WO2015176542A1 - N6-(1-(4-甲氧基苯基)乙基)-腺苷、其制备及用途 - Google Patents

N6-(1-(4-甲氧基苯基)乙基)-腺苷、其制备及用途 Download PDF

Info

Publication number
WO2015176542A1
WO2015176542A1 PCT/CN2015/000359 CN2015000359W WO2015176542A1 WO 2015176542 A1 WO2015176542 A1 WO 2015176542A1 CN 2015000359 W CN2015000359 W CN 2015000359W WO 2015176542 A1 WO2015176542 A1 WO 2015176542A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyperlipidemia
compound
methoxyphenyl
ethyl
adenosine
Prior art date
Application number
PCT/CN2015/000359
Other languages
English (en)
French (fr)
Inventor
朱海波
吴松
杨柳
王冬梅
Original Assignee
中国医学科学院药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医学科学院药物研究所 filed Critical 中国医学科学院药物研究所
Publication of WO2015176542A1 publication Critical patent/WO2015176542A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/167Purine radicals with ribosyl as the saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Definitions

  • the present invention relates to a novel compound N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine, a process for preparing the same, a pharmaceutical composition containing the same, and the use of the compound
  • the use of the treatment of hyperlipemia, fatty liver, atherosclerosis belongs to the field of medical technology.
  • Hyperlipidemia includes hypercholesterolemia, hypertriglyceridemia, and complex hyperlipidemia.
  • Hypercholesterolemia especially low-density lipoprotein cholesterol (LDL-C)
  • LDL-C low-density lipoprotein cholesterol
  • Atherosclerosis is the common pathological basis for coronary heart disease, stroke, and peripheral vascular disease.
  • statins that inhibits cholesterol biosynthesis, but its adverse reactions in the digestive system and musculoskeletal system have been reported many times at home and abroad.
  • statins are often used in combination with cholesterol intestinal absorption inhibitors (such as ezetimibe).
  • AMPK As an “energy susceptor”, AMPK is widely distributed with various tissues and organs of the body. AMPK regulates the body's energy metabolism balance by sensing the ratio of AMP/ATP content in the body, and plays a very important role in lipid metabolism. Both metformin and TZD mainstream glucose-lowering drugs can activate AMPK. Studies have shown that AMPK activates energy metabolism by phosphorylating effector proteins or regulating the expression of various genes by inhibiting acetyl-CoA carboxylase (ACC), glycerol-3-phosphate acyltransferase (GPAT), and hydroxymethylpentazone.
  • ACC acetyl-CoA carboxylase
  • GPAT glycerol-3-phosphate acyltransferase
  • HMG-CoA Reductase Acetyl-CoA Reductase (HMG-CoA Reductase), which inhibits the production of cellular fatty acids, triglycerides and cholesterol, and promotes fatty acid oxidation.
  • HMG-CoA Reductase Acetyl-CoA Reductase
  • AMPK is widely involved in the metabolic regulation of the body's major glycolipid metabolism, the AMPK signaling cascade is considered an important target for the prevention and treatment of glucose and lipid metabolism disorders.
  • N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine has AMPK activity in vitro and in vivo, and has a significant lipid-lowering effect on hyperlipidemia golden hamsters. .
  • One technical problem to be solved by the present invention is to provide a novel structure of the compound N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine, a preparation method thereof, a pharmaceutical composition, and the compound The use of a medicament for preventing or treating AMP-activated protein kinase-related diseases, hyperlipidemia, and hyperlipidemia-related diseases.
  • a first aspect of the present invention provides a novel structural lipid-modifying compound N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine as shown in Formula I, which is in adenosine Based on structural modification and transformation.
  • a second aspect of the present invention provides the pharmaceutical composition of the compound of the first aspect, which comprises a therapeutically effective amount of the compound N6-(1-(4-methoxyphenyl)ethyl)-gland
  • a pharmaceutical composition of a glucoside, and a pharmaceutically acceptable carrier can be prepared according to methods well known in the art. Any dosage form suitable for human or animal use can be prepared by combining a compound of the invention with one or more pharmaceutically acceptable solid or liquid excipients and/or adjuvants.
  • the content of the compound of the present invention in its pharmaceutical composition is usually from 0.1 to 95% by weight.
  • the compound of the present invention or the pharmaceutical composition containing the same may be administered in a unit dosage form, which may be enterally or parenterally, such as oral, intravenous, intramuscular, subcutaneous, nasal, oral mucosa, eye, lung and Respiratory tract, skin, vagina, rectum, etc.
  • the dosage form can be a liquid dosage form, a solid dosage form or a semi-solid dosage form.
  • Liquid dosage forms can be solutions (including true and colloidal solutions), emulsions (including o/w type, w/o type and double emulsion), suspensions, injections (including water injection, powder injection and infusion), eye drops, nasal drops, lotions and tinctures;
  • solid dosage forms can be tablets (including ordinary tablets, enteric tablets, lozenges, dispersible tablets, chewable tablets, Effervescent tablets, orally disintegrating tablets), capsules (including hard capsules, soft capsules, enteric capsules), granules, powders, pellets, dropping pills, suppositories, films, patches, gas (powder) aerosols A spray or the like;
  • the semisolid dosage form may be an ointment, a gel, a paste or the like.
  • the compounds of the present invention can be formulated into common preparations, as sustained release preparations, controlled release preparations, targeted preparations, and various microparticle delivery systems.
  • diluents may be starch, dextrin, sucrose, glucose, lactose, mannitol, sorbitol, xylitol, microcrystalline cellulose, calcium sulfate, calcium hydrogen phosphate, calcium carbonate, etc.
  • wetting agent may be water, ethanol, or different Propyl alcohol, etc.
  • the binder may be starch syrup, dextrin, syrup, honey, glucose solution, microcrystalline cellulose, gum arabic, gelatin syrup, sodium carboxymethyl cellulose, methyl cellulose, hydroxypropyl group
  • disintegrant can be dry starch, microcrystalline cellulose, low-
  • the active ingredient compound of the present invention may be mixed with a diluent, a glidant, and the mixture may be directly placed in a hard capsule or a soft capsule.
  • the active ingredient can also be formulated into a granule or pellet with a diluent, a binder, a disintegrant, and then placed in a hard or soft capsule.
  • the various diluents, binders, wetting agents, disintegrants, glidants of the formulations used to prepare the tablets of the present invention are also useful in the preparation of capsules of the compounds of the invention.
  • water, ethanol, isopropanol, propylene glycol or a mixture thereof may be used as a solvent, and an appropriate amount of a solubilizing agent, a solubilizing agent, a pH adjusting agent, and an osmotic pressure adjusting agent which are commonly used in the art may be added.
  • the solubilizing agent or co-solvent may be poloxamer, lecithin, hydroxypropyl- ⁇ -cyclodextrin, etc.; the pH adjusting agent may be phosphate, acetate, hydrochloric acid, sodium hydroxide, etc.; osmotic pressure regulating agent may It is sodium chloride, mannitol, glucose, phosphate, acetate, and the like.
  • mannitol, glucose or the like may also be added as a proppant.
  • composition of the invention also contains other drugs which modulate blood lipids.
  • the therapeutic effect can be enhanced, and the compound or pharmaceutical composition of the present invention can be administered by any known administration method.
  • the compounds or pharmaceutical compositions of this invention may be administered alone or in combination with other therapeutic or symptomatic agents.
  • the compound of the present invention synergizes with other therapeutic agents, its dosage should be adjusted according to the actual situation.
  • a third aspect of the present invention provides the use of the compound of the first aspect or the pharmaceutical composition of the second aspect for the preparation of a medicament for preventing and/or treating AMP-activated protein kinase-associated diseases.
  • AMPK is widely distributed with various tissues and organs of the body. It regulates the balance of energy metabolism in the body by sensing the ratio of AMP/ATP content in the body, and plays a very important role in lipid metabolism. Studies have shown that both metformin and TZD mainstream glucose-lowering drugs can activate AMPK. Activated AMPK inhibits acetyl-CoA carboxylase (ACC), glycerol-3-phosphate acyltransferase (GPAT) and hydroxymethylglutaryl coenzyme A reductase (HMG-CoA Reductase), thereby inhibiting cellular fatty acids, glycerol The formation of triesters and cholesterol promotes fatty acid oxidation. Because AMPK is widely involved in the metabolic regulation of the body's major glycolipid metabolism, the AMPK signaling cascade is considered an important target for the prevention and treatment of glucose and lipid metabolism disorders.
  • ACC acetyl-CoA carboxylase
  • GPAT glycerol-3
  • N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine can significantly activate AMP-activated protein kinase (AMPK) both in vitro and in vivo, and thus compounds of formula I can be prepared for prevention and/or A drug that treats and AMP-activated protein kinase-associated diseases.
  • AMPK AMP-activated protein kinase
  • a fourth aspect of the present invention provides the use of the compound of the first aspect or the pharmaceutical composition of the second aspect for the preparation of a medicament for preventing and/or treating a hyperlipidemia or a hyperlipidemia-related disease;
  • hyperlipidemia includes hypercholesterolemia, hypertriglyceridemia and complex hyperlipidemia;
  • the hyperlipidemia refers to a higher than normal level of total cholesterol, triglyceride and/or low density lipoprotein cholesterol in the blood of the patient;
  • the hyperlipidemia is hyperlipidemia in a patient with a defect in hereditary lipid metabolism
  • the hyperlipidemia-related diseases include cardiovascular and cerebrovascular diseases associated with hyperlipidemia;
  • the cardio-cerebral vascular disease is selected from the group consisting of atherosclerosis, coronary heart disease, myocardial infarction, sudden cardiac death, stroke, hypertension, and peripheral vascular disease;
  • hyperlipidemia-related diseases also include hyperglycemia-related impaired glucose tolerance, diabetes, and fat.
  • the compound of the formula I can reduce the levels of total cholesterol, triglyceride and low-density lipoprotein cholesterol in the blood of the golden hamster of hyperlipidemia, and inhibit the ectopic accumulation of liver lipids, thereby having the use of treating hyperlipidemia and fatty liver. Because hyperlipidemia is closely related to the development and progression of atherosclerosis, the compounds of formula I can also be used to prevent diseases such as atherosclerosis.
  • a fifth aspect of the present invention provides a method for producing the compound of the first aspect
  • the invention is characterized in that: 6-chloropurine nucleoside is used as a raw material, reacted with 1-(4-methoxyl)ethylamine by triethylamine in a suitable reaction solvent and reaction temperature, and then purified and recrystallized. It gave an off-white solid.
  • the reaction solvent is selected from the group consisting of alcohols of C1-9, including ethanol, methanol, n-butanol, isopropanol;
  • the reaction temperature may be from room temperature to reflux temperature
  • the recrystallization solvent may be selected from esters, alcohols or mixed solvents.
  • Preferred solvents are selected from ethyl acetate;
  • a silica gel column is used for the purification, and the silica gel column eluent is selected from the mixture of dichloromethane and methanol.
  • N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine increases AMPK activity in a dose-dependent manner at in vitro molecular level.
  • N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine increased AMPK and ACC phosphorylation levels in HepG2 cells in vitro in a time-dependent manner.
  • N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine increased AMPK and ACC phosphorylation levels in HepG2 cells in vitro in a dose-dependent manner.
  • N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine increased AMPK and ACC phosphorylation levels in C2C12 cells in vitro in a dose-dependent manner.
  • N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine increased AMPK and ACC phosphorylation levels in 3T3-L1 cells in vitro in a dose-dependent manner.
  • N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine inhibits cellular triglyceride content caused by fatty acid stimulation
  • A blank control
  • B 250 ⁇ M oleic acid
  • C N 6 - (1-(4-Methoxyphenyl)ethyl)-adenosine (10 -8 M) + 250 ⁇ M oleic acid
  • D N 6 -(1-(4-methoxyphenyl)ethyl)- Adenosine (10 -6 M) + 250 ⁇ M oleic acid.
  • Figure 7 Effect of N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine on AMPK and ACC phosphorylation levels in liver tissues of hyperlipidemia golden hamsters.
  • Figure 8 Effect of N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine on AMPK and ACC phosphorylation levels in skeletal muscle of hyperlipidemia golden hamsters.
  • Figure 9 Effect of N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine on AMPK and ACC phosphorylation levels in adipose tissue of hyperlipidemia golden hamsters.
  • Figure 10 Effect of N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine on blood lipid levels in apoE -/- mice.
  • HDL-C high density lipoprotein cholesterol
  • LDL-C low density lipoprotein cholesterol
  • FFA free fatty acid
  • TC total cholesterol
  • test article was dissolved in DMSO and the concentration was adjusted to 250 ⁇ M.
  • Peptide complex 5 ⁇ buffer, 1.2 mM SAMS, 500 mM MgCl 2 , AMPK active, ddH 2 O
  • HepG2 cells were cultured to 70-80% confluence, starved overnight, and incubated with different concentrations of N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine for 12 h. The cells were lysed with RIPA lysate. Proteins were extracted and detected by protein denaturation-SDS-PAGE electrophoresis-transfection-blocking antibody-ECL exposure to detect AMPK and ACC phosphorylation levels.
  • C2C12 and 3T3-L1 cells were incubated with different concentrations of N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine for 12 h, protein extraction and denaturation-SDS- PAGE electrophoresis - transfection - blocking antibody incubation - ECL exposure, detection of AMPK and ACC phosphorylation levels.
  • HepG2 cells were cultured to 70-80% confluence and incubated with different concentrations of N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine for 12 h. After the experiment, the cells were scraped into PBS. The cells were pelleted by centrifugation, depleted into PBS, and PBS was evaporated to a trace amount.
  • Cell lipids were extracted by Folch method to detect cholesterol content; cells were treated with mixed acid and N 6 -(1-(4-methoxyphenyl)ethyl group After incubation with adenosine for 12 h, it was fixed with paraformaldehyde, and the concentration of triglyceride was determined by oil red O staining.
  • Intracellular AMPK activity can be expressed by the downstream ACC phosphorylation level.
  • Compound 1 can increase the AMPK and ACC phosphorylation levels in HepG2 cells in a time-dependent manner (Figure 2 right).
  • 12 hours of drug treatment time was selected for HepG2.
  • C2C12 see Figure 4
  • 3T3-L1 cells see Figure 5
  • the results showed that Compound 1 can activate AMPK activity in three different cell lines in a dose-dependent manner. .
  • the lipid accumulation model was stimulated by 250 ⁇ M mixed lipids in HepG2 cells. Oil red staining showed that N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine could significantly reduce intracellular triglyceride content. .
  • A normal cultured cells; B: oleic acid 250 ⁇ M; C: oleic acid 250 ⁇ M + compound 1 0.01 ⁇ M; D: oleic acid 250 ⁇ M + compound 1 1 ⁇ M)
  • Model establishment and grouping Animals were cultured for 1 week and then modeled separately. Animals were fed a high-fat diet in addition to the normal control group. After 1 week, blood was collected from the meridians and blood samples to detect serum total cholesterol (TC) and triglycerides (TG). )content. According to the TC level, they were randomly divided into 4 groups: model control group, positive control drug simvastatin group (6 mg/kg) and N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine low dose. Group (10 mg/kg), N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine high dose group (40 mg/kg), 12 rats in each group.
  • N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine (Compound 1) is a synthetic new compound not reported in the literature. Pharmacodynamic experiments confirmed that it has a significant effect on improving blood lipid levels and liver lipid levels in golden hamsters of hyperlipidemia, suggesting that Compound 1 has the effect of treating experimental hyperlipidemia.
  • N 6 -(1-(4-methoxyphenyl)ethyl)-adenosine can increase the liver of golden hamsters (see Figure 7) and skeletal muscle at a dose of 40 mg/kg (see Figure 8). Phosphorylation levels of AMPK and ACC in adipose tissue (see Figure 9). (Statistical results and variance analysis are shown in Table 6)
  • mice during the experiment was significantly higher than that of the C57 control group.
  • the serum levels of TC, TG and LDL-C in the compound 1 treatment group were lower than those in the model control group, and had no significant effect on HDL-C.
  • Compound 1 has a significant lipid-lowering effect, as shown in Table 7-9.
  • Results 1 During the quarantine period, the behavior of each animal was normal, no abnormal appearance signs, and the color and shape of the two were normal. After administration, the animals in the drug-administered group decreased their autonomic activities, and the administration returned to normal on the second day. From the second day of administration to the end of the observation period of 14 days, the behavioral activities and signs of the blank control group and the administration group were normal. The administration group showed individual on the first day, the fourth day, and the seventh day after administration. Animal death (2 females). At a reasonable concentration and volume of administration, ICR mice were given 1 g ⁇ kg-1 test drug twice a day, and immediately after the whole observation period, individual animals died, and the test sample was given to mice. The LD 50 dose administered by gavage was greater than the maximum dose (1 g ⁇ kg -1 ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Diabetes (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Emergency Medicine (AREA)
  • Rheumatology (AREA)
  • Endocrinology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了式I所示的腺苷衍生物及其合成制备工艺以及在治疗高血脂症、脂肪肝及动脉粥样硬化方面的用途。具体而言:公开了一个新的化合物N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1),该化合物在体内外均可以显著激活AMP激活的蛋白激酶(AMPK),降低高脂血症金黄地鼠血中总胆固醇、甘油三酯及低密度脂蛋白胆固醇水平,抑制肝脏脂质异位堆积,具有治疗高脂血症、脂肪肝和预防诸如外周血管疾病、动脉粥样硬化等疾病的用途。

Description

N6-(1-(4-甲氧基苯基)乙基)-腺苷、其制备及用途 技术领域:
本发明涉及一种新的化合物N6-(1-(4-甲氧基苯基)乙基)-腺苷,这种化合物的制备方法、含有该化合物的药物组合物,和该化合物用于治疗高血脂症、脂肪肝、动脉粥样硬化方面的用途,属于医药技术领域。
技术背景:
高脂血症包括高胆固醇血症、高甘油三酯血症及复合性高脂血症。高胆固醇血症,特别是低密度脂蛋白胆固醇(low-density lipoprotein cholesterol,LDL-C),的升高,与动脉粥样硬化的发生和发展密切相关。动脉粥样硬化是冠心病、脑卒中和周围血管疾病的共同病理学基础。目前临床上治疗高胆固醇血症的最主要药物是抑制胆固醇生物合成的他汀类药物,但其在消化系统和肌肉骨骼系统的不良反应已在国内外多次被报道。为了使血脂达到理想水平,单纯增加他汀的用药剂量并不可取,因此他汀类药物常与胆固醇肠道吸收抑制剂(如依哲麦布)联合应用。
流行病学与临床研究资料显示,高甘油三酯血症与心血管病之间可能存在密切关系,也是2型糖尿病的独立危险因素。通过药物(贝特类药物)干预降低甘油三酯(TG)水平,可有助于降低心血管病风险。
AMPK作为“能量感受器”,广泛存在与机体多种组织器官。AMPK通过感受体内AMP/ATP含量比值调控机体能量代谢平衡,在脂代谢中发挥极重要的作用,二甲双胍和TZD两类主流降糖药物均能激活AMPK。研究表明,AMPK激活后通过磷酸化效应蛋白或调控各种基因的表达调节能量代谢,通过抑制乙酰辅酶A羧化酶(ACC)、甘油-3-磷酸酰基转移酶(GPAT)和羟甲戊二酰辅酶A还原酶(HMG-CoA Reductase),进而抑制细胞脂肪酸,甘油三酯和胆固醇的生成,促进脂肪酸氧化。由于AMPK广泛介入机体主要糖脂代谢组织的代谢调控过程,因此AMPK信号级联被视为防治糖脂代谢紊乱的重要靶点。
传统中草药中寻找新型调血脂先导化合物是一条符合我国国情的新药研究模式。中国医学科学院药物研究所利用蛹虫草子实体为原料,提取分离出高纯度的 3`-脱氧腺苷(虫草素,纯度99%以上)经研究确立其调血脂功能,并获得国家知识产权局的专利授权(专利号:ZL 200310101650.7)。经过结构修饰及改造,我们发现N6-(1-(4-甲氧基苯基)乙基)-腺苷具有体内外激活AMPK活性,并对高脂血症金黄地鼠具有明显调血脂作用。
发明内容:
本发明要解决的一个技术问题是提供一种新型结构的化合物N6-(1-(4-甲氧基苯基)乙基)-腺苷,其制备方法,药物组合物,以及该化合物在制备预防或治疗AMP激活的蛋白激酶相关疾病、高脂血症及高脂血症相关疾病药物中的应用。
为解决本发明的技术问题,提供如下技术方案:
本发明的技术方案第一方面是提供了如式I所示的新结构调血脂化合物N6-(1-(4-甲氧基苯基)乙基)-腺苷,该化合物是在腺苷基础上进行结构修饰与改造的。
Figure PCTCN2015000359-appb-000001
本发明的技术方案第二方面是提供第一方面所述化合物的药物组合物,其特征在于,含有治疗有效量的化合物N6-(1-(4-甲氧基苯基)乙基)-腺苷的药物组合物,以及药学上可接受的载体。该药物组合物可根据本领域公知的方法制备。可通过将本发明化合物与一种或多种药学上可接受的固体或液体赋形剂和/或辅剂结合,制成适于人或动物使用的任何剂型。本发明化合物在其药物组合物中的含量通常为0.1-95重量%。
本发明化合物或含有它的药物组合物可以单位剂量形式给药,给药途径可为肠道或非肠道,如口服、静脉注射、肌肉注射、皮下注射、鼻腔、口腔粘膜、眼、肺和呼吸道、皮肤、阴道、直肠等。
给药剂型可以是液体剂型、固体剂型或半固体剂型。液体剂型可以是溶液剂(包括真溶液和胶体溶液)、乳剂(包括o/w型、w/o型和复乳)、混悬剂、注射剂 (包括水针剂、粉针剂和输液)、滴眼剂、滴鼻剂、洗剂和搽剂等;固体剂型可以是片剂(包括普通片、肠溶片、含片、分散片、咀嚼片、泡腾片、口腔崩解片)、胶囊剂(包括硬胶囊、软胶囊、肠溶胶囊)、颗粒剂、散剂、微丸、滴丸、栓剂、膜剂、贴片、气(粉)雾剂、喷雾剂等;半固体剂型可以是软膏剂、凝胶剂、糊剂等。
本发明化合物可以制成普通制剂、也制成是缓释制剂、控释制剂、靶向制剂及各种微粒给药系统。
为了将本发明化合物制成片剂,可以广泛使用本领域公知的各种赋形剂,包括稀释剂、黏合剂、润湿剂、崩解剂、润滑剂、助流剂。稀释剂可以是淀粉、糊精、蔗糖、葡萄糖、乳糖、甘露醇、山梨醇、木糖醇、微晶纤维素、硫酸钙、磷酸氢钙、碳酸钙等;湿润剂可以是水、乙醇、异丙醇等;粘合剂可以是淀粉浆、糊精、糖浆、蜂蜜、葡萄糖溶液、微晶纤维素、阿拉伯胶浆、明胶浆、羧甲基纤维素钠、甲基纤维素、羟丙基甲基纤维素、乙基纤维素、丙烯酸树脂、卡波姆、聚乙烯吡咯烷酮、聚乙二醇等;崩解剂可以是干淀粉、微晶纤维素、低取代羟丙基纤维素、交联聚乙烯吡咯烷酮、交联羧甲基纤维素钠、羧甲基淀粉钠、碳酸氢钠与枸橼酸、聚氧乙烯山梨糖醇脂肪酸酯、十二烷基磺酸钠等;润滑剂和助流剂可以是滑石粉、二氧化硅、硬脂酸盐、酒石酸、液体石蜡、聚乙二醇等。还可以将片剂进一步制成包衣片,例如糖包衣片、薄膜包衣片、肠溶包衣片,或双层片和多层片。
为了将给药单元制成胶囊剂,可以将有效成分本发明化合物与稀释剂、助流剂混合,将混合物直接置于硬胶囊或软胶囊中。也可将有效成分本发明化合物先与稀释剂、黏合剂、崩解剂制成颗粒或微丸,再置于硬胶囊或软胶囊中。用于制备本发明化合物片剂的各稀释剂、黏合剂、润湿剂、崩解剂、助流剂品种也可用于制备本发明化合物的胶囊剂。
为将本发明化合物制成注射剂,可以用水、乙醇、异丙醇、丙二醇或它们的混合物作溶剂并加入适量本领域常用的增溶剂、助溶剂、pH调剂剂、渗透压调节剂。增溶剂或助溶剂可以是泊洛沙姆、卵磷脂、羟丙基-β-环糊精等;pH调剂剂可以是磷酸盐、醋酸盐、盐酸、氢氧化钠等;渗透压调节剂可以是氯化钠、甘露醇、葡萄糖、磷酸盐、醋酸盐等。如制备冻干粉针剂,还可加入甘露醇、葡萄糖等作为支撑剂。
此外,如需要,也可以向药物制剂中添加着色剂、防腐剂、香料、矫味剂或其它添加剂。发明的药物组合物还含有其他调血脂的药物。
为达到用药目的,增强治疗效果,本发明的化合物或药物组合物可用任何公知的给药方法给药。
本发明的化合物或药物组合物可单独服用,或与其他治疗药物或对症药物合并使用。当本发明的化合物与其它治疗药物存在协同作用时,应根据实际情况调整它的剂量。
本发明的技术方案第三方面是提供第一方面所述化合物或第二方面所述药物组合物在制备预防和/或治疗和AMP激活的蛋白激酶相关疾病的药物中的应用。
AMPK广泛存在与机体多种组织器官,通过感受体内AMP/ATP含量比值调控机体能量代谢平衡,在脂代谢中发挥极重要的作用,研究表明二甲双胍和TZD两类主流降糖药物均能激活AMPK。激活后的AMPK可抑制乙酰辅酶A羧化酶(ACC)、甘油-3-磷酸酰基转移酶(GPAT)和羟甲戊二酰辅酶A还原酶(HMG-CoA Reductase),进而抑制细胞脂肪酸,甘油三酯和胆固醇的生成,促进脂肪酸氧化。由于AMPK广泛介入机体主要糖脂代谢组织的代谢调控过程,因此AMPK信号级联被视为防治糖脂代谢紊乱的重要靶点。
发明人发现N6-(1-(4-甲氧基苯基)乙基)-腺苷在体内外均可以显著激活AMP激活的蛋白激酶(AMPK),因此式I化合物能制备预防和/或治疗和AMP激活的蛋白激酶相关疾病的药物。
本发明的技术方案第四方面是提供第一方面所述化合物或第二方面所述药物组合物在制备预防和/或治疗高脂血症或高脂血症相关疾病药物中的应用;
其特征在于,所述的高脂血症包括高胆固醇血症、高甘油三酯血症及复合性高脂血症;
所述的高脂血症是指患者血液中总胆固醇、甘油三酯和/或低密度脂蛋白胆固醇高于正常水平;
所述的高脂血症是遗传性脂质代谢缺陷病人患有的高脂血症;
所述的高脂血症相关疾病包括高脂血症相关的心脑血管疾病;
所述的心脑血管疾病选自动脉粥样硬化、冠心病、心肌梗死、心脏猝死、脑卒中、高血压、周围血管疾病;
所述的高脂血症相关疾病还包括高脂血症相关的糖耐量异常、糖尿病、脂肪 肝、肝硬化、胆石症、胰腺炎、眼底出血、失明、跛行、高尿酸血症;
式I化合物能降低高脂血症金黄地鼠血中总胆固醇、甘油三酯及低密度脂蛋白胆固醇水平,抑制肝脏脂质异位堆积,因此具有治疗高脂血症、脂肪肝的用途。因为高血脂与动脉粥样硬化的发生和发展密切相关,所以式I化合物也能具有预防动脉粥样硬化等疾病的用途。
本发明的技术方案第五方面是提供第一方面所述化合物的制备方法,
其特征在于,以6-氯嘌呤核苷为原料,在合适反应溶剂和反应温度下,经三乙胺作用,与1-(4-甲氧基分级)乙胺反应,再经纯化及重结晶得灰白色固体。
反应溶剂选自C1-9的醇,包括乙醇、甲醇、正丁醇、异丙醇;
反应温度可以是室温至回流温度;
重结晶溶剂可以选自酯、醇或混合溶剂。优选的溶剂选自乙酸乙酯;
纯化时选用硅胶柱,硅胶柱洗脱剂选自二氯甲烷和甲醇的混合液。
附图说明
图1.在体外分子水平,N6-(1-(4-甲氧基苯基)乙基)-腺苷呈剂量依赖性提高AMPK活性.
图2.N6-(1-(4-甲氧基苯基)乙基)-腺苷呈时间依赖性提高体外培养HepG2细胞内AMPK和ACC磷酸化水平。
图3.N6-(1-(4-甲氧基苯基)乙基)-腺苷呈剂量依赖性提高体外培养HepG2细胞内AMPK和ACC磷酸化水平。
图4.N6-(1-(4-甲氧基苯基)乙基)-腺苷呈剂量依赖性提高体外培养C2C12细胞内AMPK和ACC磷酸化水平。
图5.N6-(1-(4-甲氧基苯基)乙基)-腺苷呈剂量依赖性提高体外培养3T3-L1细胞内AMPK和ACC磷酸化水平。
图6.N6-(1-(4-甲氧基苯基)乙基)-腺苷抑制脂肪酸刺激引起的细胞甘油三酯含量A:空白对照;B:250μM油酸;C:N6-(1-(4-甲氧基苯基)乙基)-腺苷(10-8M)+250μM油酸;D:N6-(1-(4-甲氧基苯基)乙基)-腺苷(10-6M)+250μM油酸。
图7.N6-(1-(4-甲氧基苯基)乙基)-腺苷对高脂血症金黄地鼠肝脏组织中AMPK和ACC磷酸化水平的影响。
图8.N6-(1-(4-甲氧基苯基)乙基)-腺苷对高脂血症金黄地鼠骨骼肌中AMPK 和ACC磷酸化水平的影响。
图9.N6-(1-(4-甲氧基苯基)乙基)-腺苷对高脂血症金黄地鼠脂肪组织中AMPK和ACC磷酸化水平的影响。
图10.N6-(1-(4-甲氧基苯基)乙基)-腺苷对apoE-/-小鼠血脂水平的影响。
图11.N6-(1-(4-甲氧基苯基)乙基)-腺苷对apoE-/-小鼠动脉粥样硬化斑块形成的影响。
术语和简称:
HDL-C:高密度脂蛋白胆固醇;
LDL-C:低密度脂蛋白胆固醇;
FFA:游离脂肪酸;
TC:总胆固醇;
TG:甘油三酯
具体实施方式
下面结合具体实施实例对本发明作进一步的阐述,但是不限制本发明。
实施例1:
N6-(1-(4-甲氧基苯基)乙基)-腺苷的合成
250ml的圆底烧瓶中,加入300ml乙醇,再加入4-甲氧基苯乙酮(15g,100mol),盐酸羟胺(7.59g,110mol),无水乙酸钠(9.68g,110mol),室温下搅拌1h。TLC检测反应完毕,减压蒸尽溶剂,加水,析出白色固体,减压抽滤,水洗,得白色固体3.28g(4-甲氧基苯乙酮肟)。TLC显示单一斑点。
250ml的三口瓶中,加入上步反应所得白色固体(4-甲氧基苯乙酮肟),冰醋酸(100ml),室温搅拌下分批加入锌粉(16g,0.25mol),加毕,控制温度在60-70℃,搅拌反应45min。趁热抽滤,滤液减压蒸除溶剂,残余物加入氨水调pH为10,再加入乙酸乙酯萃取,有机层用无水硫酸钠干燥。减压蒸除溶剂,得黄色油状物7.17g。
100ml圆底瓶中,加入无水乙醇(50ml)及上步反应所得油状物(0.57g,3.75mmol)、6-氯嘌呤核苷(0.72g,2.5mmol),三乙胺(0.51g,5mmol),搅拌下回流反应2h,TLC显示反应完全。减压蒸除溶剂,残余物经硅胶柱色谱纯化[V(二氯甲烷)∶V(甲醇)=20∶1],收集所需组分,浓缩得粗品,再用乙酸乙酯重结晶得 灰白色固体0.82g,收率82.0%。1H NMR(300MHz,DMSO)8.37(s,1H),8.15(s,1H),7.44(d,1H),7.34(d,1H),6.95(d,1H),6.83(d,1H),5.86(d,1H),5.47(m,1H),4.58(s,1H),4.13(s,1H),3.93(m,1H),3.74(s,1H),3.69(d,2H),3.34(s,2H),1.49(m,2H).ESI-MS m/z(%):402.2[M+H+].
药理实验:
实验例1:N6-(1-(4-甲氧基苯基)乙基)-腺苷体外激活AMPK活性检测
2.1 N6-(1-(4-甲氧基苯基)乙基)-腺苷激活AMPK纯酶活性检测
受试品以DMSO溶解,调节浓度至250μM。
溶液配制:
1)肽复合物:5×buffer,1.2mM SAMS,500mM MgCl2,AMPK active,ddH2O
2)起始复合物:20mM ATP,[32p]ATP,ddH2O
每管加43μl肽复合物和2μl样品再加5μl起始复合物在30度水浴中孵育20min,取15μl上清液点在p81磷酸纤维素纸上。室温晾干1min,将其在1%磷酸中洗涤。待吹干后,放入闪烁液内进行液闪计数。
[γ-32P]相对活力的测定:
数据处理:
Figure PCTCN2015000359-appb-000002
结果1:N6-(1-(4-甲氧基苯基)乙基)-腺苷可在分子水平剂量依赖性升高AMPK活性。(见图1)
2.2 N6-(1-(4-甲氧基苯基)乙基)-腺苷激活体外培养细胞AMPK信号通路并抑制细胞内脂质聚集
2.2.1细胞AMPK及下游调控元件ACC磷酸化水平检测
HepG2细胞培养至70-80%融合后,饥饿刺激过夜,与不同浓度N6-(1-(4-甲氧基苯基)乙基)-腺苷共孵育12h,细胞以RIPA裂解液裂解后提取蛋白,经蛋白变性-SDS-PAGE电泳-转膜-封闭抗体孵育-ECL曝光,检测AMPK及ACC磷酸化水平。
C2C12及3T3-L1细胞经诱导分化为肌肉细胞后,与不同浓度N6-(1-(4-甲氧基苯基)乙基)-腺苷共孵育12h,经蛋白提取及变性-SDS-PAGE电泳-转膜-封 闭抗体孵育-ECL曝光,检测AMPK及ACC磷酸化水平。
2.2.2细胞内脂质提取:
HepG2细胞培养至70-80%融合后,与不同浓度N6-(1-(4-甲氧基苯基)乙基)-腺苷共孵育12h,实验结束后,将细胞刮取至PBS中,离心沉淀细胞,去PBS,挥发PBS至微量,以Folch法提取细胞脂质,检测胆固醇含量;细胞以混合酸处理,并与N6-(1-(4-甲氧基苯基)乙基)-腺苷孵育12h后,以多聚甲醛固定,油红O染色法测定甘油三酯聚积水平。
结果1:N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)激活体外培养细胞内AMPK活性(见图2)
细胞内AMPK活性可用下游ACC磷酸化水平表示,化合物1可呈时间依赖性(图2右)增加HepG2细胞内AMPK及ACC磷酸化水平,根据该实验结果选取12小时的给药处理时间,对HepG2(见图3)、C2C12(见图4)及3T3-L1细胞(见图5)进行不同剂量化合物1给药处理,结果表明,化合物1可在三个不同细胞系呈剂量依赖性激活AMPK活性。(统计结果及差异分析见表1)
表1.化合物1对体外培养细胞内AMPK及ACC磷酸化水平的影响
Figure PCTCN2015000359-appb-000003
与对照组相比,*P<0.05,**P<0.01
结果2:N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)降低体外培养细胞内总胆固醇和甘油三酯含量
结果显示,0.01μM,1μM剂量下N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)可明显降低细胞内总胆固醇含量。(见表2)
表2.N6-(1-(4-甲氧基苯基)乙基)-腺苷降低细胞内总胆固醇含量
Figure PCTCN2015000359-appb-000004
Figure PCTCN2015000359-appb-000005
与空白对照组比较*P<0.05,**P<0.01
以250μM混合脂质刺激HepG2细胞形成脂质堆积模型,油红染色结果表明,N6-(1-(4-甲氧基苯基)乙基)-腺苷可明显降低细胞内甘油三酯含量。(见图6,A:正常培养细胞;B:油酸250μM;C:油酸250μM+化合物1 0.01μM;D:油酸250μM+化合物1 1μM)
实验例2:N6-(1-(4-甲氧基苯基)乙基)-腺苷治疗给药对高血脂症模型金黄地鼠血脂水平的影响
方法:
3.1模型建立及分组动物适应性饲养1周后分别造模,动物除正常对照组外喂以高脂饲料,连续1周后内眦经脉采血,检测血清总胆固醇(TC)和甘油三酯(TG)含量。根据TC水平随机分成4组,分别为模型对照组,阳性对照药辛伐他汀组(6mg/kg)和N6-(1-(4-甲氧基苯基)乙基)-腺苷低剂量组(10mg/kg),N6-(1-(4-甲氧基苯基)乙基)-腺苷高剂量组(40mg/kg),每组12只。
3.2给药各给药组动物每天口服给药1次,正常对照组及模型对照组给予同体积蒸馏水(10ml/kg)。
3.3各项指标检测动物给药两周和四周后,取血分离血清,检测TC、TG、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)和游离脂肪酸(FFA)含量。给药四周后动物以45mg/kg戊巴比妥钠腹腔注射麻醉,腹主动脉取血,分离血浆;取部分肝脏作组织脂质提取。
3.4组织内AMPK活性检测动物组织样本以RIPA裂解液裂解后提取蛋白,经蛋白变性-SDS-PAGE电泳-转膜-封闭抗体孵育-ECL曝光
结果1:N6-(1-(4-甲氧基苯基)乙基)-腺苷对高血脂症金黄地鼠血脂的影响
结果表明,金黄地鼠连续给予高脂饲料后血清TC、TG、LDL-C和FFA含量明显增高,HDL/LDL比值明显降低,表明高血脂症金黄地鼠模型复制成功。给予N6-(1-(4-甲氧基苯基)乙基)-腺苷治疗后可使血清中升高的TC、TG、LDL-CF 和FFA含量明显降低,HDL/LDL比值明显增高,表明N6-(1-(4-甲氧基苯基)乙基)-腺苷具有明显的调血脂作用。(见表3-4)
表3.N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)治疗给药两周对高血脂症金黄地鼠血脂的影响
Figure PCTCN2015000359-appb-000006
与正常对照组比较#P<0.05,##P<0.01;与模型对照组比较*P<0.05,**P<0.01。
表4.N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)治疗给药四周对高血脂症金黄地鼠血脂的影响
Figure PCTCN2015000359-appb-000007
与正常对照组比较#P<0.05,##P<0.01;与模型对照组比较*P<0.05,**P<0.01。
结果2:N6-(1-(4-甲氧基苯基)乙基)-腺苷对高血脂症金黄地鼠肝脂的影响
由结果可见,高脂血症金黄地鼠肝脏TC、TG含量明显增高,给于N6-(1-(4-甲氧基苯基)乙基)-腺苷治疗后,肝脂含量明显下降,显示其有抑制体内脂肪异位堆积的作用。(见表5)
表5.N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)治疗给药四周对高血脂症金黄地鼠肝脂的影响
Figure PCTCN2015000359-appb-000008
Figure PCTCN2015000359-appb-000009
与正常对照组比较#P<0.05,##P<0.01;与模型对照组比较*P<0.05,**P<0.01。
综上所述,N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)是一种合成的未见文献报道的新化合物。药效学实验证实其具有显著改善高脂血症金黄地鼠血脂水平和肝脂水平的作用,提示化合物1具有治疗实验性高血脂症的作用。
结果3:N6-(1-(4-甲氧基苯基)乙基)-腺苷对高血脂症金黄地鼠组织内AMPK活性的影响
由结果可见,N6-(1-(4-甲氧基苯基)乙基)-腺苷在40mg/kg剂量下可增加金黄地鼠肝脏(见图7)、骨骼肌(见图8)及脂肪组织(见图9)中AMPK及ACC的磷酸化水平。(统计结果及差异分析见表6)
表6.化合物1对高脂血症金黄地鼠组织内AMPK及ACC磷酸化水平的影响
Figure PCTCN2015000359-appb-000010
与模型对照组比较*P<0.05,**P<0.01
实验例3:N6-(1-(4-甲氧基苯基)乙基)-腺苷治疗给药对apoE-/-小鼠动脉粥样硬化形成的影响
4.1模型建立及分组动物适应性饲养1周后分别造模,动物除C57BL/6对照组外喂以高脂饲料,并分别为模型对照组,阳性对照药辛伐他汀组(6mg/kg)和N6-(1-(4-甲氧基苯基)乙基)-腺苷低剂量组(56mg/kg)每组8只。
3.2给药各给药组动物每天口服给药1次,正常对照组及模型对照组给予同体积蒸馏水。
结果1:N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)对高脂喂养apoE-/-小鼠 血脂水平的影响
结果表明,小鼠在实验期间血脂水平明显高于C57对照组小鼠,给于化合物1治疗组动物血清TC、TG及LDL-C水平低于模型对照组,对HDL-C无明显影响,
表明化合物1具有明显调血脂作用,见表7-9。
表7.N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)治疗给药两周对高血脂症apoE-/-小鼠血脂水平的影响
Figure PCTCN2015000359-appb-000011
与正常对照组比较###P<0.001;与模型对照组比较*P<0.05,**P<0.01。
表8.N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)治疗给药六周对高血脂症apoE-/-小鼠血脂水平的影响
Figure PCTCN2015000359-appb-000012
与正常对照组比较#P<0.05,###P<0.001;与模型对照组比较*P<0.05,**P<0.01。
表9.N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)治疗给药十周对高血脂症apoE-/-小鼠血脂水平的影响
Figure PCTCN2015000359-appb-000013
与止常对照组比较#P<0.05,###P<0.001;与模型对照组比较P<0.05。
结果2:N6-(1-(4-甲氧基苯基)乙基)-腺苷(化合物1)对高脂喂养apoE-/-小鼠主动脉粥样硬化斑块形成的影响
给于化合物1十四周取材观察主动脉粥样硬化斑块形成情况,结果表明,在56mg/kg剂量下,化合物1可明显抑制动脉粥样硬化斑块的形成,见图10。
实验例4:小鼠灌胃单次给药N6-(1-(4-甲氧基苯基)乙基)-腺苷毒性试验
5.1动物分组及给药ICR小鼠,共40只、雌雄各半。动物体重:18-20g。一日内给药两次,连续观察14天,密切观察动物在给药后4h内的反应。详细记录动物出现毒性反应情况,中毒症状、中毒症状出现时间、持续时间、恢复时间及动物最短死亡时间、最长死亡时间、平均死亡时间和死亡动物数,死亡动物及时解剖尸检,其中肉眼观察异常动物进行病理组织学检查。
表10.试验剂量与分组表
Figure PCTCN2015000359-appb-000014
结果1:检疫期内每只动物行为活动正常,无异常外观体征,二便颜色、形状正常。给药后给药组动物自主活动减少,给药第二日恢复正常。由给药第二天至观察期14天结束,空白对照组及给药组动物行为活动及体征表现均正常,给药组分别在给药后第一天,第四天,第七天出现个别动物死亡(雌性2只)。在合理的给药浓度及容量下,一日内给予ICR小鼠两次灌服1g·kg-1受试药物后,即刻至整个观察期过程中个别动物出现死亡,认为该供试品给小鼠经灌胃给药的LD50剂量大于最大给药剂量(1g·kg-1)。

Claims (15)

  1. 如式I所示N6-(1-(4-甲氧基苯基)乙基)-腺苷,
    Figure PCTCN2015000359-appb-100001
  2. 一种药物组合物,其特征在于,含有治疗有效量的权利要求1的化合物,以及药学上可接受的载体。
  3. 权利要求1的化合物或权利要求2的药物组合物在制备预防和/或治疗和AMP激活的蛋白激酶相关疾病药物中的应用。
  4. 权利要求1的化合物或权利要求2的药物组合物在制备预防和/或治疗高脂血症或高脂血症相关疾病的药物中的应用。
  5. 根据权利要求4的应用,其特征在于,所述的高脂血症包括高胆固醇血症、高甘油三酯血症或复合性高脂血症。
  6. 根据权利要求4的应用,其特征在于,所述的高脂血症是指患者血液中总胆固醇、甘油三酯和/或低密度脂蛋白胆固醇高于正常水平。
  7. 根据权利要求4的应用,其特征在于,所述的高脂血症包括遗传性脂质代谢缺陷病人患有的高脂血症。
  8. 根据权利要求4的应用,其特征在于,所述的高脂血症相关疾病包括高脂血症相关的心脑血管疾病。
  9. 根据权利要求8的应用,其特征在于,所述的心脑血管疾病选自动脉粥样硬化、冠心病、心肌梗死、心脏猝死、脑卒中、高血压、周围血管疾病。
  10. 根据权利要求4的应用,其特征在于,所述的高脂血症相关疾病包括高脂血症相关的糖耐量异常、糖尿病、脂肪肝、肝硬化、胆石症、胰腺炎、眼底出血、失明、跛行、高尿酸血症。
  11. 权利要求1所述化合物的制备方法,其特征在于,以6-氯嘌呤核苷为原料,在合适反应溶剂和反应温度下,经三乙胺作用与1-(4-甲氧基苯基)乙胺反应,再经纯化及重结晶得灰白色固体。
  12. 根据权利要求11的制备方法,其特征在于,反应溶剂选自乙醇、甲醇、正丁醇、异丙醇。
  13. 根据权利要求11的制备方法,其特征在于,反应温度可以是室温至回流温度。
  14. 根据权利要求11的制备方法,其特征在于,纯化时选用硅胶柱,硅胶柱洗脱剂选自二氯甲烷和甲醇的混合液。
  15. 根据权利要求11的制备方法,其特征在于,重结晶所用溶剂选自乙酸乙酯。
PCT/CN2015/000359 2014-05-23 2015-05-25 N6-(1-(4-甲氧基苯基)乙基)-腺苷、其制备及用途 WO2015176542A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410220551.9A CN105085594A (zh) 2014-05-23 2014-05-23 N6-(1-(4-甲氧基苯基)乙基)-腺苷的制备及用途
CN201410220551.9 2014-05-23

Publications (1)

Publication Number Publication Date
WO2015176542A1 true WO2015176542A1 (zh) 2015-11-26

Family

ID=54553384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000359 WO2015176542A1 (zh) 2014-05-23 2015-05-25 N6-(1-(4-甲氧基苯基)乙基)-腺苷、其制备及用途

Country Status (2)

Country Link
CN (1) CN105085594A (zh)
WO (1) WO2015176542A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329372B (zh) * 2017-01-20 2022-07-26 浙江省亚热带作物研究所 N6-(2-羟乙基)腺苷及其衍生物在制备治疗痛风药物中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1539429A (zh) * 2003-10-27 2004-10-27 中国医学科学院药物研究所 3’-脱氧腺苷在制备降血脂药物中的应用
CN101524361A (zh) * 2007-12-06 2009-09-09 中央研究院 腺苷类似物的制造及使用方法
CN101602786A (zh) * 2008-06-10 2009-12-16 中国医学科学院药物研究所 N6-取代腺苷衍生物、其制法以及药物组合物与用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2052596A1 (de) * 1970-10-27 1972-05-04 Boehringer Mannheim Gmbh, 6800 Mannheim Neuartige Verwendung von N(6)-substituierten Adenosin-Derivaten
US20030008841A1 (en) * 2000-08-30 2003-01-09 Rene Devos Anti-HCV nucleoside derivatives
CN101712709A (zh) * 2008-10-06 2010-05-26 中国医学科学院药物研究所 三乙酰基-3-羟基苯基腺苷及其调血脂的用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1539429A (zh) * 2003-10-27 2004-10-27 中国医学科学院药物研究所 3’-脱氧腺苷在制备降血脂药物中的应用
CN101524361A (zh) * 2007-12-06 2009-09-09 中央研究院 腺苷类似物的制造及使用方法
CN101602786A (zh) * 2008-06-10 2009-12-16 中国医学科学院药物研究所 N6-取代腺苷衍生物、其制法以及药物组合物与用途

Also Published As

Publication number Publication date
CN105085594A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
KR101380140B1 (ko) 트리아세틸-3-히드록실페닐아데노신 및 혈지조절에 대한 용도
CN103096895B (zh) 烟酸模拟物及其使用的方法
TW201033182A (en) Tetrahydrotriazine compounds for treating diseases associated with AMPK activity
KR20180032578A (ko) 염증 및 암 질환의 치료를 위한 클로로퀸 및 클레미졸 화합물의 용도
CN108440468B (zh) 2-(苯并呋喃-5-基)苯酚及其作为抗癌药物的应用
SG174032A1 (en) Derivatives of 4-trimethylammonium-3-aminobutyrate and 4-trimethylphosphonium-3-aminobutyrate as cpt-inhibitors
KR20180003530A (ko) 감각 유모 세포 사멸을 예방 또는 치료하기 위한 화합물 및 방법
CN103502219A (zh) 作为治疗剂的新型小分子
CN107488162A (zh) 一类双环醇类衍生物及其制备和应用
JP2017502056A (ja) 肝障害の治療方法
CN101712671B (zh) 大豆黄素脂肪酸酯类衍生物、其制备方法和医药用途
WO2015176542A1 (zh) N6-(1-(4-甲氧基苯基)乙基)-腺苷、其制备及用途
CN115894584A (zh) 小檗碱与野黄芩苷形成的盐,其制备方法和应用
CN104884061A (zh) 用于治疗Rac-GTP酶介导的病症的化合物
WO2017076332A1 (zh) 具有acc1蛋白调控作用的五环三萜类化合物及其用途
CN102040603B (zh) 溴化n-邻甲氧羰基苄基四氢小檗碱及其治疗高血脂症的用途
CN114929682A (zh) 苯并硫代吡喃酮类化合物的盐及其制备方法和用途
EP3904335A1 (en) Acetylsalicylic acid derivative and application thereof
BR112016001400B1 (pt) Uso de ácidos fenoxialquilcarboxílicos para preparação de medicamentos para a redução de níveis sanguíneos de triglicerídeos, colesterol total e lipoproteínas de baixa densidade
CN106456576A (zh) 治疗晚期非酒精性脂肪性肝炎的方法
JP2009051731A (ja) 新規アスコクロリン誘導体化合物及びそれを含有する医薬組成物
US20220387364A1 (en) Methods to decrease triglyceride synthesis in the liver
CN114478464B (zh) 一种炎症小体选择性抑制剂及其合成方法和应用
CN110950773B (zh) 联苯二酚酰胺衍生物及其作为抗癌药物的应用
CN112168831A (zh) 一个雷公藤内酯醇衍生物在防治炎症性肠病中的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 201410220551.9

Country of ref document: CN

Date of ref document: 20161122

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

122 Ep: pct application non-entry in european phase

Ref document number: 15795736

Country of ref document: EP

Kind code of ref document: A1