WO2015176666A1 - 双向摇盘压缩机 - Google Patents

双向摇盘压缩机 Download PDF

Info

Publication number
WO2015176666A1
WO2015176666A1 PCT/CN2015/079444 CN2015079444W WO2015176666A1 WO 2015176666 A1 WO2015176666 A1 WO 2015176666A1 CN 2015079444 W CN2015079444 W CN 2015079444W WO 2015176666 A1 WO2015176666 A1 WO 2015176666A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
contact surface
rotor
rocker
outer peripheral
Prior art date
Application number
PCT/CN2015/079444
Other languages
English (en)
French (fr)
Inventor
沈大兹
王健
陈余俊
Original Assignee
比泽尔制冷技术(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比泽尔制冷技术(中国)有限公司 filed Critical 比泽尔制冷技术(中国)有限公司
Priority to EP15795756.4A priority Critical patent/EP3147502B1/en
Priority to US15/312,454 priority patent/US10393098B2/en
Publication of WO2015176666A1 publication Critical patent/WO2015176666A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/12Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having plural sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0895Component parts, e.g. sealings; Manufacturing or assembly thereof driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1045Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1063Actuating-element bearing means or driving-axis bearing means

Definitions

  • the present invention relates to a rocker compressor having a two-way piston.
  • swash plate compressors Conventional compressors include swash plate compressors.
  • a swash plate type compressor includes a drive shaft, a swash plate coupled to the drive shaft, and a plurality of pistons operatively coupled to the swash plate.
  • the drive unit drives the drive shaft to rotate in a known manner, the swashplate will cause the various pistons within the cylinder to reciprocate.
  • U.S. Patent No. 5,009,574 discloses a conventional swash plate compressor in which a swash plate is fixedly integrated on a drive shaft to rotate the swash plate together with the drive shaft. That is, the swashplate does not rotate relative to the drive shaft.
  • the piston simply performs a reciprocating motion.
  • a shoe through which the swash plate reciprocates the piston is also included. Since the swash plate rotates with the drive shaft, this causes a high speed sliding motion between each of the shoes and the swash plate.
  • U.S. Patent No. 2,335,415 discloses a rocker compressor structure in which The rocker is coupled to the hub of the drive shaft by an anti-friction bearing such that the rocker performs a rocking motion without rotating with the drive shaft, that is, there is only a slight sliding motion between the rocker and the shoe, conventional The sliding friction between the swash plate and the shoe with high speed movement has been replaced by the rolling friction of the bearing.
  • this structure reduces friction loss, it is not compact enough and lacks industrial applicability.
  • the rocker is connected to each of the pistons by a piston rod. Therefore, in this prior art, a shaker stop is essentially required to prevent the rotation of the rocker, which results in a complicated compressor structure which will result in a non-uniform or unbalanced complex rotation mode, which in turn generates vibration and noise.
  • the present invention provides a two-way rocker compressor comprising:
  • a two-way piston that can reciprocate within the cylinder bore of the cylinder
  • a drive assembly for driving the two-way piston including a drive shaft, a rotor fixedly coupled to the drive shaft, and an annular rocker mating with the rotor, the rotor having an angle normal to a vertical plane of the drive shaft a center plane, the center plane of the rocker coincides with a center plane of the rotor, and when the drive shaft rotates, the rotor drives the two-way piston to reciprocate through the rocker;
  • the rotor has an inner surface for mating with an annular rocker, the inner surface including opposing first inner surfaces, second inner surfaces, and rotor contact surfaces between the first inner surface and the second inner surface ;
  • the rocker is partially disposed within the inner surface of the rotor and includes a first outer peripheral portion adjacent to the first inner surface, adjacent to the second inner surface and opposite the first outer peripheral portion a second outer peripheral portion, and a rocker contact surface adjacent to the rotor contact surface and located between the first outer peripheral portion and the second outer peripheral portion;
  • first bearing is disposed between the first inner surface and the first outer peripheral portion
  • second bearing is disposed between the second inner surface and the second outer peripheral portion, and between the rotor contact surface and the rocker contact surface
  • a third bearing is provided.
  • an inner ring contact surface and an outer ring contact surface of the first bearing are in contact with the first inner surface and the first outer peripheral portion, respectively;
  • An inner ring contact surface and an outer ring contact surface of the second bearing are in contact with the second inner surface and the second outer peripheral portion, respectively;
  • the inner ring contact surface and the outer ring contact surface of the third bearing are in contact with the rotor contact surface and the rocker contact surface, respectively.
  • a thrust washer is disposed between the inner ring contact surface of the first bearing and the first inner surface, and/or between the outer ring contact surface of the first bearing and the first outer peripheral portion ;
  • a thrust pad is disposed between the inner ring contact surface of the second bearing and the second inner surface, and/or between the outer ring contact surface of the second bearing and the second outer peripheral portion.
  • the first bearing and the second bearing are one of a needle thrust bearing, a roller thrust bearing, an alternate double row needle roller thrust bearing, a double row roller thrust bearing, and a tapered roller thrust bearing.
  • the third bearing is one of a radial needle bearing, alternatively a radial roller bearing, or a radial ball bearing.
  • a thrust washer is disposed between the inner ring contact surface of the second bearing and the second surface, and between the outer ring contact surface of the second bearing and the second outer peripheral portion, and
  • the third bearing is a radial ball bearing.
  • the two-way piston includes two socket portions, each of which is provided with two hemispherical shoes that interact with the first outer peripheral portion and the second outer peripheral portion of the rocker.
  • the rotor includes a first annular flange and a second annular flange, and the first annular flange and the second annular flange are fastened by a nut and the drive shaft.
  • the rocking disk compressor of the present invention has a compact structure and a low design complexity, and the cost can be successfully controlled while improving efficiency and output power, and thus is suitable for commercial compressor applications.
  • Figure 1 is a cross-sectional view of a two-way rocker compressor of the present invention in one embodiment
  • Figure 2 is a partial enlarged view of the embodiment of Figure 1;
  • Figure 3 is another partial enlarged view of the embodiment of Figure 1;
  • Figure 4 is a schematic view of a second embodiment of the present invention in which a double row needle roller or a double row roller thrust bearing is employed;
  • Figure 5 is a schematic view of a third embodiment of the present invention in which a tapered roller thrust bearing is employed
  • Figure 6 is a schematic view of a fourth embodiment of the present invention in which an angled needle roller or roller thrust bearing is employed;
  • Figure 7 is a schematic view of a fifth embodiment of the present invention in which an angled double row needle roller or double row roller thrust bearing is employed;
  • Figure 8 is a schematic view of a sixth embodiment of the present invention in which a tapered roller thrust bearing is employed
  • Figure 9 is a schematic view of a seventh embodiment of the present invention, wherein a bearing pad has a thrust pad on one side of the contact surface;
  • Figure 10 is a schematic view of an eighth embodiment of the present invention, wherein the other side contact surface of the bearing employs a thrust pad;
  • Figure 11 is a schematic view of a ninth embodiment of the present invention, wherein a thrust pad is used on both side contact surfaces of the bearing;
  • Figure 12 is a schematic view of a tenth embodiment of the present invention in which a ball bearing is employed.
  • the two-way rocker compressor of the present invention adopts a two-way piston structure, which utilizes a rocker
  • the reciprocating motion of the two-way piston is driven, and the motion of the rocker is driven by a rotor fixed to the drive shaft.
  • the invention is characterized in particular by the manner in which the rocker and the rotor are mated.
  • the combination between the rocker and the rotor can be formed by the bearing to form a combined bearing unit, that is, the rocker can be directly used as the outer ring of the combined bearing unit in addition to the movement of the two-way piston, and the rotor mounted on the drive shaft can be used.
  • the rocker In addition to driving the rocker for rocking motion, it is also used directly as the inner ring of the combined bearing unit.
  • the rocking disk compressor of the present invention is compact in structure and low in design complexity compared with the prior art, and is improved in efficiency and At the same time as the output power, the cost can be successfully controlled, so it is suitable for commercial compressor applications.
  • FIG. 1 is a schematic view of a two-way rocker compressor of the present invention in one embodiment.
  • the two-way rocker compressor includes a cylinder block 100 having a plurality of cylinder bores 110.
  • the cylinder block 100 is comprised of a front cylinder block 120 and a rear cylinder block 130 and includes a pair of central bores 140 along the longitudinal axis O-O of the cylinder block, the cylinder bores 110 being evenly disposed about the central bore 140.
  • the two-way rocker compressor also includes a plurality of two-way pistons 200 that are reciprocable within the cylinder bore 110 of the cylinder block 100.
  • the two-way piston 200 reciprocates in the associated cylinder bore 110 of the front and rear cylinder blocks 120, 130.
  • the two-way rocking disk compressor further includes a drive assembly 300 that drives the two-way piston 200.
  • the drive assembly 300 includes a drive shaft 310, a rotor 320 fixedly coupled to the drive shaft 310, and an annular rocker 330 that cooperates with the rotor 320. 2, 3, the rotor 320 has a center plane PP at an angle a to the vertical plane II of the drive shaft 310. The center plane of the rocker 330 coincides with the center plane PP of the rotor 320.
  • the disk 330 drives the two-way piston 200 to reciprocate.
  • the drive shaft 310 is rotatably disposed within the center hole 140 of the front and rear cylinder blocks 120, 130, and is rotatable by an external driving force.
  • the rotor 320 is fixedly connected and integrated into the drive The shaft 310 is thus rotatable with the rotation of the drive shaft 310.
  • the rotor 320 can be conventionally comprised of a first annular flange 321 and a second annular flange 322.
  • the first annular flange 321 can be fixed to the boss 311 of the drive shaft 310.
  • the second annular flange 322 can be fixed to the joint surface 3212 of the first annular flange 321 and the drive shaft 310.
  • first annular flange 321 and the second annular flange 322 are fastened by the nut 312 and the drive shaft 310, thereby achieving a fixed connection of the rotor 320 and the drive shaft 310.
  • the fixed connection of the rotor 320 and the drive shaft 310 can also be achieved in other known manners.
  • the center plane P-P of the rotor 320 and the vertical plane I-I of the drive shaft 310 form an angle ⁇ . This angle determines the stroke length when the bidirectional piston 200 reciprocates.
  • the rotor 320 has an inner surface 323 for mating with the rocker 330.
  • the two inner surfaces 323 are disposed on the first annular flange 321 and the second annular shape. Between the flanges 322.
  • the inner surface 323 includes a first inner surface 324, a second inner surface 325, and a rotor contact surface 326 between the first inner surface 324 and the second inner surface 325.
  • the rocker 330 is partially disposed within the inner surface 323 of the rotor 320 and includes a first outer peripheral portion 334 adjacent to the first inner surface 324, adjacent to the second inner surface 325, and to the first outer peripheral portion.
  • the second outer peripheral portion 335 opposite to the 334 and the rocker contact surface 336 adjacent to the contact surface of the rotor 320 and located between the first outer peripheral portion 334 and the second outer peripheral portion 335.
  • a first bearing 340 is disposed between the first inner surface 324 and the first outer peripheral portion 334
  • a second bearing 350 is disposed between the second inner surface 325 and the second outer peripheral portion 335
  • the rotor A third bearing 360 is disposed between the contact surface 326 and the rocker contact surface 336.
  • the first outer peripheral portion 334 of the rocker 330 includes an upper surface 3341 and a lower surface 3342 located at the upper portion of the rocker, and correspondingly, the second outer peripheral portion 335 of the rocker 330 includes a rocking plate.
  • the first bearing 340 is located between the first inner surface 324 and the lower surface 3342 of the first outer peripheral portion
  • the second bearing 350 is located between the second inner surface 325 and the lower surface 3252 of the second outer peripheral portion. between.
  • the upper surface 3341 and the lower surface 3342 of the first outer peripheral portion 334 and the upper surface 3351 and the lower surface 3352 of the second outer peripheral portion 335 are respectively located on different planes, that is, the first outer peripheral portion 334 and the second outer peripheral portion.
  • 335 is a stepped surface.
  • their respective upper and lower surfaces may also lie on the same plane.
  • the first bearing 340 directly acts on the first inner surface 324 and the first outer peripheral portion 334
  • the second bearing 350 directly acts on the second inner surface 325 and
  • the second outer peripheral portion 335 and the third bearing 360 directly act on the rotor contact surface 326 and the rocker contact surface 336.
  • the first bearing 340 includes an outer ring contact surface 341 and an inner ring contact surface, and the outer ring contact surface 341 coincides with the first outer peripheral portion 334 of the rocker 330, and the inner ring thereof
  • the contact surface coincides with the first inner surface 324 of the inner surface 323 of the rotor 320;
  • the outer ring contact surface 351 coincides with the second outer peripheral portion 335 of the rocker 330, and the inner ring contact surface thereof
  • the second inner surface 325 of the inner surface 323 of the rotor 320 coincides;
  • the outer ring contact surface coincides with the rocker contact surface 336 of the rocker 330, and the inner ring contact surface and the inner surface of the rotor 320
  • the rotor contact faces 326 of 323 coincide.
  • the bidirectional piston 200 includes a plurality of dimples 210 which are hemispherical concave surfaces respectively formed in the axial direction A-A of the bidirectional piston 200 and the notch 220 of the central portion of the bidirectional piston 200. Further, each of the dimples 210 is provided with two hemispherical shoes 230 that interact with the first outer peripheral portion 334 and the second outer peripheral portion 335 of the rocker 330.
  • the two hemispherical shoes 230 interact with the rocker 330 through the upper surface 3341 of the first outer peripheral portion 334 and the upper surface 3351 of the second outer peripheral portion 335, respectively.
  • the planar portion of the hemispherical shoe 230 is defined as a flat portion 231
  • the protruding surface portion is defined as a convex portion 232 between the outer peripheral portion of the rocker 330 and the socket portion 210 of the bidirectional piston 200. Acts as a pivot bearing component.
  • the rocker 330 can be ball-bound to the two-way piston 200.
  • rocker 330 can also drive the two-way piston 200 to reciprocate by other conventional means of engagement, for example, by a pin structure to achieve a mating connection of the rocker 330 and the two-way piston 200.
  • the universal bearing structure is a sliding joint structure.
  • the rotor 320 when the drive shaft 310 of the rocker compressor rotates, the rotor 320 will rotate with the rotation of the drive shaft 310, and the rocker is due to the action of the first bearing 340, the second bearing 350, and the third bearing 360.
  • the 330 generates a rocking motion but does not rotate with the rotation of the drive shaft, and the flat portion of the shoe 230 and the outer peripheral portion of the rocker 330 move up and down with respect to the rocker 330 in the diametric direction due to the action of the shoe universal joint, and
  • the two-way piston 200 reciprocates back and forth under the constraint of the corresponding cylinder bore in the cylinder 100.
  • the rocker 330 may also rotate with the driving shaft 310 under the frictional force of the first bearing 340, the second bearing 350, and the third bearing 360 when the drive shaft 310 rotates. Slowly rotating disproportionately, this rotation will greatly reduce the wear of the outer peripheral portion of the rocker 330 and the flat surface of the shoe 230.
  • a force F1 from the two-way piston 200 acting on the shoe 230 is transmitted to the first bearing 340 and the second bearing 350 through the rocker 330, but the force point of F1 falls on the first
  • the inner race of bearing 340 and second bearing 350 are in contact with surfaces 324, 325.
  • a force F2 directed to the center of the first bearing 340 and the second bearing 350 is previously applied thereto by the tightening of the nut 312, so that the magnitude, direction and force point of the resultant force F of F1 and F2 are changed. .
  • the first bearing 340 and the second bearing 350 are needle roller thrust bearings, but alternatively, the first bearing and the second bearing may also be roller thrust bearings, double row needle roller thrust bearings, double One of a column roller thrust bearing and a tapered roller thrust bearing.
  • the third bearing 360 is a radial needle bearing, but alternatively, the third bearing 360 may also be a radial roller bearing or a radial ball bearing.
  • the first bearing 340 and the second bearing 350 are double row needle roller thrust bearings or double row roller thrust bearings.
  • the first bearing 340 and the second bearing 350 are tapered roller thrust bearings.
  • the first inner surface and the second inner surface coincide with each other and have the same taper angle ⁇ , and the taper angle ⁇ can be set according to the design requirements of the tapered roller thrust bearing.
  • the first bearing 340 and the second bearing 350 are similar to the first embodiment shown in FIGS. 1-3, using a needle thrust bearing or roller. Thrust bearings, however, differ from the axial direction of the rollers.
  • the roller axis has a beta angle from 0 degrees to plus or minus 12 degrees from the center plane of the rotor 320.
  • the outer ring contact surface 341 of the first bearing 340 coincides with the first outer peripheral portion of the rocker 330, and the inner ring contact surface 342 of the first bearing 340 and the rotor
  • the first inner surfaces of the inner surfaces coincide, so that the two contact surfaces are parallel with respect to the axis of the bearing rollers.
  • Figure 7 is a variant embodiment of Figure 6, which differs from Figure 6 in that the first bearing 340 and the second bearing 350 of Figure 7 are double row needle roller or double row roller thrust bearings.
  • the first bearing 340 and the second bearing 350 may also employ a tapered roller thrust bearing as compared with the embodiment of FIGS.
  • the outer ring contact surfaces 341, 342 and the inner ring contact surfaces 351, 352 of the two tapered roller thrust bearings 340, 350 are respectively associated with the two outer peripheral portions of the rocker 330 and the inner inner surface of the rotor inner surface.
  • the surface and the second inner surface coincide with each other having the same taper angle ⁇ .
  • the taper angle ⁇ can be set according to the design requirements of the tapered roller thrust bearing.
  • a thrust washer is disposed between the outer ring contact surface of the second bearing 350 and the second outer peripheral portion 335.
  • a thrust washer 370 is disposed between the first bearing 340 and the first inner surface, and between the second bearing 350 and the second inner surface, respectively. The thrust washer 370 is arranged to avoid special treatment of the inner surface of the rotor, thereby further reducing the cost.
  • a thrust washer 370 is disposed between the first bearing 340 and the first outer peripheral portion of the rocker 330, and between the second bearing 350 and the second outer peripheral portion of the rocker 330, respectively.
  • a thrust washer 370 is disposed outside the two contact surfaces of the first bearing 340 and outside the two contact surfaces of the second bearing 350.
  • the third bearing 360 can also be a radial ball bearing.
  • the radial ball bearings are radially arranged between the rotor 320 and the rocker 330, that is, the outer ring race of the ball bearing is the rocker 330 itself, and the inner ring race of the ball bearing is The rotor 320 itself.
  • each of the above illustrated examples may be subjected to any suitable permutation combination, and practice has shown that the most preferred combination is between the inner ring contact surface of the second bearing and the second surface, and the outer ring contact surface of the second bearing and the A thrust washer is disposed between the two outer peripheral portions, and the third bearing is a radial ball bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种双向摇盘压缩机,包括:缸体(100),可在缸体(100)的缸孔(110)内进行往复运动的双向活塞(200);驱动双向活塞(200)的驱动组件(300),驱动组件(300)包括驱动轴(310)、与驱动轴(310)固定连接的转子(320)、以及与转子(320)相配合的环状摇盘(330);转子(320)具有用于与环状摇盘(330)相配合的内表面(323),内表面(323)包括相对设置的第一内表面(324)、第二内表面(325)以及转子接触面(326);摇盘(330)部分地环绕设置于转子(320)的内表面(323)内,并包括第一外周部(334)、第二外周部(335)、以及摇盘接触面(336);第一内表面(324)和第一外周部(334)之间设置有第一轴承(340),第二内表面(325)和第二外周部(335)之间设置有第二轴承(350),并且转子接触面(326)和摇盘接触面(336)之间设置有第三轴承(360)。该双向摇盘压缩机可显著减小摩擦损耗。

Description

双向摇盘压缩机 技术领域
本发明涉及一种具有双向活塞的摇盘压缩机。
背景技术
传统的压缩机包括斜盘压缩机。通常,斜盘式压缩机包括一驱动轴,一与驱动轴连接在一起的斜盘、以及与该斜盘运行相连的若干活塞。当驱动单元以公知的方式驱使驱动轴转动时,斜盘将促使在气缸内的各个活塞产生往复运动。
例如,专利号为5,009,574的美国专利公开了一种传统的斜盘压缩机,在该结构中,斜盘被固定地集成在驱动轴上,从而使斜盘与驱动轴一起旋转。也就是说,斜盘相对于驱动轴并不旋转。在传统斜盘压缩机运行期间,活塞简单地执行往复运动。在该结构中,还包括斜盘通过其驱使活塞往复运动的滑履。由于斜盘与驱动轴一起旋转,这在每一个滑履和斜盘之间引起高速滑动运动。
斜盘压缩机内滑履和斜盘之间的高速滑动运动特点会导致高摩擦损失及低承载能力,特别地,在大排量压缩机中情况更为严重。因此,作为斜盘压缩机的改进,现有技术中的摇盘压缩机将斜盘的运动和驱动轴相脱离,以试图减少上述摩擦损耗。
例如,美国专利2,335,415公开了一种摇盘压缩机结构,在该结构中, 摇盘通过一抗摩擦轴承连接到驱动轴的轮毂上,从而使得摇盘执行摇摆运动而没有随驱动轴一起旋转,也就是说,在摇盘和滑履之间仅存在轻微的滑动运动,传统斜盘和滑履之间的具有高速运动的滑动摩擦已经被轴承的滚动摩擦所代替。但是,该结构虽然降低了摩擦损耗,但是不够紧凑,缺乏工业实用性。
美国专利5,239,913公开了另一种典型的摇盘压缩机结构。在该结构中,来自活塞顶部的力,通过连杆和摇盘指向轴承,对于使用单向活塞的压缩机,这种摇盘结构是常规可用的,但是,对于需要双向活塞的较大排量的压缩机,该结构显然不合适,因为完全没有足够的空间在同一位置安装轴承和连杆。
此外,在该结构和类似结构中,摇盘通过活塞杆与每一个活塞相连。因此在该现有技术中,本质上需要一个摇盘停止器来阻止摇盘的旋转,这造成压缩机结构复杂,将导致不均匀或不平衡的复杂旋转方式,进而产生振动和噪声。
因此,需要一种新的摇盘压缩机结构,在确保其适用范围的同时,可降低摩擦损耗,提高能量转化效率,同时克服现有的摇盘结构中的上述问题。
发明内容
本发明的目的,在于克服现有的摇盘压缩机结构的上述缺点,从而提供一种摩擦损耗低、能提高能量转化率的新的摇盘压缩机结构。
为达到上述目的,本发明提供了一种双向摇盘压缩机,包括:
缸体,该缸体具有缸孔;
可在该缸体缸孔内进行往复运动的双向活塞;
驱动该双向活塞的驱动组件,该驱动组件包括驱动轴、与该驱动轴固定连接的转子、以及与该转子相配合的环状摇盘,该转子具有一个与该驱动轴的垂直平面成角度的中心平面,该摇盘的中心平面与该转子的中心平面相重合,当驱动轴旋转时,该转子通过该摇盘驱使双向活塞进行往复运动;特别地,
该转子具有用于与环状摇盘相配合的内表面,该内表面包括相对设置的第一内表面、第二内表面以及位于该第一内表面和第二内表面之间的转子接触面;
该摇盘部分地环绕设置于该转子的内表面内,并包括分别与第一内表面相邻近的第一外周部、与该第二内表面相邻近并与该第一外周部相对的第二外周部、以及与该转子接触面相邻近并位于该第一外周部及第二外周部之间的摇盘接触面;
其中,该第一内表面和第一外周部之间设置有第一轴承,该第二内表面和第二外周部之间设置有第二轴承,并且该转子接触面和摇盘接触面之间设置有第三轴承。
备选地,所述第一轴承的内圈接触表面和外圈接触表面分别与该第一内表面和该第一外周部相接触;
所述第二轴承的内圈接触表面和外圈接触表面分别与该第二内表面和该第二外周部相接触;并且
所述第三轴承的内圈接触表面和外圈接触表面分别与该转子接触面和该摇盘接触面相接触。
优选地,所述第一轴承的内圈接触表面和所述第一内表面之间,和/或所述第一轴承的外圈接触表面和所述第一外周部之间设置有推力垫片;以 及
所述第二轴承的内圈接触表面和所述第二内表面之间,和/或所述第二轴承的外圈接触表面和所述第二外周部之间设置有推力垫片。
所述第一轴承和第二轴承为滚针推力轴承、滚柱推力轴承、备选地双列滚针推力轴承、双列滚柱推力轴承、圆锥滚子推力轴承中的一种。
所述第三轴承为径向滚针轴承、备选地径向滚柱轴承、或径向球轴承中的一种。
优选地,所述第二轴承的内圈接触表面和所述第二表面之间,以及所述第二轴承的外圈接触表面和所述第二外周部之间均设置有推力垫片,并且所述第三轴承为径向球轴承。
优选地,所述双向活塞包括两个窝部,该两个窝部中各设置有与所述摇盘的第一外周部和第二外周部相作用的两个半球状的滑履。
优选地,所述转子包括第一环状凸缘和第二环状凸缘,并且该第一环状凸缘、该第二环状凸缘通过螺母和所述驱动轴相紧固。
本发明的摇盘压缩机相对于现有技术,结构紧凑,设计复杂度低,在提高效率和输出功率的同时,成本可成功得到控制,因此适于商业压缩机的应用。
附图说明
图1是本发明的双向摇盘压缩机在一个实施方式中的剖视图;
图2是图1中实施方式的局部放大示意图;
图3是图1中实施方式的另一局部放大示意图;
图4是本发明的第二个实施方式的示意图,其中采用了双排滚针或双排滚柱推力轴承;
图5是本发明的第三个实施方式的示意图,其中采用了圆锥滚子推力轴承;
图6是本发明的第四个实施方式的示意图,其中采用了成角度的滚针或滚柱推力轴承;
图7是本发明的第五个实施方式的示意图,其中采用了成角度的双排滚针或双排滚柱推力轴承;
图8是本发明的第六个实施方式的示意图,其中采用了圆锥滚子推力轴承;
图9是本发明的第七个实施方式的示意图,其中轴承的一侧接触表面采用了推力垫片;
图10是本发明的第八个实施方式的示意图,其中轴承的另一侧接触表面采用了推力垫片;
图11是本发明的第九个实施方式的示意图,其中轴承的两侧接触表面均采用了推力垫片;
图12是本发明的第十个实施方式的示意图,其中采用了球轴承。
具体实施方式
以下将结合具体实施方式以及相应附图,对本发明的双向摇盘压缩机的结构组成和工作原理进行详细说明。
总体而言,本发明的双向摇盘压缩机采用双向活塞结构,其利用摇盘 对双向活塞的往复运动进行驱动,摇盘的运动由固定在驱动轴上的转子驱使。本发明的特点尤其在于摇盘和转子的配合方式。摇盘和转子之间可通过轴承相配合从而形成组合轴承单元,即摇盘除用作驱动双向活塞运动外,还可直接用作组合轴承单元的外圈,安装在驱动轴上的转子除用作驱动摇盘做摇摆运动外,还直接用作组合轴承单元的内圈。由此可使得传统斜盘压缩机的高速滑动运动被组合轴承单元的滚动运动所代替,同时,本发明的摇盘压缩机相对于现有技术,结构紧凑,设计复杂度低,在提高效率和输出功率的同时,成本可成功得到控制,因此适于商业压缩机的应用。
具体地,如图1所示,是本发明的双向摇盘压缩机在一个实施方式中的示意图。
参照附图,在该实施方式中,双向摇盘压缩机包括缸体100,缸体具有若干个缸孔110。常规地,缸体100由前缸体120和后缸体130组成,并包括一对沿着缸体纵向轴线O-O的中心孔140,缸孔110围绕中心孔140均匀布置。
双向摇盘压缩机还包括可在缸体100的缸孔110内进行往复运动的若干个双向活塞200。双向活塞200往复运动于前缸体120和后缸体130的相关缸孔110中。
双向摇盘压缩机进一步包括驱动双向活塞200的驱动组件300,驱动组件300包括驱动轴310、与驱动轴310固定连接的转子320、以及与转子320相配合的环状摇盘330,另参照图2、3,转子320具有一个与驱动轴310的垂直平面I-I成角度α的中心平面P-P,摇盘330的中心平面与转子320的中心平面P-P相重合,驱动轴310旋转时,转子320通过摇盘330驱使双向活塞200进行往复运动。
常规地,驱动轴310可旋转地置于前缸体120和后缸体130的中心孔140内,并可由外部驱动力驱动旋转。转子320固定地连接并集成到驱动 轴310上,因此可随驱动轴310的旋转而旋转。另结合图2、3,转子320可常规地由第一环状凸缘321和第二环状凸缘322组成。第一环状凸缘321可被固定在驱动轴310的凸台311上,类似地,第二环状凸缘322可与第一环状凸缘321的接合面3212及驱动轴310相固定,并且第一环状凸缘321、第二环状凸缘322通过螺母312和驱动轴310相紧固,由此实现转子320和驱动轴310的固定连接。当然,在本发明的实施方式中,也可采取其它公知方式实现转子320和驱动轴310的固定连接。
如上所述,转子320的中心平面P-P和驱动轴310的垂直平面I-I形成夹角α。该夹角即决定了双向活塞200往复运动时的冲程长度。
特别地,结合图2、3,转子320具有用于与摇盘330相配合的内表面323,在该实施方式中,两个内表面323设置于第一环状凸缘321和第二环状凸缘322之间。内表面323包括相对设置的第一内表面324、第二内表面325以及位于第一内表面324和第二内表面325之间的转子接触面326。
摇盘330部分地环绕设置于转子320的内表面323内,并包括分别与第一内表面324相邻近的第一外周部334、与第二内表面325相邻近并与第一外周部334相对的第二外周部335、以及与转子320接触面相邻近并位于第一外周部334及第二外周部335之间的摇盘接触面336。
作为本发明的最显著特征,第一内表面324和第一外周部334之间设置有第一轴承340,第二内表面325和第二外周部335之间设置有第二轴承350,并且转子接触面326和摇盘接触面336之间设置有第三轴承360。
更具体地,如图3所示,摇盘330的第一外周部334包括位于摇盘上部的上表面3341和下表面3342,与之对应,摇盘330的第二外周部335包括位于摇盘上部的上表面3351和下表面3352。如图所示,具体地,第一轴承340位于第一内表面324和第一外周部的下表面3342之间,第二轴承350位于第二内表面325和第二外周部的下表面3252之间。在图示的实 施方式中,第一外周部334的上表面3341和下表面3342、以及第二外周部335的上表面3351和下表面3352分别位于不同的平面上,即第一外周部334和第二外周部335分别为阶梯型表面。但是,容易理解,其各自的上表面和下表面也可以位于同一个平面上。
如图1、2、3所示,在本发明的实施方式中,第一轴承340直接作用于第一内表面324和第一外周部334,第二轴承350直接作用于第二内表面325和第二外周部335,并且第三轴承360直接作用于转子接触面326和摇盘接触面336。也就是说,对于第一轴承340而言,第一轴承340包括外圈接触表面341和内圈接触表面,其外圈接触表面341与摇盘330的第一外周部334相重合,其内圈接触表面与转子320内表面323的第一内表面324相重合;对于第二轴承350而言,其外圈接触表面351与摇盘330的第二外周部335相重合,其内圈接触表面与转子320内表面323的第二内表面325相重合;对于第三轴承360而言,其外圈接触表面与摇盘330的摇盘接触面336相重合,其内圈接触表面与转子320内表面323的转子接触面326相重合。
参照图1、2、3,在摇盘330和双向活塞200的配合驱动方面,可采用传统的滑履配合结构。具体地,双向活塞200包括多个窝部210,窝部210为沿着双向活塞200的轴线方向A-A以及双向活塞200的中部的槽口220前后壁221上分别开设的半球凹面。进一步地,窝部210中各设置有与摇盘330的第一外周部334和第二外周部335相作用的两个半球状的滑履230。具体地,两个半球状滑履230分别通过第一外周部334的上表面3341和第二外周部335的上表面3351与摇盘330相作用。常规地,半球状的滑履230的平面部分被定义为平部231,突出表面部分被定义为凸部232,滑履230在摇盘330的外周部和双向活塞200的窝部210之间可充当枢轴轴承部件。因此,通过窝部210和半球状的滑履230,可使得摇盘330球形铰接到双向活塞200。
当然,容易理解,摇盘330也可通过其它常规的配合手段驱动双向活塞200做往复运动,例如,通过销结构实现摇盘330和双向活塞200的配合连接。
由此,当摇盘330的外周部可滑动地通过一对滑履230的两个平部之间、并且滑履230被设置于双向活塞200和摇盘330之间时,双向活塞200、滑履230和摇盘330的外周部共同组成一个万向轴承结构,本实施方式中,该万向轴承结构为滑履万向节结构。
在该实施方式中,当摇盘压缩机的驱动轴310旋转时,转子320将随驱动轴310的旋转而旋转,由于第一轴承340、第二轴承350和第三轴承360的作用,摇盘330产生摇动运动但并不随驱动轴的旋转而旋转,由于滑履万向节的作用,使得滑履230的平部和摇盘330的外周部相对于摇盘330在直径方向相互上下移动,而双向活塞200则于缸体100内对应缸孔的约束下前后往复运动。由于对摇盘330的旋转并无约束,所以当驱动轴310旋转时,摇盘330也可能在第一轴承340、第二轴承350和第三轴承360的摩擦力作用下随驱动轴310的旋转而不成比例地缓慢旋转,这种旋转将极大地减少摇盘330的外周部和滑履230平部表面的磨损。
进一步地,参照图2、3,一个来自双向活塞200并作用到滑履230上的力F1通过摇盘330传递到第一轴承340和第二轴承350,但是F1的受力点落在第一轴承340和第二轴承350的内圈接触表面324、325之外。为防止这种情况发生,一个指向第一轴承340和第二轴承350中心的力F2通过螺母312的拧紧预先施加其上,从而使得F1和F2的合力F的大小、方向和受力点被改变。这能够优化地符合轴承的设计和使用要求,并可极大延长轴承的寿命。
在上述实施方式中,第一轴承340和第二轴承350为滚针推力轴承,但是,备选地,第一轴承和第二轴承也可以为滚柱推力轴承、双列滚针推力轴承、双列滚柱推力轴承、圆锥滚子推力轴承中的一种。类似地,在上 述实施方式中,第三轴承360为径向滚针轴承,但是,备选地,第三轴承360也可以为径向滚柱轴承或径向球轴承。
例如,在图4所示的实施方式中,第一轴承340和第二轴承350为双列滚针推力轴承或双列滚柱推力轴承。在图5所示的实施方式中,第一轴承340和第二轴承350为圆锥滚子推力轴承。其中,两个圆锥滚子推力轴承类型的第一轴承340和第二轴承350的外圈接触表面341、351和内圈接触表面342、352分别与摇盘330的两个外周面以及转子内表面的第一内表面和第二内表面相重合,均具有同一锥角δ,该锥角δ的大小可根据圆锥滚子推力轴承的设计要求设定。
如图6所示,在另一个备选的实施方式中,第一轴承340和第二轴承350与如图1-3所示的第一个实施方式相类似,采用滚针推力轴承或滚柱推力轴承,但是,与其不同的是滚子轴向的方向。在该实施方式中,滚子轴线与转子320的中心平面之间具有一个从0度到正负12度的β角。考虑到该设计要求,在本实施方式中,类似地,第一轴承340的外圈接触表面341与摇盘330的第一外周部相重合,且第一轴承340的内圈接触表面342与转子内表面的第一内表面相重合,因此两个接触表面相对于轴承滚子的轴线平行。图7是图6的一个变型实施方式,其与图6的不同在于图7中的第一轴承340和第二轴承350为双列滚针或双列滚柱推力轴承。
如图8所示,与图6、7中的实施方式相比,第一轴承340和第二轴承350也可采用圆锥滚子推力轴承。在该实施方式中,两个圆锥滚子推力轴承340、350的外圈接触表面341、342和内圈接触表面351、352分别与摇盘330的两个外周部以及转子内表面的第一内表面和第二内表面相重合,均具有同一锥角γ该锥角γ的大小可根据圆锥滚子推力轴承的设计要求设定。
优选地,在备选的实施方式中,第一轴承340的内圈接触表面和第一内表面324之间,和/或第一轴承340的外圈接触表面和第一外周部334之间设置有推力垫片;以及第二轴承350的内圈接触表面和第二内表面325 之间,和/或第二轴承350的外圈接触表面和第二外周部335之间设置有推力垫片。参照图9,在第一轴承340和第一内表面之间、以及在第二轴承350和第二内表面之间分别设置有推力垫片370。推力垫片370的设置,可避免对转子的内表面进行特殊处理,从而进一步降低了成本。参照图10,该实施方式中,在第一轴承340和摇盘330的第一外周部之间、以及在第二轴承350和摇盘330的第二外周部之间分别设置有推力垫片370。参照图11,该实施方式中,第一轴承340的两个接触表面外侧以及第二轴承350的两个接触表面外侧均设置有推力垫片370。
另外,参照图12,备选地,第三轴承360也可以是径向球轴承。该实施方式中,径向球轴承被径向地安排在转子320和摇盘330之间,也就是说,球轴承的外圈滚道就是摇盘330本身,而球轴承的内圈滚道就是转子320本身。
上述图示的各示例可以进行任意合适的排列组合,实践表明,最优选的组合形式为,第二轴承的内圈接触表面和第二表面之间,以及第二轴承的外圈接触表面和第二外周部之间均设置有推力垫片,并且第三轴承为径向球轴承。
容易理解,本发明并不局限于上述个实施方式给出的具体示例,其任何排列组合以及显而易见的变型,均应落入本发明的保护范围内。

Claims (8)

  1. 一种双向摇盘压缩机,包括:
    缸体,该缸体具有缸孔;
    可在该缸体缸孔内进行往复运动的双向活塞;
    驱动该双向活塞的驱动组件,该驱动组件包括驱动轴、与该驱动轴固定连接的转子、以及与该转子相配合的环状摇盘,该转子具有一个与该驱动轴的垂直平面成角度的中心平面,该摇盘的中心平面与该转子的中心平面相重合,当驱动轴旋转时,该转子通过该摇盘驱使双向活塞进行往复运动;其特征在于:
    该转子具有用于与环状摇盘相配合的内表面,该内表面包括相对设置的第一内表面、第二内表面以及位于该第一内表面和第二内表面之间的转子接触面;
    该摇盘部分地环绕设置于该转子的内表面内,并包括分别与第一内表面相邻近的第一外周部、与该第二内表面相邻近并与该第一外周部相对的第二外周部、以及与该转子接触面相邻近并位于该第一外周部及第二外周部之间的摇盘接触面;
    其中,该第一内表面和第一外周部之间设置有第一轴承,该第二内表面和第二外周部之间设置有第二轴承,并且该转子接触面和摇盘接触面之间设置有第三轴承。
  2. 根据权利要求1所述的双向摇盘压缩机,其特征在于,所述第一轴承的内圈接触表面和外圈接触表面分别与该第一内表面和该第一外周部相接触;
    所述第二轴承的内圈接触表面和外圈接触表面分别与该第二内表面和 该第二外周部相接触;并且
    所述第三轴承的内圈接触表面和外圈接触表面分别与该转子接触面和该摇盘接触面相接触。
  3. 根据权利要求1所述的双向摇盘压缩机,其特征在于,所述第一轴承的内圈接触表面和所述第一内表面之间,和/或所述第一轴承的外圈接触表面和所述第一外周部之间设置有推力垫片;以及
    所述第二轴承的内圈接触表面和所述第二内表面之间,和/或所述第二轴承的外圈接触表面和所述第二外周部之间设置有推力垫片。
  4. 根据权利要求2或3所述的双向摇盘压缩机,其特征在于,所述第一轴承和第二轴承为滚针推力轴承、滚柱推力轴承、双列滚针推力轴承、双列滚柱推力轴承、圆锥滚子推力轴承中的一种。
  5. 根据权利要求2或3所述的双向摇盘压缩机,其特征在于,所述第三轴承为径向滚针轴承、径向滚柱轴承、或径向球轴承中的一种。
  6. 根据权利要求2或3所述的双向摇盘压缩机,所述第二轴承的内圈接触表面和所述第二表面之间,以及所述第二轴承的外圈接触表面和所述第二外周部之间均设置有推力垫片,并且所述第三轴承为径向球轴承。
  7. 根据权利要求1所述的双向摇盘压缩机,其特征在于,所述双向活塞包括两个窝部,该两个窝部中各设置有与所述摇盘的第一外周部和第二外周部相作用的两个半球状的滑履。
  8. 根据权利要求1所述的双向摇盘压缩机,其特征在于,所述转子包括第一环状凸缘和第二环状凸缘,并且该第一环状凸缘、该第二环状凸缘通过螺母和所述驱动轴相紧固。
PCT/CN2015/079444 2014-05-21 2015-05-21 双向摇盘压缩机 WO2015176666A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15795756.4A EP3147502B1 (en) 2014-05-21 2015-05-21 Bidirectional wobble plate compressor
US15/312,454 US10393098B2 (en) 2014-05-21 2015-05-21 Two-way wobble plate compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2014102157835 2014-05-21
CN201410215783.5A CN105089967B (zh) 2014-05-21 2014-05-21 双向摇盘压缩机

Publications (1)

Publication Number Publication Date
WO2015176666A1 true WO2015176666A1 (zh) 2015-11-26

Family

ID=54553438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079444 WO2015176666A1 (zh) 2014-05-21 2015-05-21 双向摇盘压缩机

Country Status (5)

Country Link
US (1) US10393098B2 (zh)
EP (1) EP3147502B1 (zh)
CN (1) CN105089967B (zh)
TR (1) TR201907747T4 (zh)
WO (1) WO2015176666A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108843534A (zh) * 2018-06-25 2018-11-20 杭州新亚低温科技有限公司 一种压缩机用导向结构
EP3819509B1 (en) 2019-11-05 2023-03-08 Roller Bearing Company of America, Inc. Double row needle track roller bearing with a thrust load carrying ball bearing
CN112096592A (zh) * 2020-09-04 2020-12-18 衡阳市振洋汽车配件有限公司 一种车用压缩机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141393A (zh) * 1995-05-26 1997-01-29 株式会社丰田自动织机制作所 带有旋转检测装置的致冷压缩机
CN2787875Y (zh) * 2004-10-15 2006-06-14 温州中成化油器制造有限公司汽车空调分公司 一种带有可变排量机构的斜板式压缩机
CN1878955A (zh) * 2003-09-02 2006-12-13 株式会社丰田自动织机 容量可变型斜盘式压缩机
CN101012819A (zh) * 2006-07-03 2007-08-08 浙江大元汽车空调有限公司 一种变排量汽车空调压缩机
JP2009068466A (ja) * 2007-09-18 2009-04-02 Toyota Industries Corp 容量可変型斜板式圧縮機
CN204099154U (zh) * 2014-05-21 2015-01-14 比泽尔制冷技术(中国)有限公司 双向摇盘压缩机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1978762A (en) * 1927-08-20 1934-10-30 Clarence F Harvey Engine
US2335415A (en) 1942-05-02 1943-11-30 Frederick J Holmes Wobble plate structure
US4166342A (en) * 1977-11-21 1979-09-04 The United States Of America As Represented By The Secretary Of The Navy Toroidal polisher
JPH02153272A (ja) 1988-12-02 1990-06-12 Toyota Autom Loom Works Ltd 斜板式圧縮機の潤滑構造
JPH03141877A (ja) * 1989-10-25 1991-06-17 Hitachi Ltd 斜板式圧縮機
JP3026518B2 (ja) 1991-07-03 2000-03-27 サンデン株式会社 容量可変型揺動板式圧縮機
JP2572690Y2 (ja) * 1992-09-02 1998-05-25 サンデン株式会社 斜板式圧縮機のピストン回転防止機構
JPH08159025A (ja) * 1994-12-02 1996-06-18 Zexel Corp 揺動板式圧縮機
JPH08284818A (ja) * 1995-04-10 1996-10-29 Zexel Corp 揺動板式圧縮機の揺動板支持構造
JPH09144651A (ja) * 1995-11-20 1997-06-03 Toyota Autom Loom Works Ltd 往復動型圧縮機
JPH10311276A (ja) 1997-05-13 1998-11-24 Zexel Corp 揺動板式圧縮機
CN101598121B (zh) 2009-07-09 2011-04-13 南京奥特佳冷机有限公司 斜盘式双头活塞式压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141393A (zh) * 1995-05-26 1997-01-29 株式会社丰田自动织机制作所 带有旋转检测装置的致冷压缩机
CN1878955A (zh) * 2003-09-02 2006-12-13 株式会社丰田自动织机 容量可变型斜盘式压缩机
CN2787875Y (zh) * 2004-10-15 2006-06-14 温州中成化油器制造有限公司汽车空调分公司 一种带有可变排量机构的斜板式压缩机
CN101012819A (zh) * 2006-07-03 2007-08-08 浙江大元汽车空调有限公司 一种变排量汽车空调压缩机
JP2009068466A (ja) * 2007-09-18 2009-04-02 Toyota Industries Corp 容量可変型斜板式圧縮機
CN204099154U (zh) * 2014-05-21 2015-01-14 比泽尔制冷技术(中国)有限公司 双向摇盘压缩机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3147502A4 *

Also Published As

Publication number Publication date
EP3147502B1 (en) 2019-05-08
TR201907747T4 (tr) 2019-06-21
EP3147502A4 (en) 2018-01-24
EP3147502A1 (en) 2017-03-29
US20170089329A1 (en) 2017-03-30
CN105089967B (zh) 2018-04-20
US10393098B2 (en) 2019-08-27
CN105089967A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
CN203067204U (zh) 一种斜盘式柱塞泵及马达
CN102926959B (zh) 一种斜盘式柱塞泵或马达
WO2017177936A1 (zh) 轴向柱塞泵
JP2009529619A (ja) アキシャルプランジャーポンプ又はモータ
WO2015176666A1 (zh) 双向摇盘压缩机
JPH10238455A (ja) アキシャルピストン機械
CN204099154U (zh) 双向摇盘压缩机
WO2015176667A1 (zh) 双向摇盘压缩机
JP2007127074A (ja) 圧縮機
US9115712B2 (en) Swing barrel type positive displacement pump using cross shaft joint bearing
EP1319834A3 (en) Hinge for a swash plate of a variable capacity compressor
CN201739163U (zh) 一种导向滑环式斜盘限位机构
CN1690414A (zh) 摇摆板型可变容积式压缩机
CN107429678B (zh) 摆动板式可变容量压缩机
CN109519351B (zh) 一种用于曲轴连杆式径向柱塞泵的柱塞回程装置
CN204212962U (zh) 一种具有自动定心功能的配油副结构
CN102192140A (zh) 斜盘和滑履间设滚珠装置的斜盘式轴向柱塞泵
CN215256659U (zh) 一种用于摇摆式压缩机的旋转体装置及定排量压缩机
JPH04255501A (ja) 往復ピストン装置
JP7005547B2 (ja) 斜軸式アキシャルピストンポンプ
CN201326527Y (zh) 立式单偏心轴径向均布多联往复泵
JP2005307940A (ja) 揺動斜板型可変容量圧縮機
JP6036282B2 (ja) アクチュエータ
CN102434426A (zh) 旋轨式往复活塞压缩机
CN111765228A (zh) 齿协同摆盘式轴向活塞驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795756

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15312454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015795756

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015795756

Country of ref document: EP