WO2015172556A1 - 一种掺镓多晶硅锭及其制备方法 - Google Patents

一种掺镓多晶硅锭及其制备方法 Download PDF

Info

Publication number
WO2015172556A1
WO2015172556A1 PCT/CN2014/093792 CN2014093792W WO2015172556A1 WO 2015172556 A1 WO2015172556 A1 WO 2015172556A1 CN 2014093792 W CN2014093792 W CN 2014093792W WO 2015172556 A1 WO2015172556 A1 WO 2015172556A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium
ingot
polycrystalline silicon
mixture
temperature
Prior art date
Application number
PCT/CN2014/093792
Other languages
English (en)
French (fr)
Inventor
李飞龙
张光春
Original Assignee
苏州阿特斯阳光电力科技有限公司
阿特斯光伏电力(洛阳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州阿特斯阳光电力科技有限公司, 阿特斯光伏电力(洛阳)有限公司 filed Critical 苏州阿特斯阳光电力科技有限公司
Publication of WO2015172556A1 publication Critical patent/WO2015172556A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/06Production of homogeneous polycrystalline material with defined structure from liquids by normal freezing or freezing under temperature gradient
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the invention relates to the field of semiconductor manufacturing, in particular to a gallium-doped polycrystalline silicon ingot and a preparation method thereof.
  • crystalline silicon single crystal, polycrystalline
  • Crystalline silicon solar cells use the photo-voltaic effect of p-n junctions to achieve photoelectric conversion. From a development point of view, crystalline silicon solar cells will still dominate for a long time to come.
  • the silicon wafer for producing polycrystalline silicon solar cells is made of polycrystalline silicon ingots.
  • polycrystalline silicon ingots In order to meet the requirements of cell processing, polycrystalline silicon ingots must obtain the required electrical properties by adjusting the concentration of dopants during crystal growth.
  • Existing dopants mainly include boron, phosphorus and gallium. Since the grouping element boron (B) has a segregation coefficient close to 1 in silicon, segregation is small during crystal growth, and the resistivity distribution is relatively uniform.
  • Most polycrystalline silicon ingots are usually doped with an appropriate amount of group III element boron (B). A P-type silicon ingot having a resistivity of 0.5 to 3 ohm cm is obtained.
  • the dopant boron (B) and the oxygen (O) in the polycrystalline silicon ingot form a BO complex under light conditions, which will cause photo-attenuation, which reduces the conversion efficiency of the battery.
  • boron (B) in silicon is easy.
  • the generation of Fe-B pairs with other impurities in the ingot, such as iron (Fe) deteriorates the minority carrier lifetime of the silicon ingot, thereby reducing the conversion efficiency of the battery.
  • an N-type silicon ingot is prepared by doping a donor impurity such as a VI element phosphorus (P), but the partial condensation coefficient of phosphorus (P) in silicon is 0.35, which is unevenly distributed in the silicon ingot, and the resistivity is The difference is large, resulting in low ingot yield; on the other hand, the partial pressure of phosphorus is lower, the amount of volatilization during crystal growth is more, and the doping amount should not be controlled.
  • a donor impurity such as a VI element phosphorus (P)
  • P partial condensation coefficient of phosphorus
  • the object of the present invention is to provide a gallium-doped polycrystalline silicon ingot and a preparation method thereof.
  • the technical solution adopted by the present invention is: a method for preparing a gallium-doped polycrystalline silicon ingot, comprising the following steps:
  • the gallium dopant is located in a region of 30 to 50% of the height of the crucible; the content of gallium in the mixture in the mixture is 5 to 7 ppma;
  • the temperature adjustment range of the temperature-controlled thermocouple is 1400 ⁇ 1430 ° C; the rate of upward movement of the heat insulation cage is 0.5-0.6 cm/h, and the maximum moving distance of the heat insulation cage is 70-80% of the height of the polysilicon ingot ;
  • the gallium dopant in the step (2) may be a single mass Ga or a silicon gallium alloy, and the doping amount is calculated by an initial resistivity of 5-6 ohm cm.
  • the content of gallium in the mixture is 5-7 ppm in silicon; ppma is in parts per million, which refers to the calculated atomic density, that is, 5 to 7 gallium atoms per million silicon atoms.
  • the mixture is gradually melted in the order from top to bottom, which is mainly achieved by forming a large temperature gradient in the ingot furnace, as follows: after the silicon material enters the melting stage, it is slow Increase the heating temperature to 1500 ⁇ 1550 ° C, the heating rate is maintained at 25 ⁇ 50 ° C / h, after the temperature rises to 1500 ° C, slowly open the side insulation cage, the lifting rate is 2 ⁇ 3cm / h, the side of the chemical stage The highest position of the insulation cage is 4 to 7 cm, ensuring that the temperature at the bottom of the crucible is 1300 to 1380 ° C, so that the temperature difference between the upper and lower sides is 120 to 200 ° C, so that the silicon material is slowly melted from top to bottom.
  • the thickness of the silicon nitride coating is 50 to 70 micrometers. Its purity is greater than 99.9%.
  • the heating temperature is 1500 to 1550 °C.
  • the molten silicon grows from the bottom to the top in a vertical upward temperature gradient, and as the height of the crystal growth increases, the furnace pressure is gradually decreased, and the argon flow rate is increased;
  • the concentration of gallium in the body is maintained at 4 to 5 ppma;
  • the furnace pressure is adjusted in the range of 100 to 600 mbar, and the argon flow rate is adjusted to be 10 to 50 liters/min.
  • the furnace pressure is gradually reduced, and the flow rate of the argon gas is increased, so that the enriched Ga in the melt is partially volatilized by the argon gas flow to lower the concentration of Ga in the melt.
  • the present invention simultaneously claims the gallium-doped polycrystalline silicon ingot obtained by the above preparation method.
  • the working mechanism of the present invention is as follows: First, the gallium dopant is located in a region of 30 to 50% of the height of the crucible, and the melting position is controlled by limiting the placement position of Ga and mixing the mixture in order from top to bottom. The advancing direction and advancing speed of the liquid interface ensure that Ga enters the crystal growth process immediately after the end of melting, so that the initial doping concentration is closer to the target value; on the other hand, the lifting speed of the insulating cage is controlled during the crystal growth process and The position is raised and the crystal growth time is prolonged.
  • the furnace pressure and the argon flow rate of the crystal growth process by controlling the furnace pressure and the argon flow rate of the crystal growth process, a part of the Ga which is enriched in the melt is volatilized, thereby reducing the Ga concentration in the late crystal growth stage and making the crystal growth late.
  • the resistivity is controlled at about 1 ohm centimeter; thereby obtaining a Ga-doped P-type high-quality polycrystalline silicon ingot with controllable resistivity, which ultimately improves the performance of the cell sheet produced therefrom.
  • the present invention has the following advantages:
  • the present invention designs a new method for preparing a gallium-doped polycrystalline silicon ingot, directly doping gallium in a polysilicon material to obtain a P-type polycrystalline silicon ingot, thereby avoiding photoinduced attenuation due to doping B and deterioration of battery efficiency; It is proved that the polycrystalline silicon ingot has higher lifetime and low dislocation density, and the polycrystalline silicon solar cell produced therefrom can obtain higher photoelectric conversion efficiency; more importantly, the obtained battery sheet has no photo-induced attenuation phenomenon. It increases the power generation of photovoltaic modules and reduces the power generation cost of photovoltaic modules.
  • the segregation coefficient of gallium in silicon is only 0.008, the concentration of gallium in the silicon ingot is different due to the conventional ingot casting method, and the resistivity distribution is not uniform, resulting in low utilization of the silicon ingot, which is not conducive to large Mass production; the invention achieves a relatively uniform distribution of gallium in the silicon ingot through a specific chemical crystal growth process and an appropriate doping method, and obtains a silicon ingot having a uniform resistivity distribution, which satisfies the processing of the battery sheet. begging.
  • the polycrystalline silicon ingot prepared by the invention has a relatively uniform Ga concentration, and the utilization ratio of the silicon ingot is increased, thereby reducing the manufacturing cost.
  • a method for preparing a gallium-doped polycrystalline silicon ingot includes the following steps:
  • the gallium dopant is located in a region of 30 to 50% of the height of the crucible; the content of gallium in the mixture in the mixture is 6 ppma;
  • the temperature adjustment range of the temperature-controlled thermocouple is 1400 ⁇ 1430 ° C; the rate of upward movement of the heat insulation cage is 0.5-0.6 cm/h, and the maximum moving distance of the heat insulation cage is 70-80% of the height of the polysilicon ingot ;
  • the molten silicon grows from bottom to top under a vertical upward temperature gradient, and as the height of the crystal growth increases, the furnace pressure is gradually decreased, and the argon gas flow rate is increased; The concentration is maintained at 4 to 5 ppma;
  • the furnace pressure is adjusted in the range of 100 to 600 mbar, and the argon flow rate is adjusted to be 10 to 50 liters/min.
  • a method for preparing a gallium-doped polycrystalline silicon ingot includes the following steps:
  • the thickness of the silicon nitride coating is 60 micrometers, and the purity thereof is greater than 99.99%;
  • a method for preparing a boron-doped polycrystalline silicon ingot includes the following steps:
  • the thickness of the silicon nitride coating is 60 micrometers, and the purity thereof is greater than 99.99%;
  • Example 1 and Comparative Examples 1 and 2 were compared to compare the resistivity distribution, minority carrier lifetime, ingot yield and cell photoinduced decay rate; the results are as follows:
  • Embodiment 1 Comparative example one Comparative example two Ingot resistivity distribution 1-5 ⁇ cm 0.3-5 ⁇ cm 1.3-2 ⁇ cm Younger life 7-8us 5-6us 5-6us Ingot yield 60-63% 55-60% 68-70% Battery photoattenuation rate 0.04-0.06% 0.04-0.06% 1-2%
  • the resistivity distribution of the present invention is narrower than that of the conventional doped gallium ingot (Comparative Example 1), thereby obtaining an ingot yield higher than that of a conventional gallium-doped ingot, which reduces the cost of the ingot;
  • the invention Compared with the conventional doped boron ingot (Comparative Example 2), the invention has a low lifetime and a high photoelectric conversion efficiency, and the photovoltaic cell produced thereby has lower power generation cost.
  • the batteries of the same efficiency range are selected, and the light decay data after the indoor simulated light source is irradiated for 24 hours is as follows:
  • the photoelectric conversion efficiency of the boron-doped solar cell after light decay is greatly reduced or even downshifted (mainly due to the action of the dopant boron (B) and the oxygen (O) and iron (Fe) in the polycrystalline silicon ingot);
  • the photoelectric conversion efficiency of the gallium-doped solar cell of the present invention is substantially unchanged, and there is no photo-induced attenuation phenomenon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种掺镓多晶硅锭的制备方法,包括如下步骤:(1)在坩埚内壁上涂敷氮化硅涂层;(2)在坩埚内装入多晶硅料和镓掺杂剂,形成混合物;(3)将装有混合物的坩埚放入铸锭炉中,抽真空,加热,使混合物按照从上到下的顺序逐渐熔化;(4)进入长晶阶段后,调节铸锭炉中控温热电偶的温度和侧部隔热笼向上移动的速率,使热量向下辐射,从而使熔硅在竖直向上的温度梯度下自下向上生长;(5)退火、冷却,即可得到掺镓多晶硅锭。实验证明:本发明的多晶硅锭少子寿命较高,位错密度低,由其制得的多晶硅太阳能电池可获得较高的光电转换效率;更重要的,由此制得的电池片无光致衰减现象。

Description

一种掺镓多晶硅锭及其制备方法 技术领域
本发明涉及半导体制造领域,尤其涉及一种掺镓多晶硅锭及其制备方法。
背景技术
自进入本世纪以来光伏产业成为了世界上增长最快的高新技术产业。在各类太阳能电池中,晶体硅(单晶、多晶)太阳能电池占有极其重要的地位,目前占据了光伏市场75%以上的份额。晶体硅太阳能电池利用p~n结的光生伏特效应实现光电转换,从发展的观点来看,晶体硅太阳能电池在未来很长的一段时间仍将占据主导地位。
目前,太阳能电池的种类不断增多,其中,多晶硅太阳能电池以较低的成本和较高的转换效率,在未来一段时期内仍将占据主导地位。生产多晶硅太阳能电池的硅片是由多晶硅锭经加工制成,为了满足电池片加工的要求,多晶硅锭必须在晶体生长过程中通过调节掺杂剂的浓度获得要求的电学性能。现有的掺杂剂主要包括硼、磷和镓。由于III族元素硼(B)在硅中的分凝系数较接近1,在晶体生长过程中偏析较小,电阻率分布较均匀,大部分的多晶硅锭通常掺入适量的III族元素硼(B)获得电阻率0.5~3欧姆厘米的P型硅锭。
然而,掺杂剂硼(B)与多晶硅锭中的氧(O)在光照条件下形成B-O复合体会产生光致衰减的现象,降低了电池的转换效率;另外,硅中的硼(B)易与硅锭中的其他杂质如铁(Fe)产生Fe-B对,恶化了硅锭的少子寿命,进而降低了电池的转换效率。
现有技术中,有通过掺入施主杂质如VI元素磷(P)来制作N型硅锭,但磷(P)在硅中的分凝系数为0.35,在硅锭中分布不均匀,电阻率相差较大,造成铸锭收率较低;另一方面,磷的蒸汽分压较低,晶体生长过程中挥发量较多,掺杂量不宜掌控。还有一些技术方案在掺杂镓(Ga)时提出电阻率补偿掺杂法,即在装料时掺入主掺杂剂镓(Ga),而在晶体生长过程中掺入施主杂质来平衡主掺杂剂浓度过大造成的电阻率下降,使电阻率满足要求;然而,此方法虽然电阻率满足要求,但硅锭杂质浓度过多,不利于电池片效率的提升。
发明内容
本发明目的是提供一种掺镓多晶硅锭及其制备方法。
为达到上述目的,本发明采用的技术方案是:一种掺镓多晶硅锭的制备方法,包括如下步骤:
(1)在坩埚内壁上涂敷氮化硅涂层;
(2)在坩埚内装入多晶硅料和镓掺杂剂,形成混合物;
所述镓掺杂剂位于坩埚高度30~50%的区域内;所述混合物中镓元素在硅中的含量为5~7ppma;
(3)将装有混合物的坩埚放入铸锭炉中,抽真空,然后加热,使混合物按照从上到下的顺序逐渐熔化;
当混合物中的镓掺杂剂开始熔化时,调节炉压,使炉压为700~800mbar;
待混合物完全熔化形成熔硅后立即进入长晶阶段;
(4)进入长晶阶段后,调节铸锭炉中控温热电偶的温度和侧部隔热笼向上移动的速率,使热量向下辐射,从而使熔硅在竖直向上的温度梯度下自下向上生长;
所述控温热电偶的温度调节范围为1400~1430℃;所述隔热笼向上移动的速率为0.5~0.6cm/h,且隔热笼的最高移动距离为多晶硅锭高度的70~80%;
(5)待熔硅结晶完后,退火、冷却,即可得到掺镓多晶硅锭。
上文中,所述步骤(2)中的镓掺杂剂可以为单质Ga或硅镓合金,掺杂量以初始电阻率5~6欧姆厘米计算。
所述混合物中镓元素在硅中的含量为5~7ppma;ppma是百万分之一,指的是原子密度计算的浓度,即每百万个硅原子有5~7个镓原子。
所述步骤(3)中,使混合物按照从上到下的顺序逐渐熔化,这主要通过在铸锭炉内形成一个较大的温度梯度来实现,步骤如下:在硅料进入熔化阶段后,缓慢增加加热温度至1500~1550℃,升温速率保持在25~50℃/h,温度升高至1500℃后,缓慢打开侧部隔热笼,提升速率为2~3cm/h,化料阶段侧部隔热笼最高位置为4~7cm,确保坩埚底部温度为1300~1380℃,使上下温差在120~200℃,使硅料从上至下缓慢熔化。
上述技术方案中,所述步骤(1)中,氮化硅涂层的厚度为50~70微米, 其纯度大于99.9%。
上述技术方案中,所述步骤(3)中,加热的温度为1500~1550℃。
上述技术方案中,所述步骤(4)中,熔硅在竖直向上的温度梯度下自下向上生长,随着长晶高度的增加,逐渐减小炉压,增大氩气流量;使熔体中镓元素的浓度维持在4~5ppma;
所述炉压的调节范围为100~600mbar,氩气流量的调节范围为10~50升/分钟。
随着长晶高度的增加,逐渐减小炉压,增大氩气流量,使熔体中的富集的Ga通过氩气流挥发一部分,以降低熔体中Ga的浓度。
本发明同时请求保护由上述制备方法得到的掺镓多晶硅锭。
本发明的工作机理如下:首先,将镓掺杂剂位于坩埚高度30~50%的区域内,通过限定Ga的投放位置,并配合混合物按照从上到下的顺序逐渐熔化,即控制熔化时固液界面的推进方向及推进速度,保证Ga在熔化结束后马上进入长晶工序,使初始掺杂浓度更大限度接近目标值;另一方面,在长晶过程中控制隔热笼的提升速度及提升位置,延长了长晶时间;另外,通过控制调节长晶过程的炉压和氩气流量,使熔体中富集的Ga一部分挥发出来,从而降低长晶后期的Ga浓度,使长晶后期的电阻率控制在1欧姆厘米左右;从而得到电阻率可控的Ga掺杂的P型高品质多晶硅锭,最终提升由其制得电池片的性能。
由于上述技术方案运用,本发明具有下列优点:
1、本发明设计了一种新的掺镓多晶硅锭的制备方法,直接在多晶硅料中掺杂镓来获得P型多晶硅锭,避免因掺杂B导致的光致衰减及电池效率恶化现象;实验证明:本发明的多晶硅锭少子寿命较高,位错密度低,由其制得的多晶硅太阳能电池可获得较高的光电转换效率;更重要的,由此制得的电池片无光致衰减现象,提高了光伏组件的发电功率,降低了光伏组件的发电成本。
2、由于镓在硅中的分凝系数仅有0.008,采用常规的铸锭方法镓在硅锭中的浓度差异较大,电阻率分布不均匀,造成硅锭的利用率较低,不利于大规模量产;本发明通过特定的化料长晶工艺和适当的掺杂方式,使镓在硅锭内的分布相对均匀,获得了电阻率分布均匀的硅锭,满足了电池片加工的要 求。
3、由本发明制得的多晶硅锭,其Ga浓度相对均匀,硅锭利用率提升,降低了制造成本。
具体实施方式
下面结合实施例对本发明作进一步描述:
实施例一
一种掺镓多晶硅锭的制备方法,包括如下步骤:
(1)在坩埚内壁上涂敷氮化硅涂层;氮化硅涂层的厚度为60微米,其纯度大于99.9%;
(2)在坩埚内装入多晶硅料和镓掺杂剂,形成混合物;
所述镓掺杂剂位于坩埚高度30~50%的区域内;所述混合物中镓元素在硅中的含量为6ppma;
(3)将装有混合物的坩埚放入铸锭炉中,抽真空,然后加热,加热温度为1500~1550℃,使混合物按照从上到下的顺序逐渐熔化;
当混合物中的镓掺杂剂开始熔化时,调节炉压,使炉压为700~800mbar;
待混合物完全熔化形成熔硅后立即进入长晶阶段;
(4)进入长晶阶段后,调节铸锭炉中控温热电偶的温度和侧部隔热笼向上移动的速率,使热量向下辐射,从而使熔硅在竖直向上的温度梯度下自下向上生长;
所述控温热电偶的温度调节范围为1400~1430℃;所述隔热笼向上移动的速率为0.5~0.6cm/h,且隔热笼的最高移动距离为多晶硅锭高度的70~80%;
(5)待熔硅结晶完后,退火、冷却,即可得到掺镓多晶硅锭。
所述步骤(4)中,熔硅在竖直向上的温度梯度下自下向上生长,随着长晶高度的增加,逐渐减小炉压,增大氩气流量;使熔体中镓元素的浓度维持在4~5ppma;
所述炉压的调节范围为100~600mbar,氩气流量的调节范围为10~50升/分钟。
对比例一
一种掺镓多晶硅锭的制备方法,包括如下步骤:
(1)在坩埚内壁上涂敷氮化硅涂层;氮化硅涂层的厚度为60微米,其纯度大于99.99%;
(2)在坩埚内装入多晶硅料和镓掺杂剂,形成混合物;所述混合物中镓元素在硅中的含量为6ppma;
(3)将装有混合物的坩埚放入铸锭炉中,抽真空,然后加热,加热温度为1500~1550℃,使混合物完全熔化;熔化过程按自然状态进行;
(4)进入长晶阶段后,调节铸锭炉中控温热电偶的温度和侧部隔热笼向上移动的速率,使热量向下辐射,从而使熔硅在竖直向上的温度梯度下自下向上生长;
(5)待熔硅结晶完后,退火、冷却,即可得到掺镓多晶硅锭。
对比例二
一种掺硼多晶硅锭的制备方法,包括如下步骤:
(1)在坩埚内壁上涂敷氮化硅涂层;氮化硅涂层的厚度为60微米,其纯度大于99.99%;
(2)在坩埚内装入多晶硅料和硼掺杂剂,形成混合物;所述混合物中硼元素在硅中的含量为15~17ppma;
(3)将装有混合物的坩埚放入铸锭炉中,抽真空,然后加热,加热温度为1500~1550℃,使混合物完全熔化;熔化过程按自然状态进行;
(4)进入长晶阶段后,调节铸锭炉中控温热电偶的温度和侧部隔热笼向上移动的速率,使热量向下辐射,从而使熔硅在竖直向上的温度梯度下自下向上生长;
(5)待熔硅结晶完后,退火、冷却,即可得到掺硼多晶硅锭。
然后将实施例一和对比例一、二作性能对比,比较电阻率分布、少子寿命、铸锭收率及电池光致衰减率;结果如下:
项目 实施例一 对比例一 对比例二
铸锭电阻率分布 1-5Ω·cm 0.3-5Ω·cm 1.3-2Ω·cm
少子寿命 7-8us 5-6us 5-6us
铸锭收率 60-63% 55-60% 68-70%
电池光致衰减率 0.04-0.06% 0.04-0.06% 1-2%
由上表可见,与常规掺杂镓铸锭(对比例一)相比,本发明电阻率分布较窄,由此获得的铸锭收率高于常规掺镓铸锭,降低了铸锭成本;与常规掺杂硼铸锭(对比例二)相比,本发明少子寿命高,光电转换效率更高,由此制得的光伏电池发电成本更低。
然后,采用实施例一和对比例二的多晶硅片制备的四主栅太阳电池,选取同一效率档的电池,在室内模拟光源照射24h后的光衰数据如下:
Figure PCTCN2014093792-appb-000001
可见,光衰后掺硼太阳电池的光电转换效率大幅降低,甚至降档(这主要是由于掺杂剂硼(B)与多晶硅锭中的氧(O)和铁(Fe)的作用导致);而本发明的掺镓太阳电池的光电转换效率基本无变化,无光致衰减现象。

Claims (5)

  1. 一种掺镓多晶硅锭的制备方法,其特征在于,包括如下步骤:
    (1)在坩埚内壁上涂敷氮化硅涂层;
    (2)在坩埚内装入多晶硅料和镓掺杂剂,形成混合物;
    所述镓掺杂剂位于坩埚高度30~50%的区域内;所述混合物中镓元素在硅中的含量5~7ppma;
    (3)将装有混合物的坩埚放入铸锭炉中,抽真空,然后加热,使混合物按照从上到下的顺序逐渐熔化;
    当混合物中的镓掺杂剂开始熔化时,调节炉压,使炉压为700~800mbar;
    待混合物完全熔化形成熔硅后立即进入长晶阶段;
    (4)进入长晶阶段后,调节铸锭炉中控温热电偶的温度和侧部隔热笼向上移动的速率,使热量向下辐射,从而使熔硅在竖直向上的温度梯度下自下向上生长;
    所述控温热电偶的温度调节范围为1400~1430℃;所述隔热笼向上移动的速率为0.5~0.6cm/h,且隔热笼的最高移动距离为多晶硅锭高度的70~80%;
    (5)待熔硅结晶完后,退火、冷却,即可得到掺镓多晶硅锭。
  2. 根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中,氮化硅涂层的厚度为50~70微米,其纯度大于99.9%。
  3. 根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中,加热的温度为1500~1550℃。
  4. 根据权利要求1所述的制备方法,其特征在于:所述步骤(4)中,熔硅在竖直向上的温度梯度下自下向上生长,随着长晶高度的增加,逐渐减小炉压,增大氩气流量;使熔体中镓元素的浓度维持在4~5ppma;
    所述炉压的调节范围为100~600mbar,氩气流量的调节范围为10~50升/分钟。
  5. 根据权利要求1所述的制备方法得到的掺镓多晶硅锭。
PCT/CN2014/093792 2014-05-15 2014-12-15 一种掺镓多晶硅锭及其制备方法 WO2015172556A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410205422.2 2014-05-15
CN201410205422.2A CN103966665B (zh) 2014-05-15 2014-05-15 一种掺镓多晶硅锭及其制备方法

Publications (1)

Publication Number Publication Date
WO2015172556A1 true WO2015172556A1 (zh) 2015-11-19

Family

ID=51236653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093792 WO2015172556A1 (zh) 2014-05-15 2014-12-15 一种掺镓多晶硅锭及其制备方法

Country Status (2)

Country Link
CN (1) CN103966665B (zh)
WO (1) WO2015172556A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097831A (zh) * 2018-10-30 2018-12-28 浙江羿阳太阳能科技有限公司 一种高效光电转化率的多晶硅锭浇铸装置及浇铸方法
CN112359415A (zh) * 2020-11-23 2021-02-12 安阳工学院 一种太阳能p型多晶硅片的制作工艺
CN112853475A (zh) * 2020-12-30 2021-05-28 四川永祥硅材料有限公司 一种三元掺杂半导体及其制备工艺
CN113089092A (zh) * 2019-12-23 2021-07-09 比亚迪股份有限公司 一种硅片的制备方法和一种硅片、一种电池片
CN113471422A (zh) * 2021-05-07 2021-10-01 盐城工学院 一种利用硅废料制备镓掺杂纳米硅颗粒的方法
CN114540951A (zh) * 2022-02-24 2022-05-27 安阳工学院 一种回收利用硅泥制备多晶硅锭的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966665B (zh) * 2014-05-15 2016-06-29 阿特斯光伏电力(洛阳)有限公司 一种掺镓多晶硅锭及其制备方法
CN104532345A (zh) * 2014-12-23 2015-04-22 阿特斯(中国)投资有限公司 一种多晶硅铸锭的制造方法及其多晶硅铸锭
CN105887190A (zh) * 2016-04-20 2016-08-24 佳科太阳能硅(龙岩)有限公司 一种提纯回收掺镓铸锭顶料的方法
CN105780110A (zh) * 2016-04-20 2016-07-20 佳科太阳能硅(龙岩)有限公司 一种采用冶金法多晶硅掺镓制作高效多晶硅片的方法
CN105780114A (zh) * 2016-05-20 2016-07-20 江苏协鑫硅材料科技发展有限公司 硅锭及其制备方法
CN106283181A (zh) * 2016-08-11 2017-01-04 通威太阳能(合肥)有限公司 一种高光电转换效率的多晶硅板及其制备方法
CN106400108A (zh) * 2016-09-26 2017-02-15 江苏美科硅能源有限公司 一种多次形核铸造高效多晶硅锭及硅片技术
CN106319622A (zh) * 2016-09-26 2017-01-11 江苏美科硅能源有限公司 一种多阶段电阻率控制高效多晶硅片技术
CN109972203B (zh) * 2019-03-05 2020-07-14 赛维Ldk太阳能高科技(新余)有限公司 一种多晶硅铸锭方法和多晶硅
CN112176407A (zh) * 2020-10-21 2021-01-05 苏州昀丰半导体装备有限公司 一种方硅芯铸锭炉热场结构及制备方法
CN113652752B (zh) * 2021-08-17 2022-10-21 广东先导微电子科技有限公司 一种砷化镓多晶的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2475212A1 (en) * 2004-07-09 2006-01-09 Mihai V. Scarlete Silicon-based ceramic coatings for quartz crucibles for czochralski growth of silicon single crystals, similar unidirectional growth methods and similar semiconductor materials, and other applications requiring reduced chemical reactivity of fused silica
CN101812726A (zh) * 2010-04-13 2010-08-25 上海太阳能电池研究与发展中心 一种镓掺杂p型晶体硅的制备方法
CN101845666A (zh) * 2010-06-03 2010-09-29 王敬 一种掺氮晶体硅及其制备方法
CN103361724A (zh) * 2013-06-21 2013-10-23 东海晶澳太阳能科技有限公司 硼-镓共掺高效多晶硅及其制备方法
CN103628128A (zh) * 2013-12-12 2014-03-12 英利集团有限公司 坩埚及其制作方法、多晶硅锭的铸造方法
CN103966665A (zh) * 2014-05-15 2014-08-06 阿特斯光伏电力(洛阳)有限公司 一种掺镓多晶硅锭及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU779183B2 (en) * 1999-05-28 2005-01-13 Shin-Etsu Chemical Co. Ltd. CZ single crystal doped with Ga and wafer and method for production thereof
JP3855082B2 (ja) * 2002-10-07 2006-12-06 国立大学法人東京農工大学 多結晶シリコンの作製方法、多結晶シリコン、及び太陽電池
KR101841032B1 (ko) * 2010-09-03 2018-03-22 지티에이티 아이피 홀딩 엘엘씨 갈륨, 인듐 또는 알루미늄으로 도핑된 실리콘 단결정
CN102296352B (zh) * 2011-08-16 2014-01-29 北京京运通科技股份有限公司 一种800公斤级单多晶硅的铸锭方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2475212A1 (en) * 2004-07-09 2006-01-09 Mihai V. Scarlete Silicon-based ceramic coatings for quartz crucibles for czochralski growth of silicon single crystals, similar unidirectional growth methods and similar semiconductor materials, and other applications requiring reduced chemical reactivity of fused silica
CN101812726A (zh) * 2010-04-13 2010-08-25 上海太阳能电池研究与发展中心 一种镓掺杂p型晶体硅的制备方法
CN101845666A (zh) * 2010-06-03 2010-09-29 王敬 一种掺氮晶体硅及其制备方法
CN103361724A (zh) * 2013-06-21 2013-10-23 东海晶澳太阳能科技有限公司 硼-镓共掺高效多晶硅及其制备方法
CN103628128A (zh) * 2013-12-12 2014-03-12 英利集团有限公司 坩埚及其制作方法、多晶硅锭的铸造方法
CN103966665A (zh) * 2014-05-15 2014-08-06 阿特斯光伏电力(洛阳)有限公司 一种掺镓多晶硅锭及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097831A (zh) * 2018-10-30 2018-12-28 浙江羿阳太阳能科技有限公司 一种高效光电转化率的多晶硅锭浇铸装置及浇铸方法
CN113089092A (zh) * 2019-12-23 2021-07-09 比亚迪股份有限公司 一种硅片的制备方法和一种硅片、一种电池片
CN113089092B (zh) * 2019-12-23 2022-09-09 比亚迪股份有限公司 一种硅片的制备方法和一种硅片、一种电池片
CN112359415A (zh) * 2020-11-23 2021-02-12 安阳工学院 一种太阳能p型多晶硅片的制作工艺
CN112853475A (zh) * 2020-12-30 2021-05-28 四川永祥硅材料有限公司 一种三元掺杂半导体及其制备工艺
CN113471422A (zh) * 2021-05-07 2021-10-01 盐城工学院 一种利用硅废料制备镓掺杂纳米硅颗粒的方法
CN113471422B (zh) * 2021-05-07 2023-07-07 盐城工学院 一种利用硅废料制备镓掺杂纳米硅颗粒的方法
CN114540951A (zh) * 2022-02-24 2022-05-27 安阳工学院 一种回收利用硅泥制备多晶硅锭的方法

Also Published As

Publication number Publication date
CN103966665A (zh) 2014-08-06
CN103966665B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2015172556A1 (zh) 一种掺镓多晶硅锭及其制备方法
JP5470349B2 (ja) p型シリコン単結晶およびその製造方法
CN102912424B (zh) 提高直拉单晶硅轴向电阻率均匀性的方法及得到的单晶硅
US9074298B2 (en) Processes for production of silicon ingot, silicon wafer and epitaxial wafer, and silicon ingot
CN104532345A (zh) 一种多晶硅铸锭的制造方法及其多晶硅铸锭
CN102560641B (zh) 一种掺杂电阻率均匀的n型铸造硅多晶及其制备方法
CN101591808A (zh) 掺锗的定向凝固铸造单晶硅及其制备方法
CN101694008A (zh) 一种掺镓金属硅及其定向凝固铸造方法
CN103215633A (zh) 一种多晶硅的铸锭方法
CN104328494A (zh) 一种太阳能级直拉单晶硅的生产方法
CN114540950B (zh) 一种降低炉压生长n型直拉单晶硅的方法
CN106222742B (zh) 一种晶体硅及其制备方法
CN113564693B (zh) 低电阻率重掺砷硅单晶生产方法
CN104328495A (zh) 一种太阳能级直拉单晶硅的生产方法
CN101597787B (zh) 在氮气下铸造氮浓度可控的掺氮单晶硅的方法
CN103526290A (zh) 多晶硅铸锭的制备方法
CN105951173A (zh) N型单晶硅晶锭及其制造方法
CN104451872A (zh) 一种太阳能级直拉单晶硅的生产方法
CN101591807A (zh) 掺氮的定向凝固铸造单晶硅及其制备方法
CN102560646B (zh) 一种掺杂电阻率均匀的n型铸造硅单晶及其制备方法
CN114016122B (zh) 一种提高大尺寸n型硅片转换效率的方法
CN105239153B (zh) 含辅助加料结构的单晶炉及其应用
JP5372105B2 (ja) n型シリコン単結晶およびその製造方法
CN108754602B (zh) 一种多晶硅半熔铸锭用坩埚及其喷涂工艺和应用
CN202730295U (zh) 一种铸锭单晶硅的坩埚护板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891952

Country of ref document: EP

Kind code of ref document: A1