WO2015178476A1 - 金属膜用研磨液及びそれを用いた研磨方法 - Google Patents

金属膜用研磨液及びそれを用いた研磨方法 Download PDF

Info

Publication number
WO2015178476A1
WO2015178476A1 PCT/JP2015/064723 JP2015064723W WO2015178476A1 WO 2015178476 A1 WO2015178476 A1 WO 2015178476A1 JP 2015064723 W JP2015064723 W JP 2015064723W WO 2015178476 A1 WO2015178476 A1 WO 2015178476A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
acid
polishing liquid
metal
liquid
Prior art date
Application number
PCT/JP2015/064723
Other languages
English (en)
French (fr)
Inventor
真之 花野
公二 三嶋
深沢 正人
治彰 桜井
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2015178476A1 publication Critical patent/WO2015178476A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • C23F3/06Heavy metals with acidic solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a metal film polishing liquid and a polishing method using the same. Specifically, the present invention relates to a metal film polishing liquid used for polishing in a wiring formation process of a semiconductor device, and a polishing method using the metal film polishing liquid.
  • CMP chemical mechanical polishing
  • a thin film of copper or a copper alloy is deposited on the insulating film in which a concave portion (groove portion) and a convex portion are formed on the surface in advance to bury the groove portion, and then the thin film other than the concave portion (the above deposited thin film on the convex portion)
  • a so-called damascene method in which a thin film or the like is removed by CMP to form a buried wiring is mainly employed. This technique is disclosed, for example, in JP-A-2-278822 (Patent Document 2).
  • a general method of metal CMP for polishing metal wiring such as copper or copper alloy is to apply a polishing cloth (polishing pad) on a circular polishing platen (platen) and to polish the surface of the polishing cloth with a polishing solution for metal film. While dipping, the surface of the substrate on which the metal film is formed is pressed against the surface of the polishing cloth, and a predetermined pressure (hereinafter referred to as “polishing pressure”) is applied to the metal film from the back surface of the polishing cloth. , And the metal film on the convex portion is removed by relative mechanical friction between the polishing liquid and the convex portion of the metal film.
  • polishing cloth polishing cloth
  • platen polishing platen
  • the metal film polishing liquid used in CMP generally contains an oxidizing agent, abrasive particles, and water, and a metal oxide dissolving agent, a protective film forming agent, and the like are further added to the polishing liquid as necessary.
  • the basic mechanism is to first oxidize the metal film surface with an oxidant to form an oxide layer, and then scrape the oxide layer with abrasive particles. It has been.
  • the oxide layer on the surface of the metal film in the recess does not touch the polishing cloth so much that it does not have the effect of scraping off with the abrasive particles. Therefore, the oxide layer on the metal film in the protrusion is removed as the CMP progresses.
  • the substrate surface is planarized. Details thereof are disclosed in Journal of Electrochemical Society, Vol. 138, No. 11 (issued in 1991), pages 3460 to 3464 (Non-patent Document 1).
  • etching As a method for increasing the polishing rate by CMP, it is effective to add a metal oxide solubilizer to the metal film polishing liquid.
  • etching the metal oxide particles scraped by the abrasive particles are dissolved in the polishing liquid (hereinafter referred to as “etching”), it is interpreted that the effect of scraping by the abrasive particles increases.
  • the addition of the metal oxide solubilizing agent improves the polishing rate by CMP.
  • the oxide layer on the metal film surface in the recess is etched to expose the metal film surface, the metal film surface is further oxidized by the oxidant. If this is repeated, the etching of the metal film in the recesses proceeds. For this reason, after polishing, a phenomenon occurs in which the central portion of the surface of the embedded metal wiring is depressed like a dish (hereinafter referred to as “dishing”), and the planarization effect is impaired.
  • a protective film forming agent may be further added to the metal film polishing liquid.
  • the protective film forming agent forms a protective film on the oxide layer on the surface of the metal film, and prevents the oxide layer from being etched. It is desirable that this protective film can be easily scraped off by abrasive particles and does not reduce the polishing rate by CMP.
  • inter-wiring erosion A phenomenon that the thickness of the film becomes thin (hereinafter referred to as “inter-wiring erosion”) occurs, and the flatness deteriorates. As a result, problems such as an increase in wiring resistance occur, so that the erosion between wirings is required to be as small as possible.
  • barrier layer for preventing diffusion of metal into the interlayer insulating film and improving adhesion.
  • a layer made of a conductor such as tantalum, tantalum alloy, or tantalum nitride is formed. Therefore, it is necessary to remove the exposed barrier layer by CMP except for the wiring portion in which metal wiring such as copper or copper alloy is embedded.
  • the conductors of these barrier layers are harder than copper or copper alloys, a sufficient polishing rate cannot be obtained even when a polishing material for copper or copper alloys is combined, and the surface to be polished is flat. In many cases, it becomes worse.
  • a two-step polishing method comprising a first polishing step for polishing a metal wiring and a second polishing step for polishing a barrier layer has been studied.
  • an over-polishing process for excessively polishing the interlayer insulating film may be required in order to flatten the surface to be polished.
  • the interlayer insulating film include a silicon oxide film such as a silicon dioxide film; an organosilicate glass film that is a low dielectric constant (Low-k) film; and a wholly aromatic ring-based low dielectric constant (Low-k) film. .
  • FIG. 1 is a schematic cross-sectional view related to wiring formation by a general damascene process.
  • FIG. 1A shows a state before polishing.
  • the object to be polished before polishing fills the unevenness with the interlayer insulating film 1 having unevenness including recesses (grooves) formed on the surface, the barrier layer 2 formed so as to follow the surface unevenness of the interlayer insulating film 1, and the like.
  • the conductive material layer 3 is polished with a polishing liquid for polishing metal wiring until the barrier layer 2 is exposed.
  • polishing is performed with a polishing liquid for barrier layer polishing until the convex portions of the interlayer insulating film 1 are exposed.
  • Such a polishing liquid for polishing the barrier layer contains an oxidizing agent, a protective film forming agent for the metal surface, an acid, and water, has a pH of 3 or less, and a concentration of the oxidizing agent of 0.01 to An abrasive for chemical mechanical polishing of 3% by mass has been proposed (for example, see Republished Patent No. 01/13417 (Patent Document 4)).
  • a residue of the conductive material may be generated around the metal wiring.
  • a polishing liquid containing ammonium persulfate (ammonium peroxodisulfate) as an oxidizing agent is used in the first polishing step, the residue of the conductive material appears remarkably (see, for example, Japanese Patent Application Laid-Open No. 2007-335531 (patent) Reference 5)).
  • FIG. 2 shows a pattern portion (pattern portion (wiring forming portion) in which a metal wiring portion and an interlayer insulating film portion are arranged), a residue of a conductive substance (wiring metal), It is a schematic cross-sectional view showing erosion between wirings.
  • FIG. 2A shows a state before polishing.
  • the object to be polished before polishing includes an interlayer insulating film 1 having irregularities including recesses (grooves) formed on the surface, a barrier layer 2 formed so as to follow the irregularities on the surface of the interlayer insulating film 1, and irregularities. And a conductive material layer 4 deposited so as to be buried. As shown in FIG.
  • the conductive material residue 4a is formed in the upper part of the portion between the metal wiring (for example, the conductive material layer 4 and the conductive material layer 4 in FIG. 2B).
  • the conductive material residue 4a is generated in the field portion having no metal wiring in the periphery.
  • the polishing liquid used in the second polishing step for polishing the barrier layer by using a large amount of an oxidizing agent in the polishing liquid used in the second polishing step for polishing the barrier layer, the residue of the conductive material in the field portion where there is no metal wiring in the periphery can be quickly removed, and between the wirings It may be possible to reduce erosion.
  • the polishing rate of the metal wiring is increased, and there is a problem that dishing is further increased.
  • the present invention provides a metal film polishing liquid capable of suppressing the occurrence of erosion between wirings and suppressing dishing, and a polishing method using the same.
  • the present inventors have a high polishing rate for the residue of the conductive material in the field portion where there is no metal wiring in the periphery, but polishing the metal wiring part in the recess. It was conceived that it would be effective to use an additive capable of achieving low speed polishing and found that this could be achieved when a specific polymer was used as the additive.
  • the present invention relates to (1) a metal film polishing liquid containing a methacrylic acid polymer having a weight average molecular weight of 20,000 or more, polishing particles, and an aqueous solvent.
  • the metal film polishing liquid of the present invention dishing can be suppressed while suppressing the occurrence of erosion between wirings. Further, according to the metal film polishing liquid of the present invention, it is possible to suppress dishing while maintaining a good polishing rate for the interlayer insulating film while suppressing the occurrence of inter-wiring erosion, and to achieve a highly flat surface to be polished. Obtainable.
  • the present invention also relates to (2) the metal film polishing liquid according to (1), further comprising an acid component.
  • the present invention provides (3) a substrate in which a conductive material residue is generated in the periphery of a metal wiring and no conductive material residue is generated in a portion between the metal wiring and the metal wiring.
  • the present invention relates to the metal film polishing liquid according to (1) or (2), which is a polishing liquid for mechanical polishing.
  • the methacrylic acid polymer is at least one selected from the group consisting of a homopolymer of methacrylic acid and a copolymer of methacrylic acid and a monomer copolymerizable with the methacrylic acid.
  • the metal film polishing liquid according to any one of (1) to (3).
  • the abrasive particles contain at least one selected from the group consisting of silica, alumina, ceria, titania, zirconia, germania, and modified products thereof (1) to (1) 4)
  • the present invention also relates to the metal film polishing liquid according to any one of (1) to (5), further comprising (6) a compound having a triazole skeleton.
  • the present invention also relates to (7) the metal film polishing liquid according to any one of (1) to (6), further comprising an organic solvent.
  • the present invention also relates to (8) the metal film polishing liquid according to any one of (1) to (7), further comprising an oxidizing agent.
  • the present invention is (9) a polishing liquid that is stored separately into a first liquid and a second liquid and is used by mixing the first liquid and the second liquid,
  • the said 1st liquid is related with the polishing liquid for metal films as described in said (8) in which the said 1st liquid contains the said methacrylic acid type polymer, the said abrasive particle, and an aqueous solvent, and the said 2nd liquid contains the said oxidizing agent.
  • the present invention also relates to (10) the metal film polishing liquid according to (9), wherein the first liquid further contains a compound having a triazole skeleton.
  • the present invention also relates to (11) the polishing slurry for a metal film according to any one of (1) to (10), wherein the pH is 2.0 or more and 3.5 or less.
  • an interlayer insulating film having a surface including a concave portion and a convex portion, a barrier layer covering the interlayer insulating film along the surface of the interlayer insulating film, and the concave portion are filled.
  • the metal film polishing liquid contains a methacrylic acid polymer having a weight average molecular weight of 20,000 or more, dishing can be suppressed while suppressing the occurrence of erosion between wirings.
  • dishing when a substrate having a residue of a conductive material (for example, a substrate having a residue of a conductive material around a wiring forming portion having a metal wiring) is polished, the occurrence of erosion between wires is suppressed.
  • dishing for example, a residue of a conductive material is generated in the periphery of a wiring forming portion having a metal wiring, and a conductive material is formed between the metal wiring and the metal wiring.
  • dishing When polishing a substrate on which no residue is generated, dishing can be suppressed while suppressing generation of erosion between wirings.
  • a methacrylic acid polymer having a weight average molecular weight of 20,000 or more dishing is performed while suppressing the occurrence of erosion between wirings while maintaining a good polishing rate for the interlayer insulating film.
  • a polishing liquid to polishing in a semiconductor device wiring formation process or the like.
  • it is possible to provide an application of a polishing liquid for polishing a substrate having a residue of a conductive material for example, a substrate having a residue of a conductive material in the periphery of a wiring forming portion having a metal wiring. Polishing of a substrate in which a residue of conductive material is generated in the periphery of a wiring forming portion having metal wiring, and no conductive material residue is generated in a portion between the metal wiring and metal wiring.
  • polishing liquid can be provided.
  • ADVANTAGE OF THE INVENTION the application of polishing liquid can be provided for grinding
  • ADVANTAGE OF THE INVENTION the application of polishing liquid can be provided for grinding
  • a polishing liquid for polishing a surface to be polished having a conductive substance, a barrier metal (a constituent material of a barrier layer), and an interlayer insulating material (a constituent material of an interlayer insulating film). be able to.
  • FIG. 1 is a schematic cross-sectional view relating to wiring formation by a damascene process.
  • FIG. 2 is a schematic cross-sectional view showing a pattern portion of a patterned substrate with metal wiring, a residue of conductive material, and erosion between wirings.
  • FIG. 3 is a schematic cross-sectional view of a stripe pattern portion of a patterned substrate with copper wiring.
  • the term “process” includes not only an independent process but also a process that cannot be clearly distinguished from other processes and in which the intended purpose can be achieved. It is.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the polishing liquid means the total amount of the plurality of substances present in the polishing liquid unless there is a specific notice when there are a plurality of substances corresponding to each component in the polishing liquid. . “A or B” only needs to include either A or B, and may include both.
  • the metal film polishing liquid of this embodiment (hereinafter, also simply referred to as “polishing liquid” in some cases) contains a methacrylic acid polymer having a weight average molecular weight of 20,000 or more, abrasive particles, and an aqueous solvent. To do.
  • a polishing liquid can be suitably used for chemical mechanical polishing a substrate having a residue of a conductive substance, and can be suitably used for the second polishing step in the two-stage polishing method.
  • the metal film polishing liquid of this embodiment dishing can be suppressed while suppressing the occurrence of erosion between wirings.
  • dishing can be suppressed while maintaining good polishing rate for the interlayer insulating film while suppressing the occurrence of erosion between wirings, and high flatness. You can get a plane.
  • by using an oxidizing agent, a metal anticorrosive, etc. it is possible to obtain a good polishing rate for the conductive material layer (metal wiring layer) and the barrier layer in addition to the above effects. It is. Thereby, the metal film polishing liquid more suitable for the second polishing step in the two-stage polishing method can be obtained.
  • the method for producing a metal film polishing liquid of the present embodiment includes a step of polymerizing a monomer component containing at least methacrylic acid in a solution to obtain a methacrylic acid polymer having a weight average molecular weight of 20,000 or more, and a weight average molecular weight.
  • a polishing liquid may be obtained by mixing a methacrylic acid polymer having a weight average molecular weight of 20,000 or more, polishing particles, and an aqueous solvent.
  • the metal film polishing liquid of this embodiment contains a methacrylic acid polymer having a weight average molecular weight of 20,000 or more.
  • a methacrylic acid polymer having a weight average molecular weight of 20,000 or more forms a fragile metal reaction layer (such as a copper reaction layer) as compared with a polymer having a weight average molecular weight of less than 20,000, so that the polishing rate is high, and It is presumed that dishing can be suppressed as compared with a conventional polishing liquid (such as a polishing liquid containing a large amount of an oxidizing agent). Therefore, it is estimated that by using such a methacrylic acid polymer, dishing can be reduced while suppressing erosion between wirings.
  • a methacrylic acid polymer is a polymer having a structural unit derived from methacrylic acid, and can be obtained by polymerizing a monomer component containing at least methacrylic acid.
  • the polymerization initiator is first dissolved once in the monomer component containing methacrylic acid, and then the polymerization initiator is dissolved.
  • a monomer component a monomer component containing methacrylic acid
  • a polymer can be obtained while dissolving the polymerization initiator in the aqueous solvent.
  • methacrylic acid polymer methacrylic acid homopolymer (methacrylic acid homopolymer), and methacrylic acid
  • methacrylic acid homopolymer methacrylic acid homopolymer
  • methacrylic acid from the viewpoint of more suitably obtaining the effect of suppressing dishing while suppressing the occurrence of erosion between wirings
  • a methacrylic acid type polymer can be used individually by 1 type or in mixture of 2 or more types.
  • the ratio of methacrylic acid to the total amount of the monomer is preferably 40 mol% or more and less than 100 mol%, more preferably 50 mol%. Or more, less than 100 mol%, more preferably 60 mol% or more and less than 100 mol%, particularly preferably 70 mol% or more and less than 100 mol%, very preferably 80 mol% or more and less than 100 mol%, very preferably 90 mol% or more. It is less than 100 mol%.
  • the ratio of the methacrylic acid is 40 mol% or more, the occurrence of erosion between wirings is effectively suppressed, and the flatness of the surface to be polished can be easily improved.
  • the weight average molecular weight of the methacrylic acid polymer is 20,000 or more.
  • a polishing liquid containing a methacrylic acid polymer having a weight average molecular weight of 20,000 or more a substrate having a conductive material residue (for example, a conductive material residue on the periphery of a wiring forming portion having a metal wiring)
  • a substrate having a conductive material residue for example, a conductive material residue on the periphery of a wiring forming portion having a metal wiring
  • polishing a substrate having a metal wiring it is possible to effectively suppress the occurrence of erosion between wirings and improve the flatness of the surface to be polished.
  • the lower limit of the weight average molecular weight of the methacrylic acid polymer is preferably 25,000 or more, more preferably 30,000 or more, from the viewpoint of more suitably obtaining the effect of suppressing dishing while suppressing the occurrence of erosion between wirings. More preferably, it is 40,000 or more, Most preferably, it is 50,000 or more.
  • the upper limit of the weight average molecular weight is not particularly limited, but is preferably 5 million or less from the viewpoint of excellent solubility.
  • the weight average molecular weight is preferably 1,000,000 or less, from the viewpoint of excellent solubility in water and increasing the degree of freedom of addition, More preferably, it is 100,000 or less.
  • the weight average molecular weight of the methacrylic acid polymer can be measured by gel permeation chromatography using a calibration curve of sodium polyacrylate.
  • a calibration curve prepared with a sodium polyacrylate standard substance manufactured by Polymer Laboratories Inc. is used under the following measurement conditions (L such as “mL” represents liter. The same shall apply hereinafter). It can be measured by size exclusion chromatography.
  • Monomers copolymerizable with methacrylic acid include acrylic acid, crotonic acid, vinyl acetic acid, tiglic acid, 2-trifluoromethyl acrylic acid, itaconic acid, fumaric acid, maleic acid, citraconic acid, mesaconic acid, gluconic acid, etc.
  • Carboxylic acids such as 2-acrylamido-2-methylpropane sulfonic acid; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylic acid
  • Acrylic acid esters and methacrylic acid esters such as propyl acid, butyl methacrylate, 2-ethylhexyl methacrylate; salts of these ammonium salts, alkali metal salts, alkylamine salts, and the like.
  • the substrate to be applied is a substrate such as a silicon substrate for a semiconductor integrated circuit
  • contamination with an alkali metal is undesirable, and therefore an acid or an ammonium salt thereof is preferable.
  • the substrate is a substrate such as a glass substrate.
  • the content (blending amount) of the methacrylic acid polymer is preferably in the following range.
  • the content of the methacrylic acid polymer effectively suppresses the occurrence of erosion between the wirings, and from the viewpoint of easily improving the flatness of the surface to be polished, with respect to 100 g of the total mass of the polishing liquid (total amount of all components), Preferably it is 0.001 g or more, More preferably, it is 0.01 g or more, More preferably, it is 0.1 g or more.
  • the content of the methacrylic acid polymer is the total amount of the polishing liquid from the viewpoint of suppressing the occurrence of erosion between the wirings and maintaining the stability of the polishing particles contained in the polishing liquid and improving the dispersibility of the polishing particles.
  • the amount is preferably 15 g or less, more preferably 5 g or less, and still more preferably 1 g or less with respect to 100 g of the mass (total amount of all components).
  • the content of the methacrylic acid polymer is preferably 0.001 to 15 g, more preferably 0.01 to 5 g, and still more preferably 100 g of the total mass of the polishing liquid (total amount of all components). 0.1 to 1 g.
  • the polishing liquid for metal films of this embodiment contains abrasive particles from the viewpoint of obtaining a good polishing rate for the barrier layer and the interlayer insulating film.
  • the constituent component of the abrasive particles that can be used is at least one selected from the group consisting of silica, alumina, ceria, titania, zirconia, germania, and modified products thereof.
  • Abrasive particles can be used alone or in combination of two or more.
  • the modified product is obtained by modifying the surface of abrasive particles containing, for example, silica, alumina, ceria, titania, zirconia, germania or the like with an alkyl group, an anion group or a cation group.
  • the method of modifying the surface of the abrasive particles with an alkyl group is not particularly limited, and examples thereof include a method of reacting a hydroxyl group present on the surface of the abrasive particle with an alkoxysilane having an alkyl group.
  • the alkoxysilane having an alkyl group is not particularly limited, but monomethyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, monoethyltrimethoxysilane, diethyldimethoxysilane, triethylmonomethoxysilane, monomethyltriethoxysilane, dimethyl Examples include diethoxysilane and trimethylmonoethoxysilane.
  • a polishing liquid containing abrasive particles and alkoxysilane reacts even at room temperature, but may be heated to accelerate the reaction.
  • abrasive particles whose surfaces are modified with an anionic group or a cationic group may be used.
  • anion group or the cation group By modifying the anion group or the cation group, the surface potential of the abrasive particles is negatively charged or positively charged. Therefore, aggregation of the abrasive particles due to pH change of the polishing liquid can be suppressed.
  • anionic group to be modified include sulfonic acid modification and aluminate modification.
  • Examples of the type of cationic group to be modified include amine compounds.
  • the abrasive particles are preferably at least one selected from the group consisting of silica and alumina from the viewpoint of good dispersion stability in the polishing liquid and a small number of polishing scratches (scratches) generated by CMP. More preferred is at least one selected from the group consisting of silica and colloidal alumina.
  • the average particle diameter of the abrasive particles is preferably 200 nm or less, more preferably 120 nm or less, and more preferably 100 nm or less from the viewpoint of good dispersion stability in the polishing liquid and a small number of polishing scratches (scratches) generated by CMP. Further preferred.
  • colloidal silica having an average particle size of 200 nm or less, and an average particle size of At least one selected from the group consisting of colloidal alumina of 200 nm or less is preferred, and at least one selected from the group consisting of colloidal silica having an average particle size of 120 nm or less and colloidal alumina having an average particle size of 120 nm or less is More preferably, at least one selected from the group consisting of colloidal silica having an average particle diameter of 100 nm or less and colloidal alumina having an average particle diameter of 100 nm or less is more preferable.
  • the “average particle size” of the abrasive particles means the average secondary particle size of the abrasive particles.
  • the average particle diameter is a value of D50 (median diameter of volume distribution, cumulative median value) obtained by measuring the polishing liquid with a dynamic light scattering particle size distribution meter (for example, COULTER Electronics, trade name: COULTER N4 SD). Say.
  • the average particle diameter can be measured by the following procedure. First, weigh about 100 ⁇ L of the polishing liquid and dilute with ion-exchanged water so that the content of abrasive particles is around 0.05% by mass (content with transmittance (H) during measurement of 60 to 70%). To obtain a diluted solution. And an average particle diameter can be measured by throwing a dilution liquid into the sample tank of a dynamic light scattering type particle size distribution analyzer, and reading the value displayed as D50.
  • the abrasive particles are preferably particles in which the primary particles are aggregated with an average of less than 2 particles.
  • the primary particles are aggregated with an average of less than 2 particles.
  • the average degree of association of the abrasive particles is preferably less than 2, and more preferably less than 1.2.
  • the upper limit of the average degree of association varies depending on the average primary particle size of the abrasive particles to be used, and it is considered that the average secondary particle size should be in the range described above.
  • the average degree of association can be obtained as a ratio (average secondary particle size / average primary particle size) by calculating an average secondary particle size and an average primary particle size.
  • the average primary particle size can be measured by a known transmission electron microscope (for example, H-7100FA manufactured by Hitachi, Ltd.). For example, an image of particles is taken using the electron microscope, a biaxial average primary particle size is calculated for a predetermined number of arbitrary particles, and an average value thereof is obtained. When the particle size distribution is wide, the predetermined number should be a quantity that stabilizes the average value. When colloidal silica or colloidal alumina is used as the abrasive particles, since the particle diameter is generally uniform, the number of particles to be measured may be about 20 particles, for example.
  • a rectangle (circumscribed rectangle) arranged so as to circumscribe the selected particle and have the longest length is guided.
  • the major axis of the circumscribed rectangle is L and the minor axis is B
  • the biaxial average primary particle size of one particle is calculated as (L + B) / 2.
  • This operation is performed on 20 arbitrary particles, and the average value obtained is referred to as a biaxial average primary particle size (R1) in the present embodiment.
  • This operation can also be automated by a computer program.
  • the standard deviation of the average particle size distribution of the abrasive particles is preferably 10 nm or less, and more preferably 5 nm or less. It is preferable that the standard deviation of the average particle size distribution satisfies these ranges, and the average particle size satisfies the above ranges.
  • the abrasive particles in the polishing liquid can be put into COULTER N4SD manufactured by COULTER Electronics, and the standard deviation value of the particle size distribution can be obtained from the particle size distribution chart.
  • the content (blending amount) of the abrasive particles is preferably in the following range.
  • the content of the abrasive particles is preferably 0.01 g or more, more preferably 0.02 g or more with respect to 100 g of the total mass of the polishing liquid (total amount of all components) from the viewpoint of improving the polishing rate of the film to be polished. More preferably, it is 0.05 g or more, particularly preferably 0.1 g or more, very preferably 0.5 g or more, and very preferably 1 g or more.
  • the content of the abrasive particles is preferably 50 g or less, more preferably 30 g or less, and more preferably 30 g or less with respect to 100 g of the total mass of the polishing liquid (total amount of all components) from the viewpoint of easily suppressing the occurrence of polishing scratches (scratches).
  • it is 20 g or less, particularly preferably 10 g or less, very preferably 8 g or less, very preferably 5 g or less.
  • the content of the abrasive particles is preferably 0.01 to 50 g, more preferably 0.02 to 30 g, and still more preferably 0.1 to 100 g of the total mass of the polishing liquid (total amount of all components).
  • the metal film polishing liquid of the present embodiment is an acid component (aqueous solvent) from the viewpoint of promoting the dissolution of metal wiring (metal wiring oxidized by an oxidizing agent, etc.) and barrier metal, and further improving the polishing rate.
  • the acid component used in this embodiment is not particularly limited as long as it can dissolve a barrier metal or metal wiring (oxidized barrier metal or metal wiring or the like) in water, but an organic acid, an ester of the organic acid, Examples include organic acid salts, inorganic acids, inorganic acid salts, ammonium persulfate, ammonium nitrate, ammonium chloride, and chromic acid.
  • organic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, 3-methylphthalic acid, 4-methylphthalic acid, 3-aminophthalic acid Acid, 4-aminophthalic acid, 3-nitrophthalic acid, 4-nitrophthalic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, isophthalic acid, malic acid, tartaric acid, citric acid, p-toluenesulfonic acid,
  • Examples of the organic acid ester include ethyl acetate and ethyl lactate.
  • Examples of the salt of the organic acid include an ammonium salt of the organic acid; a salt of the organic acid with an alkali metal, an alkaline earth metal, a halide, and the like.
  • inorganic acids examples include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid and the like.
  • inorganic acid salt examples include ammonium salts of the inorganic acids.
  • the substrate to be polished is a substrate such as a silicon substrate including an integrated circuit element
  • contamination with alkali metal, alkaline earth metal, halide, etc. is not desirable.
  • Salts other than salts of organic acids and alkali metals, alkaline earth metals or halides are preferred.
  • an acid component malonic acid, malic acid, tartaric acid, citric acid, salicylic acid, adipic acid, phthalic acid, glycolic acid and the like from the viewpoint of effectively suppressing the etching rate while maintaining a practical polishing rate.
  • At least one selected from the group consisting of succinic acid is preferred.
  • an acid component can be used individually by 1 type or in mixture of 2 or more types.
  • the content (blending amount) of the acid component is preferably in the following range. From the viewpoint of further improving the polishing rate of the conductive material layer (metal wiring layer) and the barrier layer, the content of the acid component is preferably 0.00 with respect to 100 g of the total mass of the polishing liquid (total amount of all components). 001 g or more, more preferably 0.002 g or more, still more preferably 0.005 g or more, particularly preferably 0.01 g or more, very preferably 0.05 g or more, very preferably 0.1 g or more.
  • the content of the acid component is preferably 20 g or less, more preferably 10 g or less with respect to 100 g of the total mass of the polishing liquid (total amount of all components) from the viewpoint of suppressing etching and reducing the roughness of the surface to be polished. More preferably, it is 5 g or less, particularly preferably 1 g or less, very preferably 0.5 g or less, and very preferably 0.3 g or less. From these viewpoints, the content of the acid component is preferably 0.001 to 20 g, more preferably 0.002 to 10 g, and still more preferably 0.001 g, with respect to 100 g of the total mass of the polishing liquid (total amount of all components). 005 to 5 g, particularly preferably 0.01 to 1 g, very preferably 0.05 to 0.5 g, very particularly preferably 0.1 to 0.3 g.
  • the metal film polishing liquid of this embodiment may further contain a metal anticorrosive.
  • a metal anticorrosive there is no restriction
  • the metal anticorrosive agent is at least one selected from the group consisting of triazole compounds, pyridine compounds, pyrazole compounds, pyrimidine compounds, imidazole compounds, guanidine compounds, thiazole compounds, tetrazole compounds, triazine compounds, and hexamethylenetetramine. Seeds can be used.
  • triazole compound is a general term for compounds having the skeleton, and for example, “triazole compound” means a compound having a triazole skeleton.
  • a triazole compound (a compound having a triazole skeleton) is preferable.
  • triazole compound examples include 1,2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazole, benzotriazole, 1-hydroxy Benzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4-carboxy-1H-benzotriazole, 4- Carboxy-1H-benzotriazole methyl ester (also known as: 1H-benzotriazole-4-carboxylic acid methyl), 4-carboxy-1H-benzotriazole-butyl ester (also known as: 1H-benzotriazole-4-carboxylic acid butyl), 4-carboxy-1H-benzotriazol-octyl ester (also known as: 1H-benzotriazol Octyl-4-carboxylate), 5-hexylbenzotriazol, (1,2,3-benzotriazolyl-1-methyl) (1
  • pyridine compound examples include pyridine, 8-hydroxyquinoline, prothionamide, 2-nitropyridin-3-ol, pyridoxamine, nicotinamide, iproniazide, isonicotinic acid, benzo [f] quinoline, 2,5-pyridinedicarboxylic acid, 4-styrylpyridine, anabasine, 4-nitropyridine-1-oxide, pyridine-3-ethyl acetate, quinoline, 2-ethylpyridine, quinolinic acid, arecoline, citrazic acid, pyridine-3-methanol, 2-methyl-5- Examples include ethylpyridine, 2-fluoropyridine, pentafluoropyridine, 6-methylpyridin-3-ol, and pyridine-2-ethyl acetate.
  • Examples of the pyrazole compound include pyrazole, 1-allyl-3,5-dimethylpyrazole, 3,5-di (2-pyridyl) pyrazole, 3,5-diisopropylpyrazole, 3,5-dimethyl-1-hydroxymethylpyrazole 3,5-dimethyl-1-phenylpyrazole, 3,5-dimethylpyrazole, 3-amino-5-hydroxypyrazole, 4-methylpyrazole, N-methylpyrazole, 3-aminopyrazole, and 3-aminopyrazole Can be mentioned.
  • Examples of the pyrimidine compound include pyrimidine, 1,3-diphenyl-pyrimidine-2,4,6-trione, 1,4,5,6-tetrahydropyrimidine, 2,4,5,6-tetraaminopyrimidine sulfate, 2,4,5-trihydroxypyrimidine, 2,4,6-triaminopyrimidine, 2,4,6-trichloropyrimidine, 2,4,6-trimethoxypyrimidine, 2,4,6-triphenylpyrimidine, 2 , 4-diamino-6-hydroxylpyrimidine, 2,4-diaminopyrimidine, 2-acetamidopyrimidine, 2-aminopyrimidine, and 4-aminopyrazolo [3,4-d] pyrimidine.
  • imidazole compound examples include imidazole, 1,1′-carbonylbis-1H-imidazole, 1,1′-oxalyldiimidazole, 1,2,4,5-tetramethylimidazole, 1,2-dimethyl-5
  • guanidine compound examples include guanidine, 1,1,3,3-tetramethylguanidine, 1,2,3-triphenylguanidine, 1,3-di-o-tolylguanidine, and 1,3-diphenylguanidine. Is mentioned.
  • thiazole compound examples include thiazole, 2-mercaptobenzothiazole, and 2,4-dimethylthiazole.
  • tetrazole compounds include tetrazole, 5-methyltetrazole, 5-amino-1H-tetrazole, and 1- (2-dimethylaminoethyl) -5-mercaptotetrazole.
  • triazine compound examples include triazine and 3,4-dihydro-3-hydroxy-4-oxo-1,2,4-triazine.
  • the metal anticorrosive can be used alone or in combination of two or more.
  • the metal anticorrosive has an effect of suppressing the etching of the metal wiring and reducing the roughness of the surface to be polished by forming a protective film on the metal wiring such as a copper-based metal.
  • At least one selected from the group consisting of triazole compounds, pyridine compounds, imidazole compounds, tetrazole compounds, triazine compounds and hexamethylenetetramine is preferable.
  • the content of the metal anticorrosive is 0.001% by mass or more with respect to the total mass of the polishing liquid (total amount of all components) from the viewpoint of obtaining a good polishing rate for the film to be polished. It is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, particularly preferably 0.05% by mass or more, and 0.1% by mass or more. Very preferably.
  • the content of the metal anticorrosive is 10% by mass or less with respect to the total mass of the polishing liquid (total amount of all components) from the viewpoint of obtaining a good polishing rate for the film to be polished.
  • the content of the metal anticorrosive is preferably 0.001 to 10% by mass, and 0.01 to 5.0% by mass with respect to the total mass of the polishing liquid (total amount of all components). % Is more preferable, 0.02 to 0.5% by mass is further preferable, 0.05 to 0.3% by mass is particularly preferable, and 0.1 to 0.2% by mass is preferable. Very preferably.
  • the ratio of the acid component to the metal anticorrosive agent (acid component / metal anticorrosive agent) in the metal film polishing liquid of the present embodiment is 10/1 to 10 in mass ratio from the viewpoint of favorably controlling the etching rate and the polishing rate. It is preferably in the range of 1/5, more preferably in the range of 7/1 to 1/5, still more preferably in the range of 5/1 to 1/5, and 5/1 to 1/1. It is particularly preferable that the range is
  • the polishing solution for a metal film of the present embodiment includes the acid component (for example, a carboxylic acid compound), a triazole compound, a pyridine compound, an imidazole compound, a tetrazole compound, and a triazine compound from the viewpoint of favorably controlling an etching rate and a polishing rate. And at least one metal anticorrosive selected from the group consisting of hexamethylenetetramine.
  • the carboxylic acid compound any compound having a carboxy group may be used.
  • Formic acid acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, 3- Methylphthalic acid, 4-methylphthalic acid, 3-aminophthalic acid, 4-aminophthalic acid, 3-nitrophthalic acid, 4-nitrophthalic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, isophthalic acid, malic acid, tartaric acid Citric acid, lactic acid, itaconic acid, quinaldic acid and the like.
  • Examples of the metal anticorrosive used in combination with the acid component include triazole compounds (3H-1,2,3-triazolo [4,5-b] pyridin-3-ol, 1-hydroxybenzotriazole 1H-1,2,3-triazolo [4,5-b] pyridine, benzotriazole, etc.), 3-hydroxypyridine, benzimidazole, 5-amino-1H-tetrazole, 3,4-dihydro-3-hydroxy- At least one selected from the group consisting of 4-oxo-1,2,4-triazine and hexamethylenetetramine can be used.
  • triazole compounds (3H-1,2,3-triazolo [4,5-b] pyridin-3-ol, 1-hydroxybenzotriazole 1H-1,2,3-triazolo [4,5-b] pyridine, benzotriazole, etc.
  • 3-hydroxypyridine benzimidazole, 5-amino-1H-tetrazole, 3,4-dihydro-3
  • the polishing solution for a metal film of the present embodiment includes the acid component (for example, a carboxylic acid compound), a triazole compound, a pyridine compound, an imidazole compound, a tetrazole compound, and a triazine compound from the viewpoint of favorably controlling an etching rate and a polishing rate.
  • the acid component for example, a carboxylic acid compound
  • a triazole compound for example, a carboxylic acid compound
  • pyridine compound for example, an imidazole compound, a tetrazole compound, and a triazine compound from the viewpoint of favorably controlling an etching rate and a polishing rate.
  • At least one metal anticorrosive selected from the group consisting of hexamethylenetetramine (acid component / metal anticorrosive) is preferably 10/1 to 1/5
  • the acid component (for example, carboxylic acid) Compound) and at least one metal anticorrosive selected from the group consisting of triazole compounds, pyridine compounds, imidazole compounds, tetrazole compounds, triazine compounds and hexamethylenetetramine (acid component / metal anticorrosive) is 5 / 1 to 1/5 is more preferable
  • the acid component eg, potassium A boronic acid compound
  • a triazole compound 3H-1,2,3-triazolo [4,5-b] pyridin-3-ol, 1-hydroxybenzotriazole, 1H-1,2,3-triazolo [4,5 -B] pyridine, benzotriazole, etc.
  • 3-hydroxypyridine benzimidazole, 5-amino-1H-tetrazole, 3,4
  • the metal film polishing liquid of this embodiment preferably further contains at least one oxidizing agent (metal oxidizing agent).
  • metal oxidizing agent metal oxidizing agent
  • the polishing rate of the conductive material layer (metal layer) can be further improved.
  • the oxidizing agent include hydrogen peroxide, peroxosulfate, potassium periodate, hypochlorous acid, and ozone water. Among these, hydrogen peroxide is preferable.
  • Nitric acid which is an acid component, has an action as an oxidizing agent.
  • An oxidizing agent can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the oxidizing agent is preferably within the following range.
  • the content of the oxidizing agent is 0 with respect to the total mass of the polishing liquid (total amount of all components) from the viewpoint of preventing the polishing rate of the conductive material layer from being lowered due to insufficient oxidation of the metal. It is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.05% by mass or more.
  • the content of the oxidizing agent is the total mass of the polishing liquid (total amount of all components) from the viewpoint of easily suppressing the occurrence of roughness on the surface to be polished and from the viewpoint of easily suppressing dishing.
  • the content of the oxidizing agent is preferably 0.01 to 5% by mass, and 0.02 to 5% by mass with respect to the total mass of the polishing liquid (total amount of all components). Is more preferably 0.05 to 3% by mass.
  • the oxidizing agent generally available as aqueous solution like hydrogen peroxide water, it can adjust so that content of the oxidizing agent contained in the said aqueous solution may become the said range in polishing liquid.
  • the metal film polishing liquid of this embodiment may further contain an organic solvent.
  • an organic solvent By adding the organic solvent, the wettability of layers other than the barrier layer provided in the vicinity of the barrier layer can be improved, and the polishing rate can be further improved.
  • the organic solvent is not particularly limited, but a water-soluble solvent is preferable.
  • water-soluble is defined as one that dissolves 0.1 g or more at 25 ° C. in 100 g of water.
  • organic solvent examples include carbonate solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; lactone solvents such as butyl lactone and propyl lactone; ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, Glycol solvents such as ethylene glycol and tripropylene glycol; ether solvents such as tetrahydrofuran, dioxane, dimethoxyethane, polyethylene oxide, ethylene glycol monomethyl acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate; methanol, ethanol, propanol, n- Butanol, n-pentanol n- hexanol, isopropanol, 3-methoxy-3-alcohol solvents such as methyl-1-butanol; acetone, ketone solvents such as
  • the organic solvent may be a glycol solvent derivative.
  • glycol solvent derivatives include ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, triethylene glycol monomethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monoethyl ether.
  • the organic solvent is preferably at least one selected from the group consisting of glycol solvents, derivatives of glycol solvents, alcohol solvents, and carbonate solvents, and more preferably alcohol solvents.
  • An organic solvent can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the organic solvent is based on the total mass of the polishing liquid (total amount of all components) from the viewpoint of preventing the wettability of the polishing liquid to the substrate (substrate, etc.). It is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further preferably 0.5% by mass or more.
  • the content of the organic solvent is preferably 95% by mass or less with respect to the total mass of the polishing liquid (total amount of all components) from the viewpoint of facilitating the preparation, use, waste liquid treatment, and the like of the polishing liquid. More preferably, it is more preferably 10% by mass or less. From these viewpoints, the content of the organic solvent is preferably 0.1 to 95% by mass, and preferably 0.2 to 50% by mass with respect to the total mass of the polishing liquid (total amount of all components). Is more preferably 0.5 to 10% by mass.
  • the metal film polishing liquid of this embodiment may further contain a surfactant.
  • the surfactant include water-soluble anionic surfactants such as ammonium lauryl sulfate, polyoxyethylene lauryl ether ammonium sulfate, alkyl phosphate ester salt, polyoxyethylene alkyl ether phosphate; polyoxyethylene lauryl ether, polyethylene glycol mono Examples thereof include water-soluble nonionic surfactants such as stearate. Among these, as the surfactant, a water-soluble anionic surfactant is preferable.
  • At least one water-soluble anionic surfactant such as a polymer dispersant obtained by using an ammonium salt as a copolymerization component.
  • a water-soluble nonionic surfactant, a water-soluble anionic surfactant, a water-soluble cationic surfactant and the like may be used in combination.
  • Surfactant can be used individually by 1 type or in mixture of 2 or more types. The content of the surfactant is, for example, 0.0001 to 0.1% by mass based on the total mass of the polishing liquid.
  • the metal film polishing liquid of this embodiment contains an aqueous solvent.
  • the content of the aqueous solvent in the polishing liquid may be the remainder of the polishing liquid excluding the contents of other components.
  • the aqueous solvent is not particularly limited, but water such as deionized water, ion exchange water, and ultrapure water is preferable.
  • the pH of the metal film polishing liquid of the present embodiment is preferably 2.0 or more from the viewpoint of suppressing the corrosion of the wiring metal. When the pH is less than 2.0, hydrogen ions in the polishing liquid may act on the metal wiring and promote corrosion of the metal wiring. From the viewpoint of further suppressing the corrosion of the wiring metal, the pH of the metal film polishing liquid of the present embodiment is more preferably 2.5 or more, further preferably 2.6 or more, and 2.7 or more. It is particularly preferred that The pH of the metal film polishing liquid of the present embodiment is preferably 3.5 or less from the viewpoint that the barrier layer or the interlayer insulating film (silicon oxide film or the like) can be removed at a better polishing rate.
  • the reason for this effect is that if the pH is 3.5 or more, the zeta potential of the abrasive particles is reduced, and the barrier layer or interlayer insulating film (silicon oxide film, etc.) is less likely to be repelled. Therefore, it is considered that a reduction in the polishing rate of these films is suppressed.
  • the pH of the metal film polishing liquid of the present embodiment is more preferably 3.0 or less from the viewpoint that the barrier layer or the interlayer insulating film (such as a silicon oxide film) can be removed at a better polishing rate. .
  • well-known pH adjusters for example, aqueous ammonia, potassium hydroxide, etc.
  • an acid and a base can be used.
  • the pH is defined as the pH at a liquid temperature of 25 ° C.
  • the pH of the polishing liquid can be measured with a pH meter (for example, model number: PHL-40, manufactured by Electrochemical Instrument Co., Ltd.). For example, after two-point calibration using a standard buffer (phthalate pH buffer, pH: 4.01 (25 ° C.); neutral phosphate pH buffer, pH: 6.86 (25 ° C.))
  • the pH of the polishing liquid can be measured by putting the electrode in the polishing liquid and measuring the value after 2 minutes or more have passed and stabilized at 25 ° C.
  • the components of the metal film polishing liquid of this embodiment can be stored, transported and used in a plurality of liquids.
  • the constituents of the polishing liquid may be stored separately in the liquid A and the liquid B so that the liquid A and the liquid B are mixed to form the polishing liquid. .
  • the metal film polishing liquid (polishing liquid set) of the present embodiment is stored separately into a first liquid and a second liquid, and the first liquid and the second liquid are mixed and used.
  • the polishing liquid may be used.
  • the metal film polishing liquid of the present embodiment may be an embodiment in which the first liquid contains a component other than the oxidizing agent, and the second liquid contains an oxidizing agent.
  • the methacrylic acid polymer having a weight average molecular weight of 20,000 or more, the abrasive particles, and an aqueous solvent may be included, and the second liquid may include an oxidizing agent.
  • a mode in which the methacrylic acid polymer, the abrasive particles, the aqueous solvent, and the metal anticorrosive agent (such as a triazole compound) are included and the second liquid may include an oxidizing agent may be used.
  • the aspect which contains an acid polymer, the said abrasive particle, an aqueous solvent, the said metal anticorrosive, and the said acid component, and a 2nd liquid contains an oxidizing agent may be sufficient.
  • the first liquid may further contain an organic solvent, a surfactant and the like.
  • the metal film polishing liquid of this embodiment can be obtained by mixing two liquids divided into a slurry containing at least abrasive particles and an additive liquid containing at least the methacrylic acid polymer.
  • a methacrylic acid polymer may be contained on the slurry side. In this case, the content of the methacrylic acid polymer in the slurry is in a range that does not impair the dispersibility of the abrasive particles.
  • the metal film polishing liquid of this embodiment can be suitably used for polishing a substrate (substrate or the like) having a wiring forming portion having a wiring density of 50% or more.
  • the wiring density is, for example, the wiring density of a wiring formed by polishing a conductive material layer that covers the barrier layer.
  • the “wiring density” is a value calculated from the respective widths of the interlayer insulating film portion and the metal wiring portion (including the barrier metal) in the portion where the wiring is formed (wiring forming portion). For example, when the line and space is 100 ⁇ m / 100 ⁇ m, the wiring density of the wiring forming portion is 50%.
  • the metal film polishing liquid of this embodiment can also be suitably used for polishing a substrate (substrate or the like) having a wiring forming portion having a wiring density of 80% or more.
  • the polishing method of this embodiment is a polishing method including a step of polishing a metal film using the metal film polishing liquid of this embodiment.
  • the polishing method of the present embodiment uses the metal film polishing liquid of the present embodiment to form a substrate having a conductive material residue (for example, a conductive material residue on the periphery of a wiring formation portion having a metal wiring).
  • a residue of a conductive material is generated in the periphery of the wiring forming portion having the metal wiring,
  • a residue of a conductive material is generated in a portion between the metal wiring and the metal wiring in the wiring forming portion (for example, a portion between one metal wiring and a metal wiring adjacent to the one metal wiring).
  • a residue of conductive material is generated in the periphery of the wiring forming portion having metal wiring, and a residue of conductive material is generated in a portion between the metal wiring and the metal wiring.
  • a substrate substrate or the like
  • the metal film polishing liquid described above is polished using the metal film polishing liquid described above to remove the residue of the conductive material and the barrier layer.
  • the polishing method includes an interlayer insulating film having a surface including a concave portion and a convex portion, a barrier layer that covers the interlayer insulating film along the surface of the interlayer insulating film, and filling the concave portion.
  • the use of the metal film polishing liquid of the present embodiment is not limited to the following steps. Since the metal film polishing liquid has already been described, detailed description thereof will be omitted.
  • the substrate before polishing the barrier layer is an insulating interlayer insulating film 1 having a predetermined pattern including depressions and depressions on a silicon substrate (not shown), and this interlayer.
  • the “base” refers to, for example, a substrate in which predetermined layers are sequentially formed on a silicon substrate or the like in this way.
  • Examples of the insulator of the interlayer insulating film 1 include a silicon-based insulator and an organic polymer-based insulator.
  • Silicon-based insulators include silicon oxides such as silicon dioxide; fluorosilicate glasses; organosilicate glasses obtained using trimethylsilane or dimethoxydimethylsilane as a starting material; silica-based insulators such as silicon oxynitride and silsesquioxane hydride Body; silicon carbide; silicon nitride and the like.
  • Examples of the organic polymer insulator include a wholly aromatic low dielectric constant insulator. Among these, silicon dioxide and organosilicate glass are particularly preferable.
  • the interlayer insulating film 1 is preferably a silicon-based film or an organic polymer film.
  • the interlayer insulating film 1 is formed by, for example, a CVD (chemical vapor deposition) method, a spin coat method, a dip coat method, or a spray method.
  • a CVD chemical vapor deposition
  • spin coat method spin coat method
  • dip coat method dip coat method
  • spray method spray method
  • Specific examples of the insulator of the interlayer insulating film 1 include an LSI manufacturing process (particularly, an insulator in a multilayer wiring forming process) and the like.
  • the barrier layer 2 is formed in order to prevent the conductive material from diffusing into the interlayer insulating film 1 and to improve the adhesion between the interlayer insulating film 1 and the conductive material layer 4.
  • the barrier metal used for the barrier layer 2 include tantalum and tantalum compounds (tantalum nitride, tantalum alloy, etc.); titanium, titanium compounds (titanium nitride, titanium alloy, etc.); tungsten, tungsten compounds (tungsten nitride, tungsten alloy, etc.); Ruthenium, ruthenium compounds (such as ruthenium alloys); cobalt, cobalt compounds (such as cobalt alloys), and the like.
  • the barrier layer 2 may have a single layer structure composed of one kind of these, or may have a laminated structure composed of two or more kinds.
  • the barrier layer 2 is formed by, for example, vapor deposition, CVD (chemical vapor deposition), ALD (atomic layer deposition), or the like.
  • Examples of the conductive material used for the conductive material layer 4 include copper, copper alloys, copper oxides, copper alloy oxides, and the like, which are mainly composed of copper (copper-based materials); tungsten, tungsten compounds ( Tungsten alloys, etc.); noble metals such as silver and gold. Among these, metals having copper as a main component, such as copper, copper alloys, copper oxides, and copper alloy oxides, are preferable.
  • the conductive material layer 4 is formed by a known sputtering method, plating method or the like.
  • the thickness of the interlayer insulating film 1 is preferably about 0.01 to 2.0 ⁇ m.
  • the thickness of the barrier layer 2 is preferably about 0.01 to 2.5 ⁇ m.
  • the thickness of the conductive material layer 4 is preferably about 0.01 to 2.5 ⁇ m.
  • the step of chemically mechanically polishing the barrier layer 2 using the metal film polishing liquid can include, for example, the following first polishing step and second polishing step.
  • the first polishing step of polishing the conductive material layer 4 from the state shown in FIG. 2A to the state shown in FIG. 2B the conductive material layer 4 on the surface of the substrate before polishing is removed.
  • polishing is performed by CMP using a conductive material polishing liquid having a sufficiently high polishing rate ratio of the conductive material layer 4 / barrier layer 2.
  • the convex barrier layer 2 on the substrate is exposed on the surface, and a substrate having a conductive pattern composed of the conductive material layer 4 left in the concave is obtained.
  • a part of the convex barrier layer 2 may be polished together with the conductive material layer 4.
  • a conductive substance residue 4a shown in FIG. 2B is generated.
  • the substrate having the conductor pattern obtained in the first polishing step is polished as a base for the second polishing step using the metal film polishing liquid of the present embodiment.
  • the polishing surface plate and the substrate are moved relative to each other to polish the residue 4a of the conductive material and the barrier layer 2 exposed in the first polishing step.
  • a general polishing apparatus having a holder for holding a substrate to be polished, and a polishing platen connected to a motor or the like that can change the number of rotations and attached with a polishing cloth can be used.
  • abrasive cloth a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction
  • the polishing conditions are not particularly limited, but the rotation speed of the polishing surface plate is preferably a low rotation of 200 rotations / minute (200 min ⁇ 1 ) or less so that the substrate does not jump out.
  • the pressing pressure of the substrate having the film to be polished onto the polishing cloth is preferably 1 to 100 kPa. In order to more suitably satisfy the in-surface uniformity of the polishing rate and the flatness of the pattern, 5 to More preferably, it is 50 kPa.
  • the metal film polishing liquid of this embodiment is continuously supplied by a pump or the like between the polishing cloth and the film to be polished.
  • a pump or the like between the polishing cloth and the film to be polished.
  • the surface of polishing cloth is always covered with polishing liquid.
  • the substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like.
  • polishing cloth conditioning step before polishing.
  • the polishing cloth is conditioned with a liquid containing at least water. Subsequently, it is preferable to carry out the polishing method of this embodiment and further perform the substrate cleaning step.
  • the exposed barrier layer 2 is polished, and an excess portion of the barrier layer 2 is removed.
  • the conductive material layer 4 embedded in the recess may be polished together with the barrier layer 2.
  • the interlayer insulating film 1 under the convex barrier layer 2 is all exposed, the conductive material layer 4 to be a wiring layer is left in the concave portion, and the cross section of the barrier layer 2 is exposed at the boundary between the convex portion and the concave portion
  • the polishing is finished when a substrate having the pattern is obtained.
  • overpolishing for example, when the time until a desired pattern is obtained in the second polishing step is 100 seconds, in addition to this 100 second polishing, 50 Polishing for an additional second is referred to as overpolishing 50%).
  • overpolishing a part of the interlayer insulating film 1 is also removed by polishing.
  • a second layer of insulator and metal wiring are further formed on the metal wiring formed in this manner and then polished to make a smooth surface over the entire surface of the semiconductor substrate.
  • the metal film polishing liquid of this embodiment can be used not only for polishing a metal film formed on a semiconductor substrate as described above but also for polishing a substrate such as a magnetic head.
  • the present invention will be described in more detail with reference to examples.
  • the present invention is not limited to these examples without departing from the technical idea of the present invention.
  • the type of polishing liquid material and the blending ratio thereof may be of a type and ratio other than those described in this example, and the composition and structure of the polishing target may be other than the composition and structure described in this example.
  • the composition and structure may be used.
  • a predetermined amount of methacrylic acid polymer, abrasive particles, acid component (aqueous solvent acid), metal anticorrosive agent, and the like were mixed to polish the metal film of each example and each comparative example.
  • a liquid was prepared.
  • abrasive particles colloidal silica having an average particle size of 70 nm was used.
  • the pH of the metal film polishing liquid was measured with a pH meter (manufactured by Electrochemical Instrument Co., Ltd., model number: PHL-40). The results are shown in Tables 2 and 3.
  • a copper film other than the groove of a pattern substrate with copper wiring (ATDF (Advanced Technology Development Facility) 854 CMP pattern: 500 nm thick interlayer insulating film made of silicon dioxide) is used as a polishing liquid for copper film polishing (manufactured by Hitachi Chemical Co., Ltd. HS-H635) is polished by a known CMP method (first polishing step) to expose the convex barrier layer on the surface to be polished, and there is a copper residue above the barrier layer in the field portion.
  • a substrate (a substrate as shown in FIG. 2B) was obtained. This board
  • the barrier layer of the pattern substrate was made of a tantalum nitride film having a thickness of 250 mm.
  • the pattern substrate was subjected to chemical mechanical polishing for 50 seconds under the following polishing conditions using each metal film polishing liquid prepared by the polishing liquid preparation method. This corresponds to the second polishing step, in which the convex interlayer insulating film was exposed to the surface to be polished in about 20 seconds, and the exposed convex interlayer insulating film was polished in the remaining 30 seconds.
  • Polishing device Single-sided metal film polishing machine (MIRRA, Applied Materials)
  • Abrasive cloth Abrasive cloth made of suede polyurethane resin (Fujibo Holdings Co., Ltd.)
  • Supply amount of polishing liquid 200 mL / min
  • a sponge brush (made of polyvinyl alcohol resin) is pressed against the surface to be polished of the pattern substrate polished in the second polishing step, and the substrate and the sponge brush are rotated while supplying distilled water to the substrate, followed by cleaning for 60 seconds. did.
  • the sponge brush was removed, and distilled water was supplied to the polished surface of the substrate for 60 seconds.
  • the distilled water was blown off to dry the substrate, and a pattern substrate used in the following evaluation was obtained.
  • Striped pattern portions (total width 2900 ⁇ m in which metal wiring portions having a width of 100 ⁇ m and interlayer insulating film portions having a width of 100 ⁇ m are alternately arranged in the pattern substrate before the second polishing step and the pattern substrate obtained in the substrate cleaning step
  • the thickness of the interlayer insulating film in the stripe pattern portion was determined by an optical film thickness meter, and the amount of interlayer insulating film polishing was determined.
  • FIG. 3 is a schematic sectional view of a stripe pattern portion (a stripe pattern portion in which a metal wiring portion (copper wiring portion) having a width of 70 ⁇ m and an interlayer insulating film portion having a width of 30 ⁇ m are alternately arranged) of the patterned substrate with copper wiring.
  • reference numeral 11 is an interlayer insulating film
  • reference numeral 13 is a barrier layer (barrier metal layer)
  • reference numeral 15 is a conductive material layer (metal wiring layer)
  • reference numeral 15a is a residue of conductive material
  • reference numeral A is a stripe pattern.
  • Blanket substrate (a) A silicon substrate on which a copper film (thickness: 1000 nm) is formed by plating.
  • Blanket substrate (b) A silicon substrate on which a tantalum nitride film (thickness: 200 nm) is formed by sputtering.
  • Blanket substrate (c) A silicon substrate on which a silicon dioxide film (thickness: 1000 nm) is formed by a CVD method.
  • Blanket substrate (d) A silicon substrate on which an organosilicate glass film (thickness: 1000 nm) is formed.
  • polishing rate was calculated by the following method using the blanket substrates (a) to (d).
  • Copper film, tantalum nitride film About the blanket substrates (a) and (b), the film thickness before and after polishing using a metal film thickness measuring device (trade name “VR-120 / 08S” manufactured by Hitachi Kokusai Electric Co., Ltd.) The difference was measured, and from the results obtained, the polishing rate when polishing the copper film (Cu polishing rate) [unit: ⁇ / min] and the polishing rate when polishing the tantalum nitride film (TaN polishing rate) [ Unit: ⁇ / min] was evaluated.
  • Cu polishing rate polishing rate
  • TaN polishing rate polishing rate when polishing the tantalum nitride film
  • Silicon dioxide film, organosilicate glass film obtained by measuring the film thickness difference before and after polishing using a film thickness measuring device (manufactured by Dainippon Screen Mfg. Co., Ltd., trade name “Lambda Ace, VL-M8000LS”) From the results, the polishing rate when polishing the silicon dioxide film (SiO 2 polishing rate) [unit: ⁇ / min] and the polishing rate when polishing the organosilicate glass film (SiOC polishing rate) [unit: ⁇ / min. ] was evaluated.
  • a film thickness measuring device manufactured by Dainippon Screen Mfg. Co., Ltd., trade name “Lambda Ace, VL-M8000LS”
  • the polishing liquid contains a methacrylic acid polymer having a specific weight average molecular weight, so that erosion and dishing between wirings are effectively suppressed, and the surface to be polished is high. Flatness is obtained.
  • the metal film polishing liquid of the present invention effectively suppresses erosion and dishing between wirings by using the methacrylic acid polymer having a weight average molecular weight of 20,000 or more. Is done. That is, the above results suggest that the metal film polishing liquid of the present invention can be polished while effectively suppressing inter-wiring erosion and dishing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 重量平均分子量が20,000以上のメタクリル酸系ポリマ、研磨粒子、及び、水系溶媒を含有する、金属膜用研磨液。

Description

金属膜用研磨液及びそれを用いた研磨方法
 本発明は、金属膜用研磨液、及び、それを用いた研磨方法に関する。具体的には、本発明は、半導体デバイスの配線形成工程等における研磨に使用される金属膜用研磨液、及び、その金属膜用研磨液を用いた研磨方法に関する。
 近年、半導体集積回路(以下、場合により「LSI」と記す。)の高集積化又は高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(以下、場合により「CMP」と記す。)法もその一つであり、CMPは、LSI製造工程(特に、多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線形成等)において頻繁に利用される技術である。この技術は、例えば米国特許第4944836号明細書(特許文献1)に開示されている。
 また、最近は、LSIを高性能化するために、配線材料となる導電性物質として銅及び銅合金の利用が試みられている。しかし、銅及び銅合金は、従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。
 そこで、あらかじめ表面に凹部(溝部)及び凸部が形成してある絶縁膜上に銅又は銅合金の薄膜を堆積して溝部を埋め込み、次いで、凹部以外の前記薄膜(凸部上に堆積した前記薄膜等)をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が主に採用されている。この技術は、例えば特開平2-278822号公報(特許文献2)に開示されている。
 銅又は銅合金等の金属配線を研磨する金属CMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨布(研磨パッド)を貼り付け、研磨布表面を金属膜用研磨液で浸しながら、基板の金属膜を形成した面を研磨布の表面に押し付けて、研磨布の裏面から所定の圧力(以下、「研磨圧力」と記す。)を金属膜に加えた状態で研磨定盤を回し、研磨液と金属膜の凸部との相対的機械的摩擦によって凸部の金属膜を除去するものである。
 CMPに用いられる金属膜用研磨液は、一般的には、酸化剤、研磨粒子及び水を含有し、必要に応じて、酸化金属溶解剤、保護膜形成剤等が研磨液に更に添加される。酸化剤を含有する研磨液を用いたCMPでは、まず、酸化剤によって金属膜表面を酸化して酸化層を形成し、その酸化層を研磨粒子によって削り取ることが、基本的なメカニズムであると考えられている。このようなCMPにおいては、凹部の金属膜表面の酸化層は、研磨布にあまり触れず、研磨粒子による削り取りの効果が及ばないので、CMPの進行とともに凸部の金属膜の酸化層が除去されて基板表面は平坦化される。この詳細については、ジャーナル・オブ・エレクトロケミカルソサエティ誌の第138巻11号(1991年発行)、3460~3464頁(非特許文献1)に開示されている。
 CMPによる研磨速度を高める方法として、金属膜用研磨液に酸化金属溶解剤を添加することが有効とされている。研磨粒子によって削り取られた金属酸化物の粒を研磨液に溶解(以下、「エッチング」と記す。)させると、研磨粒子による削り取りの効果が増すと解釈される。この場合、酸化金属溶解剤の添加によりCMPによる研磨速度は向上するが、一方、凹部の金属膜表面の酸化層がエッチングされて金属膜表面が露出すると、酸化剤によって金属膜表面が更に酸化され、これが繰り返されると、凹部の金属膜のエッチングが進行してしまう。このため、研磨後に、埋め込まれた金属配線の表面の中央部分が皿のように窪む現象(以下、「ディッシング」と記す。)が発生し、平坦化効果が損なわれる。
 これを防ぐために、金属膜用研磨液に保護膜形成剤が更に添加される場合がある。保護膜形成剤は、金属膜表面の酸化層上に保護膜を形成し、酸化層がエッチングされるのを防止するものである。この保護膜には、研磨粒子により容易に削り取ることが可能であり、且つ、CMPによる研磨速度を低下させないことが望まれる。
 金属膜のディッシング及びエッチングを抑制し、信頼性の高いLSI配線を形成するために、酸化金属溶解剤として、グリシン等のアミノ酢酸、又は、アミド硫酸を含有し、保護膜形成剤としてベンゾトリアゾールを含有する金属膜用研磨液を用いる方法が提唱されている。この技術は、例えば特開平8-83780号公報(特許文献3)に記載されている。
 銅又は銅合金等のダマシン配線形成、タングステン等のプラグ配線形成などの金属埋め込み形成においては、埋め込み部分以外に形成される層間絶縁膜の研磨速度も大きい場合には、配線の間にある層間絶縁膜の厚みが薄くなる現象(以下、「配線間エロージョン」と記す。)が発生し、平坦性が悪化する。その結果、配線抵抗の増加等の問題が生じてしまうので、配線間エロージョンは、可能な限り小さくすることが要求される。
 一方、銅又は銅合金等の金属配線の下層には、層間絶縁膜中への金属の拡散防止、及び、密着性向上のためのバリア導体層(バリア金属層。以下、「バリア層」という。)として、タンタル、タンタル合金、窒化タンタル等の導体からなる層が形成される。したがって、銅又は銅合金等の金属配線を埋め込む配線部以外では、露出したバリア層をCMPにより取り除く必要がある。しかし、これらのバリア層の導体は、銅又は銅合金に比べ硬度が高いために、銅又は銅合金用の研磨材料を組み合わせても充分な研磨速度が得られず、且つ、被研磨面の平坦性が悪くなる場合が多い。そこで、金属配線を研磨する第1の研磨工程、及び、バリア層を研磨する第2の研磨工程からなる2段研磨方法が検討されている。
 また、前記2段研磨方法では、バリア層を研磨する第2の研磨工程において、被研磨面の平坦化のため、層間絶縁膜を余分に研磨するオーバー研磨工程を要求される場合がある。前記層間絶縁膜としては、例えば、二酸化珪素膜等の酸化珪素膜;低誘電率(Low-k)膜であるオルガノシリケートグラス膜;全芳香環系低誘電率(Low-k)膜が挙げられる。
 図1に、一般的なダマシンプロセスによる配線形成に関する断面模式図を示す。図1の(a)は研磨前の状態を示す。研磨前の被研磨対象は、凹部(溝部)を含む凹凸が表面に形成された層間絶縁膜1と、層間絶縁膜1の表面凹凸に追従するように形成されたバリア層2と、凹凸を埋めるように堆積された銅又は銅合金の導電性物質層(金属配線層)3とを有する。
 まず、図1の(b)に示すように、金属配線研磨用の研磨液で、バリア層2が露出するまで導電性物質層3を研磨する。次に、図1の(c)に示すように、バリア層研磨用の研磨液で、層間絶縁膜1の凸部が露出するまで研磨する。
 このようなバリア層研磨用の研磨液として、酸化剤と、金属表面に対する保護膜形成剤と、酸と、水とを含み、pHが3以下であり、前記酸化剤の濃度が0.01~3質量%である化学機械研磨用研磨剤が提案されている(例えば、再公表特許第01/13417号参照(特許文献4))。
 前記2段研磨方法において、導電性物質層3を金属配線研磨用の研磨液で研磨する第1の研磨工程の後、金属配線の周辺部に導電性物質の残渣が発生する場合がある。例えば、酸化剤として過硫酸アンモニウム(ペルオキソ二硫酸アンモニウム)を含む研磨液を第1の研磨工程で用いた場合、この導電性物質の残渣は顕著に現れる(例えば、特開2007-335531号公報参照(特許文献5))。
 図2を用いて導電性物質の残渣について説明する。図2は、金属配線(銅配線等)付きパターン基板のパターン部(金属配線部と層間絶縁膜部とが並んだパターン部(配線形成部))、導電性物質(配線用金属)の残渣、及び、配線間エロージョンを示す断面模式図である。図2の(a)は研磨前の状態を示す。研磨前の被研磨対象は、凹部(溝部)を含む凹凸が表面に形成された層間絶縁膜1と、層間絶縁膜1の表面の凹凸に追従するように形成されたバリア層2と、凹凸を埋めるように堆積された導電性物質層4とを有する。図2の(b)に示すように、導電性物質の残渣4aは金属配線と金属配線の間の部分の上部(例えば、図2の(b)の導電性物質層4と導電性物質層4の間の部分)には発生せず、周辺に金属配線が無いフィールド部分には導電性物質の残渣4aが発生する状態となる。
米国特許第4944836号明細書 特開平2-278822号公報 特開平8-83780号公報 再公表特許第01/13417号 特開2007-335531号公報
ジャーナル・オブ・エレクトロケミカルソサエティ誌、第138巻11号(1991年発行)、3460~3464頁
 図2の(a)に示すように、導電性物質層4を研磨する第1の研磨工程を行った後、図2の(b)に示すように、金属配線を有する配線形成部の周辺部に導電性物質の残渣4aが発生し、且つ、金属配線と金属配線の間の部分には導電性物質の残渣が発生していない基板が得られる。この基板を用いて第2の研磨工程の研磨(バリア層2の研磨)を行う場合、周辺に金属配線が無いフィールド部分(金属配線を有する配線形成部の周辺部)では、導電性物質の残渣4aが存在するためにバリア層2の研磨の進行が遅れるが、金属配線と金属配線の間の部分では、研磨開始と同時にバリア層2が研磨される。そのため、図2の(c)に示すように、金属配線と金属配線の間の部分が過剰に研磨される配線間エロージョン5が発生する。
 これに対し、バリア層を研磨する第2の研磨工程で用いる研磨液において多量の酸化剤を用いることで、周辺に金属配線が無いフィールド部分の導電性物質の残渣を速やかに除去し、配線間エロージョンを低減することが可能である場合がある。しかし、このような研磨液を用いた場合、金属配線の研磨速度が上昇するため、ディッシングが更に大きくなる問題がある。
 本発明は、前記の課題に鑑み、配線間エロージョンの発生を抑制しつつディッシングも抑制可能な金属膜用研磨液、及び、それを用いた研磨方法を提供する。
 本発明者らは、配線間エロージョンを低減しつつディッシングを抑制するためには、周辺に金属配線が無いフィールド部分にある導電性物質の残渣に対する研磨速度は高いが、凹部の金属配線部に対する研磨速度が小さい研磨を達成可能な添加剤を用いることが有効であることに着想し、特定のポリマを添加剤として使用した場合にこれを達成できることを見いだした。
 すなわち、本発明は、(1)重量平均分子量が20,000以上のメタクリル酸系ポリマ、研磨粒子、及び、水系溶媒を含有する、金属膜用研磨液に関する。
 本発明の金属膜用研磨液によれば、配線間エロージョンの発生を抑制しつつディッシングも抑制できる。また、本発明の金属膜用研磨液によれば、層間絶縁膜に対する良好な研磨速度を維持しながら配線間エロージョンの発生を抑制しつつディッシングも抑制可能であり、平坦性が高い被研磨面を得ることができる。
 また、本発明は、(2)酸成分を更に含有する、前記(1)記載の金属膜用研磨液に関する。
 また、本発明は、(3)金属配線の周辺部に導電性物質の残渣が発生し、且つ、金属配線と金属配線の間の部分には導電性物質の残渣が発生していない基体を化学機械研磨するための研磨液である、前記(1)又は(2)記載の金属膜用研磨液に関する。
 また、本発明は、(4)前記メタクリル酸系ポリマが、メタクリル酸のホモポリマ、及び、メタクリル酸と当該メタクリル酸と共重合可能なモノマとのコポリマからなる群より選択される少なくとも1種である、前記(1)~(3)のいずれかに記載の金属膜用研磨液に関する。
 また、本発明は、(5)前記研磨粒子が、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニア及びこれらの変性物からなる群より選択される少なくとも1種を含有する、前記(1)~(4)のいずれかに記載の金属膜用研磨液に関する。
 また、本発明は、(6)トリアゾール骨格を有する化合物を更に含有する、前記(1)~(5)のいずれかに記載の金属膜用研磨液に関する。
 また、本発明は、(7)有機溶媒を更に含有する、前記(1)~(6)のいずれかに記載の金属膜用研磨液に関する。
 また、本発明は、(8)酸化剤を更に含有する、前記(1)~(7)のいずれかに記載の金属膜用研磨液に関する。
 また、本発明は、(9)第1の液と第2の液とに分けて保存されると共に前記第1の液と前記第2の液とを混合して用いられる研磨液であって、前記第1の液が前記メタクリル酸系ポリマ、前記研磨粒子及び水系溶媒を含み、前記第2の液が前記酸化剤を含む、前記(8)に記載の金属膜用研磨液に関する。
 また、本発明は、(10)前記第1の液が、トリアゾール骨格を有する化合物を更に含む、前記(9)に記載の金属膜用研磨液に関する。
 また、本発明は、(11)pHが2.0以上3.5以下である、前記(1)~(10)のいずれかに記載の金属膜用研磨液に関する。
 また、本発明は、(12)凹部及び凸部を含む表面を有する層間絶縁膜と、前記層間絶縁膜の前記表面に沿って前記層間絶縁膜を被覆するバリア層と、前記凹部を充填して前記バリア層を被覆する導電性物質層と、を有する基体の前記導電性物質層を研磨して前記バリア層における前記凸部上の部分を露出させる第1の研磨工程と、前記(1)~(11)のいずれかに記載の金属膜用研磨液を用いて、前記第1の研磨工程で露出した前記バリア層の前記部分を研磨して前記層間絶縁膜の前記凸部を露出させる第2の研磨工程と、を含む、研磨方法に関する。
 本発明によれば、重量平均分子量が20,000以上のメタクリル酸系ポリマを金属膜用研磨液が含有することによって、配線間エロージョンの発生を抑制しつつディッシングも抑制することができる。本発明によれば、導電性物質の残渣を有する基体(例えば、金属配線を有する配線形成部の周辺部に導電性物質の残渣を有する基体)を研磨する場合に、配線間エロージョンの発生を抑制しつつディッシングも抑制することが可能であり、例えば、金属配線を有する配線形成部の周辺部に導電性物質の残渣が発生し、且つ、金属配線と金属配線の間の部分には導電性物質の残渣が発生していない基体を研磨する場合に、配線間エロージョンの発生を抑制しつつディッシングも抑制することができる。また、本発明によれば、重量平均分子量が20,000以上のメタクリル酸系ポリマを用いることによって、層間絶縁膜に対する良好な研磨速度を維持しながら、配線間エロージョンの発生を抑制しつつ、ディッシングも抑制した被研磨面の平坦性が高い金属膜用研磨液、及び、それを用いた研磨方法を提供することができる。
 本発明によれば、半導体デバイスの配線形成工程等における研磨への研磨液の応用を提供することができる。本発明によれば、金属膜の研磨への研磨液の応用を提供することができる。本発明によれば、導電性物質の残渣を有する基体(例えば、金属配線を有する配線形成部の周辺部に導電性物質の残渣を有する基体)の研磨への研磨液の応用を提供することが可能であり、金属配線を有する配線形成部の周辺部に導電性物質の残渣が発生し、且つ、金属配線と金属配線の間の部分には導電性物質の残渣が発生していない基体の研磨への研磨液の応用を提供することができる。本発明によれば、配線密度が50%以上である配線形成部を有する基体の研磨への研磨液の応用を提供することができる。本発明によれば、導電性物質とバリア金属(バリア層の構成材料)とを有する被研磨面の研磨への研磨液の応用を提供することができる。本発明によれば、導電性物質と、バリア金属(バリア層の構成材料)と、層間絶縁材料(層間絶縁膜の構成材料)とを有する被研磨面の研磨への研磨液の応用を提供することができる。
図1は、ダマシンプロセスによる配線形成に関する断面模式図である。 図2は、金属配線付きパターン基板のパターン部、導電性物質の残渣、及び、配線間エロージョンを示す断面模式図である。 図3は、銅配線付きパターン基板のストライプ状パターン部の断面模式図である。
 本明細書において、「工程」との用語には、独立した工程が含まれるだけではなく、他の工程と明確に区別できない工程であってその工程において所期の目的が達成されうる工程も含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに、研磨液中の各成分の含有量は、研磨液中に各成分に該当する物質が複数存在する場合、特に断らない限り、研磨液中に存在する当該複数の物質の合計量を意味する。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。
 以下、本実施形態の金属膜用研磨液、及び、当該金属膜用研磨液を用いた基体(基板等)の研磨方法の好適な実施形態について詳細に説明する。
<金属膜用研磨液>
 本実施形態の金属膜用研磨液(以下、場合により、単に「研磨液」ともいう。)は、重量平均分子量が20,000以上のメタクリル酸系ポリマと、研磨粒子と、水系溶媒とを含有する。このような研磨液は、導電性物質の残渣を有する基体を化学機械研磨するために好適に用いることが可能であり、2段研磨方法における第2の研磨工程に好適に用いることができる。
 本実施形態の金属膜用研磨液によれば、配線間エロージョンの発生を抑制しつつディッシングも抑制できる。また、本実施形態の金属膜用研磨液によれば、層間絶縁膜に対する良好な研磨速度を維持しながら配線間エロージョンの発生を抑制しつつ、ディッシングも抑制可能であり、平坦性が高い被研磨面を得ることができる。さらに、本実施形態によれば、酸化剤、金属防食剤等を用いることにより、前記の効果に加えて、導電性物質層(金属配線層)及びバリア層に対する良好な研磨速度を得ることが可能である。これにより、2段研磨方法における第2の研磨工程に更に適した金属膜用研磨液を得ることができる。
 本実施形態の金属膜用研磨液の製造方法は、少なくともメタクリル酸を含むモノマ成分を溶液中で重合させて、重量平均分子量が20,000以上のメタクリル酸系ポリマを得る工程と、重量平均分子量が20,000以上のメタクリル酸系ポリマと、研磨粒子とを混合して研磨液を得る研磨液調製工程と、を備える。研磨液調製工程では、重量平均分子量が20,000以上のメタクリル酸系ポリマと、研磨粒子と、水系溶媒とを混合して研磨液を得てもよい。
 それぞれの工程における「重合」及び「混合」の操作については、当業者であれば適宜実施することができる。以下、各工程で用いられる化合物等について詳述する。
(メタクリル酸系ポリマ)
 本実施形態の金属膜用研磨液は、重量平均分子量が20,000以上のメタクリル酸系ポリマを含有することを特徴とする。重量平均分子量が20,000以上のメタクリル酸系ポリマは、重量平均分子量20,000未満のポリマと比較して脆弱な金属反応層(銅反応層等)を形成するため、研磨速度が速く、且つ、従来の研磨液(酸化剤を多量に含んだ研磨液等)と比較してディッシングを抑制することができると推定される。そのため、このようなメタクリル酸系ポリマを用いることにより、配線間エロージョンを抑制しつつディッシングも低減することが可能となると推定される。
 メタクリル酸系ポリマは、メタクリル酸に由来する構造単位を有するポリマであり、少なくともメタクリル酸を含むモノマ成分を重合させることにより得ることができる。本実施形態のメタクリル酸系ポリマの合成方法としては、水溶性の重合開始剤を用いる場合と、メタクリル酸を含むモノマ成分に溶解する重合開始剤を用いる場合の2種類の方法がある。後者の場合(メタクリル酸を含むモノマ成分に溶解する重合開始剤を用いる場合)は、まず、メタクリル酸を含むモノマ成分に前記重合開始剤を一旦溶解させ、その後、前記重合開始剤を溶解させたモノマ成分(メタクリル酸を含むモノマ成分)を水系溶媒中に滴下することで、重合開始剤を水系溶媒に溶解させつつポリマを得ることができる。
 また、前記メタクリル酸系ポリマとしては、配線間エロージョンの発生を抑制しつつディッシングを抑制する効果が更に好適に得られる観点から、メタクリル酸のホモポリマ(メタクリル酸の単独重合体)、及び、メタクリル酸と当該メタクリル酸と共重合可能なモノマとのコポリマ(共重合体)からなる群より選択される少なくとも1種であることが好ましい。メタクリル酸系ポリマは、1種類を単独で又は2種類以上を混合して用いることができる。
 メタクリル酸系ポリマがメタクリル酸と当該メタクリル酸と共重合可能なモノマとのコポリマである場合、モノマ全量に対するメタクリル酸の割合は、好ましくは40モル%以上100モル%未満、より好ましくは50モル%以上100モル%未満、更に好ましくは60モル%以上100モル%未満、特に好ましくは70モル%以上100モル%未満、極めて好ましくは80モル%以上100モル%未満、非常に好ましくは90モル%以上100モル%未満である。前記メタクリル酸の割合が40モル%以上であることにより、配線間エロージョンの発生を効果的に抑制し、被研磨面の平坦性を高めやすくなる。
 メタクリル酸系ポリマの重量平均分子量は、20,000以上である。重量平均分子量が20,000以上のメタクリル酸系ポリマを含有する研磨液を用いることにより、導電性物質の残渣を有する基体(例えば、金属配線を有する配線形成部の周辺部に導電性物質の残渣を有する基体)を研磨する場合に、配線間エロージョンの発生を効果的に抑制して被研磨面の平坦性を高めることが可能であり、例えば、金属配線を有する配線形成部の周辺部に導電性物質の残渣が発生し、且つ、金属配線と金属配線の間の部分には導電性物質の残渣が発生していない基体(基板等)のバリア層を研磨する場合に、配線間エロージョンの発生を効果的に抑制して被研磨面の平坦性を高めることができる。メタクリル酸系ポリマの重量平均分子量の下限は、配線間エロージョンの発生を抑制しつつディッシングを抑制する効果が更に好適に得られる観点から、好ましくは25,000以上、より好ましくは30,000以上、更に好ましくは40,000以上、特に好ましくは50,000以上である。また、前記重量平均分子量の上限は、特に限定されるものではないが、溶解性に優れる観点から、500万以下であることが好ましい。また、合成のしやすさ、分子量制御の容易さ等の観点から、前記重量平均分子量は100万以下であることが好ましく、水への溶解性に優れ、添加量の自由度が上がる観点から、100,000以下であることがより好ましい。
 メタクリル酸系ポリマの重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより、ポリアクリル酸ナトリウムの検量線を用いて測定することができる。具体的には、例えば、下記のような測定条件(「mL」等のLはリットルを表す。以下同じ。)にて、ポリマーラボラトリー社製のポリアクリル酸ナトリウム標準物質で作成した検量線を用い、サイズ排除クロマトグラフ法で測定することができる。
 カラム:昭和電工株式会社製 Shodex Asahipak GS-520HQ+620HQ
 ポンプ:株式会社日立製作所製 L-71000
 溶離液:50mM-NaHPO aq./CHCN=90/10(v/v)
 流速:0.6mL/min
 検出器:株式会社日立製作所製 L-3300型示差屈折計
 データ処理:株式会社日立製作所製 D-2520型GPCインデグレーター
 試料濃度:10mg/mL
 注入量:5μL
 前記メタクリル酸と共重合可能なモノマとしては、アクリル酸、クロトン酸、ビニル酢酸、チグリック酸、2-トリフルオロメチルアクリル酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸、メサコン酸、グルコン酸等のカルボン酸類;2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸類;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル等の、アクリル酸系エステル類及びメタクリル酸系エステル類;これらのアンモニウム塩、アルカリ金属塩、アルキルアミン塩等の塩などが挙げられる。適用する基体が半導体集積回路用シリコン基板等の基板である場合は、アルカリ金属による汚染が望ましくないため、酸又はそのアンモニウム塩が好ましい。基体がガラス基板等の基板である場合はその限りではない。
 前記の通り、メタクリル酸系ポリマを与えるモノマ成分においてメタクリル酸の含有量が多い方が配線間エロージョンの発生の低減には有効である。
 メタクリル酸系ポリマの含有量(配合量)は、下記の範囲が好ましい。メタクリル酸系ポリマの含有量は、配線間エロージョンの発生を効果的に抑制し、被研磨面の平坦性を高めやすくなる観点から、研磨液の総質量(全成分の総量)100gに対して、好ましくは0.001g以上、より好ましくは0.01g以上、更に好ましくは0.1g以上である。メタクリル酸系ポリマの含有量は、配線間エロージョンの発生を抑制しつつ、研磨液に含まれる研磨粒子の安定性を維持して研磨粒子の分散性を良好にしやすくなる観点から、研磨液の総質量(全成分の総量)100gに対して、好ましくは15g以下、より好ましくは5g以下、更に好ましくは1g以下である。これらの観点から、メタクリル酸系ポリマの含有量は、研磨液の総質量(全成分の総量)100gに対して、好ましくは0.001~15g、より好ましくは0.01~5g、更に好ましくは0.1~1gである。
(研磨粒子)
 本実施形態の金属膜用研磨液は、バリア層及び層間絶縁膜に対する良好な研磨速度を得る観点から、研磨粒子を含有する。用いることのできる研磨粒子の構成成分としては、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニア及びこれらの変性物からなる群より選択される少なくとも1種である。研磨粒子は、1種類を単独で又は2種類以上を混合して用いることができる。前記変性物は、例えば、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニア等を含有する研磨粒子の表面をアルキル基、アニオン基又はカチオン基で変性したものである。
 研磨粒子の表面をアルキル基で変性する方法としては、特に制限はないが、研磨粒子の表面に存在する水酸基と、アルキル基を有するアルコキシシランとを反応させる方法等が挙げられる。アルキル基を有するアルコキシシランとしては、特に制限はないが、モノメチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルモノメトキシシラン、モノエチルトリメトキシシラン、ジエチルジメトキシシラン、トリエチルモノメトキシシラン、モノメチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルモノエトキシシラン等が挙げられる。反応方法としては、特に制限はない。例えば、研磨粒子とアルコキシシランとを含む研磨液を室温においても反応するが、反応を加速するために加熱してもよい。
 研磨粒子としては、研磨粒子の表面にアニオン基又はカチオン基を修飾した研磨粒子を用いてもよい。アニオン基又はカチオン基を修飾することで、研磨粒子の表面電位がマイナスチャージ又はプラスチャージとなるため、研磨液のpH変化による研磨粒子の凝集を抑制することができる。修飾するアニオン基の種類としては、スルホン酸修飾、アルミン酸修飾等が挙げられる。修飾するカチオン基の種類としては、アミン系化合物等が挙げられる。
 前記研磨粒子は、研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数が少ない観点から、シリカ及びアルミナからなる群より選択される少なくとも1種が好ましく、コロイダルシリカ及びコロイダルアルミナからなる群より選択される少なくとも1種がより好ましい。研磨粒子の平均粒径は、研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数が少ない観点から、200nm以下が好ましく、120nm以下がより好ましく、100nm以下が更に好ましい。
 前記研磨粒子の中でも、研磨液中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数が少ない観点から、平均粒径が200nm以下のコロイダルシリカ、及び、平均粒径が200nm以下のコロイダルアルミナからなる群より選択される少なくとも1種が好ましく、平均粒径が120nm以下のコロイダルシリカ、及び、平均粒径が120nm以下のコロイダルアルミナからなる群より選択される少なくとも1種がより好ましく、平均粒径が100nm以下のコロイダルシリカ、及び、平均粒径が100nm以下のコロイダルアルミナからなる群より選択される少なくとも1種が更に好ましい。
 研磨粒子の「平均粒径」とは、研磨粒子の平均二次粒径を意味する。前記平均粒径は、研磨液を動的光散乱式粒度分布計(例えば、COULTER Electronics社製の商品名:COULTER N4 SD)で測定したD50の値(体積分布のメジアン径、累積中央値)をいう。
 具体的には、平均粒径は下記の手順により測定できる。まず、研磨液を100μL程度量り取り、研磨粒子の含有量が0.05質量%前後(測定時透過率(H)が60~70%である含有量)になるようにイオン交換水で希釈して希釈液を得る。そして、希釈液を動的光散乱式粒度分布計の試料槽に投入し、D50として表示される値を読み取ることにより、平均粒径を測ることができる。
 また、導電性物質層(金属配線層)、バリア層及び層間絶縁膜の研磨速度に更に優れる観点から、前記研磨粒子は、一次粒子が平均2粒子未満しか凝集していない粒子が好ましく、一次粒子が平均1.2粒子未満しか凝集していない粒子がより好ましい。すなわち、研磨粒子の平均会合度は、2未満が好ましく、1.2未満がより好ましい。平均会合度の上限は、使用する研磨粒子の平均一次粒径によって異なり、前記で説明した範囲に平均二次粒径が入っていればよいと考えられる。なお、前記の平均会合度は、平均二次粒径と平均一次粒径を求め、その比(平均二次粒径/平均一次粒径)として得ることができる。
 前記平均一次粒径の測定方法としては、公知の透過型電子顕微鏡(例えば株式会社日立製作所製のH-7100FA)により測定することができる。例えば、前記電子顕微鏡を用いて、粒子の画像を撮影し、所定数の任意の粒子について二軸平均一次粒径を算出し、これらの平均値を求める。粒度分布が広い場合、前記所定数は、平均値が安定する数量とするべきである。研磨粒子としてコロイダルシリカ又はコロイダルアルミナを用いる場合、一般的に粒径がそろっているため、測定する粒子数は例えば20粒子程度でよい。
 具体的には、選択した粒子に外接すると共にその長径が最も長くなるように配置した長方形(外接長方形)を導く。そして、その外接長方形の長径をL、短径をBとして、(L+B)/2として一粒子の二軸平均一次粒径を算出する。この作業を任意の20粒子に対して実施し、得られた値の平均値を、本実施形態における二軸平均一次粒径(R1)という。この操作はコンピュータプログラムで自動化することも可能である。
 研磨粒子の平均粒度分布の標準偏差は、10nm以下であることが好ましく、5nm以下であることがより好ましい。平均粒度分布の標準偏差がこれらの範囲を満たし、且つ、平均粒径が前記範囲を満たすことが好ましい。研磨液中の研磨粒子をCOULTER Electronics社製のCOULTER N4SDに投入し、粒度分布のチャートにより粒度分布の標準偏差の値を得ることができる。
 研磨粒子の含有量(配合量)は、下記の範囲が好ましい。研磨粒子の含有量は、被研磨膜の研磨速度を良好にする観点から、研磨液の総質量(全成分の総量)100gに対して、好ましくは0.01g以上、より好ましくは0.02g以上、更に好ましくは0.05g以上、特に好ましくは0.1g以上、極めて好ましくは0.5g以上、非常に好ましくは1g以上である。研磨粒子の含有量は、研磨傷(スクラッチ)の発生を抑制しやすくなる観点から、研磨液の総質量(全成分の総量)100gに対して、好ましくは50g以下、より好ましくは30g以下、更に好ましくは20g以下、特に好ましくは10g以下、極めて好ましくは8g以下、非常に好ましくは5g以下である。これらの観点から、研磨粒子の含有量は、研磨液の総質量(全成分の総量)100gに対して、好ましくは0.01~50g、より好ましくは0.02~30g、更に好ましくは0.05~20g、特に好ましくは0.1~10g、極めて好ましくは0.5~8g、非常に好ましくは1~5gである。
(酸成分)
 本実施形態の金属膜用研磨液は、金属配線(酸化剤により酸化された金属配線等)及びバリア金属の溶解を促進し、研磨速度を更に向上させることができる観点から、酸成分(水系溶媒の酸成分)を含有することが好ましい。本実施形態で用いられる酸成分としては、バリア金属又は金属配線(酸化されたバリア金属又は金属配線等)を水に溶解させることができれば特に制限はないが、有機酸、当該有機酸のエステル、前記有機酸の塩、無機酸、当該無機酸の塩、過硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、クロム酸等が挙げられる。
 有機酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、3-メチルフタル酸、4-メチルフタル酸、3-アミノフタル酸、4-アミノフタル酸、3-ニトロフタル酸、4-ニトロフタル酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、イソフタル酸、リンゴ酸、酒石酸、クエン酸、p-トルエンスルホン酸、p-フェノールスルホン酸、メチルスルホン酸、乳酸、イタコン酸、キナルジン酸等が挙げられる。前記有機酸のエステルとしては、酢酸エチル、乳酸エチル等が挙げられる。前記有機酸の塩としては、前記有機酸のアンモニウム塩;前記有機酸と、アルカリ金属、アルカリ土類金属、ハロゲン化物等との塩などが挙げられる。
 無機酸としては、塩酸、硫酸、硝酸、リン酸、ホウ酸等が挙げられる。前記無機酸の塩としては、前記無機酸のアンモニウム塩等が挙げられる。
 ただし、例えば、研磨する基体が、集積回路用素子を含むシリコン基板等の基板である場合、アルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、前記酸成分の塩としては、有機酸とアルカリ金属、アルカリ土類金属又はハロゲン化物との塩以外の塩が好ましい。
 前記酸成分の中では、実用的な研磨速度を維持しつつ、エッチング速度を効果的に抑制できる観点から、マロン酸、リンゴ酸、酒石酸、クエン酸、サリチル酸、アジピン酸、フタル酸、グリコール酸及びコハク酸からなる群より選択される少なくとも1種が好ましい。また、酸成分は、1種類を単独で又は2種類以上を混合して用いることができる。
 酸成分の含有量(配合量)は、下記の範囲が好ましい。酸成分の含有量は、導電性物質層(金属配線層)及びバリア層の研磨速度を更に良好にする観点から、研磨液の総質量(全成分の総量)100gに対して、好ましくは0.001g以上、より好ましくは0.002g以上、更に好ましくは0.005g以上、特に好ましくは0.01g以上、極めて好ましくは0.05g以上、非常に好ましくは0.1g以上である。酸成分の含有量は、エッチングを抑制し被研磨面の荒れを低減しやすくなる観点から、研磨液の総質量(全成分の総量)100gに対して、好ましくは20g以下、より好ましくは10g以下、更に好ましくは5g以下、特に好ましくは1g以下、極めて好ましくは0.5g以下、非常に好ましくは0.3g以下である。これらの観点から、酸成分の含有量は、研磨液の総質量(全成分の総量)100gに対して、好ましくは0.001~20g、より好ましくは0.002~10g、更に好ましくは0.005~5g、特に好ましくは0.01~1g、極めて好ましくは0.05~0.5g、非常に好ましくは0.1~0.3gである。
(金属防食剤)
 本実施形態の金属膜用研磨液は、金属防食剤を更に含有することができる。金属防食剤としては、特に制限はなく、金属に対する防食作用を有する化合物として従来公知のものがいずれも使用可能である。金属防食剤としては、具体的には、トリアゾール化合物、ピリジン化合物、ピラゾール化合物、ピリミジン化合物、イミダゾール化合物、グアニジン化合物、チアゾール化合物、テトラゾール化合物、トリアジン化合物及びヘキサメチレンテトラミンからなる群より選択される少なくとも1種を用いることができる。ここで、「化合物」とは、その骨格を有する化合物の総称であり、例えば、「トリアゾール化合物」とは、トリアゾール骨格を有する化合物を意味する。本実施形態の金属膜用研磨液に用いる金属防食剤としては、トリアゾール化合物(トリアゾール骨格を有する化合物)が好ましい。
 トリアゾール化合物としては、例えば、1,2,3-トリアゾ-ル、1,2,4-トリアゾ-ル、3-アミノ-1H-1,2,4-トリアゾ-ル、ベンゾトリアゾ-ル、1-ヒドロキシベンゾトリアゾ-ル、1-ジヒドロキシプロピルベンゾトリアゾ-ル、2,3-ジカルボキシプロピルベンゾトリアゾ-ル、4-ヒドロキシベンゾトリアゾ-ル、4-カルボキシ-1H-ベンゾトリアゾ-ル、4-カルボキシ-1H-ベンゾトリアゾ-ルメチルエステル(別名:1H-ベンゾトリアゾール-4-カルボン酸メチル)、4-カルボキシ-1H-ベンゾトリアゾ-ルブチルエステル(別名:1H-ベンゾトリアゾール-4-カルボン酸ブチル)、4-カルボキシ-1H-ベンゾトリアゾ-ルオクチルエステル(別名:1H-ベンゾトリアゾール-4-カルボン酸オクチル)、5-ヘキシルベンゾトリアゾ-ル、(1,2,3-ベンゾトリアゾリル-1-メチル)(1,2,4-トリアゾリル-1-メチル)(2-エチルヘキシル)アミン、トリルトリアゾ-ル、ナフトトリアゾ-ル、ビス[(1-ベンゾトリアゾリル)メチル]ホスホン酸、3H-1,2,3-トリアゾロ[4,5-b]ピリジン-3-オール、1H-1,2,3-トリアゾロ[4,5-b]ピリジン、1-アセチル-1H-1,2,3-トリアゾロ[4,5-b]ピリジン、3-ヒドロキシピリジン、1,2,4-トリアゾロ[1,5-a]ピリミジン、1,3,4,6,7,8-ヘキサヒドロ-2H-ピリミド[1,2-a]ピリミジン、2-メチル-5,7-ジフェニル-[1,2,4]トリアゾロ[1,5-a]ピリミジン、2-メチルサルファニル-5,7-ジフェニル-[1,2,4]トリアゾロ[1,5-a]ピリミジン、及び、2-メチルサルファニル-5,7-ジフェニル-4,7-ジヒドロ-[1,2,4]トリアゾロ[1,5-a]ピリミジンが挙げられる。なお、一分子中にトリアゾール骨格とそれ以外の骨格とを有する場合には、トリアゾール化合物と分類するものとする。
 ピリジン化合物としては、例えば、ピリジン、8-ヒドロキシキノリン、プロチオナミド、2-ニトロピリジン-3-オール、ピリドキサミン、ニコチンアミド、イプロニアジド、イソニコチン酸、ベンソ[f]キノリン、2,5-ピリジンジカルボン酸、4-スチリルピリジン、アナバシン、4-ニトロピリジン-1-オキシド、ピリジン-3-酢酸エチル、キノリン、2-エチルピリジン、キノリン酸、アレコリン、シトラジン酸、ピリジン-3-メタノール、2-メチル-5-エチルピリジン、2-フルオロピリジン、ペンタフルオロピリジン、6-メチルピリジン-3-オール、及び、ピリジン-2-酢酸エチルが挙げられる。
 ピラゾール化合物としては、例えば、ピラゾール、1-アリル-3,5-ジメチルピラゾール、3,5-ジ(2-ピリジル)ピラゾール、3,5-ジイソプロピルピラゾール、3,5-ジメチル-1-ヒドロキシメチルピラゾール、3,5-ジメチル-1-フェニルピラゾール、3,5-ジメチルピラゾール、3-アミノ-5-ヒドロキシピラゾール、4-メチルピラゾール、N-メチルピラゾール、3-アミノピラゾール、及び、3-アミノピラゾールが挙げられる。
 ピリミジン化合物としては、例えば、ピリミジン、1,3-ジフェニル-ピリミジン-2,4,6-トリオン、1,4,5,6-テトラヒドロピリミジン、2,4,5,6-テトラアミノピリミジンサルフェイト、2,4,5-トリヒドロキシピリミジン、2,4,6-トリアミノピリミジン、2,4,6-トリクロロピリミジン、2,4,6-トリメトキシピリミジン、2,4,6-トリフェニルピリミジン、2,4-ジアミノ-6-ヒドロキシルピリミジン、2,4-ジアミノピリミジン、2-アセトアミドピリミジン、2-アミノピリミジン、及び、4-アミノピラゾロ[3,4-d]ピリミジンが挙げられる。
 イミダゾール化合物としては、例えば、イミダゾール、1,1’-カルボニルビス-1H-イミダゾール、1,1’-オキサリルジイミダゾール、1,2,4,5-テトラメチルイミダゾール、1,2-ジメチル-5-ニトロイミダゾール、1,2-ジメチルイミダゾール、1-(3-アミノプロピル)イミダゾール、1-ブチルイミダゾール、1-エチルイミダゾール、1-メチルイミダゾール、及び、ベンズイミダゾールが挙げられる。
 グアニジン化合物としては、例えば、グアニジン、1,1,3,3-テトラメチルグアニジン、1,2,3-トリフェニルグアニジン、1,3-ジ-o-トリルグアニジン、及び、1,3-ジフェニルグアニジンが挙げられる。
 チアゾール化合物としては、例えば、チアゾール、2-メルカプトベンゾチアゾール、及び、2,4-ジメチルチアゾールが挙げられる。
 テトラゾール化合物としては、例えば、テトラゾール、5-メチルテトラゾール、5-アミノ-1H-テトラゾール、及び、1-(2-ジメチルアミノエチル)-5-メルカプトテトラゾールが挙げられる。
 トリアジン化合物としては、例えば、トリアジン、及び、3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,4-トリアジンが挙げられる。
 前記金属防食剤は、1種類を単独で又は2種類以上を混合して用いることができる。
 前記金属防食剤は、銅系金属等の金属配線に対して保護膜を形成することで、金属配線のエッチングを抑制し被研磨面の荒れを低減しやすくなる作用を有する。
 このような作用に優れる観点から、前記金属防食剤の中でも、トリアゾール化合物、ピリジン化合物、イミダゾール化合物、テトラゾール化合物、トリアジン化合物及びヘキサメチレンテトラミンからなる群より選択される少なくとも1種が好ましく、トリアゾール化合物(3H-1,2,3-トリアゾロ[4,5-b]ピリジン-3-オール、1-ヒドロキシベンゾトリアゾール、1H-1,2,3-トリアゾロ[4,5-b]ピリジン、ベンゾトリアゾール等)、3-ヒドロキシピリジン、ベンズイミダゾール、5-アミノ-1H-テトラゾール、3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,4-トリアジン及びヘキサメチレンテトラミンからなる群より選ばれる少なくとも1種がより好ましい。
 前記金属防食剤の含有量は、被研磨膜に対して良好な研磨速度を得ることができる観点から、研磨液の総質量(全成分の総量)に対して、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.02質量%以上であることが更に好ましく、0.05質量%以上であることが特に好ましく、0.1質量%以上であることが極めて好ましい。前記金属防食剤の含有量は、被研磨膜に対して良好な研磨速度を得ることができる観点から、研磨液の総質量(全成分の総量)に対して、10質量%以下であることが好ましく、5.0質量%以下であることがより好ましく、0.5質量%であることが更に好ましく、0.3質量%以下であることが特に好ましく、0.2質量%以下であることが極めて好ましい。これらの観点から、前記金属防食剤の含有量は、研磨液の総質量(全成分の総量)に対して、0.001~10質量%であることが好ましく、0.01~5.0質量%であることがより好ましく、0.02~0.5質量%であることが更に好ましく、0.05~0.3質量%であることが特に好ましく、0.1~0.2質量%であることが極めて好ましい。
 本実施形態の金属膜用研磨液における酸成分と金属防食剤との比率(酸成分/金属防食剤)は、エッチング速度と研磨速度とを良好に制御する観点から、質量比で10/1~1/5の範囲であることが好ましく、7/1~1/5の範囲であることがより好ましく、5/1~1/5の範囲であることが更に好ましく、5/1~1/1の範囲であることが特に好ましい。
 本実施形態の金属膜用研磨液は、エッチング速度と研磨速度とを良好に制御する観点から、前記酸成分(例えばカルボン酸化合物)と、トリアゾール化合物、ピリジン化合物、イミダゾール化合物、テトラゾール化合物、トリアジン化合物及びヘキサメチレンテトラミンからなる群より選択される少なくとも1種の金属防食剤とを含有することが好ましい。カルボン酸化合物としては、カルボキシ基を有する化合物であればよく、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、3-メチルフタル酸、4-メチルフタル酸、3-アミノフタル酸、4-アミノフタル酸、3-ニトロフタル酸、4-ニトロフタル酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、イソフタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、イタコン酸、キナルジン酸等が挙げられる。
 前記酸成分(例えばカルボン酸化合物)と併用する金属防食剤としては、例えば、トリアゾール化合物(3H-1,2,3-トリアゾロ[4,5-b]ピリジン-3-オール、1-ヒドロキシベンゾトリアゾール、1H-1,2,3-トリアゾロ[4,5-b]ピリジン、ベンゾトリアゾール等)、3-ヒドロキシピリジン、ベンズイミダゾール、5-アミノ-1H-テトラゾール、3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,4-トリアジン及びヘキサメチレンテトラミンからなる群より選ばれる少なくとも1種を用いることができる。
 本実施形態の金属膜用研磨液は、エッチング速度と研磨速度とを良好に制御する観点から、前記酸成分(例えばカルボン酸化合物)と、トリアゾール化合物、ピリジン化合物、イミダゾール化合物、テトラゾール化合物、トリアジン化合物及びヘキサメチレンテトラミンからなる群より選択される少なくとも1種の金属防食剤との比率(酸成分/金属防食剤)が10/1~1/5であることが好ましく、前記酸成分(例えばカルボン酸化合物)と、トリアゾール化合物、ピリジン化合物、イミダゾール化合物、テトラゾール化合物、トリアジン化合物及びヘキサメチレンテトラミンからなる群より選択される少なくとも1種の金属防食剤との比率(酸成分/金属防食剤)が5/1~1/5であることがより好ましく、前記酸成分(例えばカルボン酸化合物)と、トリアゾール化合物(3H-1,2,3-トリアゾロ[4,5-b]ピリジン-3-オール、1-ヒドロキシベンゾトリアゾール、1H-1,2,3-トリアゾロ[4,5-b]ピリジン、ベンゾトリアゾール等)、3-ヒドロキシピリジン、ベンズイミダゾール、5-アミノ-1H-テトラゾール、3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,4-トリアジン及びヘキサメチレンテトラミンからなる群より選ばれる少なくとも1種の金属防食剤との比率(酸成分/金属防食剤)が5/1~1/1であることが更に好ましい。
(酸化剤)
 本実施形態の金属膜用研磨液は、少なくとも1種の酸化剤(金属酸化剤)を更に含有することが好ましい。研磨液が酸化剤を更に含有することで、導電性物質層(金属層)の研磨速度をより向上させることができる。前記酸化剤としては、特に制限はなく、通常用いられる酸化剤から適宜選択することができる。酸化剤としては、具体的には、過酸化水素、ペルオキソ硫酸塩、過ヨウ素酸カリウム、次亜塩素酸、オゾン水等が挙げられ、これらの中でも、過酸化水素が好ましい。酸成分である硝酸は、酸化剤としての作用を有している。酸化剤は、1種類単独で又は2種類以上を混合して用いることができる。
 研磨液が酸化剤を含有する場合、酸化剤の含有量は、下記の範囲が好ましい。酸化剤の含有量は、金属の酸化が不充分であることに基づき導電性物質層の研磨速度が低下することを防ぐ観点から、研磨液の総質量(全成分の総量)に対して、0.01質量%以上であることが好ましく、0.02質量%以上であることがより好ましく、0.05質量%以上であることが更に好ましい。酸化剤の含有量は、被研磨面に荒れが生じることを容易に抑えることができる観点、及び、ディッシングを容易に小さく抑えることができる観点から、研磨液の総質量(全成分の総量)に対して、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。これらの観点から、酸化剤の含有量は、研磨液の総質量(全成分の総量)に対して、0.01~5質量%であることが好ましく、0.02~5質量%であることがより好ましく、0.05~3質量%であることが更に好ましい。なお、過酸化水素水のように、一般的に水溶液として入手できる酸化剤を用いる場合は、当該水溶液中に含まれる酸化剤の含有量が研磨液において前記範囲になるように調整できる。
(有機溶媒)
 本実施形態の金属膜用研磨液は、有機溶媒を更に含んでいてもよい。有機溶媒の添加により、バリア層の近傍に設けられたバリア層以外の層の濡れ性を向上させることができ、研磨速度をより向上させることができる。前記有機溶媒としては、特に制限はないが、水溶性の溶媒が好ましい。ここで、「水溶性」とは、水100gに対して25℃において0.1g以上溶解するものとして定義される。
 前記有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の炭酸エステル溶剤;ブチルラクトン、プロピルラクトン等のラクトン溶剤;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のグリコール溶剤;テトラヒドロフラン、ジオキサン、ジメトキシエタン、ポリエチレンオキサイド、エチレングリコールモノメチルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエーテル溶剤;メタノール、エタノール、プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、イソプロパノール、3-メトキシ-3-メチル-1-ブタノール等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;ジメチルホルムアミド、N-メチルピロリドン、スルホラン等のその他の有機溶媒などが挙げられる。
 また、有機溶媒はグリコール溶剤の誘導体であってもよい。グリコール溶剤の誘導体としては、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテル、トリプロピレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールモノプロピルエーテル、トリエチレングリコールモノプロピルエーテル、トリプロピレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等のグリコールモノアルキルエーテル溶剤;エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエチルエーテル、トリプロピレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジプロピルエーテル、ジエチレングリコールジプロピルエーテル、ジプロピレングリコールジプロピルエーテル、トリエチレングリコールジプロピルエーテル、トリプロピレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジブチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジブチルエーテル、トリエチレングリコールジブチルエーテル、トリプロピレングリコールジブチルエーテル等のグリコールジアルキルエーテル溶剤などが挙げられる。
 これらの中でも、有機溶媒は、グリコール溶剤、グリコール溶剤の誘導体、アルコール溶剤及び炭酸エステル溶剤からなる群より選択される少なくとも1種であることが好ましく、アルコール溶剤であることがより好ましい。有機溶媒は、1種類単独で又は2種類以上を混合して用いることができる。
 研磨液が有機溶媒を含有する場合、有機溶媒の含有量は、研磨液の基体(基板等)に対する濡れ性が低くなることを防ぐ観点から、研磨液の総質量(全成分の総量)に対して、0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましい。有機溶媒の含有量は、研磨液の調製、使用、廃液処理等が容易になる観点から、研磨液の総質量(全成分の総量)に対して、95質量%以下であることが好ましく、50質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。これらの観点から、有機溶媒の含有量は、研磨液の総質量(全成分の総量)に対して、0.1~95質量%であることが好ましく、0.2~50質量%であることがより好ましく、0.5~10質量%であることが更に好ましい。
(界面活性剤)
 本実施形態の金属膜用研磨液は、界面活性剤を更に含有できる。界面活性剤としては、ラウリル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、アルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸塩等の水溶性陰イオン性界面活性剤;ポリオキシエチレンラウリルエーテル、ポリエチレングリコールモノステアレート等の水溶性非イオン性界面活性剤などが挙げられる。これらの中でも、界面活性剤としては、水溶性陰イオン性界面活性剤が好ましい。特に、共重合成分としてアンモニウム塩を用いて得られた高分子分散剤等の水溶性陰イオン性界面活性剤の少なくとも1種を使用することがより好ましい。水溶性非イオン性界面活性剤、水溶性陰イオン性界面活性剤、水溶性陽イオン性界面活性剤等を併用してもよい。界面活性剤は、1種類を単独で又は2種類以上を混合して用いることができる。界面活性剤の含有量は、研磨液の全質量基準で例えば0.0001~0.1質量%である。
(水系溶媒)
 本実施形態の金属膜用研磨液は、水系溶媒を含有している。研磨液における水系溶媒の含有量は、他の構成成分の含有量を除いた研磨液の残部でよい。水系溶媒としては、特に制限されないが、脱イオン水、イオン交換水及び超純水等の水が好ましい。
(研磨液のpH)
 本実施形態の金属膜用研磨液のpHは、配線金属の腐食を抑制する観点から、2.0以上であることが好ましい。pHが2.0未満の場合、研磨液中の水素イオンが金属配線に作用し、金属配線の腐食を促す場合がある。本実施形態の金属膜用研磨液のpHは、配線金属の腐食を更に抑制する観点から、2.5以上であることがより好ましく、2.6以上であることが更に好ましく、2.7以上であることが特に好ましい。本実施形態の金属膜用研磨液のpHは、バリア層又は層間絶縁膜(酸化珪素膜等)を更に良好な研磨速度で除去することができる観点から、3.5以下であることが好ましい。かかる効果が奏される要因は、pHが3.5以上であると、研磨粒子のゼータ電位が小さくなることに基づきバリア層又は層間絶縁膜(酸化珪素膜等)と反発しやすくなることが抑制され、これらの膜の研磨速度が低下することが抑制されると考えられる。本実施形態の金属膜用研磨液のpHは、バリア層又は層間絶縁膜(酸化珪素膜等)を更に良好な研磨速度で除去することができる観点から、3.0以下であることがより好ましい。なお、pHを調整するために、酸及び塩基等の公知のpH調整剤(例えば、アンモニア水、水酸化カリウム等)を使用できる。前記酸成分(例えば、硝酸、硫酸、塩酸、リン酸、ホウ酸、酢酸等の酸)を用いてpHを調整してもよい。pHは液温25℃におけるpHと定義する。
 研磨液のpHは、pHメータ(例えば、電気化学計器株式会社製、型番:PHL-40)で測定できる。例えば、標準緩衝液(フタル酸塩pH緩衝剤、pH:4.01(25℃);中性リン酸塩pH緩衝剤、pH:6.86(25℃))を用いて2点校正した後、電極を研磨液に入れて、25℃で2分以上経過して安定した後の値を測定することで、研磨液のpHを測定できる。
 本実施形態の金属膜用研磨液の構成成分は、複数の液に分けて貯蔵、運搬及び使用できる。本実施形態の金属膜用研磨液は、液Aと液Bとを混合して研磨液となるように当該研磨液の構成成分が前記液Aと前記液Bとに分けて保存されてもよい。
 本実施形態の金属膜用研磨液(研磨液セット)は、第1の液と第2の液とに分けて保管されると共に前記第1の液と前記第2の液とを混合して用いられる研磨液であってもよい。例えば、本実施形態の金属膜用研磨液は、第1の液が酸化剤以外の構成成分を含み、且つ、第2の液が酸化剤を含む態様であってもよく、第1の液が、重量平均分子量が20,000以上の前記メタクリル酸系ポリマ、前記研磨粒子及び水系溶媒を含み、且つ、第2の液が酸化剤を含む態様であってもよく、第1の液が、前記メタクリル酸系ポリマ、前記研磨粒子、水系溶媒及び前記金属防食剤(トリアゾール化合物等)を含み、且つ、第2の液が酸化剤を含む態様であってもよく、第1の液が、前記メタクリル酸系ポリマ、前記研磨粒子、水系溶媒、前記金属防食剤及び前記酸成分を含み、且つ、第2の液が酸化剤を含む態様であってもよい。第1の液は、有機溶媒、界面活性剤等を更に含んでいてもよい。
 また、本実施形態の金属膜用研磨液は、少なくとも研磨粒子を含むスラリと、少なくとも前記メタクリル酸系ポリマを含む添加液とに分けられた二液を混合することにより得ることもできる。このように分けて保管することによって、メタクリル酸系ポリマを大量に添加したときに生じる研磨粒子の安定性の問題を回避することができる。二液に分ける場合、スラリ側にメタクリル酸系ポリマが含まれていてもかまわない。この場合、スラリ中のメタクリル酸系ポリマの含有量は研磨粒子の分散性を損なわない範囲とする。
 本実施形態の金属膜用研磨液は、配線密度が50%以上である配線形成部を有する基体(基板等)を研磨する場合に好適に使用できる。配線密度は、例えば、バリア層を被覆する導電性物質層を研磨して形成される配線の配線密度である。ここで、「配線密度」とは、配線が形成されている部位(配線形成部)において、層間絶縁膜部と金属配線部(バリア金属を含む)のそれぞれの幅から計算される値である。例えば、ラインアンドスペース(Line and Space)が100μm/100μmである場合は、その配線形成部の配線密度は50%である。
 配線密度が50%以上であると、金属配線部の占める面積が大きくなるため、その配線形成部における配線間エロージョンの問題が顕著になる傾向がある。一方、本実施形態の金属膜用研磨液を用いて研磨を行うことで、これらの問題を低減することができる。本実施形態の金属膜用研磨液は、前記配線密度が80%以上である配線形成部を有する基体(基板等)を研磨する場合にも好適に使用できる。
<研磨方法>
 本実施形態の研磨方法は、本実施形態の金属膜用研磨液を用いて金属膜を研磨する工程を備える研磨方法である。また、本実施形態の研磨方法は、本実施形態の金属膜用研磨液を用いて、導電性物質の残渣を有する基体(例えば、金属配線を有する配線形成部の周辺部に導電性物質の残渣を有する基体)を研磨する研磨方法であってもよく、例えば、本実施形態の金属膜用研磨液を用いて、金属配線を有する配線形成部の周辺部に導電性物質の残渣が発生し、且つ、配線形成部における金属配線と金属配線の間の部分(例えば、一の金属配線と、当該一の金属配線に隣接する金属配線との間の部分)には導電性物質の残渣が発生していない基体(基板等)を研磨する研磨方法である。
 例えば、本実施形態の研磨方法は、金属配線を有する配線形成部の周辺部に導電性物質の残渣が発生し、且つ、金属配線と金属配線の間の部分には導電性物質の残渣が発生していない基体(基板等)を、前述した金属膜用研磨液を用いて研磨して、導電性物質の残渣とバリア層とを除去する研磨方法である。すなわち、重量平均分子量が20,000以上のメタクリル酸系ポリマ、研磨粒子及び水系溶媒を含有する研磨液を用いて、金属配線を有する配線形成部の周辺部に導電性物質の残渣が発生し、且つ、金属配線と金属配線の間の部分には導電性物質の残渣が発生していない基体(基板等)を研磨する研磨方法である。なお、基体を研磨(化学機械研磨等)する工程は、より具体的には、金属配線を有する配線形成部の周辺部に導電性物質の残渣が発生し、且つ、金属配線と金属配線の間の部分には導電性物質の残渣が発生していない基体(基板等)の表面に形成された被研磨膜と、研磨定盤上の研磨布との間に、前述した研磨液を供給しながら、前記基体における前記被研磨膜が設けられた面(表面)を研磨布に押圧した状態で、当該基体と研磨定盤とを相対的に動かすことによって被研磨膜の少なくとも一部を除去する工程である。
 本実施形態の研磨方法は、凹部及び凸部を含む表面を有する層間絶縁膜と、前記層間絶縁膜の前記表面に沿って前記層間絶縁膜を被覆するバリア層と、前記凹部を充填して前記バリア層を被覆する導電性物質層と、を有する基体(基板等)の前記導電性物質層を研磨して前記バリア層における前記凸部上の部分を露出させる第1の研磨工程と、本実施形態の金属膜用研磨液を用いて、前記第1の研磨工程で露出した前記バリア層の前記部分を研磨して前記層間絶縁膜の前記凸部を露出させる第2の研磨工程と、を含む。以下、本実施形態の研磨方法を用いる工程として、半導体デバイスの配線層の形成方法における一連の工程を、図2を参照しながら説明する。但し、本実施形態の金属膜用研磨液の用途は、下記工程に限定されない。なお、金属膜用研磨液については既に述べたとおりであるため、ここでの詳述は割愛する。
 バリア層研磨前の基板は、図2の(a)に示すように、シリコン基板(図示せず)の上に、凹部を含む所定パターンの凹凸を有する絶縁体の層間絶縁膜1と、この層間絶縁膜1の表面の凸凹に沿って層間絶縁膜1を被覆するバリア層(バリア金属層)2と、所定パターンの凹凸における凹部中のバリア層2等の上に形成された導電性物質層4とを有する。本実施形態において「基体」とは、例えば、このようにシリコン基板等の上に所定の層が順次形成されたものを指す。
 層間絶縁膜1の絶縁体としては、シリコン系絶縁体、有機ポリマ系絶縁体等が挙げられる。シリコン系絶縁体としては、二酸化珪素等の酸化珪素;フルオロシリケートグラス;トリメチルシラン又はジメトキシジメチルシランを出発原料として得られるオルガノシリケートグラス;シリコンオキシナイトライド、水素化シルセスキオキサン等のシリカ系絶縁体;シリコンカーバイド;シリコンナイトライドなどが挙げられる。また、有機ポリマ系絶縁体としては、例えば全芳香族系低誘電率絶縁体が挙げられる。これらの中でも特に、二酸化珪素、オルガノシリケートグラスが好ましい。層間絶縁膜1は、シリコン系被膜又は有機ポリマ膜であることが好ましい。
 層間絶縁膜1は、例えば、CVD(化学気相成長)法、スピンコート法、ディップコート法、又は、スプレー法によって成膜される。層間絶縁膜1の絶縁体の具体例としては、LSI製造工程(特に、多層配線形成工程における絶縁体)等が挙げられる。
 バリア層2は、層間絶縁膜1中へ導電性物質が拡散することを防止するため、及び、層間絶縁膜1と導電性物質層4との密着性向上のために形成される。バリア層2に用いられるバリア金属としては、タンタル、タンタル化合物(窒化タンタル、タンタル合金等);チタン、チタン化合物(窒化チタン、チタン合金等);タングステン、タングステン化合物(窒化タングステン、タングステン合金等);ルテニウム、ルテニウム化合物(ルテニウム合金等);コバルト、コバルト化合物(コバルト合金等)などが挙げられる。バリア層2は、これらの1種からなる単層構造を有していてもよく、2種以上からなる積層構造を有していてもよい。バリア層2は、例えば、蒸着、CVD(化学気相成長)、ALD(原子層堆積法)等によって形成される。
 導電性物質層4に用いられる導電性物質としては、銅、銅合金、銅の酸化物、銅合金の酸化物等の、銅を主成分とする金属(銅系材料);タングステン、タングステン化合物(タングステン合金等);銀、金等の貴金属などが挙げられる。これらの中でも、銅、銅合金、銅の酸化物、銅合金の酸化物等の、銅を主成分とする金属が好ましい。導電性物質層4は、公知のスパッタ法、メッキ法等によって成膜される。
 層間絶縁膜1の厚さは、0.01~2.0μm程度が好ましい。バリア層2の厚さは、0.01~2.5μm程度が好ましい。導電性物質層4の厚さは、0.01~2.5μm程度が好ましい。
 金属膜用研磨液を用いて、バリア層2を化学機械研磨する工程は、例えば、次の第1の研磨工程と第2の研磨工程とを含むことができる。図2の(a)に示される状態から図2の(b)に示される状態まで導電性物質層4を研磨する第1の研磨工程では、研磨前の基板の表面の導電性物質層4を、例えば、導電性物質層4/バリア層2の研磨速度比が充分大きい導電性物質用の研磨液を用いて、CMPにより研磨する。これにより、基板上の凸部のバリア層2が表面に露出し、凹部に残された導電性物質層4から構成される導体パターンを有する基板が得られる。第1の研磨工程では、導電性物質層4とともに凸部のバリア層2の一部が研磨されてもよい。この第1の研磨工程によって、図2の(b)に示される導電性物質の残渣4aが発生する。
 引き続く第2の研磨工程では、本実施形態の金属膜用研磨液を用いて、第2の研磨工程用の基体として、第1の研磨工程により得られた導体パターンを有する基板を研磨する。
 第2の研磨工程では、研磨定盤の研磨布上に基板を押圧した状態で、研磨布と基板との間に、本実施形態の金属膜用研磨液を供給しながら、研磨定盤と基板とを相対的に動かすことにより、導電性物質の残渣4aと、第1の研磨工程により露出したバリア層2とを研磨する。
 研磨装置としては、研磨される基板を保持するホルダと、回転数が変更可能なモータ等に接続され且つ研磨布を貼り付けた研磨定盤と、を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が使用でき、特に制限はない。
 研磨条件は特に制限がないが、研磨定盤の回転速度は基板が飛び出さないように、200回転/分(200min-1)以下の低回転が好ましい。被研磨膜を有する基板の研磨布への押し付け圧力は、1~100kPaであることが好ましく、研磨速度の被研磨面内均一性及びパターンの平坦性を更に好適に満足するためには、5~50kPaであることがより好ましい。
 研磨している間、研磨布と被研磨膜との間には、本実施形態の金属膜用研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。研磨終了後の基板は、流水中でよく洗浄後、スピンドライ等を用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。
 研磨布の表面状態を常に同一にして化学機械研磨を行うために、研磨の前に研磨布のコンディショニング工程を行うことが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いて、少なくとも水を含む液で研磨布のコンディショニングを行う。続いて本実施形態の研磨方法を実施し、基板洗浄工程を更に行うことが好ましい。
 第2の研磨工程では、少なくとも、露出しているバリア層2を研磨し、バリア層2の余分な部分を除去する。凹部に埋め込まれた導電性物質層4がバリア層2とともに研磨されてもよい。
 凸部のバリア層2の下の層間絶縁膜1が全て露出し、配線層となる導電性物質層4が凹部に残され、凸部と凹部との境界にバリア層2の断面が露出した所望のパターンを有する基板が得られた時点で研磨を終了する。
 研磨終了時のより優れた平坦性を確保するために、オーバー研磨(例えば、第2の研磨工程で所望のパターンを得られるまでの時間が100秒の場合、この100秒の研磨に加えて50秒追加して研磨することをオーバー研磨50%という。)を更に行ってもよい。オーバー研磨する場合には、層間絶縁膜1の一部も研磨で除去される。
 このようにして形成された金属配線の上に、第2層目の絶縁体及び金属配線を更に形成した後に研磨して、半導体基板の全面に亘って平滑な面とすることができる。この工程を所定数繰り返すことにより、所望の配線層数を有する半導体デバイスを製造することができる。
 本実施形態の金属膜用研磨液は、前記のような半導体基板上に形成された金属膜の研磨だけでなく、磁気ヘッド等の基板を研磨するためにも使用することができる。
 以下、実施例により本発明を更に詳しく説明するが、本発明の技術思想を逸脱しない限り、本発明はこれらの実施例に限定されるものではない。例えば、研磨液の材料の種類及びその配合比率は、本実施例に記載の種類及び比率以外の種類及び比率でも構わないし、研磨対象の組成及び構造も、本実施例に記載の組成及び構造以外の組成及び構造でも構わない。
(金属膜用研磨液の調製方法)
 表1に示すモノマを重合させてメタクリル酸系ポリマを得た。メタクリル酸系ポリマにおける各モノマのモル比率(モル%)と、ポリマの重量平均分子量を表1に示す。なお、メタクリル酸系ポリマの重量平均分子量は、下記条件のゲルパーミエーションクロマトグラフィーにより、ポリアクリル酸ナトリウムの検量線を用いて測定した。
 カラム:昭和電工株式会社製 Shodex Asahipak GS-520HQ+620HQ
 ポンプ:株式会社日立製作所製 L-71000
 溶離液:50mM-NaHPO aq./CHCN=90/10(v/v)
 流速:0.6mL/min
 検出器:株式会社日立製作所製 L-3300型示差屈折計
 データ処理:株式会社日立製作所製 D-2520型GPCインデグレーター
 試料濃度:10mg/mL
 注入量:5μL
 さらに、表2及び表3にしたがって、メタクリル酸系ポリマ、研磨粒子、酸成分(水系溶媒の酸)、金属防食剤等を所定量混合して、各実施例及び各比較例の金属膜用研磨液を調製した。なお、研磨粒子としては、平均粒径70nmのコロイダルシリカを使用した。
 pHメータ(電気化学計器株式会社製、型番:PHL-40)で金属膜用研磨液のpHを測定した。結果を表2及び表3に示す。
(銅配線付きパターン基板の研磨)
 銅配線付きパターン基板(ATDF(Advanced Technology Development Facility)製854CMPパターン:二酸化珪素からなる厚さ500nmの層間絶縁膜)の溝部以外の銅膜を、銅膜研磨用研磨液(日立化成株式会社製、HS-H635)を用いて、公知のCMP法により研磨(第1の研磨工程)して、凸部のバリア層を被研磨面に露出させ、且つ、フィールド部分のバリア層上部に銅残渣のある基板(図2の(b)に示すような状態の基板)を得た。この基板を各実施例及び各比較例の研磨液の研磨特性評価に使用した。なお、前記パターン基板のバリア層は、厚さ250Åの窒化タンタル膜からなっていた。
 前記研磨液の調製方法で調製した各金属膜用研磨液を用いて、前記パターン基板を下記研磨条件にて50秒間化学機械研磨した。これは、第2の研磨工程に相当し、約20秒で凸部の層間絶縁膜が被研磨面に露出し、残りの30秒で、露出した凸部の層間絶縁膜を研磨した。
[基板研磨条件]
 研磨装置:片面金属膜用研磨機(アプライドマテリアルズ社製、MIRRA)
 研磨布:スウェード状ポリウレタン樹脂製研磨布(富士紡ホールディングス株式会社製)
 定盤回転数:93回転/min(93min-1
 ヘッド回転数:87回転/min(87min-1
 研磨圧力:21kPa
 研磨液の供給量:200mL/min
 次に、前記第2の研磨工程で研磨したパターン基板の被研磨面にスポンジブラシ(ポリビニルアルコール系樹脂製)を押し付け、蒸留水を基板に供給しながら基板とスポンジブラシを回転させ、60秒間洗浄した。次に、スポンジブラシを取り除き、基板の被研磨面に蒸留水を60秒間供給した。最後に、基板を高速で回転させることで蒸留水を弾き飛ばして基板を乾燥し、以下の評価で用いるパターン基板を得た。
(平坦性評価:パターン基板評価)
 前記基板の洗浄工程で得たパターン基板について、下記(1)~(3)に示す評価を行った。
(1)層間絶縁膜研磨量:
 第2の研磨工程前のパターン基板と、前記基板の洗浄工程で得たパターン基板とにおけるストライプ状パターン部(幅100μmの金属配線部及び幅100μmの層間絶縁膜部が交互に並んだ総幅2900μmのストライプ状パターン部)の層間絶縁膜の膜厚を光学式膜厚計により求め、層間絶縁膜研磨量を求めた。
(2)配線間エロージョン量:
 第2の研磨工程前の前記パターン基板において、幅70μmの金属配線部及び幅30μmの層間絶縁膜部が交互に並んだ総幅2990μmのストライプ状パターン部(図3の(a)参照)の表面形状を触針式段差計により測定した。次いで、前記基板の洗浄工程で得たパターン基板において、図3の(b)に示すように、ストライプ状パターン部の層間絶縁膜の研磨量の最大値(B)と、ストライプ状パターン部の外縁(周辺部)の層間絶縁膜部の研磨量(A)との差(B)-(A)(すなわち配線間エロージョン量)を求め、平坦性の指標とした。
(3)ディッシング量:
 第2の研磨工程前の前記パターン基板において、幅70μmの金属配線部及び幅30μmの層間絶縁膜部が交互に並んだ総幅2990μmのストライプ状パターン部(図3の(a)参照)の表面形状を触針式段差計により測定した。次いで、前記基板の洗浄工程で得たパターン基板において、図3の(b)に示すように、ストライプ状パターン部の金属配線部の研磨量の最大値(C)と、ストライプ状パターン部の外縁(周辺部)の層間絶縁膜部の研磨量(A)との差(C)-(A)(すなわちディッシング量)を求め、平坦性の指標とした。
 なお、図3は、前記銅配線付きパターン基板のストライプ状パターン部(幅70μmの金属配線部(銅配線部)及び幅30μmの層間絶縁膜部が交互に並んだストライプ状パターン部)の断面模式図であり、符号11は層間絶縁膜、符号13はバリア層(バリア金属層)、符号15は導電性物質層(金属配線層)、符号15aは導電性物質の残渣、符号Aはストライプ状パターン部の外縁(周辺部)の層間絶縁膜部の研磨量、符号Bはストライプ状パターン部の層間絶縁膜部の研磨量の最大値、符号Cはストライプ状パターン部の金属配線部の研磨量の最大値をそれぞれ示す。
 以上の評価結果を表2及び表3に示す。
(研磨速度の評価)
 ブランケット基板の研磨速度の評価には、以下の基板(a)~(d)をそれぞれ使用した。
 ブランケット基板(a):めっき法で銅膜(厚さ:1000nm)を形成したシリコン基板。
 ブランケット基板(b):スパッタ法で窒化タンタル膜(厚さ:200nm)を形成したシリコン基板。
 ブランケット基板(c):CVD法で二酸化珪素膜(厚さ:1000nm)を形成したシリコン基板。
 ブランケット基板(d):オルガノシリケートグラス膜(厚さ:1000nm)を形成したシリコン基板。
 前記ブランケット基板(a)~(d)を用い、実施例1~6の研磨液により、前記と同様の基板研磨条件で60秒間化学機械研磨を行った。
[研磨速度の算出]
 前記ブランケット基板(a)~(d)を用いて下記の方法で研磨速度を算出した。
 銅膜、窒化タンタル膜:ブランケット基板(a)及び(b)について、金属膜厚測定装置(日立国際電気株式会社製、商品名“VR-120/08S”)を用いて研磨前後での膜厚差を測定し、得られた結果から、銅膜を研磨したときの研磨速度(Cu研磨速度)[単位:Å/min]と、窒化タンタル膜を研磨したときの研磨速度(TaN研磨速度)[単位:Å/min]とを評価した。
 二酸化珪素膜、オルガノシリケートグラス膜:膜厚測定装置(大日本スクリーン製造株式会社製、商品名“ラムダエース、VL-M8000LS”)を用いて研磨前後での膜厚差を測定し、得られた結果から、二酸化珪素膜を研磨したときの研磨速度(SiO研磨速度)[単位:Å/min]と、オルガノシリケートグラス膜を研磨したときの研磨速度(SiOC研磨速度)[単位:Å/min]とを評価した。
 研磨速度の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2から明らかなように、実施例1~6では、研磨液が特定の重量平均分子量のメタクリル酸系ポリマを含むことで、配線間エロージョン及びディッシングが効果的に抑制され、被研磨面の高い平坦性が得られる。
 一方、表3から明らかなように、比較例1~5では、配線間エロージョンが実施例と比較して大きく発生しており、被研磨面の平坦性が低かった。また、比較例6では配線間エロージョンは小さいが、ディッシングが大きく発生しており、被研磨面の平坦性が低かった。
 表4から、実施例1~6では、銅、窒化タンタル、二酸化珪素及びオルガノシリケートグラスに対して良好な研磨速度が得られていることがわかった。
 以上の結果から、本発明の金属膜用研磨液においては、前記重量平均分子量が20,000以上のメタクリル酸系ポリマを用いることで配線間エロージョンとディッシングとを効果的に抑えていることが示唆される。すなわち、前記の結果から、本発明の金属膜用研磨液によれば、配線間エロージョン及びディッシングを効果的に抑制して研磨できることが示唆される。
 1…層間絶縁膜、2…バリア層、3…導電性物質層、4…導電性物質層、4a…導電性物質の残渣、5…配線間エロージョン、11…層間絶縁膜、13…バリア層、15…導電性物質層、15a…導電性物質の残渣、A…ストライプ状パターン部の外縁の層間絶縁膜部の研磨量、B…ストライプ状パターン部の層間絶縁膜部の研磨量の最大値、C…ストライプ状パターン部の金属配線部の研磨量の最大値。

Claims (12)

  1.  重量平均分子量が20,000以上のメタクリル酸系ポリマ、研磨粒子、及び、水系溶媒を含有する、金属膜用研磨液。
  2.  酸成分を更に含有する、請求項1記載の金属膜用研磨液。
  3.  金属配線の周辺部に導電性物質の残渣が発生し、且つ、金属配線と金属配線の間の部分には導電性物質の残渣が発生していない基体を化学機械研磨するための研磨液である、請求項1又は2記載の金属膜用研磨液。
  4.  前記メタクリル酸系ポリマが、メタクリル酸のホモポリマ、及び、メタクリル酸と当該メタクリル酸と共重合可能なモノマとのコポリマからなる群より選択される少なくとも1種である、請求項1~3のいずれか一項に記載の金属膜用研磨液。
  5.  前記研磨粒子が、シリカ、アルミナ、セリア、チタニア、ジルコニア、ゲルマニア及びこれらの変性物からなる群より選択される少なくとも1種を含有する、請求項1~4のいずれか一項に記載の金属膜用研磨液。
  6.  トリアゾール骨格を有する化合物を更に含有する、請求項1~5のいずれか一項に記載の金属膜用研磨液。
  7.  有機溶媒を更に含有する、請求項1~6のいずれか一項に記載の金属膜用研磨液。
  8.  酸化剤を更に含有する、請求項1~7のいずれか一項に記載の金属膜用研磨液。
  9.  第1の液と第2の液とに分けて保存されると共に前記第1の液と前記第2の液とを混合して用いられる研磨液であって、
     前記第1の液が前記メタクリル酸系ポリマ、前記研磨粒子及び水系溶媒を含み、
     前記第2の液が前記酸化剤を含む、請求項8に記載の金属膜用研磨液。
  10.  前記第1の液が、トリアゾール骨格を有する化合物を更に含む、請求項9に記載の金属膜用研磨液。
  11.  pHが2.0以上3.5以下である、請求項1~10のいずれか一項に記載の金属膜用研磨液。
  12.  凹部及び凸部を含む表面を有する層間絶縁膜と、前記層間絶縁膜の前記表面に沿って前記層間絶縁膜を被覆するバリア層と、前記凹部を充填して前記バリア層を被覆する導電性物質層と、を有する基体の前記導電性物質層を研磨して前記バリア層における前記凸部上の部分を露出させる第1の研磨工程と、
     請求項1~11のいずれか一項に記載の金属膜用研磨液を用いて、前記第1の研磨工程で露出した前記バリア層の前記部分を研磨して前記層間絶縁膜の前記凸部を露出させる第2の研磨工程と、を含む、研磨方法。
PCT/JP2015/064723 2014-05-22 2015-05-22 金属膜用研磨液及びそれを用いた研磨方法 WO2015178476A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-106113 2014-05-22
JP2014106113A JP2017122134A (ja) 2014-05-22 2014-05-22 金属膜用研磨液及びそれを用いた研磨方法

Publications (1)

Publication Number Publication Date
WO2015178476A1 true WO2015178476A1 (ja) 2015-11-26

Family

ID=54554135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064723 WO2015178476A1 (ja) 2014-05-22 2015-05-22 金属膜用研磨液及びそれを用いた研磨方法

Country Status (3)

Country Link
JP (1) JP2017122134A (ja)
TW (1) TW201607999A (ja)
WO (1) WO2015178476A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200123665A1 (en) * 2017-06-22 2020-04-23 Doduco Solutions Gmbh Bonding substrate and method for protecting surfaces intended for wire bonding
WO2023007938A1 (ja) * 2021-07-30 2023-02-02 Jsr株式会社 化学機械研磨用組成物および研磨方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199036A (ja) * 2001-10-31 2008-08-28 Hitachi Chem Co Ltd 研磨液及び研磨方法
JP2010010717A (ja) * 2004-03-08 2010-01-14 Asahi Glass Co Ltd 研磨剤および研磨方法
JP2010034497A (ja) * 2008-02-18 2010-02-12 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2013062516A (ja) * 2007-07-05 2013-04-04 Hitachi Chemical Co Ltd 金属膜用研磨液及び研磨方法
JP2013120885A (ja) * 2011-12-08 2013-06-17 Hitachi Chemical Co Ltd Cmp用研磨液及びこの研磨液を用いた研磨方法
JP2013197526A (ja) * 2012-03-22 2013-09-30 Hitachi Chemical Co Ltd Cmp用研磨液及び研磨方法
WO2014007063A1 (ja) * 2012-07-06 2014-01-09 日立化成株式会社 Cmp用研磨液、貯蔵液及び研磨方法
JP2014022511A (ja) * 2012-07-17 2014-02-03 Hitachi Chemical Co Ltd Cmp用研磨液、cmp用研磨液用貯蔵液、研磨方法、半導体基板及び電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199036A (ja) * 2001-10-31 2008-08-28 Hitachi Chem Co Ltd 研磨液及び研磨方法
JP2010010717A (ja) * 2004-03-08 2010-01-14 Asahi Glass Co Ltd 研磨剤および研磨方法
JP2013062516A (ja) * 2007-07-05 2013-04-04 Hitachi Chemical Co Ltd 金属膜用研磨液及び研磨方法
JP2010034497A (ja) * 2008-02-18 2010-02-12 Jsr Corp 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP2013120885A (ja) * 2011-12-08 2013-06-17 Hitachi Chemical Co Ltd Cmp用研磨液及びこの研磨液を用いた研磨方法
JP2013197526A (ja) * 2012-03-22 2013-09-30 Hitachi Chemical Co Ltd Cmp用研磨液及び研磨方法
WO2014007063A1 (ja) * 2012-07-06 2014-01-09 日立化成株式会社 Cmp用研磨液、貯蔵液及び研磨方法
JP2014022511A (ja) * 2012-07-17 2014-02-03 Hitachi Chemical Co Ltd Cmp用研磨液、cmp用研磨液用貯蔵液、研磨方法、半導体基板及び電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200123665A1 (en) * 2017-06-22 2020-04-23 Doduco Solutions Gmbh Bonding substrate and method for protecting surfaces intended for wire bonding
WO2023007938A1 (ja) * 2021-07-30 2023-02-02 Jsr株式会社 化学機械研磨用組成物および研磨方法

Also Published As

Publication number Publication date
TW201607999A (zh) 2016-03-01
JP2017122134A (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
JP5741738B2 (ja) 金属膜用研磨液及び研磨方法
JP5533951B2 (ja) 金属用研磨液及び研磨方法
JP5141792B2 (ja) Cmp研磨液及び研磨方法
JP6051632B2 (ja) 研磨剤及び基板の研磨方法
JP5447437B2 (ja) 研磨液及び研磨方法
JP4568604B2 (ja) 研磨液及び研磨方法
JP2020096190A (ja) Cmp用研磨液、及び、これを用いた研磨方法
JPWO2007043517A1 (ja) Cmp用研磨液及び研磨方法
WO2015108113A1 (ja) 研磨液の製造方法及び研磨方法
JP2012182158A (ja) 研磨液、及びこの研磨液を用いた基板の研磨方法
TWI722306B (zh) 研磨方法及研磨液
JP4850167B2 (ja) 研磨液及び研磨方法
JP2005064285A (ja) Cmp用研磨液及び研磨方法
JP2013038237A (ja) Cmp用研磨液及び研磨方法
JP4618987B2 (ja) 研磨液及び研磨方法
JP2012134358A (ja) Cmp研磨液及び研磨方法
WO2015178476A1 (ja) 金属膜用研磨液及びそれを用いた研磨方法
JP2016030778A (ja) Cmp用研磨液及びこれを用いた研磨方法
JP4935843B2 (ja) 研磨液及び研磨方法
JP2011014552A (ja) 基板の研磨方法
JP2008124509A (ja) 研磨方法
JP2008118112A (ja) Cmp用研磨液及び基板の研磨方法
JP2010114402A (ja) Cmp用研磨液及びこのcmp用研磨液を用いた研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15796234

Country of ref document: EP

Kind code of ref document: A1