WO2015178058A1 - クラッチにおける冷却構造 - Google Patents

クラッチにおける冷却構造 Download PDF

Info

Publication number
WO2015178058A1
WO2015178058A1 PCT/JP2015/055521 JP2015055521W WO2015178058A1 WO 2015178058 A1 WO2015178058 A1 WO 2015178058A1 JP 2015055521 W JP2015055521 W JP 2015055521W WO 2015178058 A1 WO2015178058 A1 WO 2015178058A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction plate
lubricating oil
groove
width
plate
Prior art date
Application number
PCT/JP2015/055521
Other languages
English (en)
French (fr)
Inventor
晃 杉村
前田 篤志
高橋 功
純平 早川
内藤 忠司
久保 隆史
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to JP2016520956A priority Critical patent/JP6189533B2/ja
Priority to CN201580026669.0A priority patent/CN106415041B/zh
Priority to US15/311,959 priority patent/US10253823B2/en
Priority to EP15796660.7A priority patent/EP3147524A4/en
Priority to KR1020167031036A priority patent/KR101893667B1/ko
Publication of WO2015178058A1 publication Critical patent/WO2015178058A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • F16D13/648Clutch-plates; Clutch-lamellae for clutches with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/62Clutch-bands; Clutch shoes; Clutch-drums
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • F16D13/68Attachments of plates or lamellae to their supports
    • F16D13/683Attachments of plates or lamellae to their supports for clutches with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/74Features relating to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/123Details not specific to one of the before-mentioned types in view of cooling and lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/24Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
    • F16D55/26Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
    • F16D55/36Brakes with a plurality of rotating discs all lying side by side
    • F16D55/40Brakes with a plurality of rotating discs all lying side by side actuated by a fluid-pressure device arranged in or one the brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/78Features relating to cooling
    • F16D65/84Features relating to cooling for disc brakes
    • F16D65/853Features relating to cooling for disc brakes with closed cooling system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/72Features relating to cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D2069/004Profiled friction surfaces, e.g. grooves, dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/02Overheat protection, i.e. means for protection against overheating
    • F16D2300/021Cooling features not provided for in group F16D13/72 or F16D25/123, e.g. heat transfer details
    • F16D2300/0214Oil or fluid cooling

Definitions

  • the present invention relates to a cooling structure in a clutch.
  • a friction engaging element having a plurality of friction plates is provided on a transmission path of rotational driving force input from an engine.
  • the friction plate on the inner diameter side and the friction plate on the outer diameter side which are coaxially provided to be relatively rotatable, are alternately arranged in the rotation axis direction, and these friction plates on the inner diameter side and the outer
  • the facing material provided on the inner friction plate is in pressure contact with the outer friction plate, and the inner friction plate and the outer friction plate And are fastened non-rotatably relative to each other.
  • Patent Document 1 discloses that the cooling performance of the clutch is improved by providing an oil groove in a facing material provided on the friction plate on the inner diameter side.
  • FIG. 6 is a view for explaining an example of a friction plate according to a conventional example.
  • the facing material 105 is provided on the surface facing the friction plate (not shown) on the outer diameter side, and the facing material 105 rotates the friction plate 100.
  • they are spaced apart.
  • a portion between the facing materials 105 adjacent in the circumferential direction is a dot groove 101 through which the lubricating oil OL supplied from the inner diameter side flows toward the outer diameter side, and the lubricating oil OL is When flowing, the friction oil 100 cools the friction plate 100 by taking heat from the friction plate 100.
  • Each of the facing materials 105 is provided with a grid-like waffle groove 106, and when the lubricating oil OL flows through the waffle grooves 106, the lubricating oil OL takes heat away from the facing material 105.
  • the facing member 105 and the friction plate 100 are cooled.
  • a shaft member 102 that rotates around the rotation axis X is located on the inner diameter side of the friction plate 100.
  • the shaft member 102 is provided with an oil hole 102a through which the lubricating oil passes.
  • the lubricating oil discharged radially outward from the oil hole 102a is subjected to a centrifugal force by the rotation of the shaft member 102, and the shaft member 102 is
  • the friction plate 100 is cooled (lubricated) by reaching the friction plate 100 located on the outer diameter side of
  • the present invention An inner diameter friction plate with an inner diameter side spline-fitted and an outer diameter side friction plate with an outer diameter side spline fitted are provided so as to be relatively rotatable around a common rotation axis, and the inner diameter side friction plate When the outer diameter side friction plate is pressed by the piston in the rotation axis direction, a facing material provided on one of the inner diameter side friction plate and the outer diameter side friction plate is the inner diameter side friction plate and the facing surface.
  • a cooling structure in a clutch in which the relative rotation between the inner friction plate and the outer friction plate is regulated in accordance with a pressing force by pressing against the other friction plate of the outer friction plates.
  • the facing material is provided at a predetermined interval in the circumferential direction around the rotation axis, and between the facing materials adjacent in the circumferential direction, from the inner diameter side to the outer diameter side by centrifugal force.
  • a groove is formed for the moving lubricating oil to flow,
  • the lower limit of the width of the groove viewed from the rotational axis direction is set based on the flow rate of the lubricating oil passing through the groove, and the upper limit is set based on the air content in the lubricating oil passing through the groove
  • the lower limit is set to a first threshold width at which the flow rate of the lubricating oil passing through the groove is the minimum flow rate at which cooling of the inner friction plate and the outer friction plate to a predetermined temperature or less is possible.
  • the upper limit is that the air content in the lubricating oil passing through the groove can be cooled to the predetermined temperature or lower of the inner friction plate and the outer friction plate by the lubricating oil having the air content. It is set as the structure set to the 2nd threshold value width used as the largest content rate.
  • the narrower the width of the groove the smaller the flow rate of the lubricating oil and the lower the air content in the flowing lubricating oil.
  • the cooling performance of the friction plate depends on the flow rate of the lubricating oil when the width of the groove is narrow, and depends on the air content of the flowing lubricating oil when the width of the groove is wide.
  • the lower limit defining the narrower groove width is set based on the flow rate of the lubricating oil
  • the upper limit defining the wider groove width is the air flowing through the lubricating oil.
  • FIG. 1 is a view for explaining the cooling structure in the clutch according to the embodiment, and (a) is an enlarged cross-sectional view showing the vicinity of the forward / backward switching mechanism 3 of the continuously variable transmission; It is an enlarged view of field A in (a).
  • a forward clutch 4 and a reverse brake 5 are positioned between the front cover portion 11 and the double pinion planetary gear set 2.
  • the reverse brake 5 is located on the outer diameter side of the forward clutch 4 and includes a drive plate 51 spline-fitted to the outer periphery of the clutch drum 45 and a driven plate 55 spline-fitted to the inner periphery of the transmission case 1. And a piston 53 that strokes in the axial direction of the rotation axis X by oil pressure.
  • the drive plate 51 and the driven plate 55 are alternately arranged in the axial direction of the rotation axis X.
  • the drive plate 51 and the driven plate 55 are pressed by the piston 53 in the axial direction of the rotation axis X, the drive plate The facing material 52 (see (b) in FIG. 1) provided at 51 is brought into pressure contact with the driven plate 55 so that the driven plate 55 and the drive plate 51 can be fastened so as not to rotate relative to each other.
  • the driven plate 55 is provided on the inner periphery of the transmission case 1 by spline fitting, and the rotation around the rotation axis X is restricted. Therefore, when the drive plate 51 and the driven plate 55 are fastened to each other so as not to allow relative rotation, the rotation of the clutch drum 45 in which the drive plate 51 is spline-fitted is restricted about the rotation axis X.
  • the clutch drum 45 has a peripheral wall 451 on the outer periphery of which the drive plate 51 is spline-fitted, and a bottom wall 450 extending from one end of the peripheral wall 451 to the inner diameter side.
  • the clutch drum 45 has a cylindrical shape with a bottom, and a driven plate 46 of the forward clutch 4 is spline-fitted on the inner periphery of the peripheral wall portion 451.
  • the forward clutch 4 includes the driven plate 46, a drive plate 42 spline-fitted to the outer periphery of the clutch hub 41, and a piston 44 that strokes in the axial direction of the rotation axis X by hydraulic pressure.
  • the clutch hub 41 is formed in a cylindrical shape with a bottom from a peripheral wall portion 411 in which the drive plate 42 is spline fitted to the outer periphery, and a bottom portion 410 extending from one end of the peripheral wall portion 411 to the inner diameter side.
  • the clutch hub 41 and the clutch drum 45 are assembled from the axial direction of the rotation axis X in a direction in which the openings face each other, and in this state, the clutch hub 41 It is accommodated inside the peripheral wall 451.
  • the circumferential wall 411 of the clutch hub 41 when viewed from the axial direction of the rotation axis X, has a spline peak 411a located on the outer diameter side and a spline valley 411b located on the inner diameter Are alternately formed continuously in the circumferential direction around the rotation axis X, and the drive plate 42 of the forward clutch 4 is spline fitted on the outer periphery of the spline peak portion 411a.
  • the drive plate 42 has the protrusion 420 a protruding to the inner diameter side located between the spline peak portions 411 a and 411 a adjacent in the circumferential direction around the rotation axis X, and the drive plate 42 has the rotation axis In the state where relative rotation with the clutch hub 41 in the circumferential direction around X is restricted, it is provided so as to be displaceable in the axial direction of the rotation axis X.
  • the drive plate 42 and the driven plate 46 are alternately arranged in the axial direction of the rotation axis X, and the drive plate 42 and the driven plate 46 are When pressed in the axial direction of the rotation axis X, the facing member 43 (see FIG. 1B) provided on the drive plate 42 is in pressure contact with the driven plate 46, and the drive plate 42 and the driven plate 55 rotate relative to each other. It is supposed to be signed impossible.
  • the inner peripheral edge portion 410a is welded to the cylindrical base portion 210 of the sun gear 21, and the sun gear 21 and the clutch hub 41 are circumferentially relative to each other about the rotation axis X They are mutually connected in a state in which the rotation is restricted. Since the sun gear 21 is spline fitted to the outer periphery of the input shaft 31 of the forward / reverse switching mechanism 3, the sun gear 21 is rotated when the input shaft 31 is rotated by a rotational driving force input from a driving source (not shown). And the drive plate 42 spline-fitted to the clutch hub 41 rotate integrally about the rotation axis X.
  • a cylindrical inner wall 453 extrapolated to the cylindrical support 111 of the front cover 11 is provided on the inner diameter side of the clutch drum 45, and the inner wall 453 has a diameter corresponding to the diameter of the inner wall 453.
  • An oil hole 453a is provided to penetrate in the direction.
  • an oil hole 31a is formed on the outer periphery of the input shaft 31 which rotates around the rotation axis X, and lubricating oil is supplied to the inside of the transmission case 1 through the oil hole 31a. It has become.
  • the lubricating oil supplied from the oil hole 31a to the inside of the transmission case 1 moves radially outward by the centrifugal force of rotation, and one of the lubricating oil supplied from the oil hole 31a. 1 can reach the peripheral wall 411 of the clutch hub 41 located radially outward of the inner wall 453 through an oil hole 453a provided in the inner wall 453 of the clutch drum 45 (see FIG. a), see arrow).
  • the lubricating oil that has reached the peripheral wall portion 411 of the clutch hub 41 is supplied to the drive plate 42 and the driven plate 46 located on the radially outer side of the peripheral wall portion 411 through the oil groove 411 c provided in the peripheral wall portion 411.
  • the drive plate 42 and the driven plate 46 are lubricated (cooled).
  • the drive plate 42 has a plate-like base 420 that has a ring shape when viewed from the axial direction of the rotation axis X.
  • a facing member 43 having a predetermined width W (see (b) in FIG. 2) in the radial direction of the rotation axis X is attached.
  • the facing material 43 is provided on both surfaces of the plate-like base 420 (see (b) in FIG. 1).
  • a plurality of facing materials 43 are provided at intervals in the circumferential direction around the rotation axis X.
  • a basic unit has a configuration in which a trapezoidal facing material 43B is disposed in plan view between the substantially parallelogram facing material 43A and 43C in a planar view.
  • a plurality of facing materials 43 (43A, 43B, 43C) are arranged in a row in the circumferential direction around the rotation axis X.
  • the facing members 43A, 43B, and 43C are simply referred to as facing members 43 unless otherwise specified.
  • Dot grooves 421 (421a, 421b, 421c) through which the lubricating oil OL flows are formed between the facing materials 43, 43 adjacent in the circumferential direction, and in the embodiment, the dot grooves 421 flow.
  • the drive plate 42 is cooled by the lubricating oil OL.
  • the dot grooves 421a between the facing member 43A and the facing member 43C have equal widths along the diameter line Lm of the base 420 forming a ring when viewed from the axial direction of the rotation axis X It is formed of Wa.
  • the dot groove 421b between the facing member 43A and the facing member 43B and the dot groove 421c between the facing member 43B and the facing member 43C are provided symmetrically with respect to the diameter line Lm of the base 420, respectively. 421b and 421c are also formed with the same width Wa over the entire length in the longitudinal direction.
  • the dot grooves 421b and 421c are each inclined at a predetermined angle ⁇ with respect to the diameter line Lm, and the distance L1 between the dot grooves 421b and 421c in the circumferential direction around the rotation axis X is from the inner diameter side of the base 420 It becomes wider as it goes to the outer diameter side.
  • the dot grooves 421a, 421b, and 421c are simply referred to as dot grooves 421, unless otherwise specified.
  • a waffle groove 431 having a grid shape in plan view is provided, and a part of the lubricating oil OL flowing through the dot groove 421 flows through the waffle groove 431, The lubricating oil OL flowing through the waffle groove 431 removes heat from the facing member 43, whereby the facing member 43 and the area of the base 420 to which the facing member 43 is attached are cooled.
  • the waffle groove is pressed by pressing the facing material 43 with a punch (not shown) having a grid-like protrusion. It forms 431. Therefore, in the facing member 43, the waffle grooves 431 are formed as grooves recessed from the pressure contact surface 430 with the driven plate 46, and each of the waffle grooves 431 is formed to have the same width Wb.
  • the lubricating oil OL flowing through the dot groove 421 and the waffle groove 431 is supplied into the transmission case 1 from the oil hole 31 a of the input shaft 31 rotating around the rotation axis X.
  • the centrifugal force by rotation acts on the lubricating oil OL supplied from the oil hole 31a
  • the lubricating oil OL moves inside the transmission case 1 toward the outer diameter side.
  • the lubricating oil OL supplied from the oil hole 31a of the input shaft 31 into the transmission case 1 passes through the oil hole 453a of the inner wall 453 located on the outer diameter side of the input shaft 31 to reach the drive plate 42. It is supposed to be.
  • the applicant analyzed the distribution of the lubricating oil supplied from the inner diameter side in the transmission case 1 and found that the oil holes of the lubricating oil (the oil holes 31a of the input shaft 31 and the oil holes 453a of the clutch drum 45)
  • the lubricant oil supplied from the oil hole 31a of the input shaft 31 and the lubricant oil supplied radially outward from the oil hole 453a of the clutch drum 45 because they are spaced in the circumferential direction around the rotation axis X
  • a bias occurs in the distribution of
  • the distribution of the lubricating oil on the radially outer side of the oil hole 453a of the clutch drum 45 will be described by way of example.
  • the clutch drum rotates in the clockwise direction CW in the figure.
  • oil holes 453a are provided at intervals in the circumferential direction around the rotation axis X.
  • an area A in which the density of the lubricating oil OL supplied from the oil hole 453a is high and an area B in which the density of air is higher than the lubricating oil OL are formed on the outer diameter side of the inner wall 453
  • the positions of the area A and the area B are displaced in the circumferential direction around the rotation axis X in conjunction with the rotation of the clutch drum 45.
  • the upper limit and the lower limit of the width of the groove are set based on the found tendency, and the cooling performance of the friction plate (drive plate, driven plate) is improved. I am trying to
  • FIG. 3A is a view for explaining the relationship between the width Wa of the dot groove 421 and the flow rate of the lubricating oil OL flowing through the dot groove 421
  • FIG. 3B is the width Wa of the dot groove 421 and It is a figure explaining the relationship between the air content rate in lubricating oil OL which flows through the dot groove 421, and the temperature of a friction plate (drive plate 42, driven plate 46).
  • FIG. 3A is a view for explaining the relationship between the width Wa of the dot groove 421 and the flow rate of the lubricating oil OL flowing through the dot groove 421
  • FIG. 3B is the width Wa of the dot groove 421 and It is a figure explaining the relationship between the air content rate in lubricating oil OL which flows through the dot groove 421, and the temperature of a friction plate (drive plate 42, driven plate 46).
  • FIG. 3A is a view for explaining the relationship between the width Wa of the dot groove 421 and the flow rate of the lubric
  • FIG. 4 is a view for explaining the relationship between the width Wb of the waffle groove 431, the air content in the lubricating oil OL flowing through the waffle groove 431, and the temperature of the friction plate (drive plate 42, driven plate 46). is there.
  • FIG. 5 is a diagram for explaining the upper limit and the lower limit of the width Wa of the dot groove 421, and the upper limit and the lower limit of the width Wb of the waffle groove 431.
  • the thermal conductivity of air is lower than the thermal conductivity of the lubricating oil OL, the lower the air content in the lubricating oil OL, the friction plate (drive) when the lubricating oil OL passes through the dot grooves 421
  • the cooling performance of the plate 42 and the driven plate 46) is improved, and the cooling performance of the friction plate when the lubricating oil OL passes through the dot groove 421 decreases as the air content of the lubricating oil OL increases.
  • the dot groove in the case where the air content rate that can reliably cool the friction plate (drive plate 42, driven plate 46) to the preset upper limit temperature Tmax or less is obtained by experiments etc.
  • the width b of the dot groove is determined as the upper limit of the width Wa of the dot groove (see (b) in FIG. 3 and FIG. 5).
  • the air content in the lubricating oil OL is reduced. This is because (a) when the width Wa of the dot groove 421 is narrowed, the lubricating oil OL and air are less likely to flow into the dot groove 421, and (b) the air and lubricating oil OL, the lubricating oil OL is better than air. Because the specific gravity is large, when the centrifugal force of the same size acts, the lubricant oil OL is easier to move than air, so the lubricant oil OL preferentially flows into the dot groove 421, It is.
  • the width a of the dot groove in this case is determined as the lower limit of the width Wa of the dot groove (see (a) in FIG. 3 and FIG. 5).
  • the cooling property of the friction plate depends on the flow rate of the lubricating oil OL when the width of the dot groove 421 is narrow, and the width of the groove is wide. Is focused on the content of air in the lubricating oil OL flowing through the dot groove 421, and the width Wa of the dot groove 421 is set between the lower limit a and the upper limit b described above. (A ⁇ Wa ⁇ b: see FIG. 5).
  • the ratio c of the waffle groove 431 in the case of the air content obtained in each experiment or the like and the ratio of the waffle groove 431 in the facing material 43 is less than the ratio of the upper limit at which the obtained ⁇ value can be secured.
  • the width d of the waffle groove 431 was compared. As a result, the width d of the waffle groove 431 determined in accordance with the ⁇ value is smaller than the width c of the waffle groove 431 determined in accordance with the air content (see FIG. 5).
  • the width d of the waffle groove 431 determined in accordance with the above is the upper limit value of the width Wb of the waffle groove 431.
  • the area of the facing member 43 in the drive plate 42 is a factor that affects the ⁇ value necessary for fastening. Therefore, when the width Wa of the dot groove 421 in the drive plate 42 increases, the entire area of the facing member 43 decreases, so the provisional upper limit width d decreases as the width Wa of the dot groove 421 widens ( See FIG. 5, symbol d).
  • the lower limit of the width of the waffle groove 431 is set to the minimum width e at which the lubricating oil OL can pass while the manufacturability of the geometrical shape of the waffle groove 431 is established (see FIG. 5) .
  • the cooling performance of the friction plate depends on the flow rate of the lubricating oil OL, and the width Wa of the dot groove 421 is wide.
  • the cooling properties of the friction plate depend on the air content in the flowing lubricating oil OL. Therefore, as shown in FIG. 5, in the embodiment, the width Wa of the dot groove 421 is determined based on the upper limit value b determined based on the air content in the lubricating oil OL and the flow rate of the lubricating oil OL. And the lower limit value a.
  • the cooling failure due to the shortage of the flow rate of the lubricating oil OL (when the width Wa is less than the lower limit value a) or the cooling capacity shortage due to the large air content in the lubricating oil OL (the width Wa is higher than the upper limit value b) It is possible to preferably prevent a cooling failure due to the large size.
  • the ratio of the waffle groove 431 in the facing member 43 is a ratio that can ensure the ⁇ value of the design standard necessary for fastening the drive plate 42 and the driven plate 46. Since the width d of the upper limit of the width Wb is set, it is possible to suitably prevent the occurrence of the engagement failure of the clutch (forward clutch 4) while cooling the facing member 43. Since the width Wa of the dot groove 421 has a greater effect on the cooling of the clutch, in the embodiment, the lower limit of the width Wb of the waffle groove 431 is the manufacturability of the geometrical shape of the waffle groove 431. At the same time, the lubricant oil OL is set to the minimum width e that allows passage.
  • the clutch By setting the width Wa of the dot groove 421 and the width Wb of the waffle groove 431 in such a range, the clutch (forward clutch 4) can be appropriately selected without causing a coupling failure of the clutch (forward clutch 4). Can be lubricated (cooled).
  • Drive plate 42 inner diameter side friction plate
  • driven plate 46 outer diameter side friction plate
  • the facing material 43 is provided at a predetermined interval in the circumferential direction around the rotation axis X, and adjacent facing materials in the circumferential direction between 43 and 43, a dot groove 421 through which the lubricating oil OL moving from the inner diameter side to the outer diameter side flows by centrifugal force is formed with equal width,
  • the lower limit of the width Wa of the dot groove 421 viewed from the rotation axis X direction is set based on the flow rate of the lubricating oil OL passing through the dot groove 421, and the upper limit is an air content of the lubricating oil passing through the dot groove 421.
  • the lower limit of the width Wa of the dot groove 421 is the minimum flow rate at which the flow rate of the lubricating oil OL passing through the dot groove 421 can cool the drive plate 42 and the driven plate 46 below the upper limit temperature Tmax (predetermined temperature).
  • a width a first threshold width
  • the upper limit of the width Wa of the dot groove 421 is the upper limit temperature Tmax of the drive plate 42 and the driven plate 46 when the air content in the lubricating oil OL passing through the dot groove 421 is the lubricating oil OL of the air content.
  • the configuration is such that the width b (second threshold width) which is the maximum content that can be cooled to a predetermined temperature) or less is set.
  • the width of the dot groove 421 increases, the flow rate of the lubricating oil OL increases and the air content of the flowing lubricating oil OL increases.
  • the thermal conductivity of air is lower than the thermal conductivity of the lubricating oil OL
  • the lower the content of air in the lubricating oil OL the better the cooling performance when the lubricating oil OL passes through the dot grooves 421
  • the higher the air content in the lubricating oil OL the lower the cooling performance when the lubricating oil passes through the dot grooves 421. Therefore, when the width Wa of the dot groove 421 is narrow, the cooling property depends on the flow rate of the lubricating oil OL, and when the width Wa of the dot groove 421 is wide, the cooling property is air with the flowing lubricating oil OL.
  • the lower limit for defining the narrower width of the dot groove 421 is set based on the flow rate of the lubricating oil OL, and the upper limit for defining the wider width of the dot groove 421 is determined.
  • the upper limit and the lower limit of the width Wa of the dot groove 421 are set based on the factor having a large influence on the cooling performance of the friction plate (drive plate 42, driven plate 46) when set based on the air content in the flowing lubricating oil OL. It will be set.
  • the width Wa of the dot groove 421 is the conventional friction plate 100 (drive plate: see FIG.
  • the width is smaller than the width of the dot groove 101 in FIG. Therefore, the flow velocity of the lubricating oil OL flowing through the dot groove 421 is lower than that of the conventional friction plate 100.
  • the contact time between the lubricant oil OL and the base 420 of the drive plate 42 becomes longer, and the amount of heat that the lubricant oil OL can deprive the drive plate 42 increases as the contact time becomes longer.
  • the cooling performance of No. 4 is further improved.
  • the width Wa of the dot groove 421 is narrower than the width of the dot groove 101 in the conventional friction plate 100 (see FIG. 6), the air content in the lubricating oil OL flowing through the dot groove 421 Is lower.
  • the friction plate (drive plate 42, driven plate 46) is more suitable because the lubricant oil OL having a low air content can take more heat from the drive plate 42 than the lubricant having a high air content.
  • the cooling performance can be improved to improve the cooling performance of the forward clutch 4. Therefore, even when the time in which the forward clutch 4 is in the slip state is longer than in the case of the conventional automatic transmission, the forward clutch 4 can be properly cooled.
  • the cooling performance of the forward clutch 4 is improved compared to the conventional friction plate 100, the same cooling performance as the conventional one can be secured even if the amount of lubricating oil OL supplied from the inner diameter side (input shaft 31 side) is suppressed. . Therefore, it is possible to reduce the amount of the lubricating oil OL supplied from the inner diameter side and reduce the load on the oil pump for supplying the lubricating oil OL.
  • the press contact surface 430 of the facing member 43 with the driven plate 46 is provided with a recessed waffle groove 431 (concave groove),
  • the ratio of the waffle groove 431 area in the area of the facing member 43 viewed from the rotation axis X direction is such that when the facing member 43 is in pressure contact with the driven plate 46, the drive plate 42 and the driven plate 46 are fastened relatively nonrotatably.
  • ( ⁇ m) (frictional resistance value) required for the above is set to a ratio that can be secured.
  • the contact area between the facing member 43 and the driven plate 46 decreases when the facing member 43 is in pressure contact with the driven plate 46, so the drive plate 42 and the driven plate 46 There is a risk that it will not be possible to secure the ⁇ value necessary to fasten relative rotation.
  • the drive plate 42 and the driven plate 46 can be cooled, the drive plate 42 and the driven plate 46 can not be fastened relatively nonrotatably, and the drive plate 42 and the driven plate 46 slip, so that the drive plate The durability of the driven plate 42 and the driven plate 46 may be reduced.
  • the upper limit of the width Wb of the waffle groove 431 is The flow rate of the lubricating oil OL passing through the waffle groove 431 has a width c (third threshold width) which is the minimum flow rate capable of cooling the drive plate 42 and the driven plate 46 to the upper limit temperature Tmax (predetermined temperature) or less.
  • the ratio of the area of the waffle groove 431 in the area of the facing member 43 is a ⁇ value (the value required for fastening the drive plate 42 and the driven plate 46 relative non-rotatably when the facing member 43 is in pressure contact with the driven plate 46) It is set based on the width d (the fourth threshold width) which is the ratio that can secure the frictional resistance value),
  • the lower limit of the width Wb of the waffle groove 431 is set to a minimum width at which the productivity of the geometric shape of the waffle groove 431 is established and the lubricating oil OL can flow.
  • the lubricating oil OL having a low air content is supplied to the waffle groove 431 while securing relatively non-rotatable fastening between the drive plate 42 and the driven plate 46, and the facing material 43 is more uniform than before. Can be cooled.
  • the area of the facing member 43 at the base 420 of the drive plate 42 is large, if the facing member 43 can be cooled more uniformly, the entire drive plate 42 can be cooled uniformly and appropriately.
  • the friction plates (drive plate 42 and driven plate 46) can be cooled more reliably to further improve the cooling performance of the forward clutch 4.
  • the upper limit temperature Tmax (predetermined temperature) is a temperature set based on the allowable heat resistance temperature of the drive plate 42 and the driven plate 46, and is a temperature lower than the allowable heat resistance temperature.
  • the facing member 43 may be provided on the surface of the driven plate 46 facing the drive plate 42. good. Also in this case, the same operation and effect as those of the above-described embodiment can be obtained.
  • cooling structure of the clutch according to the present invention is applied to the forward clutch 4 of the forward / backward switching mechanism 3 provided in the continuously variable transmission.
  • cooling of the clutch according to the present invention The structure is provided with a plurality of friction fastening elements on the transmission drive path of the rotational driving force input from the drive source, and switches the combination of engagement / disengagement of the friction plates in each friction fastening element to obtain a desired gear
  • the present invention may be applied to a friction engagement element (clutch) in an automatic transmission to be realized.

Abstract

ドライブプレート42に設けたフェーシング材43が、ドリブンプレート46に圧接して、ドライブプレート42とドリブンプレート46との相対回転が規制される前進クラッチ4における冷却構造であって、周方向で隣接するフェーシング材43、43の間に、遠心力により外径側に移動する潤滑油OLが通流するドット溝421を形成し、ドット溝421の幅Waの下限を、ドット溝421を通過する潤滑油OLの流量が、ドライブプレート42とドリブンプレート46とを、上限温度Tmax以下に冷却可能な最小の流量となる幅aに設定し、ドット溝421の幅Waの上限を、ドット溝421を通過する潤滑油OLでの空気含有率が、当該空気含有率の潤滑油OLにより、ドライブプレート42とドリブンプレート46とを、上限温度Tmax以下に冷却可能な最大の含有率となる幅bに設定した。

Description

クラッチにおける冷却構造
 本発明は、クラッチにおける冷却構造に関する。
 車両用の自動変速機では、エンジンから入力される回転駆動力の伝達経路上に、複数の摩擦板を有する摩擦締結要素(クラッチ)が設けられている。
 この摩擦締結要素では、同軸上で相対回転可能に設けられた内径側の摩擦板と外径側の摩擦板とが、回転軸方向で交互に配置されており、これら内径側の摩擦板と外径側の摩擦板とをピストンにより回転軸方向に押圧すると、内径側の摩擦板に設けたフェーシング材が外径側の摩擦板に圧接して、内径側の摩擦板と外径側の摩擦板とが相対回転不能に締結されるようになっている。
 摩擦締結要素では、内径側の摩擦板と外径側の摩擦板との相対回転が規制されると、摩擦締結要素を挟んだ上流側と下流側との間で回転駆動力の伝達が可能となり、相対回転が可能になると、回転駆動力の伝達ができなくなる。
 そのため、車両用の自動変速機では、当該自動変速機が備える複数の摩擦締結要素での回転駆動力の伝達/非伝達を、車両の走行状態に応じて変更することで、回転駆動力の伝達経路を切り替えて、所望の走行性能や変速段が実現されるようにしている。
 ここで、摩擦締結要素での回転駆動力の伝達/非伝達を切り替える際には、摩擦締結要素の摩擦板の状態が、締結状態と開放状態との間で切り替わるので、内径側の摩擦板と外径側の摩擦板は、一時的にスリップ状態となって発熱する。
 そのため、車両用の自動変速機では、当該自動変速機の内径側から供給される潤滑油を、遠心力によりクラッチまで誘導し、内径側の摩擦板と外径側の摩擦板とを、誘導した潤滑油で冷却するようになっており、例えば特許文献1には、内径側の摩擦板に設けたフェーシング材に油溝を設けることで、クラッチの冷却性を向上させることが開示されている。
特開2001-295859号公報
 図6は、従来例にかかる摩擦板の一例を説明する図である。
 図6に示すように、内径側の摩擦板100においてフェーシング材105は、外径側の摩擦板(図示せず)との対向面に設けられており、フェーシング材105は、摩擦板100の回転軸X周りの周方向で、間隔を空けて配置されている。
 周方向で隣接するフェーシング材105の間の部分は、内径側から供給された潤滑油OLが外径側に向けて通流するドット溝101となっており、このドット溝101を潤滑油OLが通流する際に、潤滑油OLが摩擦板100から熱を奪うことで、摩擦板100が冷却されるようになっている。
 また、フェーシング材105の各々には、格子状のワッフル溝106が設けられており、このワッフル溝106を潤滑油OLが通流する際に、潤滑油OLがフェーシング材105から熱を奪うことで、フェーシング材105と摩擦板100とが冷却されるようになっている。
 自動変速機では、摩擦板100の内径側に、回転軸X周りに回転する軸部材102が位置している。この軸部材102には、潤滑油が通過する油孔102aが設けられており、この油孔102aから径方向外側に放出された潤滑油は、軸部材102の回転による遠心力で、軸部材102の外径側に位置する摩擦板100まで到達して、摩擦板100を冷却(潤滑)するようになっている。
 従来では、より多くの潤滑油を摩擦板に供給すれば、摩擦板の冷却効果が高まるという考えが一般的であり、摩擦板の冷却効果を向上させるために、油孔102aから供給された潤滑油が摩擦板に到達するまでの間の流路断面積を大きくして、より多くの潤滑油が摩擦板に供給されるようにしていた。
 しかし、自動変速機の内部の空間は限られており、潤滑油の流路断面積のみを大きくすることだけで、摩擦板(クラッチ)の冷却効果を向上させることには限界があり、摩擦板の冷却性をより向上させることが求められている。
 本願発明は、
 内径側がスプライン嵌合された内径側摩擦板と外径側がスプライン嵌合された外径側摩擦板とが、共通の回転軸周りで相対回転可能に設けられており、前記前記内径側摩擦板と前記外径側摩擦板をピストンにより前記回転軸方向に押圧すると、前記内径側摩擦板と前記外径側摩擦板のうちの一方の摩擦板に設けたフェーシング材が、前記内径側摩擦板と前記外径側摩擦板のうちの他方の摩擦板に圧接して、前記内径側摩擦板と前記外径側摩擦板との相対回転が、押圧力に応じて規制されるクラッチにおける冷却構造であって、
 前記一方の摩擦板において前記フェーシング材は、前記回転軸周りの周方向に所定間隔を空けて設けられて、前記周方向で隣接するフェーシング材の間に、遠心力により内径側から外径側に移動する潤滑油が通流する溝が形成されており、
 前記回転軸方向から見た前記溝の幅の下限を、前記溝を通過する潤滑油の流量に基づいて設定すると共に、上限を、前記溝を通過する潤滑油での空気含有率に基づいて設定し、
 前記下限は、前記溝を通過する潤滑油の流量が、前記内径側摩擦板と前記外径側摩擦板の所定温度以下への冷却が可能な最小の流量となる第1の閾値幅に設定され、
 前記上限は、前記溝を通過する潤滑油での空気含有率が、当該空気含有率の潤滑油により、前記内径側摩擦板と前記外径側摩擦板の前記所定温度以下への冷却が可能な最大の含有率となる第2の閾値幅に設定されている構成とした。
 遠心力で外径側に移動する潤滑油が通流する溝では、溝の幅が狭いほど潤滑油の流量が少なくなると共に通流する潤滑油での空気の含有率が低くなり、溝の幅が広いほど潤滑油の流量が多くなると共に通流する潤滑油での空気の含有率が高くなる。
 そのため、摩擦板の冷却性は、溝の幅が狭い場合には潤滑油の流量に依存し、溝の幅が広い場合には通流する潤滑油での空気の含有率に依存する。
 よって、上記のように構成して、溝幅の狭いほうを規定する下限を、潤滑油の流量に基づいて設定し、溝幅が広い方を規定する上限を、通流する潤滑油での空気含有率に基づいて設定すると、摩擦板の冷却性に対する影響の大きい因子に基づいて、溝の幅の上限と下限が設定されることになる。これにより、摩擦板を適切に冷却することができる溝の上限と下限を設定できるので、摩擦板と摩擦板を有するクラッチの冷却性をより向上させることができる。
実施の形態にかかるクラッチの冷却構造を説明する図である。 摩擦板の内径側での潤滑油の分布と、摩擦板に設けたフェーシング材を説明する図である。 ドット溝の幅と、潤滑油の流量および潤滑油での空気含有率との関係を説明する図である。 ワッフル溝の幅と、潤滑油での空気含有率と摩擦板の温度との関係を説明する図である。 ドット溝の幅とワッフル溝の幅の上限と下限を説明する図である。 従来例にかかる摩擦板を説明する図である。
 以下、添付図面を参照しながら本発明の実施の形態を説明する。
 図1は、実施の形態にかかるクラッチにおける冷却構造を説明する図であり、(a)は、無段変速機の前後進切替機構3周りを拡大して示す断面図であり、(b)は、(a)における領域Aの拡大図である。
 変速機ケース1の内部では、前カバー部11とダブルピニオン遊星歯車組2との間に、前進クラッチ4と後進ブレーキ5とが位置している。
 後進ブレーキ5は、前進クラッチ4の外径側に位置しており、クラッチドラム45の外周にスプライン嵌合したドライブプレート51と、変速機ケース1の内周にスプライン嵌合したドリブンプレート55と、油圧により回転軸Xの軸方向にストロークするピストン53と、を有している。
 ドライブプレート51とドリブンプレート55とは、回転軸Xの軸方向で交互に配置されており、これらドライブプレート51とドリブンプレート55とを、ピストン53により回転軸Xの軸方向に押圧すると、ドライブプレート51に設けたフェーシング材52(図1の(b)参照)が、ドリブンプレート55に圧接して、ドリブンプレート55とドライブプレート51とが相対回転不能に締結されるようになっている。
 ここで、ドリブンプレート55は、変速機ケース1の内周にスプライン嵌合して設けられており、回転軸X周りの回転が規制されている。そのため、ドライブプレート51とドリブンプレート55とが相対回転不能に締結されると、ドライブプレート51がスプライン嵌合したクラッチドラム45は、回転軸X周りの回転が規制されるようになっている。
 クラッチドラム45は、外周にドライブプレート51がスプライン嵌合する周壁部451と、周壁部451の一端から内径側に延びる底壁部450と、を有している。クラッチドラム45は、有底円筒形状を成しており、周壁部451の内周には、前進クラッチ4のドリブンプレート46がスプライン嵌合して設けられている。
 前進クラッチ4は、このドリブンプレート46と、クラッチハブ41の外周にスプライン嵌合したドライブプレート42と、油圧により回転軸Xの軸方向にストロークするピストン44と、を有している。
 クラッチハブ41は、ドライブプレート42が外周にスプライン嵌合する周壁部411と、周壁部411の一端から内径側に延びる底部410と、から有底円筒形状に形成されている。
 変速機ケース1内においてクラッチハブ41と、クラッチドラム45は、互いの開口を対向させた向きで、回転軸Xの軸方向から組み付けられており、この状態においてクラッチハブ41は、クラッチドラム45の周壁部451の内側に収容されている。
 図2の(a)に示すように、回転軸Xの軸方向から見て、クラッチハブ41の周壁部411は、外径側に位置するスプライン山部411aと内径側に位置するスプライン谷部411bとが、回転軸X周りの周方向に交互に連なって形成されており、スプライン山部411aの外周に、前進クラッチ4のドライブプレート42がスプライン嵌合するようになっている。
 この状態において、ドライブプレート42は、内径側に突出する突出部420aを、回転軸X周りの周方向で隣接するスプライン山部411a、411aの間に位置させており、ドライブプレート42は、回転軸X周りの周方向におけるクラッチハブ41との相対回転が規制された状態で、回転軸Xの軸方向に変位可能に設けられている。
 図1に示すように、前進クラッチ4では、ドライブプレート42とドリブンプレート46とが、回転軸Xの軸方向で交互に配置されており、これらドライブプレート42とドリブンプレート46とを、ピストン44により回転軸Xの軸方向に押圧すると、ドライブプレート42に設けたフェーシング材43(図1の(b)参照)が、ドリブンプレート46に圧接して、ドライブプレート42とドリブンプレート55と、が相対回転不能に締結されるようになっている。
 ここで、クラッチハブ41の底部410は、内径側の周縁部410aがサンギヤ21の円筒状の基部210に溶接されており、サンギヤ21とクラッチハブ41とは、回転軸X周りの周方向の相対回転が規制された状態で、互いに連結されている。
 そして、サンギヤ21は、前後進切替機構3の入力軸31の外周にスプライン嵌合して取り付けられているので、図示しない駆動源から入力される回転駆動力で入力軸31が回転すると、サンギヤ21とクラッチハブ41にスプライン嵌合したドライブプレート42とが、回転軸X周りに一体に回転するようになっている。
 そのため、この状態で、ドライブプレート42とドリブンプレート55とがピストン44により相対回転不能に締結されると、入力軸31に入力された回転駆動力が、互いに締結されたドライブプレート42とドリブンプレート46とを介して、クラッチドラム45に伝達されるようになっている。
 クラッチドラム45の内径側には、前カバー部11の円筒状の支持部111に外挿された円筒状の内壁部453が設けられており、この内壁部453には、当該内壁部453を径方向に貫通して油孔453aが設けられている。
 実施の形態では、回転軸X周りに回転する入力軸31の外周に、油孔31aが形成されており、この油孔31aを介して、変速機ケース1の内部に潤滑油が供給されるようになっている。
 そして、この油孔31aから変速機ケース1の内部に供給された潤滑油は、回転による遠心力で、径方向外側に移動するようになっており、油孔31aから供給された潤滑油の一部が、クラッチドラム45の内壁部453に設けた油孔453aを通って、内壁部453の径方向外側に位置するクラッチハブ41の周壁部411まで到達できるようになっている(図1の(a)、矢印参照)。
 そして、クラッチハブ41の周壁部411に到達した潤滑油は、周壁部411に設けた油溝411cを通って、周壁部411の径方向外側に位置するドライブプレート42とドリブンプレート46に供給されて、ドライブプレート42とドリブンプレート46とを潤滑(冷却)するようになっている。
 図2の(a)に示すように、ドライブプレート42は、回転軸Xの軸方向から見てリング状を成す板状の基部420を有している。
 この基部420のドリブンプレート46に対向する領域には、回転軸Xの径方向に所定幅W(図2の(b)参照)を有するフェーシング材43が貼り付けられており、実施の形態では、板状の基部420の両面にフェーシング材43が設けられている(図1の(b)参照)。
 フェーシング材43は、回転軸X周りの周方向に間隔を開けて複数設けられている。
 実施の形態では、平面視において略平行四辺形形状のフェーシング材43A、43Cの間に、平面視において台形形状のフェーシング材43Bを配置した構成を基本単位としており、基部420では、この基本単位のフェーシング材43(43A、43B、43C)が、回転軸X周りの周方向に複数連なって配置されている。
 なお、以下の説明においては、フェーシング材43A、43B、43Cを特に区別しない場合には、単純にフェーシング材43と表記する。
 周方向で隣接するフェーシング材43、43の間には、潤滑油OLが通流するドット溝421(421a、421b、421c)が形成されており、実施の形態では、ドット溝421を通流する潤滑油OLにより、ドライブプレート42が冷却されるようになっている。
 図2の(b)に示すように、フェーシング材43Aとフェーシング材43Cの間のドット溝421aは、回転軸Xの軸方向から見てリング状を成す基部420の直径線Lmに沿って等しい幅Waで形成されている。
 フェーシング材43Aとフェーシング材43Bの間のドット溝421bと、フェーシング材43Bとフェーシング材43Cの間のドット溝421cは、それぞれ基部420の直径線Lmを挟んで対称に設けられており、これらドット溝421b、421cもまた、長手方向の全長に亘って等しい幅Waで形成されている。
 実施の形態では、ドット溝421b、421cは、それぞれ直径線Lmに対して所定角度θ傾いており、回転軸X周りの周方向におけるドット溝421b、421cの間隔L1は、基部420の内径側から外径側に向かうにつれて広くなっている。
 なお、以下の説明においては、ドット溝421a、421b、421cを特に区別しない場合には、単純にドット溝421と表記する。
 フェーシング材43の表面には、平面視において格子状を成すワッフル溝431が、設けられており、ドット溝421を通流する潤滑油OLの一部が、このワッフル溝431を通流すると共に、このワッフル溝431を通流する潤滑油OLがフェーシング材43から熱を奪うことで、フェーシング材43と、基部420におけるフェーシング材43が貼り付けられた領域とが冷却されるようになっている。
 実施の形態では、ワッフル溝431のないフェーシング材43をドライブプレート42の基部420に貼り付けたのち、格子状の突起を持つパンチ(図示せず)でフェーシング材43を押圧することで、ワッフル溝431を形成している。
 そのため、フェーシング材43においてワッフル溝431は、ドリブンプレート46との圧接面430から凹状に窪んだ溝として形成されており、ワッフル溝431の各々は、それぞれ同じ幅Wbで形成されている。
 ここで、変速機ケース1内での潤滑油OLの移動と分布を説明する。
 実施の形態では、ドット溝421やワッフル溝431を通流する潤滑油OLは、回転軸X周りに回転する入力軸31の油孔31aから変速機ケース1内に供給される。ここで、油孔31aから供給される潤滑油OLには回転による遠心力が作用しているので、潤滑油OLは、変速機ケース1の内部を外径側に向けて移動する。
 そして、入力軸31の油孔31aから変速機ケース1内に供給された潤滑油OLは、入力軸31の外径側に位置する内壁部453の油孔453aを通ってドライブプレート42に到達するようになっている。
 ここで、従来では、より多くの潤滑油を摩擦板(ドライブプレート42、ドリブンプレート46)に供給すれば、これら摩擦板を有するクラッチ(前進クラッチ4)の冷却性が良くなるという考えが一般的であり、入力軸31から供給される潤滑油の量を増やすことで、クラッチの冷却性を高めようとすることが一般的であった。
 本願出願人は、内径側から供給される潤滑油の変速機ケース1内での分布を解析したところ、潤滑油の油孔(入力軸31の油孔31aやクラッチドラム45の油孔453a)が、回転軸X周りの周方向に間隔を配置されているために、入力軸31の油孔31aから供給される潤滑油や、クラッチドラム45の油孔453aから径方向外側に供給される潤滑油の分布に、偏りが生じることを見いだした。
 ここで、クラッチドラム45の油孔453aの径方向外側での潤滑油の分布を例に挙げて説明すると、図2の(a)に示すように、図中時計回り方向CWに回転するクラッチドラム45の内壁部453では、回転軸X周りの周方向に間隔を開けて油孔453aが設けられている。そのため、内壁部453の外径側には、油孔453aから供給された潤滑油OLの密度が高い領域Aと、潤滑油OLよりも空気の密度の方が高い領域Bとが形成され、これらの領域Aと領域Bの位置は、クラッチドラム45の回転に連動して、回転軸X周りの周方向に変位する。
 そのため、潤滑油OLが最終的に到達するクラッチハブ41の周壁部411の内周(ドライブプレート42の内径側)にも、上記のような潤滑油OLの密度が高い領域Aと、潤滑油OLよりも空気の密度の方が高い領域Bとが混在することになる。
 ここで、本願出願人は、(1)空気と潤滑油では、潤滑油の方が空気よりも比重が大きいので、同じ大きさの遠心力が作用したときには、潤滑油の方が空気よりも径方向外側に移動しやすいこと、(2)遠心力で移動する潤滑油が通流する溝(ドット溝421、ワッフル溝431)では、溝の幅が狭いほど潤滑油の流量が少なくなると共に通流する潤滑油での空気の含有率が低くなり、溝の幅が広いほど潤滑油の流量が多くなると共に通流する潤滑油での空気の含有率が高くなること、(3)空気の熱伝導率は潤滑油の熱伝導率よりも低いので、潤滑油での空気の含有率が低いほど、潤滑油が溝を通流する際の摩擦板(ドライブプレート、ドリブンプレート)の冷却性が向上し、潤滑油での空気の含有率が高いほど、潤滑油が溝を通流する際の摩擦板の冷却性が低下すること、を種々検討のうえで見いだすと共に、これらに基づいて、(a)摩擦板の冷却性は、溝の幅が狭い場合には、潤滑油の流量に依存し、溝の幅が広い場合には、溝を通流する潤滑油での空気の含有率に依存するという傾向を見いだした。
 そこで、実施の形態では、これら見いだした傾向に基づいて、溝(ドット溝421、ワッフル溝431)の幅の上限と下限を設定して、摩擦板(ドライブプレート、ドリブンプレート)の冷却性の向上を図っている。
 以下、溝(ドット溝421、ワッフル溝431)の幅の上限と下限の設定を説明する。
 図3の(a)は、ドット溝421の幅Waと、ドット溝421を通流する潤滑油OLの流量との関係を説明する図であり、(b)は、ドット溝421の幅Waと、ドット溝421を通流する潤滑油OLでの空気含有率と、摩擦板(ドライブプレート42、ドリブンプレート46)の温度との関係を説明する図である。
 図4は、ワッフル溝431の幅Wbと、ワッフル溝431を通流する潤滑油OLでの空気含有率と、摩擦板(ドライブプレート42、ドリブンプレート46)の温度との関係を説明する図である。
 図5は、ドット溝421の幅Waの上限および下限と、ワッフル溝431の幅Wbの上限と下限とを説明する図である。
[ドット溝]
 図3の(a)に示すように、ドット溝421の幅Waを広くすると、ドット溝421を通過可能な潤滑油OLの流量は増加する(図中、通過可能な潤滑油流量)。
 しかし、図3の(b)に示すように、ドット溝421の幅Waが広くなると、幅Waが広くなるにつれてドット溝421に空気が流入しやすくなるので、ドット溝421を通過する潤滑油OLでの空気含有率が増加する(図中、空気含有率)。
 ここで、空気の熱伝導率は潤滑油OLの熱伝導率よりも低いので、潤滑油OLでの空気の含有率が低いほど、潤滑油OLがドット溝421を通過する際の摩擦板(ドライブプレート42、ドリブンプレート46)の冷却性が向上し、潤滑油OLでの空気の含有率が高いほど、潤滑油OLがドット溝421を通過する際の摩擦板の冷却性が低下する。
 実施の形態では、摩擦板(ドライブプレート42、ドリブンプレート46)を予め設定された上限温度Tmax以下に確実に冷却できる空気含有率を実験等により求め、求めた空気含有率となる場合のドット溝の幅bを、ドット溝の幅Waの上限として決定している(図3の(b)、図5参照)。
 また、ドット溝421の幅Waが狭くなると、潤滑油OLでの空気含有率が低下する。これは、(a)ドット溝421の幅Waが狭くなると、潤滑油OLと空気がドット溝421に流入しにくくなること、(b)空気と潤滑油OLでは、潤滑油OLの方が空気よりも比重が大きいので、同じ大きさの遠心力が作用したときには、潤滑油OLの方が空気よりも移動しやすいので、潤滑油OLの方が優先的にドット溝421に流入すること、によるものである。
 そのため、ドット溝421の幅Waの下限を決定するに当たり、溝の幅が狭い場合には、摩擦板の冷却性に対する潤滑油での空気勧誘率の影響は低く、摩擦板の冷却性は、潤滑油の流量に依存することに着目し、実施の形態では、摩擦板を上限温度Tmax以下に確実に冷却できる潤滑油OLの流量であって、最小限の流量を実験等により求め、求めた流量となる場合のドット溝の幅aを、ドット溝の幅Waの下限として決定している(図3の(a)、図5参照)。
 すなわち、実施の形態では、摩擦板(ドライブプレート42、ドリブンプレート46)の冷却性は、ドット溝421の幅が狭い場合には、潤滑油OLの流量に依存し、溝の幅が広い場合には、ドット溝421を通流する潤滑油OLでの空気の含有率に依存するという点に着目し、ドット溝421の幅Waを、上記した下限aと上限bとの間に設定している(a<Wa<b:図5参照)。
[ワッフル溝]
 図4に示すように、ワッフル溝431の幅Wbを広くすると、ワッフル溝431を通流する潤滑油OLでの空気含有率が上昇する(図中、空気含有率)と共に、空気含有率の上昇に伴って、摩擦板(ドライブプレート42、ドリブンプレート46)の温度が上昇する(図中、摩擦板温度)。
 また、ワッフル溝431の幅Wbが広くなってフェーシング材43におけるワッフル溝431の割合が多くなると、フェーシング材43がドリブンプレート46に圧接した際のフェーシング材43とドリブンプレート46との接触面積が少なくなるので、ドライブプレート42とドリブンプレート46とを相対回転不能に締結するのに必要な設計基準のμ値(摩擦抵抗値)を確保できなくなるおそれがある。
 ここで、摩擦板を上限温度Tmax以下に確実に冷却できる空気含有率と、ドライブプレート42とドリブンプレート46とを相対回転不能に締結するのに必要な設計基準のμ値(摩擦抵抗値)を、それぞれ実験などにより求め、求めた空気含有率となる場合のワッフル溝431の幅cと、フェーシング材43におけるワッフル溝431の割合が、求めたμ値を確保できる上限の割合未満となる場合のワッフル溝431の幅dと、を比較した。
 その結果、空気含有率に応じて決まるワッフル溝431の幅cよりも、μ値に応じて決まるワッフル溝431の幅dのほうが小さくなるので(図5参照)、実施の形態では、μ値に応じて決まるワッフル溝431の幅dを、ワッフル溝431の幅Wbの幅の上限値としている。
 ここで、ドライブプレート42におけるフェーシング材43の面積は、締結に必要なμ値に影響する因子である。そのため、ドライブプレート42におけるドット溝421の幅Waが大きくなると、フェーシング材43の全面積が低くなるので、この仮の上限の幅dは、ドット溝421の幅Waが広くなるにつれて、小さくなる(図5、符号d参照)。
 さらに、ワッフル溝431の幅の下限は、ワッフル溝431の幾何学的形状の製造性が成立すると共に、潤滑油OLが通過が可能となる最小の幅eに設定している(図5参照)。
 前記したように、ドット溝421の幅Waが狭い領域では、摩擦板(ドライブプレート42、ドリブンプレート46)の冷却性は潤滑油OLの流量に依存し、ドット溝421の幅Waが広い場合には、摩擦板の冷却性は通流する潤滑油OLでの空気の含有率に依存する。
 そのため、図5に示すように、実施の形態では、ドット溝421の幅Waは、潤滑油OLでの空気含有率に基づいて決定された上限値bと、潤滑油OLの流量に基づいて決定された下限値aとの間に設定している。
 これにより、潤滑油OLの流量の不足(幅Waが下限値a未満の場合)による冷却不良や、潤滑油OLでの空気含有率が多いことによる冷却容量不足(幅Waが上限値bよりも大きい場合)による冷却不良を好適に防止できる。
 さらに、実施の形態では、フェーシング材43におけるワッフル溝431の割合が、ドライブプレート42とドリブンプレート46との締結に必要な設計基準のμ値を確保可能な割合となるように、ワッフル溝431の幅Wbの上限の幅dを設定しているので、フェーシング材43を冷却しつつ、クラッチ(前進クラッチ4)の締結不良の発生を好適に防止できる。
 なお、ドット溝421の幅Waの方が、クラッチの冷却に対する影響が大きいので、実施の形態では、ワッフル溝431の幅Wbの下限は、ワッフル溝431の幾何学的形状の製造性が成立すると共に、潤滑油OLが通過が可能となる最小の幅eに設定している。
 このような範囲内に、ドット溝421の幅Waとワッフル溝431の幅Wbとを設定することで、クラッチ(前進クラッチ4)の締結不良を発生させることなく、クラッチ(前進クラッチ4)を適切に潤滑(冷却)できるようになる。
 以上の通り、実施の形態では
(1)共通の回転軸X周りで相対回転可能に設けられたドライブプレート42(内径側摩擦板)とドリブンプレート46(外径側摩擦板)とをピストン44により回転軸X方向に押圧すると、ドライブプレート42に設けたフェーシング材43が、ドリブンプレート46に圧接して、ドライブプレート42とドリブンプレート46との相対回転が、押圧力に応じて規制される前進クラッチ4(クラッチ)における冷却構造であって、
 回転軸Xの軸方向から見てリング状を成すドライブプレート42の基部420では、フェーシング材43が、回転軸X周りの周方向に所定間隔を空けて設けられて、周方向で隣接するフェーシング材43、43の間に、遠心力により内径側から外径側に移動する潤滑油OLが通流するドット溝421が等幅で形成されており、
 回転軸X方向から見たドット溝421の幅Waの下限を、ドット溝421を通過する潤滑油OLの流量に基づいて設定すると共に、上限を、ドット溝421を通過する潤滑油での空気含有率に基づいて設定し、
 ドット溝421の幅Waの下限は、ドット溝421を通過する潤滑油OLの流量が、ドライブプレート42とドリブンプレート46とを、上限温度Tmax(所定温度)以下に冷却可能な最小の流量となる幅a(第1の閾値幅)に設定され、
 ドット溝421の幅Waの上限は、ドット溝421を通過する潤滑油OLでの空気含有率が、当該空気含有率の潤滑油OLにより、ドライブプレート42とドリブンプレート46とを、上限温度Tmax(所定温度)以下に冷却可能な最大の含有率となる幅b(第2の閾値幅)に設定されている構成とした。
 遠心力で移動する潤滑油OLが通流するドット溝421では、ドット溝421の幅Waが狭いほど潤滑油OLの流量が少なくなると共に通流する潤滑油OLでの空気の含有率が低くなり、ドット溝421の幅が広いほど潤滑油OLの流量が多くなると共に通流する潤滑油OLでの空気の含有率が高くなる。
 ここで、空気の熱伝導率は潤滑油OLの熱伝導率よりも低いので、潤滑油OLでの空気の含有率が低いほど、潤滑油OLがドット溝421を通過する際の冷却性が向上し、潤滑油OLでの空気の含有率が高いほど、潤滑油がドット溝421を通過する際の冷却性が低下する。
 そのため、ドット溝421の幅Waが狭い場合には、冷却性は潤滑油OLの流量に依存し、ドット溝421の幅Waが広い場合には、冷却性は通流する潤滑油OLでの空気の含有率に依存する。
 よって、上記のように構成して、ドット溝421の幅が狭いほうを規定する下限を、潤滑油OLの流量に基づいて設定し、ドット溝421の幅が広いほうを規定する上限を、通流する潤滑油OLでの空気含有率に基づいて設定すると、摩擦板(ドライブプレート42、ドリブンプレート46)の冷却性に対する影響の大きい因子に基づいて、ドット溝421の幅Waの上限と下限が設定されることになる。これにより、摩擦板(ドライブプレート42、ドリブンプレート46)を適切に冷却することができるドット溝421の幅Wa上限と下限を設定できるので、ドライブプレート42とドリブンプレート46を有する前進クラッチ4をより適切に冷却できるようになる。
 特に、クラッチハブ41の回転数が高い場合には、当該クラッチハブ41の周壁部411に到達した潤滑油OLに作用する遠心力が高くなるので、ドット溝421を通流する潤滑油の流速が早くなる。
 ここで、ドット溝421を通流する潤滑油の流速が早くなると、潤滑油OLとドライブプレート42の基部420との接触時間が短くなるので、潤滑油OLが基部420から奪うことのできる熱量が低くなってしまう。
 上記したように、実施の形態にかかるドライブプレート42では、ドット溝421の幅Waが、潤滑油OLでの空気含有率を考慮して、従来の摩擦板100(ドライブプレート:図6参照)でのドット溝101の幅よりも狭くしている。
 そのため、従来の摩擦板100の場合よりも、ドット溝421を通流する潤滑油OLの流速が低くなる。
 これにより、潤滑油OLとドライブプレート42の基部420との接触時間が長くなり、接触時間が長くなった分だけ、潤滑油OLがドライブプレート42から奪うことのできる熱量が多くなるので、前進クラッチ4の冷却性がより向上するようになっている。
 さらに、ドット溝421の幅Waが、従来の摩擦板100(図6参照)でのドット溝101の幅よりも狭くなっているので、ドット溝421を通流する潤滑油OLでの空気含有率が低くなっている。
 空気含有率の低い潤滑油OLの方が、空気含有率の高い潤滑油よりもより多くの熱を、ドライブプレート42から奪うことができるので、摩擦板(ドライブプレート42、ドリブンプレート46)をより確実に冷却して、前進クラッチ4の冷却性を向上させることができる。
 よって、従来の自動変速機の場合よりも前進クラッチ4がスリップ状態になる時間が長くなるような場合でも、前進クラッチ4を適切に冷却することができる。
 また、前進クラッチ4の冷却性が従来の摩擦板100よりも向上するので、内径側(入力軸31側)から供給する潤滑油OLの量を抑えても、従来と同等の冷却性を確保できる。よって、内径側から供給する潤滑油OLの量を抑えて、潤滑油OLを供給するオイルポンプへの負荷を低減することが可能になる。
(2)フェーシング材43のドリブンプレート46との圧接面430には凹状に窪んだワッフル溝431(凹溝)が設けられており、
 回転軸X方向から見たフェーシング材43の面積におけるワッフル溝431面積の割合は、フェーシング材43がドリブンプレート46に圧接した際に、ドライブプレート42とドリブンプレート46とを相対回転不能に締結するのに必要なμ値(摩擦抵抗値)を確保可能な割合に設定されている構成とした。
 フェーシング材43におけるワッフル溝431の割合が多くなると、フェーシング材43がドリブンプレート46に圧接した際にフェーシング材43とドリブンプレート46との接触面積が少なくなるので、ドライブプレート42とドリブンプレート46とを相対回転不能に締結するのに必要なμ値を確保できなくなるおそれがある。
 かかる場合、ドライブプレート42とドリブンプレート46を冷却できても、ドライブプレート42とドリブンプレート46とを相対回転不能に締結できなくなり、ドライブプレート42とドリブンプレート46とがスリップ状態になって、ドライブプレート42とドリブンプレート46との耐久性が低下する虞がある。
 上記のように構成して、ドライブプレート42とドリブンプレート46とを相対回転不能に締結するのに必要なμ値を確保することで、ドライブプレート42とドリブンプレート46との締結不良を防止しつつ、ドライブプレート42とドリブンプレート46とを適切に冷却できる。
(3)ワッフル溝431の幅Wbの上限は、
  ワッフル溝431を通過する潤滑油OLの流量が、ドライブプレート42とドリブンプレート46とを、上限温度Tmax(所定温度)以下に冷却可能な最小の流量となる幅c(第3の閾値幅)と、
  フェーシング材43の面積におけるワッフル溝431の面積の割合が、フェーシング材43がドリブンプレート46に圧接した際に、ドライブプレート42とドリブンプレート46とを相対回転不能に締結するのに必要なμ値(摩擦抵抗値)を確保可能な割合となる幅d(第4の閾値幅)とに基づいて設定されて、
 ワッフル溝431の幅Wbの下限は、ワッフル溝431の幾何学的形状の製造性が成立すると共に、潤滑油OLが通流が可能となる最小の幅に設定されている構成とした。
 このように構成すると、ドライブプレート42とドリブンプレート46との相対回転不能な締結を確保しつつ、空気含有率の低い潤滑油OLをワッフル溝431に供給して、フェーシング材43を従来よりも均一に冷却することができる。ここで、ドライブプレート42の基部420におけるフェーシング材43の面積は広いので、フェーシング材43をより均一に冷却できるようになると、ドライブプレート42の全体を均一、かつ適切に冷却することができるので、摩擦板(ドライブプレート42、ドリブンプレート46)をより確実に冷却して、前進クラッチ4の冷却性をいっそう向上させることができる。
(4)上限温度Tmax(所定温度)は、ドライブプレート42とドリブンプレート46の耐熱許容温度に基づいて設定された温度であって、耐熱許容温度よりも低い温度である構成とした。
 このように構成すると、ドライブプレート42とドリブンプレート46のスリップによる発熱を、耐熱許容温度よりも低い温度に抑えることができるので、ドライブプレート42とドリブンプレート46を有する前進クラッチ4の耐久性の低下を好適に抑えることができる。また、ドライブプレート42に貼り付けられたフェーシング材43の炭化も好適に防止できるので、前進クラッチ4の寿命が、設計寿命以下となることを好適に防止できる。
 ここで、前記した実施の形態では、フェーシング材43がドライブプレート42に設けられている場合を例示したが、フェーシング材43は、ドリブンプレート46におけるドライブプレート42との対向面に設けられていても良い。
 このようにすることによっても、前記した実施の形態の場合と同様の作用効果が奏されることになる。
 さらに、前記した実施の形態では、本発明に係るクラッチの冷却構造を、無段変速機が備える前後進切替機構3の前進クラッチ4に適用した場合を例示したが、本発明に係るクラッチの冷却構造は、駆動源から入力される回転駆動力の伝達系路上に複数の摩擦締結要素が設けられており、各摩擦締結要素における摩擦板の締結/開放の組み合わせを切り替えて、所望の変速段を実現する自動変速機での摩擦締結要素(クラッチ)に適用しても良い。

Claims (5)

  1.  内径側がスプライン嵌合された内径側摩擦板と外径側がスプライン嵌合された外径側摩擦板とが、共通の回転軸周りで相対回転可能に設けられており、前記内径側摩擦板と前記外径側摩擦板をピストンにより前記回転軸方向に押圧すると、前記内径側摩擦板と前記外径側摩擦板のうちの一方の摩擦板に設けたフェーシング材が、前記内径側摩擦板と前記外径側摩擦板のうちの他方の摩擦板に圧接して、前記内径側摩擦板と前記外径側摩擦板との相対回転が、押圧力に応じて規制されるクラッチにおける冷却構造であって、
     前記一方の摩擦板において前記フェーシング材は、前記回転軸周りの周方向に所定間隔を空けて設けられて、前記周方向で隣接するフェーシング材の間に、遠心力により内径側から外径側に移動する潤滑油が通流する溝が形成されており、
     前記回転軸方向から見た前記溝の幅の下限を、前記溝を通過する潤滑油の流量に基づいて設定すると共に、上限を、前記溝を通過する潤滑油での空気含有率に基づいて設定し、
     前記下限は、前記溝を通過する潤滑油の流量が、前記内径側摩擦板と前記外径側摩擦板の所定温度以下への冷却が可能な最小の流量となる第1の閾値幅に設定され、
     前記上限は、前記溝を通過する潤滑油での空気含有率が、当該空気含有率の潤滑油により、前記内径側摩擦板と前記外径側摩擦板の前記所定温度以下への冷却が可能な最大の含有率となる第2の閾値幅に設定されているクラッチにおける冷却構造。
  2.  前記フェーシング材の前記他方の摩擦板との圧接面には凹溝が設けられており、
     前記フェーシング材の面積における前記凹溝の面積の割合は、前記フェーシング材が前記他方の摩擦板に圧接した際に、前記内径側摩擦板と前記外径側摩擦板とを相対回転不能に締結するのに必要なμ値を確保可能な割合に設定されている請求項1に記載のクラッチにおける冷却構造。
  3.  前記凹溝の幅の上限は、
      前記凹溝を通過する潤滑油の流量が、前記内径側摩擦板と前記外径側摩擦板の所定温度以下への冷却が可能な最小の流量となる第3の閾値幅と、
      前記フェーシング材の面積における前記凹溝の面積の割合が、前記フェーシング材が前記他方の摩擦板に圧接した際に、前記内径側摩擦板と前記外径側摩擦板とを相対回転不能に締結するのに必要なμ値を確保可能な割合となる第4の閾値幅とに基づいて設定されている請求項2に記載のクラッチにおける冷却構造。
  4.  前記凹溝の幅の下限は、前記凹溝の幾何学的形状の製造性が成立すると共に、前記潤滑油の通流が可能となる最小の幅に設定されている請求項3に記載のクラッチにおける冷却構造。
  5.  前記所定温度は、前記クラッチの耐熱許容温度に基づいて設定された温度であって、前記耐熱許容温度よりも低い温度である請求項1から請求項4の何れか一項に記載のクラッチにおける冷却構造。
PCT/JP2015/055521 2014-05-22 2015-02-26 クラッチにおける冷却構造 WO2015178058A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016520956A JP6189533B2 (ja) 2014-05-22 2015-02-26 クラッチにおける冷却構造
CN201580026669.0A CN106415041B (zh) 2014-05-22 2015-02-26 离合器的冷却构造
US15/311,959 US10253823B2 (en) 2014-05-22 2015-02-26 Cooling structure in clutch
EP15796660.7A EP3147524A4 (en) 2014-05-22 2015-02-26 Cooling structure in clutch
KR1020167031036A KR101893667B1 (ko) 2014-05-22 2015-02-26 클러치에 있어서의 냉각 구조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-106074 2014-05-22
JP2014106074 2014-05-22

Publications (1)

Publication Number Publication Date
WO2015178058A1 true WO2015178058A1 (ja) 2015-11-26

Family

ID=54553736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055521 WO2015178058A1 (ja) 2014-05-22 2015-02-26 クラッチにおける冷却構造

Country Status (6)

Country Link
US (1) US10253823B2 (ja)
EP (1) EP3147524A4 (ja)
JP (1) JP6189533B2 (ja)
KR (1) KR101893667B1 (ja)
CN (1) CN106415041B (ja)
WO (1) WO2015178058A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091020A1 (de) * 2016-11-16 2018-05-24 Schaeffler Technologies AG & Co. KG Reiblamelle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT518482B1 (de) * 2016-03-07 2018-08-15 Miba Frictec Gmbh Lamellenkupplung
KR102587909B1 (ko) * 2019-05-17 2023-10-11 현대자동차주식회사 마찰플레이트
KR102127360B1 (ko) * 2019-06-24 2020-06-29 주식회사 제이앤에이취프레스 냉간단조 프레스 장비의 클러치 또는 브레이크를 위한 마찰판
WO2022167021A1 (de) * 2021-02-04 2022-08-11 Schaeffler Technologies AG & Co. KG Reiblamelle mit einem mittels reibbelagpads gebildeten nutmuster
JP2024512105A (ja) * 2021-05-03 2024-03-18 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲー 摩擦ライニングパッドによって形成された溝パターンを有する摩擦プレート

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650353A (ja) * 1992-07-28 1994-02-22 Toyota Motor Corp 摩擦係合装置
JP2005265186A (ja) * 2004-02-18 2005-09-29 Dainatsukusu:Kk 湿式摩擦係合要素の摩擦板の溝構造の最適化方法
WO2011033861A1 (ja) * 2009-09-15 2011-03-24 アイシン化工株式会社 セグメントタイプ摩擦材

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200394A (ja) * 1995-01-19 1996-08-06 Dainatsukusu:Kk 油通過と冷却を両立させた摩擦板
US5682971A (en) 1996-05-28 1997-11-04 Dynax Corporation Friction plate for high oil passage and cooling
JPH10169681A (ja) * 1996-12-10 1998-06-23 Dainatsukusu:Kk 片貼り式湿式摩擦係合装置の摩擦板の組合わせ構造
JP4297308B2 (ja) 2000-04-13 2009-07-15 アイシン化工株式会社 湿式摩擦部材
CN2617993Y (zh) * 2003-03-15 2004-05-26 胡济荣 全润滑多片湿式离合器
DE10342271B4 (de) * 2003-09-12 2014-07-10 Zf Friedrichshafen Ag Reibbelag-Lamelle
CN1728508A (zh) * 2004-03-22 2006-02-01 通用汽车公司 混合机电变速机构集成的马达支承弹簧及其方法
JP2007263203A (ja) * 2006-03-28 2007-10-11 Aisin Chem Co Ltd 湿式摩擦材及びその製造方法
EP2028382B1 (en) * 2007-08-20 2014-04-23 Aisin Kako Kabushiki Kaisha Wet friction material
US8939269B2 (en) * 2011-12-16 2015-01-27 Eaton Corporation Segmented friction material for clutches
KR101774673B1 (ko) * 2012-10-04 2017-09-04 쟈트코 가부시키가이샤 자동 변속기에 있어서의 마찰 체결 요소의 윤활 구조

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650353A (ja) * 1992-07-28 1994-02-22 Toyota Motor Corp 摩擦係合装置
JP2005265186A (ja) * 2004-02-18 2005-09-29 Dainatsukusu:Kk 湿式摩擦係合要素の摩擦板の溝構造の最適化方法
WO2011033861A1 (ja) * 2009-09-15 2011-03-24 アイシン化工株式会社 セグメントタイプ摩擦材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091020A1 (de) * 2016-11-16 2018-05-24 Schaeffler Technologies AG & Co. KG Reiblamelle
CN109804171A (zh) * 2016-11-16 2019-05-24 舍弗勒技术股份两合公司 摩擦片

Also Published As

Publication number Publication date
EP3147524A4 (en) 2017-06-21
JPWO2015178058A1 (ja) 2017-04-20
CN106415041A (zh) 2017-02-15
KR20160144425A (ko) 2016-12-16
EP3147524A1 (en) 2017-03-29
US20170122383A1 (en) 2017-05-04
US10253823B2 (en) 2019-04-09
KR101893667B1 (ko) 2018-08-30
CN106415041B (zh) 2019-04-12
JP6189533B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
WO2015178058A1 (ja) クラッチにおける冷却構造
JP6767264B2 (ja) 車両の変速機用摩擦型シフト要素
JP2008014493A (ja) 自動車用湿式運転クラッチのための摩擦ディスク
KR20150115007A (ko) 마찰판 및 마찰판을 구비한 습식 다판 클러치
DE102014205570A1 (de) Trägerelement und Kupplung
JP6085579B2 (ja) 湿式摩擦材
US11585392B2 (en) Wet friction disc and friction engaging device
JP4715317B2 (ja) 変速機のクラッチ構造
US10295002B2 (en) Multi-plate brake or clutch
US6360864B1 (en) Clutch divider plate
US10502269B2 (en) Friction plate
US20080302625A1 (en) Wet type friction plate
US20160245344A1 (en) Two piece clutch reaction plate
US20240003389A1 (en) Clutch device and motorcycle
JP5129001B2 (ja) 発進クラッチ
US11578766B2 (en) Wet friction disc
JP2017155927A (ja) 自動変速機の摩擦締結要素における潤滑構造
JP5620963B2 (ja) 発進クラッチ
JP2010185557A (ja) 車両用自動変速機の湿式摩擦係合装置
JP6175391B2 (ja) 摩擦係合装置の潤滑構造
JP2006300092A (ja) クラッチ
JP2010185512A (ja) 湿式フリクションプレート
JP2017026158A (ja) 湿式摩擦材
JP2005249106A (ja) 自動変速機における湿式多板クラッチ
US20210071726A1 (en) Friction plate and friction engagement device provided with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520956

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167031036

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15311959

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015796660

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015796660

Country of ref document: EP