WO2015176559A1 - 永磁耦合联轴器自对中保护装置 - Google Patents

永磁耦合联轴器自对中保护装置 Download PDF

Info

Publication number
WO2015176559A1
WO2015176559A1 PCT/CN2015/072309 CN2015072309W WO2015176559A1 WO 2015176559 A1 WO2015176559 A1 WO 2015176559A1 CN 2015072309 W CN2015072309 W CN 2015072309W WO 2015176559 A1 WO2015176559 A1 WO 2015176559A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
sleeve
coupling
self
Prior art date
Application number
PCT/CN2015/072309
Other languages
English (en)
French (fr)
Inventor
徐俊峰
漆复兴
Original Assignee
江苏磁谷科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51468666&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015176559(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 江苏磁谷科技股份有限公司 filed Critical 江苏磁谷科技股份有限公司
Priority to US15/312,539 priority Critical patent/US10205373B2/en
Priority to BR112016024990-9A priority patent/BR112016024990B1/pt
Priority to EP15796309.1A priority patent/EP3148061B1/en
Priority to JP2017513292A priority patent/JP6446128B2/ja
Priority to CA2945372A priority patent/CA2945372C/en
Priority to AU2015263717A priority patent/AU2015263717B2/en
Publication of WO2015176559A1 publication Critical patent/WO2015176559A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/106Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with a radial air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centering rotors within the stator; Balancing rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/108Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts

Definitions

  • the invention belongs to the field of design and manufacture of a coupling, and particularly relates to a self-centering protection device for a permanent magnet coupling coupling.
  • Couplings are widely used in a variety of general purpose machines to couple two shafts for simultaneous rotation to transmit torque and motion.
  • Conventional couplings must transmit torque through the coupling of the drive shaft and the driven shaft.
  • the structure is complicated, the manufacturing precision is high, and the components are easily damaged when overloaded.
  • the sealing member when the driving shaft and the driven shaft work in two different media that need to be isolated from each other, the sealing member must be used for dynamic sealing, so that there is a problem that either the rotation resistance is increased to ensure the sealing is reliable, or the sealing is not tight, resulting in leakage. .
  • the sealing element wears and ages, the leakage is exacerbated, especially in systems where harmful gases (harmful liquids) are present, which can pollute the environment and endanger life.
  • the magnetic transmission coupling is a non-contact coupling, which breaks the structural form of the traditional coupling and adopts a new magnetic coupling principle to realize the force and torque without direct contact between the driving shaft and the driven shaft. Transfer, and can be sealed into a static seal to achieve zero leakage. Therefore, it is widely used in applications where there are special requirements for leakage, and it has entered commercial stage in large quantities.
  • the magnetic coupling is generally divided into a planar magnetic transmission coupling and a coaxial magnetic transmission coupling according to the position of the mutually coupled magnets.
  • the basic structure of the coaxial magnetic coupling on the market is that the inner and outer rotors are respectively mounted with magnetic steel, the inner rotor is fixed on the load shaft, and the outer rotor is fixed on the drive shaft. Since the magnetic steel generally uses a magnetic material with strong magnetic properties, the magnetic coupling of the conventional structure is susceptible to magnetic force during installation and debugging, and becomes extremely inconvenient. To solve the above problem, the structure of the coupling is designed as an inner and outer rotor.
  • Integral such as the Chinese patent CN103904860A, discloses a sleeve type permanent magnet eddy current coupling in which the inner and outer rotors are fixed by bearings, but the coupling increases the structural complexity and product cost due to the provision of the bearing.
  • the coupling works, the two rotors rotate together. Once the eccentricity produces slippage, the direct friction between the two rotor magnets damages the magnetic steel and even damages the entire device.
  • the technical problem to be solved by the present invention is that the existing magnetic coupling is inconvenient to install and debug, and further provides a self-centering protection device for the permanent magnet coupling coupling which is convenient for installation and debugging and stable and reliable.
  • a permanent magnet coupling coupling self-centering protection device of the present invention includes a first rotor and a second rotor, respectively, for fixedly connecting with a load shaft and a drive shaft, a first rotor and a first Two permanent magnets coupled to each other and capable of transmitting torque are respectively disposed on the two rotors, and the first rotor/second rotor are respectively provided with coaxial and taper inner tapered surfaces / outer tapered surface; further comprising an axial adjustment mechanism for adjusting a relative axial position between the first rotor and the second rotor.
  • the axial adjustment mechanism includes a first adjustment portion adapted to axially access the first rotor relative to the second rotor, and a second adjustment adapted to axially move the first rotor away from the second rotor unit.
  • the first rotor is an inner permanent magnet rotor connected to a load shaft or a drive shaft
  • the inner permanent magnet rotor has a coaxial inner sleeve and an outer sleeve, and an inner sleeve and the outer sleeve a connecting disc, an outer wall of the inner sleeve is provided with an outer permanent magnet, an inner wall of the outer sleeve forms the inner tapered surface, and a side of the connecting disc remote from the inner sleeve and the outer sleeve is connected a load shaft or a drive shaft;
  • the second rotor includes an outer permanent magnet rotor connecting the drive shaft or the load shaft, and an outer sleeve sleeve sleeved on the outer permanent magnet rotor, the outer permanent magnet rotor having a sleeve and a setting
  • An inner permanent magnet is disposed on an inner wall of the sleeve at an end surface of the sleeve, an outer wall
  • the outer taper sleeve is in clearance fit with the sleeve.
  • the axial adjustment mechanism includes an adjustment disc disposed parallel to the turntable of the outer permanent magnet rotor, the adjustment disc being fixedly coupled to the outer sleeve, the adjustment disc passing through a first bolt and the outer permanent
  • the magnetic rotor is screwed; the adjusting plate is also threaded with a second bolt, and the end of the second bolt is pressed against the turntable.
  • the outer taper sleeve is integrally formed with the adjustment disc.
  • a through hole is formed on the adjusting disk, and the outer permanent magnet rotor is formed with a threaded hole coaxial with the through hole, and the first bolt passes through the through hole and is connected to the threaded hole.
  • the diameter of the through hole is larger than the diameter of the first bolt.
  • An air gap A is formed between the outer wall of the inner sleeve of the inner permanent magnet rotor and the sleeve of the outer permanent magnet rotor, and the air gap A ranges from 2 to 5 mm.
  • An air gap B is formed between the inner wall of the outer sleeve and the outer wall of the inner sleeve of the inner permanent magnet rotor, and the air gap B ranges from 0.3 to 0.8 mm.
  • the axial adjustment mechanism includes a first adjustment portion adapted to axially access the first rotor relative to the second rotor, and a second adjustment adapted to axially move the first rotor away from the second rotor unit.
  • the first rotor is an inner permanent magnet rotor connected to a load shaft or a drive shaft
  • the inner permanent magnet rotor has a coaxial inner sleeve and an outer sleeve, and an inner sleeve and the outer sleeve a connecting disc, an outer wall of the inner sleeve is provided with an outer permanent magnet, an inner wall of the outer sleeve forms the inner tapered surface, and a side of the connecting disc remote from the inner sleeve and the outer sleeve is connected a load shaft or a drive shaft;
  • the second rotor includes an outer permanent magnet rotor connecting the drive shaft or the load shaft, and an outer sleeve sleeve sleeved on the outer permanent magnet rotor, the outer permanent magnet rotor having a sleeve and a setting
  • An inner permanent magnet is disposed on an inner wall of the sleeve at an end surface of the sleeve, an outer wall
  • the permanent magnet coupling coupling of the present invention adopts a tapered surface fit between the two rotors of the centering protection device, and the axial position is adjusted by the axial adjustment mechanism between the two rotors, and when the drive shaft and the load shaft are mounted,
  • the axial adjustment mechanism integrally connects the two rotors to facilitate installation of the drive shaft and the load shaft; in operation, the axial adjustment mechanism separates the two rotors to ensure reliable linkage between the two rotors;
  • the principle of the core ensures the coaxiality of the two permanent magnet rotors, thereby ensuring the uniformity of the air gap between the permanent magnets on the two rotors and thus ensuring the coupling performance of the magnetic coupling.
  • the permanent magnet of the self-aligning protection device of the permanent magnet coupling coupling of the present invention is disposed on the inner sleeve of the inner permanent magnet rotor and the inner wall of the sleeve of the outer permanent magnet rotor, and the outer sleeve of the inner permanent magnet rotor
  • the inner wall is matched with the outer taper sleeve surface of the outer permanent magnet rotor, so that the inner permanent magnet rotor and the outer permanent magnet rotor will never be attracted together, thereby avoiding the two rotors being "sticky" together and difficult to separate.
  • the axial adjustment mechanism of the present invention includes an adjustment disk coupled to the outer sleeve, the adjustment disk being screwed to the outer permanent magnet rotor by a first bolt, thereby achieving axial proximity of the first rotor and the second rotor Until the connection is integrated, for assembling the drive shaft and the load shaft; the adjustment plate is also threaded with a second bolt, and the end of the second bolt is pressed against the turntable of the outer permanent magnet rotor, and the second bolt is adjusted
  • the outer taper sleeve can be axially separated from the inner permanent magnet rotor, so that the first rotor and the second rotor are separated, and the coupling can work reliably.
  • the axial adjustment mechanism has the advantages of simple structure, low production cost, convenient adjustment, and reliable operation. . Low installation accuracy requirements make the magnetic coupling drive stable and reliable, even if accidental eccentric coupling slips, it also has reliable protection.
  • FIG. 1 is a schematic view showing the structure of a self-centering protection device for a permanent magnet coupling coupling of the present invention.
  • the reference numerals in the figure are: 1-inner permanent magnet rotor, 11-inner sleeve, 12-outer sleeve, 13-connecting disc, 2-outer permanent magnet rotor, 21-sleeve, 22-turntable, 3- Outer taper sleeve, 31-adjustment disc, 4-first bolt, 5-second bolt, 6-inner permanent magnet, 7-outer permanent magnet, 8-load shaft, 9-drive shaft.
  • 1 is a self-centering protection device for a permanent magnet coupling coupling of the present invention, which is respectively used for fixing with a load shaft and a drive shaft; a first rotor and a second rotor are connected, and the first rotor and the second rotor are respectively mounted with permanent magnets coupled to each other and capable of transmitting torque, and the first rotor/second rotor are respectively disposed coaxially and tapered An inner tapered/outer tapered surface; further comprising an axial adjustment mechanism for adjusting a relative axial position between the first rotor and the second rotor.
  • the axial adjustment mechanism axially approaches the first rotor and the second rotor, because the first rotor and the second rotor are disposed on each other.
  • the inner and outer tapered surfaces of the mating, the axially close to the rear two rotors can be integrally connected to facilitate the installation of the drive shaft and the load shaft; after the drive shaft and the load shaft are installed, the axial adjustment mechanism makes the first rotor and the second rotor
  • the rotor is axially separated, so that the two rotors are separated, and the opposite permanent magnets on the two rotors can ensure the reliable linkage of the two rotors;
  • the invention utilizes the self-centering principle of the cone surface to ensure the coaxiality of the two permanent magnet rotors, thereby ensuring the coaxiality.
  • the uniformity of the air gap between the permanent magnets on the two rotors ensures the coupling performance of the magnetic coupling. Since the taper fit clearance is much smaller than the air gap between the two permanent magnets, it ensures that the two permanent magnets are always installed during installation. Will not stick together.
  • the first rotor is an inner permanent magnet rotor 1 connected to a load shaft 8
  • the second rotor includes an outer permanent magnet rotor 2 connected to the drive shaft 9, and an outer sleeve 3 sleeved on the outer permanent magnet rotor 2.
  • the inner permanent magnet rotor 1 described above can also be connected to the drive shaft 9, and the outer permanent magnet rotor 2 is connected to the load shaft 8.
  • the inner permanent magnet rotor 1 has a coaxial inner sleeve 11 and an outer sleeve 12, and a lands 13 connecting the inner sleeve 11 and the outer sleeve 12, the lands 13 being remote from the One side of the inner sleeve 11 and the outer sleeve 12 is connected to the load shaft 8
  • the outer permanent magnet rotor 2 has a sleeve 21 and a turntable 22 disposed at an end surface of the sleeve 21, the turntable 22 being remote One end of the sleeve 21 is connected to the drive shaft 9.
  • the permanent magnet includes an outer permanent magnet 7 disposed on an outer wall of the inner sleeve 11 of the inner permanent magnet rotor 1, and an inner permanent magnet 6 is disposed on an inner wall of the sleeve 21 of the outer permanent magnet rotor 2, two forever The magnets are arranged opposite and spaced apart.
  • An inner wall of the outer sleeve 12 of the inner permanent magnet rotor 1 forms the inner tapered surface
  • an outer wall of the outer tapered sleeve 3 forms the outer tapered surface
  • the axial adjustment mechanism includes a first adjustment portion adapted to axially access the first rotor relative to the second rotor, and a second adjustment adapted to axially move the first rotor away from the second rotor unit.
  • the axial adjustment mechanism includes an adjustment disc 31 disposed parallel to the turntable 22 of the outer permanent magnet rotor 2, and the adjustment disc 31 is fixedly coupled to the outer sleeve 3, the adjustment The disc 31 is screwed to the outer permanent magnet rotor 2 by a first bolt 4, and the above structure forms the first adjusting portion, so that the first rotor and the second rotor are axially close to each other until they are integrally connected for assembling the driving shaft. 9 and load shaft 8.
  • the adjusting plate 31 is also screwed to the second bolt 5, and the end of the second bolt 5 is pressed against the turntable 22, and the above structure forms the second adjusting portion, because the outer taper sleeve 3 Interspersed with the sleeve 21, That is, the outer taper sleeve 3 can slide relative to the sleeve 21, and the outer taper sleeve 3 can be axially separated from the inner permanent magnet rotor 1 by adjusting the second bolt 5, thereby separating the first rotor from the second rotor.
  • the shaft can work reliably, and the above-mentioned axial adjustment mechanism has a simple structure, low production cost, convenient adjustment, and reliable operation.
  • the outer sleeve 3 is integrally formed with the adjustment disk 31.
  • the outer sleeve 3 can also be connected to the adjustment disc 31 by means of other fixed connections, such as welding or screwing.
  • the adjusting plate 31 is formed with a through hole
  • the outer permanent magnet rotor 2 is correspondingly formed with a threaded hole coaxial with the through hole, and the first bolt 4 passes through the through hole and is connected to the threaded hole. on.
  • the diameter of the through hole is larger than the diameter of the threaded hole.
  • An air gap A is formed between the outer wall of the inner sleeve of the inner permanent magnet rotor and the sleeve of the outer permanent magnet rotor, and the air gap A ranges from 2 to 5 mm. In this embodiment, the value is preferably 3 mm.
  • the air gap A meets the requirements of the magnetic coupling design
  • an air gap B is formed between the inner wall of the outer sleeve and the outer wall of the inner sleeve of the inner permanent magnet rotor, and the air gap B ranges from 0.3 to 0.8.
  • Mm in this embodiment, preferably takes a value of 0.5 mm, and the setting of the air gap B can be determined according to the case where the drive shaft and the load shaft of the specific use are radially jumped.
  • the main technical parameters are: rated power: 315kW
  • the maximum design torque of the magnetic coupling is ⁇ 3658.7Nm.
  • the main design data is: pole number: 24P
  • Air gap A 3; air gap B: 0.5mm
  • Inner rotor outer diameter ⁇ 280mm
  • FIG. 1 is a schematic diagram of the magnetic coupling in working condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

一种永磁耦合联轴器自对中保护装置,属于磁力联轴器的设计制造技术领域,其包括分别用于与负载轴(8)和驱动轴(9)固定连接的第一转子和第二转子,第一转子和第二转子上分别安装相互耦合并可传递扭矩的永磁体,所述第一转子/第二转子上分别设置同轴且锥度相互配合的内锥面/外锥面;还包括用于调节所述第一转子与所述第二转子之间相对轴向位置的轴向调节机构,该技术方案解决了现有的磁力联轴器安装调试不方便的技术问题。

Description

永磁耦合联轴器自对中保护装置 技术领域
本发明属于联轴器的设计制造领域,特别涉及一种永磁耦合联轴器自对中保护装置。
背景技术
联轴器广泛应用在各种通用机械上,用来联接两根轴使其同步旋转,以传递扭矩和运动。传统的联轴器都必须通过主动轴与从动轴的相互联结来传递扭矩,其结构复杂,制造精度高,超载时容易导致部件的破坏。特别是主动轴与从动轴工作在需要相互隔离的两种不同介质中时,必须使用密封元件进行动密封,这样就存在要么加大旋转阻力来保证密封可靠,要么密封不严产生泄漏的问题。另外,随着密封元件的磨损、老化,会加剧泄漏,尤其是在有害气体(有害液体)存在的系统中,一旦泄漏就会污染环境,危及生命。
磁力传动联轴器属非接触式联轴器,其打破传统联轴器的结构形式,采用全新的磁耦合原理,实现主动轴与从动轴之间不通过直接接触便能进行力与力矩的传递,并可将动密封化为静密封,实现零泄漏。因此它广泛应用于对泄漏有特殊要求的场合,已大量进入商用阶段。
磁力联轴器根据互相耦合的磁体设置位置的不同通常分为平面磁力传动联轴器和同轴磁力传动联轴器。目前市场上同轴磁力联轴器的基本结构是:内、外两转子分别安装磁钢,内转子固定在负载轴上,外转子固定在驱动轴上。由于磁钢一般选用磁性较强的磁性材料,常规结构的磁力联轴器安装调试时易受到磁性力的影响而变得极其不方便,为了解决上述问题,将联轴器的结构设计成内外转子整体式的,如中国专利CN103904860A即公开了一种内外转子通过轴承连接固定的套筒式永磁涡流联轴器,但这种联轴器由于设置了轴承增加了结构的复杂性和产品成本,当联轴器工作时两转子一起旋转,一旦发生偏心产生打滑现象,两转子磁钢之间直接摩擦损坏磁钢甚至损毁整个装置,而在安装时若意外不小心让两转子吸附在一起了,想要将其分离极其困难,特别是传递大扭矩的磁力联轴器,例如几千牛米转矩,其“粘”在一起的吸附力是几万牛,以上种种,都给磁力联轴器的安装调试、推广应用带来不便。
发明内容
为此,本发明所要解决的技术问题在于现有的磁力联轴器安装调试不方便,进而提供一种对安装调试方便、传动平稳可靠的永磁耦合联轴器自对中保护装置。
为解决上述技术问题,本发明的一种永磁耦合联轴器自对中保护装置,其包括分别用于与负载轴和驱动轴固定连接的第一转子和第二转子,第一转子和第二转子上分别安装相互耦合并可传递扭矩的永磁体,所述第一转子/第二转子上分别设置同轴且锥度相互配合的内锥面 /外锥面;还包括用于调节所述第一转子与所述第二转子之间相对轴向位置的轴向调节机构。所述轴向调节机构包括适于使所述第一转子相对第二转子沿轴向接近的第一调节部,以及适于使所述第一转子相对第二转子沿轴向远离的第二调节部。
所述第一转子为连接负载轴或驱动轴的内永磁转子,所述内永磁转子具有同轴的内套筒和外套筒、以及连接所述内套筒与所述外套筒的连接盘,所述内套筒的外壁设置外永磁体,所述外套筒的内壁成型所述内锥面,所述连接盘的远离所述内套筒和外套筒的一侧连接所述负载轴或驱动轴;所述第二转子包括连接驱动轴或负载轴的外永磁转子以及套设于所述外永磁转子上的外锥套,所述外永磁转子具有套筒以及设置于所述套筒端面处的转盘,所述套筒的内壁设置内永磁体,所述外锥套的外壁成型所述外锥面,所述转盘的远离所述套筒的一端连接所述驱动轴或负载轴。
所述外锥套与所述套筒间隙配合。
所述轴向调节机构包括平行于所述外永磁转子的所述转盘设置的调节盘,所述调节盘与所述外锥套固定连接,所述调节盘通过一号螺栓与所述外永磁转子旋紧;所述调节盘上还螺纹连接有二号螺栓,所述二号螺栓的端部顶压在所述转盘上。所述外锥套与所述调节盘一体成型。
所述调节盘上成型有通孔,所述外永磁转子对应成型与所述通孔同轴的螺纹孔,所述一号螺栓穿过所述通孔并连接于所述螺纹孔上,所述通孔的直径大于所述一号螺栓的直径。
所述内永磁转子的内套筒的外壁与外永磁转子的套筒之间形成气隙A,所述气隙A的取值范围为2-5mm。
所述外锥套的内壁与所述内永磁转子的内套筒的外壁之间形成气隙B,所述气隙B的取值范围为0.3-0.8mm。
所述轴向调节机构包括适于使所述第一转子相对第二转子沿轴向接近的第一调节部,以及适于使所述第一转子相对第二转子沿轴向远离的第二调节部。
所述第一转子为连接负载轴或驱动轴的内永磁转子,所述内永磁转子具有同轴的内套筒和外套筒、以及连接所述内套筒与所述外套筒的连接盘,所述内套筒的外壁设置外永磁体,所述外套筒的内壁成型所述内锥面,所述连接盘的远离所述内套筒和外套筒的一侧连接所述负载轴或驱动轴;所述第二转子包括连接驱动轴或负载轴的外永磁转子以及套设于所述外永磁转子上的外锥套,所述外永磁转子具有套筒以及设置于所述套筒端面处的转盘,所述套筒的内壁设置内永磁体,所述外锥套的外壁成型所述外锥面,所述转盘的远离所述套筒的一端连接所述驱动轴或负载轴;所述第一调节部包括平行于所述转盘设置的调节盘,所述调节盘与所 述外锥套固定连接,以及将所述调节盘旋紧连接于所述外永磁转子上的一号螺栓,所述第二调节部包括螺纹连接于所述调节盘上的二号螺栓,所述二号螺栓的端部顶压在所述转盘上。
本发明的上述技术方案相比现有技术具有以下优点:
(1)本发明的永磁耦合联轴器自对中保护装置的两个转子采用锥面配合,并且,两转子之间通过轴向调节机构调节轴向位置,安装驱动轴和负载轴时,所述轴向调节机构将两转子连接成一体,便于驱动轴与负载轴的安装;工作时,所述轴向调节机构将两转子分离,保证两转子可靠联动;本发明利用锥面配合自动定心原理,确保了两永磁转子的同轴度,从而保证了两转子上的永磁体之间的气隙均匀度进而保证了磁力联轴器的耦合性能。
(2)本发明的永磁耦合联轴器自对中保护装置的永磁体设置于内永磁转子的内套筒及外永磁转子的套筒内壁上,且内永磁转子的外套筒内壁与套在外永磁转子上的外锥套锥面配合,可见,因此内永磁转子与外永磁转子上的磁钢永不会吸附到一起从而避免了两转子“粘”在一起难以分开的困难;即使驱动轴或负载轴端产生横向位移,内外转子打滑,也不会导致内、外转子磁钢之间产生摩擦从而保护磁钢不被损毁,保证了磁力联轴器的安全。
(3)本发明的轴向调节机构包括连接于外锥套的调节盘,所述调节盘通过一号螺栓与所述外永磁转子旋紧,从而实现第一转子与第二转子轴向接近直至连接成一体,用于装配驱动轴和负载轴;所述调节盘上还螺纹连接有二号螺栓,所述二号螺栓的端部顶压在外永磁转子的转盘上,通过调节二号螺栓可以使外锥套与内永磁转子轴向远离,从而实现第一转子与第二转子分离,联轴器可以可靠工作,上述轴向调节机构结构简单,生产成本低;方便调节,且工作可靠。对安装精度要求低,使磁力联轴器传动平稳可靠,即使发生意外产生偏心联轴器打滑,也有可靠的保护。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明的永磁耦合联轴器自对中保护装置的结构示意图。
图中附图标记表示为:1-内永磁转子,11-内套筒,12-外套筒,13-连接盘,2-外永磁转子,21-套筒,22-转盘,3-外锥套,31-调节盘,4-一号螺栓,5-二号螺栓,6-内永磁体,7-外永磁体,8-负载轴,9-驱动轴。
具体实施方式
以下将结合附图,使用以下实施例对本发明进行进一步阐述。
图1为本发明的永磁耦合联轴器自对中保护装置,其包括分别用于与负载轴和驱动轴固 定连接的第一转子和第二转子,第一转子和第二转子上分别安装相互耦合并可传递扭矩的永磁体,所述第一转子/第二转子上分别设置同轴且锥度相互配合的内锥面/外锥面;还包括用于调节所述第一转子与所述第二转子之间相对轴向位置的轴向调节机构。
以上为本发明的核心技术方案,上述联轴器安装驱动轴和负载轴时,所述轴向调节机构使第一转子和第二转子轴向接近,由于第一转子和第二转子上设置互相配合的内、外锥面,轴向接近后两转子可以连接成一体,方便驱动轴与负载轴的安装;安装完驱动轴与负载轴后,所述轴向调节机构使第一转子和第二转子轴向远离,使两转子分离,两转子上相对设置的永磁体可以保证两转子可靠联动;本发明利用锥面配合自动定心原理,确保了两永磁转子的同轴度,从而保证了两转子上的永磁体之间的气隙均匀度进而保证了磁力联轴器的耦合性能,由于锥面配合间隙远小于两永磁体之间的气隙,其可以确保在安装时两永磁体永远不会吸附到一起。
以下为本发明的上述技术方案的具体及优选的结构:
所述第一转子为连接负载轴8的内永磁转子1,所述第二转子包括连接驱动轴9的外永磁转子2以及套设于所述外永磁转子2上的外锥套3。对于本领域技术人员来说,上述内永磁转子1也可以连接驱动轴9,对应的,外永磁转子2连接负载轴8。
其中,内永磁转子1具有同轴的内套筒11和外套筒12、以及连接所述内套筒11与所述外套筒12的连接盘13,所述连接盘13的远离所述内套筒11和外套筒12的一侧连接所述负载轴8,所述外永磁转子2具有套筒21以及设置于所述套筒21端面处的转盘22,所述转盘22的远离所述套筒21的一端连接驱动轴9。
所述永磁体包括设置于所述内永磁转子1的内套筒11的外壁的外永磁体7,以及所述外永磁转子2的套筒21的内壁设置内永磁体6,两个永磁体相对并间隔设置。
所述内永磁转子1的外套筒12的内壁形成所述内锥面,所述外锥套3的外壁形成所述外锥面。
所述轴向调节机构包括适于使所述第一转子相对第二转子沿轴向接近的第一调节部,以及适于使所述第一转子相对第二转子沿轴向远离的第二调节部。本实施方式中,所述轴向调节机构包括平行于所述外永磁转子2的所述转盘22设置的调节盘31,所述调节盘31与所述外锥套3固定连接,所述调节盘31通过一号螺栓4与所述外永磁转子2旋紧,以上结构形成所述第一调节部,从而实现第一转子与第二转子轴向接近直至连接成一体,用于装配驱动轴9和负载轴8。所述调节盘31上还螺纹连接有二号螺栓5,所述二号螺栓5的端部顶压在所述转盘22上,以上结构形成所述第二调节部,由于所述外锥套3与所述套筒21间隙配合, 即所述外锥套3可以相对所述套筒21滑动,通过调节二号螺栓5可以使外锥套3与内永磁转子1轴向远离,从而实现第一转子与第二转子分离,联轴器可以可靠工作,上述轴向调节机构结构简单,生产成本低;方便调节,且工作可靠。
为了进一步降低生产成本,所述外锥套3与所述调节盘31一体成型。其他实施方式中,还可以选用其他固定连接,例如焊接或螺纹连接的方式将所述外锥套3与所述调节盘31连接。所述调节盘31上成型有通孔,所述外永磁转子2对应成型与所述通孔同轴的螺纹孔,所述一号螺栓4穿过所述通孔并连接于所述螺纹孔上。其中,所述通孔的直径大于螺纹孔的直径。
所述内永磁转子的内套筒的外壁与外永磁转子的套筒之间形成气隙A,所述气隙A的取值范围为2-5mm,本实施例,优选取值为3mm,气隙A符合磁力耦合设计要求,所述外锥套的内壁与所述内永磁转子的内套筒的外壁之间形成气隙B,所述气隙B的取值范围为0.3-0.8mm,本实施例,优选取值为0.5mm,气隙B的设置可根据具体使用的驱动轴和负载轴径向跳动的情况来确定。
本发明的具体实施例数据如下:
其主要技术参数为:额定功率:315kW
额定转速:1500rpm
额定转矩:2032.6Nm
考虑到一般异步电机的最大过载转矩1.8倍,则:
磁力联轴器的最大设计转矩为≥3658.7Nm。
其主要设计数据为:极数:24P
最大外径:φ400mm
气隙A:3;气隙B:0.5mm
内转子外径:φ280mm
磁钢轴向长度:75mm
上述永磁耦合联轴器自对中保护装置的具体工作过程是:
首先松开二号螺栓5,旋压一号螺栓4,使外锥套3沿轴线向右移动,使内永磁转子1与外锥套3之间的气隙B=0,这样第一转子和第二转子在强磁力作用下通过锥面配合就形成了一个整体,且在锥面的挤压配合下保证了第一转子和第二转子的同轴度,也就保证了气隙A的均匀度和磁力联轴器的最佳性能;在驱动轴9和负载轴8安装好之后,松开一号螺栓4,旋压二号螺栓5,使外锥套3沿轴向左移动调整气隙B,B的大小可根据具体使用的驱动轴9和负载轴8径向跳动的情况来确定,调整好气隙B后锁紧一号螺栓4,磁力联轴器即可以开 始工作,如图1为该磁力联轴器处于工作状态的示意图。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

  1. 一种永磁耦合联轴器自对中保护装置,其包括分别用于与负载轴和驱动轴固定连接的第一转子和第二转子,第一转子和第二转子上分别安装相互耦合并可传递扭矩的永磁体,其特征在于:所述第一转子/第二转子上分别设置同轴且锥度相互配合的内锥面/外锥面;还包括用于调节所述第一转子与所述第二转子之间相对轴向位置的轴向调节机构。
  2. 根据权利要求1所述的一种永磁耦合联轴器自对中保护装置,其特征在于:所述第一转子为连接负载轴(8)或驱动轴(9)的内永磁转子(1),所述内永磁转子(1)具有同轴的内套筒(11)和外套筒(12)、以及连接所述内套筒(11)与所述外套筒(12)的连接盘(13),所述内套筒(11)的外壁设置外永磁体(7),所述外套筒(12)的内壁成型所述内锥面,所述连接盘(13)的远离所述内套筒(11)和外套筒(12)的一侧连接所述负载轴(8)或驱动轴(9);所述第二转子包括连接驱动轴(9)或负载轴(8)的外永磁转子(2)以及套设于所述外永磁转子(2)上的外锥套(3),所述外永磁转子(2)具有套筒(21)以及设置于所述套筒(21)端面处的转盘(22),所述套筒(21)的内壁设置内永磁体(6),所述外锥套(3)的外壁成型所述外锥面,所述转盘(22)的远离所述套筒(21)的一端连接所述驱动轴(9)或负载轴(8)。
  3. 根据权利要求2所述的一种永磁耦合联轴器自对中保护装置,其特征在于:所述外锥套(3)与所述套筒(21)间隙配合。
  4. 根据权利要求2所述的一种永磁耦合联轴器自对中保护装置,其特征在于:所述轴向调节机构包括平行于所述外永磁转子(2)的所述转盘(22)设置的调节盘(31),所述调节盘(31)与所述外锥套(3)固定连接,所述调节盘(31)通过一号螺栓(4)与所述外永磁转子(2)旋紧;所述调节盘(31)上还螺纹连接有二号螺栓(5),所述二号螺栓(5)的端部顶压在所述转盘(22)上。
  5. 根据权利要求4所述的一种永磁耦合联轴器自对中保护装置,其特征在于:所述外锥套(3)与所述调节盘(31)一体成型。
  6. 根据权利要求4所述的一种永磁耦合联轴器自对中保护装置,其特征在于:所述调节盘(31)上成型有通孔,所述外永磁转子(2)对应成型与所述通孔同轴的螺纹孔,所述一号螺栓(4)穿过所述通孔并连接于所述螺纹孔上,所述通孔直径大于所述一号螺栓(4)的直径。
  7. 根据权利要求2所述的一种永磁耦合联轴器自对中保护装置,其特征在于:所述内永磁转子(1)的内套筒(11)的外壁与外永磁转子(2)的套筒(21)之间形成气隙A,所述气隙A的取值范围为2-5mm。
  8. 根据权利要求2所述的一种永磁耦合联轴器自对中保护装置,其特征在于:所述外锥套(3)的内壁与所述内永磁转子(1)的内套筒(11)的外壁之间形成气隙B,所述气隙B的取值范围为0.3-0.8mm。
  9. 根据权利要求1所述的一种永磁耦合联轴器自对中保护装置,其特征在于:所述轴向调节机构包括适于使所述第一转子相对第二转子沿轴向接近的第一调节部,以及适于使所述第一转子相对第二转子沿轴向远离的第二调节部。
PCT/CN2015/072309 2014-05-21 2015-02-05 永磁耦合联轴器自对中保护装置 WO2015176559A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/312,539 US10205373B2 (en) 2014-05-21 2015-02-05 Self-alignment protection device for permanent-magnet coupling
BR112016024990-9A BR112016024990B1 (pt) 2014-05-21 2015-02-05 Dispositivo de proteção de autoalinhamento de acoplamento de ímã permanente
EP15796309.1A EP3148061B1 (en) 2014-05-21 2015-02-05 Permanent-magnet coupling self-alignment protective device
JP2017513292A JP6446128B2 (ja) 2014-05-21 2015-02-05 永久磁石カップリングのセルフアラインメント保護装置
CA2945372A CA2945372C (en) 2014-05-21 2015-02-05 Self-alignment protection device for permanent-magnet coupling
AU2015263717A AU2015263717B2 (en) 2014-05-21 2015-02-05 Permanent-magnet coupling self-alignment protective device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410215313.9 2014-05-21
CN201410215313.9A CN104038020B (zh) 2014-05-21 2014-05-21 永磁耦合联轴器自对中保护装置

Publications (1)

Publication Number Publication Date
WO2015176559A1 true WO2015176559A1 (zh) 2015-11-26

Family

ID=51468666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072309 WO2015176559A1 (zh) 2014-05-21 2015-02-05 永磁耦合联轴器自对中保护装置

Country Status (8)

Country Link
US (1) US10205373B2 (zh)
EP (1) EP3148061B1 (zh)
JP (1) JP6446128B2 (zh)
CN (1) CN104038020B (zh)
AU (1) AU2015263717B2 (zh)
BR (1) BR112016024990B1 (zh)
CA (1) CA2945372C (zh)
WO (1) WO2015176559A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520733A (zh) * 2019-01-05 2019-03-26 中国船舶重工集团公司第七0三研究所 一种永磁联轴器的加载试验装置
CN110115522A (zh) * 2018-02-06 2019-08-13 佛山市顺德区美的电热电器制造有限公司 磁力传动盘、磁传动组件、刀具组件和食物料理机
CN110535320A (zh) * 2019-08-14 2019-12-03 江苏磁谷科技股份有限公司 一种磁力联轴器
CN114962852A (zh) * 2022-04-12 2022-08-30 广东工贸职业技术学院 传动结构及水下驱动装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038020B (zh) 2014-05-21 2017-03-29 江苏磁谷科技股份有限公司 永磁耦合联轴器自对中保护装置
CN104811014B (zh) * 2015-05-25 2017-08-22 大连交通大学 一种永磁异步调速装置
CN106059249B (zh) * 2016-05-31 2018-11-02 江苏磁谷科技股份有限公司 磁力联轴器及其安装方法
CN107370337B (zh) * 2017-08-16 2024-01-26 江苏磁谷科技股份有限公司 永磁联轴器的立式安装结构及方法和在线分离与复位方法
KR101858687B1 (ko) * 2017-09-14 2018-05-16 주식회사 포스코 가변 토크 마그네틱 커플링
CN107863873B (zh) * 2017-10-30 2023-07-07 江苏磁谷科技股份有限公司 一种高速型同步永磁联轴器及其安装方法
CN109149859B (zh) * 2018-08-04 2019-12-13 温岭市东菱电机有限公司 一种对中可调的电机
CN109067141A (zh) * 2018-09-12 2018-12-21 大连海事大学 具有过载保护功能的非接触径向磁力联轴器
CN109600016B (zh) * 2018-11-19 2020-09-15 江苏磁谷科技股份有限公司 一种带锥面定位结构的磁力联轴器
CN109361306B (zh) * 2018-12-11 2023-12-12 南京玛格耐特智能科技有限公司 一种筒式永磁联轴器
CN113972787A (zh) * 2020-07-24 2022-01-25 上海磁雷革传动系统有限公司 一种轴向调整装置及电机
CN112003415A (zh) * 2020-09-18 2020-11-27 康富科技有限公司 一种单支撑永磁电机
CN114257058A (zh) * 2020-09-21 2022-03-29 中核兰州铀浓缩有限公司 一种核供料取料用局排风机非接触式传动装置
US20220283046A1 (en) * 2021-03-08 2022-09-08 Baker Hughes Holdings Llc Perturbator systems and methods
CN113346709B (zh) * 2021-05-31 2022-07-29 长沙硕博电机有限公司 一种组合式电磁耦合型减速装置
CN114679025B (zh) * 2022-04-18 2024-03-08 大连智鼎科技有限公司 一种永磁直驱电机便捷式更换轴承的工装及方法
CN116566161A (zh) * 2022-09-14 2023-08-08 中国科学院理化技术研究所 一种非接触式的低温旋转机械轴系结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021385A1 (en) * 2002-08-01 2004-02-05 Albert Six Magnetic drive system
CN101867279A (zh) * 2010-05-19 2010-10-20 鞍山钦元节能设备制造有限公司 一种调速型永磁驱动系统
CN202197206U (zh) * 2011-09-11 2012-04-18 余虹锦 新型斜向磁场的锥形内转子异步永磁耦合调速器
CN102931810A (zh) * 2012-11-27 2013-02-13 镇江市江南矿山机电设备有限公司 轴间永磁耦合机构
CN103326541A (zh) * 2013-06-20 2013-09-25 镇江市江南矿山机电设备有限公司 轴间永磁耦合机构
CN103441644A (zh) * 2013-08-06 2013-12-11 大连应达实业有限公司 单向定隙可调矩永磁磁力耦合器
CN104038020A (zh) * 2014-05-21 2014-09-10 镇江市江南矿山机电设备有限公司 永磁耦合联轴器自对中保护装置
CN203933339U (zh) * 2014-05-21 2014-11-05 镇江市江南矿山机电设备有限公司 永磁耦合联轴器自对中保护装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914852A (zh) * 1972-06-06 1974-02-08
JPH0351193U (zh) * 1989-09-26 1991-05-17
JPH03127618A (ja) * 1989-10-13 1991-05-30 Toyo Eng Corp 回分処理槽用撹拌装置
JPH0558189A (ja) * 1991-08-29 1993-03-09 Fuji Oozx Kk エンジンから補機への動力伝達装置
US7863789B2 (en) * 2005-10-19 2011-01-04 Dura-Trac Motors, Inc. Brushless permanent magnet motor/generator with axial rotor decoupling to eliminate magnet induced torque losses
US7385332B2 (en) * 2006-04-17 2008-06-10 Hamilton Sundstrand Corporation Permanent magnet dynamoelectric machine with axially displaceable permanent magnet rotor assembly
US7804263B2 (en) * 2008-02-21 2010-09-28 Hamilton Sundstrand Corporation Control system for a controllable permanent magnet machine
CN101478222A (zh) * 2009-01-13 2009-07-08 白玉生 永磁调速器
US9490736B2 (en) * 2010-07-20 2016-11-08 Differential Dynamics Corporation Adjustable assembly of rotor and stator and applications thereof with a variable power generator
EP2502875B8 (en) * 2011-03-24 2014-07-09 Antonio Mengibar, S.A. Magnetic clutch
CN102290964A (zh) * 2011-08-02 2011-12-21 江苏大学 一种楔形圆盘可调速磁力联轴器
JP2013257017A (ja) * 2012-06-14 2013-12-26 Honda Motor Co Ltd トランスミッションのシンクロ装置
CN103312120A (zh) * 2013-06-20 2013-09-18 镇江市江南矿山机电设备有限公司 轴间永磁耦合机构
CN203398973U (zh) * 2013-07-08 2014-01-15 宝鸡泰华磁机电技术研究所有限公司 内辐射环式静态调速带轮型永磁联轴器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021385A1 (en) * 2002-08-01 2004-02-05 Albert Six Magnetic drive system
CN101867279A (zh) * 2010-05-19 2010-10-20 鞍山钦元节能设备制造有限公司 一种调速型永磁驱动系统
CN202197206U (zh) * 2011-09-11 2012-04-18 余虹锦 新型斜向磁场的锥形内转子异步永磁耦合调速器
CN102931810A (zh) * 2012-11-27 2013-02-13 镇江市江南矿山机电设备有限公司 轴间永磁耦合机构
CN103326541A (zh) * 2013-06-20 2013-09-25 镇江市江南矿山机电设备有限公司 轴间永磁耦合机构
CN103441644A (zh) * 2013-08-06 2013-12-11 大连应达实业有限公司 单向定隙可调矩永磁磁力耦合器
CN104038020A (zh) * 2014-05-21 2014-09-10 镇江市江南矿山机电设备有限公司 永磁耦合联轴器自对中保护装置
CN203933339U (zh) * 2014-05-21 2014-11-05 镇江市江南矿山机电设备有限公司 永磁耦合联轴器自对中保护装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3148061A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115522A (zh) * 2018-02-06 2019-08-13 佛山市顺德区美的电热电器制造有限公司 磁力传动盘、磁传动组件、刀具组件和食物料理机
CN109520733A (zh) * 2019-01-05 2019-03-26 中国船舶重工集团公司第七0三研究所 一种永磁联轴器的加载试验装置
CN109520733B (zh) * 2019-01-05 2023-12-05 中国船舶重工集团公司第七0三研究所 一种永磁联轴器的加载试验装置
CN110535320A (zh) * 2019-08-14 2019-12-03 江苏磁谷科技股份有限公司 一种磁力联轴器
CN114962852A (zh) * 2022-04-12 2022-08-30 广东工贸职业技术学院 传动结构及水下驱动装置
CN114962852B (zh) * 2022-04-12 2024-02-13 广东工贸职业技术学院 传动结构

Also Published As

Publication number Publication date
BR112016024990A2 (pt) 2017-08-15
JP6446128B2 (ja) 2018-12-26
CA2945372A1 (en) 2015-11-26
BR112016024990B1 (pt) 2022-05-31
AU2015263717A1 (en) 2016-10-20
AU2015263717B2 (en) 2018-04-19
EP3148061A1 (en) 2017-03-29
BR112016024990A8 (pt) 2021-08-24
US10205373B2 (en) 2019-02-12
US20170098990A1 (en) 2017-04-06
EP3148061B1 (en) 2024-04-03
JP2017519481A (ja) 2017-07-13
CA2945372C (en) 2020-01-07
EP3148061A4 (en) 2017-07-19
CN104038020B (zh) 2017-03-29
CN104038020A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2015176559A1 (zh) 永磁耦合联轴器自对中保护装置
JP2017519481A5 (zh)
US10400810B2 (en) Extraction sleeve
CN102072265A (zh) 紧凑式盘簧扭矩限制器
EP2802743A1 (en) Turbocharger having a connector for connecting an impeller to a shaft
CN107171531B (zh) 一种同步永磁联轴器
US20120076448A1 (en) Keyless Bearing Sleeve for Subterranean Applications
WO2018126593A1 (zh) 无刷线控离心球臂接合装置的电磁离合器
CN210318250U (zh) 一种锥面摩擦式力矩限制器
CN103573834B (zh) 一种伺服机构与发动机的传动连接装置
CN105736589A (zh) 花键轴轴向定位结构
CN203727457U (zh) 转向装置中的万向节叉与轴的结合构造
JP5816695B2 (ja) 可変速磁性軸継手
CN103758891A (zh) 一种间隙微调式磁流变离合器
CN110739828B (zh) 一种球式永磁联轴器
CN203395042U (zh) 一种胀紧联接装置
CN205371342U (zh) 带扭矩限制器的万向节联轴器
CN202811483U (zh) 一种便于多级泵转子部件安装的连接结构
CN203202056U (zh) 角接触沟道三球销式等速万向节及其三柱槽壳
CN114198425B (zh) 一种永磁激励下的双剪切磁流变离合器
CN105485190B (zh) 带扭矩限制器的万向节联轴器
CN102678563A (zh) 一种涡旋压缩机的径向柔性结构
CN209100515U (zh) 稳定型发动机启动轴
CN201856636U (zh) 一种转向驱动装置
CN210599933U (zh) 永磁式负载扭矩过载保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796309

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2945372

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015796309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015796309

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015263717

Country of ref document: AU

Date of ref document: 20150205

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016024990

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15312539

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017513292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016024990

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161026

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref document number: 112016024990

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.3 NA RPI NO 2432 DE 15/08/2017 POR TER SIDO INDEVIDA.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016024990

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE CN 201410215313.9 DE 21/05/2014 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: 112016024990

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161026