WO2015172427A1 - 一种信号传输方法及装置 - Google Patents

一种信号传输方法及装置 Download PDF

Info

Publication number
WO2015172427A1
WO2015172427A1 PCT/CN2014/081575 CN2014081575W WO2015172427A1 WO 2015172427 A1 WO2015172427 A1 WO 2015172427A1 CN 2014081575 W CN2014081575 W CN 2014081575W WO 2015172427 A1 WO2015172427 A1 WO 2015172427A1
Authority
WO
WIPO (PCT)
Prior art keywords
epre
modulated signal
modulation
ratio
configuration information
Prior art date
Application number
PCT/CN2014/081575
Other languages
English (en)
French (fr)
Inventor
李元杰
王婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2016567631A priority Critical patent/JP2017521890A/ja
Priority to BR112016026486A priority patent/BR112016026486A2/pt
Priority to EP14891929.3A priority patent/EP3136672B1/en
Priority to CN201480078866.2A priority patent/CN106464646B/zh
Publication of WO2015172427A1 publication Critical patent/WO2015172427A1/zh
Priority to US15/349,561 priority patent/US10182317B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a signal transmission method and apparatus. Background technique
  • MBMS Multimedia Broadcast Multicast Service
  • UE User Equipment
  • the multimedia broadcast service may broadcast multimedia video information to all UEs, and the multimedia multicast service may send certain charged multimedia video information to a group of subscribed UEs for viewing.
  • the network side device when the physical multicast channel (PMCH) is transmitted in the MBMS mode, the network side device needs to modulate the PMCH to be transmitted according to a preset modulation manner.
  • the signal is modulated and transmitted according to a preset transmit power.
  • the UE After receiving the modulated signal, the UE needs to decode the received modulated signal according to configuration information such as a preset transmit power.
  • the channel environment quality between the cell edge UE and the base station is poor (the signal-to-noise ratio is relatively low), in order to ensure the robustness of the service transmission, when transmitting the service data to the cell edge UE, a low-order modulation method is needed, for example.
  • QPSK is adopted; because the channel environment quality between the cell center UE and the base station is high (the signal-to-noise ratio is relatively high), when transmitting the service data to the cell center UE, a high-order modulation mode can be used to improve the bit of the signal transmission.
  • Rate such as 16QAM or 64QAM.
  • a signal transmission apparatus including:
  • a modulation module configured to perform hierarchical modulation on the service data to be sent, to obtain a layered modulation signal
  • a determining module configured to determine, according to the power configuration information of the layered modulation, an energy EPRE on a unit resource unit of each layer of the modulated signal
  • a sending module configured to send the layered modulation signal to the user equipment UE according to the EPRE of each layer of the modulation signal determined by the determining module.
  • the service data includes base layer data and additional layer data, where the priority of the base layer data is higher than a priority of the additional layer data;
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data Modulation of the data.
  • the power configuration information includes:
  • the ratio of the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS is the ratio of the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the power configuration information further includes:
  • the ratio of the base layer constellation point spacing to the layered modulation constellation point spacing, the additional layer constellation point spacing and Ratio of layered modulation constellation point spacing, ratio of base layer constellation point spacing to additional layer constellation point spacing, ratio of EPRE of base layer modulated signal to EPRE of layered modulated signal, EPRE of layered modulated signal and layered modulated signal The ratio of the EPRE, and the ratio of the EPRE of the base layer modulation signal to the EPRE of the additional layer modulation signal are all six.
  • the power configuration information includes:
  • the sending module is further configured to:
  • the sending module is specifically configured to:
  • BCCH broadcast control channel
  • MCCH multicast control channel
  • a PDCCH or an enhanced physical downlink control channel EPDCCH is transmitted to the UE.
  • a signal transmission apparatus including:
  • a receiving module configured to receive a layered modulated signal sent by the network side device;
  • the layered modulated signal is a signal obtained by hierarchically modulating the service data;
  • a determining module configured to determine, according to the power configuration information, an energy EPRE on a unit resource unit of each layer of the modulated signal required to decode the layered modulated signal received by the receiving module.
  • the service data includes base layer data and additional layer data, where the priority of the base layer data is higher than a priority of the additional layer data;
  • the layered modulation includes base layer modulation and additional layer modulation, wherein the base layer is modulated into a pin Modulation of base layer data in the traffic data, the additional layer modulation being modulation for additional layer data in the traffic data.
  • the power configuration information includes:
  • the ratio of the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS is the ratio of the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the power configuration information further includes:
  • the ratio of the base layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the additional layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the base layer constellation point spacing to the additional layer constellation point spacing, the EPRE of the base layer modulated signal The ratio of the ratio of the EPRE of the layered modulated signal, the ratio of the EPRE of the additional layer modulated signal to the EPRE of the layered modulated signal, and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal.
  • the power configuration information includes: an EPRE of the base layer modulation signal and an EPRE of the additional layer modulation signal respectively The ratio of the EPRE of the MBSFN RS.
  • the determining module is specifically configured to: Power configuration information, determining an EPRE of each layer of the modulated signal; or receiving power configuration information sent by the network side device, according to the received power configuration letter The EPRE of each layer of the modulated signal is determined.
  • the receiving module is specifically configured to: receive the power configuration information by using a broadcast control channel BCCH; or by using a multicast control channel
  • the MCCH receives the power configuration information; or, receives the power configuration information by using a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH.
  • a third aspect provides a signal transmission apparatus including a processor, a memory, and a bus, wherein the memory stores an execution instruction, and when the apparatus is in operation, the processor and the memory communicate via a bus, the processing Executing the execution instruction to cause the apparatus to perform the following method: layer-modulating service data that needs to be transmitted to obtain a layered modulation signal;
  • the service data includes base layer data and additional layer data, where the priority of the base layer data is higher than a priority of the additional layer data;
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data Modulation of the data.
  • the power configuration information includes:
  • the ratio of the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS is the ratio of the EPRE of the additional layer modulated signal.
  • the power configuration information includes: The ratio of the EPRE of the layered modulated signal to the EPRE of the MBSFN RS is 0 dB; or, the ratio of the EPRE of the base layer modulated signal to the EPRE of the MBSFN RS is 0 dB; or, the EPRE of the additional layer modulated signal The ratio to the EPRE of the MBSFN RS is 0 dB.
  • the power configuration information further includes:
  • the ratio of the EPRE to the EPRE of the layered modulated signal and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal are the ratio of the EPRE to the EPRE of the layered modulated signal and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the method performed by the processor further includes :
  • the layer configuration power configuration information is sent to the UE, Includes:
  • BCCH broadcast control channel
  • MCCH multicast control channel
  • a PDCCH or an enhanced physical downlink control channel EPDCCH is transmitted to the UE.
  • a signal transmission apparatus including a processor, a memory, and a bus
  • the memory stores execution instructions, when the device is running, the processor communicates with the memory through a bus, and the processor executes the execution instruction to cause the device to perform the following method: receiving a segment sent by the network side device a layer modulation signal; the layered modulation signal is a signal obtained by hierarchically modulating service data;
  • an energy EPRE on a unit resource unit of each layer of the modulated signal required to decode the layered modulated signal is determined.
  • the service data includes base layer data and additional layer data, where the priority of the base layer data is higher than a priority of the additional layer data;
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data Modulation of the data.
  • the power configuration information includes:
  • the ratio of the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS is the ratio of the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the power configuration information further includes:
  • the power configuration information includes: an EPRE of the base layer modulation signal and an EPRE of the additional layer modulation signal respectively The ratio of the EPRE of the MBSFN RS.
  • Determining an EPRE of each layer of the modulated signal required to decode the layered modulated signal according to the power configuration information includes:
  • the receiving, by the processor, the power configuration information that is sent by the network side device includes:
  • the power configuration information is received by a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH.
  • a signal transmission method including:
  • the service data includes a basic layer Data and additional layer data, wherein the base layer data has a higher priority than the additional layer data;
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data Modulation of the data.
  • the power configuration information includes:
  • the ratio of the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS is the ratio of the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the power configuration information further includes:
  • the ratio of the EPRE to the EPRE of the layered modulated signal and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal are the ratio of the EPRE to the EPRE of the layered modulated signal and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the method further includes:
  • the sending the layered modulated power configuration information to the UE includes:
  • BCCH broadcast control channel
  • MCCH multicast control channel
  • a PDCCH or an enhanced physical downlink control channel EPDCCH is transmitted to the UE.
  • a signal transmission method including:
  • the layered modulated signal is a signal obtained by hierarchically modulating the service data
  • an energy EPRE on a unit resource unit of each layer of the modulated signal required to decode the layered modulated signal is determined.
  • the service data includes base layer data and additional layer data, where the priority of the base layer data is higher than a priority of the additional layer data;
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data Modulation of the data.
  • the power configuration information includes:
  • the power configuration information includes:
  • the power configuration information further includes:
  • the ratio of the EPRE to the EPRE of the layered modulated signal and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal are the ratio of the EPRE to the EPRE of the layered modulated signal and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal.
  • the power configuration information includes: an EPRE of the base layer modulation signal and an EPRE of the additional layer modulation signal respectively The ratio of the EPRE of the MBSFN RS.
  • determining the layer according to the power configuration information The EPRE of each layer of modulated signal required to modulate the signal for decoding including:
  • the receiving the power configuration information that is sent by the network side device includes:
  • the power configuration information is received by a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH.
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • FIG. 1 is a flowchart of a signal transmission method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a constellation of hierarchical modulation
  • FIG. 3 is a flowchart of a signal transmission method according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a signal transmission apparatus according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a signal transmission apparatus according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram of a signal transmission apparatus according to Embodiment 5 of the present invention.
  • FIG. 3 is a schematic structural diagram of a signal transmission apparatus according to Embodiment 6 of the present invention. detailed description
  • the network side device may perform layered modulation on the service data that needs to be sent to the UE to obtain a layered modulated signal; and determine the energy EPRE on the unit resource unit of each layer of the modulated signal according to the power configuration information. And transmitting a layered modulated signal to the UE according to the determined EPRE of each layer of the modulated signal.
  • layered modulation can also be called Embedded Modulation, Multi-resolution modulation, asymmetrical modulation, and Non-uniform modulation.
  • QoS Quality of Service
  • MBMS data can be provided for different UEs.
  • base layer modulation such as QPSK
  • layered modulation such as 16QAM
  • base layer modulation such as QPSK
  • additional layer modulation such as 16QAM
  • the cell center UE with better channel conditions not only the cell center UE with better channel conditions but also the cell edge UE with poor channel conditions can correctly demodulate high priority data from the layered modulated signal, and the cell center UE with better channel condition can also be layered. Low priority data is correctly demodulated in the modulated signal.
  • the work points required for different priority data to achieve the same target error block rate are different.
  • High-priority data requirements are strictly protected, and specifically, the required target BLER (for example, 1% BLER) is required at a lower Signal to Interference plus Noise Ratio (SINR).
  • Low priority data requires less protection and, in particular, requires a desired target BLER (e.g., 1% BLER) at a higher SINR.
  • the data service supported by the high-priority data requires a large coverage area, such as a CCTV service for national broadcasting, and the data service supported by the low-priority data requires a small coverage area, such as a local radio service. . In this way, the spectrum utilization efficiency and system throughput of the system can be greatly improved.
  • the embodiments of the present invention can be applied not only to the transmission of the MBMS service but also to the transmission of the unicast service.
  • different unicast service data may be modulated by using different layers of modulation data, where the different unicast service data includes high priority data and low priority data, wherein high priority
  • the data needs to allocate UEs with poor verbal conditions (such as cell edge UEs), and low-priority unicast service data needs to be allocated to UEs with better channel conditions (such as cell center UEs).
  • each UE can demodulate its own unicast service data from the layered modulated signal.
  • a flowchart of a signal transmission method includes: S101: A network side device performs layered modulation on service data to be transmitted to obtain a layered modulation signal; S102: The network side device determines, according to the power configuration information of the layered modulation, energy (Energy Per Resource Element, EPRE) of the unit resource unit of each layer of the modulated signal;
  • Energy Per Resource Element, EPRE Energy
  • the network side device transmits the layered modulated signal to the user equipment UE according to the determined EPRE of each layer of the modulated signal.
  • the network side device may be an evolved Node B (eNB) in the LTE system.
  • the service data transmitted by the network side device includes base layer data and additional layer data, wherein the base layer data has a higher priority than the additional layer data (ie, the base layer The degree of protection required for the data is greater than the degree of protection required for the additional layer data).
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data
  • the modulation by the data that is, the priority of the base layer modulated signal is greater than the priority of the additional layer modulated signal.
  • a layered modulation mode may be adopted.
  • the network side device provides the MBMS video service for the intra-cell UE, in order to meet the requirement that the cell center UE and the edge UE simultaneously watch the video, and also provide the high-definition video for the cell center UE or the UE with good channel conditions, It can be determined that the layered modulation is used to modulate the normal video data and the supplementary video data corresponding to the high definition video.
  • the base layer modulation (e.g., QPSK) in the layered modulation can be used to modulate the normal video data
  • the additional layer modulation (e.g., 16Q AM) in the layered modulation is used to modulate the supplemental video data.
  • Fig. 2 which is a constellation diagram of hierarchical modulation
  • a layered modulation constellation based on 64QAM can be obtained by combining a base layer constellation based on QPSK and an additional layer constellation based on 16QAM.
  • the cell edge UE or the UE with poor channel conditions can demodulate the normal video data from the received layered modulated signal, and view the normal video through the normal video data, and the UE in the cell center or the UE with better channel conditions
  • the normal video data can be demodulated from the received layered modulated signal, and the supplemental video data can be demodulated, and the high definition video can be viewed through the two kinds of video data.
  • layered modulation may be adopted; specifically, base layer modulation and additional layer modulation may be separately used to modulate unicast service data transmitted to different UEs for unicast transmission to a cell edge UE or a channel with poor channel conditions.
  • basic layer modulation may be adopted to ensure robustness of data transmission; for unicast service data sent to a cell center UE or a channel-good UE, additional layer modulation may be adopted to improve data transmission efficiency;
  • Each UE can not only demodulate the unicast service data belonging to its own base layer or additional layer from the received layered modulated signal, but also improve system throughput and spectrum utilization efficiency.
  • the network side device needs to determine an EPRE of the layered modulated signal, and send the layered modulated signal according to the EPRE of the layered modulated signal.
  • the network side device may determine the EPRE of the layered modulation signal according to the power configuration information preset in the protocol or according to the power configuration information configured by itself.
  • the form of the power configuration information may be specifically as follows:
  • the power configuration information includes a ratio of an EPRE of the layered modulated signal to an EPRE of a Multimedia Broadcast multicast service Single Frequency Network (MBSFN) reference signal (Reference Signal, RS), or a base layer modulated signal.
  • MBSFN Multimedia Broadcast multicast multicast service Single Frequency Network
  • RS Reference Signal
  • the EPRE of the MBSFN RS is known. According to the ratio of the EPRE of the layered modulated signal to the EPRE of the MBSFN RS, the EPRE of the layered modulated signal can be determined, and in combination with the scale factor ⁇ , each layer can be determined. The EPRE of the modulated signal.
  • the EPRE of the base layer modulation signal can be determined, and in combination with the scale factor c, the EPRE of the additional layer modulation signal can be determined; the EPRE of the additional layer modulation signal is The EPRE ratio of the MBSFN RS can determine the EPRE of the additional layer modulated signal, and in combination with the scaling factor ⁇ , the EPRE of the base layer modulated signal can be determined.
  • the scale factor c here may belong to the above power configuration information, or may be independent of the power configuration information, and the scale factor ot may specifically be any one of the following ratios:
  • the ratio of the ratio of the base layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the additional layer constellation point spacing to the layered modulation constellation point spacing, and the ratio of the base layer constellation point spacing to the additional layer constellation point spacing are simply referred to as The constellation point spacing ratio, where the constellation point spacing refers to the minimum distance between constellation points; the ratio of the EPRE of the base layer modulated signal to the EPRE of the layered modulated signal, the EPRE of the additional layer modulated signal, and the EPRE of the layered modulated signal.
  • the ratio, and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal is referred to as the energy ratio.
  • the above-mentioned constellation point pitch ratio has a corresponding relationship with the energy ratio, and the energy ratio can be determined according to the constellation point pitch ratio.
  • the QPSK modulation method is adopted for the base layer, and the layer modulation of the additional layer is performed by the QPSK modulation method.
  • the scale factor is the ratio of the base layer constellation point spacing to the layer modulation modulation constellation point spacing, the EPRE and the additional layer of the base layer modulation signal are used.
  • the ratio of the EPRE of the modulated signal is: ( ⁇ + l) 2 ;
  • the QPSK modulation method is adopted for the base layer, and the layered modulation of the 16QAM modulation method is used for the additional layer, when the scale factor is the base layer constellation point spacing and layer modulation
  • the ratio of the EPRE of the base layer modulation signal to the EPRE of the additional layer modulation signal is: 5 ⁇ ( ⁇ + 1) 2 ; for example, the base layer is 16QAM modulation, and the additional layer is QPSK modulation.
  • the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal is: [8 ⁇ (" + 1) 2 ] /[ ⁇ 2 + ( ⁇ + 2) 2 ].
  • the ratio of the EPRE of the layered modulated signal to the EPRE of the MBSFN RS may be OdB, that is, the EPRE of the layered modulated signal may be equal to the EPRE of the MBSFN S; or the EPRE of the base layer modulated signal
  • the ratio of the EPRE of the MBSFN RS may be OdB, that is, the EPRE of the basic layer modulation signal may be equal to the EPRE of the MBSFN RS; or the ratio of the EPRE of the additional layer modulation signal to the EPRE of the MBSFN RS may be OdB, that is, The EPRE that can configure the additional layer modulation signal is equal to the EPRE of the MBSFN RS.
  • the network side device needs to combine the scale factor ⁇ to obtain the EPRE of each layer of the modulated signal.
  • the scale factor ⁇ is a necessary parameter required for the network side device to modulate the layered modulated signal. Therefore, the network side needs to store the value of the scale factor ⁇ regardless of the need to combine the scale factor ⁇ to obtain the EPRE of each layer of the modulated signal. .
  • the power configuration information may be preset in a protocol, or configured by a network side device; whether the power configuration information is preset in a protocol or configured by a network side device.
  • the network side device needs to store the power configuration information that is preset or configured by itself.
  • the EPRE of each layer of the modulated signal is determined according to the stored power configuration information, based on the determined modulation of each layer.
  • the EPRE of the signal transmits a layered modulated signal.
  • the power configuration information includes only the ratio of one of the EPRE of the layered modulation signal, the EPRE of the base layer modulation signal, and the EPRE of the additional layer modulation signal to the EPRE of the MBSFN RS, and the network side device can combine the ratio.
  • the factor ⁇ and the ratio obtain the EPRE of each layer of the modulated signal, thereby reducing the amount of information stored by the network side device and saving storage space.
  • the power configuration information includes the ratio of the EPRE of the base layer modulated signal and the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS, respectively.
  • the EPRE of the MBSFN RS is known, and the EPRE of each layer of the modulated signal can be determined based on the ratio of the EPRE of each layer of the modulated signal to the EPRE of the MBSFN RS.
  • the power configuration information may also be preset in the protocol or configured by the network side device; regardless of the power configuration information is pre-proposed in the protocol. If the network side device is configured, the network side device needs to store the power configuration information that is preset or configured by itself. When the layered modulation signal needs to be sent, each layer is determined according to the stored power configuration information. The EPRE of the modulated signal transmits a layered modulated signal based on the determined EPRE of each layer of modulated signal.
  • the network side device can directly determine the EPRE of the base layer modulation signal and the EPRE of the additional layer modulation signal according to the ratio of the EPRE of the base layer modulation signal and the EPRE of the additional layer modulation signal to the EPRE of the MBSFN RS, respectively. Compared with the first embodiment, it can be reduced The complexity of the EPRE of the base layer modulated signal and the EPRE of the additional layer modulated signal is determined to improve the efficiency of transmitting the layered modulated signal.
  • the power configuration information may be configured by a network side device.
  • the UE needs to determine the configured power configuration information to the UE according to the power configuration information, and the network side device needs to send the configured power configuration information to the UE.
  • the UE needs to determine the EPRE of each layer of the modulated signal according to the power configuration information.
  • the method further includes:
  • the network side device can adjust the configured power configuration information according to actual needs, and the flexibility of the power configuration information is increased.
  • the network side device can send power configuration information. For example, it can be sent in the following ways:
  • BCCH Broadcast Control Channel
  • MCCH Multicast Control Channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • the Multimedia Broadcast multicast service Single Frequency Network (MBSFN) area covered by the LTE base station can be shared.
  • SIB System Information Block
  • MBSFN Multimedia Broadcast multicast service Single Frequency Network
  • a power configuration information saves system signaling overhead. If the power configuration information is transmitted through the MCCH, the system signaling overhead is large because each MBSFN area corresponds to one MCCH. This mode is applicable to different power control information of different MBSFN areas. If the power configuration information is sent through the PDCCH or the EPDCCH, the system signaling overhead is also large. Applicable to the case of sending different power control information for different cells.
  • the UE after receiving the layered modulation signal sent by the network side device, the UE also needs to determine each layer modulation required to decode the received layered modulation signal according to the power configuration information.
  • the EPRE of the signal is a detailed introduction.
  • a flowchart of a signal transmission method according to Embodiment 2 of the present invention includes:
  • the UE receives the layered modulation signal sent by the network side device, where the layered modulation signal is a signal obtained by hierarchically modulating the service data.
  • the UE determines, according to the power configuration information, an energy EPRE on a unit resource unit of each layer of the modulated signal required to decode the layered modulated signal.
  • the service data includes base layer data and additional layer data, where the priority of the base layer data is higher than a priority of the additional layer data;
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data Modulation of the data.
  • the UE needs to determine the EPRE of the layered modulated signal, and decode the received layered modulated signal according to the EPRE of the layered modulated signal, and the transport block size (TBS) index value, the encoding rate, and the like.
  • TBS transport block size
  • This embodiment mainly introduces a process in which the UE determines the EPRE of the layered modulation signal.
  • the UE may determine the EPRE of the layered modulated signal according to the power configuration information preset in the protocol or according to the power configuration information sent by the network side device.
  • the form of the power configuration information may be specifically as follows:
  • the power configuration information includes the ratio of the EPRE of the layered modulated signal to the EPRE of the MBSFN RS, or the ratio of the EPRE of the base layer modulated signal to the EPRE of the MBSFN RS, or the EPRE of the additional layer modulated signal and the EPRE of the MBSFN RS Ratio
  • the EPRE of the MBSFN RS is known. According to the ratio of the EPRE of the layered modulated signal to the EPRE of the MBSFN RS, the EPRE of the layered modulated signal can be determined, and in combination with the scale factor ⁇ , each layer can be determined. The EPRE of the modulated signal. Similarly, according to the ratio of the EPRE of the base layer modulation signal to the EPRE of the MBSFN RS, the base layer modulation signal can be determined.
  • EPRE combined with the scaling factor c, can determine the EPRE of the additional layer modulation signal; according to the ratio of the EPRE of the additional layer modulation signal to the EPRE of the MBSFN S, the EPRE of the additional layer modulation signal can be determined, and the scale factor ⁇ can be combined to determine the basic The EPRE of the layer modulation signal.
  • the scale factor c here may belong to the above power configuration information, or may be independent of the power configuration information, and the scale factor ⁇ may specifically be any one of the following ratios:
  • the ratio of the base layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the additional layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the base layer constellation point spacing to the additional layer constellation point spacing, the EPRE of the base layer modulated signal The ratio of the ratio of the EPRE of the layered modulated signal, the ratio of the EPRE of the additional layer modulated signal to the EPRE of the layered modulated signal, and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal.
  • the ratio of the ratio of the base layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the additional layer constellation point spacing to the layered modulation constellation point spacing, and the ratio of the base layer constellation point spacing to the additional layer constellation point spacing are simply referred to as The constellation point spacing ratio, where the constellation point spacing refers to the minimum distance between constellation points; the ratio of the EPRE of the base layer modulated signal to the EPRE of the layered modulated signal, the EPRE of the additional layer modulated signal, and the EPRE of the layered modulated signal.
  • the ratio, and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal is simply referred to as the energy ratio.
  • the above-mentioned constellation point pitch ratio has a corresponding relationship with the energy ratio, and the energy ratio can be determined according to the constellation point pitch ratio.
  • the QPSK modulation method is used, and the additional layer is layered modulation by the QPSK modulation method.
  • the EPRE of the base layer modulation signal is The ratio of the EPRE of the additional layer modulation signal is: ( ⁇ + l) 2 ;
  • the QPSK modulation method is adopted for the base layer, and the layer modulation of the additional layer is performed by the 16QAM modulation method, when the scale factor is the base layer constellation point spacing and points
  • the ratio of the EPRE of the base layer modulation signal to the EPRE of the additional layer modulation signal is: 5 ⁇ ( ⁇ + 1) 2 ; for example, the base layer is 16QAM modulation, and the additional layer is QPSK modulation.
  • the layered modulation of the mode when the scale factor is the ratio of the base layer constellation point spacing to the layer modulation modulation constellation point spacing, the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal is: [8 ⁇ ( ⁇ + 1) 2 ] / [ ⁇ 2 + ( ⁇ + 2) 2 ].
  • the ratio of the EPRE of the layered modulated signal to the EPRE of the MBSFN RS may be OdB, that is, the EPRE of the layered modulated signal may be equal to the EPRE of the MBSFN RS; or the EPRE of the base layer modulated signal
  • the ratio of the EPRE of the MBSFN RS may be OdB, that is, the EPRE of the basic layer modulation signal may be equal to the EPRE of the MBSFN RS; or the ratio of the EPRE of the additional layer modulation signal to the EPRE of the MBSFN RS may be OdB, that is, The EPRE that can configure the additional layer modulation signal is equal to the EPRE of the MBSFN RS.
  • the UE needs to combine the scale factor ⁇ to obtain each The EPRE of the layer modulation signal.
  • the scale factor ⁇ is a necessary parameter required for the UE to demodulate the layered modulated signal. Therefore, the UE needs to store the value of the scale factor c regardless of the need to combine the scale factor ⁇ to obtain the EPRE of each layer of the modulated signal.
  • the power configuration information may be preset in a protocol or sent by a network side device; whether the power configuration information is preset in a protocol or sent by a network side device.
  • the UE needs to store power configuration information that is preset or sent by the network side device.
  • the EPRE of each layer of the modulated signal is determined according to the stored power configuration information.
  • the power configuration information includes only the ratio of one of the EPRE of the layered modulation signal, the EPRE of the base layer modulation signal, and the EPRE of the additional layer modulation signal to the EPRE of the MBSFN RS, and the UE can combine the scale factor ⁇ . And the ratio obtains the EPRE of each layer of the modulated signal, thereby reducing the amount of information stored by the UE and saving storage space.
  • the power configuration information includes the ratio of the EPRE of the base layer modulated signal and the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS, respectively.
  • the EPRE of the MBSFN RS is known, and the EPRE of each layer of the modulated signal can be determined based on the ratio of the EPRE of each layer of the modulated signal to the EPRE of the MBSFN RS.
  • the power configuration information may also be preset in the protocol or sent by the network side device; regardless of the power configuration information is pre-proposed in the protocol.
  • the UE needs to store the pre-
  • the power configuration information sent by the first set or the network side device determines the EPRE of each layer of the modulated signal according to the stored power configuration information when the received layered modulated signal needs to be demodulated.
  • the UE can directly determine the EPRE of the base layer modulation signal and the EPRE of the additional layer modulation signal according to the ratio of the EPRE of the base layer modulation signal and the EPRE of the additional layer modulation signal to the EPRE of the MBSFN RS, respectively.
  • the complexity of determining the EPRE of the base layer modulated signal and the EPRE of the additional layer modulated signal can be reduced, and the efficiency of demodulating the layered modulated signal can be improved.
  • the power configuration information may be sent by the network side device to the UE.
  • the UE may receive the power configuration information sent by the network side device in the following manners:
  • the power configuration information is received by a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH.
  • the signal transmission device corresponding to the signal transmission method is further provided in the embodiment of the present invention.
  • the principle of the signal transmission device in solving the problem in the embodiment of the present invention is similar to the signal transmission method in the embodiment of the present invention, so the present invention is implemented.
  • the implementation of the device refer to the implementation of the method, and the repeated description is omitted.
  • a schematic structural diagram of a signal transmission apparatus includes: a modulation module 41, configured to perform layered modulation on service data to be transmitted, to obtain a layered modulation signal;
  • a determining module 42 configured to determine, according to hierarchically configured power configuration information, an energy EPRE on a unit resource unit of each layer of the modulated signal;
  • the sending module 43 is configured to send the layered modulation signal to the user equipment UE according to the EPRE of each layer of the modulation signal determined by the determining module 42.
  • the service data includes base layer data and additional layer data, where the priority of the base layer data is higher than a priority of the additional layer data;
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data Modulation of the data.
  • the power configuration information includes:
  • the ratio of the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS is the ratio of the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the ratio of the EPRE of the layered modulated signal to the EPRE of the MBSFN RS is 0 dB; or, the ratio of the EPRE of the base layer modulated signal to the EPRE of the MBSFN RS is 0 dB; or, the EPRE of the additional layer modulated signal
  • the ratio to the EPRE of the MBSFN RS is 0 dB.
  • the power configuration information further includes:
  • the ratio of the base layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the additional layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the base layer constellation point spacing to the additional layer constellation point spacing, the EPRE of the base layer modulated signal The ratio of the ratio of the EPRE of the layered modulated signal, the ratio of the EPRE of the additional layer modulated signal to the EPRE of the layered modulated signal, and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the sending module 43 is further configured to:
  • the sending module 43 is specifically configured to:
  • BCCH broadcast control channel
  • MCCH multicast control channel
  • EPDCCH enhanced physical downlink control channel
  • a schematic structural diagram of a signal transmission apparatus includes: a receiving module 51, configured to receive a layered modulated signal sent by a network side device; and the layered modulated signal is used to perform service data. a signal obtained after layered modulation;
  • the determining module 52 is configured to determine, according to the power configuration information, an energy EPRE on a unit resource unit of each layer of the modulated signal required to decode the layered modulated signal received by the receiving module 51.
  • the service data includes base layer data and additional layer data, where the priority of the base layer data is higher than a priority of the additional layer data;
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data Modulation of the data.
  • the power configuration information includes:
  • the ratio of the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS is the ratio of the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the ratio of the EPRE of the layered modulated signal to the EPRE of the MBSFN RS is 0 dB; or, the ratio of the EPRE of the base layer modulated signal to the EPRE of the MBSFN RS is 0 dB; or, the EPRE of the additional layer modulated signal
  • the ratio to the EPRE of the MBSFN RS is 0 dB.
  • the power configuration information further includes:
  • the power configuration information includes: a ratio of an EPRE of the base layer modulation signal and an EPRE of the additional layer modulation signal to an EPRE of the MBSFN RS, respectively.
  • the determining module 52 is specifically configured to:
  • the receiving module 51 is specifically configured to: receive the power configuration information by using a broadcast control channel BCCH; or receive the power configuration information by using a multicast control channel (MCCH); or The physical downlink control channel EPDCCH receives the power configuration information.
  • BCCH broadcast control channel
  • MCCH multicast control channel
  • EPDCCH physical downlink control channel
  • a schematic structural diagram of a signal transmission apparatus includes: a processor 61, a memory 62, and a bus 63.
  • the memory 62 stores an execution instruction, and when the apparatus is running, the processing
  • the processor 61 communicates with the memory 62 via a bus, and the processor 61 executes the execution instruction to cause the apparatus to perform the following method:
  • the service data includes base layer data and additional layer data, where the priority of the base layer data is higher than a priority of the additional layer data;
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data Modulation of the data.
  • the power configuration information includes:
  • the ratio of the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS is the ratio of the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the ratio of the EPRE of the layered modulated signal to the EPRE of the MBSFN RS is 0 dB; or, the ratio of the EPRE of the base layer modulated signal to the EPRE of the MBSFN RS is 0 dB; or, the EPRE of the additional layer modulated signal
  • the ratio to the EPRE of the MBSFN RS is 0 dB.
  • the power configuration information further includes:
  • the ratio of the base layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the additional layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the base layer constellation point spacing to the additional layer constellation point spacing, the EPRE of the base layer modulated signal The ratio of the ratio of the EPRE of the layered modulated signal, the ratio of the EPRE of the additional layer modulated signal to the EPRE of the layered modulated signal, and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the method performed by the processor 61 further includes:
  • the sending the layered modulated power configuration information to the UE includes:
  • BCCH broadcast control channel
  • MCCH multicast control channel
  • a PDCCH or an enhanced physical downlink control channel EPDCCH is transmitted to the UE.
  • a schematic structural diagram of a signal transmission apparatus includes: a processor 71, a memory 72, and a bus 73, where the memory 72 stores execution instructions, when the apparatus is running, The processor 71 communicates with the memory 72 via a bus, the processing The executing 71 executes the execution instructions such that the apparatus performs the following method:
  • the layered modulated signal is a signal obtained by hierarchically modulating the service data
  • an energy EPRE on a unit resource unit of each layer of the modulated signal required to decode the layered modulated signal is determined.
  • the service data includes base layer data and additional layer data, where the priority of the base layer data is higher than a priority of the additional layer data;
  • the layered modulation includes base layer modulation and modulation of additional layer modulation, wherein the base layer modulation is for modulation of base layer data in the traffic data, the additional layer modulation being for an additional layer in the service data Modulation of the data.
  • the power configuration information includes:
  • the ratio of the EPRE of the additional layer modulated signal to the EPRE of the MBSFN RS is the ratio of the EPRE of the additional layer modulated signal.
  • the power configuration information includes:
  • the ratio of the EPRE of the layered modulated signal to the EPRE of the MBSFN RS is 0 dB; or, the ratio of the EPRE of the base layer modulated signal to the EPRE of the MBSFN RS is 0 dB; or, the EPRE of the additional layer modulated signal
  • the ratio to the EPRE of the MBSFN RS is 0 dB.
  • the power configuration information further includes:
  • the ratio of the base layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the additional layer constellation point spacing to the layered modulation constellation point spacing, the ratio of the base layer constellation point spacing to the additional layer constellation point spacing, the EPRE of the base layer modulated signal The ratio of the ratio of the EPRE of the layered modulated signal, the ratio of the EPRE of the additional layer modulated signal to the EPRE of the layered modulated signal, and the ratio of the EPRE of the base layer modulated signal to the EPRE of the additional layer modulated signal.
  • the power configuration information includes: a ratio of an EPRE of the base layer modulation signal and an EPRE of the additional layer modulation signal to an EPRE of the MBSFN RS, respectively.
  • determining, according to the power configuration information, an EPRE of each layer of the modulated signal required to decode the layered modulated signal including:
  • receiving the power configuration information sent by the network side device includes:
  • the power configuration information is received by a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及通信技术领域,尤其涉及一种信号传输方法及装置,用以解决LTE系统中的信号传输方式对系统的频谱利用效率较低及系统吞吐量较低的问题。本发明实施例提供的一种信号传输方法包括:对需要发送的业务数据进行分层调制,得到分层调制信号;根据功率配置信息,确定每层调制信号的单位资源单元上的能量EPRE;根据确定的所述每层调制信号的EPRE,向用户设备UE发送所述分层调制信号。采用本发明实施例提供的一种信号传输方法及装置,可以极大地提高系统的频谱利用效率及系统吞吐量。

Description

一种信号传输方法及装置
技术领域
本发明涉及通信技术领域, 尤其涉及一种信号传输方法及装置。 背景技术
MBMS ( Multimedia Broadcast Multicast Service, 多媒体广播多播业务) 用于为小区中的用户设备( User Equipment , UE )提供多媒体广播服务和多媒 体组播服务。 其中, 多媒体广播服务可以将多媒体视频信息向所有 UE广播, 多媒体组播服务可以将某些收费的多媒体视频信息发送给一组签约 UE收看。
在 LTE ( Long Term Evolution, 长期演进) 系统中, 当采用 MBMS模式 传输物理多播信道( Physical multicast channel, PMCH ) 时, 网络侧设备需要 根据预设的调制方式对需要传输的 PMCH进行调制, 得到调制信号, 并根据 预设的发射功率, 发送该调制信号。 UE在接收到该调制信号后, 需要根据预 设的发射功率等配置信息对接收的调制信号进行解码。
由于小区边缘 UE与基站之间的信道环境质量较差 (信噪比较低), 为了 保证业务传输的鲁棒性,在向小区边缘 UE传输业务数据时, 需要采用低阶的 调制方式, 比如采用 QPSK; 由于小区中心 UE与基站之间的信道环境质量较 高 (信噪比较高), 在向小区中心 UE传输业务数据时, 可以釆用高阶的调制 方式, 以提高信号传输的比特率, 比如釆用 16QAM或 64QAM。 在 LTE系统 中, 当向小区内所有 UE广播 MBMS数据时, 为了保证小区中心 UE和边缘 UE能同时接收该 MBMS数据, 只能选择低阶的调制方式; 这样, 就降低了 系统的总体吞吐量, 导致系统频谱利用效率较低。 发明内容
本发明提供一种信号传输方法及装置, 用以解决 LTE系统中的信号传输 方式对系统的频谱利用效率较低及系统吞吐量较低的问题。 第一方面, 提供一种信号传输装置, 包括:
调制模块, 用于对需要发送的业务数据进行分层调制, 得到分层调制信 号;
确定模块, 用于根据分层调制的功率配置信息, 确定每层调制信号的单 位资源单元上的能量 EPRE;
发送模块, 用于根据所述确定模块确定的所述每层调制信号的 EPRE, 向 用户设备 UE发送所述分层调制信号。
结合第一方面, 在第一种可能的实现方式中, 所述业务数据包括基本层 数据和附加层数据, 其中所述基本层数据的优先级高于所述附加层数据的优 先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
结合第一方面, 或第一方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。 结合第一方面的第二或第三种可能的实现方式, 在第四种可能的实现方 式中, 所述功率配置信息还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
结合第一方面, 或第一方面的第一种可能的实现方式, 在第五种可能的 实现方式中, 所述功率配置信息包括:
基本层调制信号的 EPRE和附加层调制信号的 EPRE分别与 MBSFN RS 的 EPRE的比值。
结合第一方面, 或第一方面的第一至五种可能的实现方式中的任意一种 可能的实现方式, 在第六种可能的实现方式中, 所述发送模块还用于:
配置所述分层调制的功率配置信息, 将所述分层调制的功率配置信息发 送给所述 UE。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述发送模块具体用于:
将所述功率配置信息通过广播控制信道 BCCH发送给所述 UE; 或, 将所述功率配置信息通过多播控制信道 MCCH发送给所述 UE; 或, 将所述功率配置信息通过物理下行控制信道 PDCCH 或增强的物理下行 控信道 EPDCCH发送给所述 UE。
第二方面, 提供一种信号传输装置, 包括:
接收模块, 用于接收网络侧设备发送的分层调制信号; 所述分层调制信 号为将业务数据进行分层调制后得到的信号;
确定模块, 用于根据功率配置信息, 确定对所述接收模块接收的分层调 制信号进行解码所需的每层调制信号的单位资源单元上的能量 EPRE。
结合第二方面, 在第一种可能的实现方式中, 所述业务数据包括基本层 数据和附加层数据, 其中所述基本层数据的优先級高于所述附加层数据的优 先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
结合第二方面, 或第二方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。 结合第二方面的第二或第三种可能的实现方式, 在第四种可能的实现方 式中, 所述功率配置信息还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
结合第二方面, 或第二方面的第一种可能的实现方式, 在第五种可能的 实现方式中, 所述功率配置信息包括: 基本层调制信号的 EPRE 和附加层调 制信号的 EPRE分别与 MBSFN RS的 EPRE的比值。
结合第二方面, 或第二方面的第一至五种可能的实现方式中的任意一种 可能的实现方式, 在第六种可能的实现方式中, 所述确定模块具体用于: 根据预设的功率配置信息, 确定所述每层调制信号的 EPRE; 或, 接收所述网络侧设备发送的功率配置信息, 根据接收的所述功率配置信 息, 确定所述每层调制信号的 EPRE。
结合第二方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述接收模块具体用于: 通过广播控制信道 BCCH接收所述功率配置信息; 或, 通过多播控制信道 MCCH接收所述功率配置信息; 或, 通过物理下行控 制信道 PDCCH或增强的物理下行控信道 EPDCCH接收所述功率配置信息。
第三方面, 提供一种信号传输装置, 包括处理器、 存储器和总线, 所述 存储器存储执行指令, 当所述装置运行时, 所述处理器与所述存储器之间通 过总线通信, 所述处理器执行所述执行指令使得所述装置执行如下方法: 对需要发送的业务数据进行分层调制, 得到分层调制信号;
根据分层调制的功率配置信息, 确定每层调制信号的单位资源单元上的 能量 EPRE;
根据确定的所述每层调制信号的 EPRE, 向用户设备 UE发送所述分层调 制信号。
结合第三方面, 在第一种可能的实现方式中, 所述业务数据包括基本层 数据和附加层数据, 其中所述基本层数据的优先级高于所述附加层数据的优 先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
结合第三方面, 或第三方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与多媒体广播单频网絡 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
结合第三方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述功率配置信息包括: 所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。 结合第三方面的第二或第三种可能的实现方式, 在第四种可能的实现方 式中, 所述功率配置信息还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的
EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
结合第三方面, 或第三方面的第一种可能的实现方式, 在第五种可能的 实现方式中, 所述功率配置信息包括:
基本层调制信号的 EPRE和附加层调制信号的 EPRE分别与 MBSFN S 的 EPRE的比值。
结合第三方面, 或第三方面的第一至五种可能的实现方式中的任意一种 可能的实现方式, 在第六种可能的实现方式中, 所述处理器执行的所述方法 还包括:
配置所述分层调制的功率配置信息;
将所述分层调制的功率配置信息发送给所述 UE。
结合第三方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述处理器执行的所述方法中, 所述将分层调制的功率配置信息发送给所述 UE, 包括:
将所述功率配置信息通过广播控制信道 BCCH发送给所述 UE; 或, 将所述功率配置信息通过多播控制信道 MCCH发送给所述 UE; 或, 将所述功率配置信息通过物理下行控制信道 PDCCH 或增强的物理下行 控信道 EPDCCH发送给所述 UE。
第四方面, 提供一种信号传输装置, 包括处理器、 存储器和总线, 所述 存储器存储执行指令, 当所述装置运行时, 所述处理器与所述存储器之间通 过总线通信, 所述处理器执行所述执行指令使得所述装置执行如下方法: 接收网络侧设备发送的分层调制信号; 所述分层调制信号为将业务数据 进行分层调制后得到的信号;
根据功率配置信息, 确定对所述分层调制信号进行解码所需的每层调制 信号的单位资源单元上的能量 EPRE。
结合第四方面, 在第一种可能的实现方式中, 所述业务数据包括基本层 数据和附加层数据, 其中所述基本层数据的优先级高于所述附加层数据的优 先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
结合第四方面, 或第四方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
结合第四方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。 结合第四方面的第二或第三种可能的实现方式, 在第四种可能的实现方 式中, 所述功率配置信息还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
结合第四方面, 或第四方面的第一种可能的实现方式, 在第五种可能的 实现方式中, 所述功率配置信息包括: 基本层调制信号的 EPRE 和附加层调 制信号的 EPRE分别与 MBSFN RS的 EPRE的比值。
结合第四方面, 或第四方面的第一至五种可能的实现方式中的任意一种 可能的实现方式, 在第六种可能的实现方式中, 所述处理器执行的所述方法 中, 根据功率配置信息, 确定对所述分层调制信号进行解码所需的每层调制 信号的 EPRE, 包括:
根据预设的功率配置信息, 确定所述每层调制信号的 EPRE; 或, 接收所述网络侧设备发送的功率配置信息, 根据接收的所述功率配置信 息, 确定所述每层调制信号的 EPRE。
结合第四方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述处理器执行的所述方法中, 接收所述网络侧设备发送的功率配置信息, 包括:
通过广播控制信道 BCCH接收所述功率配置信息; 或,
通过多播控制信道 MCCH接收所述功率配置信息; 或,
通过物理下行控制信道 PDCCH或增强的物理下行控信道 EPDCCH接收 所述功率配置信息。
第五方面, 提供一种信号传输方法, 包括:
对需要发送的业务数据进行分层调制, 得到分层调制信号;
根据分层调制的功率配置信息, 确定每层调制信号的单位资源单元上的 能量 EPRE;
根据确定的所述每层调制信号的 EPRE, 向用户设备 UE发送所述分层调 制信号。
结合第五方面, 在第一种可能的实现方式中, 所述业务数据包括基本层 数据和附加层数据, 其中所述基本层数据的优先级高于所述附加层数据的优 先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
结合第五方面, 或第五方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN S的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
结合第五方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。 结合第五方面的第二或第三种可能的实现方式, 在第四种可能的实现方 式中, 所述功率配置信息还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的
EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
结合第五方面, 或第五方面的第一种可能的实现方式, 在第五种可能的 实现方式中, 所述功率配置信息包括:
基本层调制信号的 EPRE和附加层调制信号的 EPRE分别与 MBSFN RS 的 EPRE的比值。 结合第五方面, 或第五方面的第一至五种可能的实现方式中的任意一种 可能的实现方式, 在第六种可能的实现方式中, 所述方法还包括:
配置所述分层调制的功率配置信息;
将所述分层调制的功率配置信息发送给所述 UE。
结合第五方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述将分层调制的功率配置信息发送给所述 UE, 包括:
将所述功率配置信息通过广播控制信道 BCCH发送给所述 UE; 或, 将所述功率配置信息通过多播控制信道 MCCH发送给所述 UE; 或, 将所述功率配置信息通过物理下行控制信道 PDCCH 或增强的物理下行 控信道 EPDCCH发送给所述 UE。
第六方面, 提供一种信号传输方法, 包括:
接收网络侧设备发送的分层调制信号; 所述分层调制信号为将业务数据 进行分层调制后得到的信号;
根据功率配置信息, 确定对所述分层调制信号进行解码所需的每层调制 信号的单位资源单元上的能量 EPRE。
结合第六方面, 在第一种可能的实现方式中, 所述业务数据包括基本层 数据和附加层数据, 其中所述基本层数据的优先级高于所述附加层数据的优 先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
结合第六方面, 或第六方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。 结合第六方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述功率配置信息包括:
所述分层调制信号的 EPRE与 MBSFN S的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。 结合第六方面的第二或第三种可能的实现方式, 在第四种可能的实现方 式中, 所述功率配置信息还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的
EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
结合第六方面, 或第六方面的第一种可能的实现方式, 在第五种可能的 实现方式中, 所述功率配置信息包括: 基本层调制信号的 EPRE 和附加层调 制信号的 EPRE分别与 MBSFN RS的 EPRE的比值。
结合第六方面, 或第六方面的第一至五种可能的实现方式中的任意一种 可能的实现方式, 在第六种可能的实现方式中, 根据功率配置信息, 确定对 所述分层调制信号进行解码所需的每层调制信号的 EPRE, 包括:
根据预设的功率配置信息, 确定所述每层调制信号的 EPRE; 或, 接收所述网络侧设备发送的功率配置信息, 根据接收的所述功率配置信 息, 确定所述每层调制信号的 EPRE。
结合第六方面的第六种可能的实现方式, 在第七种可能的实现方式中, 接收所述网絡侧设备发送的功率配置信息, 包括:
通过广播控制信道 BCCH接收所述功率配置信息; 或,
通过多播控制信道 MCCH接收所述功率配置信息; 或,
通过物理下行控制信道 PDCCH或增强的物理下行控信道 EPDCCH接收 所述功率配置信息。 附图说明
为了更好地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作简要介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例, 对于本领域的普通技术人员来讲, 在不付出创造性劳动性的 前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一提供的信号传输方法流程图;
图 2为分层调制的星座示意图;
图 3为本发明实施例二提供的信号传输方法流程图;
图 4为本发明实施例三提供的信号传输装置结构示意图;
图 5为本发明实施例四提供的信号传输装置结构示意图;
图 6为本发明实施例五提供的信号传输装置结构示意图;
图 Ί为本发明实施例六提供的信号传输装置结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
在本发明实施例中,网络侧设备可以对需要向 UE发送的业务数据进行分 层调制, 得到分层调制信号; ^^据功率配置信息, 确定每层调制信号的单位 资源单元上的能量 EPRE; 根据确定的每层调制信号的 EPRE, 向 UE发送分 层调制信号。其中,分层调制也可以称为嵌入式调制(Embedded modulation ), 多分辨率调制 ( Multi-resolution modulation )、 非对称调制 ( asymmetrical modulation )以及非均匀调制 (Non-uniform modulation ), 其基本思想是将具 有不同服务质量 (Quality of Service, QoS ) 的数据映射到不同的层上。
釆用这种分层调制方式, 可以为不同 UE提供不同的 MBMS数据。 比如, 在向小区中心 UE和边缘 UE发送 MBMS数据时, 可以采用分层调制中的基 本层调制(比如 QPSK )来调制高优先级数据, 采用分层调制中的附加层调制 (比如 16QAM )来调制低优先级数据。 这样, 不仅信道条件较好的小区中心 UE和信道条件较差的小区边缘 UE都可以从分层调制信号中正确解调出高优 先级数据,信道条件较好的小区中心 UE还可以从分层调制信号中正确解调出 低优先级数据。这里,不同优先级的数据达到相同的目标误块率( BLER, Block error ratio ) 所需要的工作点不同。 高优先级的数据要求受到严格的保护, 具 体地, 要求在较低的信干噪比 ( Signal to Interference plus Noise Ratio, SINR ) 下能够达到所需的目标 BLER (例如 1%的 BLER )。 低优先级的数据所要求受 到的保护程度较低,具体地,要求在较高的 SINR下能够达到所需的目标 BLER (例如 1%的 BLER )。或者, 高优先级数据支持的数据业务所要求的覆盖区域 较大, 例如中央电视台面向全国广播的业务等, 低优先级数据支持的数据业 务所要求的覆盖区域较小, 例如地方电台的业务等。 釆用这种方式, 可以极 大地提高系统的频谱利用效率及系统吞吐量。
本发明实施例不仅可以应用于上述 MBMS业务的传输, 也可以应用于单 播业务的传输。 在传输单播业务时, 可以分别釆用不同层的调制来调制不同 的单播业务数据, 所述不同的单播业务数据包括高优先级的数据和低优先级 的数据, 其中高优先级的数据需要分配 言道条件较差的 UE (比如小区边缘 UE ), 低优先级的单播业务数据需要分配给信道条件较好的 UE (比如小区中 心 UE )。 在将调制后的分层调制信号传输给信道条件不同的 UE后, 每个 UE 可以从该分层调制信号中解调出属于自己的单播业务数据。
下面结合说明书附图对本发明实施例作进一步详细描述。
如图 1所示, 为本发明实施例一提供的信号传输方法流程图, 包括: S101 : 网络侧设备对需要发送的业务数据进行分层调制, 得到分层调制 信号; S102: 网络侧设备根据分层调制的功率配置信息, 确定每层调制信号的 单位资源单元上的能量 ( Energy Per Resource Element, EPRE );
SI 03 : 网络侧设备根据确定的所述每层调制信号的 EPRE, 向用户设备 UE发送所述分层调制信号。
本发明实施例中,网络侧设备具体可以是 LTE系统中的演进基站( evolved Node B, eNB )。 针对分层调制, 网络侧设备传输的所述业务数据包括基本层 数据和附加层数据, 其中所述基本层数据的优先级高于所述附加层数据的优 先级(也即, 所述基本层数据所要求的受保护程度大于所述附加层数据所要 求的受保护程度)。 所述分层调制包括基本层调制和附加层调制, 其中所述基 本层调制为针对所述业务数据中的基本层数据进行的调制, 所述附加层调制 为针对所述业务数据中的附加层数据进行的调制, 也即, 基本层调制信号的 优先级大于附加层调制信号的优先级。
在一种应用场景下, 针对同一种 MBMS业务, 若网络侧设备需要为小区 内不同 UE提供不同质量的业务服务, 则可以采用分层调制的方式。 比如, 网 络侧设备在为小区内 UE提供 MBMS视频业务时, 为了满足小区中心 UE和 边缘 UE同时收看视频的需求, 以及还能够为小区中心 UE或信道条件较好的 UE提供高清视频的需求, 可以确定采用分层调制的方式来调制普通视频数据 和对应高清视频的补充视频数据。 具体地, 可以釆用分层调制中的基本层调 制(比如 QPSK )来调制普通视频数据, 采用分层调制中的附加层调制 (比如 16Q AM ) 来调制补充视频数据。 如图 2所示, 为分层调制的星座示意图, 从 图中可见,将基于 QPSK的基本层星座和基于 16QAM的附加层星座进行组合, 就可以得到基于 64QAM的分层调制星座。 这样, 小区边缘 UE或信道条件较 差的 UE可以从接收的分层调制信号中解调出普通视频数据,通过该普通视频 数据来收看普通视频, 而小区中心 UE或信道条件较好的 UE既可以从接收的 分层调制信号中解调出普通视频数据, 还可以解调出补充视频数据, 通过这 两种视频数据来收看高清视频。
在另一种应用场景下, 网络侧设备在为不同的 UE提供单播业务数据时, 也可以选择采用分层调制的方式; 具体地, 可以分别采用基本层调制和附加 层调制来调制向不同 UE发送的单播业务数据,针对向小区边缘 UE或信道条 件差的 UE发送的单播业务数据, 可以采用基本层调制, 以保证数据传输的鲁 棒性; 针对向小区中心 UE或信道条件好的 UE发送的单播业务数据, 可以采 用附加层调制, 以提高数据传输效率; 这样, 每个 UE不仅可以从接收的分层 调制信号中解调出属于自己的基本层或附加层的单播业务数据, 还可以提高 系统吞吐量及频谱利用效率。
在具体实施过程中, 网络侧设备需要确定分层调制信号的 EPRE, 根据分 层调制信号的 EPRE, 发送该分层调制信号。 网络侧设备可以根据协议中预设 的功率配置信息或者根据自身配置的功率配置信息确定分层调制信号的 EPRE。 功率配置信息的形式具体可以是以下几种:
第一种, 功率配置信息包括分层调制信号的 EPRE 与多媒体广播单频网 络 MBSFN ( Multimedia Broadcast multicast service Single Frequency Network, MBSFN ) 参考信号 (Reference Signal, RS ) 的 EPRE的比值、 或基本层调制 信号的 EPRE与 MBSFN RS的 EPRE的比值、 或附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值;
在这种实施方式下, MBSFN RS的 EPRE为已知的, 根据分层调制信号 的 EPRE与 MBSFN RS的 EPRE的比值, 可以确定分层调制信号的 EPRE, 再结合比例因子 α , 可以确定每层调制信号的 EPRE。 同理, 根据基本层调制 信号的 EPRE与 MBSFN RS的 EPRE的比值, 可以确定基本层调制信号的 EPRE, 再结合比例因子 c , 可以确定附加层调制信号的 EPRE; 根据附加层 调制信号的 EPRE与 MBSFN RS的 EPRE的比值, 可以确定附加层调制信号 的 EPRE, 再结合比例因子 α , 可以确定基本层调制信号的 EPRE。
这里的比例因子 c可以属于上述功率配置信息, 也可以独立于功率配置 信息之外, 比例因子 ot具体可以为以下比值中的任意一种:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
这里, 将上述基本层星座点间距与分层调制星座点间距的比值、 附加层 星座点间距与分层调制星座点间距的比值、 和基本层星座点间距与附加层星 座点间距的比值简称为星座点间距比, 这里的星座点间距是指星座点之间的 最小距离; 将基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、 附加 层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层调制信号的 EPRE的比值筒称为能量比。上述星座点间距比与 能量比之间具有对应关系, 根据星座点间距比可以确定能量比。 比如, 对于 基本层采用 QPSK调制方式, 附加层采用 QPSK调制方式的分层调制, 当比 例因子为基本层星座点间距与分层调制星座点间距的比值时, 基本层调制信 号的 EPRE与附加层调制信号的 EPRE的比值为: (α + l)2 ; 再比如, 对于基本 层采用 QPSK调制方式, 附加层采用 16QAM调制方式的分层调制, 当比例因 子为基本层星座点间距与分层调制星座点间距的比值时, 基本层调制信号的 EPRE与附加层调制信号的 EPRE的比值为: 5χ (α + 1)2 ; 再比如, 对于基本层 采用 16QAM调制方式, 附加层采用 QPSK调制方式的分层调制, 当比例因子 为基本层星座点间距与分层调制星座点间距的比值时, 基本层调制信号的 EPRE与附加层调制信号的 EPRE的比值为: [8χ (" + 1)2 ]/[α2 + (α + 2)2 ]。
在该种方式中, 分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值可 以是 OdB, 也即, 可以配置分层调制信号的 EPRE与 MBSFN S的 EPRE相 等;或者,基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值可以是 OdB, 也即, 可以配置基本层调制信号的 EPRE与 MBSFN RS的 EPRE相等; 或者, 附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值可以是 OdB, 也即, 可以配置附加层调制信号的 EPRE与 MBSFN RS的 EPRE相等。
在上述功率配置信息中, 只包括分层调制信号的 EPRE、 基本层调制信号 的 EPRE、 和附加层调制信号的 EPRE中的一种与 MBSFN RS的 EPRE的比 值, 网络侧设备需要结合比例因子 α得到每层调制信号的 EPRE。 这里, 比例 因子 α是网络侧设备对分层调制信号进行调制所需要的必要参数, 因此, 不 管需不需要结合比例因子 α得到每层调制信号的 EPRE, 网络侧都需要存储比 例因子 α的值。
在上述实施方式下, 所述功率配置信息可以是在协议中预先设定的, 或 者是由网络侧设备配置的; 不管功率配置信息是在协议中预先设定的, 还是 由网络侧设备配置的, 该网络侧设备都需要存储预先设定的或自身配置的该 功率配置信息, 在需要发送分层调制信号时, 根据存储的功率配置信息确定 每层调制信号的 EPRE,基于确定的每层调制信号的 EPRE发送分层调制信号。
采用该实施方式, 功率配置信息中只包括分层调制信号的 EPRE、基本层 调制信号的 EPRE、 和附加层调制信号的 EPRE 中的一种与 MBSFN RS 的 EPRE的比值, 网络侧设备可以结合比例因子 α和该比值得到每层调制信号的 EPRE, 从而可以减少网络侧设备存储的信息量, 节省存储空间。
第二种, 功率配置信息包括基本层调制信号的 EPRE和附加层调制信号 的 EPRE分别与 MBSFN RS的 EPRE的比值。
在这种实施方式下, MBSFN RS的 EPRE为已知的, 根据每层调制信号 的 EPRE与 MBSFN RS的 EPRE的比值, 可以确定每层调制信号的 EPRE。
与上述第一种实施方式类似, 在该第二种实施方式下, 功率配置信息同 样可以是在协议中预先设定的, 或者是由网络侧设备配置的; 不管功率配置 信息是在协议中预先设定的, 还是由网络侧设备配置的, 该网络侧设备都需 要存储预先设定的或自身配置的该功率配置信息, 在需要发送分层调制信号 时, 根据存储的功率配置信息确定每层调制信号的 EPRE, 基于确定的每层调 制信号的 EPRE发送分层调制信号。
釆用这种实施方式, 网络侧设备可以直接根据基本层调制信号的 EPRE 和附加层调制信号的 EPRE分别与 MBSFN RS的 EPRE的比值, 确定出基本 层调制信号的 EPRE和附加层调制信号的 EPRE, 相比实施方式一, 可以减少 确定基本层调制信号的 EPRE和附加层调制信号的 EPRE的复杂度,提高发送 分层调制信号的效率。
在上述两种实施方式中已介绍, 所述功率配置信息可以由网络侧设备配 置。 由于 UE在对接收的分层调制信号进行解码时, 需要根据功率配置信息确 定每层调制信号的 EPRE, 因此, 网络侧设备需要将配置的功率配置信息发送 给 UE; 具体地, 除上述步骤 S201~S203之外, 所述方法还包括:
配置所述分层调制的功率配置信息;
将所述分层调制的功率配置信息发送给所述 UE。
采用这种由网络侧设备配置并发送功率配置信息的方式, 网络侧设备可 以根据实际需要对已配置的功率配置信息进行调整, 增加了功率配置信息的 灵活性。
网络侧设备发送功率配置信息的方式有多种, 比如, 可以通过以下几种 方式发送:
将所述功率配置信息通过广播控制信道 (Broadcast Control Channel , BCCH )发送给所述 UE; 或,
将所述功率配置信息通过多播控制信道 ( Multicast Control channel , MCCH )发送给所述 UE; 或,
将所述功率配置信息通过物理下行控制信道(Physical Downlink Control Channel, PDCCH ) 或增强的物理下行控信道 ( Enhanced Physical Downlink Control Channel, EPDCCH )发送给所述 UE。
这里, 若将功率配置信息承载在系统信息块( System Information Block, SIB ) 中通过 BCCH 发送, LTE 基站覆盖下的多个多媒体广播单频网络 ( Multimedia Broadcast multicast service Single Frequency Network, MBSFN ) 区域可以共享一个功率配置信息, 节省了系统信令开销。 若将功率配置信息 通过 MCCH传输, 由于每个 MBSFN区域都对应一个 MCCH, 系统信令开销 较大,这种方式适用于不同 MBSFN区域的功率控制信息不同的情况。若将功 率配置信息通过 PDCCH或 EPDCCH发送, 系统信令开销也较大, 这种方式 适用于为不同小区发送不同的功率控制信息的情况。
与上述实施例中介绍的网络侧的信号传输方法对应, UE接收网络侧设备 发送的分层调制信号后, 也需要根据功率配置信息确定对接收的分层调制信 号进行解码所需的每层调制信号的 EPRE。 下面进行具体介绍。
如图 3所示, 为本发明实施例二提供的信号传输方法流程图, 包括:
S301 : UE接收网络侧设备发送的分层调制信号; 所述分层调制信号为将 业务数据进行分层调制后得到的信号;
S302: UE根据功率配置信息, 确定对所述分层调制信号进行解码所需的 每层调制信号的单位资源单元上的能量 EPRE。
可选地, 所述业务数据包括基本层数据和附加层数据, 其中所述基本层 数据的优先级高于所述附加层数据的优先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
在具体实施过程中, UE需要确定分层调制信号的 EPRE, 根据分层调制 信号的 EPRE, 以及传输块大小 ( Transport Block Size, TBS ) 索引值、 编码 速率等对接收的分层调制信号进行解码。本实施例主要介绍 UE确定分层调制 信号的 EPRE的过程。 UE可以根据协议中预设的功率配置信息或者根据网络 侧设备发送的功率配置信息确定分层调制信号的 EPRE。功率配置信息的形式 具体可以是以下几种:
第一种,功率配置信息包括分层调制信号的 EPRE与 MBSFN RS的 EPRE 的比值、 或基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值、 或附加 层调制信号的 EPRE与 MBSFN RS的 EPRE的比值;
在这种实施方式下, MBSFN RS的 EPRE为已知的, 根据分层调制信号 的 EPRE与 MBSFN RS的 EPRE的比值, 可以确定分层调制信号的 EPRE, 再结合比例因子 α , 可以确定每层调制信号的 EPRE。 同理, 根据基本层调制 信号的 EPRE与 MBSFN RS的 EPRE的比值, 可以确定基本层调制信号的 EPRE, 再结合比例因子 c , 可以确定附加层调制信号的 EPRE; 根据附加层 调制信号的 EPRE与 MBSFN S的 EPRE的比值, 可以确定附加层调制信号 的 EPRE, 再结合比例因子 α , 可以确定基本层调制信号的 EPRE。
这里的比例因子 c可以属于上述功率配置信息, 也可以独立于功率配置 信息之外, 比例因子 α具体可以为以下比值中的任意一种:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
这里, 将上述基本层星座点间距与分层调制星座点间距的比值、 附加层 星座点间距与分层调制星座点间距的比值、 和基本层星座点间距与附加层星 座点间距的比值简称为星座点间距比, 这里的星座点间距是指星座点之间的 最小距离; 将基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、 附加 层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层调制信号的 EPRE的比值简称为能量比。上述星座点间距比与 能量比之间具有对应关系, 根据星座点间距比可以确定能量比。 比如, 对于 基本层釆用 QPSK调制方式, 附加层釆用 QPSK调制方式的分层调制, 当比 例因子为基本层星座点间距与分层调制星座点间距的比值时, 基本层调制信 号的 EPRE与附加层调制信号的 EPRE的比值为: (α + l)2 ; 再比如, 对于基本 层采用 QPSK调制方式, 附加层采用 16QAM调制方式的分层调制, 当比例因 子为基本层星座点间距与分层调制星座点间距的比值时, 基本层调制信号的 EPRE与附加层调制信号的 EPRE的比值为: 5χ (α + 1)2 ; 再比如, 对于基本层 采用 16QAM调制方式, 附加层采用 QPSK调制方式的分层调制, 当比例因子 为基本层星座点间距与分层调制星座点间距的比值时, 基本层调制信号的 EPRE与附加层调制信号的 EPRE的比值为: [8χ (β + 1)2 ]/[α2 + (α + 2)2 ]。 在该种实施方式中, 分层调制信号的 EPRE与 MBSFN RS的 EPRE的比 值可以是 OdB,也即,可以配置分层调制信号的 EPRE与 MBSFN RS的 EPRE 相等; 或者, 基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值可以是 OdB , 也即, 可以配置基本层调制信号的 EPRE与 MBSFN RS的 EPRE相等; 或者, 附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值可以是 OdB, 也即, 可以配置附加层调制信号的 EPRE与 MBSFN RS的 EPRE相等。
在上述功率配置信息中, 只包括分层调制信号的 EPRE、 基本层调制信号 的 EPRE、 和附加层调制信号的 EPRE中的一种与 MBSFN RS的 EPRE的比 值, UE需要结合比例因子 α得到每层调制信号的 EPRE。 这里, 比例因子 α 是 UE对分层调制信号进行解调所需要的必要参数, 因此, 不管需不需要结合 比例因子 α得到每层调制信号的 EPRE, UE都需要存储比例因子 c的值。
在上述实施方式下, 所述功率配置信息可以是在协议中预先设定的, 或 者是由网络侧设备发送的; 不管功率配置信息是在协议中预先设定的, 还是 由网络侧设备发送的,该 UE都需要存储预先设定的或网络侧设备发送的功率 配置信息, 在需要对接收的分层调制信号进行解调时, 根据存储的功率配置 信息确定每层调制信号的 EPRE。
采用该实施方式, 功率配置信息中只包括分层调制信号的 EPRE、基本层 调制信号的 EPRE、 和附加层调制信号的 EPRE 中的一种与 MBSFN RS 的 EPRE的比值, UE可以结合比例因子 α和该比值得到每层调制信号的 EPRE , 从而可以减少 UE存储的信息量, 节省存储空间。
第二种, 功率配置信息包括基本层调制信号的 EPRE和附加层调制信号 的 EPRE分别与 MBSFN RS的 EPRE的比值。
在这种实施方式下, MBSFN RS的 EPRE为已知的, 根据每层调制信号 的 EPRE与 MBSFN RS的 EPRE的比值, 可以确定每层调制信号的 EPRE。
与上述第一种实施方式类似, 在该第二种实施方式下, 功率配置信息同 样可以是在协议中预先设定的, 或者是由网络侧设备发送的; 不管功率配置 信息是在协议中预先设定的,还是由网络侧设备发送的, 该 UE都需要存储预 先设定的或网络侧设备发送的功率配置信息, 在需要对接收的分层调制信号 进行解调时, 根据存储的功率配置信息确定每层调制信号的 EPRE。
采用这种实施方式, UE可以直接根据基本层调制信号的 EPRE和附加层 调制信号的 EPRE分别与 MBSFN RS的 EPRE的比值, 确定出基本层调制信 号的 EPRE和附加层调制信号的 EPRE, 相比实施方式一, 可以减少确定基本 层调制信号的 EPRE和附加层调制信号的 EPRE的复杂度,提高对分层调制信 号进行解调的效率。
在上述两种实施方式中已介绍, 所述功率配置信息可以由网络侧设备发 送给 UE。与实施例一介绍的网络侧设备向 UE发送功率配置信息的方式对应, UE接收网络侧设备发送的功率配置信息可以有以下几种方式:
通过广播控制信道 BCCH接收所述功率配置信息; 或,
通过多播控制信道 MCCH接收所述功率配置信息; 或,
通过物理下行控制信道 PDCCH或增强的物理下行控信道 EPDCCH接收 所述功率配置信息。
基于同一发明构思, 本发明实施例中还提供了与信号传输方法对应的信 号传输装置, 由于本发明实施例中信号传输装置解决问题的原理与本发明实 施例信号传输方法相似, 因此本发明实施例装置的实施可以参见方法的实施, 重复之处不再赘述。
如图 4所示, 为本发明实施例三提供的信号传输装置结构示意图, 包括: 调制模块 41 , 用于对需要发送的业务数据进行分层调制, 得到分层调制 信号;
确定模块 42 , 用于根据分层调制的功率配置信息, 确定每层调制信号的 单位资源单元上的能量 EPRE;
发送模块 43 , 用于根据所述确定模块 42 确定的所述每层调制信号的 EPRE, 向用户设备 UE发送所述分层调制信号。
可选地, 所述业务数据包括基本层数据和附加层数据, 其中所述基本层 数据的优先级高于所述附加层数据的优先级; 所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
可选地, 所述功率配置信息包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
可选地, 所述功率配置信息包括:
所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。 可选地, 所述功率配置信息还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
可选地, 所述功率配置信息包括:
基本层调制信号的 EPRE和附加层调制信号的 EPRE分别与 MBSFN RS 的 EPRE的比值。
可选地, 所述发送模块 43还用于:
配置所述分层调制的功率配置信息, 将所述分层调制的功率配置信息发 送给所述 UE。
可选地, 所述发送模块 43具体用于:
将所述功率配置信息通过广播控制信道 BCCH发送给所述 UE; 或, 将所述功率配置信息通过多播控制信道 MCCH发送给所述 UE; 或, 将所述功率配置信息通过物理下行控制信道 PDCCH 或增强的物理下行 控信道 EPDCCH发送给所述 UE。
如图 5所示, 为本发明实施例四提供的信号传输装置结构示意图, 包括: 接收模块 51 , 用于接收网络侧设备发送的分层调制信号; 所述分层调制 信号为将业务数据进行分层调制后得到的信号;
确定模块 52, 用于根据功率配置信息, 确定对所述接收模块 51接收的分 层调制信号进行解码所需的每层调制信号的单位资源单元上的能量 EPRE。
可选地, 所述业务数据包括基本层数据和附加层数据, 其中所述基本层 数据的优先级高于所述附加层数据的优先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
可选地, 所述功率配置信息包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
可选地, 所述功率配置信息包括:
所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。 可选地, 所述功率配置信息还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。 可选地, 所述功率配置信息包括: 基本层调制信号的 EPRE 和附加层调 制信号的 EPRE分别与 MBSFN RS的 EPRE的比值。
可选地, 所述确定模块 52具体用于:
根据预设的功率配置信息, 确定所述每层调制信号的 EPRE; 或, 接收所述网络侧设备发送的功率配置信息, 根据接收的所述功率配置信 息, 确定所述每层调制信号的 EPRE。
可选地, 所述接收模块 51具体用于: 通过广播控制信道 BCCH接收所述 功率配置信息; 或, 通过多播控制信道 MCCH接收所述功率配置信息; 或, 通过物理下行控制信道 PDCCH或增强的物理下行控信道 EPDCCH接收所述 功率配置信息。
如图 6所示, 为本发明实施例五提供的信号传输装置结构示意图, 包括: 处理器 61、 存储器 62和总线 63 , 所述存储器 62存储执行指令, 当所述装置 运行时, 所述处理器 61与所述存储器 62之间通过总线通信, 所述处理器 61 执行所述执行指令使得所述装置执行如下方法:
对需要发送的业务数据进行分层调制, 得到分层调制信号;
根据分层调制的功率配置信息, 确定每层调制信号的单位资源单元上的 能量 EPRE;
根据确定的所述每层调制信号的 EPRE, 向用户设备 UE发送所述分层调 制信号。
可选地, 所述业务数据包括基本层数据和附加层数据, 其中所述基本层 数据的优先级高于所述附加层数据的优先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
可选地, 所述功率配置信息包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或, 基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
可选地, 所述功率配置信息包括:
所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。 可选地, 所述功率配置信息还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
可选地, 所述功率配置信息包括:
基本层调制信号的 EPRE和附加层调制信号的 EPRE分别与 MBSFN RS 的 EPRE的比值。
可选地, 所述处理器 61执行的所述方法还包括:
配置所述分层调制的功率配置信息;
将所述分层调制的功率配置信息发送给所述 UE。
可选地, 所述处理器 61执行的所述方法中, 所述将分层调制的功率配置 信息发送给所述 UE, 包括:
将所述功率配置信息通过广播控制信道 BCCH发送给所述 UE; 或, 将所述功率配置信息通过多播控制信道 MCCH发送给所述 UE; 或, 将所述功率配置信息通过物理下行控制信道 PDCCH 或增强的物理下行 控信道 EPDCCH发送给所述 UE。
如图 Ί所示,为本发明实施例六提供的信号传输装置结构示意图, 包括:, 包括处理器 71、 存储器 72和总线 73 , 所述存储器 72存储执行指令, 当所述 装置运行时, 所述处理器 71 与所述存储器 72之间通过总线通信, 所述处理 器 71执行所述执行指令使得所述装置执行如下方法:
接收网络侧设备发送的分层调制信号; 所述分层调制信号为将业务数据 进行分层调制后得到的信号;
根据功率配置信息, 确定对所述分层调制信号进行解码所需的每层调制 信号的单位资源单元上的能量 EPRE。
可选地, 所述业务数据包括基本层数据和附加层数据, 其中所述基本层 数据的优先级高于所述附加层数据的优先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
可选地, 所述功率配置信息包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
可选地, 所述功率配置信息包括:
所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。 可选地, 所述功率配置信息还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
可选地, 所述功率配置信息包括: 基本层调制信号的 EPRE 和附加层调 制信号的 EPRE分别与 MBSFN RS的 EPRE的比值。 可选地, 所述处理器 71执行的所述方法中, 根据功率配置信息, 确定对 所述分层调制信号进行解码所需的每层调制信号的 EPRE, 包括:
根据预设的功率配置信息, 确定所述每层调制信号的 EPRE; 或, 接收所述网络侧设备发送的功率配置信息, 根据接收的所述功率配置信 息, 确定所述每层调制信号的 EPRE。
可选地, 所述处理器 71执行的所述方法中, 接收所述网络侧设备发送的 功率配置信息, 包括:
通过广播控制信道 BCCH接收所述功率配置信息; 或,
通过多播控制信道 MCCH接收所述功率配置信息; 或,
通过物理下行控制信道 PDCCH或增强的物理下行控信道 EPDCCH接收 所述功率配置信息。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上 述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 上述描述的系统, 装置和单元的具体 工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到 另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间 接耦合或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。 另外, 在本申请各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单 元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本 申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个 存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等 )或处理器( processor )执行本申请各个实施例所述 方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存 储器(ROM, Read-Only Memory ). 随机存取存储器(RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 以上实施例仅用以对本申请的技术方案进行了详细介绍, 但 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想, 不应理解 为对本发明的限制。 本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种信号传输装置, 其特征在于, 包括:
调制模块, 用于对需要发送的业务数据进行分层调制, 得到分层调制信 号;
确定模块, 用于根据分层调制的功率配置信息, 确定每层调制信号的单 位资源单元上的能量 EPRE;
发送模块, 用于根据所述确定模块确定的所述每层调制信号的 EPRE, 向 用户设备 UE发送所述分层调制信号。
2、 如权利要求 1所述的装置, 其特征在于, 所述业务数据包括基本层数 据和附加层数据, 其中所述基本层数据的优先级高于所述附加层数据的优先 级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
3、如权利要求 1或 2所述的装置, 其特征在于, 所述功率配置信息包括: 所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
4、 如权利要求 3所述的装置, 其特征在于, 所述功率配置信息包括: 所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。
5、 如权利要求 3或 4所述的装置, 其特征在于, 所述功率配置信息还包 括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
6、如权利要求 1或 2所述的装置, 其特征在于, 所述功率配置信息包括: 基本层调制信号的 EPRE和附加层调制信号的 EPRE分别与 MBSFN S 的 EPRE的比值。
7、如权利要求 1~6任一所述的装置, 其特征在于, 所述发送模块还用于: 配置所述分层调制的功率配置信息, 将所述分层调制的功率配置信息发 送给所述 UE。
8、 如权利要求 7所述的装置, 其特征在于, 所述发送模块具体用于: 将所述功率配置信息通过广播控制信道 BCCH发送给所述 UE; 或, 将所述功率配置信息通过多播控制信道 MCCH发送给所述 UE; 或, 将所述功率配置信息通过物理下行控制信道 PDCCH 或增强的物理下行 控信道 EPDCCH发送给所述 UE。
9、 一种信号传输装置, 其特征在于, 包括:
接收模块, 用于接收网络侧设备发送的分层调制信号; 所述分层调制信 号为将业务数据进行分层调制后得到的信号;
确定模块, 用于根据功率配置信息, 确定对所述接收模块接收的分层调 制信号进行解码所需的每层调制信号的单位资源单元上的能量 EPRE。
10、 如权利要求 9 所述的装置, 其特征在于, 所述业务数据包括基本层 数据和附加层数据, 其中所述基本层数据的优先级高于所述附加层数据的优 先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
11、 如权利要求 9或 10所述的装置, 其特征在于, 所述功率配置信息包 括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
12、 如权利要求 11所述的装置, 其特征在于, 所述功率配置信息包括: 所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。
13、 如权利要求 11或 12所述的装置, 其特征在于, 所述功率配置信息 还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
14、 如权利要求 9或 10所述的装置, 其特征在于, 所述功率配置信息包 括: 基本层调制信号的 EPRE和附加层调制信号的 EPRE分别与 MBSFN RS 的 EPRE的比值。
15、 如权利要求 9〜14任一所述的装置, 其特征在于, 所述确定模块具体 用于:
根据预设的功率配置信息, 确定所述每层调制信号的 EPRE; 或, 接收所述网络侧设备发送的功率配置信息, 根据接收的所述功率配置信 息, 确定所述每层调制信号的 EPRE。
16、 如权利要求 15所述的装置, 其特征在于, 所述接收模块具体用于: 通过广播控制信道 BCCH接收所述功率配置信息; 或, 通过多播控制信道 MCCH接收所述功率配置信息; 或, 通过物理下行控制信道 PDCCH或增强 的物理下行控信道 EPDCCH接收所述功率配置信息。
17、 一种信号传输方法, 其特征在于, 包括:
对需要发送的业务数据进行分层调制, 得到分层调制信号;
根据分层调制的功率配置信息, 确定每层调制信号的单位资源单元上的 能量 EPRE;
根据确定的所述每层调制信号的 EPRE, 向用户设备 UE发送所述分层调 制信号。
18、 如权利要求 17所述的方法, 其特征在于, 所述业务数据包括基本层 数据和附加层数据, 其中所述基本层数据的优先级高于所述附加层数据的优 先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
19、 如权利要求 17或 18所述的方法, 其特征在于, 所述功率配置信息 包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
20、 如权利要求 19所述的方法, 其特征在于, 所述功率配置信息包括: 所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。
21、 如权利要求 19或 20所述的方法, 其特征在于, 所述功率配置信息 还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
22、 如权利要求 17或 18所述的方法, 其特征在于, 所述功率配置信息 包括:
基本层调制信号的 EPRE和附加层调制信号的 EPRE分别与 MBSFN S 的 EPRE的比值。
23、 如权利要求 17〜22任一所述的方法, 其特征在于, 所述方法还包括: 配置所述分层调制的功率配置信息;
将所述分层调制的功率配置信息发送给所述 UE。
24、 如权利要求 23所述的方法, 其特征在于, 所述将分层调制的功率配 置信息发送给所述 UE, 包括:
将所述功率配置信息通过广播控制信道 BCCH发送给所述 UE; 或, 将所述功率配置信息通过多播控制信道 MCCH发送给所述 UE; 或, 将所述功率配置信息通过物理下行控制信道 PDCCH 或增强的物理下行 控信道 EPDCCH发送给所述 UE。
25、 一种信号传输方法, 其特征在于, 包括:
接收网络侧设备发送的分层调制信号; 所述分层调制信号为将业务数据 进行分层调制后得到的信号;
根据功率配置信息, 确定对所述分层调制信号进行解码所需的每层调制 信号的单位资源单元上的能量 EPRE。
26、 如权利要求 25所述的方法, 其特征在于, 所述业务数据包括基本层 数据和附加层数据, 其中所述基本层数据的优先级高于所述附加层数据的优 先级;
所述分层调制包括基本层调制和附加层调制, 其中所述基本层调制为针 对所述业务数据中的基本层数据进行的调制, 所述附加层调制为针对所述业 务数据中的附加层数据进行的调制。
27、 如权利要求 25或 26所述的方法, 其特征在于 , 所述功率配置信息 包括:
所述分层调制信号的 EPRE与多媒体广播单频网络 MBSFN参考信号 RS 的 EPRE的比值; 或,
基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值; 或,
附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值。
28、 如权利要求 27所述的方法, 其特征在于, 所述功率配置信息包括: 所述分层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB; 或, 所述基本层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB;或, 所述附加层调制信号的 EPRE与 MBSFN RS的 EPRE的比值为 0 dB。
29、 如权利要求 27或 28所述的方法, 其特征在于, 所述功率配置信息 还包括:
基本层星座点间距与分层调制星座点间距的比值、 附加层星座点间距与 分层调制星座点间距的比值、 基本层星座点间距与附加层星座点间距的比值、 基本层调制信号的 EPRE与分层调制信号的 EPRE的比值、附加层调制信号的 EPRE与分层调制信号的 EPRE的比值、 和基本层调制信号的 EPRE与附加层 调制信号的 EPRE的比值六者中的任意一种。
30、 如权利要求 25或 26所述的方法, 其特征在于, 所述功率配置信息 包括:基本层调制信号的 EPRE和附加层调制信号的 EPRE分别与 MBSFN RS 的 EPRE的比值。
31、 如权利要求 25 30任一所述的方法, 其特征在于, 根据功率配置信 息, 确定对所述分层调制信号进行解码所需的每层调制信号的 EPRE, 包括: 根据预设的功率配置信息, 确定所述每层调制信号的 EPRE; 或, 接收所述网络侧设备发送的功率配置信息, 根据接收的所述功率配置信 息, 确定所述每层调制信号的 EPRE。
32、 如权利要求 31所述的方法, 其特征在于, 接收所述网络侧设备发送 的功率配置信息, 包括: 通过广播控制信道 BCCH接收所述功率配置信息; 或, 通过多播控制信道 MCCH接收所述功率配置信息; 或,
通过物理下行控制信道 PDCCH或增强的物理下行控信道 EPDCCH接收 所述功率配置信息。
PCT/CN2014/081575 2014-05-14 2014-07-03 一种信号传输方法及装置 WO2015172427A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016567631A JP2017521890A (ja) 2014-05-14 2014-07-03 信号送信方法および装置
BR112016026486A BR112016026486A2 (pt) 2014-05-14 2014-07-03 Método e dispositivo de transmissão de sinal
EP14891929.3A EP3136672B1 (en) 2014-05-14 2014-07-03 Signal transmission method and device
CN201480078866.2A CN106464646B (zh) 2014-05-14 2014-07-03 一种信号传输方法及装置
US15/349,561 US10182317B2 (en) 2014-05-14 2016-11-11 Signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/077456 WO2015172330A1 (zh) 2014-05-14 2014-05-14 一种信号传输方法及装置
CNPCT/CN2014/077456 2014-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/349,561 Continuation US10182317B2 (en) 2014-05-14 2016-11-11 Signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2015172427A1 true WO2015172427A1 (zh) 2015-11-19

Family

ID=54479153

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/077456 WO2015172330A1 (zh) 2014-05-14 2014-05-14 一种信号传输方法及装置
PCT/CN2014/081575 WO2015172427A1 (zh) 2014-05-14 2014-07-03 一种信号传输方法及装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077456 WO2015172330A1 (zh) 2014-05-14 2014-05-14 一种信号传输方法及装置

Country Status (6)

Country Link
US (3) US10182317B2 (zh)
EP (2) EP3145119B1 (zh)
JP (2) JP6450777B2 (zh)
CN (3) CN111224915B (zh)
BR (1) BR112016026486A2 (zh)
WO (2) WO2015172330A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084581B2 (en) * 2014-07-11 2018-09-25 Qualcomm Incorporated Overlay unicast or MBSFN data transmission on top of MBSFN transmission
US10411856B2 (en) 2014-10-27 2019-09-10 Qualcomm Incorporated Reference signal and transmit power ratio design for non-orthogonal transmissions
US9763060B2 (en) * 2014-11-11 2017-09-12 Alcatel Lucent Streaming unicast services to multiple user equipment
US10375531B2 (en) * 2015-08-28 2019-08-06 Lg Electronics Inc. Method for transmitting/receiving MBMS signal in wireless communication system and device for performing same
US10868657B2 (en) 2016-07-05 2020-12-15 Idac Holdings, Inc. Wireless network configured to provide mixed services
JP6837133B2 (ja) * 2016-09-12 2021-03-03 京セラ株式会社 マシンタイプ通信(mtc)送信のための階層化変調
CN109792308A (zh) * 2016-10-04 2019-05-21 华为技术有限公司 具有灵活传输块尺寸选择的多用户叠加传输
JP7020057B2 (ja) * 2017-10-26 2022-02-16 株式会社デンソー 通信装置及び通信方法
CN110380999B (zh) * 2018-04-12 2020-10-09 华为技术有限公司 概率非均匀调制的数据传输方法及装置
KR102609585B1 (ko) * 2018-05-21 2023-12-04 삼성전자 주식회사 무선 통신 시스템에서 멀티캐스트 유니캐스트 중첩 전송 신호를 송수신하는 방법 및 장치
US10742473B1 (en) * 2019-10-03 2020-08-11 United States Government As Represented By The Secretary Of The Navy Enhanced signal acquisition based on adaptive multiresolution modulation
KR102347165B1 (ko) * 2020-07-03 2022-01-03 한양대학교 산학협력단 계단형 계층 변조 기반 성상도 설계 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465829A (zh) * 2007-12-21 2009-06-24 华为技术有限公司 一种分层调制数据传输、接收方法及设备
CN101707584A (zh) * 2006-11-08 2010-05-12 北京新岸线移动多媒体技术有限公司 在t-mmb系统中应用分层调制技术的方法
CN102036184A (zh) * 2011-01-14 2011-04-27 北京邮电大学 一种用于无线广播组播分层调制的功率分配方法
CN102104833A (zh) * 2009-12-18 2011-06-22 上海贝尔股份有限公司 基于分层调制方案的mbms业务传输方法和系统
CN102957498A (zh) * 2011-08-17 2013-03-06 北京泰美世纪科技有限公司 分层业务流的发送和接收方法及装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0323199D0 (en) * 2003-10-03 2003-11-05 Fujitsu Ltd Soft handover
CN101296410B (zh) 2007-04-29 2011-02-23 大唐移动通信设备有限公司 专用载波配置方法与装置及多媒体广播组播业务传输方法
CN101425915B (zh) * 2007-10-30 2011-04-20 大唐移动通信设备有限公司 一种分层传输数据的传输方法及系统、设备
US20090149164A1 (en) * 2007-12-10 2009-06-11 Research In Motion Limited System and method for single cell point-to-multipoint multiplexing and scheduling
JP2010219949A (ja) * 2009-03-17 2010-09-30 Kddi Corp 適応変調システム、無線通信システム、移動局、基地局及び適応変調制御方法
RU2553677C2 (ru) * 2009-09-02 2015-06-20 Эппл Инк Способ передачи трафика услуги групповой и широковещательной передачи информации (mbs) в системе беспроводной связи
CN102598568B (zh) 2009-10-29 2015-03-18 联想创新有限公司(香港) 用于下行链路mimo的下行链路控制信令传输的方法和用户设备
JP2011019273A (ja) * 2010-09-03 2011-01-27 Kyocera Corp 基地局および無線通信方法
KR101948801B1 (ko) * 2011-04-11 2019-02-18 삼성전자주식회사 Mbms 지원 사용자 장치의 데이터 수신 방법 및 장치
US8867388B2 (en) * 2011-11-19 2014-10-21 Motorola Solutions, Inc. Distributing content to a plurality of mobile stations using a downlink point-to-multipoint (PTM) bearers and downlink point-to-point (PTP) bearers
CN103178870B (zh) * 2011-12-21 2018-04-24 北京普源精电科技有限公司 一种跳频信号发生器及跳频方法
JP2015510326A (ja) 2012-01-31 2015-04-02 富士通株式会社 下りパワー分配のシグナリング指示方法、基地局及びユーザ装置
JP2015505197A (ja) * 2012-03-23 2015-02-16 エヌイーシー(チャイナ)カンパニー, リミテッドNEC(China)Co.,Ltd. ユーザ機器をスケジューリングするための方法及び装置
WO2014058162A2 (ko) * 2012-09-17 2014-04-17 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 정보를 수신하는 방법 및 이를 위한 장치
CN103001756A (zh) * 2012-12-12 2013-03-27 中国国际广播电台 一种数字音频广播中分层传输业务数据的方法
TWI505730B (zh) * 2013-01-17 2015-10-21 Ind Tech Res Inst 經由點對多點傳輸服務的資料傳輸方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707584A (zh) * 2006-11-08 2010-05-12 北京新岸线移动多媒体技术有限公司 在t-mmb系统中应用分层调制技术的方法
CN101465829A (zh) * 2007-12-21 2009-06-24 华为技术有限公司 一种分层调制数据传输、接收方法及设备
CN102104833A (zh) * 2009-12-18 2011-06-22 上海贝尔股份有限公司 基于分层调制方案的mbms业务传输方法和系统
CN102036184A (zh) * 2011-01-14 2011-04-27 北京邮电大学 一种用于无线广播组播分层调制的功率分配方法
CN102957498A (zh) * 2011-08-17 2013-03-06 北京泰美世纪科技有限公司 分层业务流的发送和接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3136672A4 *

Also Published As

Publication number Publication date
CN106464509A (zh) 2017-02-22
US20170064519A1 (en) 2017-03-02
CN106464509B (zh) 2020-02-14
US20170064673A1 (en) 2017-03-02
CN111224915B (zh) 2021-12-03
EP3145119B1 (en) 2021-04-07
JP6450777B2 (ja) 2019-01-09
US10182317B2 (en) 2019-01-15
US20190124478A1 (en) 2019-04-25
WO2015172330A1 (zh) 2015-11-19
US10200827B2 (en) 2019-02-05
CN106464646B (zh) 2020-02-14
JP2017521890A (ja) 2017-08-03
US10659927B2 (en) 2020-05-19
EP3136672A1 (en) 2017-03-01
EP3136672A4 (en) 2017-04-19
EP3145119A4 (en) 2017-05-10
CN106464646A (zh) 2017-02-22
JP2017516409A (ja) 2017-06-15
CN111224915A (zh) 2020-06-02
EP3136672B1 (en) 2018-09-19
EP3145119A1 (en) 2017-03-22
BR112016026486A2 (pt) 2017-08-15

Similar Documents

Publication Publication Date Title
WO2015172427A1 (zh) 一种信号传输方法及装置
US10952096B2 (en) Base station and user terminal
EP3620026B1 (en) Relaying in a device-to-device communication system
US10893557B2 (en) Relaying in a device-to-device communication system
US11219054B2 (en) Relaying in a device-to-device communication system
JP6878295B2 (ja) リレー発見および関連付けメッセージ
TWI692268B (zh) 用於車輛到車輛通訊的基於位置和先聽後排程的資源配置
JP6728380B2 (ja) 改善されたピークデータレートを有するhd−fdd通信
TW201831001A (zh) 高效下行鏈路控制資訊傳輸方法及其使用者設備
KR20190103435A (ko) 사이드링크 송신 제어를 위한 방법 및 장치
JP2018528652A (ja) 無認可キャリアのクリアチャネルアセスメントが失敗するときの、アップリンク制御チャネル情報の送信
WO2020113996A1 (zh) 配置授权的确认方法、终端和网络侧设备
TW201737738A (zh) 經由pdcch來指示pdsch和pusch的開始符號和停止符號
US11438188B2 (en) Multicast packets for a wireless local area network
US20160128047A1 (en) Sub-frame configuration instruction method and system in D2D communication
US20230044542A1 (en) New Radio (NR) Multicast Broadcast Service (MBS)
CN114982256A (zh) 用于无线系统中多媒体广播多播服务(mbms)的资源分配的方法、装置和系统
JP6670834B2 (ja) 基地局及び無線端末
JP7295100B2 (ja) ネットワーク構成方法、装置、ネットワーク要素及びシステム
JP7425259B2 (ja) 通信制御方法及び基地局
WO2018090193A1 (zh) 支持eMBMS的方法、MCE、基站和终端
CN114143723B (zh) Nr小区中集群寻呼消息的发送与接收方法及设备
CN111970707B (zh) 一种pdt扇区合并方法和双模基站
WO2023010485A1 (en) New radio (nr) multicast broadcast service (mbs)
WO2023115411A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016567631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016026486

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014891929

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014891929

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016026486

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161111