WO2015176511A1 - 触摸显示屏及其分时驱动方法 - Google Patents

触摸显示屏及其分时驱动方法 Download PDF

Info

Publication number
WO2015176511A1
WO2015176511A1 PCT/CN2014/091732 CN2014091732W WO2015176511A1 WO 2015176511 A1 WO2015176511 A1 WO 2015176511A1 CN 2014091732 W CN2014091732 W CN 2014091732W WO 2015176511 A1 WO2015176511 A1 WO 2015176511A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan
display screen
signal
touch display
shift register
Prior art date
Application number
PCT/CN2014/091732
Other languages
English (en)
French (fr)
Inventor
黄炜赟
高永益
董向丹
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/436,928 priority Critical patent/US9778768B2/en
Publication of WO2015176511A1 publication Critical patent/WO2015176511A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a touch display screen and a time division driving method of the touch display screen.
  • each driving cycle of the touch display screen includes a display phase and a touch phase.
  • the gate driver of the touch display screen provides a scan signal for the scan line of the touch display screen, and within the touch phase, the touch display screen The touch driver provides a touch drive signal for the touch display.
  • FIG. 1 shows a schematic diagram of the conventional touch screen display drive period
  • T 11 denotes a display stage of a driving period T 1 in the front
  • a front touch T 12 a rear stage of a driving cycle T 11
  • T 21 represents The display phase in the drive cycle.
  • the scanning lines numbered 1, 2, 3, and 4 are sequentially scanned
  • the display phase T 21 of the subsequent driving cycle the numbers are sequentially scanned. It is a scan line of 5, 6, 7, and 8.
  • the display of the touch display screen may appear inconsistent.
  • a touch display screen is driven by the time division driving method provided by the present invention, a relatively continuous display screen can be obtained.
  • a touch display is provided A time division driving method of a screen, the time sharing driving method comprising a plurality of driving cycles, for any two adjacent driving cycles:
  • the time sharing driving method includes the steps of:
  • the time sharing driving method includes the steps of:
  • the first n scan lines among the N scan lines scanned in the step S3 are the next n scan lines among the N scan lines scanned in the step S1, and N and n are positive integers, N>n, And the gray scale signals of the first n scan lines among the N scan lines scanned in step S3 are identical in one-to-one correspondence with the gray scale signals of the last n scan lines among the N scan lines scanned in step S1.
  • N is 4 and n is 2.
  • a touch display screen wherein a driving period of the touch display screen includes a display phase and a touch phase, and the touch display screen includes:
  • a gate driving circuit comprising a plurality of cascaded shift register units, wherein the N-stage shift register unit is configured to provide a scan signal to the N scan lines of the touch display screen during the display phase ;
  • a source driving circuit capable of providing a gray scale signal to a data line of the touch display screen during the display phase
  • the touch display screen further includes:
  • the repeated scanning circuit is capable of aligning two adjacent driving cycles with the previous driving cycle
  • the potential of the pull-up node of the shift register unit corresponding to the N-n+1th scan line of the N scan lines is pulled up to a high level, and the adjacent two drive periods are corresponding to the next drive period
  • the potential of the pull-up node of the shift register unit corresponding to the n+1th scan line of the N scan lines is pulled down to a low level, so that For the adjacent two driving cycles, the last n scanning lines among the N scanning lines scanned in the previous driving period are the same as the first n scanning lines among the N scanning lines scanned in the latter driving period, wherein N, n is a positive integer, and N>n, the predetermined period of time continues until the next one of the driving periods begins;
  • the gray scale signal provided by the source driving circuit and the gray provided by the source driving circuit when scanning the first n scanning lines in the subsequent driving period are identical one by one.
  • N is 4 and n is 2.
  • the repeated scanning circuit comprises:
  • the repeated scan control module comprises:
  • a first control unit configured to: when the repeated scan signal source supplies the control signal, to an Nth-n+1th shift in an N-stage shift register unit corresponding to a previous one of the driving cycles
  • the pull-up node of the bit register unit outputs a high level
  • a second control unit configured to: when the repeated scan signal source supplies the control signal, shift the n+1th shift register in the N-stage shift register unit corresponding to the next one of the drive cycles The potential of the pull-up node of the cell is pulled low.
  • the first control unit includes a first thin film transistor, a gate of the first thin film transistor is connected to the repeated scan signal source, and the first thin film transistor One pole is connected to a pull-up node of a last-stage shift register unit in an N-stage shift register unit corresponding to the previous one of the driving cycles, and a second pole of the first thin film transistor corresponds to a previous one of the driving cycles
  • the pull-up nodes of the N-n+1th shift register unit in the N-stage shift register unit are connected.
  • the second control unit comprises a second thin film transistor, a gate of the second thin film transistor is connected to the repeated scan signal source, and a first pole of the second thin film transistor and a N corresponding to the latter driving period
  • the pull-up node of the n+1th shift register unit in the stage shift register unit is connected, and the second pole of the second thin film transistor is connected to the low level input terminal.
  • the high level signal duration of the repeated scan signal source is the same as the high level signal duration of the clock signal in the gate drive circuit.
  • the touch display screen further includes a signal circuit board on which a signal line for providing an electrical signal to the touch display screen is disposed.
  • the power of the pull-up node of the shift register unit corresponding to the n+1th scan line (corresponding to the 1st scan line in the latter drive period in the prior art) can be made.
  • the level is high, and the pull-up node of the shift register unit corresponding to the n+1th scan line scanned in the latter driving period is pulled up to a high level, and then no longer undergoes the touch phase, therefore, the latter one
  • the pull-up node of the shift register unit corresponding to the n+1th scan line scanned in the driving cycle can well maintain a high level, thereby more accurately displaying an image corresponding to scanning the scan line, thereby making use of the present invention
  • the provided time-sharing method displays images that are more coherent.
  • FIG. 1 is a schematic diagram of a driving cycle of a time division driving method in the prior art
  • FIG. 2 is a schematic diagram of a driving cycle of the time sharing driving method provided by the present invention.
  • FIG. 3 is a timing diagram of a first clock signal, a second clock signal, and a scan signal outputted on each scan line when the touch display screen is driven by the time division driving method shown in FIG. 2;
  • FIG. 4 is a circuit diagram of a touch display screen provided by the present invention.
  • FIG. 5 is a timing diagram of each control signal of the touch display screen and the pull-up node of each shift register unit provided by the present invention.
  • the inventors of the present invention have repeatedly found that when driving by the time-sharing driving method shown in FIG. 1, the display inconsistency is not caused by the duration of the touch phase being too long, but because the previous one is after the display phase T 11, the scan line shift register unit 5 corresponding to the pull-up node has been pulled high, after the touch stage T 12, the scanning lines 5 corresponding to the shift register unit drain pull-up node As a result, the corresponding image when the scan line 5 is scanned cannot be displayed normally, which in turn causes the display image to be inconsistent.
  • a time division driving method for a touch display screen comprising a plurality of driving periods, as shown in FIG. 2, for any two adjacent driving periods:
  • the time sharing driving method includes:
  • the time sharing driving method includes:
  • the first n scan lines of the N scan lines scanned in the step S3 are steps.
  • the next n scan lines among the N scan lines scanned in step S1, N and n are positive integers, N>n, and the gray scales of the first n scan lines among the N scan lines scanned in step S3
  • the signal is identical in one-to-one correspondence with the gray scale signals of the last n scanning lines among the N scanning lines scanned in step S1.
  • step S1 corresponding to step S1 is a stage prior to a driving period T 1 is T 11
  • step S2 corresponds to a stage prior to the touch driving cycle T 12
  • step S3 corresponds to a drive period In the display phase T 21
  • step S4 corresponds to the touch phase (not shown) in the latter driving cycle.
  • the power of the pull-up node of the shift register unit corresponding to the n+1th scan line (corresponding to the 1st scan line in the latter drive period in the prior art) can be made.
  • the level is high, and the pull-up node of the shift register unit corresponding to the n+1th scan line scanned in the latter driving period is pulled up to a high level, and then no longer undergoes the touch phase, therefore, the latter one
  • the pull-up node of the shift register unit corresponding to the n+1th scan line scanned in the driving cycle can be kept at a high level, so that a sufficiently strong scan signal can be provided to completely connect the thin film transistor connected to the scan line.
  • the image is turned on so that the gray scale signal can be completely loaded on the pixel electrode to more accurately display the corresponding image when the scan line is scanned, so that the image displayed by the time division driving method provided by the present invention is relatively continuous.
  • the gray scale signals of the first n scan lines scanned in step S3 are identical to the gray scale signals of the last n scan lines scanned in step S1, that is, the n scan lines are repeatedly scanned.
  • the source driver provides the same gray scale signal
  • the image displayed when the n scan lines are scanned for the first time is the same as the image displayed when the n scan lines are scanned for the second time. Since the scanning frequency is high, the human eye does not recognize the image of the repeated scanning, and therefore, the human eye can observe a more consistent image.
  • the number of scan lines that are swept in each scan is not specifically limited.
  • N may be 4 and n may be 2 as shown in FIG. 2 . .
  • step S1 the first scan line 1, the second scan line 2, the third scan line 3, and the fourth scan line 4 are sequentially scanned; in step S2, scanning is provided to the array substrate of the touch display screen. Signaling and providing a touch driving signal to the touch module of the touch display screen; in step S3, repeatedly scanning the third scanning line 3 and the fourth scanning line 4, and then sequentially scanning the fifth scanning line 5 and The sixth scan line 6; in step S4, the supply of the scan signal to the array substrate of the touch display screen is stopped, and the touch drive signal is provided to the touch module of the touch display screen.
  • Shown in FIG. 3 is a timing chart of the first clock signal CLK, the second clock signal CLKB, and the scan signals output on the respective scanning lines when the touch display screen is driven by the time division driving method shown in FIG. 2. Stopping the input of the first clock signal CLK and the second clock signal CLKB does not generate a scan signal.
  • the gray scale signal provided by the source driver is the same as the gray scale signal provided by the source driver when the third scan line 3 is scanned in step S3, and is scanned in step S1.
  • the fourth gray line signal provided by the source driver when the scan line 4 is the same as the gray scale signal supplied from the source driver when the fourth scan line 4 is scanned in step S3.
  • a touch display screen capable of implementing the above-described time-division driving method.
  • the driving period of the touch display screen includes a display phase and a touch phase, and the touch display screen includes:
  • a gate driving circuit 200 comprising a plurality of cascaded shift register units, in the display phase, an N-stage shift register unit for providing N scan lines to the touch display screen Scanning signal
  • a source driving circuit capable of providing a gray scale signal to a data line of the touch display screen during the display phase
  • the touch display screen further includes:
  • the repeating scanning circuit 300 may replace N pieces corresponding to the previous one of the adjacent two driving cycles
  • the pull-up node of the shift register unit corresponding to the N-n+1th scan line in the scan line is pulled up to a high level VGH, and the latter
  • the potential of the pull-up node of the shift register unit corresponding to the n+1th scan line of the N scan lines corresponding to the drive period is pulled down to the low level VGL, so that the previous drive is driven in the adjacent two drive periods
  • the last n scan lines of the N scan lines scanned in the cycle are the same as the first n scan lines of the N scan lines scanned in the subsequent drive cycle, wherein N and n are positive integers, and N>n,
  • the predetermined period of time continues until the next one of the driving cycles begins;
  • the gray scale signal provided by the source driving circuit and the gray provided by the source driving circuit when scanning the first n scanning lines in the subsequent driving period are identical one by one.
  • the touch display screen provided by the present invention further includes a signal circuit board 100 for providing electrical signals such as a first clock signal CLK, a second clock signal CLKB, an initial signal STV, a ground level Vss, and the like.
  • the signal lines are disposed on the signal circuit board 100.
  • Each shift register unit corresponds to a scan line on the array substrate of the touch display screen, and the signal outputted by the shift register unit is the scan signal output by the corresponding scan line.
  • the timings of the first clock signal CLK and the second clock signal CLKB are complementary, that is, when the first clock signal CLK is at a high level VGH, the second clock signal CLKB is at a low level VGL, when the first clock The second clock signal CLKB is at a high level VGH when the signal CLK is at a low level VGL, and the pulse width of the first clock signal CLK is the same as the pulse width of the second clock signal CLKB.
  • the repetitive scanning circuit 300 can scan the previous driving period.
  • the potential of the pull-up node of the shift register unit corresponding to the N-n+1th scan line among the N scan lines is pulled up from the low level VGL to the high level VGH, and at the same time the nth of the next drive period
  • the potential of the pull-up node of the shift register unit corresponding to the +1 scan line is pulled down to the low level VGL.
  • the potential of the pull-up node of the shift register unit corresponding to the N-n+1th scan line among the N scan lines currently scanned in one drive cycle is pulled up from the low level VGL to the high level VGH, the previous drive After the end of the touch phase of the cycle, the N-n+1th scan line among the N scan lines scanned in the previous drive cycle (ie, the scan in the next drive cycle) The first one of the N scan lines drawn is scanned again.
  • the first scanning line of the latter driving period (corresponding to the n+1th scanning line in the latter driving period in the present invention) Is scanned, here, the potential of the pull-up node of the shift register unit corresponding to the n+1th scan line of the latter driving period is pulled down to the low level VGL, and therefore, the n+1th scan of the latter driving period Lines will not be scanned.
  • the n+1th scan line scanned in the next drive period (corresponding to the first scan line in the latter drive cycle in the prior art) can be made.
  • the level of the pull-up node of the corresponding shift register unit is a high level, and the pull-up node of the shift register unit corresponding to the n+1th scan line scanned in the latter driving period is pulled up to a high level.
  • the touch phase is no longer experienced. Therefore, the pull-up node of the shift register unit corresponding to the n+1th scan line scanned in the next drive cycle can be kept at a high level, thereby providing a sufficiently strong scan.
  • the image displayed by the time-driven method is more coherent.
  • N and n are not particularly limited. As a preferred embodiment of the present invention, as shown in FIG. 5, N may be 4 and n may be 2.
  • the specific structure of the repetitive scanning circuit 300 is not particularly limited as long as the corresponding level signal can be supplied to the pull-up node of the corresponding shift register unit within the predetermined time period t1.
  • a specific structure of the repetitive scanning circuit 300 will be described below.
  • the repeated scan circuit 300 may include:
  • the scan signal source 330 is repeatedly used to provide the control signal Rescan at a predetermined time before the start of the next one of the two adjacent drive cycles, and the control signal of the scan signal source 330 is repeated until the control signal continues to And a plurality of repeated scan control modules, wherein 2N-n scan lines scanned in two adjacent drive periods correspond to one of said repeated scan control modules, each of said repeats
  • the scan control module is connected to the repeated scan signal source, and when the repeated scan signal source outputs the control signal Rescan, the repeated scan control module is forwarded
  • the pull-up node of the shift register unit corresponding to the N-n+1th scan line among the N scan lines scanned in the drive period outputs a high level, and the n+1th scan line of the next drive period
  • the potential of the pull-up node of the corresponding shift register unit is pulled down to a low level.
  • the effect of the repeated scanning signal source is to provide the control signal Rescan, making the repeated scanning process more controllable.
  • the repeated scan control module may include:
  • a first control unit 310 configured to transmit an Nth-n+1th shift in the N-stage shift register unit corresponding to the previous one of the driving cycles when the repeated scan signal source 330 provides the control signal
  • the pull-up node of the bit register unit outputs a high level
  • a second control unit 320 configured to: when the repeated scan signal source 330 provides the control signal, shift the n+1th shift register in the N-stage shift register unit corresponding to the next one of the driving cycles The potential of the pull-up node of the cell is pulled low.
  • the first control unit 310 is for providing a high level signal
  • the second control unit 320 is for providing a low level signal.
  • the control of the first control unit 310 and the second control unit 320 can be simultaneously realized by the same control signal Rescan, so that the structure of the repeated scan circuit 300 can be made simpler.
  • the first control unit 310 may include a first thin film transistor T1 whose gate is connected to the repeated scan signal source 330, and the first pole of the first thin film transistor T1
  • the pull-up node of the last-stage shift register unit in the N-stage shift register unit corresponding to the previous driving period is connected, and the second pole of the first thin film transistor T1 is in the N-stage shift register unit corresponding to the previous driving period.
  • the pull-up nodes of the N-n+1-level shift register unit are connected. It is easy to understand that the first pole of the first thin film transistor T1 is one of the source and the drain of the first thin film transistor T1, and the second pole of the first thin film transistor T1 is the source of the first thin film transistor T1. The other of the pole and the drain.
  • the first thin film transistor T1 When the repeatedly scanning signal source 330 outputs a high level control signal, the first thin film transistor T1 is turned on. Before the scan signal source 330 outputs the high-level control signal, the pull-up node of the last-stage shift register unit in the N-stage shift register unit corresponding to the previous drive cycle outputs a high level VGH, and thus, the first film The first very high level VGH of transistor T1. The first thin film transistor T1 is in an on state, so that the previous one can be The level of the pull-up node of the N-n+1th stage shift register unit in the N-stage shift register unit corresponding to the drive period is pulled up to the high level VGH.
  • the second control unit 320 may include a second thin film transistor T2 whose gate is connected to the repeated scan signal source 330, and the first pole of the second thin film transistor T2 corresponds to the latter one of the driving cycles.
  • the pull-up node of the n+1th shift register unit is connected to the N-stage shift register unit, and the second pole of the second thin film transistor is connected to the low-level input terminal. It is easy to understand that the scan line corresponding to the n+1th shift register unit in the latter drive cycle is the first scan line after the repeated scan is completed.
  • the first pole of the second thin film transistor T2 is one of the source and the drain of the second thin film transistor T2
  • the second pole of the second thin film transistor T2 is the source of the second thin film transistor T2. The other of the pole and the drain.
  • the second thin film transistor T2 When the repeatedly scanning signal source 330 outputs a control signal of a high level, the second thin film transistor T2 is turned on. Before the repetitive scan signal source 330 outputs a high level control signal, the potential of the pull-up node of the n+1th shift register unit in the N-stage shift register unit corresponding to the next drive period is a high level VGH . After the second thin film transistor T2 is turned on, the low level VGL of the second electrode of the second thin film transistor T2 may be the n+1th shift register unit in the N-stage shift register unit corresponding to the subsequent one of the driving periods. The potential of the pull-up node is pulled down to the low level VGL. Therefore, after the end of the touch phase in the previous driving cycle, the n+1th shift register unit in the N-stage shift register unit corresponding to the latter driving cycle The corresponding scan line does not output a scan signal, that is, it will not be scanned.
  • first control unit 310 including the first thin film transistor T1 and the second control unit 320 including the second thin film transistor T2 are simple in structure and easy to implement.
  • the high level signal duration of the repeated scan signal source is the same as the high level signal duration of the clock signal in the gate drive circuit.
  • the scan line 2 corresponds to the shift register unit R2
  • the scan line 3 corresponds to the shift register unit R3
  • the scan line 4 corresponds to the shift register unit R4
  • the scan line 5 corresponds to the shift register unit R5
  • the scan line 6 Corresponds to the shift register unit R6.
  • the display phase of a previous driving cycle T 11 the scan line 1 to scan the scanning line 4, the scanning line 4 in the scanning signal, the scanning line 3 corresponding to the pull-up node shift register unit R3 3-
  • the potential of the PU is a low level VGL
  • the potential of the pull-up node 4-PU of the shift register unit R4 corresponding to the scan line 4 is lowered from 2VGH to VGH, and is still at a high level.
  • the touch period T 12 touch the touch period T 12 touch, the touch period T 12, a first clock signal CLK and a second input clock signal CLKB are stopped. Therefore, the potential of the pull-up node 3-PU of the shift register unit R3 corresponding to the scan line 3 maintains the low level VGL, and the potential of the pull-up node 4-PU of the shift register unit R4 corresponding to the scan line 4 maintains the high level. VGH.
  • the repeated scan circuit 300 outputs a control signal Rescan that turns on the first thin film transistor T1 in the first control unit 310 and will be in the second control unit 320 The second thin film transistor T2 is turned on.
  • the control signal Rescan outputted by the repetitive scanning circuit 300 also jumps from the high level VGH to the low level VGL.
  • the display phase T 21 of the latter driving cycle starts, and the first clock signal CLK and the second clock signal CLKB are re-outputted. Since the potential of the pull-up node 3-PU of the shift register unit R3 corresponding to the scan line 3 is at the high level VGH, the scan signal is output on the scan line 3 at the start of the display phase T 21 of the latter drive period, and then The scan line 4 outputs a scan signal, and then the scan signal output from the scan line 4 is output to the shift register unit R5 corresponding to the scan line 5, so that the scan line 5 can output a scan signal after the scan line 4 outputs the scan signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种触摸显示屏的分时驱动方法,其包括多个驱动周期,对任意相邻的两个驱动周期,所述驱动方法在前一个驱动周期(T 1)包括:S1、向依次排列的N条扫描线提供扫描信号;S2、停止提供扫描信号,并向所述触摸显示屏提供触摸驱动信号;所述驱动方法在后一个驱动周期包括:S3、向依次排列的N条扫描线提供扫描信号;S4、停止提供扫描信号,并向所述触摸显示屏提供触摸驱动信号,所述步骤S3中扫描的前n条扫描线为步骤S1中扫描的后n条扫描线,N、n均为正整数,N>n,且在步骤S3中扫描的前n条扫描线的灰阶信号与步骤S1中扫描的后n条扫描线的灰阶信号相同。一种触摸显示屏,所述分时驱动方法能够使所述触摸显示屏显示连贯的画面。

Description

触摸显示屏及其分时驱动方法 技术领域
本发明涉及显示技术领域,具体地,涉及一种触摸显示屏以及该触摸显示屏的分时驱动方法。
背景技术
随着智能手机的普及,触摸显示屏也得到了广泛的应用。在驱动触摸显示屏时,通常需要对触摸显示屏进行分时驱动。即,触摸显示屏的每个驱动周期都包括显示阶段和触控阶段,在显示阶段内,触摸显示屏的栅极驱动器为触摸显示屏的扫描线提供扫描信号,在触摸阶段内,触摸显示屏的触控驱动器为触摸显示屏提供触控驱动信号。
图1中示出了现有触摸显示屏的驱动周期的示意图,T11表示前一个驱动周期T1中的显示阶段,T12表示前一个驱动周期T11的触控阶段,T21表示后一个驱动周期中的显示阶段。如图中所示,在前一个驱动周期的显示阶段T11中,依次扫描了编号为1、2、3、4的扫描线,在后一个驱动周期的显示阶段T21中,依次扫描了编号为5、6、7、8的扫描线。
但是,利用图1中所示的分时驱动方法进行驱动时,触摸显示屏的显示会出现不连贯现象。
因此,如何提高采用分时驱动方法进行驱动时,触摸显示屏的显示连贯性成为本领域亟待解决的技术问题。
发明内容
本发明的目的在于提供一种触摸显示屏以及该触摸显示屏的分时驱动方法。利用本发明所提供的分时驱动方法驱动所述触摸显示屏时,可以获得较为连贯的显示画面。
为了实现上述目的,作为本发明的一个方面,提供一种触摸显 示屏的分时驱动方法,该分时驱动方法包括多个驱动周期,对于任意相邻的两个所述驱动周期:
在前一个所述驱动周期中,所述分时驱动方法包括步骤:
S1、向所述触摸显示屏中依次排列的N条扫描线提供扫描信号;
S2、停止向所述触摸显示屏的阵列基板提供扫描信号,并向所述触摸显示屏的触摸模块提供触摸驱动信号;
在后一个所述驱动周期中,所述分时驱动方法包括步骤:
S3、向所述触摸显示屏中依次排列的N条扫描线提供扫描信号;
S4、停止向所述触摸显示屏的阵列基板提供扫描信号,并向所述触摸显示屏的触摸模块提供触摸驱动信号,
其中,所述步骤S3中扫描的N条扫描线中的前n条扫描线为步骤S1中扫描的N条扫描线中的后n条扫描线,N、n均为正整数,N>n,且在步骤S3中扫描的N条扫描线中的前n条扫描线的灰阶信号与步骤S1中扫描的N条扫描线中的后n条扫描线的灰阶信号一一对应地相同。
优选地,N为4,n为2。
作为本发明的另一个方面,提供一种触摸显示屏,所述触摸显示屏的驱动周期包括显示阶段和触控阶段,所述触摸显示屏包括:
栅极驱动电路,该栅极驱动电路包括多级级联的移位寄存单元,在所述显示阶段内,N级移位寄存单元用于向所述触摸显示屏的N条扫描线提供扫描信号;
源极驱动电路,所述源极驱动电路能够在所述显示阶段向所述触摸显示屏的数据线提供灰阶信号,其中,
所述触摸显示屏还包括:
重复扫描电路,在任意相邻两个所述驱动周期中的后一个驱动周期开始前的预定时间段内,所述重复扫描电路能够将相邻两个驱动周期中与对应于前一个驱动周期的N条扫描线中的第N-n+1条扫描线对应的移位寄存单元的上拉节点的电位上拉至高电平,并且将相邻两个驱动周期中与对应于后一个驱动周期的N条扫描线中的第n+1条扫描线对应的移位寄存单元的上拉节点的电位下拉至低电平,以使 得对于相邻两个驱动周期,前一个驱动周期中扫描的N条扫描线中的后n条扫描线与后一个驱动周期中扫描的N条扫描线中的前n条扫描线相同,其中,N、n为正整数,且N>n,所述预定时间段持续至后一个所述驱动周期开始;
前一个所述驱动周期中扫描后n条扫描线时,所述源极驱动电路提供的灰阶信号与后一个所述驱动周期中扫描前n条扫描线时所述源极驱动电路提供的灰阶信号一一对应地相同。
优选地,N为4,n为2。
优选地,所述重复扫描电路包括:
重复扫描信号源,该重复扫描信号源用于在相邻两个所述驱动周期中的后一个驱动周期开始前的预定时刻开始提供控制信号,所述重复扫描信号源提供的控制信号持续至后一个所述驱动周期开始为止;和
多个重复扫描控制模块,相邻两个所述驱动周期内被扫描的2N-n条扫描线对应于一个所述重复扫描控制模块,每个所述重复扫描控制模块均与所述重复扫描信号源相连,当所述重复扫描信号源输出所述控制信号时,所述重复扫描控制模块向与前一个驱动周期中扫描的N条扫描线中的第N-n+1条扫描线对应的移位寄存单元的上拉节点输出高电平,并且将与后一个驱动周期中扫描的N条扫描线中的第n+1条扫描线对应的移位寄存单元的上拉节点的电位下拉至低电平。
优选地,所述重复扫描控制模块包括:
第一控制单元,该第一控制单元用于在所述重复扫描信号源提供所述控制信号时向与前一个所述驱动周期对应的N级移位寄存单元中第N-n+1级移位寄存单元的上拉节点输出高电平;
第二控制单元,该第二控制单元用于在所述重复扫描信号源提供所述控制信号时将与后一个所述驱动周期对应的N级移位寄存单元中第n+1级移位寄存单元的上拉节点的电位下拉至低电平。
优选地,所述第一控制单元包括第一薄膜晶体管,该第一薄膜晶体管的栅极与所述重复扫描信号源相连,所述第一薄膜晶体管的第 一极与前一个所述驱动周期对应的N级移位寄存单元中最后一级移位寄存单元的上拉节点相连,所述第一薄膜晶体管的第二极与前一个所述驱动周期对应的N级移位寄存单元中第N-n+1级移位寄存单元的上拉节点相连。
优选地,第二控制单元包括第二薄膜晶体管,该第二薄膜晶体管的栅极与所述重复扫描信号源相连,所述第二薄膜晶体管的第一极与后一个所述驱动周期对应的N级移位寄存单元中第n+1级移位寄存单元的上拉节点相连,所述第二薄膜晶体管的第二极与低电平输入端相连。
优选地,所述重复扫描信号源的高电平信号持续时间与所述栅极驱动电路中时钟信号的高电平信号持续时间相同。
优选地,所述触摸显示屏还包括信号电路板,用于向触摸显示屏提供电信号的信号线设置在所述信号电路板上。
由于所述步骤S3中扫描的前n条扫描线为步骤S1中扫描的后n条扫描线,相当于在后一个驱动周期中对前一个驱动周期的后n条扫描线进行了重复扫描,经过重复扫描后,可以使得后一个驱动周期中的第n+1条扫描线(相当于现有技术中后一个驱动周期中的第1条扫描线)对应的移位寄存单元的上拉节点的电平为高电平,在后一个驱动周期中扫描的第n+1条扫描线对应的移位寄存单元的上拉节点上拉为高电平后不再经历触控阶段,因此,在后一个驱动周期中扫描的第n+1条扫描线对应的移位寄存单元的上拉节点可以很好地保持高电平,从而较精确地显示扫描该扫描线时对应的图像,从而使得利用本发明所提供的分时驱动方法显示的图像较为连贯。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是现有技术中的分时驱动方法的驱动周期的示意图;
图2是本发明所提供的分时驱动方法的驱动周期的示意图;
图3是利用图2中所示的分时驱动方法驱动触摸显示屏时,第一时钟信号、第二时钟信号以及各扫描线上输出的扫描信号的时序图;
图4是本发明所提供的触摸显示屏的电路示意图;
图5是本发明所提供的触摸显示屏的各控制信号以及各级移位寄存单元上拉节点处的时序图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
经本发明的发明人反复研究发现,利用图1中所示的分时驱动方法进行驱动时,之所以会出现显示不连贯现象并不是因为触控阶段持续时间过长,而是因为在前一个显示阶段T11结束后,扫描线5对应的移位寄存单元的上拉节点已经上拉至高电平,在经过触控阶段T12之后,扫描线5对应的移位寄存单元的上拉节点漏电,导致无法正常显示扫描线5进行扫描时对应的图像,进而导致了显示图像不连贯。
针对上述问题,作为本发明的一个方面,提供一种触摸显示屏的分时驱动方法,该分时驱动方法包括多个驱动周期,如图2所示,对于任意相邻的两个驱动周期:
在前一个驱动周期T1中,所述分时驱动方法包括:
S1、向所述触摸显示屏中依次排列的N条扫描线提供扫描信号;
S2、停止向触摸显示屏的阵列基板提供扫描信号,并向所述触摸显示屏的触摸模块提供触摸驱动信号;
在后一个驱动周期中,所述分时驱动方法包括:
S3、向所述触摸显示屏中依次排列的N条扫描线提供扫描信号;
S4、停止向所述触摸显示屏的阵列基板提供扫描信号,并向所述触摸显示屏的触摸模块提供触摸驱动信号,
其中,所述步骤S3中扫描的N条扫描线中的前n条扫描线为步 骤S1中扫描的N条扫描线中的后n条扫描线,N、n均为正整数,N>n,且在步骤S3中扫描的N条扫描线中的前n条扫描线的灰阶信号与步骤S1中扫描的N条扫描线中的后n条扫描线的灰阶信号一一对应地相同。
如图2所示,步骤S1对应的是前一个驱动周期T1中的显示阶段T11,步骤S2对应的是前一个驱动周期中的触控阶段T12,步骤S3对应的是后一个驱动周期中的显示阶段T21,步骤S4对应的是后一个驱动周期中的触控阶段(未示出)。
由于所述步骤S3中扫描的前n条扫描线为步骤S1中扫描的后n条扫描线,相当于在后一个驱动周期中对前一个驱动周期的后n条扫描线进行了重复扫描,经过重复扫描后,可以使得后一个驱动周期中的第n+1条扫描线(相当于现有技术中后一个驱动周期中的第1条扫描线)对应的移位寄存单元的上拉节点的电平为高电平,在后一个驱动周期中扫描的第n+1条扫描线对应的移位寄存单元的上拉节点上拉为高电平后不再经历触控阶段,因此,在后一个驱动周期中扫描的第n+1条扫描线对应的移位寄存单元的上拉节点可以很好地保持高电平,从而可以提供足够强的扫描信号,以将与扫描线相连的薄膜晶体管完全打开,从而可以将灰阶信号完全加载在像素电极上,以较精确地显示扫描该扫描线时对应的图像,从而使得利用本发明所提供的分时驱动方法显示的图像较为连贯。
容易理解的是,在步骤S3中扫描的前n条扫描线的灰阶信号与步骤S1中扫描的后n条扫描线的灰阶信号一一对应地相同,即,在重复扫描n条扫描线时,源极驱动器提供相同的灰阶信号,使得在第一次扫描n条扫描线时显示的图像与第二次扫描n条扫描线时显示的图像相同。由于扫描频率较高,人眼不会分辨出重复扫描的图像,因此,人眼可以观察到较为连贯的图像。
在本发明中,对每次扫描时扫过的扫描线的条数并不做具体限定,例如,作为本发明的一种具体实施方式,如图2所示N可以为4,n可以为2。
下面结合图2具体介绍本发明所提供的分时驱动方法的实施方 式。
在步骤S1中,依次扫描第一条扫描线1、第二条扫描线2、第三条扫描线3和第四条扫描线4;在步骤S2中,停止向触摸显示屏的阵列基板提供扫描信号,并向所述触摸显示屏的触摸模块提供触摸驱动信号;在步骤S3中,重复扫描第三条扫描线3和第四条扫描线4,然后再顺次扫描第五条扫描线5和第六条扫描线6;在步骤S4中,停止向触摸显示屏的阵列基板提供扫描信号,并向所述触摸显示屏的触摸模块提供触摸驱动信号。
图3中所示的是利用图2中所示的分时驱动方法驱动触摸显示屏时,第一时钟信号CLK、第二时钟信号CLKB以及各扫描线上输出的扫描信号的时序图。停止输入第一时钟信号CLK和第二时钟信号CLKB即不会产生扫描信号。
其中,在步骤S1中扫描第三条扫描线3时源极驱动器提供的灰阶信号与在步骤S3中扫描第三条扫描线3时源极驱动器提供的灰阶信号相同,在步骤S1中扫描第四条扫描线4时源极驱动器提供的灰阶信号与在步骤S3中扫描第四条扫描线4时源极驱动器提供的灰阶信号相同。
作为本发明的另一个方面,提供一种可以实现上述分时驱动方法的触摸显示屏,所述触摸显示屏的驱动周期包括显示阶段和触控阶段,所述触摸显示屏包括:
栅极驱动电路200,该栅极驱动电路200包括多级级联的移位寄存单元,在所述显示阶段内,N级移位寄存单元用于向所述触摸显示屏的N条扫描线提供扫描信号;
源极驱动电路,所述源极驱动电路能够在所述显示阶段向所述触摸显示屏的数据线提供灰阶信号,其中,
所述触摸显示屏还包括:
重复扫描电路300,在相邻两个所述驱动周期中的后一个驱动周期开始前的预定时间段t1内,重复扫描电路300可以将相邻两个驱动周期中前一个驱动周期对应的N条扫描线中的第N-n+1条扫描线对应的移位寄存单元的上拉节点上拉至高电平VGH,并且将后一个 驱动周期对应的N条扫描线中的第n+1条扫描线对应的移位寄存单元的上拉节点的电位下拉至低电平VGL,以使得在相邻两个驱动周期中,前一个驱动周期中扫描的N条扫描线的后n条扫描线与后一个驱动周期中扫描的N条扫描线的前n条扫描线相同,其中,N、n为正整数,且N>n,所述预定时间段持续至后一个所述驱动周期开始;
前一个所述驱动周期中扫描后n条扫描线时,所述源极驱动电路提供的灰阶信号与后一个所述驱动周期中扫描前n条扫描线时所述源极驱动电路提供的灰阶信号一一对应地相同。
本领域技术人员容易理解的是,本发明所提供的触摸显示屏还包括信号电路板100,用于提供第一时钟信号CLK、第二时钟信号CLKB、初始信号STV、地电平Vss等电信号的信号线设置在信号电路板100上。每级移位寄存单元对应一条触摸显示屏的阵列基板上的扫描线,移位寄存单元输出的信号即为相应的扫描线输出的扫描信号。
如图5所示,第一时钟信号CLK和第二时钟信号CLKB的时序是互补的,即第一时钟信号CLK为高电平VGH时第二时钟信号CLKB为低电平VGL,当第一时钟信号CLK为低电平VGL时第二时钟信号CLKB为高电平VGH,且第一时钟信号CLK的脉冲宽度和第二时钟信号CLKB的脉冲宽度相同。
在本发明中,在触控阶段,第一时钟信号CLK和第二时钟信号CLKB停止输入,在后一个驱动周期开始前的预定时间段t1内,重复扫描电路300可以将前一个驱动周期中扫描的N条扫描线中的第N-n+1条扫描线对应的移位寄存单元的上拉节点的电位由低电平VGL上拉至高电平VGH,并且同时将后一个驱动周期的第n+1条扫描线对应的移位寄存单元的上拉节点的电位下拉至低电平VGL。
当前一个驱动周期中扫描的N条扫描线中的第N-n+1条扫描线对应的移位寄存单元的上拉节点的电位由低电平VGL上拉至高电平VGH后,前一个驱动周期的触控阶段结束后,前一个驱动周期中扫描的N条扫描线中的第N-n+1条扫描线(即,后一个驱动周期中扫 描的N条扫描线中的第一条扫描线)被再次扫描。应当理解的是,在现有技术中,前一个驱动周期结束后,后一个驱动周期的第一条扫描线(相当于本发明中后一个驱动周期中的第n+1条扫描线)本应被扫描,此处,后一个驱动周期的第n+1条扫描线对应的移位寄存单元的上拉节点的电位下拉至低电平VGL,因此,后一个驱动周期的第n+1条扫描线不会被扫描。
如上文中所述,对n条扫描线进行重复扫描后,可以使得后一个驱动周期中扫描的第n+1条扫描线(相当于现有技术中后一个驱动周期中的第1条扫描线)对应的移位寄存单元的上拉节点的电平为高电平,在后一个驱动周期中扫描的第n+1条扫描线对应的移位寄存单元的上拉节点上拉为高电平后不再经历触控阶段,因此,在后一个驱动周期中扫描的第n+1条扫描线对应的移位寄存单元的上拉节点可以很好地保持高电平,从而可以提供足够强的扫描信号,以将与扫描线相连的薄膜晶体管完全打开,从而可以将灰阶信号完全加载在像素电极上,以较精确地显示扫描该扫描线时对应的图像,从而使得利用本发明所提供的分时驱动方法显示的图像较为连贯。
在本发明中,对N、n并没有特殊的限制,作为本发明的一种优选实施方式,如图5所示,N可以为4,n可以为2。
在本发明中,对重复扫描电路300的具体结构并没有特殊的限定,只要可以在所述预定时间段t1内向相应的移位寄存单元的上拉节点提供相应的电平信号即可。下面介绍重复扫描电路300的一种具体结构。如图4所示,作为本发明的一种优选实施方式,重复扫描电路300可以包括:
重复扫描信号源330,该重复扫描信号源330用于在相邻两个所述驱动周期中的后一个驱动周期开始前的预定时刻开始提供控制信号Rescan,重复扫描信号源330的控制信号持续至后一个所述驱动周期开始为止;和多个重复扫描控制模块,相邻两个所述驱动周期内被扫描的2N-n条扫描线对应于一个所述重复扫描控制模块,每个所述重复扫描控制模块均与所述重复扫描信号源相连,当所述重复扫描信号源输出所述控制信号Rescan时,所述重复扫描控制模块向前一 个驱动周期中扫描的N条扫描线中的第N-n+1条扫描线对应的移位寄存单元的上拉节点输出高电平,并且将后一个驱动周期的第n+1条扫描线对应的移位寄存单元的上拉节点的电位下拉至低电平。
此处,重复扫描信号源的作用在于提供控制信号Rescan,使得重复扫描过程变得更加可控。
为了更加便于控制,优选地,所述重复扫描控制模块可以包括:
第一控制单元310,该第一控制单元310用于在重复扫描信号源330提供所述控制信号时向前一个所述驱动周期对应的N级移位寄存单元中第N-n+1级移位寄存单元的上拉节点输出高电平;
第二控制单元320,该第二控制单元320用于在重复扫描信号源330提供所述控制信号时将后一个所述驱动周期对应的N级移位寄存单元中第n+1级移位寄存单元的上拉节点的电位下拉至低电平。
第一控制单元310用于提供高电平信号,第二控制单元320用于提供低电平信号。利用同一个控制信号Rescan可以同时实现对第一控制单元310和第二控制单元320的控制,从而可以使得重复扫描电路300的结构更加简单。
作为本发明的一种优选实施方式,第一控制单元310可以包括第一薄膜晶体管T1,该第一薄膜晶体管T1的栅极与重复扫描信号源330相连,第一薄膜晶体管T1的第一极与前一个驱动周期对应的N级移位寄存单元中最后一级移位寄存单元的上拉节点相连,第一薄膜晶体管T1的第二极与前一个驱动周期对应的N级移位寄存单元中第N-n+1级移位寄存单元的上拉节点相连。容易理解的是,此处第一薄膜晶体管T1的第一极是第一薄膜晶体管T1的源极和漏极中的一者,第一薄膜晶体管T1的第二极是第一薄膜晶体管T1的源极和漏极中的另一者。
当重复扫描信号源330输出高电平的控制信号时,第一薄膜晶体管T1被导通。在重复扫描信号源330输出高电平的控制信号前,前一个驱动周期对应的N级移位寄存单元中最后一级移位寄存单元的上拉节点输出高电平VGH,因此,第一薄膜晶体管T1的第一极为高电平VGH。第一薄膜晶体管T1处于导通状态,从而可以将前一个 驱动周期对应的N级移位寄存单元中第N-n+1级移位寄存单元的上拉节点的电平上拉至高电平VGH。
相似地,第二控制单元320可以包括第二薄膜晶体管T2,该第二薄膜晶体管T2的栅极与重复扫描信号源330相连,第二薄膜晶体管T2的第一极与后一个所述驱动周期对应的N级移位寄存单元中第n+1级移位寄存单元的上拉节点相连,所述第二薄膜晶体管的第二极与低电平输入端相连。容易理解的是,后一个驱动周期中的第n+1级移位寄存单元对应的扫描线为完成重复扫描后扫描的第一条扫描线。容易理解的是,此处第二薄膜晶体管T2的第一极是第二薄膜晶体管T2的源极和漏极中的一者,第二薄膜晶体管T2的第二极是第二薄膜晶体管T2的源极和漏极中的另一者。
当重复扫描信号源330输出高电平的控制信号时,第二薄膜晶体管T2被导通。在重复扫描信号源330输出高电平的控制信号前,后一个所述驱动周期对应的N级移位寄存单元中第n+1级移位寄存单元的上拉节点的电位为高电平VGH。当第二薄膜晶体管T2导通后,第二薄膜晶体管T2的第二极的低电平VGL可以将后一个所述驱动周期对应的N级移位寄存单元中第n+1级移位寄存单元的上拉节点的电位下拉至低电平VGL,因此,在前一个驱动周期中的触控阶段结束后,后一个驱动周期对应的N级移位寄存单元中第n+1级移位寄存单元对应的扫描线不会输出扫描信号,即,不会被扫描。
容易理解的是,包括第一薄膜晶体管T1的第一控制单元310和包括第二薄膜晶体管T2的第二控制单元320结构简单,易于实现。
通常,所述重复扫描信号源的高电平信号持续时间与所述栅极驱动电路中时钟信号的高电平信号持续时间相同。
下面根据图5中所示的时序图描述图4中所示的触摸显示屏的工作原理。
如图4中所示,扫描线2对应移位寄存单元R2,扫描线3对应移位寄存单元R3,扫描线4对应移位寄存单元R4,扫描线5对应移位寄存单元R5,扫描线6对应于移位寄存单元R6。
首先,在前一个驱动周期的显示阶段T11内,对扫描线1至扫描 线4进行扫描,在扫描线4输出扫描信号后,扫描线3对应的移位寄存单元R3的上拉节点3-PU的电位为低电平VGL,扫描线4对应的移位寄存单元R4的上拉节点4-PU的电位由2VGH下降至VGH,仍然为高电平。
随后进入前一个驱动周期的触摸阶段T12,在该触摸阶段T12中,第一时钟信号CLK和第二时钟信号CLKB均停止输入。因此,扫描线3对应的移位寄存单元R3的上拉节点3-PU的电位维持低电平VGL,扫描线4对应的移位寄存单元R4的上拉节点4-PU的电位维持高电平VGH。第一触摸阶段T12结束前的预定时刻,重复扫描电路300输出控制信号Rescan,该控制信号Rescan将第一控制单元310中的第一薄膜晶体管T1导通,并将第二控制单元320中的第二薄膜晶体管T2导通。第一薄膜晶体管T1导通后,将扫描线3对应的移位寄存单元R3的上拉节点3-PU的电位由低电平VGL上拉至高电平VGH。第二薄膜晶体管T2导通后,并且将扫描线5对应的移位寄存单元R5的上拉节点5-PU的电位下拉至低电平VGL。在前一个驱动周期中的触控阶段结束时,重复扫描电路300输出的控制信号Rescan也由高电平VGH跳变为低电平VGL。
再随后,后一个驱动周期的显示阶段T21开始,第一时钟信号CLK和第二时钟信号CLKB重新输出。由于扫描线3对应的移位寄存单元R3的上拉节点3-PU的电位为高电平VGH,因此,在后一个驱动周期的显示阶段T21开始时,扫描线3上输出扫描信号,随后扫描线4输出扫描信号,再随后,扫描线4输出的扫描信号输出给扫描线5对应的移位寄存单元R5,从而使得扫描线5可以在扫描线4输出扫描信号后输出扫描信号。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种触摸显示屏的分时驱动方法,该分时驱动方法包括多个驱动周期,对于任意相邻的两个驱动周期:
    在前一个驱动周期中,所述分时驱动方法包括:
    S1、向所述触摸显示屏中依次排列的N条扫描线提供扫描信号;
    S2、停止向所述触摸显示屏的阵列基板提供扫描信号,并向所述触摸显示屏的触摸模块提供触摸驱动信号;
    在后一个驱动周期中,所述分时驱动方法包括:
    S3、向所述触摸显示屏中依次排列的N条扫描线提供扫描信号;
    S4、停止向所述触摸显示屏的阵列基板提供扫描信号,并向所述触摸显示屏的触摸模块提供触摸驱动信号,
    其中,所述步骤S3中扫描的N条扫描线中的前n条扫描线为步骤S1中扫描的N条扫描线中的后n条扫描线,N、n均为正整数,N>n,且在步骤S3中扫描的N条扫描线中的前n条扫描线的灰阶信号与步骤S1中扫描的N条扫描线中的后n条扫描线的灰阶信号一一对应地相同。
  2. 根据权利要求1所述的分时驱动方法,其中,N为4,n为2。
  3. 一种触摸显示屏,所述触摸显示屏的驱动周期包括显示阶段和触控阶段,所述触摸显示屏包括:
    栅极驱动电路,该栅极驱动电路包括多级级联的移位寄存单元,在所述显示阶段内,N级所述移位寄存单元用于向所述触摸显示屏的N条扫描线提供扫描信号;
    源极驱动电路,所述源极驱动电路能够在所述显示阶段向所述触摸显示屏的数据线提供灰阶信号,其中,
    所述触摸显示屏还包括:
    重复扫描电路,在任意相邻两个所述驱动周期中的后一个驱动周期开始前的预定时间段内,所述重复扫描电路能够将相邻两个驱动 周期中与对应于前一个驱动周期的N条扫描线中的第N-n+1条扫描线对应的移位寄存单元的上拉节点的电位上拉至高电平,并且将相邻两个驱动周期中与对应于后一个驱动周期的N条扫描线中的第n+1条扫描线对应的移位寄存单元的上拉节点的电位下拉至低电平,以使得对于相邻两个驱动周期,前一个驱动周期中扫描的N条扫描线中的后n条扫描线与后一个驱动周期中扫描的N条扫描线中的前n条扫描线相同,其中,N、n为正整数,且N>n,所述预定时间段持续至所述后一个驱动周期开始;
    所述前一个驱动周期中扫描后n条扫描线时,所述源极驱动电路提供的灰阶信号与所述后一个驱动周期中扫描前n条扫描线时所述源极驱动电路提供的灰阶信号一一对应地相同。
  4. 根据权利要求3所述的触摸显示屏,其中,N为4,n为2。
  5. 根据权利要求3所述的触摸显示屏,其中,所述重复扫描电路包括:
    重复扫描信号源,该重复扫描信号源用于在相邻两个所述驱动周期中的后一个驱动周期开始前的预定时刻开始提供控制信号,所述重复扫描信号源提供的控制信号持续至所述后一个驱动周期开始为止;和
    多个重复扫描控制模块,所述相邻两个驱动周期内被扫描的2N-n条扫描线对应于一个所述重复扫描控制模块,每个所述重复扫描控制模块均与所述重复扫描信号源相连,当所述重复扫描信号源输出所述控制信号时,所述重复扫描控制模块向与前一个驱动周期中扫描的N条扫描线中的第N-n+1条扫描线对应的移位寄存单元的上拉节点输出高电平,并且将与后一个驱动周期中扫描的N条扫描线中的第n+1条扫描线对应的移位寄存单元的上拉节点的电位下拉至低电平。
  6. 根据权利要求5所述的触摸显示屏,其中,所述重复扫描控 制模块包括:
    第一控制单元,该第一控制单元用于在所述重复扫描信号源提供所述控制信号时向与所述前一个驱动周期对应的N级移位寄存单元中第N-n+1级移位寄存单元的上拉节点输出高电平;
    第二控制单元,该第二控制单元用于在所述重复扫描信号源提供所述控制信号时将与所述后一个驱动周期对应的N级移位寄存单元中第n+1级移位寄存单元的上拉节点的电位下拉至低电平。
  7. 根据权利要求6所述的触摸显示屏,其中,所述第一控制单元包括第一薄膜晶体管,该第一薄膜晶体管的栅极与所述重复扫描信号源相连,所述第一薄膜晶体管的第一极与所述前一个驱动周期对应的N级移位寄存单元中最后一级移位寄存单元的上拉节点相连,所述第一薄膜晶体管的第二极与所述前一个驱动周期对应的N级移位寄存单元中第N-n+1级移位寄存单元的上拉节点相连。
  8. 根据权利要求6所述的触摸显示屏,其中,第二控制单元包括第二薄膜晶体管,该第二薄膜晶体管的栅极与所述重复扫描信号源相连,所述第二薄膜晶体管的第一极与所述后一个驱动周期对应的N级移位寄存单元中第n+1级移位寄存单元的上拉节点相连,所述第二薄膜晶体管的第二极与低电平输入端相连。
  9. 根据权利要求5所述的触摸显示屏,其中,所述重复扫描信号源的高电平信号持续时间与所述栅极驱动电路中时钟信号的高电平信号持续时间相同。
  10. 根据权利要求6所述的触摸显示屏,其中,所述重复扫描信号源的高电平信号持续时间与所述栅极驱动电路中时钟信号的高电平信号持续时间相同。
  11. 根据权利要求7所述的触摸显示屏,其中,所述重复扫描 信号源的高电平信号持续时间与所述栅极驱动电路中时钟信号的高电平信号持续时间相同。
  12. 根据权利要求8所述的触摸显示屏,其中,所述重复扫描信号源的高电平信号持续时间与所述栅极驱动电路中时钟信号的高电平信号持续时间相同。
  13. 根据权利要求3所述的触摸显示屏,其中,所述触摸显示屏还包括信号电路板,用于向触摸显示屏提供电信号的信号线设置在所述信号电路板上。
PCT/CN2014/091732 2014-05-19 2014-11-20 触摸显示屏及其分时驱动方法 WO2015176511A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/436,928 US9778768B2 (en) 2014-05-19 2014-11-20 Touch display screen and time division driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410211214.3 2014-05-19
CN201410211214.3A CN104049796B (zh) 2014-05-19 2014-05-19 触摸显示屏及其分时驱动方法

Publications (1)

Publication Number Publication Date
WO2015176511A1 true WO2015176511A1 (zh) 2015-11-26

Family

ID=51502752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091732 WO2015176511A1 (zh) 2014-05-19 2014-11-20 触摸显示屏及其分时驱动方法

Country Status (3)

Country Link
US (1) US9778768B2 (zh)
CN (1) CN104049796B (zh)
WO (1) WO2015176511A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049796B (zh) 2014-05-19 2017-02-15 京东方科技集团股份有限公司 触摸显示屏及其分时驱动方法
CN104485060B (zh) * 2014-10-09 2017-05-10 上海中航光电子有限公司 栅极控制单元、栅极控制电路、阵列基板和显示面板
KR102283461B1 (ko) * 2014-12-22 2021-07-29 엘지디스플레이 주식회사 액정표시장치
US9910523B2 (en) * 2015-12-28 2018-03-06 Lg Display Co., Ltd. Display device with connection interface for common signal lines placed under planarization layer
US9965122B2 (en) * 2015-12-28 2018-05-08 Lg Display Co., Ltd. Display device with light shield
US10067585B2 (en) * 2015-12-28 2018-09-04 Lg Display Co., Ltd. Display device with multilayered capacitor
US10592022B2 (en) * 2015-12-29 2020-03-17 Synaptics Incorporated Display device with an integrated sensing device having multiple gate driver circuits
CN106406614B (zh) * 2016-09-18 2019-03-15 京东方科技集团股份有限公司 一种分时驱动电路及显示面板
KR102612735B1 (ko) * 2016-09-30 2023-12-13 엘지디스플레이 주식회사 터치센서 내장형 표시장치
TWI664618B (zh) * 2017-11-13 2019-07-01 友達光電股份有限公司 閘極驅動器及其觸控顯示裝置
WO2019178847A1 (zh) * 2018-03-23 2019-09-26 深圳市柔宇科技有限公司 触摸显示驱动方法与触摸显示屏
US10777150B2 (en) 2018-05-29 2020-09-15 Wuhan China Star Optoelectronics Technology Co., Ltd. Controlling method of display device and display device
CN108550351B (zh) * 2018-05-29 2020-03-10 武汉华星光电技术有限公司 显示设备的控制方法和显示设备
CN111508402B (zh) * 2019-01-30 2023-08-01 瀚宇彩晶股份有限公司 一种栅极驱动电路和触控显示装置
CN112269493B (zh) * 2020-10-30 2023-12-22 武汉天马微电子有限公司 一种触控显示屏及其驱动方法、电子设备
JP2023104433A (ja) * 2022-01-18 2023-07-28 シャープディスプレイテクノロジー株式会社 液晶表示装置およびその駆動方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838289A (en) * 1994-10-04 1998-11-17 Nippondenso Co., Ltd. EL display driver and system using floating charge transfers to reduce power consumption
US20130009856A1 (en) * 2010-04-12 2013-01-10 Yoshihisa Takahashi Scanning signal line drive circuit and display device having the same
CN103456259A (zh) * 2013-09-12 2013-12-18 京东方科技集团股份有限公司 一种栅极驱动电路及栅线驱动方法、显示装置
CN103489391A (zh) * 2013-09-29 2014-01-01 京东方科技集团股份有限公司 一种栅极驱动电路及栅线驱动方法、显示装置
CN203444734U (zh) * 2013-09-12 2014-02-19 京东方科技集团股份有限公司 一种栅极驱动电路及显示装置
CN203456069U (zh) * 2013-09-29 2014-02-26 京东方科技集团股份有限公司 一种栅极驱动电路及显示装置
CN104049796A (zh) * 2014-05-19 2014-09-17 京东方科技集团股份有限公司 触摸显示屏及其分时驱动方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3789108B2 (ja) * 2002-10-09 2006-06-21 キヤノン株式会社 画像表示装置
JP5216495B2 (ja) * 2008-09-16 2013-06-19 株式会社ジャパンディスプレイウェスト 接触検出装置および表示装置
WO2012147634A1 (ja) * 2011-04-28 2012-11-01 シャープ株式会社 入力装置、接触位置検出方法、および入力装置を備える表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838289A (en) * 1994-10-04 1998-11-17 Nippondenso Co., Ltd. EL display driver and system using floating charge transfers to reduce power consumption
US20130009856A1 (en) * 2010-04-12 2013-01-10 Yoshihisa Takahashi Scanning signal line drive circuit and display device having the same
CN103456259A (zh) * 2013-09-12 2013-12-18 京东方科技集团股份有限公司 一种栅极驱动电路及栅线驱动方法、显示装置
CN203444734U (zh) * 2013-09-12 2014-02-19 京东方科技集团股份有限公司 一种栅极驱动电路及显示装置
CN103489391A (zh) * 2013-09-29 2014-01-01 京东方科技集团股份有限公司 一种栅极驱动电路及栅线驱动方法、显示装置
CN203456069U (zh) * 2013-09-29 2014-02-26 京东方科技集团股份有限公司 一种栅极驱动电路及显示装置
CN104049796A (zh) * 2014-05-19 2014-09-17 京东方科技集团股份有限公司 触摸显示屏及其分时驱动方法

Also Published As

Publication number Publication date
US20160299587A1 (en) 2016-10-13
CN104049796B (zh) 2017-02-15
US9778768B2 (en) 2017-10-03
CN104049796A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2015176511A1 (zh) 触摸显示屏及其分时驱动方法
CN104751763B (zh) 显示装置和初始化显示装置的选通移位寄存器的方法
KR102262174B1 (ko) 발광 제어 구동 회로 및 이를 포함하는 표시 장치
US11100834B2 (en) Gate driving sub-circuit, driving method and gate driving circuit
KR101319350B1 (ko) 액정표시장치
US9047842B2 (en) Shift register, display-driving circuit, displaying panel, and displaying device
US20190005866A1 (en) Shift Register Unit, Driving Method, Gate Driver on Array and Display Device
KR102268965B1 (ko) 게이트 쉬프트 레지스터 및 이를 이용한 표시 장치
US20190013083A1 (en) Shift register unit and gate scanning circuit
US9502134B2 (en) Shift register, method for driving the same, and array substrate
US10068658B2 (en) Shift register unit, driving circuit and method, array substrate and display apparatus
CN110010092B (zh) 显示接口装置
TW201643849A (zh) 感測顯示裝置及其移位暫存器
US9711104B2 (en) Display device and electrical apparatus
US20150358018A1 (en) Gate driving circuit and display device having the same
WO2017181700A1 (zh) 移位寄存器单元、栅极驱动装置、显示装置和驱动方法
CN108428426B (zh) 显示面板及显示装置
WO2017063269A1 (zh) 栅极驱动基板和使用栅极驱动基板的液晶显示器
CN100474382C (zh) 驱动数据线的方法和装置及具有该装置的显示装置
US8823626B2 (en) Matrix display device with cascading pulses and method of driving the same
CN203966089U (zh) 触摸显示屏
CN108242228B (zh) 栅极扫描驱动电路
US11295646B2 (en) Shift-register unit, a gate-driving circuit and driving method, and a display apparatus
KR20160094531A (ko) 게이트 쉬프트 레지스터 및 이를 이용한 표시 장치
CN109817151A (zh) 显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14436928

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/17)

122 Ep: pct application non-entry in european phase

Ref document number: 14892426

Country of ref document: EP

Kind code of ref document: A1