo que consiste en retinopatía diabética, glaucoma y retinitis pigmentaria.
PCT/ES2015/070415 2014-05-28 2015-05-27 Péptido derivado de socs1 para su uso en complicaciones crónicas de la diabetes WO2015181427A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US15/314,395 US10532082B2 (en) 2014-05-28 2015-05-27 SOCS1-derived peptide for use in chronic complications of diabetes
JP2017514978A JP6681387B2 (ja) 2014-05-28 2015-05-27 糖尿病の慢性合併症において使用するためのsocs1由来ペプチド
CA2950348A CA2950348A1 (en) 2014-05-28 2015-05-27 Socs1-derived peptide for use in chronic complications of diabetes
PL15738128T PL3178485T3 (pl) 2014-05-28 2015-05-27 Peptyd pochodzący z socs1 do zastosowania w przewlekłych powikłaniach powiązanych z cukrzycą
MX2016015514A MX369378B (es) 2014-05-28 2015-05-27 Peptido derivado de socs1 para su uso en complicaciones cronicas de la diabetes.
EP15738128.6A EP3178485B1 (en) 2014-05-28 2015-05-27 Socs1-derived peptide for use in chronic complications relating to diabetes
BR112016027936A BR112016027936A2 (pt) 2014-05-28 2015-05-27 peptídeo derivado de socs1 para o seu uso em complicações crônicas da diabetes
ES15738128T ES2715412T3 (es) 2014-05-28 2015-05-27 Péptido derivado de SOCS1 para su uso en complicaciones crónicas de la diabetes
CN201580040669.6A CN107074922A (zh) 2014-05-28 2015-05-27 用于糖尿病慢性并发症的socs1衍生肽
US16/689,924 US20200138903A1 (en) 2014-05-28 2019-11-20 Socs1-derived peptide for use in chronic complications of diabetes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430796 2014-05-28
ES201430796A ES2552587B1 (es) 2014-05-28 2014-05-28 Péptido derivado de socs1 para su uso en complicaciones crónicas de la diabetes

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/314,395 A-371-Of-International US10532082B2 (en) 2014-05-28 2015-05-27 SOCS1-derived peptide for use in chronic complications of diabetes
US16/689,924 Continuation US20200138903A1 (en) 2014-05-28 2019-11-20 Socs1-derived peptide for use in chronic complications of diabetes

Publications (1)

Publication Number Publication Date
WO2015181427A1 true WO2015181427A1 (es) 2015-12-03

Family

ID=53546661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070415 WO2015181427A1 (es) 2014-05-28 2015-05-27 Péptido derivado de socs1 para su uso en complicaciones crónicas de la diabetes

Country Status (13)

Country Link
US (2) US10532082B2 (es)
EP (1) EP3178485B1 (es)
JP (1) JP6681387B2 (es)
CN (1) CN107074922A (es)
BR (1) BR112016027936A2 (es)
CA (1) CA2950348A1 (es)
ES (2) ES2552587B1 (es)
HU (1) HUE041836T2 (es)
MX (1) MX369378B (es)
PL (1) PL3178485T3 (es)
PT (1) PT3178485T (es)
TR (1) TR201903509T4 (es)
WO (1) WO2015181427A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105315377A (zh) * 2015-12-07 2016-02-10 华东理工大学 带有穿膜肽的tcs融合蛋白、质粒及制备方法与应用
CN106349347A (zh) * 2016-10-25 2017-01-25 南通大学 一种小分子多肽、及其编码基因和应用
JP2019509277A (ja) * 2016-02-23 2019-04-04 武田薬品工業株式会社 疼痛の治療のためのβアレスチン―ニューロキニン1受容体相互作用の阻害剤
US10532082B2 (en) 2014-05-28 2020-01-14 Fundació Hospital Universitari Vall D'hebron-Institut De Recerca SOCS1-derived peptide for use in chronic complications of diabetes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090030179A1 (en) 2005-02-15 2009-01-29 Toagosei Co., Ltd Antimicrobial peptide and use thereof
US20090209458A1 (en) 2004-03-04 2009-08-20 Vanderbilt University Cell-penetrating socs polypeptides that inhibit cytokine-induced signaling
US20090253618A1 (en) 2005-07-20 2009-10-08 Hiroshi Kanno Neuronal differentiation-inducing peptide and use thereof
WO2010151495A2 (en) 2009-06-26 2010-12-29 University Of Florida Research Foundation Inc. Materials and methods for treating and preventing viral infections

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030175971A1 (en) * 2001-12-28 2003-09-18 Geoffrey Lindeman Differentiation and/or proliferation modulating agents and uses therefor
US7868158B2 (en) * 2004-07-19 2011-01-11 Baylor College Of Medicine Modulation of cytokine signaling regulators and applications for immunotherapy
WO2011113048A2 (en) * 2010-03-12 2011-09-15 Vanderbilt University Modulation of cytokine signaling
CN102921007B (zh) * 2011-08-09 2014-12-10 中国科学院上海生命科学研究院 防治胰岛素抵抗和糖尿病的方法和试剂
CN103173446A (zh) * 2011-12-26 2013-06-26 吕成伟 一种靶向干扰socs1基因的重组腺相关病毒载体的构建方法与应用
ES2552587B1 (es) 2014-05-28 2017-01-18 Fundació Hospital Universitari Vall D'hebron-Institut De Recerca Péptido derivado de socs1 para su uso en complicaciones crónicas de la diabetes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090209458A1 (en) 2004-03-04 2009-08-20 Vanderbilt University Cell-penetrating socs polypeptides that inhibit cytokine-induced signaling
US8420096B2 (en) 2004-03-04 2013-04-16 Vanderbilt University Cell-penetrating SOCS polypeptides that inhibit cytokine-induced signaling
US20090030179A1 (en) 2005-02-15 2009-01-29 Toagosei Co., Ltd Antimicrobial peptide and use thereof
US20090253618A1 (en) 2005-07-20 2009-10-08 Hiroshi Kanno Neuronal differentiation-inducing peptide and use thereof
WO2010151495A2 (en) 2009-06-26 2010-12-29 University Of Florida Research Foundation Inc. Materials and methods for treating and preventing viral infections

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
AHMED ET AL., J VIROL, vol. 83, 2009, pages 1402 - 1415
ANDERSON ET AL., CLIN OPHTHALMOL, vol. 2, no. 4, 2008, pages 801 - 16
BOGDANOV ET AL., PLOS ONE, vol. 9, 2014, pages E97302
BOGDANOV ET AL., PLOS ONE., vol. 9, 2014, pages E97302
CHENG-RONG YU ET AL: "Suppressor of Cytokine Signaling-1 (SOCS1) Inhibits Lymphocyte Recruitment into the Retina and Protects SOCS1 Transgenic Rats and Mice from Ocular Inflammation", INVESTIGATIVE OPTHALMOLOGY & VISUAL SCIENCE, vol. 52, no. 9, 31 August 2011 (2011-08-31), pages 6978, XP055208575, ISSN: 1552-5783, DOI: 10.1167/iovs.11-7688 *
CUNHA-VAZ ET AL.: "The Blood-Retinal Barrier in Retinal Disease", EUROPEAN OPHTHALMIC REVIEW, vol. 3, 2009, pages 105 - 108, XP009151264
E.W. MARTIN: "Remington's Pharmaceutical Sciences"
FLODSTROM-TULLBERG ET AL., DIABETES, vol. 52, 2003, pages 2696 - 700
G. ORTIZ-MUNOZ ET AL: "Suppressors of Cytokine Signaling Abrogate Diabetic Nephropathy", JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, vol. 21, no. 5, 25 February 2010 (2010-02-25), pages 763 - 772, XP055208560, ISSN: 1046-6673, DOI: 10.1681/ASN.2009060625 *
GIROLAMI ET AL., EXPNEUROL, vol. 223, 2010, pages 173 - 182
JAGER ET AL., J NEUROIMMUNO, vol. 12011, no. 232, pages 108 - 118
LIANG ET AL., INT J MOL MED., vol. 31, no. 5, May 2013 (2013-05-01), pages 1066 - 74
LINDSEY D JAGER ET AL: "The kinase inhibitory region of SOCS-1 is sufficient to inhibit T-helper 17 and other immune functions in experimental allergic encephalomyelitis", JOURNAL OF NEUROIMMUNOLOGY, ELSEVIER SCIENCE PUBLISHERS BV, NL, vol. 232, no. 1, 19 October 2010 (2010-10-19), pages 108 - 118, XP028173994, ISSN: 0165-5728, [retrieved on 20101028], DOI: 10.1016/J.JNEUROIM.2010.10.018 *
MARMOR ET AL., DOC OPHTALMOL, vol. 108, pages 107 - 144
MATTERN RALPH-HEIKO ET AL: "Effect of RGD peptides in in vivo model for diabetic retinopathy", PEPTIDE REVOLUTION: GENOMICS, PROTEOMICS & THERAPEUTICS (18TH AMERICAN PEPTIDE SYMPOSIUM; BOSTON, MA, USA; JULY 19 -23, 2003), XX, XX, 19 July 2003 (2003-07-19), pages 709 - 710, XP008122134, ISBN: 978-0-9715560-1-0 *
MUJTABA ET AL., J IMMUNOL, vol. 175, 2005, pages 5077 - 5086
ORTIZ-MUNOZ ET AL., ARTERIOSCLERTHROMB VASC BIOL, vol. 29, 2009, pages 525 - 531
ORTIZ-MUNOZ ET AL., JAM SOCNEPHROL, vol. 21, 2010, pages 763 - 72
SCHMIDT ET AL.: "Neurodegenerative Diseases of the Retina and Potential for the Protection and Recovery", CURRENT NEUROPHARMACOLOGY, no. 6, 2008, pages 164 - 178, XP009135540
WESOLY ET AL., ACTA BIOCHIM POL, vol. 57, no. 3, 2010, pages 251 - 260

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532082B2 (en) 2014-05-28 2020-01-14 Fundació Hospital Universitari Vall D'hebron-Institut De Recerca SOCS1-derived peptide for use in chronic complications of diabetes
CN105315377A (zh) * 2015-12-07 2016-02-10 华东理工大学 带有穿膜肽的tcs融合蛋白、质粒及制备方法与应用
JP2019509277A (ja) * 2016-02-23 2019-04-04 武田薬品工業株式会社 疼痛の治療のためのβアレスチン―ニューロキニン1受容体相互作用の阻害剤
CN106349347A (zh) * 2016-10-25 2017-01-25 南通大学 一种小分子多肽、及其编码基因和应用
CN106349347B (zh) * 2016-10-25 2019-09-13 南通大学 一种小分子多肽、及其编码基因和应用

Also Published As

Publication number Publication date
CA2950348A1 (en) 2015-12-03
PL3178485T3 (pl) 2019-07-31
ES2552587R1 (es) 2016-02-10
ES2715412T3 (es) 2019-06-04
US10532082B2 (en) 2020-01-14
TR201903509T4 (tr) 2019-04-22
MX369378B (es) 2019-11-07
US20170209536A1 (en) 2017-07-27
HUE041836T2 (hu) 2019-05-28
MX2016015514A (es) 2017-05-04
ES2552587A2 (es) 2015-11-30
CN107074922A (zh) 2017-08-18
PT3178485T (pt) 2019-03-22
EP3178485B1 (en) 2018-12-12
BR112016027936A2 (pt) 2017-10-24
EP3178485A1 (en) 2017-06-14
JP6681387B2 (ja) 2020-04-15
US20200138903A1 (en) 2020-05-07
JP2017524727A (ja) 2017-08-31
ES2552587B1 (es) 2017-01-18

Similar Documents

Publication Publication Date Title
US20200138903A1 (en) Socs1-derived peptide for use in chronic complications of diabetes
Mohan et al. Significant inhibition of corneal scarring in vivo with tissue-selective, targeted AAV5 decorin gene therapy
US8796223B2 (en) Methods of inhibiting photoreceptor apoptosis
US10548887B2 (en) Pharmaceutical composition and uses thereof
Akaiwa et al. Topical ripasudil suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma
Ha et al. AAV2-mediated GRP78 transfer alleviates retinal neuronal injury by downregulating ER stress and tau oligomer formation
Li et al. Curcumin inhibits neuronal loss in the retina and elevates Ca2+/calmodulin-dependent protein kinase II activity in diabetic rats
Sung et al. Trichostatin A ameliorates conjunctival fibrosis in a rat trabeculectomy model
JP2011513290A (ja) VEGFxxxbの新規な使用
ES2729970T3 (es) Péptidos derivados de neuropéptidos y
US20220257716A1 (en) Methods and compositions for the treatment of secretory disorders
ES2868354T3 (es) Péptido Naktide para el tratamiento de la obesidad
EP4203987A2 (en) Compositions and methods for the treatment of ocular neuroinflammation
Kucuk et al. Therapeutic potential of erythropoietin in retinal and optic nerve diseases
US9192650B2 (en) Methods of inhibiting photoreceptor apoptosis by eliciting the Faim2 antiapoptotic pathway
WO2018027149A1 (en) Methods of treating alport syndrome
EP3397266A1 (fr) Fragment du facteur h pour son utilisation comme agent anti-angiogénique
JP7179010B2 (ja) 血管新生阻害剤としてのc型レクチンであるレベセチン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15738128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2950348

Country of ref document: CA

Ref document number: 2017514978

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/015514

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15314395

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016027936

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015738128

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015738128

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016027936

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161128