WO2015177836A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2015177836A1
WO2015177836A1 PCT/JP2014/063201 JP2014063201W WO2015177836A1 WO 2015177836 A1 WO2015177836 A1 WO 2015177836A1 JP 2014063201 W JP2014063201 W JP 2014063201W WO 2015177836 A1 WO2015177836 A1 WO 2015177836A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
shaft
groove
electrical machine
rotating electrical
Prior art date
Application number
PCT/JP2014/063201
Other languages
English (en)
French (fr)
Inventor
昌伸 杉山
雅哉 原川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/063201 priority Critical patent/WO2015177836A1/ja
Priority to CN201480078929.4A priority patent/CN106464075B/zh
Priority to JP2014553007A priority patent/JP5744347B1/ja
Publication of WO2015177836A1 publication Critical patent/WO2015177836A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines

Definitions

  • the present invention relates to a rotating electrical machine.
  • the rotor of a rotating electrical machine is composed of a shaft, core, bearings, etc., but until now the balance has been corrected by, for example, applying a weight as a balance weight to the end ring dowel part of the core after completion of the rotor. It was.
  • Patent Document 1 discloses that a part of the outer peripheral surface is planar to attach a fan.
  • a technique is disclosed in which, in a shaft that has been subjected to cutting, the cutting is performed in an axially symmetrical manner so as to have substantially the same mass as a portion that has been deleted by cutting.
  • Patent Document 2 discloses that the dimension of the key groove is set so that the sum of moments with respect to the center of the rotating shaft between the unmounted portion of the key and the fitting portion of the key becomes zero.
  • Patent Document 1 it is possible to adjust the balance with a single shaft, but for that purpose, additional machining is required, and there is a problem that the number of work steps increases greatly. Further, in Patent Document 2, although the balance adjustment is possible only by the key groove processing, the size of the part to which the key is attached widens, so that the key may move carelessly. It is done.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a rotating electrical machine having a shaft that is balance-adjusted alone and that does not cause the key to move carelessly.
  • the present invention includes one end portion having a first shaft diameter and the other end portion having a second shaft diameter larger than the first shaft diameter.
  • a rotating electrical machine in which a rotor is formed using a shaft provided with a first keyway at one end, wherein the first keyway is a key fitting with a first depth into which the key is fitted. It has a groove and a balance adjusting groove formed such that a part of the bottom surface of the key fitting groove is dug down to have a second depth deeper than the first depth.
  • the rotating electrical machine according to the present invention has the effect that the key can be prevented from moving inadvertently in addition to reducing the number of steps for correcting the balance of the entire rotor since the balance of the shaft has already been adjusted.
  • FIG. 1 is a diagram showing a cross-sectional shape of a first embodiment of a rotating electrical machine according to the present invention.
  • FIG. 2 is a diagram illustrating the structure of the rotor.
  • FIG. 3 is a diagram showing the structure of the shaft.
  • FIG. 4 is an enlarged view of the end portion on the P side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 5 is an enlarged view of the end portion on the P side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 6 is an enlarged view of the end portion on the P side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 7 is an enlarged view of an end portion on the O side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 8 is an enlarged view of an end portion on the O side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 9 is an enlarged view of an end portion on the O side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a shaft of a general rotating electrical machine.
  • FIG. 11 is an enlarged view of an end portion on the O side of a shaft of a general rotating electrical machine.
  • FIG. 12 is an enlarged view of an end portion on the O side of a shaft of a general rotating electrical machine.
  • FIG. 13 is an enlarged view of an end portion on the O side of a shaft of a general rotating electrical machine.
  • FIG. 14 is a diagram showing a state where a key is actually put in a key groove on the P side of a shaft of a general rotating electrical machine.
  • FIG. 15 is a diagram showing a state where a key is actually put in a key groove on the P side of a shaft of a general rotating electrical machine.
  • FIG. 16 is a diagram showing a state where a key is actually put in a key groove on the P side of a shaft of a general rotating electrical machine.
  • FIG. 17 is a diagram showing a state in which a key is actually put in a key groove on the O side of a shaft of a general rotating electrical machine.
  • FIG. 18 is a diagram showing a state where a key is actually put in a key groove on the O side of a shaft of a general rotating electrical machine.
  • FIG. 19 is a diagram showing a state where a key is actually put in a key groove on the O side of a shaft of a general rotating electrical machine.
  • FIG. 20 is a diagram showing a state in which a key is actually put in the key groove on the O side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 21 is a diagram showing a state in which a key is actually put in the key groove on the O side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 22 is a diagram showing a state where a key is actually put in the key groove on the O side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 23 is a diagram illustrating another structural example on the O side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 24 is a diagram illustrating another structural example on the O side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 25 is a diagram illustrating another structure example on the O side of the shaft of the rotating electrical machine according to the first embodiment.
  • FIG. 26 is a diagram illustrating a state in which a key is inserted into the key groove on the O side of the shaft having another structure of the rotating electrical machine according to the first embodiment.
  • FIG. 27 is a diagram showing a state in which a key is inserted into the key groove on the O side of the shaft having another structure of the rotating electrical machine according to the first embodiment.
  • FIG. 28 is a diagram showing a state in which a key is inserted in the key groove on the O side of the shaft having another structure of the rotating electrical machine according to the first embodiment.
  • FIG. 29 is an enlarged view of the O-side end portion of the shaft according to the second embodiment of the rotating electrical machine of the present invention.
  • FIG. 30 is an enlarged view of the O-side end portion of the shaft according to the second embodiment of the rotating electrical machine of the present invention.
  • FIG. 31 is an enlarged view of the O-side end portion of the shaft according to the second embodiment of the rotating electrical machine of the present invention.
  • FIG. 32 is a diagram showing a state in which a key is inserted in the key groove on the O side of the shaft according to the second embodiment of the rotating electrical machine of the present invention.
  • FIG. 33 is a diagram showing a state in which a key is inserted in the key groove on the O side of the shaft according to the second embodiment of the rotating electrical machine of the present invention.
  • FIG. 34 is a diagram showing a state in which a key is put in the key groove on the O side of the shaft according to the second embodiment of the rotating electrical machine of the present invention.
  • FIG. 35 is a diagram illustrating another structural example on the O side of the shaft of the rotating electrical machine according to the second embodiment.
  • FIG. 36 is a diagram showing another structural example on the O side of the shaft of the rotating electrical machine according to the second embodiment.
  • FIG. 37 is a diagram showing another structural example on the O side of the shaft of the rotating electrical machine according to the second embodiment.
  • FIG. 38 is a diagram illustrating a state in which a key is inserted into a key groove on the O side of a shaft having another structure of the rotating electrical machine according to the second embodiment.
  • FIG. 39 is a diagram illustrating a state in which a key is inserted into a key groove on the O side of a shaft having another structure of the rotating electrical machine according to the second embodiment.
  • FIG. 40 is a diagram showing a state in which a key is put in the key groove on the O side of the shaft having another structure of the rotating electrical machine according to the second embodiment.
  • the side that is connected to the shaft coupling or the mechanical device and transmits the rotational force is the P side taking the initials of “Power”, and is opposite to the P side that is connected to the external fan.
  • “Opposite side” is abbreviated as O side.
  • the present invention is directed to a case where a key groove or the like is processed on at least one of the P side and the O side.
  • balance adjustment is performed in advance for each of the components constituting the rotor.
  • a method for adjusting the balance of the shaft that is most likely to be unbalanced is described.
  • FIG. 1 is a diagram showing a cross-sectional shape of a first embodiment of a rotating electrical machine according to the present invention.
  • the rotating electrical machine 1 includes a rotor 2 and a stator 3, and an external fan 4 is attached to one side of the rotor 2 in order to cool the heat generated by the rotating electrical machine 1.
  • Brackets 5 a and 5 b and a frame 6 are attached to the outside of the stator 3, and a fan cover 7 is attached to the outside of the outer fan fan 4.
  • FIG. 2 is a diagram showing the structure of the rotor.
  • the rotor 2 has a structure in which a shaft 21 passes through the center of the core 22 and is held by bearings 23a and 23b.
  • FIG. 3 is a diagram showing the structure of the shaft.
  • a key groove 30 for engraving a key for coupling with a coupling or a mechanical device is carved.
  • a keyway 34 for engraving a key for connecting to the outer fan 4 is also carved on the O side of the shaft 21.
  • the P-side key groove 30 and the O-side key groove 34 are provided on the opposite sides as viewed from the center of the shaft.
  • the P-side key groove 30 and the O-side key groove 34 may not be disposed at positions opposite to each other when viewed from the center of the shaft. It may be provided at a position where it can be taken, and may be deviated from a position on the opposite side as seen from the center of the shaft.
  • the O-side shaft diameter of the shaft 21 is smaller than the P-side shaft diameter. Therefore, in the present embodiment, the O-side shaft diameter is the first shaft diameter, and the P-side shaft diameter is the second shaft diameter that is larger than the first shaft diameter.
  • the first key groove provided at the end portion with the smaller diameter of the shaft is the key groove 34
  • the second key groove provided at the end portion with the larger diameter is the key groove 30.
  • FIG. 4 is a top view
  • FIG. 5 is a front view
  • FIG. 6 is a side view. is there. Since the key groove 30 is formed by milling, the end portion of the groove has an R shape.
  • FIG. 7 is a top view
  • FIG. 8 is a front view
  • FIG. 9 is a side view.
  • the key groove 34 has a second depth deeper than the first depth by digging down a partial region of the bottom surface of the first shallow groove 341 that becomes the key fitting groove.
  • the shape is such that a deep groove 342 is added as a groove.
  • the depth of the key groove 34 is arbitrary, but the width W1 of the shallow groove 341 and the width W2 of the deep groove 342 are assumed to be W1> W2.
  • FIG. 10 is a diagram showing a configuration of a shaft of a general rotating electrical machine.
  • a key groove 30 and a key groove 31 are processed on the same side as viewed from the center of the shaft 21 '.
  • FIG. 12 and FIG. 13 are enlarged views of an end portion on the O side of a shaft of a general rotating electric machine, FIG. 11 is a top view, FIG. 12 is a front view, and FIG. 13 is a side view.
  • a single-stage keyway 31 is provided on the O side of the shaft 21 ′ in the same manner as the P side.
  • FIG. 14 is a top view
  • FIG. 15 is a front view
  • FIG. 16 is a side view.
  • FIG. 17 is a top view
  • FIG. 18 is a front view
  • FIG. 19 is a side view.
  • the tip shapes of the keys 32, 33 may be sharpened or R-shaped. In general, however, the processing effort increases. As shown in FIG. 19, rectangular parallelepiped keys 32 and 33 are often used. As a result, the spaces 30a and 31a that are not filled with the rectangular parallelepiped keys 32 and 33 become an unbalance factor of the shaft 21 '.
  • the rotation axis of the spaces 30a and 31a that are not filled with the keys 32 and 33 is the same. Since the moments of inertia are balanced, it is possible to achieve a balance simply by disposing the key grooves 30 and 31 so that the P side and the O side are positioned opposite to the center of the shaft. Further, even when the diameter of the shaft 21 'and the sizes of the keys 32 and 33 are slightly different, the space 31a so that the moment of inertia with respect to the rotation axis of the spaces 30a and 31a not filled with the keys 32 and 33 is the same. If this part is finely adjusted, it is possible to achieve the same balance.
  • the diameter of the shaft 21 ' is different between the P side and the O side, and the sizes of the keys 32 and 33 used are also different.
  • the shaft diameter is smaller on the O side and the key is smaller, and the size of the space 31a not filled with the key 33 shown in FIGS. 17, 18 and 19 is finely adjusted. It is difficult to achieve a balance with the P-side space 30a.
  • the O-side key groove 34 is changed to a shape that increases the space for balancing while maintaining the connecting function of the key 33.
  • FIG. 20 is a top view
  • FIG. 21 is a front view
  • FIG. 22 and FIG. 22 are side views.
  • the spaces 34 a and 34 b that are not filled with the key 33 become an unbalance factor of the shaft 21.
  • the space 34a is the same as the space 31a in FIGS. 17, 18 and 19, and by providing the deep groove 342 as a balance adjusting groove, the space for balancing can be increased by the space 34b. It becomes possible to make the moment of inertia with respect to the rotation axes on the P side and the O side the same. 7, 8, and 9 are processed in the depth direction, and are effective means when the O-side shaft diameter is relatively large.
  • FIGS. 23, 24, and 25 are diagrams showing another structural example on the O side of the shaft of the rotating electrical machine according to the first embodiment, FIG. 23 is a top view, FIG. 24 is a front view, and FIG. 25 is a side view.
  • FIG. The structure shown in FIGS. 23, 24, and 25 is different from the example shown in FIGS. 7, 8, and 9 in the shape of the key groove.
  • the key groove 35 is a shape obtained by adding a narrow groove 352 as a balance adjustment groove in which the key does not enter at a position behind the front groove 351 as a key fitting groove located on the front side when viewed from the shaft end. It has become.
  • the length of the key groove 35 is arbitrary, but the width W2 of the first groove W1 which is the width of the groove 351 on the near side when viewed from the shaft end and the width W2 of the second groove which is the width of the groove 352 on the back is W1> It is assumed that W2.
  • W1 the width of the groove 351 on the near side when viewed from the shaft end
  • D1 D2
  • the inner groove 352 may be shallower (D1> D2).
  • FIG. 26 is a top view
  • FIG. A front view and FIG. 28 are side views.
  • the spaces 35 a and 35 b that are not filled with the key 33 become an unbalance factor of the shaft 21.
  • the space 35a is the same as the space 31a in the shaft 21 ′ of a general rotating electrical machine, and by providing the back groove 352 as a balance adjusting groove, the space for balancing can be increased by the space 35b. It is possible to make the moments of inertia about the rotation axes on the P side and the O side the same.
  • the key groove shape shown in FIG. 23, FIG. 24 and FIG. 25 is an effective means when the O-side shaft is relatively long because it is processed in the axial direction.
  • the first embodiment has been described.
  • the shaft key groove processing step by providing a groove having a narrower width than the key groove for attaching the key, the balance can be adjusted by the shaft alone. Moreover, since the size of the portion to which the key is attached is not increased in the processing, the key does not move carelessly.
  • the balance of the shaft is adjusted by changing the size of the space that is not filled with the key in the key slot on the O side, so the amount of balance weight used can be reduced. Therefore, it is difficult for the rotating electric machine to be troubled due to the falling off of the balance weight, and the life of the rotating electric machine can be extended.
  • Embodiment 2 FIG.
  • two key grooves having different widths must be formed in the shaft key groove processing step. For this purpose, it is necessary to prepare tools of different sizes when milling the keyway, which increases the labor of the work.
  • a method for realizing the groove having the same width will be described.
  • FIG. 29 is a top view
  • FIG. 30 is a front view
  • FIG. It is a side view.
  • the key groove 36 has the same width as the shallow groove 361 and a deep groove serving as the balance adjusting groove at the second depth deeper than the first depth. 362 is provided.
  • the depth of the key groove 36 is arbitrary, but when the length of the shallow groove 361 is L1 and the length of the deep groove 362 is L2, L1> L2. In the first embodiment, there is no restriction on the length of the key groove 36.
  • the widths of the two grooves 361 and 362 are the same, the length of the key groove 36 is restricted. Yes. Further, in order to fix the key 33, the deep groove 362 cannot be extended to the end. That is, there is a portion where the deep groove 362 is not formed at the end of the shaft 21, and the depth of the key groove 36 is set to the first depth at the end of the shaft 21.
  • FIG. 32, 33 and 34 are views showing a state in which a key is put in the key groove on the O side of the shaft of the second embodiment of the rotating electrical machine according to the present invention
  • FIG. 32 is a top view
  • FIG. A front view and FIG. 34 are side views.
  • the spaces 36 a and 36 b not filled with the key 33 become an unbalance factor of the shaft 21.
  • the space 36a is the same as the space 31a in the shaft 21 ′ of a general rotating electrical machine, and by providing the deep groove 362 as a balance adjusting groove, the space for balancing can be increased by the amount of the space 36b. It becomes possible to make the moment of inertia with respect to the rotation axes on the P side and the O side the same.
  • the shape of the key groove 36 shown in FIGS. 29, 30 and 31 is an effective means when the shaft diameter on the O side is large because it is processed in the depth direction.
  • FIG. 35, 36 and 37 are diagrams showing another structural example on the O side of the shaft of the rotating electrical machine according to the second embodiment.
  • FIG. 35 is a top view
  • FIG. 36 is a front view
  • the key groove 37 has a groove 371 in the back as a balance adjustment groove in which the key does not enter at a position behind the groove 371 in the front as a key fitting groove located on the front side when viewed from the shaft end. It is a shape added with the same width. That is, the first width, which is the width of the front groove 371, and the second width, which is the width of the rear groove 372, are the same.
  • the length of the key groove 37 is arbitrary, but when the depth of the front groove 371 is D1 and the depth of the back groove 372 is D2, it is assumed that D1> D2.
  • the width of the front groove 371 and the width of the rear groove 372 are the same. There is a restriction on this.
  • FIGS. 35, 36 and 37 are views showing a state in which a key is inserted in the key groove on the O side of the shaft of another structure of the rotating electrical machine according to the second embodiment
  • FIG. 38 is a top view
  • FIG. A front view and FIG. 40 are side views.
  • the spaces 37 a and 37 b not filled with the key 33 become an unbalance factor of the shaft 21.
  • the space 37a is the same as the space 31a in a general rotating electrical machine, and by providing the back groove 372 as a balance adjusting groove, the space for balancing can be increased by the space 37b, and the P side It is possible to make the moment of inertia with respect to the rotation axis on the O side the same.
  • the shape of the key groove 37 shown in FIGS. 35, 36 and 37 is an effective means when the shaft on the O side is relatively long because it is processed in the axial direction.
  • the balance adjustment groove is provided on the bottom surface or the back end of the groove into which the key is fitted, but the balance adjustment groove may be provided on both the bottom surface and the back end of the key fitting groove. good. That is, the balance of the shaft is adjusted by changing the size of the space between the first balance adjusting groove provided on the bottom surface of the key fitting groove and the second balance adjusting groove provided on the back end of the key fitting groove. You may make it do.
  • the shaft tip may be D-cut and screwed.
  • D cut unlike the key connection, all the cut portions become the unbalance factor of the shaft.
  • the method described in the first and second embodiments is applied to the key processing so as to balance the D cut portion. Is also possible.
  • the rotating electrical machine according to the present invention is useful in that it includes a shaft that is balance-adjusted alone and that does not cause the key to move carelessly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 第1の軸径を有する一端部と、前記第1の軸径よりも大きい第2の軸径を有する他端部とを備え、一端部にキー溝(34)が設けられたシャフト(21)を用いて回転子が形成された回転電機であって、キー溝(34)は、キーが嵌合する第1の深さのキー嵌合溝としての浅い溝(341)と、浅い溝(341)の底面の一部領域が掘り下げられて第1の深さよりも深い第2の深さを有するように形成されたバランス調整溝としての深い溝(342)とを有する。シャフト(21)単体でバランス調整済みであるため回転子全体でのバランス修正の工数を少なくできることに加え、キーが不用意に動いてしまうことを防止できる。

Description

回転電機
 本発明は、回転電機に関する。
 回転電機において、回転子の重心が回転軸からずれていると、振動などの原因となるため、精度の良いバランス修正が必要である。回転電機の回転子は、シャフトやコア、ベアリングなどから構成されているが、これまでバランス修正は、回転子完成後にコアのエンドリングダボ部分にバランスウェイトとしてのおもりをかしめる方法などで行っていた。
 しかし、シャフトやコアなどの個別部品のアンバランスをまとめて修正するために、回転子全体での修正量が増え、作業工数が多くなるという課題がある。また、バランスウェイト量の増加や、それに伴うかしめしろの不足により、バランスウェイトが脱落するなどの問題も発生する。
 回転子のバランス調整作業を軽減するために、回転子を構成する部品それぞれで、予めバランス修正を行う方法があり、例えば特許文献1には、ファンを取り付けるために外周面の一部を平面状に切削加工したシャフトにおいて、切削加工によって削除された部分と略同質量となるように軸対称に切削加工を施す技術が開示されている。
 また、特許文献2には、キーの未装着部分とキーの嵌合部分との回転軸中心に対するモーメントの総和が零になるようにキー溝の寸法を設定することが開示されている。
特開2006-271107号公報 特開2002-142395号公報
 特許文献1においては、シャフト単体でバランス調整が可能になるが、そのために切削加工などが追加で必要であり、作業工数が大きく増加するという問題がある。また、特許文献2においては、キー溝加工だけでバランス調整が可能であるものの、キーが取り付けられる部分の大きさが広がってしまうため、キーが不用意に動いてしまうといったことがありうると考えられる。
 本発明は、上記に鑑みてなされたものであって、単体でバランス調整済みでキーが不用意に動いてしまうことのないシャフトを備えた回転電機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、第1の軸径を有する一端部と、第1の軸径よりも大きい第2の軸径を有する他端部とを備え、一端部に第1のキー溝が設けられたシャフトを用いて回転子が形成された回転電機であって、第1のキー溝は、キーが嵌合する第1の深さのキー嵌合溝と、キー嵌合溝の底面の一部領域が掘り下げられて第1の深さよりも深い第2の深さを有するように形成されたバランス調整溝とを有することを特徴とする。
 本発明に係る回転電機は、シャフト単体でバランス調整済みであるため回転子全体でのバランス修正の工数を少なくできることに加え、キーが不用意に動いてしまうことを防止できるという効果を奏する。
図1は、本発明に係る回転電機の実施の形態1の断面形状を示す図である。 図2は、回転子の構造を示す図である。 図3は、シャフトの構造を示す図である。 図4は、実施の形態1に係る回転電機のシャフトのP側の端部の拡大図である。 図5は、実施の形態1に係る回転電機のシャフトのP側の端部の拡大図である。 図6は、実施の形態1に係る回転電機のシャフトのP側の端部の拡大図である。 図7は、実施の形態1に係る回転電機のシャフトのO側の端部の拡大図である。 図8は、実施の形態1に係る回転電機のシャフトのO側の端部の拡大図である。 図9は、実施の形態1に係る回転電機のシャフトのO側の端部の拡大図である。 図10は、一般的な回転電機のシャフトの構成を示す図である。 図11は、一般的な回転電機のシャフトのO側の端部の拡大図である。 図12は、一般的な回転電機のシャフトのO側の端部の拡大図である。 図13は、一般的な回転電機のシャフトのO側の端部の拡大図である。 図14は、一般的な回転電機のシャフトのP側のキー溝に実際にキーを入れた状態を示す図である。 図15は、一般的な回転電機のシャフトのP側のキー溝に実際にキーを入れた状態を示す図である。 図16は、一般的な回転電機のシャフトのP側のキー溝に実際にキーを入れた状態を示す図である。 図17は、一般的な回転電機のシャフトのO側のキー溝に実際にキーを入れた状態を示す図である。 図18は、一般的な回転電機のシャフトのO側のキー溝に実際にキーを入れた状態を示す図である。 図19は、一般的な回転電機のシャフトのO側のキー溝に実際にキーを入れた状態を示す図である。 図20は、実施の形態1に係る回転電機のシャフトのO側のキー溝に実際にキーを入れた状態を示す図である。 図21は、実施の形態1に係る回転電機のシャフトのO側のキー溝に実際にキーを入れた状態を示す図である。 図22は、実施の形態1に係る回転電機のシャフトのO側のキー溝に実際にキーを入れた状態を示す図である。 図23は、実施の形態1に係る回転電機のシャフトのO側の別の構造例を示す図である。 図24は、実施の形態1に係る回転電機のシャフトのO側の別の構造例を示す図である。 図25は、実施の形態1に係る回転電機のシャフトのO側の別の構造例を示す図である。 図26は、実施の形態1に係る回転電機の別構造のシャフトのO側のキー溝にキーを入れた状態を示す図である。 図27は、実施の形態1に係る回転電機の別構造のシャフトのO側のキー溝にキーを入れた状態を示す図である。 図28は、実施の形態1に係る回転電機の別構造のシャフトのO側のキー溝にキーを入れた状態を示す図である。 図29は、本発明に係る回転電機の実施の形態2のシャフトのO側の端部の拡大図である。 図30は、本発明に係る回転電機の実施の形態2のシャフトのO側の端部の拡大図である。 図31は、本発明に係る回転電機の実施の形態2のシャフトのO側の端部の拡大図である。 図32は、本発明に係る回転電機の実施の形態2のシャフトのO側のキー溝にキーを入れた状態を示す図である。 図33は、本発明に係る回転電機の実施の形態2のシャフトのO側のキー溝にキーを入れた状態を示す図である。 図34は、本発明に係る回転電機の実施の形態2のシャフトのO側のキー溝にキーを入れた状態を示す図である。 図35は、実施の形態2に係る回転電機のシャフトのO側の別の構造例を示す図である。 図36は、実施の形態2に係る回転電機のシャフトのO側の別の構造例を示す図である。 図37は、実施の形態2に係る回転電機のシャフトのO側の別の構造例を示す図である。 図38は、実施の形態2に係る回転電機の別構造のシャフトのO側のキー溝にキーを入れた状態を示す図である。 図39は、実施の形態2に係る回転電機の別構造のシャフトのO側のキー溝にキーを入れた状態を示す図である。 図40は、実施の形態2に係る回転電機の別構造のシャフトのO側のキー溝にキーを入れた状態を示す図である。
 以下に、本発明に係る回転電機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、以下の説明においては、シャフトのカップリングや機械装置と連結されて回転力を伝達する側を“Power”の頭文字を取ってP側、外扇ファンと連結されるP側とは反対側を“Opposite side”の頭文字を取ってO側と表記する。本発明は、P側及びO側の少なくとも一方にキー溝等の加工が施されるものを対象としている。
 本発明では、回転子を構成する部品それぞれで、予めバランス調整を行う。特に、最もアンバランスになりやすいシャフトに対して、バランス調整する方法について説明する。
実施の形態1.
 図1は、本発明に係る回転電機の実施の形態1の断面形状を示す図である。回転電機1は、回転子2と固定子3とから構成され、回転子2の片側には回転電機1の発熱を冷却するために外扇ファン4が取り付けられている。固定子3の外側には、ブラケット5a,5b及びフレーム6が取り付けられ、外扇ファン4の外側にはファンカバー7が取り付けられている。
 図2は、回転子の構造を示す図である。回転子2は、コア22の中心にシャフト21が通っており、それらをベアリング23a,23bで保持する構造となっている。図3は、シャフトの構造を示す図である。シャフト21のP側には、カップリングや機械装置と連結するためのキーを入れるキー溝30が彫られている。また、シャフト21のO側にも、外扇ファン4と連結するためのキーを入れるキー溝34が彫られている。
 本実施の形態では、P側のキー溝30とO側のキー溝34とを、軸の中心から見て反対側に設けている。なお、シャフトの長さや加工形状によっては、P側のキー溝30とO側のキー溝34とが、軸の中心から見て反対側となる位置に配置されない可能性もあるが、最もバランスが取れる位置に設ければ良く、軸の中心から見て反対側となる位置からずれていても良い。本実施の形態においては、シャフト21のO側の軸径は、P側の軸径よりも小さくなっている。したがって、本実施の形態においては、O側の軸径が第1の軸径であり、P側の軸径が第1の軸径よりも大きい第2の軸径である。また、シャフトの径が小さい方の端部に設けられる第1のキー溝はキー溝34であり、径が大きい方の端部に設けられる第2のキー溝はキー溝30である。
 図4、図5及び図6は、実施の形態1に係る回転電機のシャフトのP側の端部の拡大図であり、図4は上面図、図5は正面図、図6は側面図である。キー溝30はフライス加工によって形成するため、溝の端の部分がR形状になっている。
 図7、図8及び図9は、実施の形態1に係る回転電機のシャフトのO側の端部の拡大図であり、図7は上面図、図8は正面図、図9は側面図である。キー溝34は、キー嵌合溝となる第1の深さの浅い溝341の底面の一部領域を掘り下げることによって第1の深さよりも深い第2の深さとして、キーが侵入しないバランス調整溝として深い溝342を追加した形状となっている。キー溝34の深さは任意であるが、浅い溝341の幅W1と深い溝342の幅W2は、W1>W2であるとする。なお、図7、図8及び図9では、浅い溝341の長さをL1、深い溝342の長さをL2としたとき、L1>L2のように図示しているが、同じ長さ(L1=L2)としても、浅い溝341の方を長く(L1<L2)してもよい。また、図7、図8及び図9では、深い溝342をシャフト21の軸端から加工しているが、必ずしもそのようにする必要はなく、シャフト21の途中部分から深い溝342を設け、シャフト21の端部に深い溝342が非形成の部分が存在するようにしてもよい。
 次に、本実施の形態に係る回転電機の特徴を説明するための背景技術として、一般的な回転電機のシャフトについて説明する。
 図10は、一般的な回転電機のシャフトの構成を示す図である。一般的な回転電機のシャフトは、キー溝30及びキー溝31が、シャフト21’の中心から見て同じ側に加工されている。
 シャフトのP側の構造に関しては、実施の形態1に係る回転電機のシャフト21と一般的な回転電機のシャフト21’とで特別な相違はない。すなわち、一般的な回転電機のシャフト21’のP側には、図4~図6に示した構造と同様のキー溝30が設けられている。
 図11、図12及び図13は、一般的な回転電機のシャフトのO側の端部の拡大図であり、図11は上面図、図12は正面図、図13は側面図である。シャフト21’のO側にはP側と同じく単一段のキー溝31が施されている。
 図14、図15及び図16は、一般的な回転電機のシャフトのP側のキー溝に実際にキーを入れた状態を示す図であり、図14は上面図、図15は正面図、図16は側面図である。キー32をキー溝30に入れた状態において、キー32で埋められない空間30aが形成される。
 図17、図18及び図19は、一般的な回転電機のシャフトのO側のキー溝に実際にキーを入れた状態を示す図であり、図17は上面図、図18は正面図、図19は側面図である。キー33をキー溝31に入れた状態において、キー33で埋められない空間31aが形成される。
 キー溝30,31のR形状部分を塞ぐために、キー32,33の先端形状を尖らせたりR形状を付けたりする場合もあるが、一般的には加工の手間が増えるため、図14~図19に示すように直方体形状のキー32,33を使うことが多い。結果として、直方体形状のキー32,33で埋められない空間30a,31aが、シャフト21’のアンバランス要因となる。
 シャフト21’の径の大きさがP側とO側とで同じで、使用するキー32,33の大きさも同じような場合は、キー32,33で埋められない空間30a,31aの回転軸に対する慣性モーメントが釣り合うため、P側とO側とで軸の中心に対して反対に位置するようにキー溝30,31を配置するだけでバランスを取ることが可能である。また、シャフト21’の径やキー32,33の大きさが多少違っている場合でも、キー32,33で埋められない空間30a,31aの回転軸に対する慣性モーメントが同一となるように、空間31aの部分を微調整すれば、同じようにバランスを取ることが可能である。
 しかし一般には、回転電機においては、P側とO側とでシャフト21’の径が異なり、使用するキー32,33の大きさも異なる。ほとんどの場合は、シャフト径はO側の方が小さく、キーも小さいものを使用しており、図17、図18及び図19に示したキー33で埋められない空間31aの大きさを微調整するくらいでは、P側の空間30aとのバランスを取ることは困難である。
 このため、本実施の形態では、O側のキー溝34をキー33による連結機能を持たせたまま、バランスを取るための空間を増やすような形状に変更している。
 図20、図21及び図22は、実施の形態1に係る回転電機のシャフトのO側のキー溝に実際にキーを入れた状態を示す図であり、図20は上面図、図21は正面図、図22は側面図である。キー33で埋められない空間34a,34bが、シャフト21のアンバランス要因となる。空間34aは、図17、図18及び図19における空間31aと同じであり、バランス調整溝としての深い溝342を設けることで、空間34bの分だけバランスを取るための空間を増やすことができ、P側とO側の回転軸に対する慣性モーメントを同一にすることが可能となる。なお、図7、図8及び図9のキー溝形状は、深さ方向に加工を行うものであるため、O側のシャフト径が比較的太い場合に有効な手段である。
 図23、図24及び図25は、実施の形態1に係る回転電機のシャフトのO側の別の構造例を示す図であり、図23は上面図、図24は正面図、図25は側面図である。図23、図24及び図25に示す構造は、キー溝の形状が、図7、図8及び図9に示した例とは異なっている。キー溝35は、軸端から見て手前側に位置するキー嵌合溝としての手前の溝351の奥の位置に、キーが侵入しないバランス調整溝とし奥の溝352を幅細で追加した形状となっている。キー溝35の長さは任意であるが、軸端から見て手前の溝351の幅である第1の幅W1と奥の溝352の幅である第2の溝の幅W2は、W1>W2であるとする。なお、図23、図24及び図25では、軸端から見て手前の溝351の深さをD1、奥の溝352の深さをD2としたとき、D1=D2のように図示しているが、奥の溝352の方を浅く(D1>D2)しても構わない。
 図26、図27及び図28は、実施の形態1に係る回転電機の別構造のシャフトのO側のキー溝にキーを入れた状態を示す図であり、図26は上面図、図27は正面図、図28は側面図である。キー33で埋められない空間35a,35bが、シャフト21のアンバランス要因となる。空間35aは、一般的な回転電機のシャフト21’における空間31aと同じであり、バランス調整溝として奥の溝352を設けることで、空間35bの分だけバランスを取るための空間を増やすことができ、P側とO側の回転軸に対する慣性モーメントを同一にすることが可能となる。なお、図23、図24及び図25に示したキー溝形状は、軸方向に加工を行うものであるため、O側のシャフトが比較的長い場合に有効な手段である。
 以上、実施の形態1について説明したが、シャフトのキー溝加工の工程において、キーを取り付けるためのキー溝よりも細い幅の溝を設けることで、シャフト単体でのバランス調整が可能となる。また、その加工において、キーが取り付けられる部分の大きさを広げているわけではないため、キーが不用意に動くようなことはない。
 O側のキー溝のキーによって埋められない空間の大きさを変えてシャフトのバランスを調整するため、バランスウェイトの使用量を低減できる。したがって、バランスウェイトの脱落に起因する回転電機の不具合が発生しにくくなり、回転電機の長寿命化を図ることができる。
実施の形態2.
 実施の形態1では、シャフトのキー溝加工の工程において、幅が異なる2本のキー溝を作らなくてはならない。そのためには、キー溝のフライス加工時にサイズの異なる工具を用意する必要があり、作業の手間が増大する。実施の形態2では、同じ幅の溝で実現する方法について説明する。
 図29、図30及び図31は、本発明に係る回転電機の実施の形態2のシャフトのO側の端部の拡大図であり、図29は上面図、図30は正面図、図31は側面図である。キー溝36は、キー嵌合溝としての第1の深さの浅い溝361に加え、浅い溝361と同じ幅で、第1の深さよりも深い第2の深さでバランス調整溝として深い溝362を設けた形状となっている。キー溝36の深さは任意であるが、浅い溝361の長さをL1、深い溝362の長さをL2としたとき、L1>L2であるとする。実施の形態1では、キー溝36の長さには制約が無かったが、実施の形態2では、二つの溝361,362の幅を同じとしたため、キー溝36の長さに制約が生じている。また、キー33を固定させるために、深い溝362を端部まで伸ばすことはできなくなっている。すなわち、シャフト21の端部に深い溝362が非形成の部分が存在し、シャフト21の端部ではキー溝36の深さが第1の深さとなるようにしている。
 図32、図33及び図34は、本発明に係る回転電機の実施の形態2のシャフトのO側のキー溝にキーを入れた状態を示す図であり、図32は上面図、図33は正面図、図34は側面図である。キー33で埋められていない空間36a,36bが、シャフト21のアンバランス要因となる。空間36aは、一般的な回転電機のシャフト21’における空間31aと同じであり、バランス調整溝として深い溝362を設けることで、空間36bの分だけバランスを取るための空間を増やすことができ、P側とO側の回転軸に対する慣性モーメントを同一にすることが可能となる。なお、図29、図30及び図31に示したキー溝36の形状は、深さ方向に加工を行うものであるため、O側のシャフト径が大きい場合に有効な手段である。
 図35、図36及び図37は、実施の形態2に係る回転電機のシャフトのO側の別の構造例を示す図であり、図35は上面図、図36は正面図、図37は側面図である。キー溝37は、軸端から見て手前側に位置するキー嵌合溝としての手前の溝371の奥の位置に、キーが侵入しないバランス調整溝としての奥の溝372を手前の溝371と同じ幅で追加した形状となっている。すなわち、手前の溝371の幅である第1の幅と、奥の溝372の幅である第2の幅とを同じ幅にしている。キー溝37の長さは任意であるが、手前の溝371の深さをD1、奥の溝372の深さをD2としたとき、D1>D2であるとする。実施の形態1では、キー溝37の深さには制約が無かったが、実施の形態2では、手前の溝371の幅と奥の溝372の幅とを同じとしたため、キー溝37の深さに制約が生じている。
 図38、図39及び図40は、実施の形態2に係る回転電機の別構造のシャフトのO側のキー溝にキーを入れた状態を示す図であり、図38は上面図、図39は正面図、図40は側面図である。キー33で埋められていない空間37a,37bが、シャフト21のアンバランス要因となる。空間37aは、一般的な回転電機における空間31aと同じであり、バランス調整溝として奥の溝372を設けることで、空間37bの分だけバランスを取るための空間を増やすことができ、P側とO側の回転軸に対する慣性モーメントを同一にすることが可能となる。なお、図35、図36及び図37に示したキー溝37の形状は、軸方向に加工を行うものであるため、O側のシャフトが比較的長い場合に有効な手段である。
 このように、シャフトのキー溝加工の工程において、キーを取り付けるためのキー溝と同じ幅の溝を設けることで、シャフト単体でのバランス調整が可能となる。また、その加工において、キーが取り付けられる部分の大きさを広げているわけではないため、キーが不用意に動くようなことはない。さらに、二つの溝の幅が同一であるため、溝のフライス加工時に同じサイズの工具で加工可能であり、作業工数を少なくすることができる。
 なお、上記の説明では、キーが嵌合する溝の底面又は奥端にバランス調整溝を設けた構造を示したが、キー嵌合溝の底面及び奥端の両方にバランス調整溝を設けても良い。すなわち、キー嵌合溝の底面に設ける第1のバランス調整溝と、キー嵌合溝の奥端に設ける第2のバランス調整溝との合わせた空間の大きさを変えることでシャフトのバランスを調整するようにしても良い。
 また、上記の説明においては、O側の方がシャフト径が小さく、キーも小さいものを使用しているとして、O側にキー溝にバランスを取るための空間を増やすような形状に変更する方法について述べた。しかし、P側の方がシャフト径が小さく、キーも小さいものを使用している場合などは、同様の手法をP側のシャフトに適用し、P側のキー溝にバランスを取るための空間を増やすような形状に変更してもよい。
 また、シャフトに機械装置や外扇ファンを連結するときに、シャフト先端部をDカットして、ねじ止めする場合もある。Dカットの場合はキー連結と違い、カットした部分が全てシャフトのアンバランス要因となる。O側及びP側の一方がDカットで他方がキー連結の場合、キー加工の方に上記実施の形態1,2で説明した手法を適用し、Dカットした部分とバランスを取るようにすることも可能である。
 以上のように、本発明に係る回転電機は、単体でバランス調整済みでキーが不用意に動いてしまうことのないシャフトを備えている点で有用である。
 1 回転電機、2 回転子、3 固定子、4 外扇ファン、5a,5b ブラケット、6 フレーム、7 ファンカバー、21,21’ シャフト、22 コア、23a,23b ベアリング、30,31,34,35,36,37 キー溝、30a,31a,34a,34b,35a,35b,36a,36b,37a,37b 空間、32,33 キー、341,361 浅い溝、342,362 深い溝、351,371 手前の溝、352,372 奥の溝。

Claims (6)

  1.  第1の軸径を有する一端部と、前記第1の軸径よりも大きい第2の軸径を有する他端部とを備え、前記一端部に第1のキー溝が設けられたシャフトを用いて回転子が形成された回転電機であって、
     前記第1のキー溝は、キーが嵌合する第1の深さのキー嵌合溝と、該キー嵌合溝の底面の一部領域が掘り下げられて前記第1の深さよりも深い第2の深さを有するように形成されたバランス調整溝とを有することを特徴とする回転電機。
  2.  前記バランス調整溝は、前記キー嵌合溝と同じ幅であり、前記シャフトの一端での前記キー溝の深さは第1の深さであることを特徴とする請求項1に記載の回転電機。
  3.  第1の軸径を有する一端部と、前記第1の軸径よりも大きい第2の軸径を有する他端部とを備え、前記一端部に第1のキー溝が設けられたシャフトを用いて回転子が形成された回転電機であって、
     前記第1のキー溝は、キーが嵌合する第1の幅のキー嵌合溝と、該キー嵌合溝の奥端から前記シャフトの軸方向に沿って前記第1の幅以下の第2の幅で前記他端部側に延在するバランス調整溝とを有することを特徴とする回転電機。
  4.  前記第2の幅が、前記第1の幅と同じ幅であり、前記キー嵌合溝よりも浅く形成されていることを特徴とする請求項3に記載の回転電機。
  5.  第1の軸径を有する一端部と、前記第1の軸径よりも大きい第2の軸径を有する他端部とを備え、前記一端部に第1のキー溝が設けられたシャフトを用いて回転子が形成された回転電機であって、
     前記第1のキー溝は、キーが嵌合する第1の深さのキー嵌合溝と、該キー嵌合溝の底面の一部領域が掘り下げられて前記第1の深さよりも深い第2の深さを有するように形成された第1のバランス調整溝と、前記キー嵌合溝の奥端から前記シャフトの軸方向に沿って前記第1の幅以下の第2の幅で前記他端部側に延在する第2のバランス調整溝とを有することを特徴とする回転電機。
  6.  前記シャフトは、前記他端部に第2のキー溝を有し、
     前記第1のキー溝と前記第2のキー溝とは、前記シャフトの中心に対して対称に配置されていることを特徴とする請求項1から5のいずれか1項に記載の回転電機。
PCT/JP2014/063201 2014-05-19 2014-05-19 回転電機 WO2015177836A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/063201 WO2015177836A1 (ja) 2014-05-19 2014-05-19 回転電機
CN201480078929.4A CN106464075B (zh) 2014-05-19 2014-05-19 旋转电机
JP2014553007A JP5744347B1 (ja) 2014-05-19 2014-05-19 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063201 WO2015177836A1 (ja) 2014-05-19 2014-05-19 回転電機

Publications (1)

Publication Number Publication Date
WO2015177836A1 true WO2015177836A1 (ja) 2015-11-26

Family

ID=53537798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063201 WO2015177836A1 (ja) 2014-05-19 2014-05-19 回転電機

Country Status (3)

Country Link
JP (1) JP5744347B1 (ja)
CN (1) CN106464075B (ja)
WO (1) WO2015177836A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141964U (ja) * 1985-02-21 1986-09-02
JPS63161830A (ja) * 1986-12-22 1988-07-05 Ebara Corp 電動機の回転子
JPH0237563U (ja) * 1988-08-30 1990-03-13
JPH04341616A (ja) * 1991-05-20 1992-11-27 Fuji Electric Co Ltd 回転軸のキー装置
JPH05316684A (ja) * 1992-05-08 1993-11-26 Hitachi Ltd 回転電機
JP2013009549A (ja) * 2011-06-27 2013-01-10 Sumitomo Heavy Ind Ltd モータのシリーズ
JP2013017276A (ja) * 2011-07-01 2013-01-24 Toshiba Industrial Products Manufacturing Corp 回転電機の冷却ファン、および回転電機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101577354B1 (ko) * 2005-10-28 2015-12-16 폴브룩 인텔렉츄얼 프로퍼티 컴퍼니 엘엘씨 전동 드라이브
CN102251854B (zh) * 2006-06-26 2013-02-13 福博科技术公司 无级变速器
JP5738007B2 (ja) * 2011-03-02 2015-06-17 株式会社小松製作所 電動機の冷却構造及び電動機
CN203339874U (zh) * 2013-07-24 2013-12-11 苏州库比克机器人有限公司 高同心度和传动精度的伺服电动缸
CN105059463A (zh) * 2015-08-04 2015-11-18 苏州速蝶科技有限公司 一种一体化轮及采用所述一体化轮的电动车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141964U (ja) * 1985-02-21 1986-09-02
JPS63161830A (ja) * 1986-12-22 1988-07-05 Ebara Corp 電動機の回転子
JPH0237563U (ja) * 1988-08-30 1990-03-13
JPH04341616A (ja) * 1991-05-20 1992-11-27 Fuji Electric Co Ltd 回転軸のキー装置
JPH05316684A (ja) * 1992-05-08 1993-11-26 Hitachi Ltd 回転電機
JP2013009549A (ja) * 2011-06-27 2013-01-10 Sumitomo Heavy Ind Ltd モータのシリーズ
JP2013017276A (ja) * 2011-07-01 2013-01-24 Toshiba Industrial Products Manufacturing Corp 回転電機の冷却ファン、および回転電機

Also Published As

Publication number Publication date
CN106464075A (zh) 2017-02-22
JPWO2015177836A1 (ja) 2017-04-20
JP5744347B1 (ja) 2015-07-08
CN106464075B (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
JP5793077B2 (ja) ロータ及び回転電気機械
US10211689B2 (en) Electric machine rotor
JP2007089291A (ja) 永久磁石式回転電機
JP2020522970A (ja) 軸方向磁束機械内の磁石/ステータ間隙の制御のための予歪ロータ
JP6220651B2 (ja) 同期電動機の回転子
JP2012165534A (ja) 永久磁石形回転電機のロータ及びそのバランス調整方法
JP6309921B2 (ja) ロータのアンバランスの修正方法
JP2022062729A (ja) 同期リラクタンス電気機械及び同期リラクタンス電気機械のロータの動的なバランスを取るための方法
EP2955816B1 (en) Embedded permanent magnet type rotating electric machine
EP2779386A2 (en) Interior permanent magnet motor with shifted rotor laminations
US20110221296A1 (en) Internal Rotor Including a Grooved Shaft Intended for a Rotary Electric Machine
JP2017201857A (ja) 回転電機のロータのバランス修正方法
US20170063211A1 (en) Permanent magnet embedded rotating electrical machine
JP6409529B2 (ja) ロータおよびロータの製造方法
JP6353688B2 (ja) 回転電機の回転子、及びこれを備えた回転電機
JP5744347B1 (ja) 回転電機
JP6138489B2 (ja) 永久磁石の同期マシン及びそれを製造し組み立てるための方法
TWI535156B (zh) 具平衡件之轉軸構造
JP4839423B2 (ja) モータ軸調整用治具およびモータ軸調整方法
TWI535157B (zh) 內轉子馬達
JP2005176530A (ja) 永久磁石形回転電機の回転バランス修正構造
EP2911274B1 (en) Magnet tiles assembly
CN105978193A (zh) 一种用于滚珠高速电主轴的转子组件
JP6748615B2 (ja) 回転電機用ロータ
JP5939195B2 (ja) 回転体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014553007

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892826

Country of ref document: EP

Kind code of ref document: A1