WO2015174127A1 - Light emitting device and method for manufacturing same - Google Patents

Light emitting device and method for manufacturing same Download PDF

Info

Publication number
WO2015174127A1
WO2015174127A1 PCT/JP2015/056885 JP2015056885W WO2015174127A1 WO 2015174127 A1 WO2015174127 A1 WO 2015174127A1 JP 2015056885 W JP2015056885 W JP 2015056885W WO 2015174127 A1 WO2015174127 A1 WO 2015174127A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting device
cover member
light source
Prior art date
Application number
PCT/JP2015/056885
Other languages
French (fr)
Japanese (ja)
Inventor
角見 昌昭
浅野 秀樹
隆史 西宮
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020167025414A priority Critical patent/KR20170007239A/en
Priority to CN201580013008.4A priority patent/CN106068568A/en
Publication of WO2015174127A1 publication Critical patent/WO2015174127A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the present invention relates to a light emitting device and a manufacturing method thereof.
  • Patent Document 1 discloses a light-emitting device that includes a blue LED and a sealing portion that seals the blue LED, and the sealing portion is made of a resin composition containing quantum dots.
  • the main object of the present invention is to provide a light emitting device in which the quantum dots in the sealed portion are hardly deteriorated by gas, moisture, etc., and the lifetime of the device can be extended.
  • the light emitting device includes a device body, a light source, a light emitting unit, and a cover member.
  • the device body has a recess.
  • the light source is disposed on the bottom wall of the recess.
  • the light emitting part is arranged in the recess so that light from the light source is incident.
  • the light emitting unit includes quantum dots.
  • the cover member closes the recess. The cover member seals the light source and the light emitting unit together with the device body.
  • the light emitting section may include a resin in which quantum dots are dispersed.
  • the light emitting unit may be provided directly on the light source so as to cover the light source.
  • the surface of the light emitting portion may be concave.
  • the light emitting part may be filled in a sealed space defined by the device main body and the cover member.
  • the light emitting portion may be provided on the surface of the cover member on the concave portion side.
  • the light emitting unit may be supported by the light source.
  • the light emitting device is preferably provided with a diffusing member that is disposed between the light emitting portion and the light source and diffuses light from the light source.
  • the cover member and the device main body may be welded.
  • the cover member and the device body may be anodically bonded.
  • the cover member and the device main body may be bonded by an inorganic bonding material.
  • a part of the device body may be made of metal.
  • the portion of the device body made of metal and the light emitting portion are in contact with each other.
  • the cover member preferably has a thickness of 1.0 mm or less.
  • the cover member preferably has a refractive index of 1.70 or less.
  • the cover member may have a grain boundary.
  • the cover member may include a light scattering agent.
  • the cover member may be made of ceramics.
  • the sealed space defined by the device body and the cover member may be decompressed.
  • the sealed space defined by the device body and the cover member may be an inert gas atmosphere.
  • a light source is disposed on the bottom wall of the recess of the device body having the recess.
  • the light emitting part is formed by arranging the resin in which the quantum dots are dispersed in the recess.
  • a cover member is disposed so as to close the recess, and the light source and the light emitting unit are sealed. Prior to the sealing step, the resin is heated to 100 ° C. or higher.
  • the lifetime of a light emitting device using quantum dots can be extended.
  • FIG. 1 is a schematic cross-sectional view of the light emitting device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the light emitting device according to the second embodiment.
  • FIG. 3 is a schematic cross-sectional view of a light emitting device according to a third embodiment.
  • FIG. 4 is a schematic cross-sectional view of a light emitting device according to a fourth embodiment.
  • FIG. 5 is a schematic cross-sectional view of a light emitting device according to a fifth embodiment.
  • FIG. 6 is a schematic cross-sectional view of a light emitting device according to a sixth embodiment.
  • FIG. 7 is a schematic cross-sectional view of a light emitting device according to a seventh embodiment.
  • FIG. 8 is a schematic cross-sectional view of a light emitting device according to an eighth embodiment.
  • FIG. 1 is a schematic cross-sectional view of a light emitting device 1 according to the first embodiment.
  • the light emitting device 1 is a device that emits light having a wavelength different from that of the excitation light when the excitation light is incident.
  • the light emitting device 1 may emit mixed light of excitation light and light generated by irradiation of excitation light.
  • the light emitting device 1 has a device body 10.
  • the device main body 10 includes a first member 11 and a second member 12.
  • the second member 12 is provided on the first member 11.
  • the second member 12 is provided with a through hole 12 a that opens to the first member 11.
  • a recess 13 is formed by the through hole 12a.
  • the through hole 12a tapers toward the first member 11 side. For this reason, the side wall 13 a of the recess 13 is inclined with respect to the main surface of the first member 11.
  • the device body 10 may be made of any material.
  • the device body 10 may be made of, for example, ceramics such as low-temperature co-fired ceramics, metal, resin, glass, or the like.
  • the material constituting the first member 11 and the material constituting the second member 12 may be the same or different.
  • an example in which a part of the device body 10 is made of metal will be described. Specifically, the example in which the 2nd member 12 which comprises the side wall 13a among the device main bodies 10 is comprised with the metal is demonstrated.
  • the metal which comprises the device main body 10 aluminum, copper, iron, the alloy which consists of these components, etc. are mentioned, for example.
  • the light source 20 is disposed on the bottom wall 13b of the recess 13 of the device body 10.
  • the light source 20 can be composed of, for example, an LED (Light Emitting Diode) element, an LD (Laser Diode) element, or the like. In the present embodiment, an example in which the light source 20 is configured by LEDs will be described.
  • a light emitting unit 30 is arranged in the recess 13.
  • the light emitting unit 30 is arranged so that light from the light source 20 enters.
  • the light emitting unit 30 is disposed on the light source 20 so as to block the light source 20.
  • the light emitting unit 30 includes quantum dots.
  • the light emitting unit 30 may include one type of quantum dot or may include a plurality of types of quantum dots.
  • the quantum dot emits light having a wavelength different from that of the excitation light when the quantum dot excitation light is incident.
  • the wavelength of the light emitted from the quantum dot depends on the particle diameter of the quantum dot. That is, the wavelength of the light obtained by changing the particle diameter of the quantum dots can be adjusted. For this reason, the particle diameter of a quantum dot is made into the particle diameter according to the wavelength of the light to obtain.
  • the particle size of the quantum dots is usually about 2 nm to 10 nm.
  • quantum dots that emits blue visible light (fluorescence with a wavelength of 440 nm to 480 nm) when irradiated with excitation light of ultraviolet to near ultraviolet with a wavelength of 300 nm to 440 nm
  • the particle diameter is about 2.0 nm to 3.0 nm.
  • quantum dots that emit green visible light (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 nm to 440 nm or blue excitation light having a wavelength of 440 nm to 480 nm include particle diameters.
  • CdSe / ZnS microcrystals having a thickness of about 3.0 nm to 3.3 nm.
  • Specific examples of quantum dots that emit yellow visible light (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 nm to 440 nm or blue excitation light having a wavelength of 440 nm to 480 nm include particle diameters.
  • CdSe / ZnS microcrystals having a thickness of about 3.3 nm to 4.5 nm.
  • quantum dots that emit red visible light (fluorescence with a wavelength of 600 nm to 700 nm) when irradiated with ultraviolet to near ultraviolet excitation light with a wavelength of 300 nm to 440 nm or blue excitation light with a wavelength of 440 nm to 480 nm include particle diameters.
  • CdSe / ZnS microcrystals having a thickness of about 4.5 nm to 10 nm.
  • the light emitting unit 30 is solid.
  • the light emitting unit 30 includes a resin in which quantum dots are dispersed.
  • the resin preferably used include a silicone resin, an epoxy resin, and an acrylic resin.
  • the light emitting unit 30 may further include, for example, a light dispersing agent or the like in addition to the resin and the quantum dots.
  • the light emitting unit 30 is provided immediately above the light source 20 so as to cover the light source 20.
  • the light emitting unit 30 is provided across the bottom wall 13b and the side wall 13a including the portion where the light source 20 is provided. For this reason, the 2nd member 12 and the light emission part 30 which were comprised with the metal are contacting.
  • the surface 30a of the light emitting unit 30 is a concave surface.
  • the light emission part 30 may be comprised by the laminated body of the multiple layers of light emitting layer.
  • the plurality of light emitting layers may include a plurality of light emitting layers including quantum dots that emit light having different wavelengths.
  • a stacked body of a plurality of light-emitting layers including a first light-emitting layer including quantum dots that emit light having a first wavelength and a second light-emitting layer including quantum dots that emit light having a second wavelength You may comprise the light emission part 30 by.
  • the recess 13 is closed by the cover member 40.
  • the cover member 40 and the device body 10 are joined.
  • a sealing space 50 is defined by the cover member 40 and the device body 10.
  • the light source 20 and the light emitting unit 30 are sealed in the sealed space 50.
  • the light source 20 and the light emitting unit 30 are sealed in the sealed space 50. For this reason, it is suppressed that the quantum dot contained in the light emission part 30 contacts a water
  • the device body 10 and the cover member 40 are made of a material that hardly transmits moisture and oxygen. . It is preferable that the device main body 10 and the cover member 40 are each made of an inorganic material. Specifically, the device body 10 is preferably made of metal, ceramics, glass, or the like. Since the cover member 40 needs to have translucency, the cover member 40 is preferably made of glass, ceramics, or the like, for example.
  • the light emitting device 1 is configured so that moisture and oxygen do not easily enter from the gap between the device body 10 and the cover member 40.
  • the device body 10 and the cover member 40 are preferably welded.
  • the device body 10 and the cover member 40 are preferably welded using a laser or the like.
  • the cover member 40 and the device body 10 are anodically bonded.
  • the cover member 40 and the device main body 10 are bonded by an inorganic bonding material.
  • the deterioration of the light emitting device 1 using the quantum dots tends to progress as the quantum dots become higher in temperature.
  • the device body 10 is made of a metal having high thermal conductivity. For this reason, the heat of the light source 20 is easily radiated via the device body 10.
  • the second member 12 made of metal and the light emitting unit 30 are in contact with each other. For this reason, the heat of the light emitting unit 30 is easily radiated through the second member 12.
  • the contact area between the light emitting unit 30 and the second member 12 can be increased even if the filling amount of the light emitting unit 30 is small. Can be bigger. Therefore, the heat of the light emitting unit 30 is easily radiated more efficiently via the second member 12. Accordingly, the light emitting device 1 has a longer life.
  • the cover member 40 is made of ceramics having high thermal conductivity.
  • the sealed space 50 is preferably decompressed.
  • the sealed space 50 is preferably an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere.
  • the sealed space 50 is preferably pressurized.
  • the thickness of the cover member 40 is preferably 1.0 mm or less, and more preferably 0.5 mm or less. However, if the thickness of the cover member 40 is too small, the mechanical strength of the cover member 40 may be too low. Therefore, the thickness of the cover member 40 is preferably 0.005 mm or more.
  • the refractive index of the cover member 40 is preferably 1.70 or less, and more preferably 1.60 or less. The refractive index of the cover member 40 is usually 1.46 or more.
  • the cover member 40 has light scattering ability. Specifically, it is preferable that the cover member 40 has a grain boundary. Or it is preferable that the cover member 40 contains the light-scattering agent.
  • the light scattering agent preferably used include highly reflective inorganic compounds such as alumina, titania, and silica, and highly reflective white resins.
  • the manufacturing method of the light emitting device 1 is not particularly limited.
  • the light emitting device 1 can be manufactured, for example, in the following manner.
  • the device body 10 having the recess 13 is prepared.
  • the light source 20 is disposed on the device body 10.
  • the resin composition containing quantum dots is supplied into the recess 13 and cured to form the light emitting unit 30.
  • the cover member 40 can be attached to the device body 10 by, for example, laser welding, anodic bonding, bonding using an inorganic bonding material such as solder, or the like.
  • the step of supplying and curing the resin composition containing quantum dots and the step of attaching the cover member 40 may be performed, for example, under a reduced pressure atmosphere or an inert gas atmosphere.
  • the resin contained in the light emitting unit 30 Before performing the sealing step, it is preferable to heat the resin contained in the light emitting unit 30 to reduce the moisture concentration of the resin.
  • the resin contained in the light emitting unit 30 is preferably heated to 100 ° C. or higher, more preferably 150 ° C. or higher.
  • the resin may be heated after curing or before curing, for example, before coating.
  • members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.
  • FIG. 2 is a schematic cross-sectional view of a light emitting device 1a according to the second embodiment.
  • Embodiment demonstrated the example in which the light emission part 30 was distribute
  • the light emitting unit 30 is filled in the sealed space 50.
  • the light emitting unit 30 does not have a surface separated from the cover member 40.
  • the light emitting unit 30 is in close contact with the surface of the cover member 40 on the recess 13 side. In this case, the interface located on the light emitting side of the light emitting unit 30 is reduced. Therefore, the light extraction efficiency from the light emitting unit 30 is improved.
  • manufacturing variations in the thickness of the light emitting unit 30 can be suppressed. For this reason, the dispersion
  • FIG. 3 is a schematic cross-sectional view of a light emitting device 1b according to the third embodiment.
  • the present invention demonstrated the example in which the light emission part 30 was distribute
  • the present invention is not limited to this configuration.
  • the light emitting unit 30 is provided on the surface of the cover member 40 on the concave portion 13 side.
  • the light emitting unit 30 is provided on substantially the entire portion of the surface of the cover member 40 on the concave portion 13 side exposed to the concave portion 13.
  • Such a light emitting unit 30 can be formed, for example, by applying a paste containing quantum dots and resin on the cover member 40 and drying the paste. In this case, the thickness unevenness of the light emitting unit 30 can be reduced. Accordingly, variations in the light emission intensity and light emission chromaticity of the light emitting device 1 can be suppressed.
  • FIG. 4 is a schematic cross-sectional view of a light emitting device 1c according to the fourth embodiment.
  • the light emitting unit 30 is supported by the light source 20.
  • the light emitting unit 30 is provided immediately above the upper surface of the light source 20.
  • the light emitting unit 30 and the light source 20 are in direct contact. For this reason, the number of interfaces between the light emitting unit 30 and the light source 20 is small. Therefore, the incident efficiency of the light from the light source 20 to the light emitting unit 30 can be increased.
  • FIG. 5 is a schematic cross-sectional view of a light emitting device 1d according to the fifth embodiment.
  • FIG. 6 is a schematic cross-sectional view of a light emitting device according to a sixth embodiment.
  • a diffusing member 60 that diffuses light from the light source 20 is provided between the light emitting unit 30 and the light source 20. .
  • the diffusing member 60 it is possible to reduce the variation in the incident intensity of the light from the light source 20 to the light emitting unit 30. Therefore, the in-plane variation of the light emission intensity and the light emission chromaticity can be reduced.
  • the light emitting unit 30 is provided immediately above the diffusion member 60.
  • the light emitting unit 30 and the diffusing member 60 are in contact with each other. Therefore, it is possible to increase the incident efficiency of light to the light emitting unit 30.
  • the light emitting unit 30 and the light source 20 are isolated. A space is provided between the light emitting unit 30 and the light source 20. For this reason, the heat from the light source 20 is not easily transmitted to the light emitting unit 30. Therefore, thermal degradation of the light emitting unit 30 can be suppressed.
  • the diffusion member 60 may be brought into contact with the device body 10. By doing so, the heat of the light source 20 is easily radiated through the diffusion member 60 and the device body 10.
  • FIG. 7 is a schematic cross-sectional view of a light emitting device 1f according to the seventh embodiment.
  • the cover member 40 and the device main body 10 are bonded by an inorganic bonding material 70 such as solder or a low melting point frit.
  • an inorganic bonding material 70 such as solder or a low melting point frit.
  • FIG. 8 is a schematic cross-sectional view of a light emitting device 1g according to the eighth embodiment.
  • the present invention is not limited to this configuration.
  • the shape of the through hole 12az provided in the second member 12z is formed so as to taper from the middle in the height direction toward the first member 11 side.
  • the recess 13z may be configured, and the cover member 40 may be fitted into the recess 13z to close the recess 13z.
  • the light emitting unit 30 is provided on the entire surface of the cover member 40 on the concave portion 13z side.
  • the present invention is not limited to this configuration.
  • the light emitting unit may be disposed on the bottom wall of the recess.
  • Light-emitting device 10 Device body 11 First member 12, 12z Second member 12a, 12az Through hole 13, 13z Recess 13a Side wall 13b Bottom wall 20
  • Light source 30 Light emission Part 40 cover member 50 sealing space 60 diffusion member 70 inorganic bonding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a light emitting device which is not susceptible to deterioration of quantum dots in a sealed part, said deterioration being caused by a gas, moisture or the like, and which is able to have a longer service life. This light emitting device (1) is provided with a device main body (10), a light source (20), a light emitting part (30) and a cover member (40). The device main body (10) has a recessed part (13). The light source (20) is disposed on a bottom wall (13b) of the recessed part (13). The light emitting part (30) is arranged within the recessed part (13) such that light from the light source (20) is incident thereon. The light emitting part (30) contains quantum dots. The cover member (40) closes up the recessed part (13). The cover member (40) seals the light source (20) and the light emitting part (30) together with the device main body (10).

Description

発光デバイス及びその製造方法Light emitting device and manufacturing method thereof
 本発明は、発光デバイス及びその製造方法に関する。 The present invention relates to a light emitting device and a manufacturing method thereof.
 近年、発光ダイオードを用いた発光デバイスの進歩が目覚しく、液晶のバックライト、大型ディスプレイ等に採用されている。特に、短波長光の発光素子の半導体材料の発展により、短波長の光を得られるようになってきたため、これを用いて蛍光体を励起してより多様な波長の光を得ることができるようになった。 In recent years, light-emitting devices using light-emitting diodes have made remarkable progress and have been adopted for liquid crystal backlights, large displays, and the like. In particular, with the development of semiconductor materials for light emitting elements with short wavelength light, it has become possible to obtain short wavelength light, so that phosphors can be used to obtain light of various wavelengths. Became.
 従来、量子ドットを用いた発光デバイスが知られている。例えば、特許文献1には、青色LEDと、青色LEDを封止する封止部を備え、封止部が量子ドットを含む樹脂組成物からなる発光デバイスが開示されている。 Conventionally, light emitting devices using quantum dots are known. For example, Patent Document 1 discloses a light-emitting device that includes a blue LED and a sealing portion that seals the blue LED, and the sealing portion is made of a resin composition containing quantum dots.
特開2010-126596号公報JP 2010-126596 A
 しかしながら、特許文献1に示すような発光デバイスの場合、発光デバイスの使用環境下において存在するガスや水分等によって封止部の量子ドットが劣化しやすく、量子ドットの発する蛍光強度が低下するという問題がある。 However, in the case of a light emitting device as shown in Patent Document 1, the problem is that the quantum dots in the sealing part are likely to be deteriorated by the gas, moisture, etc. present in the usage environment of the light emitting device, and the fluorescence intensity emitted by the quantum dots is reduced. There is.
 本発明の主な目的は、ガスや水分等によって封止部の量子ドットが劣化しにくく、デバイスの長寿命化を図ることが可能な発光デバイスを提供することにある。 The main object of the present invention is to provide a light emitting device in which the quantum dots in the sealed portion are hardly deteriorated by gas, moisture, etc., and the lifetime of the device can be extended.
 本発明に係る発光デバイスは、デバイス本体と、光源と、発光部と、カバー部材と、を備える。デバイス本体は、凹部を有する。光源は、凹部の底壁の上に配されている。発光部は、凹部内において、光源からの光が入射するように配されている。発光部は、量子ドットを含む。カバー部材は、凹部を塞いでいる。カバー部材は、デバイス本体と共に光源及び発光部を封止している。 The light emitting device according to the present invention includes a device body, a light source, a light emitting unit, and a cover member. The device body has a recess. The light source is disposed on the bottom wall of the recess. The light emitting part is arranged in the recess so that light from the light source is incident. The light emitting unit includes quantum dots. The cover member closes the recess. The cover member seals the light source and the light emitting unit together with the device body.
 本発明に係る発光デバイスでは、発光部が、量子ドットが分散した樹脂を含んでいてもよい。 In the light emitting device according to the present invention, the light emitting section may include a resin in which quantum dots are dispersed.
 本発明に係る発光デバイスでは、発光部が、光源の直上に、光源を被覆するように設けられていてもよい。 In the light emitting device according to the present invention, the light emitting unit may be provided directly on the light source so as to cover the light source.
 本発明に係る発光デバイスでは、発光部の表面が凹面であってもよい。 In the light emitting device according to the present invention, the surface of the light emitting portion may be concave.
 本発明に係る発光デバイスでは、発光部が、デバイス本体とカバー部材とにより区画形成された封止空間に充填されていてもよい。 In the light emitting device according to the present invention, the light emitting part may be filled in a sealed space defined by the device main body and the cover member.
 本発明に係る発光デバイスでは、発光部が、カバー部材の凹部側の表面上に設けられていてもよい。 In the light emitting device according to the present invention, the light emitting portion may be provided on the surface of the cover member on the concave portion side.
 本発明に係る発光デバイスでは、発光部が、光源に支持されていてもよい。 In the light emitting device according to the present invention, the light emitting unit may be supported by the light source.
 本発明に係る発光デバイスは、発光部と光源との間に配されており、光源からの光を拡散する拡散部材をさらに備えていることが好ましい。 The light emitting device according to the present invention is preferably provided with a diffusing member that is disposed between the light emitting portion and the light source and diffuses light from the light source.
 本発明に係る発光デバイスでは、カバー部材とデバイス本体とが溶接されていてもよい。 In the light emitting device according to the present invention, the cover member and the device main body may be welded.
 本発明に係る発光デバイスでは、カバー部材とデバイス本体とが陽極接合されていてもよい。 In the light emitting device according to the present invention, the cover member and the device body may be anodically bonded.
 本発明に係る発光デバイスでは、カバー部材とデバイス本体とが無機接合材により接合されていてもよい。 In the light emitting device according to the present invention, the cover member and the device main body may be bonded by an inorganic bonding material.
 本発明に係る発光デバイスでは、デバイス本体の一部が金属により構成されていてもよい。 In the light emitting device according to the present invention, a part of the device body may be made of metal.
 本発明に係る発光デバイスでは、デバイス本体の金属により構成された部分と発光部とが接触していることが好ましい。 In the light emitting device according to the present invention, it is preferable that the portion of the device body made of metal and the light emitting portion are in contact with each other.
 本発明に係る発光デバイスでは、カバー部材の厚みが、1.0mm以下であることが好ましい。 In the light emitting device according to the present invention, the cover member preferably has a thickness of 1.0 mm or less.
 本発明に係る発光デバイスでは、カバー部材の屈折率が、1.70以下であることが好ましい。 In the light emitting device according to the present invention, the cover member preferably has a refractive index of 1.70 or less.
 本発明に係る発光デバイスでは、カバー部材が粒界を有していてもよい。 In the light emitting device according to the present invention, the cover member may have a grain boundary.
 本発明に係る発光デバイスでは、カバー部材が、光散乱剤を含んでいてもよい。 In the light emitting device according to the present invention, the cover member may include a light scattering agent.
 本発明に係る発光デバイスでは、カバー部材が、セラミックスにより構成されていてもよい。 In the light emitting device according to the present invention, the cover member may be made of ceramics.
 本発明に係る発光デバイスでは、デバイス本体とカバー部材とにより区画形成された封止空間が減圧されていてもよい。 In the light emitting device according to the present invention, the sealed space defined by the device body and the cover member may be decompressed.
 本発明に係る発光デバイスでは、デバイス本体とカバー部材とにより区画形成された封止空間が不活性ガス雰囲気であってもよい。 In the light emitting device according to the present invention, the sealed space defined by the device body and the cover member may be an inert gas atmosphere.
 本発明に係る発光デバイスの製造方法では、凹部を有するデバイス本体の凹部の底壁の上に光源を配する。量子ドットが分散した樹脂を凹部内に配することにより発光部を形成する。凹部を塞ぐようにカバー部材を配し、光源と発光部とを封止する。封止工程に先立って、樹脂を100℃以上に加熱する。 In the method for manufacturing a light emitting device according to the present invention, a light source is disposed on the bottom wall of the recess of the device body having the recess. The light emitting part is formed by arranging the resin in which the quantum dots are dispersed in the recess. A cover member is disposed so as to close the recess, and the light source and the light emitting unit are sealed. Prior to the sealing step, the resin is heated to 100 ° C. or higher.
 本発明によれば、量子ドットを用いた発光デバイスの長寿命化を図ることができる。 According to the present invention, the lifetime of a light emitting device using quantum dots can be extended.
図1は、第1の実施形態に係る発光デバイスの模式的断面図である。FIG. 1 is a schematic cross-sectional view of the light emitting device according to the first embodiment. 図2は、第2の実施形態に係る発光デバイスの模式的断面図である。FIG. 2 is a schematic cross-sectional view of the light emitting device according to the second embodiment. 図3は、第3の実施形態に係る発光デバイスの模式的断面図である。FIG. 3 is a schematic cross-sectional view of a light emitting device according to a third embodiment. 図4は、第4の実施形態に係る発光デバイスの模式的断面図である。FIG. 4 is a schematic cross-sectional view of a light emitting device according to a fourth embodiment. 図5は、第5の実施形態に係る発光デバイスの模式的断面図である。FIG. 5 is a schematic cross-sectional view of a light emitting device according to a fifth embodiment. 図6は、第6の実施形態に係る発光デバイスの模式的断面図である。FIG. 6 is a schematic cross-sectional view of a light emitting device according to a sixth embodiment. 図7は、第7の実施形態に係る発光デバイスの模式的断面図である。FIG. 7 is a schematic cross-sectional view of a light emitting device according to a seventh embodiment. 図8は、第8の実施形態に係る発光デバイスの模式的断面図である。FIG. 8 is a schematic cross-sectional view of a light emitting device according to an eighth embodiment.
 以下、本発明を実施した好ましい形態について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, preferred embodiments of the present invention will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described. A ratio of dimensions of an object drawn in a drawing may be different from a ratio of dimensions of an actual object. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 (第1の実施形態)
 図1は、第1の実施形態に係る発光デバイス1の模式的断面図である。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of a light emitting device 1 according to the first embodiment.
 発光デバイス1は、励起光が入射したときに励起光とは異なる波長の光を出射するデバイスである。発光デバイス1は、励起光と、励起光の照射により生じた光との混合光を出射するものであってもよい。 The light emitting device 1 is a device that emits light having a wavelength different from that of the excitation light when the excitation light is incident. The light emitting device 1 may emit mixed light of excitation light and light generated by irradiation of excitation light.
 発光デバイス1は、デバイス本体10を有する。デバイス本体10は、第1の部材11と、第2の部材12とを有する。第2の部材12は、第1の部材11の上に設けられている。第2の部材12には、第1の部材11に開口する貫通孔12aが設けられている。この貫通孔12aにより凹部13が構成されている。なお、貫通孔12aは、第1の部材11側に向かって先細っている。このため、凹部13の側壁13aは、第1の部材11の主面に対して傾斜している。 The light emitting device 1 has a device body 10. The device main body 10 includes a first member 11 and a second member 12. The second member 12 is provided on the first member 11. The second member 12 is provided with a through hole 12 a that opens to the first member 11. A recess 13 is formed by the through hole 12a. The through hole 12a tapers toward the first member 11 side. For this reason, the side wall 13 a of the recess 13 is inclined with respect to the main surface of the first member 11.
 デバイス本体10は、どのような材料によって構成されていてもよい。デバイス本体10は、例えば、低温同時焼成セラミックス等のセラミックス、金属、樹脂、ガラス等により構成されていてもよい。第1の部材11を構成している材料と、第2の部材12を構成している材料とは、同じであってもよいし、異なっていてもよい。本実施形態では、デバイス本体10の一部が金属により構成されている例について説明する。具体的には、デバイス本体10のうち、側壁13aを構成している第2の部材12が金属により構成されている例について説明する。なお、デバイス本体10を構成する金属の好ましい具体例としては、例えば、アルミニウム、銅、鉄及び、これら成分からなる合金等が挙げられる。 The device body 10 may be made of any material. The device body 10 may be made of, for example, ceramics such as low-temperature co-fired ceramics, metal, resin, glass, or the like. The material constituting the first member 11 and the material constituting the second member 12 may be the same or different. In the present embodiment, an example in which a part of the device body 10 is made of metal will be described. Specifically, the example in which the 2nd member 12 which comprises the side wall 13a among the device main bodies 10 is comprised with the metal is demonstrated. In addition, as a preferable specific example of the metal which comprises the device main body 10, aluminum, copper, iron, the alloy which consists of these components, etc. are mentioned, for example.
 デバイス本体10の凹部13の底壁13bの上には、光源20が配されている。光源20は、例えば、LED(Light Emitting Diode)素子、LD(Laser Diode)素子等により構成することができる。本実施形態では、光源20がLEDにより構成されている例について説明する。 The light source 20 is disposed on the bottom wall 13b of the recess 13 of the device body 10. The light source 20 can be composed of, for example, an LED (Light Emitting Diode) element, an LD (Laser Diode) element, or the like. In the present embodiment, an example in which the light source 20 is configured by LEDs will be described.
 凹部13内には、発光部30が配されている。発光部30は、光源20からの光が入射するように配されている。具体的には、発光部30は、光源20の上に、光源20を塞ぐように配されている。 A light emitting unit 30 is arranged in the recess 13. The light emitting unit 30 is arranged so that light from the light source 20 enters. Specifically, the light emitting unit 30 is disposed on the light source 20 so as to block the light source 20.
 発光部30は、量子ドットを含む。発光部30は、1種類の量子ドットを含んでいてもよいし、複数種類の量子ドットを含んでいてもよい。 The light emitting unit 30 includes quantum dots. The light emitting unit 30 may include one type of quantum dot or may include a plurality of types of quantum dots.
 なお、量子ドットは、量子ドットの励起光が入射したときに、励起光とは異なる波長の光を出射する。量子ドットから出射される光の波長は、量子ドットの粒子径に依存する。すなわち、量子ドットの粒子径を変化させることにより得られる光の波長を調整することができる。このため、量子ドットの粒子径は、得ようとする光の波長に応じた粒子径とされている。量子ドットの粒子径は、通常、2nm~10nm程度である。 The quantum dot emits light having a wavelength different from that of the excitation light when the quantum dot excitation light is incident. The wavelength of the light emitted from the quantum dot depends on the particle diameter of the quantum dot. That is, the wavelength of the light obtained by changing the particle diameter of the quantum dots can be adjusted. For this reason, the particle diameter of a quantum dot is made into the particle diameter according to the wavelength of the light to obtain. The particle size of the quantum dots is usually about 2 nm to 10 nm.
 例えば、波長300nm~440nmの紫外~近紫外の励起光を照射すると青色の可視光(波長440nm~480nmの蛍光)を発する量子ドットの具体例としては、粒子径が2.0nm~3.0nm程度のCdSe/ZnSの微結晶などが挙げられる。波長300nm~440nmの紫外~近紫外の励起光や波長440nm~480nmの青色の励起光を照射すると緑色の可視光(波長が500nm~540nmの蛍光)を発する量子ドットの具体例としては、粒子径が3.0nm~3.3nm程度のCdSe/ZnSの微結晶などが挙げられる。波長300nm~440nmの紫外~近紫外の励起光や波長440nm~480nmの青色の励起光を照射すると黄色の可視光(波長が540nm~595nmの蛍光)を発する量子ドットの具体例としては、粒子径が3.3nm~4.5nm程度のCdSe/ZnSの微結晶などが挙げられる。波長300nm~440nmの紫外~近紫外の励起光や波長440nm~480nmの青色の励起光を照射すると赤色の可視光(波長が600nm~700nmの蛍光)を発する量子ドットの具体例としては、粒子径が4.5nm~10nm程度のCdSe/ZnSの微結晶などが挙げられる。 For example, as a specific example of a quantum dot that emits blue visible light (fluorescence with a wavelength of 440 nm to 480 nm) when irradiated with excitation light of ultraviolet to near ultraviolet with a wavelength of 300 nm to 440 nm, the particle diameter is about 2.0 nm to 3.0 nm. And CdSe / ZnS microcrystals. Specific examples of quantum dots that emit green visible light (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 nm to 440 nm or blue excitation light having a wavelength of 440 nm to 480 nm include particle diameters. CdSe / ZnS microcrystals having a thickness of about 3.0 nm to 3.3 nm. Specific examples of quantum dots that emit yellow visible light (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 nm to 440 nm or blue excitation light having a wavelength of 440 nm to 480 nm include particle diameters. And CdSe / ZnS microcrystals having a thickness of about 3.3 nm to 4.5 nm. Specific examples of quantum dots that emit red visible light (fluorescence with a wavelength of 600 nm to 700 nm) when irradiated with ultraviolet to near ultraviolet excitation light with a wavelength of 300 nm to 440 nm or blue excitation light with a wavelength of 440 nm to 480 nm include particle diameters. CdSe / ZnS microcrystals having a thickness of about 4.5 nm to 10 nm.
 本実施形態では、発光部30は、固体である。具体的には、発光部30は、量子ドットが分散した樹脂を含む。好ましく用いられる樹脂の具体例としては、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂等が挙げられる。 In the present embodiment, the light emitting unit 30 is solid. Specifically, the light emitting unit 30 includes a resin in which quantum dots are dispersed. Specific examples of the resin preferably used include a silicone resin, an epoxy resin, and an acrylic resin.
 なお、発光部30は、樹脂と量子ドットとの他に、例えば、光分散剤等をさらに含んでいてもよい。 In addition, the light emitting unit 30 may further include, for example, a light dispersing agent or the like in addition to the resin and the quantum dots.
 発光部30は、光源20の直上に、光源20を被覆するように設けられている。発光部30は、光源20が設けられた部分を含め、底壁13bの上と、側壁13aの上とに跨がって設けられている。このため、金属により構成された第2の部材12と発光部30とは接触している。 The light emitting unit 30 is provided immediately above the light source 20 so as to cover the light source 20. The light emitting unit 30 is provided across the bottom wall 13b and the side wall 13a including the portion where the light source 20 is provided. For this reason, the 2nd member 12 and the light emission part 30 which were comprised with the metal are contacting.
 発光部30の表面30aは、凹面である。 The surface 30a of the light emitting unit 30 is a concave surface.
 なお、発光部30は、複数層の発光層の積層体により構成されていてもよい。その場合、複数層の発光層は、相互に異なる波長の光を出射する量子ドットを含む複数の発光層を含んでいてもよい。例えば、第1の波長の光を出射する量子ドットを含む第1の発光層と、第2の波長の光を出射する量子ドットを含む第2の発光層とを含む複数の発光層の積層体により発光部30を構成してもよい。 In addition, the light emission part 30 may be comprised by the laminated body of the multiple layers of light emitting layer. In that case, the plurality of light emitting layers may include a plurality of light emitting layers including quantum dots that emit light having different wavelengths. For example, a stacked body of a plurality of light-emitting layers including a first light-emitting layer including quantum dots that emit light having a first wavelength and a second light-emitting layer including quantum dots that emit light having a second wavelength You may comprise the light emission part 30 by.
 凹部13は、カバー部材40により塞がれている。このカバー部材40とデバイス本体10とは、接合されている。カバー部材40とデバイス本体10とによって封止空間50が区画形成されている。光源20と発光部30とはこの封止空間50内に封止されている。 The recess 13 is closed by the cover member 40. The cover member 40 and the device body 10 are joined. A sealing space 50 is defined by the cover member 40 and the device body 10. The light source 20 and the light emitting unit 30 are sealed in the sealed space 50.
 このように、発光デバイス1では、封止空間50内に光源20と発光部30とが封止されている。このため、発光部30に含まれる量子ドットが水分や酸素と接触することが抑制されている。よって、水分や酸素によって量子ドットが劣化し難い。従って、発光デバイス1は、長寿命化を図ることができる。 As described above, in the light emitting device 1, the light source 20 and the light emitting unit 30 are sealed in the sealed space 50. For this reason, it is suppressed that the quantum dot contained in the light emission part 30 contacts a water | moisture content or oxygen. Therefore, the quantum dots are hardly deteriorated by moisture or oxygen. Therefore, the lifetime of the light emitting device 1 can be increased.
 封止空間50内に水分や酸素が侵入することをより効果的に抑制する観点からは、デバイス本体10とカバー部材40とが、水分や酸素を透過しにくい材料により構成されていることが好ましい。デバイス本体10及びカバー部材40は、それぞれ、無機材により構成されていることが好ましい。具体的には、デバイス本体10は、金属やセラミックス、ガラス等により構成されていることが好ましい。カバー部材40は、透光性を有するものである必要があるため、例えば、ガラス、セラミックス等により構成されていることが好ましい。 From the viewpoint of more effectively suppressing the penetration of moisture and oxygen into the sealed space 50, it is preferable that the device body 10 and the cover member 40 are made of a material that hardly transmits moisture and oxygen. . It is preferable that the device main body 10 and the cover member 40 are each made of an inorganic material. Specifically, the device body 10 is preferably made of metal, ceramics, glass, or the like. Since the cover member 40 needs to have translucency, the cover member 40 is preferably made of glass, ceramics, or the like, for example.
 また、発光デバイス1が、デバイス本体10とカバー部材40との間の隙間から水分や酸素が侵入しにくいように構成されていることが好ましい。具体的には、例えば、デバイス本体10とカバー部材40とが溶接されていることが好ましい。例えば、デバイス本体10とカバー部材40とがレーザー等を用いて溶接されていることが好ましい。また、例えば、カバー部材40とデバイス本体10とが陽極接合されていることが好ましい。また、例えば、カバー部材40とデバイス本体10とが無機接合材により接合されていることが好ましい。 In addition, it is preferable that the light emitting device 1 is configured so that moisture and oxygen do not easily enter from the gap between the device body 10 and the cover member 40. Specifically, for example, the device body 10 and the cover member 40 are preferably welded. For example, the device body 10 and the cover member 40 are preferably welded using a laser or the like. For example, it is preferable that the cover member 40 and the device body 10 are anodically bonded. For example, it is preferable that the cover member 40 and the device main body 10 are bonded by an inorganic bonding material.
 ところで、量子ドットを用いた発光デバイス1の劣化は、量子ドットが高温になるほど進行しやすい。発光デバイス1では、デバイス本体10の少なくとも一部が、熱伝導率の高い金属により構成されている。このため、光源20の熱が、デバイス本体10を経由して放熱されやすい。発光デバイス1では、金属により構成された第2の部材12と発光部30とが接触している。このため、発光部30の熱が第2の部材12を経由して放熱しやすい。特に、発光デバイス1では、発光部30の表面30aが凹面となるように配してなるため、発光部30の充填量が少なくても、発光部30と第2の部材12との接触面積を大きくできる。従って、発光部30の熱が第2の部材12を経由してより効率的に放熱しやすい。従って、発光デバイス1では、より長寿命化が図られている。 By the way, the deterioration of the light emitting device 1 using the quantum dots tends to progress as the quantum dots become higher in temperature. In the light emitting device 1, at least a part of the device body 10 is made of a metal having high thermal conductivity. For this reason, the heat of the light source 20 is easily radiated via the device body 10. In the light emitting device 1, the second member 12 made of metal and the light emitting unit 30 are in contact with each other. For this reason, the heat of the light emitting unit 30 is easily radiated through the second member 12. In particular, in the light emitting device 1, since the surface 30 a of the light emitting unit 30 is arranged to be concave, the contact area between the light emitting unit 30 and the second member 12 can be increased even if the filling amount of the light emitting unit 30 is small. Can be bigger. Therefore, the heat of the light emitting unit 30 is easily radiated more efficiently via the second member 12. Accordingly, the light emitting device 1 has a longer life.
 発光デバイス1において、量子ドットの温度が上昇することをより効果的に抑制する観点からは、カバー部材40が高い熱伝導率を有するセラミックスにより構成されていることがより好ましい。 In the light emitting device 1, from the viewpoint of more effectively suppressing the temperature of the quantum dots from rising, it is more preferable that the cover member 40 is made of ceramics having high thermal conductivity.
 封止空間50における水分や酸素の濃度を低くする観点からは、封止空間50が減圧されていることが好ましい。また、封止空間50が、窒素雰囲気やアルゴン雰囲気等の不活性ガス雰囲気とされていることが好ましい。 From the viewpoint of reducing the concentration of moisture and oxygen in the sealed space 50, the sealed space 50 is preferably decompressed. The sealed space 50 is preferably an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere.
 封止空間50に水分や酸素が侵入することをより効果的に抑制する観点からは、封止空間50が加圧されていることが好ましい。 From the viewpoint of more effectively suppressing moisture and oxygen from entering the sealed space 50, the sealed space 50 is preferably pressurized.
 発光デバイス1においては、発光部30からの光、若しくは、発光部30からの光と光源20からの光の混合光の取り出し効率が高いことが望まれている。この観点から、カバー部材40の厚みは、1.0mm以下であることが好ましく、0.5mm以下であることがより好ましい。但し、カバー部材40の厚みが小さすぎると、カバー部材40の機械的強度が低くなりすぎる場合がある。従って、カバー部材40の厚みは、0.005mm以上であることが好ましい。カバー部材40の屈折率は、1.70以下であることが好ましく、1.60以下であることがより好ましい。カバー部材40の屈折率は、通常、1.46以上である。 In the light emitting device 1, it is desired that the light extraction efficiency of the light from the light emitting unit 30 or the mixed light of the light from the light emitting unit 30 and the light from the light source 20 is high. From this viewpoint, the thickness of the cover member 40 is preferably 1.0 mm or less, and more preferably 0.5 mm or less. However, if the thickness of the cover member 40 is too small, the mechanical strength of the cover member 40 may be too low. Therefore, the thickness of the cover member 40 is preferably 0.005 mm or more. The refractive index of the cover member 40 is preferably 1.70 or less, and more preferably 1.60 or less. The refractive index of the cover member 40 is usually 1.46 or more.
 発光デバイス1から出射される光の強度や色度の面内ばらつきを小さくする観点からは、カバー部材40が光散乱能を有していることが好ましい。具体的には、カバー部材40が粒界を有していることが好ましい。もしくは、カバー部材40が光散乱剤を含んでいることが好ましい。好ましく用いられる光散乱剤の具体例としては、例えば、アルミナ、チタニア、シリカなどの高反射無機化合物及び高反射白色樹脂等が挙げられる。 From the viewpoint of reducing in-plane variations in the intensity and chromaticity of light emitted from the light emitting device 1, it is preferable that the cover member 40 has light scattering ability. Specifically, it is preferable that the cover member 40 has a grain boundary. Or it is preferable that the cover member 40 contains the light-scattering agent. Specific examples of the light scattering agent preferably used include highly reflective inorganic compounds such as alumina, titania, and silica, and highly reflective white resins.
 発光デバイス1の製造方法は、特に限定されない。発光デバイス1は、例えば、以下の要領で製造することができる。 The manufacturing method of the light emitting device 1 is not particularly limited. The light emitting device 1 can be manufactured, for example, in the following manner.
 まず、凹部13を有するデバイス本体10を用意する。 First, the device body 10 having the recess 13 is prepared.
 次に、デバイス本体10の上に、光源20を配置する。 Next, the light source 20 is disposed on the device body 10.
 次に、量子ドットを含む樹脂組成物を凹部13内に供給し、硬化させることにより発光部30を形成する。 Next, the resin composition containing quantum dots is supplied into the recess 13 and cured to form the light emitting unit 30.
 その後、カバー部材40をデバイス本体10に取り付けることにより光源20及び発光部30を封止する。これにより、発光デバイス1を完成させることができる。カバー部材40は、例えば、レーザー溶接、陽極接合、半田等の無機接合材を用いた接合等によりデバイス本体10に取り付けることができる。 Thereafter, the light source 20 and the light emitting unit 30 are sealed by attaching the cover member 40 to the device body 10. Thereby, the light emitting device 1 can be completed. The cover member 40 can be attached to the device body 10 by, for example, laser welding, anodic bonding, bonding using an inorganic bonding material such as solder, or the like.
 量子ドットを含む樹脂組成物を供給し、硬化させる工程、及びカバー部材40を取り付ける工程は、例えば、減圧雰囲気下、不活性ガス雰囲気下で行ってもよい。 The step of supplying and curing the resin composition containing quantum dots and the step of attaching the cover member 40 may be performed, for example, under a reduced pressure atmosphere or an inert gas atmosphere.
 封止工程を行う前に、発光部30に含まれる樹脂を加熱して樹脂の水分濃度を低減することが好ましい。具体的には、発光部30に含まれる樹脂を100℃以上に加熱することが好ましく、150℃以上に加熱することがより好ましい。なお、樹脂の加熱は、硬化後行ってもよいし、硬化前、例えば塗布前に行ってもよい。 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Before performing the sealing step, it is preferable to heat the resin contained in the light emitting unit 30 to reduce the moisture concentration of the resin. Specifically, the resin contained in the light emitting unit 30 is preferably heated to 100 ° C. or higher, more preferably 150 ° C. or higher. The resin may be heated after curing or before curing, for example, before coating. Hereinafter, another example of the preferred embodiment of the present invention will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.
 (第2の実施形態)
 図2は、第2の実施形態に係る発光デバイス1aの模式的断面図である。
(Second Embodiment)
FIG. 2 is a schematic cross-sectional view of a light emitting device 1a according to the second embodiment.
 第1の実施形態では、発光部30が封止空間50の一部に配されており、発光部30がカバー部材40とは離間した表面30aを有している例について説明した。但し、本発明は、この構成に限定されない。 1st Embodiment demonstrated the example in which the light emission part 30 was distribute | arranged to some sealing spaces 50, and the light emission part 30 has the surface 30a spaced apart from the cover member 40. As shown in FIG. However, the present invention is not limited to this configuration.
 例えば、第2の実施形態に係る発光デバイス1aでは、発光部30が封止空間50に充填されている。このため、発光部30は、カバー部材40とは離間した表面を有さない。発光部30は、カバー部材40の凹部13側表面と密着している。この場合、発光部30の光出射側に位置する界面が少なくなる。よって、発光部30からの光の取り出し効率が向上する。また、発光部30の厚みの製造ばらつきを抑制できる。このため、発光デバイス1aの発光強度や発光の色度のばらつきを抑制することができる。 For example, in the light emitting device 1a according to the second embodiment, the light emitting unit 30 is filled in the sealed space 50. For this reason, the light emitting unit 30 does not have a surface separated from the cover member 40. The light emitting unit 30 is in close contact with the surface of the cover member 40 on the recess 13 side. In this case, the interface located on the light emitting side of the light emitting unit 30 is reduced. Therefore, the light extraction efficiency from the light emitting unit 30 is improved. In addition, manufacturing variations in the thickness of the light emitting unit 30 can be suppressed. For this reason, the dispersion | variation in the light emission intensity of the light emitting device 1a and chromaticity of light emission can be suppressed.
 (第3の実施形態)
 図3は、第3の実施形態に係る発光デバイス1bの模式的断面図である。
(Third embodiment)
FIG. 3 is a schematic cross-sectional view of a light emitting device 1b according to the third embodiment.
 第1の実施形態では、発光部30が凹部13の底壁13bの上に配されている例について説明した。但し、本発明は、この構成に限定されない。例えば、第3の実施形態に係る発光デバイス1bでは、発光部30がカバー部材40の凹部13側の表面の上に設けられている。発光部30は、カバー部材40の凹部13側の表面のうち、凹部13に露出している部分の実質的に全体の上に設けられている。 1st Embodiment demonstrated the example in which the light emission part 30 was distribute | arranged on the bottom wall 13b of the recessed part 13. As shown in FIG. However, the present invention is not limited to this configuration. For example, in the light emitting device 1b according to the third embodiment, the light emitting unit 30 is provided on the surface of the cover member 40 on the concave portion 13 side. The light emitting unit 30 is provided on substantially the entire portion of the surface of the cover member 40 on the concave portion 13 side exposed to the concave portion 13.
 このような発光部30は、例えば、カバー部材40の上に、量子ドットと樹脂を含むペーストを塗布し、乾燥させることにより形成することができる。この場合、発光部30の厚みむらを小さくし得る。従って、発光デバイス1の発光強度や発光の色度のばらつきを抑制し得る。 Such a light emitting unit 30 can be formed, for example, by applying a paste containing quantum dots and resin on the cover member 40 and drying the paste. In this case, the thickness unevenness of the light emitting unit 30 can be reduced. Accordingly, variations in the light emission intensity and light emission chromaticity of the light emitting device 1 can be suppressed.
 (第4の実施形態)
 図4は、第4の実施形態に係る発光デバイス1cの模式的断面図である。
(Fourth embodiment)
FIG. 4 is a schematic cross-sectional view of a light emitting device 1c according to the fourth embodiment.
 第4の実施形態に係る発光デバイス1cでは、発光部30は、光源20によって支持されている。発光部30は、光源20の上面の直上に設けられている。発光部30と光源20とは直接接触している。このため、発光部30と光源20との間の界面の数が少ない。従って、光源20からの光の発光部30への入射効率を高めることができる。 In the light emitting device 1c according to the fourth embodiment, the light emitting unit 30 is supported by the light source 20. The light emitting unit 30 is provided immediately above the upper surface of the light source 20. The light emitting unit 30 and the light source 20 are in direct contact. For this reason, the number of interfaces between the light emitting unit 30 and the light source 20 is small. Therefore, the incident efficiency of the light from the light source 20 to the light emitting unit 30 can be increased.
 (第5及び第6の実施形態)
 図5は、第5の実施形態に係る発光デバイス1dの模式的断面図である。図6は、第6の実施形態に係る発光デバイスの模式的断面図である。
(Fifth and sixth embodiments)
FIG. 5 is a schematic cross-sectional view of a light emitting device 1d according to the fifth embodiment. FIG. 6 is a schematic cross-sectional view of a light emitting device according to a sixth embodiment.
 第5の実施形態に係る発光デバイス1d及び第6の実施形態に係る発光デバイス1eでは、発光部30と光源20との間に、光源20からの光を拡散する拡散部材60が設けられている。拡散部材60を設けることにより、光源20からの光の発光部30への入射強度のばらつきを小さくすることができる。従って、発光強度や発光の色度の面内ばらつきを小さくし得る。 In the light emitting device 1 d according to the fifth embodiment and the light emitting device 1 e according to the sixth embodiment, a diffusing member 60 that diffuses light from the light source 20 is provided between the light emitting unit 30 and the light source 20. . By providing the diffusing member 60, it is possible to reduce the variation in the incident intensity of the light from the light source 20 to the light emitting unit 30. Therefore, the in-plane variation of the light emission intensity and the light emission chromaticity can be reduced.
 第5の実施形態に係る発光デバイス1dでは、発光部30は、拡散部材60の直上に設けられている。発光部30と拡散部材60は接触している。そのため、発光部30への光の入射効率を高めることができる。 In the light emitting device 1d according to the fifth embodiment, the light emitting unit 30 is provided immediately above the diffusion member 60. The light emitting unit 30 and the diffusing member 60 are in contact with each other. Therefore, it is possible to increase the incident efficiency of light to the light emitting unit 30.
 第6の実施形態に係る発光デバイス1eでは、発光部30と光源20とが隔離されている。発光部30と光源20との間に空間が設けられている。このため、光源20からの熱が発光部30に伝達しにくい。従って、発光部30の熱劣化を抑制できる。 In the light emitting device 1e according to the sixth embodiment, the light emitting unit 30 and the light source 20 are isolated. A space is provided between the light emitting unit 30 and the light source 20. For this reason, the heat from the light source 20 is not easily transmitted to the light emitting unit 30. Therefore, thermal degradation of the light emitting unit 30 can be suppressed.
 発光部30の熱劣化を抑制する観点からは、拡散部材60をデバイス本体10と接触させるようにしてもよい。そうすることにより、光源20の熱が拡散部材60及びデバイス本体10を経由して放熱されやすくなる。 From the viewpoint of suppressing thermal degradation of the light emitting unit 30, the diffusion member 60 may be brought into contact with the device body 10. By doing so, the heat of the light source 20 is easily radiated through the diffusion member 60 and the device body 10.
 (第7の実施形態)
 図7は、第7の実施形態に係る発光デバイス1fの模式的断面図である。
(Seventh embodiment)
FIG. 7 is a schematic cross-sectional view of a light emitting device 1f according to the seventh embodiment.
 第7の実施形態に係る発光デバイス1fでは、カバー部材40とデバイス本体10とが、半田や低融点フリット等の無機接合材70により接合されている。この場合、接合の際の熱の影響を局所的に抑えることができるため、量子ドットの劣化をさらに抑えることができる。 In the light emitting device 1f according to the seventh embodiment, the cover member 40 and the device main body 10 are bonded by an inorganic bonding material 70 such as solder or a low melting point frit. In this case, since the influence of heat at the time of bonding can be locally suppressed, deterioration of the quantum dots can be further suppressed.
 (第8の実施形態)
 図8は、第8の実施形態に係る発光デバイス1gの模式的断面図である。
(Eighth embodiment)
FIG. 8 is a schematic cross-sectional view of a light emitting device 1g according to the eighth embodiment.
 第1~第7の実施形態では、第2の部材12上にカバー部材40を配して、凹部13を覆うように塞ぐ例について説明した。但し、本発明は、この構成に限定されない。例えば、第8の実施形態に係る発光デバイス1gでは、第2の部材12zに設けられる貫通孔12azの形状を、高さ方向の途中から第1の部材11側に向かって先細るように形成して凹部13zを構成し、凹部13z内にカバー部材40を嵌合させ、凹部13zを塞いでもよい。また、本実施形態では、発光部30は、カバー部材40の凹部13z側の表面の全体に設けられている。 In the first to seventh embodiments, the example in which the cover member 40 is disposed on the second member 12 and is covered so as to cover the recess 13 has been described. However, the present invention is not limited to this configuration. For example, in the light emitting device 1g according to the eighth embodiment, the shape of the through hole 12az provided in the second member 12z is formed so as to taper from the middle in the height direction toward the first member 11 side. The recess 13z may be configured, and the cover member 40 may be fitted into the recess 13z to close the recess 13z. In the present embodiment, the light emitting unit 30 is provided on the entire surface of the cover member 40 on the concave portion 13z side.
 なお、本実施形態では、発光部30は、カバー部材40の凹部13側の表面に設けられていている例について説明したが、本発明は、この構成に限定されない。例えば、発光部が凹部の底壁の上に配されていてもよい。 In the present embodiment, the example in which the light emitting unit 30 is provided on the surface of the cover member 40 on the concave portion 13 side has been described, but the present invention is not limited to this configuration. For example, the light emitting unit may be disposed on the bottom wall of the recess.
1,1a,1b,1c,1d,1e,1f,1g 発光デバイス
10 デバイス本体
11 第1の部材
12,12z 第2の部材
12a,12az 貫通孔
13,13z 凹部
13a 側壁
13b 底壁
20 光源
30 発光部
40 カバー部材
50 封止空間
60 拡散部材
70 無機接合材
1, 1a, 1b, 1c, 1d, 1e, 1f, 1g Light-emitting device 10 Device body 11 First member 12, 12z Second member 12a, 12az Through hole 13, 13z Recess 13a Side wall 13b Bottom wall 20 Light source 30 Light emission Part 40 cover member 50 sealing space 60 diffusion member 70 inorganic bonding material

Claims (21)

  1.  凹部を有するデバイス本体と、
     前記凹部の底壁の上に配された光源と、
     前記凹部内において、前記光源からの光が入射するように配されており、量子ドットを含む発光部と、
     前記凹部を塞ぎ、前記デバイス本体と共に前記光源及び前記発光部を封止するカバー部材と、
     を備える、発光デバイス。
    A device body having a recess;
    A light source disposed on the bottom wall of the recess;
    In the recess, the light source is arranged so that light from the light source enters, and a light emitting unit including quantum dots,
    A cover member that closes the recess and seals the light source and the light emitting unit together with the device body;
    A light emitting device comprising:
  2.  前記発光部は、前記量子ドットが分散した樹脂を含む、請求項1に記載の発光デバイス。 The light emitting device according to claim 1, wherein the light emitting unit includes a resin in which the quantum dots are dispersed.
  3.  前記発光部は、前記光源の直上に、前記光源を被覆するように設けられている、請求項1又は2に記載の発光デバイス。 The light-emitting device according to claim 1, wherein the light-emitting unit is provided immediately above the light source so as to cover the light source.
  4.  前記発光部の表面が凹面である、請求項3に記載の発光デバイス。 The light-emitting device according to claim 3, wherein a surface of the light-emitting portion is a concave surface.
  5.  前記発光部は、前記デバイス本体と前記カバー部材とにより区画形成された封止空間に充填されている、請求項3に記載の発光デバイス。 The light emitting device according to claim 3, wherein the light emitting unit is filled in a sealed space defined by the device main body and the cover member.
  6.  前記発光部は、前記カバー部材の前記凹部側の表面上に設けられている、請求項1又は2に記載の発光デバイス。 The light emitting device according to claim 1 or 2, wherein the light emitting portion is provided on a surface of the cover member on the concave portion side.
  7.  前記発光部は、前記光源に支持されている、請求項1又は2に記載の発光デバイス。 The light emitting device according to claim 1 or 2, wherein the light emitting unit is supported by the light source.
  8.  前記発光部と前記光源との間に配されており、前記光源からの光を拡散する拡散部材をさらに備える、請求項6又は7に記載の発光デバイス。 The light emitting device according to claim 6 or 7, further comprising a diffusing member that is disposed between the light emitting unit and the light source and diffuses light from the light source.
  9.  前記カバー部材と前記デバイス本体とが溶接されている、請求項1~8のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 8, wherein the cover member and the device body are welded.
  10.  前記カバー部材と前記デバイス本体とが陽極接合されている、請求項1~8のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 8, wherein the cover member and the device body are anodically bonded.
  11.  前記カバー部材と前記デバイス本体とが無機接合材により接合されている、請求項1~8のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 8, wherein the cover member and the device main body are bonded together by an inorganic bonding material.
  12.  前記デバイス本体の一部が金属により構成されている、請求項1~11のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 11, wherein a part of the device body is made of metal.
  13.  前記デバイス本体の前記金属により構成された部分と前記発光部とが接触している、請求項12に記載の発光デバイス。 The light emitting device according to claim 12, wherein a portion of the device main body made of the metal and the light emitting portion are in contact with each other.
  14.  前記カバー部材の厚みが、1.0mm以下である、請求項1~13のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 13, wherein the cover member has a thickness of 1.0 mm or less.
  15.  前記カバー部材の屈折率が、1.70以下である、請求項1~14のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 14, wherein the refractive index of the cover member is 1.70 or less.
  16.  前記カバー部材が粒界を有する、請求項1~4及び6~15のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 4 and 6 to 15, wherein the cover member has a grain boundary.
  17.  前記カバー部材が、光散乱剤を含む、請求項1~4及び6~15のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 4 and 6 to 15, wherein the cover member contains a light scattering agent.
  18.  前記カバー部材が、セラミックスにより構成されている、請求項1~17のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 17, wherein the cover member is made of ceramics.
  19.  前記デバイス本体と前記カバー部材とにより区画形成された封止空間が減圧されている、請求項1~18のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 18, wherein a sealed space defined by the device main body and the cover member is decompressed.
  20.  前記デバイス本体と前記カバー部材とにより区画形成された封止空間が不活性ガス雰囲気である、請求項1~19のいずれか一項に記載の発光デバイス。 The light emitting device according to any one of claims 1 to 19, wherein a sealed space defined by the device body and the cover member is an inert gas atmosphere.
  21.  凹部を有するデバイス本体の前記凹部の底壁の上に光源を配する工程と、
     量子ドットが分散した樹脂を前記凹部内に配することにより発光部を形成する工程と、 前記凹部を塞ぐようにカバー部材を配し、前記光源と前記発光部とを封止する工程と、 前記封止工程に先立って、前記樹脂を100℃以上に加熱する工程と、
    を備える、発光デバイスの製造方法。 
    Disposing a light source on the bottom wall of the recess of the device body having a recess;
    A step of forming a light emitting portion by disposing a resin in which quantum dots are dispersed in the concave portion, a step of arranging a cover member so as to close the concave portion, and sealing the light source and the light emitting portion, Prior to the sealing step, heating the resin to 100 ° C. or higher;
    A method for manufacturing a light-emitting device.
PCT/JP2015/056885 2014-05-16 2015-03-09 Light emitting device and method for manufacturing same WO2015174127A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167025414A KR20170007239A (en) 2014-05-16 2015-03-09 Light emitting device and method for manufacturing same
CN201580013008.4A CN106068568A (en) 2014-05-16 2015-03-09 Luminescent device and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014102612A JP2015220330A (en) 2014-05-16 2014-05-16 Light emission device and manufacturing method for the same
JP2014-102612 2014-05-16

Publications (1)

Publication Number Publication Date
WO2015174127A1 true WO2015174127A1 (en) 2015-11-19

Family

ID=54479674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056885 WO2015174127A1 (en) 2014-05-16 2015-03-09 Light emitting device and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP2015220330A (en)
KR (1) KR20170007239A (en)
CN (1) CN106068568A (en)
TW (1) TW201545382A (en)
WO (1) WO2015174127A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539182B2 (en) 2019-09-20 2022-12-27 Nichia Corporation Light source device and method of manufacturing the same
US12040589B2 (en) 2019-09-20 2024-07-16 Nichia Corporation Light source device and method of manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6665701B2 (en) 2016-06-17 2020-03-13 日本電気硝子株式会社 Wavelength conversion member, method of manufacturing the same, and light emitting device
JP2018125477A (en) * 2017-02-03 2018-08-09 日本電気硝子株式会社 Methods for manufacturing package and wavelength conversion member, package, wavelength conversion member, light-emitting device, base material of package, and base material of container
JP2020047852A (en) * 2018-09-20 2020-03-26 豊田合成株式会社 Light-emitting device
JP7319517B2 (en) * 2019-02-06 2023-08-02 日亜化学工業株式会社 Light emitting device, package and base
JP2021012961A (en) * 2019-07-08 2021-02-04 スタンレー電気株式会社 Light-emitting device and manufacturing method
JP7499019B2 (en) * 2019-12-09 2024-06-13 スタンレー電気株式会社 Light emitting device and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252372A (en) * 2001-02-26 2002-09-06 Nichia Chem Ind Ltd Light-emitting diode
JP2003092348A (en) * 2001-09-18 2003-03-28 Sony Corp Method for forming wiring and display element and method for manufacturing picture display device
WO2010119934A1 (en) * 2009-04-14 2010-10-21 パナソニック株式会社 Light-emitting device, method for adjusting optical properties, and method for manufacturing light-emitting devices
JP2011029380A (en) * 2009-07-24 2011-02-10 Showa Denko Kk Liquid curable resin composition for sealing led, light emitting device, light emitting module, and lighting device
JP2011155125A (en) * 2010-01-27 2011-08-11 Kyocera Corp Light-emitting device, and illumination apparatus
JP2011192845A (en) * 2010-03-15 2011-09-29 Seiko Instruments Inc Light-emitting component, light-emitting device, and method of manufacturing light-emitting component
WO2013001687A1 (en) * 2011-06-30 2013-01-03 パナソニック株式会社 Light-emitting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949697B2 (en) * 1979-12-10 1984-12-04 三菱電機株式会社 semiconductor equipment
JP2004158495A (en) * 2002-11-01 2004-06-03 Toshiba Lighting & Technology Corp Light emitting diode and lighting device
JP2005011552A (en) * 2003-06-17 2005-01-13 Toppan Printing Co Ltd Organic electroluminescent element
JP2007123390A (en) * 2005-10-26 2007-05-17 Kyocera Corp Light emitting device
JP2009140835A (en) * 2007-12-08 2009-06-25 Citizen Electronics Co Ltd Light emitting device, plane light unit, and display device
JP5483669B2 (en) 2008-11-26 2014-05-07 昭和電工株式会社 Liquid curable resin composition, method for producing cured resin containing nanoparticle phosphor, method for producing light emitting device, light emitting device and lighting device
JP2010192624A (en) * 2009-02-17 2010-09-02 Showa Denko Kk Light emitting device and light emitting module
KR20110136676A (en) * 2010-06-14 2011-12-21 삼성엘이디 주식회사 Light emitting device package using quantum dot, illumination apparatus and dispaly apparatus
KR101529997B1 (en) * 2011-01-28 2015-06-18 쇼와 덴코 가부시키가이샤 Composition containing quantum dot fluorescent body, molded body of quantum dot fluorescent body dispersion resin, structure containing quantum dot fluorescent body, light-emitting device, electronic apparatus, mechanical device, and method for producing molded body of quantum dot fluorescent body dispersion resin
WO2013061511A1 (en) * 2011-10-27 2013-05-02 パナソニック株式会社 Light-emitting device
JP2013172041A (en) * 2012-02-22 2013-09-02 Sharp Corp Light-emitting device
CN103672732A (en) * 2013-12-11 2014-03-26 深圳市华星光电技术有限公司 Quantum dot lens and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252372A (en) * 2001-02-26 2002-09-06 Nichia Chem Ind Ltd Light-emitting diode
JP2003092348A (en) * 2001-09-18 2003-03-28 Sony Corp Method for forming wiring and display element and method for manufacturing picture display device
WO2010119934A1 (en) * 2009-04-14 2010-10-21 パナソニック株式会社 Light-emitting device, method for adjusting optical properties, and method for manufacturing light-emitting devices
JP2011029380A (en) * 2009-07-24 2011-02-10 Showa Denko Kk Liquid curable resin composition for sealing led, light emitting device, light emitting module, and lighting device
JP2011155125A (en) * 2010-01-27 2011-08-11 Kyocera Corp Light-emitting device, and illumination apparatus
JP2011192845A (en) * 2010-03-15 2011-09-29 Seiko Instruments Inc Light-emitting component, light-emitting device, and method of manufacturing light-emitting component
WO2013001687A1 (en) * 2011-06-30 2013-01-03 パナソニック株式会社 Light-emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11539182B2 (en) 2019-09-20 2022-12-27 Nichia Corporation Light source device and method of manufacturing the same
US11688994B2 (en) 2019-09-20 2023-06-27 Nichia Corporation Light source device and method of manufacturing the same
US12040589B2 (en) 2019-09-20 2024-07-16 Nichia Corporation Light source device and method of manufacturing the same

Also Published As

Publication number Publication date
TW201545382A (en) 2015-12-01
KR20170007239A (en) 2017-01-18
CN106068568A (en) 2016-11-02
JP2015220330A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
WO2015174127A1 (en) Light emitting device and method for manufacturing same
JP5662939B2 (en) Semiconductor light emitting device and light source device using the same
US10215907B2 (en) Substrate for color conversion, manufacturing method therefor, and display device comprising same
JP3782411B2 (en) Light emitting device
JP5238618B2 (en) Semiconductor light emitting device
JP5724684B2 (en) Cell for light emitting device and light emitting device
US9859479B2 (en) Light-emitting device including quantum dots
WO2010123059A1 (en) Method for manufacturing led light emitting device
KR20120085660A (en) A light emitting device and the manufacturing method
JP2013175531A (en) Light-emitting device
JP2007201301A (en) Light emitting device using white led
JP5224890B2 (en) Light emitting device and method for manufacturing light emitting device
JP4961413B2 (en) White LED device and manufacturing method thereof
WO2015190242A1 (en) Light-emitting device
WO2018120849A1 (en) Method of manufacturing backlight module
JP2017076673A (en) Method for manufacturing light-emitting device
TW201624775A (en) Color conversion substrate for LED and method of fabricating the same
TW201543713A (en) Color conversion substrate for light-emitting diode and method of fabricating the same
JP5970215B2 (en) Light emitting device and manufacturing method thereof
WO2015194296A1 (en) Light emitting device
WO2015072120A1 (en) Light emitting device, light emitting module, lighting device and lamp
WO2015194297A1 (en) Light emitting device, wavelength conversion member, and method for producing wavelength conversion member
JP6399783B2 (en) LED light emitting device and manufacturing method thereof
KR101778514B1 (en) Fabricaing method of led module
JP2017183301A (en) Led light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167025414

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793207

Country of ref document: EP

Kind code of ref document: A1