WO2015174239A1 - 光電モジュールおよび光素子 - Google Patents
光電モジュールおよび光素子 Download PDFInfo
- Publication number
- WO2015174239A1 WO2015174239A1 PCT/JP2015/062355 JP2015062355W WO2015174239A1 WO 2015174239 A1 WO2015174239 A1 WO 2015174239A1 JP 2015062355 W JP2015062355 W JP 2015062355W WO 2015174239 A1 WO2015174239 A1 WO 2015174239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- optical
- transmission
- lens
- light
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 407
- 239000000758 substrate Substances 0.000 claims abstract description 302
- 239000000463 material Substances 0.000 claims abstract description 32
- 238000003491 array Methods 0.000 claims abstract description 17
- 230000005540 biological transmission Effects 0.000 claims description 129
- 229910000679 solder Inorganic materials 0.000 claims description 28
- 239000010410 layer Substances 0.000 claims description 13
- 230000017525 heat dissipation Effects 0.000 claims description 8
- 230000000149 penetrating effect Effects 0.000 claims description 6
- 239000002826 coolant Substances 0.000 claims description 4
- 230000004907 flux Effects 0.000 claims description 4
- 239000002344 surface layer Substances 0.000 claims description 4
- 239000013307 optical fiber Substances 0.000 description 24
- 230000000694 effects Effects 0.000 description 20
- 238000000034 method Methods 0.000 description 14
- 238000013461 design Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 238000000605 extraction Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 230000009471 action Effects 0.000 description 8
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 238000005457 optimization Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011295 pitch Substances 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020830 Sn-Bi Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- 229910018728 Sn—Bi Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2589—Bidirectional transmission
- H04B10/25891—Transmission components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4202—Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4212—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element being a coupling medium interposed therebetween, e.g. epoxy resin, refractive index matching material, index grease, matching liquid or gel
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0203—Containers; Encapsulations, e.g. encapsulation of photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02325—Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02253—Out-coupling of light using lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4228—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
- G02B6/4232—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using the surface tension of fluid solder to align the elements, e.g. solder bump techniques
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/43—Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0235—Method for mounting laser chips
- H01S5/02355—Fixing laser chips on mounts
- H01S5/0237—Fixing laser chips on mounts by soldering
Definitions
- the present disclosure relates to a photoelectric module and an optical element used for optical communication (optical transmission).
- Optical communication technology that optically modulates electrical signals and transmits data using light is known.
- an optical module for optical transmission a structure is known in which an optical element in which an optical functional element such as a lens and a light emitting / receiving element (light receiving element or light emitting element) are combined is optically coupled by an optical connector (for example, a patent). References 1 to 4).
- the number of channels of optical elements to be mounted increases as the capacity increases.
- optical elements are arranged two-dimensionally, it is necessary to provide an optical functional element such as a lens for each channel to increase the coupling efficiency with the optical connector.
- the yield of the optical element itself is low, it is necessary to take countermeasures.
- a photoelectric module includes an optical functional element array configured with a first base material, and a plurality of light emitting and receiving elements configured with a second base material different from the first base material
- the optical functional element array is integrated with the optical substrate including the first surface and the second surface, and is one-dimensionally or two-dimensionally integrated on the first surface.
- a plurality of optical functional elements arranged, and each of the plurality of light emitting / receiving elements and each of the plurality of optical functional elements are mutually connected via the optical substrate so as to be coaxial with each other in a direction perpendicular to the optical substrate.
- a plurality of light emitting / receiving elements are arranged opposite to each other and spaced apart from the second surface in a state in which the light receiving / emitting elements are separated into units smaller than the number of arrays of the optical functional element array. .
- An optical element includes an optical functional element array configured with a first base material, and a plurality of light emitting and receiving elements configured with a second base material different from the first base material
- the optical functional element array includes an optical substrate including a first surface and a second surface, and a plurality of one-dimensionally or two-dimensionally arrayed on the first surface.
- Each of the plurality of light receiving and emitting elements and each of the plurality of optical functional elements are arranged to face each other through the optical substrate so as to be positioned coaxially with respect to the optical substrate,
- the plurality of light emitting / receiving elements are arranged with an interval with respect to the second surface in a state where the light receiving / emitting elements are separated into the number of units smaller than the number of arrays of the optical functional element array.
- a plurality of optical function elements are arranged one-dimensionally or two-dimensionally in the optical function element array.
- the plurality of light emitting / receiving elements are arranged with an interval with respect to the second surface in a state where the light receiving / emitting elements are separated into the number of units smaller than the number of the optical functional element arrays.
- the photoelectric module or the optical element since the structure of the optical element is optimized, it is possible to cope with an increase in the number of optical transmission channels. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
- Photoelectric module in which optical elements are two-dimensionally arranged > [0.1 Issues] The following is a description of problems with a photoelectric module in which optical elements with an optical function such as a lens are two-dimensionally arranged for each channel.
- a structure known as a two-dimensionally arranged photoelectric module a plurality of optical function elements such as lenses are two-dimensionally arranged in correspondence with the optical function elements in an optical function element array in which the optical function elements are two-dimensionally arranged.
- a plurality of light emitting / receiving element (light receiving element or light emitting element) arrays are integrated. At this time, a structure is known in which the number of light emitting / receiving element arrays is the same as the number of optical functional element arrays.
- the transmitting side element (Tx) and the receiving side element (Rx) are mixedly mounted at high density.
- Tx, Rx, Tx, and Rx may be alternately arranged, or Tx, Tx, Tx, Tx, RxRxRxRx, and the like may be arranged alternately. That is, the conventional configuration in which the transmitting side element (Tx) and the receiving side element (Rx) are arrayed as described above is also unrealistic here.
- the conventional photoelectric module has the following problems.
- the optical element and the optical connector have a misalignment margin of several tens of ⁇ m due to the collimated coupling optical system.
- the number of channels is an enormous number of around 100 channels. Therefore, the stated area to be collimated is also increased. In the current positioning on the organic substrate base, accuracy and stability are insufficient.
- FIG. 1 shows a cross-sectional configuration example of the optical element 1 according to the first embodiment of the present disclosure.
- FIG. 2 shows a configuration example in another cross section of the optical element 1 shown in FIG. 3 and 4 show other configuration examples of the optical element 1.
- 5 and 6 show an example of a planar configuration of the optical element 1.
- a direction perpendicular to the lens substrate 11 of the optical element 1 is a Z-axis direction, and directions orthogonal to each other in a plane parallel to the substrate surface of the lens substrate 11 are an X-axis direction and a Y-axis direction. The same applies to other figures thereafter.
- the optical element 1 includes an optical functional element array (lens array) 10 composed of a first base material and a plurality of light emitting / receiving elements (light emitting elements) composed of a second base material different from the first base material. Or a light receiving element) 20.
- the optical functional element array 10 is integrated with the optical substrate (lens substrate 11) including the first surface and the second surface, and the lens substrate 11, and is arranged one-dimensionally or two-dimensionally on the first surface. And a plurality of optical function elements (lenses 12).
- the first surface is, for example, the upper surface of the lens substrate 11 in the example of FIG. 1
- the second surface is, for example, the lower surface of the lens substrate 11 in the example of FIG.
- a wiring layer 13 (FIGS. 1 and 2) or a wiring layer 14 (FIGS. 3 and 4) is formed on the second surface side of the lens substrate 11.
- the optical element 1 is disposed so as to face each other through the lens substrate 11 so that each of the plurality of light emitting / receiving elements 20 and each of the plurality of lenses 12 are positioned coaxially in the vertical direction with respect to the lens substrate 11. .
- the plurality of light emitting / receiving elements 20 are arranged with a space from the second surface in a state where the light receiving / emitting elements 20 are separated into the number of units smaller than the number of arrays of the optical functional element array 10.
- the optical element 1 has a 4-channel configuration
- four lenses 12 for four channels are arranged in a row and are integrally formed on the lens substrate 11. That is, the number of the lenses 12 in the optical functional element array 10 is four.
- four light emitting / receiving elements 20 are arranged as a whole, but are structurally separated into individual light emitting / receiving elements 20. That is, they are separated into one unit.
- the optical element 1 is also in contact with the second surface of the lens substrate 11 and is electrically connected to the solder bump 31 (first solder bump) electrically connected to the lens substrate 11 and each of the plurality of light receiving and emitting elements 20.
- solder bump 31 first solder bump
- solder bump 32 second solder bump
- the solder bumps 31 are electrically connected to the lens substrate 11 via the wiring layer 13 (FIGS. 1 and 2) or the wiring layer 14 (FIGS. 3 and 4).
- the lens substrate 11 is mounted on the base substrate 30 via the solder bumps 31.
- the base substrate 30 may be a substrate such as an IP substrate (interposer substrate), or may be an FEIC including an FE (front end) circuit that drives the light emitting / receiving element 20.
- FIGS. 1 and 2 show a configuration example in which the light emitting / receiving element 20 is attached to the second surface of the lens substrate 11 by solder bumps 32.
- 3 and 4 show a configuration example in which the light emitting / receiving element 20 is attached to the base substrate 30 by the solder bumps 32.
- FIG. 7 shows an example in which a plurality of optical elements 1 are arranged on the base substrate 30.
- a bypass capacitor 22 may be disposed between the plurality of optical elements 1 for each channel.
- the bypass capacitor 22 since the array of one optical element 1 has two or fewer columns, the bypass capacitor 22 can be arranged for each channel.
- the bypass capacitor 22 is not limited to the illustrated surface mount type, but may be an embedded type in a substrate or another type.
- the optical functional element array 10 and the light emitting / receiving element 20 are composed of different base materials.
- a transmission light wavelength for example, light in the vicinity of about 1000 nm (for example, 985 nm) is employed. This is adopted because light in the band passes through a compound substrate such as a GaAs substrate. That is, if the optical element has a backside light emission and backside light receiving structure and the backside of the substrate is processed into a lens shape by dry etching or the like, light input / output from the backside can be condensed and low loss can be achieved.
- the light receiving / emitting element and the optical function element have the same material, in other words, the substrate of the light receiving / emitting element also serves as the optical function element as it is.
- this structure has disadvantages.
- the 985 nm light source is expensive because of its small mass production quantity. Therefore, in the present embodiment, for example, an inexpensive 850 nm wavelength is employed with a large mass production quantity.
- the light in the 850 nm band does not pass through a compound substrate such as GaAs, but passes through glass, quartz, sapphire, transparent resin, and the like. Therefore, it is preferable to employ a material such as glass, quartz, sapphire, and transparent resin as the optical functional element array 10.
- each of the plurality of light emitting / receiving elements 20 and each of the plurality of lenses 12 are disposed to face each other via the lens substrate 11 so as to be positioned coaxially in the vertical direction with respect to the lens substrate 11. Yes.
- the merit of the structure in which the light emitting / receiving element 20 is attached to the lens substrate 11 by the solder bump 32 as shown in FIGS. 1 and 2 is that the optical element 1 is directly mounted on the optical functional element array 10.
- the positions of the light emitting / receiving element 20 and the lens 12 can be adjusted with high accuracy on the basis of both electrode pads.
- both positions can be suppressed to variations of ⁇ 10 ⁇ m or less.
- the self-alignment effect of the solder bump 32 is obtained by aligning the pad of the light emitting / receiving element 20 and the pad of the optical functional element array 10 by using the surface tension of the melted solder.
- the material of the solder bumps 32 here is Sn, Sn—Ag series, Sn—Ag—Cu series, Sn—Bi series, etc. It is preferable to employ a material that can perform self-alignment positioning using a high surface tension. It does not include materials that are joined by ultrasonic vibration such as Au-Au bumps.
- the wiring length from the light emitting / receiving element 20 to the base substrate 30 becomes long. Since the large-diameter solder bumps 31 exist in the wiring path between the light emitting / receiving element 20 and the base substrate 30, the wiring capacity is large and high-speed signals are difficult to send. For example, when the transmission rate (bandwidth) exceeds 10 Gbps, there is a drawback that the waveform tends to deteriorate. As a countermeasure, the light emitting / receiving element 20 and the lens substrate 11 may be separately mounted on the base substrate 30 as in the configuration examples shown in FIGS. 3 and 4.
- the wiring length between the light emitting / receiving element 20 and the base substrate 30 is shortened, and the large-diameter solder bumps 31 are omitted from the path, so that there is an advantage that high-speed transmission characteristics are improved. If the transmission rate exceeds, for example, 16 Gbps, it may be necessary to change to this structure.
- the optical functional element array 10 and the light emitting / receiving element 20 are positioned by self-alignment with respect to the base substrate 30 by solder bumps 31 and 32, respectively. That is, there is a possibility that the position variation between the two will deteriorate to, for example, ⁇ 20 ⁇ m, which is twice that of the configuration example shown in FIGS.
- the photoelectric module includes an IP substrate 200 and an FE circuit 301, and the light emitting / receiving element 20 and the FE circuit 301 are connected via the IP substrate 200. Can be connected.
- the FE circuit 301 includes, for example, a TIA (transimpedance amplifier) when the light emitting / receiving element 20 is a light receiving element (PD (photodiode)), and an LDD (laser diode driver) when the light emitting / receiving element 20 is a light emitting element (VCSEL). It is.
- the IP substrate 200 and the FE circuit 301 are electrically connected via bumps 211.
- a plurality of wirings 201 and 202 having different wiring lengths are used as the respective wirings for connecting the plurality of light emitting / receiving elements 20 to the FE circuit 301.
- a wiring 203 having substantially the same wiring length is used as each wiring for connecting the plurality of light emitting / receiving elements 20 to the FE circuit 301.
- the wiring length between the light emitting / receiving element 20 and the FE circuit 301 is preferably substantially the same for each of the plurality of light receiving / emitting elements 20 as in the configuration examples of FIGS.
- the channel of the FE circuit 301 and the channel of the light emitting / receiving element 20 through the IP substrate 200, for example, through the vias, as in the configuration examples of FIGS. Therefore, it is preferable to arrange the channels of the FE circuit 301 and the channels of the light emitting / receiving elements 20 at equal pitches in the vertical and horizontal directions. That is, for each of the plurality of light receiving / emitting elements 20, it is preferable that the light receiving / emitting element 20 and the FE circuit 301 have the same positional relationship in the direction perpendicular to the substrate. The same applies to the case where the IP substrate 200 is not provided as a configuration or the light emitting / receiving element 20 is connected to the FE circuit 301 without the IP substrate 200 interposed therebetween.
- the configuration in which the lenses 12 are arranged in one row in the optical functional element array 10 is illustrated.
- the lenses 12 and the light emitting and receiving elements 20 are arranged in two rows.
- it may be a two-dimensional arrangement as a whole.
- a configuration in which the light emitting / receiving elements 20 are separated into units is illustrated.
- a plurality of light emitting / receiving elements 20 are provided. May be an integrated array structure.
- an array structure in which two light emitting / receiving elements 20 are integrated may be used.
- the number of optical functional element arrays 10 is 4, and the number of light receiving and emitting elements 20 is 2.
- Second Embodiment> (First Example of Photoelectric Module) Next, a photoelectric module according to the second embodiment of the present disclosure will be described. In the following description, substantially the same components as those in the optical element according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted as appropriate.
- FIG. 15 illustrates a configuration example of the photoelectric module 40 according to the second embodiment of the present disclosure.
- FIG. 16 shows a first process example of the manufacturing process of the photoelectric module 40.
- FIG. 17 is a cross-sectional view and a plan view illustrating a second process example of the manufacturing process of the photoelectric module 40.
- FIG. 18 is a cross-sectional view and a plan view showing a third process example of the manufacturing process of the photoelectric module 40.
- FIG. 19 is a cross-sectional view and a plan view showing a fourth process example of the manufacturing process of the photoelectric module 40.
- FIG. 20 shows a process of mounting the photoelectric module 40 on the mother board 4.
- FIG. 21 shows a state where the photoelectric module is mounted on the mother board 4.
- FIG. 22 shows a state in which the cooling module 56 is mounted on the photoelectric module 40 and shows an example of the optical connector module 100 that is optically coupled to the photoelectric module 40.
- the photoelectric module 40 includes an FEIC 2 in which the optical element 1 is mounted on one surface, and an IP substrate in which the FEIC 2 and the optical element 1 are mounted and electrically connects the FEIC 2 to the motherboard 4. Yes.
- the IP substrate includes a first substrate 41, a second substrate 42, and a third substrate 43.
- the photoelectric module 40 further includes a positioning member (positioning pin 51) for mounting the optical connector module 100 (FIG. 22).
- the optical element 1 may have the same configuration as that of the first embodiment.
- a plurality of optical elements 1 may be arranged two-dimensionally.
- the FEIC 2 may include a drive circuit that drives the light emitting / receiving element 20 of the optical element 1.
- a drive circuit that drives the light emitting / receiving element 20 of the optical element 1.
- PD light receiving element
- TIA transimpedance amplifier
- LDD laser diode driver
- the first substrate 41 is bonded to the other surface of the FEIC 2 by a bonding material 45 such as silver paste.
- the second substrate 42 has a role as a first bonding substrate and is bonded to the first substrate 41 via the bonding portion 44.
- the second substrate 42 has an opening (IC mounting opening) 46 for mounting the FEIC 2 on the first substrate 41.
- the third substrate 43 has a role as a second bonding substrate, and is disposed between the FEIC 2 and the motherboard 4 without contacting the motherboard 4.
- the third substrate 43 has an opening (light input / output opening) 52 through which the optical element 1 performs optical transmission.
- the first substrate 41 has a role as a reinforcing substrate and a heat dissipation substrate, and has higher heat dissipation and higher rigidity than the second substrate 42.
- the first substrate 41 may be, for example, an LID (lid) substrate.
- the first substrate 41 may be temperature controlled by an external cooling medium.
- a cooling module 56 as a cooling medium may be disposed on the substrate surface of the first substrate 41 opposite to the mounting side of the FEIC 2 via a bonding material 57.
- One substrate surface of the first substrate 41, one end surface of the positioning pin 51, the other surface of the FEIC 2, and one substrate surface of the second substrate 42 are bonded together without any gap. preferable.
- the second substrate 42 is electrically connected to the FEIC 2 via the third substrate 43 and has a connection structure for electrically connecting the third substrate 43 and the mother board 4.
- the third substrate 43 has a connection structure that electrically connects the FEIC 2 and the second substrate 42.
- the FEIC 2 and the third substrate 43 are connected via the solder bumps 33.
- the second substrate 42 and the third substrate 43 are connected via the solder bumps 33.
- the second substrate 42 is provided with a wiring layer 53 for electrical connection.
- the wiring layer 53 is provided in the vicinity of the substrate surface so as not to penetrate the second substrate 42.
- the optical element 1 and passive (passive element 3) are mounted on the FEIC 2 at the wafer level. Thereafter, dicing is performed to form a chip.
- the optical element 1 may be mounted on the FEIC 2 via the holding substrate 80 as in the structure shown in FIG.
- the second substrate 42 is positioned and adhered to the first substrate 41, and the FEIC 2 is attached to the first substrate 41 through the opening 54 provided in the second substrate 42. Position and bond.
- the positioning pins 51 are fitted into the positioning holes 55 of the first substrate 41 and bonded. Note that the positioning pin 51 may be bonded first. Further, the positioning pin 51 may be bonded and fixed without providing the positioning hole 55. Further, the positioning pins 51 may be bonded onto the second substrate 42.
- the third substrate 43 and the passive element 58 are mounted.
- the motherboard 4 is provided with a mounting portion 61 and an opening 62. It mounts so that the edge part of the 2nd board
- the third substrate 43 is positioned in the opening 62 of the mother board 4 so that it does not touch the mother board 4 directly. Further, the second substrate 42 may be directly mounted on the mother board 4.
- the cooling module 56 is mounted on the first substrate 41 of the photoelectric module 40 via the bonding material 57. Further, the optical connector module 100 is connected to the photoelectric module 40 via the positioning pins 51.
- the FEIC 2 and the second substrate 42 are surface-bonded to the first substrate 41, the rigidity of the FEIC 2 and the IP substrate is apparently increased. Thereby, even if it mounts on the motherboard 4, the 2nd board
- the FEIC 2 and the second substrate 42 are connected by an independent third substrate 43.
- the third substrate 43 is configured to connect only the FEIC 2 firmly fixed to the first substrate 41 and the second substrate 42 and does not touch any other members such as the mother board 4 at all. As a result, even if the opening 52 is provided in the third substrate 43 for extracting an optical signal, the solder bump 33 of the FEIC 2 is hardly subjected to a bias stress.
- Positioning pins 51 for the optical connector module 100 are arranged on the first substrate 41.
- a metal for the first substrate 41 By using, for example, a metal for the first substrate 41, pin placement with high positional accuracy is possible.
- the positioning pins 51 By disposing the positioning pins 51 on the first substrate 41 having high rigidity, the positioning pins 51 are increased in rigidity and are not easily deformed. Even if a biasing stress is applied to the positioning pin 51 due to the mounting of the optical connector module 100, the second substrate 42 and the third substrate 43 on which the solder bumps 33 and the like that are sensitive to external force are formed are biased. The adverse effect of stress becomes difficult.
- the temperature of the positioning pins 51 is also efficiently adjusted. Therefore, it becomes difficult for the heat of the FEIC 2 to be transmitted to the optical connector module 100 through the member between the FEIC 2 and the optical connector module 100. Further, the heat of the FEIC 2 may be transmitted to the optical connector module 100 through the space, but air has an extremely low thermal conductivity, and the third substrate 43 existing therebetween has an effect of blocking the radiant heat. . Therefore, the temperature deformation of the optical connector module 100 is significantly suppressed by the structure of the present embodiment.
- the structure of the present embodiment it is not necessary to pass an electrical signal from the front surface to the back surface of the IP substrate.
- a signal can be guided from the FEIC 2 to the mother board 4 only by wiring on the surface layer portion of the second substrate 42 and the third substrate 43. Therefore, the signal quality can be kept high.
- the third substrate 43 can also have a capacitor function for stabilizing the power supply.
- FIG. 23 shows a configuration example of the photoelectric module according to this embodiment.
- the photoelectric module according to the present embodiment includes an IP substrate 72 (multilayer substrate) having a multilayer structure that electrically connects the optical element 1 and the FEIC 2.
- the IP substrate 72 has a recessed portion 76 formed by reducing the number of substrate layers compared to other portions.
- the optical element 1 is mounted on the IP substrate 72 so as to fit in the recessed portion 76.
- the optical element 1 may have the same configuration as that of the first embodiment.
- a plurality of optical elements 1 may be arranged two-dimensionally.
- the FEIC 2 may include a drive circuit that drives the light emitting / receiving element 20 of the optical element 1.
- FEIC 2 is arranged in the processor 71. Note that the FEIC 2 may be mounted in the processor 71 as illustrated, or may be independent as a single chip separately from the processor.
- the IP substrate 72 has a wiring layer 82 having a multilayer structure.
- the IP board 72 is electrically connected to the FEIC 2 and the processor 71 through solder bumps 81.
- a through-via 83 for electrically connecting the optical element 1 and the FEIC 2 is provided in the recessed portion 76 of the IP substrate 72.
- the IP board 72 is connected to the optical connector 73 via the positioning pins 75.
- the optical connector 73 is provided with a lens portion 74 that optically couples with the lens 12 of the optical element 1.
- the through hole (opening) for mounting the optical element 1 on the IP substrate 72 is not provided, the problem of stress concentration can be avoided. Since the IP substrate 72 has no through hole, the shape accuracy of the IP substrate 72 is unlikely to deteriorate. As a result, the positioning accuracy of the optical connector 73 is improved. Further, since the through via 83 for the optical element 1 can be shortened, the high-speed electrical signal for the optical element 1 is hardly deteriorated.
- FIG. 24 shows a configuration example of the photoelectric module according to this embodiment.
- the photoelectric module shown in FIG. 24 has an opening 77 penetrating the IP substrate 72 instead of the recessed portion 76 of the IP substrate 72, compared to the photoelectric module (FIG. 23) according to the third embodiment. is doing.
- a holding substrate 80 on which the optical element 1 is mounted is provided.
- the optical element 1 is mounted on the FEIC 2 via the solder bumps 81 so as to be accommodated in the opening 77 while being mounted on the holding substrate 80.
- the optical element 1 and the FEIC 2 are electrically connected via the holding substrate 80 without using the IP substrate 72.
- the holding substrate 80 is provided with a through via 83 for electrically connecting the optical element 1 and the FEIC 2.
- FIG. 25 shows another configuration example of the photoelectric module according to the present embodiment.
- the optical element 1 and the FEIC 2 are electrically connected via the holding substrate 80 and the IP substrate 72 without providing the opening 77 that penetrates the IP substrate 72.
- a recessed portion 76 is provided in the IP substrate 72, and the holding substrate 80 on which the optical element 1 is mounted is accommodated in the recessed portion 76.
- the holding substrate 80 on which the optical element 1 is mounted may be mounted on the substrate surface of the IP substrate 72 without providing the recessed portion 76.
- the optical element 1 can be inspected while being mounted on the holding substrate 80 before being mounted on the IP substrate 72 or the FEIC 2, only the optical element 1 of KGD (Known Good Die) can be mounted on the photoelectric package. Thereby, it becomes easy to ensure the yield as a photoelectric package.
- KGD known Good Die
- This embodiment relates to the structure of an optical connector optically coupled to a photoelectric module.
- the structure of the optical connector will be described based on the case where the optical element 1 and the photoelectric module 40 according to the first and second embodiments are used, but the third and fourth embodiments are described. The same applies to the case where the photoelectric module according to the embodiment is used.
- FIGS. 26 and 27 show an example of the optical connector module 100 of the vertical take-out type.
- the photoelectric module 40 is connected to the optical connector module 100 via the positioning pins 51.
- the optical connector module 100 includes a lens substrate 110 and a ferrule 102.
- a lens unit 111 is provided on the lens substrate 110 at a position corresponding to the optical element 1 mounted on the photoelectric module 40.
- An optical fiber 101 as an optical transmission medium is attached to the ferrule 102.
- the optical fiber 101 is arranged in a direction perpendicular to the substrate surface of the lens substrate 110. Light enters the optical fiber 101 from the vertical direction via the lens unit 111. Alternatively, the light transmitted from the outside is emitted toward the lens unit 111.
- FIG. 28 shows an example of a horizontal connector type optical connector module 100A using a mirror.
- the photoelectric module 40 is connected to the optical connector module 100 ⁇ / b> A via the positioning pins 51.
- the optical connector module 100A includes a lens substrate 110 and a reflection mirror 120 having a reflection film 121 provided on the back surface.
- the reflection mirror 120 is disposed at a position corresponding to the optical element 1 mounted on the photoelectric module 40.
- An optical fiber 101 as an optical transmission medium is attached to the lens substrate 110.
- the optical fiber 101 is arranged in a lateral direction (parallel direction) to the substrate surface of the lens substrate 110.
- the optical fiber 101 is disposed so that one end surface thereof faces the reflection mirror 120.
- FIG. 29 shows an example of a lateral connector type optical connector module 100B using a total reflection mirror.
- the optical connector module 100B includes a total reflection mirror 122 instead of the reflection mirror 120 in the optical connector module 100A shown in FIG.
- FIG. 30 shows an example of an optical connector module 100C of a lateral direction extraction type using a waveguide using a total reflection mirror.
- the optical connector module 100C includes a total reflection mirror 131 instead of the reflection mirror 120 in the optical connector module 100A shown in FIG. Further, a waveguide 130 is provided instead of the optical fiber 10.
- the total reflection mirror 131 is formed by making a cut 132 in a part of the waveguide 130.
- the lateral extraction type optical connector module (FIGS. 29 and 30) using a total reflection mirror preferably has a structure as shown in FIG. 31 or FIG.
- the case where an optical fiber is used as the optical transmission medium (FIG. 29) is taken as an example, but the optical waveguide type (FIG. 30) can be optimized with the same structure.
- the optical element 1 includes the receiving optical element 1R and the transmitting optical element 1T
- the receiving optical element 1 ⁇ / b> R includes a light receiving element 20 ⁇ / b> R as the light receiving / emitting element 20.
- the transmitting optical element 1 ⁇ / b> T includes a light emitting element 20 ⁇ / b> T as the light receiving / emitting element 20.
- the optical connector module shown in FIG. 31 or 32 includes a transmission optical system 5T corresponding to the transmission optical element 1T and a reception optical system 5R corresponding to the reception optical element 1R.
- the transmission optical system 5T includes a transmission lens 111T in which transmission light emitted from the light emitting element 20T is incident as a parallel light flux, and a transmission total reflection mirror 122T that reflects the transmission light incident on the transmission lens 111T. ing. In addition, it has a transmission optical fiber 101T as a transmission optical transmission medium for transmitting the transmission light reflected by the transmission total reflection mirror 122T.
- the receiving optical system 5R includes a receiving optical fiber 101R as a receiving optical transmission medium, and a receiving total reflection mirror 122R that reflects the received light transmitted by the receiving optical fiber 101R. Further, the receiving lens 111R that emits the received light reflected by the receiving total reflection mirror 122R toward the light receiving element 20R as a parallel light flux is provided.
- the optical connector module shown in FIG. 31 has a structure in which the distance D2t between the transmission lens 111T and the transmission total reflection mirror 122T is different from the distance D2r between the reception lens 111R and the reception total reflection mirror 122R.
- the optical path length of the incident parallel light beam incident on the transmitting lens 111T is different from the optical path length of the outgoing parallel light beam emitted from the receiving lens 111R.
- the distance between the light receiving element 20R and the reception total reflection mirror 122R and the distance between the light emitting element 20T and the transmission total reflection mirror 122T are substantially the same.
- the distance between the light receiving element 20R and the receiving optical fiber 101R and the distance between the light emitting element 20T and the transmitting optical fiber 101T are substantially the same.
- the transmission optical fiber 101T and the reception optical fiber 101R are inclined with respect to the substrate surface of the lens substrate 110 on which the transmission lens 111T and the reception lens 111R are formed. Structure.
- the optical connector module shown in FIG. 32 has a structure in which the transmission total reflection mirror 122T is disposed at a position offset in the direction of reflecting the transmission light with respect to the optical axis C1 of the transmission lens 111T. .
- the first surface of the optical substrate 11 in the optical functional element array 10 and the substrate surface on the lens substrate 110 on which the transmission lens 111T is formed are substantially parallel to each other.
- the optical connector module shown in FIG. 32 also has a structure in which the receiving total reflection mirror 122R is disposed at a position offset in the direction in which the received light is transmitted with respect to the optical axis C2 of the receiving lens 111R. ing.
- the first surface of the optical substrate 11 in the optical functional element array 10 and the substrate surface on the lens substrate 110 on which the receiving lens 111R is formed are substantially parallel to each other.
- optical element 1 (receiving optical element 1R, transmitting optical element) in the case of using an optical connector module corresponding to vertical extraction type optical connector module 100 shown in FIGS. 1T) and an optical design procedure between the optical connector module.
- the parallel beam diameter D1 between the optical element 1 and the optical connector module is determined.
- the light beam diameter D1 is increased, it is more resistant to misalignment, inclination, and dust adhesion. If the beam diameter D1 is reduced, optical crosstalk becomes difficult.
- the distance D2 between the end face of the optical fiber 101 (receiving optical fiber 101R, transmitting optical fiber 101T) and the lens 111 (receiving lens 111R, transmitting lens 111T) is determined.
- the output side and the incident side may have a common design.
- the same design method may be used in the case of the optical connector module 100A of the lateral direction extraction type using the reflection mirror 120 shown in FIG.
- FIG. 34 when an optical connector module corresponding to the lateral connector type optical connector module 100A shown in FIG. 28 is used, between the optical element 1 (receiving optical element 1R, transmitting optical element 1T) and the optical connector module.
- An example of the optical design is shown.
- the reflection mirror 120 includes a reception reflection mirror 120R and a transmission reflection mirror 120T provided with a reflection film 121 on the back surface.
- optical element 1 receiving optical element 1R, transmitting optical element 1T
- optical connector module when using a lateral extraction type optical connector module with a total reflection mirror
- the transmission total reflection mirror 122T has a transmission lens 111T.
- the light component La that is, for example, 3.2 ° or more away in the reflection direction with respect to the optical axis C1 is not totally reflected and is all lost.
- the distance D2t between the transmission lens 111T on the incident side and the transmission total reflection mirror 122T is increased to reduce the NA.
- the optical design is made such that the component La, for example, 3.2 ° or more away from the optical axis C1 in the reflection direction is suppressed.
- the distance D2r between the emission-side reception lens 111R and the reception total reflection mirror 122R is increased, the parallel light diameter is increased and the optical crosstalk resistance is deteriorated. Therefore, it is preferable not to change the optical design on the emission side.
- the vertical positions of the reception optical fiber 101R and the transmission optical fiber 101T are the same. Therefore, as shown in FIG. 31, the distance between the parallel light beams is changed so that the distance between the light receiving element 20R and the receiving optical fiber 101R and the distance between the light emitting element 20T and the transmitting optical fiber 101T are substantially the same. Alternatively, the distance between the light receiving element 20R and the reception total reflection mirror 122R and the distance between the light emitting element 20T and the transmission total reflection mirror 122T are made substantially the same.
- the position of the total reflection mirror 122 may be offset at least with respect to the incident side. That is, the position of the transmission total reflection mirror 122T may be arranged at a position offset in the direction in which the transmission light is reflected with respect to the optical axis C1 of the transmission lens 111T. Thereby, the structure which suppresses the loss component La of light may be sufficient.
- the transmission lens 111T and the reception lens 111R are offset, and the transmission optical fiber 101T and the reception optical fiber 101R are
- the lens substrate 110 may be inclined with respect to the substrate surface. Thereby, the loss of light can be further suppressed.
- the present technology can take the following configurations.
- An optical functional element array composed of a first base material, and an optical element having a plurality of light emitting and receiving elements composed of a second base material different from the first base material
- the optical functional element array includes an optical substrate including a first surface and a second surface, and a plurality of one-dimensionally or two-dimensionally arrayed on the first surface.
- Each of the plurality of light emitting / receiving elements and each of the plurality of optical functional elements are disposed to face each other via the optical substrate so as to be positioned coaxially in the vertical direction with respect to the optical substrate, and Photoelectric module (2), wherein light receiving and emitting elements are separated from the second surface in a state where the light receiving and emitting elements are separated into a smaller number of units than the number of the optical functional element arrays
- a front end circuit for driving each of the plurality of light emitting / receiving elements The photoelectric module according to (1), wherein a wiring length between the light emitting / receiving element and the front end circuit is substantially the same for each of the plurality of light receiving / emitting elements.
- a front-end IC having the optical element mounted on one surface;
- An interposer substrate on which the front end IC and the optical element are mounted and electrically connect the front end IC to a motherboard;
- the interposer substrate is A first substrate to which the other surface of the front end IC is bonded;
- a second substrate bonded to the first substrate and having an IC mounting opening for mounting the front-end IC on the first substrate;
- or the photoelectric module as described in any one of (3).
- the first substrate has higher heat dissipation and higher rigidity than the second substrate
- the second substrate is electrically connected to the front end IC via the third substrate, and has a connection structure for electrically connecting the third substrate and the motherboard.
- a positioning member for mounting the optical connector The first substrate has higher heat dissipation and higher rigidity than the second substrate, and the temperature is controlled by an external cooling medium, The one end surface of the positioning member, the other surface of the front end IC, and the one substrate surface of the second substrate are entirely bonded to one substrate surface of the first substrate without a gap.
- the photoelectric module according to (4) or (5) The electrical connection between the front-end IC and the mother board through the surface layer of the second substrate and the third substrate without penetrating the second substrate and the third substrate.
- the interposer substrate has a recessed portion formed by reducing the number of substrate layers compared to other portions,
- the optical element is mounted on the interposer substrate in a state of being mounted on the holding substrate, The photoelectric module according to (9), wherein the optical element and the front end IC are electrically connected via the holding substrate and the interposer substrate.
- An optical connector including an optical system for transmission and an optical system for reception, and optically coupled to the optical element;
- the transmission optical system includes a transmission lens in which transmission light emitted from the light emitting element is incident as a parallel light beam, a transmission total reflection mirror that reflects the transmission light incident on the transmission lens, and the transmission An optical transmission medium for transmission that transmits the transmission light reflected by the total reflection mirror;
- the reception optical system includes a reception optical transmission medium, a reception total reflection mirror that reflects the reception light transmitted by the reception optical transmission medium, and the reception light reflected by the reception total reflection mirror.
- the photoelectric module according to (12) wherein the distance between the trusted light transmission media is substantially the same.
- the transmission optical system further includes a lens substrate on which the transmission lens is formed, The transmission total reflection mirror is disposed at a position offset in a direction in which the transmission light is reflected with respect to the optical axis of the transmission lens, and the first of the optical substrate in the optical functional element array
- the photoelectric module according to (12) wherein the surface and the substrate surface of the lens substrate on which the transmission lens is formed are substantially parallel.
- the optical connector further includes a lens substrate on which the transmission lens and the reception lens are formed, The transmission optical transmission medium and the reception optical transmission medium are arranged to be inclined with respect to the substrate surface of the lens substrate on which the transmission lens and the reception lens are formed. (12) or (14) The photoelectric module described in 1.
- An optical functional element array composed of a first substrate; A plurality of light emitting and receiving elements composed of a second base material different from the first base material,
- the optical functional element array includes an optical substrate including a first surface and a second surface, and a plurality of one-dimensionally or two-dimensionally arrayed on the first surface.
- Each of the plurality of light emitting / receiving elements and each of the plurality of optical functional elements are disposed to face each other via the optical substrate so as to be positioned coaxially in the vertical direction with respect to the optical substrate, and An optical element in which light emitting and receiving elements are arranged with a space from the second surface in a state where the light receiving and emitting elements are separated into a unit number smaller than the number of arrays of the optical functional element array.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
<0.光素子が2次元配置された光電モジュール>
[0.1 課題]
<1.第1の実施の形態>(光素子の構成例)(図1~図14)
[1.1 光素子の構成例]
[1.2 作用および効果]
[1.3 変形例]
<2.第2の実施の形態>(光電モジュールの第1の例)(図15~図22)
[2.1 構成例]
[2.2 製造工程]
[2.3 作用および効果]
<3.第3の実施の形態>(光電モジュールの第2の例)(図23)
[3.1 構成例]
[3.2 作用および効果]
<4.第4の実施の形態>(光電モジュールの第3の例)(図24~図25)
[4.1 構成例]
[4.2 作用および効果]
<5.第5の実施の形態>(光コネクタの最適化)(図26~図37)
[5.1 光コネクタモジュールの構成例]
[5.2 光コネクタモジュールの最適化]
(最適化された光コネクタモジュールの構成例)
(全反射ミラーを用いない場合の光学設計例)
(全反射ミラーを用いる場合の光学設計例)
[5.3 作用および効果]
<6.その他の実施の形態>
[0.1 課題]
チャンネルごとに、レンズなどの光学機能が付加された光素子が2次元配置された光電モジュールにおける課題を以下に記す。なお、2次元配置された光電モジュールとして知られている構造には、レンズなどの複数の光学機能素子が2次元配置された光学機能素子アレイに、光学機能素子に対応して2次元配置された複数の受発光素子(受光素子または発光素子)アレイを一体化した構造がある。この際、受発光素子アレイのアレイ数と光学機能素子アレイのアレイ数とが同一となっている構造が知られている。
・高伝送レート化に伴い、より光結合損失を低減させる必要がある。
光電モジュールの高速化に向けた取り組みとして、チャンネル数増加と併せ、4値化伝送(4PAM)と伝送レート向上とがある。送信側、受信側、各々の回路の要求仕様から、双方をつなぐ光コネクタに必要とされる損失をシミュレーションしたところ、4値化伝送では例えばロス量3.7dB以下が必要であり、また、伝送レートを25Gbpsにすると例えばロス量6.0dB以下が必要であることが分かった。
・光コネクタとのカップリング効率を高めるために、チャンネルごとに、できるだけ大面積の光学機能素子を設ける必要がある。
光素子と光コネクタとの間に位置ずれが生じると、光結合損失が増す。その影響をできるだけ抑えるため、レンズなど、できるだけ大口径の集光機能素子を設ける必要がある。一例として、ファイバー規格に則り、光素子のピッチを縦横:250μmピッチとした場合、例えばレンズ径:Φ240μmと、できるだけ大口径にすることが求められる。
・2次元配置された光素子と光コネクタ間の、全体としての光結合効率のばらつきを抑制するため、トータルの結合面積を小さくする必要がある。
また、上記課題2と同様に、すべてのチャンネルの光結合効率を高めるためには、光素子と光コネクタ間における、光結合領域を小面積化することが有効である。そこで、例えば、光素子として12×14チャンネルの一体型のものを適用した構造が提案されている。光素子を分割すると、各々の素子の実装のために、ある程度のクリアランスを設ける必要がある。それは例えば、200μmであり、素子1チャンネル分の幅に近いものとなってしまう。故に、従来では、全体の結合面積を小さくするために、発光素子および受光素子の素子数を増やしにくいという課題があった。
・歩留まりの低い発光受光素子の(低歩留まりの)影響を受けにくい構造にする必要がある。
10Gbpsを超える伝送レートに対応する光素子、特にVCSEL(面発光レーザー)の歩留まりは低い。概ね90%以下であり、これらを、例えば100チャンネルアレイ化すると、一体構造の光素子アレイにおいては、良品がほとんど得られなくなる(例えば0.1%以下)。さらに、伝送レートが25Gbpsなどになると、それに対応するVCSELの歩留まりは、例えば60%以下などの、非常に低いものになる。故に、今後は光素子を一体アレイ化した状態で適用する構成は、非現実的なものとなる。
・さらなる高レート化、および高集積化に伴い、素子ピッチを維持しつつ、送信側(発光側)素子と受信側(受光側)素子とを混載配置にする必要がある。
次世代の高機能I/F(インタフェース)では、送信側素子(Tx)と受信側素子(Rx)とが、高密度で混載されている。例えば、Tx・Rx・Tx・Rxと交互配置であったり、TxTxTxTx・RxRxRxRxなどといった、4ヶずつの交互配置であったりもする。すなわち、前述のような送信側素子(Tx)と受信側素子(Rx)とをそれぞれアレイ化した従来構成は、ここでも非現実的なものとなる。
また、その他にも従来の光電モジュールには以下の課題がある。
光素子と光コネクタは、コリメート結合光学系により、数十μmの位置ずれマージンを持っている。しかし、テラオーダーの伝送容量を持たせた場合、そのチャンネル数は100チャンネル前後の膨大な数となる。故に、コリメート結合させる述べ面積も増大する。現状の有機基板上ベースでの位置決めでは、精度、安定性が不足してくる。
[1.1 光素子の構成例]
図1は、本開示の第1の実施の形態に係る光素子1の一断面構成例を示している。図2は、図1に示した光素子1の他の断面における構成例を示している。また、図3および図4は、光素子1の他の構成例を示している。図5および図6は、光素子1の平面構成例を示している。
なお、図1では、光素子1のレンズ基板11に垂直な方向をZ軸方向、レンズ基板11の基板面に平行な面内において互いに直交する方向をX軸方向およびY軸方向としている。以降の他の図についても同様である。
本実施の形態によれば、光素子1の構造を最適化するようにしたので、光伝送のチャンネル数の増加に対応可能となる。
なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態についても同様である。
本実施の形態では、光学機能素子アレイ10と受発光素子20とが異なる基材で構成されている。従来では、伝送光波長として、例えば約1000nm付近の光(例えば985nm)を採用している。これは、その帯域の光が、GaAs基板など、化合物の基板を透過することから採用されている。すなわち、光素子を裏面発光、裏面受光構造とし、さらに、基板裏面をドライエッチングなどでレンズ形状に加工すれば、裏面から入出力する光を集光し、低損失化することが可能となる。このメリットがあるため、従来では、受発光素子と光学機能素子(レンズ)とが同一素材、言い換えれば、受発光素子の基板がそのまま光学機能素子を兼ねている構造を取っている。ただし、この構造の場合、デメリットがある。985nm光源は、量産数量が少ないため高価である。そのため、本実施の形態では、例えば量産数量が多く安価な850nm波長を採用する。850nm帯の光は、GaAsなどの化合物基板を透過せず、ガラス、石英、サファイア、および透明樹脂などは透過する。そこで、光学機能素子アレイ10として、ガラス、石英、サファイア、および透明樹脂などの材料を採用することが好ましい。
本実施の形態では、複数の受発光素子20のそれぞれと複数のレンズ12のそれぞれとがレンズ基板11に対して垂直方向の同軸に位置するように、レンズ基板11を介して互いに対向配置されている。
ここで、本実施の形態に係る光素子1を光電モジュールとして、受発光素子20を駆動するFE回路と組み合わせる場合の位置関係について説明する。
以上の説明では、光学機能素子アレイ10において、レンズ12が1列に配置された構成を図示したが、例えば、図12および図13に示したように、レンズ12および受発光素子20が2列、もしくはそれ以上に、全体として2次元的に配置された構成であってもよい。
次に、本開示の第2の実施の形態に係る光電モジュールについて説明する。なお、以下では上記第1の実施の形態に係る光素子における構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
図15は、本開示の第2の実施の形態に係る光電モジュール40の一構成例を示している。図16は、光電モジュール40の製造工程の第1工程例を示している。図17は、光電モジュール40の製造工程の第2工程例を示す断面図および平面図である。図18は、光電モジュール40の製造工程の第3工程例を示す断面図および平面図である。図19は、光電モジュール40の製造工程の第4工程例を示す断面図および平面図である。図20は、光電モジュール40をマザーボード4に搭載する過程を示している。図21は、光電モジュールをマザーボード4に搭載した状態を示している。図22は、光電モジュール40に冷却モジュール56を搭載した状態を示す共に、光電モジュール40に光結合される光コネクタモジュール100の一例を示している。
図16ないし図22を参照して、光電モジュール40の製造工程を説明する。
本実施の形態の光電モジュール40によれば、以下の作用および効果が得られる。
第1の基板41に、FEIC2と第2の基板42とを面接着したことで、見かけ上、FEIC2とIP基板の剛性が増す。これにより、マザーボード4に実装しても第2の基板42が変形し難い。変形が発生したとしても、歪みの応力は第2の基板42のみで吸収することができる。また、第1の基板41に接着することで、FEIC2と第2の基板42とを一体化させる。これにより、FEIC2と第2の基板42とのバッド間の位置関係の変化を抑制することができる。
第1の基板41に、光コネクタモジュール100のための位置決めピン51を配置する。第1の基板41を例えば金属にすることで、高い位置精度でのピン配置が可能となる。高剛性な第1の基板41に、位置決めピン51を配置することにより、位置決めピン51の剛性が上がり、変形し難くなる。また、光コネクタモジュール100の装着により、位置決めピン51に偏応力が掛かったとしても、外力に対しデリケートな、はんだバンプ33などが形成された第2の基板42および第3の基板43に、偏応力の悪影響が及び難くなる。
従来構造においては、IP基板の表面から裏面に電気信号を通す必要がある。一方で、IP基板は、FEIC2に大電力を供給する必要があるため、何重もの電源層が存在するようになる。そこに貫通ビアを設け、電気高速信号を通さなくてはならなくなるが、ただでさえインピータンス整合の取りにくい貫通ビアが、層ごとに存在する何重ものスタブなどにより、高速信号を通すには困難な状態になる。
次に、本開示の第3の実施の形態に係る光電モジュールについて説明する。なお、以下では上記第1および第2の実施の形態に係る光素子または光電モジュールにおける構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
図23は、本実施の形態に係る光電モジュールの一構成例を示している。本実施の形態に係る光電モジュールは、光素子1とFEIC2とを電気的に接続する多層構造のIP基板72(多層基板)を備えている。IP基板72は、他の部分に比べて基板層数を少なくすることによって形成された窪み部分76を有している。光素子1が窪み部分76に収まるようにしてIP基板72に搭載されている。
本実施の形態の光電モジュールによれば、以下の作用および効果が得られる。
次に、本開示の第4の実施の形態に係る光電モジュールについて説明する。なお、以下では上記第1ないし第3の実施の形態に係る光素子または光電モジュールにおける構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
図24は、本実施の形態に係る光電モジュールの一構成例を示している。図24に示した光電モジュールは、上記第3の実施の形態に係る光電モジュール(図23)に対して、IP基板72の窪み部分76に代えて、IP基板72を貫通する開口部77を有している。また、光素子1を搭載する保持基板80を備えている。光素子1が、保持基板80に搭載された状態で開口部77に収まるようにして、はんだバンプ81を介してFEIC2に実装されている。IP基板72を介さずに、光素子1とFEIC2とが保持基板80を介して電気的に接続されている。保持基板80には、光素子1とFEIC2とを電気的に接続するための貫通ビア83が設けられている。
本実施の形態の光電モジュールによれば、以下の作用および効果が得られる。
次に、本開示の第5の実施の形態に係る光電モジュールについて説明する。なお、以下では上記第1ないし第4の実施の形態に係る光素子または光電モジュールにおける構成要素と略同じ部分については、同一符号を付し、適宜説明を省略する。
図26および図27は、垂直取り出し型の光コネクタモジュール100の一例を示している。光電モジュール40は、位置決めピン51を介して光コネクタモジュール100に接続される。光コネクタモジュール100は、レンズ基板110とフェルール102とを有している。レンズ基板110には、光電モジュール40に搭載された光素子1に対応する位置にレンズ部111が設けられている。フェルール102には、光伝送媒体としての光ファイバ101が取り付けられている。光ファイバ101は、レンズ基板110の基板面に対して垂直方向に配置されている。光ファイバ101には、レンズ部111を介して、垂直方向から光が入射される。または、外部から伝送されてきた光をレンズ部111に向けて出射する。
(最適化された光コネクタモジュールの構成例)
上記した光コネクタモジュールの構成例のうち、全反射ミラーによる横方向取り出し型の光コネクタモジュール(図29、図30)は、図31または図32のような構造であることが好ましい。なお、ここでは、光伝送媒体として光ファイバを用いる場合(図29)を例にするが、光導波路型(図30)についても同様の構造で最適化することができる。
まず、図33を参照して、図26および図27に示した垂直取り出し型の光コネクタモジュール100に対応する光コネクタモジュールを用いる場合の、光素子1(受信用光素子1R、送信用光素子1T)と光コネクタモジュール間の光学設計の手順を示す。
次に、図35~図37を参照して、全反射ミラーによる横方向取り出し型の光コネクタモジュールを用いる場合の、光素子1(受信用光素子1R、送信用光素子1T)と光コネクタモジュール間の光学設計例について述べる。
本実施の形態によれば、全反射ミラーによる横方向取り出し型の光コネクタモジュールの構成を最適化したことで、チャンネル間の光クロストークを抑制しつつ、全反射ロスを低減させることが可能となる。ひいては、システム全体の伝送損失が低減する。
本開示による技術は、上記各実施の形態の説明に限定されず種々の変形実施が可能である。
(1)
第1の基材で構成された光学機能素子アレイと、前記第1の基材とは異なる第2の基材で構成された複数の受発光素子とを有する光素子を備え、
前記光学機能素子アレイは、第1の面および第2の面を含む光学基板と、前記光学基板に一体化され、前記第1の面上において1次元的もしくは2次元的に配列された複数の光学機能素子とを有し、
前記複数の受発光素子のそれぞれと前記複数の光学機能素子のそれぞれとが前記光学基板に対して垂直方向の同軸に位置するように前記光学基板を介して互いに対向配置され、かつ、前記複数の受発光素子が、前記光学機能素子アレイのアレイ数よりも少ない単位数に分離された状態で、前記第2の面に対して間隔を空けて配置されている
光電モジュール
(2)
前記複数の受発光素子のそれぞれを駆動するフロントエンド回路をさらに備え、
前記受発光素子と前記フロントエンド回路との配線長が、前記複数の受発光素子のそれぞれについて略同一である
上記(1)に記載の光電モジュール。
(3)
前記光学基板の前記第2の面に当接し、前記光学基板に電気的に接続される第1のはんだバンプと、
前記複数の受発光素子のそれぞれに対して設けられ、前記複数の受発光素子のそれぞれに電気的に接続される第2のはんだバンプと
をさらに備える
上記(1)または(2)に記載の光電モジュール。
(4)
一方の面に前記光素子が搭載されたフロントエンドICと、
前記フロントエンドICおよび前記光素子が搭載され、前記フロントエンドICをマザーボードに電気的に接続するインターポーザ基板と
をさらに備え、
前記インターポーザ基板は、
前記フロントエンドICの他方の面が接合された第1の基板と、
前記第1の基板に接合され、前記フロントエンドICを前記第1の基板に搭載するためのIC搭載用開口を有する第2の基板と、
前記マザーボードに当接することなく、前記フロントエンドICと前記マザーボードとの間に配置され、前記光素子が光伝送を行うための光入出力用開口を有する第3の基板と
を含む
上記(1)ないし(3)のいずれか1つに記載の光電モジュール。
(5)
前記第1の基板は、前記第2の基板よりも高い放熱性および高い剛性を有し、
前記第2の基板は、前記第3の基板を介して前記フロントエンドICに電気的に接続されると共に、前記第3の基板と前記マザーボードとの間を電気的に接続する接続構造を有し、
前記第3の基板は、前記フロントエンドICと前記第2の基板との間を電気的に接続する接続構造を有する
上記(4)に記載の光電モジュール。
(6)
光コネクタを装着するための位置決め部材をさらに備え、
前記第1の基板が、前記第2の基板よりも高い放熱性および高い剛性を有すると共に、外部の冷却媒体によって温度管理がなされており、
前記第1の基板の1つの基板面に、前記位置決め部材の一端面と、前記フロントエンドICの前記他方の面と、前記第2の基板の1つの基板面とが空隙なく全面的に接合されている
上記(4)または(5)に記載の光電モジュール。
(7)
前記第2の基板、および前記第3の基板を貫通することなく、前記第2の基板、および前記第3の基板の表層部を介して前記フロントエンドICと前記マザーボードとの間の電気的な接続が行われる
上記(4)ないし(6)のいずれか1つに記載の光電モジュール。
(8)
前記光素子とフロントエンドICとを電気的に接続する多層構造のインターポーザ基板をさらに備え、
前記インターポーザ基板が、他の部分に比べて基板層数を少なくすることによって形成された窪み部分を有し、
前記光素子が前記窪み部分に収まるようにして前記インターポーザ基板に搭載されている
上記(1)ないし(3)のいずれか1つに記載の光電モジュール。
(9)
インターポーザ基板と、
前記光素子に電気的に接続されたフロントエンドICと、
前記光素子を搭載する保持基板と
をさらに備え、
前記光素子が、前記保持基板に搭載された状態で前記フロントエンドIC、または前記インターポーザ基板に実装されている
上記(1)ないし(3)のいずれか1つに記載の光電モジュール。
(10)
前記インターポーザ基板を貫通する開口部を有し、
前記光素子が、前記保持基板に搭載された状態で前記開口部に収まるようにして前記フロントエンドICに実装され、
前記インターポーザ基板を介さずに、前記光素子と前記フロントエンドICとが前記保持基板を介して電気的に接続されている
上記(9)に記載の光電モジュール。
(11)
前記光素子が、前記保持基板に搭載された状態で前記インターポーザ基板に実装され、
前記保持基板および前記インターポーザ基板を介して、前記光素子と前記フロントエンドICとが電気的に接続されている
上記(9)に記載の光電モジュール。
(12)
送信用光学系および受信用光学系を含み、前記光素子に光結合される光コネクタをさらに備え、
前記複数の受発光素子として、受光素子と発光素子とを含み、
前記送信用光学系は、前記発光素子から出射された送信光が平行光束で入射する送信用レンズと、前記送信用レンズに入射した前記送信光を反射する送信用全反射ミラーと、前記送信用全反射ミラーで反射された前記送信光を伝送する送信用光伝送媒体とを有し、
前記受信用光学系は、受信用光伝送媒体と、前記受信用光伝送媒体によって伝送された受信光を反射する受信用全反射ミラーと、前記受信用全反射ミラーで反射された前記受信光を平行光束で前記受光素子に向けて出射する受信用レンズとを有する
上記(1)ないし(11)のいずれか1つに記載の光電モジュール。
(13)
前記送信用レンズおよび前記送信用全反射ミラー間の距離と、前記受信用レンズおよび前記受信用全反射ミラー間の距離とが異なり、かつ、前記送信用レンズに入射する入射平行光束の光路長と、前記受信用レンズが出射する出射平行光束の光路長とが異なり、
前記受光素子および前記受信用全反射ミラー間の距離と前記発光素子および前記送信用全反射ミラー間の距離、もしくは、前記受光素子および前記受信用光伝送媒体間の距離と前記発光素子および前記送信用光伝送媒体間の距離とが略同一である
上記(12)に記載の光電モジュール。
(14)
前記送信用光学系は、前記送信用レンズが形成されたレンズ基板をさらに有し、
前記送信用全反射ミラーが、前記送信用レンズの光軸に対して前記送信光を反射する方向にオフセットされた位置に配置され、かつ、前記光学機能素子アレイにおける前記光学基板の前記第1の面と、前記レンズ基板における前記送信用レンズが形成された基板面とが略平行である
上記(12)に記載の光電モジュール。
(15)
前記光コネクタは、前記送信用レンズおよび前記受信用レンズが形成されたレンズ基板をさらに有し、
前記送信用光伝送媒体および前記受信用光伝送媒体が、前記レンズ基板における前記送信用レンズおよび前記受信用レンズが形成された基板面に対して傾斜配置されている
上記(12)または(14)に記載の光電モジュール。
(16)
第1の基材で構成された光学機能素子アレイと、
前記第1の基材とは異なる第2の基材で構成された複数の受発光素子と
を備え、
前記光学機能素子アレイは、第1の面および第2の面を含む光学基板と、前記光学基板に一体化され、前記第1の面上において1次元的もしくは2次元的に配列された複数の光学機能素子とを有し、
前記複数の受発光素子のそれぞれと前記複数の光学機能素子のそれぞれとが前記光学基板に対して垂直方向の同軸に位置するように前記光学基板を介して互いに対向配置され、かつ、前記複数の受発光素子が、前記光学機能素子アレイのアレイ数よりも少ない単位数に分離された状態で、前記第2の面に対して間隔を空けて配置されている
光素子。
(17)
前記複数の受発光素子が、はんだバンプによって前記光学基板の前記第2の面に取り付けられている
上記(16)に記載の光素子。
Claims (17)
- 第1の基材で構成された光学機能素子アレイと、前記第1の基材とは異なる第2の基材で構成された複数の受発光素子とを有する光素子を備え、
前記光学機能素子アレイは、第1の面および第2の面を含む光学基板と、前記光学基板に一体化され、前記第1の面上において1次元的もしくは2次元的に配列された複数の光学機能素子とを有し、
前記複数の受発光素子のそれぞれと前記複数の光学機能素子のそれぞれとが前記光学基板に対して垂直方向の同軸に位置するように前記光学基板を介して互いに対向配置され、かつ、前記複数の受発光素子が、前記光学機能素子アレイのアレイ数よりも少ない単位数に分離された状態で、前記第2の面に対して間隔を空けて配置されている
光電モジュール。 - 前記複数の受発光素子のそれぞれを駆動するフロントエンド回路をさらに備え、
前記受発光素子と前記フロントエンド回路との配線長が、前記複数の受発光素子のそれぞれについて略同一である
請求項1に記載の光電モジュール。 - 前記光学基板の前記第2の面に当接し、前記光学基板に電気的に接続される第1のはんだバンプと、
前記複数の受発光素子のそれぞれに対して設けられ、前記複数の受発光素子のそれぞれに電気的に接続される第2のはんだバンプと
をさらに備える
請求項1に記載の光電モジュール。 - 一方の面に前記光素子が搭載されたフロントエンドICと、
前記フロントエンドICおよび前記光素子が搭載され、前記フロントエンドICをマザーボードに電気的に接続するインターポーザ基板と
をさらに備え、
前記インターポーザ基板は、
前記フロントエンドICの他方の面が接合された第1の基板と、
前記第1の基板に接合され、前記フロントエンドICを前記第1の基板に搭載するためのIC搭載用開口を有する第2の基板と、
前記マザーボードに当接することなく、前記フロントエンドICと前記マザーボードとの間に配置され、前記光素子が光伝送を行うための光入出力用開口を有する第3の基板と
を含む
請求項1に記載の光電モジュール。 - 前記第1の基板は、前記第2の基板よりも高い放熱性および高い剛性を有し、
前記第2の基板は、前記第3の基板を介して前記フロントエンドICに電気的に接続されると共に、前記第3の基板と前記マザーボードとの間を電気的に接続する接続構造を有し、
前記第3の基板は、前記フロントエンドICと前記第2の基板との間を電気的に接続する接続構造を有する
請求項4に記載の光電モジュール。 - 光コネクタを装着するための位置決め部材をさらに備え、
前記第1の基板が、前記第2の基板よりも高い放熱性および高い剛性を有すると共に、外部の冷却媒体によって温度管理がなされており、
前記第1の基板の1つの基板面に、前記位置決め部材の一端面と、前記フロントエンドICの前記他方の面と、前記第2の基板の1つの基板面とが空隙なく全面的に接合されている
請求項4に記載の光電モジュール。 - 前記第2の基板、および前記第3の基板を貫通することなく、前記第2の基板、および前記第3の基板の表層部を介して前記フロントエンドICと前記マザーボードとの間の電気的な接続が行われる
請求項4に記載の光電モジュール。 - 前記光素子とフロントエンドICとを電気的に接続する多層構造のインターポーザ基板をさらに備え、
前記インターポーザ基板が、他の部分に比べて基板層数を少なくすることによって形成された窪み部分を有し、
前記光素子が前記窪み部分に収まるようにして前記インターポーザ基板に搭載されている
請求項1に記載の光電モジュール。 - インターポーザ基板と、
前記光素子に電気的に接続されたフロントエンドICと、
前記光素子を搭載する保持基板と
をさらに備え、
前記光素子が、前記保持基板に搭載された状態で前記フロントエンドIC、または前記インターポーザ基板に実装されている
請求項1に記載の光電モジュール。 - 前記インターポーザ基板を貫通する開口部を有し、
前記光素子が、前記保持基板に搭載された状態で前記開口部に収まるようにして前記フロントエンドICに実装され、
前記インターポーザ基板を介さずに、前記光素子と前記フロントエンドICとが前記保持基板を介して電気的に接続されている
請求項9に記載の光電モジュール。 - 前記光素子が、前記保持基板に搭載された状態で前記インターポーザ基板に実装され、
前記保持基板および前記インターポーザ基板を介して、前記光素子と前記フロントエンドICとが電気的に接続されている
請求項9に記載の光電モジュール。 - 送信用光学系および受信用光学系を含み、前記光素子に光結合される光コネクタをさらに備え、
前記複数の受発光素子として、受光素子と発光素子とを含み、
前記送信用光学系は、前記発光素子から出射された送信光が平行光束で入射する送信用レンズと、前記送信用レンズに入射した前記送信光を反射する送信用全反射ミラーと、前記送信用全反射ミラーで反射された前記送信光を伝送する送信用光伝送媒体とを有し、
前記受信用光学系は、受信用光伝送媒体と、前記受信用光伝送媒体によって伝送された受信光を反射する受信用全反射ミラーと、前記受信用全反射ミラーで反射された前記受信光を平行光束で前記受光素子に向けて出射する受信用レンズとを有する
請求項1に記載の光電モジュール。 - 前記送信用レンズおよび前記送信用全反射ミラー間の距離と、前記受信用レンズおよび前記受信用全反射ミラー間の距離とが異なり、かつ、前記送信用レンズに入射する入射平行光束の光路長と、前記受信用レンズが出射する出射平行光束の光路長とが異なり、
前記受光素子および前記受信用全反射ミラー間の距離と前記発光素子および前記送信用全反射ミラー間の距離、もしくは、前記受光素子および前記受信用光伝送媒体間の距離と前記発光素子および前記送信用光伝送媒体間の距離とが略同一である
請求項12に記載の光電モジュール。 - 前記送信用光学系は、前記送信用レンズが形成されたレンズ基板をさらに有し、
前記送信用全反射ミラーが、前記送信用レンズの光軸に対して前記送信光を反射する方向にオフセットされた位置に配置され、かつ、前記光学機能素子アレイにおける前記光学基板の前記第1の面と、前記レンズ基板における前記送信用レンズが形成された基板面とが略平行である
請求項12に記載の光電モジュール。 - 前記光コネクタは、前記送信用レンズおよび前記受信用レンズが形成されたレンズ基板をさらに有し、
前記送信用光伝送媒体および前記受信用光伝送媒体が、前記レンズ基板における前記送信用レンズおよび前記受信用レンズが形成された基板面に対して傾斜配置されている
請求項12に記載の光電モジュール。 - 第1の基材で構成された光学機能素子アレイと、
前記第1の基材とは異なる第2の基材で構成された複数の受発光素子と
を備え、
前記光学機能素子アレイは、第1の面および第2の面を含む光学基板と、前記光学基板に一体化され、前記第1の面上において1次元的もしくは2次元的に配列された複数の光学機能素子とを有し、
前記複数の受発光素子のそれぞれと前記複数の光学機能素子のそれぞれとが前記光学基板に対して垂直方向の同軸に位置するように前記光学基板を介して互いに対向配置され、かつ、前記複数の受発光素子が、前記光学機能素子アレイのアレイ数よりも少ない単位数に分離された状態で、前記第2の面に対して間隔を空けて配置されている
光素子。 - 前記複数の受発光素子が、はんだバンプによって前記光学基板の前記第2の面に取り付けられている
請求項16に記載の光素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016519189A JP6610540B2 (ja) | 2014-05-13 | 2015-04-23 | 光電モジュール |
CN201580023164.9A CN106256055A (zh) | 2014-05-13 | 2015-04-23 | 光电模块和光学元件 |
US15/303,111 US10483413B2 (en) | 2014-05-13 | 2015-04-23 | Photoelectric module and optical device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014099695 | 2014-05-13 | ||
JP2014-099695 | 2014-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015174239A1 true WO2015174239A1 (ja) | 2015-11-19 |
Family
ID=54479783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/062355 WO2015174239A1 (ja) | 2014-05-13 | 2015-04-23 | 光電モジュールおよび光素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10483413B2 (ja) |
JP (1) | JP6610540B2 (ja) |
CN (1) | CN106256055A (ja) |
WO (1) | WO2015174239A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017135194A (ja) * | 2016-01-26 | 2017-08-03 | 住友電気工業株式会社 | 光受信モジュール |
KR101841393B1 (ko) | 2017-08-01 | 2018-03-22 | 유웅식 | 광전식 연기 감지기 |
WO2019207953A1 (ja) * | 2018-04-26 | 2019-10-31 | ソニー株式会社 | 測距装置及び測距モジュール |
WO2021079929A1 (ja) * | 2019-10-23 | 2021-04-29 | ソニーセミコンダクタソリューションズ株式会社 | 光源装置 |
DE112019005742T5 (de) | 2018-11-16 | 2021-07-29 | Sony Semiconductor Solutions Corporation | Detektionsschaltung, ansteuerschaltung und lichtemittierende vorrichtung |
JP2023522559A (ja) * | 2019-03-01 | 2023-05-31 | ヴィクサー, インコーポレイテッド | 3D及びLiDARセンシングモジュール |
US11996673B2 (en) | 2018-11-27 | 2024-05-28 | Sony Semiconductor Solutions Corporation | Drive device and light emitting device |
JP7501165B2 (ja) | 2020-07-03 | 2024-06-18 | 日本電気株式会社 | 光学モジュール実装基板、光学モジュール、光学モジュール実装基板の製造方法、および光学モジュールの製造方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10422514B2 (en) * | 2017-12-19 | 2019-09-24 | Sharp Kabushiki Kaisha | Light source module |
CN111106524A (zh) * | 2018-10-29 | 2020-05-05 | 深圳市中光工业技术研究院 | 一种半导体激光器 |
US11731605B2 (en) | 2018-12-17 | 2023-08-22 | Westinghouse Air Brake Technologies Corporation | Bracket for a distributor valve |
DE102019121384A1 (de) * | 2019-08-07 | 2021-02-11 | Forschungsverbund Berlin E.V. | Optischer Pulsgenerator und Verfahren zum Betrieb eines optischen Pulsgenerators hoher Leistung und kurzen Pulsen |
CN113933812A (zh) * | 2020-07-14 | 2022-01-14 | 上海禾赛科技有限公司 | 激光雷达的光源模组、激光雷达及制造光源模组的方法 |
CN111934192A (zh) * | 2020-09-29 | 2020-11-13 | 常州纵慧芯光半导体科技有限公司 | 一种光发射模组及其封装方法 |
CN111934189A (zh) * | 2020-09-29 | 2020-11-13 | 常州纵慧芯光半导体科技有限公司 | 一种光发射模组及其封装方法 |
CN113572024A (zh) * | 2021-07-13 | 2021-10-29 | Oppo广东移动通信有限公司 | 光发射器、深度模组和终端 |
US20230317694A1 (en) * | 2022-04-04 | 2023-10-05 | International Business Machines Corporation | Architecture and device using optical element and computer chip for optical signal transmission |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006235115A (ja) * | 2005-02-23 | 2006-09-07 | Sony Corp | 光信号入力装置およびそれを用いた電子機器 |
JP2009252777A (ja) * | 2008-04-01 | 2009-10-29 | Nippon Telegr & Teleph Corp <Ntt> | 光半導体素子の実装構造 |
JP2009265676A (ja) * | 2008-04-26 | 2009-11-12 | Gwangju Inst Of Science & Technology | 光配線構造物およびその製造方法 |
WO2013100995A1 (en) * | 2011-12-28 | 2013-07-04 | Intel Corporation | Photonic package architecture |
WO2013115780A1 (en) * | 2012-01-31 | 2013-08-08 | Hewlett-Packard Development Company, L.P. | Hybrid electro-optical package for an opto-electronic engine |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3728147B2 (ja) | 1999-07-16 | 2005-12-21 | キヤノン株式会社 | 光電気混載配線基板 |
JP2001185752A (ja) | 1999-12-24 | 2001-07-06 | Nippon Telegr & Teleph Corp <Ntt> | 半導体装置とそれを用いた光信号入出力装置 |
US7657836B2 (en) * | 2002-07-25 | 2010-02-02 | Sharp Laboratories Of America, Inc. | Summarization of soccer video content |
JP2004356618A (ja) * | 2003-03-19 | 2004-12-16 | Ngk Spark Plug Co Ltd | 中継基板、半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体、中継基板の製造方法 |
US7539366B1 (en) * | 2008-01-04 | 2009-05-26 | International Business Machines Corporation | Optical transceiver module |
US8265432B2 (en) * | 2008-03-10 | 2012-09-11 | International Business Machines Corporation | Optical transceiver module with optical windows |
JP2010211179A (ja) * | 2009-02-13 | 2010-09-24 | Hitachi Ltd | 光電気複合配線モジュールおよびその製造方法 |
TWI522668B (zh) * | 2009-02-25 | 2016-02-21 | Hitachi Chemical Co Ltd | Optical waveguide and optical waveguide module |
JP5439080B2 (ja) * | 2009-07-28 | 2014-03-12 | 株式会社日立製作所 | 光i/oアレイモジュール |
JP2012019979A (ja) * | 2010-07-15 | 2012-02-02 | Yokogawa Electric Corp | 共焦点光学系を用いた生体成分測定装置 |
US8404501B2 (en) * | 2010-12-07 | 2013-03-26 | Faraday Technology Corp. | Semiconductor package structure and manufacturing method thereof |
JP5726210B2 (ja) * | 2010-12-24 | 2015-05-27 | 京セラ株式会社 | 熱電発電モジュール |
CN102904291B (zh) * | 2011-07-26 | 2016-08-17 | 富泰华工业(深圳)有限公司 | 充电装置及控制方法 |
JP2013142732A (ja) | 2012-01-07 | 2013-07-22 | Furukawa Electric Co Ltd:The | 光モジュール、回路基板、光モジュールの実装方法、および実装方法 |
JP5318978B2 (ja) | 2012-01-23 | 2013-10-16 | 日本特殊陶業株式会社 | 光電気混載パッケージ及びその製造方法、光素子付き光電気混載パッケージ、光電気混載モジュール |
-
2015
- 2015-04-23 US US15/303,111 patent/US10483413B2/en active Active
- 2015-04-23 WO PCT/JP2015/062355 patent/WO2015174239A1/ja active Application Filing
- 2015-04-23 JP JP2016519189A patent/JP6610540B2/ja active Active
- 2015-04-23 CN CN201580023164.9A patent/CN106256055A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006235115A (ja) * | 2005-02-23 | 2006-09-07 | Sony Corp | 光信号入力装置およびそれを用いた電子機器 |
JP2009252777A (ja) * | 2008-04-01 | 2009-10-29 | Nippon Telegr & Teleph Corp <Ntt> | 光半導体素子の実装構造 |
JP2009265676A (ja) * | 2008-04-26 | 2009-11-12 | Gwangju Inst Of Science & Technology | 光配線構造物およびその製造方法 |
WO2013100995A1 (en) * | 2011-12-28 | 2013-07-04 | Intel Corporation | Photonic package architecture |
WO2013115780A1 (en) * | 2012-01-31 | 2013-08-08 | Hewlett-Packard Development Company, L.P. | Hybrid electro-optical package for an opto-electronic engine |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017135194A (ja) * | 2016-01-26 | 2017-08-03 | 住友電気工業株式会社 | 光受信モジュール |
KR101841393B1 (ko) | 2017-08-01 | 2018-03-22 | 유웅식 | 광전식 연기 감지기 |
US12025738B2 (en) | 2018-04-26 | 2024-07-02 | Sony Corporation | Ranging device and ranging module |
WO2019207953A1 (ja) * | 2018-04-26 | 2019-10-31 | ソニー株式会社 | 測距装置及び測距モジュール |
DE112019005742T5 (de) | 2018-11-16 | 2021-07-29 | Sony Semiconductor Solutions Corporation | Detektionsschaltung, ansteuerschaltung und lichtemittierende vorrichtung |
US11962124B2 (en) | 2018-11-16 | 2024-04-16 | Sony Semiconductor Solutions Corporation | Detection circuit, driving circuit, and light emitting device |
US11996673B2 (en) | 2018-11-27 | 2024-05-28 | Sony Semiconductor Solutions Corporation | Drive device and light emitting device |
JP2023522559A (ja) * | 2019-03-01 | 2023-05-31 | ヴィクサー, インコーポレイテッド | 3D及びLiDARセンシングモジュール |
US12007504B2 (en) | 2019-03-01 | 2024-06-11 | Vixar, Inc. | 3D and LiDAR sensing modules |
JP7522209B2 (ja) | 2019-03-01 | 2024-07-24 | ヴィクサー, インコーポレイテッド | 3D及びLiDARセンシングモジュール |
WO2021079929A1 (ja) * | 2019-10-23 | 2021-04-29 | ソニーセミコンダクタソリューションズ株式会社 | 光源装置 |
US12119371B2 (en) | 2019-10-23 | 2024-10-15 | Sony Semiconductor Solutions Corporation | Light source apparatus |
JP7501165B2 (ja) | 2020-07-03 | 2024-06-18 | 日本電気株式会社 | 光学モジュール実装基板、光学モジュール、光学モジュール実装基板の製造方法、および光学モジュールの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6610540B2 (ja) | 2019-11-27 |
CN106256055A (zh) | 2016-12-21 |
US10483413B2 (en) | 2019-11-19 |
US20170170339A1 (en) | 2017-06-15 |
JPWO2015174239A1 (ja) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6610540B2 (ja) | 光電モジュール | |
US8559474B2 (en) | Silicon carrier optoelectronic packaging | |
US8483253B2 (en) | 3D optoelectronic packaging | |
US20170108655A1 (en) | Photonic package architecture | |
US8265432B2 (en) | Optical transceiver module with optical windows | |
US9647762B2 (en) | Integrated parallel optical transceiver | |
JP5439080B2 (ja) | 光i/oアレイモジュール | |
US9217835B2 (en) | Photoelectric conversion module and transmission apparatus using the same | |
US9645316B1 (en) | Parallel optical interconnect | |
US20160349470A1 (en) | Hybrid integrated optical sub-assembly | |
US11764878B2 (en) | LED chip-to-chip vertically launched optical communications with optical fiber | |
JP6227782B2 (ja) | 光電子パッケージアセンブリ | |
US8938136B2 (en) | Opto-electronic system having flip-chip substrate mounting | |
US11886023B2 (en) | Photonic optoelectronic module packaging | |
US20210141171A1 (en) | Wavelength division multiplexing optical module | |
WO2021211618A1 (en) | Optically-enhanced multichip packaging | |
US20140133797A1 (en) | Flip-chip optical interface with micro-lens array | |
US6786651B2 (en) | Optical interconnect structure, system and transceiver including the structure, and method of forming the same | |
KR101071550B1 (ko) | 광전변환모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15792734 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016519189 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15303111 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15792734 Country of ref document: EP Kind code of ref document: A1 |