WO2023115411A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023115411A1
WO2023115411A1 PCT/CN2021/140598 CN2021140598W WO2023115411A1 WO 2023115411 A1 WO2023115411 A1 WO 2023115411A1 CN 2021140598 W CN2021140598 W CN 2021140598W WO 2023115411 A1 WO2023115411 A1 WO 2023115411A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
pdsch
mbs
multicast
broadcast
Prior art date
Application number
PCT/CN2021/140598
Other languages
English (en)
French (fr)
Inventor
马腾
张世昌
林晖闵
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/140598 priority Critical patent/WO2023115411A1/zh
Publication of WO2023115411A1 publication Critical patent/WO2023115411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • the ways in which the network equipment schedules and transmits include Broadcast, Multicast and Unicast.
  • sending the MBS service by broadcasting is applicable to the terminal equipment in the radio resource control (Radio Resource Control, RRC) idle (IDLE) state, RRC non-connected (INACTIVE) state and RRC connected (ACTIVE) state.
  • RRC Radio Resource Control
  • Send MBS service to a group of terminal devices by multicast which is suitable for the terminal devices in the group are in the RRC CONNECTED state, and the network device transmits to a group of terminal devices through one-to-many (Point to Multi-point, PTM) transmission mode Send the same MBS traffic.
  • PTM Point to Multi-point
  • the terminal equipment in the RRC CONNECTED state can receive the MBS service transmitted in the broadcast mode while receiving the MBS service transmitted in the multicast mode, so the terminal equipment in the RRC CONNECTED state cannot determine the received MBS service dispatched by DCI.
  • the transmission mode makes it impossible for the terminal device to accurately decode the DCI.
  • Embodiments of the present application provide a communication method and device to solve the technical problem in the prior art that a terminal device in a connected state cannot determine the propagation mode of the received DCI-scheduled MBS.
  • the first aspect of the present application provides a communication method, the method comprising:
  • the terminal device receives downlink control information DCI, and the DCI is used to schedule the network physical downlink shared channel PDSCH of the multicast broadcast service MBS;
  • the terminal device determines the propagation mode of the MBS according to the indication information and/or configuration information of the DCI.
  • the transmission mode of the MBS includes broadcast and multicast.
  • the indication information of the DCI includes an information field in the DCI, and the information field in the DCI is used to indicate that the DCI is used for scheduling a broadcast PDSCH or a multicast PDSCH.
  • the two value states of the one bit are respectively used to indicate that the DCI is used to schedule the broadcasted PDSCH or the The multicast PDSCH is described.
  • one bit in the information field is located in the first bit of all information fields in the DCI.
  • the two value states of the target bits in the multiple bits are respectively used to indicate that the DCI is used for scheduling The broadcast PDSCH or the multicast PDSCH, or the preset value states of the multiple bits are respectively used to indicate that the DCI is used to schedule the broadcast PDSCH or the multicast PDSCH.
  • the preset value state is a value state multiplexed in the information field or a value state reserved in the information field.
  • the information field is a dedicated information field of the propagation mode of the MBS or an existing information field in the DCI.
  • the configuration information of the DCI includes a radio network temporary identifier RNTI corresponding to the cyclic redundancy check CRC of the physical downlink control channel PDCCH, and different RNTIs are respectively used to indicate that the DCI is used for scheduling The broadcast PDSCH or the multicast PDSCH.
  • the propagation mode of the MBS indicated by the RNTI is classified according to the type of the RNTI.
  • the configuration information of the DCI further includes control resource sets used for scheduling PDCCH, and different control resource sets are respectively used for the broadcast PDSCH or the multiple broadcast PDSCH.
  • the configuration information of the DCI further includes a search space corresponding to a scheduled PDCCH, and different search spaces are respectively used for the broadcast PDSCH or the multicast PDSCH associated with the DCI scheduling .
  • the propagation mode of the MBS associated with the search space is divided according to the type of the search space.
  • the type of the search space includes a public search space, a dedicated search space, or a service-specific search space.
  • the propagation mode of the MBS associated with the search space is divided according to preset frequency domain positions.
  • the method further includes:
  • the terminal device determines the DCI format corresponding to the propagation mode of the MBS.
  • the method further includes:
  • the terminal device decodes the DCI according to the DCI format corresponding to the propagation mode of the MBS.
  • a second aspect of the present application provides a communication method, the method comprising:
  • the network device sends downlink control information DCI to the terminal device, the DCI is used to schedule the network physical downlink shared channel PDSCH of the multicast broadcast service MBS, and the indication information and/or configuration information of the DCI are used to determine the propagation mode of the MBS .
  • the transmission mode of the MBS includes broadcast and multicast.
  • the indication information of the DCI includes an information field in the DCI, and the information field in the DCI is used to indicate that the DCI is used for scheduling a broadcast PDSCH or a multicast PDSCH.
  • the two value states of the one bit are respectively used to indicate that the DCI is used to schedule the broadcasted PDSCH or the The multicast PDSCH is described.
  • one bit in the information field is located in the first bit of all information fields in the DCI.
  • the two value states of the target bits in the multiple bits are respectively used to indicate that the DCI is used for scheduling The broadcast PDSCH or the multicast PDSCH, or the preset value states of the multiple bits are respectively used to indicate that the DCI is used to schedule the broadcast PDSCH or the multicast PDSCH.
  • the preset value state is a value state multiplexed in the information field or a value state reserved in the information field.
  • the information field is a dedicated information field of the propagation mode of the MBS or an existing information field in the DCI.
  • the configuration information of the DCI includes a radio network temporary identifier RNTI corresponding to the cyclic redundancy check CRC of the physical downlink control channel PDCCH, and different RNTIs are respectively used to indicate that the DCI is used for scheduling The broadcast PDSCH or the multicast PDSCH.
  • the propagation mode of the MBS indicated by the RNTI is classified according to the type of the RNTI.
  • the configuration information of the DCI further includes control resource sets used for scheduling PDCCH, and different control resource sets are respectively used for the broadcast PDSCH or the multiple broadcast PDSCH.
  • the configuration information of the DCI further includes a search space corresponding to a scheduled PDCCH, and different search spaces are respectively used for the broadcast PDSCH or the multicast PDSCH associated with the DCI scheduling .
  • the propagation mode of the MBS associated with the search space is divided according to the type of the search space.
  • the type of the search space includes a public search space, a dedicated search space, or a service-specific search space.
  • the propagation mode of the MBS associated with the search space is divided according to preset frequency domain positions.
  • a third aspect of the present application provides a communication device, the device comprising:
  • the receiving module is used to receive downlink control information DCI, and the DCI is used to schedule the network physical downlink shared channel PDSCH of the multicast broadcast service MBS;
  • a processing module configured to determine the propagation mode of the MBS according to the indication information and/or configuration information of the DCI.
  • the transmission mode of the MBS includes broadcast and multicast.
  • the indication information of the DCI includes an information field in the DCI, and the information field in the DCI is used to indicate that the DCI is used for scheduling a broadcast PDSCH or a multicast PDSCH.
  • the two value states of the one bit are respectively used to indicate that the DCI is used to schedule the broadcasted PDSCH or the The multicast PDSCH is described.
  • one bit in the information field is located in the first bit of all information fields in the DCI.
  • the two value states of the target bits in the multiple bits are respectively used to indicate that the DCI is used for scheduling The broadcast PDSCH or the multicast PDSCH, or the preset value states of the multiple bits are respectively used to indicate that the DCI is used to schedule the broadcast PDSCH or the multicast PDSCH.
  • the preset value state is a value state multiplexed in the information field or a value state reserved in the information field.
  • the information field is a dedicated information field of the propagation mode of the MBS or an existing information field in the DCI.
  • the configuration information of the DCI includes a radio network temporary identifier RNTI corresponding to the cyclic redundancy check CRC of the physical downlink control channel PDCCH, and different RNTIs are respectively used to indicate that the DCI is used for scheduling The broadcast PDSCH or the multicast PDSCH.
  • the propagation mode of the MBS indicated by the RNTI is classified according to the type of the RNTI.
  • the configuration information of the DCI further includes control resource sets used for scheduling PDCCH, and different control resource sets are respectively used for the broadcast PDSCH or the multiple broadcast PDSCH.
  • the configuration information of the DCI further includes a search space corresponding to a scheduled PDCCH, and different search spaces are respectively used for the broadcast PDSCH or the multicast PDSCH associated with the DCI scheduling .
  • the propagation mode of the MBS associated with the search space is divided according to the type of the search space.
  • the type of the search space includes a public search space, a dedicated search space, or a service-specific search space.
  • the propagation mode of the MBS associated with the search space is divided according to preset frequency domain positions.
  • the processing module is further configured to determine a DCI format corresponding to the propagation mode of the MBS.
  • the processing module is further configured to decode the DCI according to the DCI format corresponding to the propagation mode of the MBS.
  • a fourth aspect of the present application provides a communication device, the device comprising:
  • a sending module configured to send downlink control information DCI to the terminal equipment, and the DCI is used for scheduling the network of the multicast broadcast service MBS
  • the indication information and/or configuration information of the DCI are used to determine the propagation mode of the MBS.
  • the transmission mode of the MBS includes broadcast and multicast.
  • the indication information of the DCI includes an information field in the DCI, and the information field in the DCI is used to indicate that the DCI is used for scheduling a broadcast PDSCH or a multicast PDSCH.
  • the two value states of the one bit are respectively used to indicate that the DCI is used to schedule the broadcasted PDSCH or the The multicast PDSCH is described.
  • one bit in the information field is located in the first bit of all information fields in the DCI.
  • the two value states of the target bits in the multiple bits are respectively used to indicate that the DCI is used for scheduling The broadcast PDSCH or the multicast PDSCH, or the preset value states of the multiple bits are respectively used to indicate that the DCI is used to schedule the broadcast PDSCH or the multicast PDSCH.
  • the preset value state is a value state multiplexed in the information field or a value state reserved in the information field.
  • the information field is a dedicated information field of the propagation mode of the MBS or an existing information field in the DCI.
  • the configuration information of the DCI includes a radio network temporary identifier RNTI corresponding to the cyclic redundancy check CRC of the physical downlink control channel PDCCH, and different RNTIs are respectively used to indicate that the DCI is used for scheduling The broadcast PDSCH or the multicast PDSCH.
  • the propagation mode of the MBS indicated by the RNTI is classified according to the type of the RNTI.
  • the configuration information of the DCI further includes control resource sets used for scheduling PDCCH, and different control resource sets are respectively used for the broadcast PDSCH or the multiple broadcast PDSCH.
  • the configuration information of the DCI further includes a search space corresponding to a scheduled PDCCH, and different search spaces are respectively used for the broadcast PDSCH or the multicast PDSCH associated with the DCI scheduling .
  • the propagation mode of the MBS associated with the search space is divided according to the type of the search space.
  • the type of the search space includes a public search space, a dedicated search space, or a service-specific search space.
  • the propagation mode of the MBS associated with the search space is divided according to preset frequency domain positions.
  • the fifth aspect of the present application provides a terminal device, including:
  • the memory stores computer-executable instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the communication method as described in the first aspect.
  • the sixth aspect of this application provides a network device, including:
  • the memory stores computer-executable instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the communication method as described in the second aspect.
  • a seventh aspect of the present application provides a chip, including: a processor, configured to invoke and run a computer program from a memory, so that a device installed with the chip executes the method described in the first aspect.
  • An eighth aspect of the present application provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the method as described in the second aspect.
  • a ninth aspect of the present application provides a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method as described in the first aspect.
  • a tenth aspect of the present application provides a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method as described in the second aspect.
  • the eleventh aspect of the present application provides a computer program product, including computer instructions.
  • the computer instructions are executed by a processor, the method as described in the first aspect is implemented.
  • a twelfth aspect of the present application provides a computer program product, including computer instructions, and when the computer instructions are executed by a processor, the method as described in the second aspect is implemented.
  • a seventh aspect of the present application provides a computer program, the computer program causes a computer to execute the method as described in the thirteenth aspect.
  • a seventh aspect of the present application provides a computer program, the computer program causes a computer to execute the method as described in the fourteenth aspect.
  • the fifteenth aspect of the present application provides a device, the device may include: at least one processor and an interface circuit, and the program instructions involved are executed in the at least one processor, so that the communication device implements the communication device described in the first aspect. described method.
  • the sixteenth aspect of the present application provides a device, the device may include: at least one processor and an interface circuit, and the program instructions involved are executed in the at least one processor, so that the communication device implements the communication device described in the second aspect. described method.
  • a seventeenth aspect of the present application provides a communication device, the device is used to execute the method described in the first aspect.
  • An eighteenth aspect of the present application provides a communication device, the device is used to execute the method described in the second aspect.
  • the terminal equipment receives downlink control information DCI, and the DCI is used for scheduling the physical downlink shared channel PDSCH of the multicast broadcast service MBS. Subsequently, the terminal device determines the MBS propagation mode according to the indication information and/or configuration information of the DCI. In this manner, the terminal device can determine the MBS propagation mode through the indication information and/or configuration information of the DCI, so that the terminal device can accurately decode the DCI.
  • FIG. 1 is a schematic diagram of a bandwidth provided by an embodiment of the present application
  • FIG. 2 is another schematic diagram of bandwidth provided by the embodiment of the present application.
  • FIG. 3 is another schematic diagram of bandwidth provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a scenario of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a signaling interaction diagram of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a signaling interaction diagram of another communication method provided by an embodiment of the present application.
  • FIG. 7 is a signaling interaction diagram of another communication method provided by the embodiment of the present application.
  • FIG. 8 is a signaling interaction diagram of another communication method provided by the embodiment of the present application.
  • FIG. 9 is a signaling interaction diagram of another communication method provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • 5G 5th Generation Mobile Communication Technology
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-reliable and Low Latency Communications
  • mMTC Massive Machine Type Communication
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, and rural areas, the capabilities and requirements vary greatly, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, electric power automation, telemedicine operations (surgery), traffic safety guarantee, etc.
  • the typical characteristics of mMTC include: high connection density, small data volume, delay-insensitive services, low cost and long service life of modules, etc.
  • 5G new air interface New Radio, NR
  • NR 5G new air interface
  • a new RRC state is defined, namely the RRC inactive (INACTIVE) state.
  • the difference between RRC INACTIVE state and RRC idle (IDLE) state and RRC active (ACTIVE) state is as follows:
  • RRC IDLE state Mobility is cell selection and reselection based on terminal equipment, paging is initiated by core network equipment, and the paging area is configured by core network equipment. There is no access stratum (Access Stratum, AS) context of the terminal device on the access network device side, and there is no RRC connection.
  • AS Access Stratum
  • RRC CONNECTED state There is an RRC connection, and the access network device and the terminal device have the terminal device AS context.
  • the network side knows the location of the terminal equipment at the specific cell level. Mobility is mobility controlled by the network side. Unicast data can be transmitted between the terminal device and the access network device.
  • RRC INACTIVE state Mobility is cell selection and reselection based on terminal equipment. There is a connection between the core network equipment and the new air interface. The AS context of the terminal equipment exists on a certain access network equipment. Access Network, RAN) trigger, the RAN-based paging area is managed by the RAN, and the network side knows the location of the terminal device based on the RAN-based paging area level.
  • RAN Access Network
  • the maximum channel bandwidth can be 400MHZ, which is very large compared to the maximum 20M bandwidth of Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the power consumption of the terminal device is relatively large, and the radio frequency (Radio Frequency, RF) of the terminal device can be adjusted according to the actual throughput of the terminal device.
  • BWP Band Width Part
  • FIG. 1 is a schematic diagram of a bandwidth provided by an embodiment of the present application. As shown in FIG. 1 , if the rate of the terminal device is low, a smaller bandwidth may be configured for the terminal device.
  • FIG. 2 is another schematic diagram of bandwidth provided by the embodiment of the present application. As shown in FIG. 2 , if the rate of the terminal device is relatively high, higher bandwidth may be configured for the terminal device.
  • FIG. 3 is another bandwidth schematic diagram provided by the embodiment of the present application. As shown in FIG. 3, if the terminal device supports a high rate, or operates in carrier aggregation (Carrier Aggregation, CA) mode, multiple BWP.
  • CA Carrier Aggregation
  • the BWP is to trigger the coexistence of multiple numerologies in a cell.
  • terminal devices in idle state or inactive state reside on the initial (initial) BWP, which is visible to terminal devices in idle state or inactive state, and the master information block (Master Information Block, MIB) can be obtained in this BWP , Remaining minimum system information (RMSI), OSI other system information (Other System Information, OSI) and paging (paging) and other information.
  • MIB Master Information Block
  • RMSI Remaining minimum system information
  • OSI OSI other system information
  • paging paging
  • MBMS Multimedia Broadcast Multicast Service
  • SC-PTM Single Cell Point To Multipoint
  • MBMS is a technology that transmits data from one data source to multiple user equipments by sharing network resources. It can effectively use network resources while providing multimedia services, and realize high-speed (256kbps) multimedia service broadcasting and multicasting.
  • 3GPP clearly proposed to enhance the ability to support downlink high-speed multimedia broadcast multicast services, and determined the design requirements for the physical layer and air interface.
  • E-MBMS Enhanced Multimedia Broadcast Multicast Service proposes the concept of Single Frequency Network (SFN), which uses a unified frequency to send data in all cells at the same time, but to ensure synchronization between cells .
  • SFN Single Frequency Network
  • the single frequency network can greatly improve the overall signal-to-noise ratio distribution and spectrum efficiency of the cell, and realize the broadcast and multicast of services based on the Internet Protocol (IP) multicast protocol.
  • IP Internet Protocol
  • MBMS In LTE/LTE-A, MBMS only has a broadcast bearer mode, not a multicast bearer mode.
  • the reception of MBMS service is applicable to UE in RRC_CONNECTED or RRC_IDLE state.
  • SC-PTM is introduced.
  • SC-PTM is based on the MBMS network architecture.
  • the Multi-cell/multicast Coordination Entity (MCE) decides whether to use SC-PTM transmission mode or Multimedia Broadcast multicast service Single Frequency Network, MBSFN) transmission mode.
  • MCE Multi-cell/multicast Coordination Entity
  • SC-MCCH Single Cell Multicast Control Channel
  • SC-MTCH Single Cell Multicast Transport Channel
  • DL-SCH Downlink Shared CHannel
  • PDSCH Physical Downlink Shared Channel
  • SC-MCCH and SC-MTCH do not support Hybrid Automatic Repeat reQuest (HARQ) operation.
  • HARQ Hybrid Automatic Repeat reQuest
  • a new system information block (System Information Block, SIB) type SIB20 is introduced to transmit SC-MCCH configuration information, and one cell has only one SC-MCCH.
  • the configuration information includes SC-MCCH modification period, repetition period, radio frame and subframe configuration information.
  • the subframe scheduled by SC-MCCH is indicated by sc-mcch-Subframe.
  • SC-MCCH transmits only one message (SCPTMConfiguration), which is used to configure configuration information of SC-PTM.
  • a new single cell radio network temporary identifier (Single Cell RNTI, SC-RNTI) (fixed value FFFC) is introduced to identify the scheduling information of the SC-MCCH on the PDCCH. Change notification is indicated by one of the eight bits in DCI 1C.
  • the radio link layer control protocol (Radio Link Control, RLC) AM mode has an automatic repeat request (Automatic Repeat-reQuest, ARQ) feedback mechanism.
  • the receiving end sends an RLC status report to feedback that the receiving status of the RLC packet is an acknowledgment (Acknowledge character, ACK) or a non-acknowledgment (Negative Acknowledge character, ACK) NACK.
  • the transmitting end may repeatedly transmit the repeated transmission of the RLC packet of the SN number of the feedback NACK.
  • the downlink BWP is configured through the BWP-Downlink parameter.
  • the parameter may include the bwp-Id field to identify the ID of the current BWP, and bwp-Common is used to configure the common parameters of the downlink BWP.
  • the genericParameters in the BWP-DownlinkCommon parameter is used to configure the frequency domain starting point and the number of PRBs included in the downlink BWP.
  • the bwp-Dedicated parameter in the BWP-Downlink will configure the downlink receiving parameters on the downlink BWP, including at least pdcch-Config, pdsch-Config, and sps-Config.
  • pdcch-Config is used to indicate the PDCCH transmission mode on the downlink BWP
  • pdsch-Config is used to indicate the PDSCH transmission mode on the downlink BWP
  • sps-Config is used to indicate the SPS configuration on the downlink BWP.
  • NR MBS The transmission method of NR MBS is described below.
  • the network device For the MBS service, there are three ways for the network device to schedule and transmit the service.
  • the MBS service can be sent by broadcasting.
  • This method is applicable to the terminal equipment in RRC IDLE state or RRC INACTIVE state, and the terminal equipment in RRC CONNECTED state. That is, for the MBS service sent by broadcast, no matter which connection state the terminal device is in, it only needs to ensure that it can receive it within the coverage area.
  • the MBS service can be sent in a multicast manner.
  • This method is suitable for the terminals in the group to be in the RRC CONNECTED state, and the network device sends the same MBS service to a group of terminal devices through the PTM transmission mode.
  • the MBS service can be sent in a unicast manner.
  • This method is applicable when the terminal is in the RRC CONNECTED state, and the network device sends the same MBS service to each terminal device through a one-to-one (Point to Point, PTP) sending method.
  • PTP Point to Point
  • the following describes the NR MBS group scheduling method.
  • one-to-many multicast transmission is supported.
  • the network device needs to schedule a common PDSCH by sending a common downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PDCCH Physical Downlink Control Channel
  • the common PDCCH and the public PDSCH are sent within a common frequency domain range (CFR, Common Frequency Resource).
  • CFR Common Frequency Resource
  • the CFR is configured as an MBS-specific BWP, and the MBS-specific BWP is associated with the terminal-specific unicast BWP, and the subcarrier spacing and cyclic prefix configured on the CFR are the same as those configured on the terminal-specific unicast BWP .
  • the CFR can follow the existing BWP signaling configuration, which is beneficial to reduce the workload of the standard.
  • CFR is defined as BWP
  • a terminal device if a terminal device is required to receive unicast in a dedicated unicast BWP and receive multicast in CFR at the same time, the terminal needs to receive downlink transmissions on two BWPs at the same time. Downlinks are received on a BWP.
  • BWP switching delay will be introduced.
  • the CFR is configured as a plurality of continuous physical resource blocks (Physical Resource Block, PRB) within the scope of the terminal-specific unicast BWP.
  • PRB Physical Resource Block
  • the common PDCCH for scheduling the common PDSCH needs to be sent to multiple receiving terminals at the same time, in order to ensure that the number of common DCI bits carried in the common PDCCH determined by multiple terminal devices is the same, terminal devices cannot Determines the number of bits of the common DCI.
  • the number of PRBs in CFR may be different from the initial BWP or CORESET#0 (Control Resource SET 0) currently configured by the terminal, the terminal cannot determine the number of bits of the common DCI through the initial BWP or CORESET#0. Therefore, inevitably, the number of bits of the common DCI may be different from the number of bits of DCI received by the terminal device in the existing common search space (CSS) and user-specific search space (USS).
  • the terminal equipment can only receive up to 4 DCIs with different numbers of bits in one cell.
  • the number of DCI bits scrambled by Cell Radio Network Temporary Identifier (C-RNTI) does not exceed 3 types.
  • the transmission of MBS services includes three scheduling methods, including PTM1, PTM2 and PTP.
  • the group-shared PDCCH can be used to schedule the group-shared PDSCH.
  • the CRC of the group-shared PDCCH is scrambled using the group-shared RNTI, and the group-shared PDSCH is scrambled using the same group-shared RNTI.
  • each terminal device uses a terminal device-specific PDCCH scheduling group to share the PDSCH.
  • the CRC of the terminal-device-specific PDCCH is scrambled using the terminal-device-specific RNTI (that is, the C-RNTI), and the group-shared PDSCH is scrambled using the group-shared RNTI.
  • a terminal device-specific PDCCH is used to schedule a terminal device-specific PDSCH for each terminal device.
  • the CRC of the terminal equipment-specific PDCCH is scrambled using the terminal equipment-specific RNTI (ie, C-RNTI)
  • the terminal equipment-specific PDSCH is scrambled using the terminal equipment-specific RNTI (ie, C-RNTI).
  • Group-shared PDCCH or PDSCH refers to the PDCCH or PDSCH sent by a network device on a set of time-frequency resources, which can be received by multiple terminal devices in the same group. It should be noted that the PTM scheduling modes involved in the embodiments of the present application all refer to PTM1.
  • the retransmission mechanism based on the HARQ-ACK feedback of the MBS service in the connected state supports the initial transmission PTM1 + retransmission PTM1 mode, or supports the initial transmission PTM1 + retransmission PTP mode.
  • the DCI for scheduling MBS by broadcast adopts the same DCI format (format 1_0 or format 1_1) as the DCI for scheduling MBS by multicast.
  • the information field in DCI can be different according to the configuration.
  • the sending mode of broadcasting is mainly used for the network to send system messages to the covered cells, and is mainly oriented to all terminal users in the unconnected state/connected state. Therefore, information such as the format, size, control resource set, and search space of the transmitted DCI is publicly known to the terminal device.
  • the terminal device only needs to blindly detect and decode the received PDCCH according to the established rules, and there will be no mismatch.
  • the network and connected terminal devices use one-to-one communication
  • the CRC of DCI uses the terminal-specific C-RNTI for scrambling
  • the network also configures a dedicated search space for terminal devices. Therefore, the terminal equipment knows the relevant information in advance when blindly detecting and decoding the PDCCH, and there will be no problem.
  • the current system does not support the transmission of MBS services, so there is no distinction between whether the PDCCH is used for scheduling broadcast or for scheduling multicast.
  • the MBS service whether it is broadcast or multicast, it is sent to a group of terminal equipment. Therefore, in order to ensure that all terminal devices can receive and decode correctly, relevant information and configurations are common among terminal devices.
  • a terminal device in RRC IDLE state or RRC INACTIVE state receives MBS services, because it does not enter the connection state, it can only receive MBS services in the form of broadcast, so the received DCI is in accordance with the DCI format and corresponding information fields used for scheduling broadcasts to decode.
  • the MBS sent by broadcast can not only be received by terminal devices in RRC IDLE state or RRC INACTIVE state, but also can be received by terminal devices in RRC CONNECTED state.
  • a terminal device in the RRC CONNECTED state receives MBS services, it cannot determine whether the received DCI is for broadcast MBS transmission or DCI for multicast transmission MBS.
  • the propagation mode of DCI cannot be known only by descrambling GC-RNTI.
  • the information field configured by the DCI for scheduling broadcast and the DCI for scheduling multicast are different from the bit size of each information field, so the terminal device does not know which DCI method to use to interpret the content of the information field in the DCI. In the current design, there is no No consideration is given to how to distinguish whether the DCI is used to schedule the MBS sent by broadcast or the MBS sent by multicast, so the DCI cannot be decoded correctly.
  • Table 1 is a comparison table of information fields of DCI scheduled MBS broadcast and scheduled MBS multicast.
  • the size (size) of the DCI used for scheduling MBS broadcast and scheduling MBS multicast is the same.
  • the information fields contained in the DCI and the size of each information field are not necessarily consistent.
  • both DCIs use G-RNTI or G-CS-RNTI to scramble the CRC. Therefore, when a terminal device performs PDCCH blind detection, it can only know that the DCI is used to schedule MBS services, but it cannot know whether the DCI is used to schedule broadcast or multicast, and the terminal device cannot determine whether it should use Which way to decode DCI.
  • the terminal device assumes one of the methods to decode, the decoded DCI will be inconsistent with the DCI content sent by the network. Wrong decoding will result in the inability to correctly decode the PDSCH scheduled by the PDCCH, further leading to a decrease in system reliability.
  • the embodiment of the present application provides a communication method and device.
  • the terminal device determines the MBS propagation method through the DCI indication information and/or configuration information, so that the DCI decoding method can be determined according to the MBS propagation method, and then So that DCI can be decoded accurately.
  • FIG. 4 is a schematic diagram of a scenario of a communication method provided by an embodiment of the present application.
  • the network device 102 communicates with the terminal device 101 .
  • the network device 102 sends DCI to the terminal device 101 to schedule the PDSCH of the MBS.
  • the terminal device 101 may determine the MBS propagation mode according to the indication information and/or configuration information of the DCI. Subsequently, the terminal device 101 may further determine the DCI decoding method according to the propagation method of the MBS.
  • terminal device 101 includes but not limited to satellite or cellular phone, personal communication system (Personal Communications System, PCS) terminal that can combine cellular radiotelephone and data processing, facsimile and data communication capability; Can include radiotelephone, pager, Internet/ PDAs with intranet access, web browsers, organizers, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or other electronic devices.
  • PCS Personal Communications System
  • PCS Personal Communications System
  • GPS Global Positioning System
  • the terminal equipment may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device 102 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • the network device 102 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, may also be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (Cloud Radio Access Network, CRAN), or the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network devices in the 5G network or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • CRAN
  • FIG. 5 is a signaling interaction diagram of a communication method provided by an embodiment of the present application.
  • the embodiment of the present application relates to the process of how to perform sidelink sensing. As shown in Figure 5, the method includes:
  • the network device sends downlink control information DCI to the terminal device, and the DCI is used to schedule a physical downlink shared channel PDSCH of a multicast broadcast service MBS.
  • the terminal device determines the MBS propagation mode according to the indication information and/or configuration information of the DCI.
  • the terminal device can identify whether the DCI is a PDSCH for scheduling broadcast or a PDSCH for scheduling multicast.
  • the terminal device can also determine the DCI format corresponding to the MBS propagation mode, and according to the DCI format corresponding to the MBS propagation mode Decode the DCI.
  • the DCI format includes the format content and size of the DCI.
  • DCI propagation methods include broadcast and multicast, and the multicast can be understood as multicast or multicast.
  • the embodiment of the present application does not limit how to determine the propagation mode of the MBS, and four methods for determining the propagation mode of the MBS are exemplarily provided below.
  • the indication information of the DCI includes an information field in the DCI, and the information field in the DCI is used to indicate that the DCI is used for scheduling a broadcast PDSCH or a multicast PDSCH.
  • the embodiment of the present application does not limit the size of the information field in the DCI, which may be 1 bit or multiple bits.
  • the embodiment of the present application does not limit the type of the information field in the DCI, and the information field indication may be dedicated, or an existing information field may be reused.
  • the two value states of one bit are respectively used to indicate that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • the value of this bit can be used to indicate that the DCI is used to schedule the PDSCH for broadcasting, and the value of this bit can be used to indicate that the DCI PDSCH for multicast.
  • the value of this bit can be used to indicate that the DCI is used to schedule the PDSCH for broadcasting, and the value of this bit can be used to indicate that the DCI is used for Multicast PDSCH.
  • a bit in the information field of the information field may be located at any position in all information fields of the DCI, preferably, may be located at the first bit in all information fields of the DCI.
  • the one-bit information field may be a dedicated information field or an existing information field. If it is a dedicated information field, the information field may be dedicated to broadcast or multicast indication. If it is an existing information field, it may include but not limited to DCI format indication (1 bit), virtual resource block to physical resource block (VRB-to-PRB) mapping (1 bit) or other information fields.
  • DCI format indication (1 bit)
  • VRB-to-PRB virtual resource block to physical resource block
  • the two value states of the target bits in the multiple bits are respectively used to indicate that the DCI is used to schedule the broadcast PDSCH or the multicast PDSCH.
  • the preset value states of multiple bits are respectively used to indicate that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • the target bit may be any bit in the plurality of bits, for example, the first bit.
  • one bit of the multiple bits may independently indicate that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH. As shown in Table 4, when the value of the first bit in the multi-bit is 0, it can indicate that the DCI is used to schedule the PDSCH for broadcasting, and when the value of the first bit in the multi-bit is 1, it can indicate that the DCI is used It is used to schedule multicast PDSCH.
  • the preset value state of the target bit may be a value state multiplexed in multiple bits.
  • one or more states of the multiple bits correspond to the DCI used to schedule the broadcast PDSCH or the multicast PDSCH.
  • the value states 000, 001, 010 and 011 of the multi-bit information field are used to indicate that the DCI is used to schedule the PDSCH broadcast.
  • Value states 100, 101, 110, and 111 of the bit information field are used to indicate that the DCI is used to schedule the PDSCH for multicast.
  • the preset value state of the target bit may be a value state reserved in multiple bits.
  • the two reserved value states can be used to indicate different DCI scheduling modes. As shown in Table 5, the reserved value state 110 is used to indicate that the DCI is used to schedule a broadcast PDSCH, and the reserved value state 111 is used to indicate that the DCI is used to schedule a multicast PDSCH.
  • the DCI configuration information includes the Radio Network Tempory Identity (RNTI) corresponding to the Cyclic Redundancy Check (CRC) of the Physical Downlink Control Channel (PDCCH).
  • RNTI Radio Network Tempory Identity
  • CRC Cyclic Redundancy Check
  • PDCH Physical Downlink Control Channel
  • the number of Y-RNTIs used to schedule MBS broadcast transmission can be set to K
  • the number of Y-RNTIs used to schedule the MBS multicast can be set to L.
  • DCI formats 1_x include but are not limited to: DCI formats 1_0, 1_1, 1_2.
  • the Y-RNTI may be a Group Radio Network Temporary Identity (G-RNTI), a Group Configuration Scheduling Radio Network Temporary Identity (G-CS-RNTI), or other RNTIs for scheduling MBS.
  • G-RNTI Group Radio Network Temporary Identity
  • G-CS-RNTI Group Configuration Scheduling Radio Network Temporary Identity
  • the terminal device can descramble the corresponding G-RNTI on the CRC to know whether the DCI is used to schedule the broadcast PDSCH or the multicast PDSCH, and then decode according to the DCI format content and size corresponding to the broadcast or multicast DCI, to obtain downlink control information.
  • the propagation mode of the MBS indicated by the RNTI is divided according to the type of the RNTI.
  • Y-RNTI when the CRC of PDCCH format 1_x is scrambled with Y-RNTI, Y-RNTI is exclusively used for MBS broadcast scheduling; and/or, when the CRC of PDCCH format 1_x is scrambled with Z-RNTI, Z-RNTI is exclusively used For scheduling of MBS multicast.
  • Y-RNTI and Z-RNTI are different RNTIs.
  • the DCI configuration information also includes control resource sets used for scheduling PDCCH, and different control resource sets are respectively used for broadcast PDSCH or multicast PDSCH associated with DCI scheduling.
  • the PDCCH used to schedule the MBS broadcast uses CORESET#1, and the corresponding CORESET#1 is associated with the PDSCH of the DCI-scheduled broadcast.
  • the PDCCH used to schedule the MBS multicast uses CORESET#2, and the corresponding CORESET#2 is associated with the PDSCH of the DCI-scheduled multicast.
  • the terminal device can obtain the monitored PDCCH according to different CORESETs to determine whether the current PDCCH is suitable for broadcasting or broadcasting. Subsequently, the DCI is decoded according to the content and size of the DCI format corresponding to the broadcast or multicast to obtain downlink control information.
  • the configuration information of the DCI further includes a search space corresponding to the scheduled PDCCH, and different search spaces are respectively used for the broadcast PDSCH or the multicast PDSCH associated with the DCI scheduling.
  • the PDCCH corresponding to the broadcast PDSCH scheduled by DCI and the PDCCH corresponding to the multicast PDSCH scheduled by DCI will not appear in the same search space or the same type of search space.
  • the propagation mode of the MBS associated with the search space is divided according to the type of the search space.
  • Types of search spaces include public search spaces, private search spaces, or service-specific search spaces.
  • the dedicated search space for the MBS service may be a dedicated search space configured for receiving and scheduling the PDCCH of the MBS service when receiving the multicast service in the connected state.
  • the propagation mode of the MBS associated with the search space is divided according to preset frequency domain positions.
  • the frequency domain position corresponding to the propagation mode of the MBS broadcast is a specific position, and the size of the frequency domain is the size of CORESET#0, or the size of the frequency domain is the size of the DL BWP configured by SIB1.
  • the terminal equipment in the connected state receives the PDCCH (CRC is scrambled with Y-RNTI) at the specific frequency domain position, it can be determined that it is used to schedule the MBS broadcast.
  • the PDCCH (CRC is scrambled by Y-RNTI) received in the search space other than the specific location can be determined to be used for scheduling MBS multicast.
  • the DCI can be decoded according to the content and size of the DCI format corresponding to the broadcast or multicast, and the downlink control information can be obtained.
  • the communication method provided by the embodiment of the present application can effectively avoid the confusion of DCI by introducing the identification of the DCI propagation mode, especially when the terminal device in the connected state performs blind detection of the PDCCH, it can avoid wrong decoding and improve the performance of the overall system , and at the same time enable the broadcast DCI and the multicast DCI to configure different information domains under the premise of the same length, making MBS scheduling more flexible.
  • the terminal device receives the downlink control information DCI, and the DCI is used to schedule the physical downlink shared channel PDSCH of the multicast broadcast service MBS. Subsequently, the terminal device determines the MBS propagation mode according to the indication information and/or configuration information of the DCI. In this manner, the terminal device can determine the MBS propagation mode through the indication information and/or configuration information of the DCI, so that the terminal device can accurately decode the DCI.
  • the indication information of the DCI includes an information field in the DCI, and the information field in the DCI is used to indicate that the DCI is used for scheduling a broadcast PDSCH or a multicast PDSCH.
  • FIG. 6 is a signaling interaction diagram of another communication method provided in the embodiment of the present application. As shown in FIG. 6, the method includes:
  • the terminal device receives downlink control information DCI, and the DCI is used for scheduling a physical downlink shared channel PDSCH of a multicast broadcast service MBS.
  • the terminal device determines, according to the information field in the DCI, that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • the MBS transmission methods include broadcast and multicast.
  • the two value states of one bit are respectively used to indicate that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • one bit in the information field is located at the first bit in all information fields of the DCI.
  • the two value states of the target bits in the multiple bits are used to indicate that the DCI is used to schedule the broadcast PDSCH or the multicast PDSCH , or, the preset value states of multiple bits are respectively used to indicate that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • the preset value state is the value state multiplexed in the information field or the value state reserved in the information field.
  • the information field is a dedicated information field of the MBS propagation mode or an existing information field in the DCI.
  • the configuration information of the DCI includes the RNTI corresponding to the CRC of the PDCCH, and different RNTIs are respectively used to indicate that the DCI is used for scheduling a broadcast PDSCH or a multicast PDSCH.
  • FIG. 7 is a signaling interaction diagram of another communication method provided in the embodiment of the present application. As shown in FIG. 7, the method includes:
  • the terminal device receives downlink control information DCI, and the DCI is used for scheduling a physical downlink shared channel PDSCH of a multicast broadcast service MBS.
  • the terminal device determines, according to the RNTI corresponding to the CRC of the PDCCH in the DCI configuration information, that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • the MBS transmission methods include broadcast and multicast.
  • the propagation mode of the MBS indicated by the RNTI is divided according to the type of the RNTI.
  • the DCI configuration information includes control resource sets used for scheduling PDCCH, and different control resource sets are respectively used for broadcast PDSCH or multicast PDSCH associated with DCI scheduling.
  • FIG. 8 is a signaling interaction diagram of another communication method provided by the embodiment of the present application. As shown in FIG. 8, the method includes:
  • the terminal device receives downlink control information DCI, and the DCI is used for scheduling a physical downlink shared channel PDSCH of a multicast broadcast service MBS.
  • the terminal device determines, according to the control resource set used for scheduling the PDCCH in the configuration information of the DCI, that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • the MBS transmission methods include broadcast and multicast.
  • the DCI configuration information includes a search space corresponding to the scheduled PDCCH, and different search spaces are respectively used for broadcast PDSCH or multicast PDSCH associated with DCI scheduling.
  • FIG. 9 is a signaling interaction diagram of another communication method provided by the embodiment of the present application. As shown in FIG. 9, the method includes:
  • the terminal device receives downlink control information DCI, and the DCI is used for scheduling a physical downlink shared channel PDSCH of a multicast broadcast service MBS.
  • the terminal device determines, according to the search space corresponding to the scheduling PDCCH in the DCI configuration information, that the DCI is used to schedule the broadcast PDSCH or the multicast PDSCH.
  • the MBS transmission methods include broadcast and multicast.
  • the propagation mode of the MBS associated with the search space is divided according to the type of the search space.
  • types of search spaces include public search spaces, dedicated search spaces, or service-specific search spaces.
  • the propagation mode of the MBS associated with the search space is divided according to preset frequency domain positions.
  • the terminal device receives the downlink control information DCI, and the DCI is used to schedule the physical downlink shared channel PDSCH of the multicast broadcast service MBS. Subsequently, the terminal device determines the MBS propagation mode according to the indication information and/or configuration information of the DCI. In this way, the terminal device can determine the MBS propagation mode through the indication information and/or configuration information of the DCI, so that the terminal device can accurately decode the DCI.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication apparatus may be implemented by software, hardware or a combination of the two, so as to execute the communication method on the terminal device side in the foregoing embodiments.
  • the communication device 700 includes: a receiving module 701 and a processing module 702 .
  • the receiving module 701 is configured to receive downlink control information DCI, and the DCI is used to schedule the network physical downlink shared channel PDSCH of the multicast broadcast service MBS;
  • the processing module 702 is configured to determine the MBS propagation mode according to the indication information and/or configuration information of the DCI.
  • the MBS transmission mode includes broadcast and multicast.
  • the indication information of the DCI includes an information field in the DCI, and the information field in the DCI is used to indicate that the DCI is used for scheduling a broadcast PDSCH or a multicast PDSCH.
  • the two value states of one bit are respectively used to indicate that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • one bit in the information field is located in the first bit of all information fields in the DCI.
  • the two value states of the target bits in the multiple bits are used to indicate that the DCI is used to schedule the broadcast PDSCH or multicast or, the preset value states of multiple bits are respectively used to indicate that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • the preset value state is a multiplexed value state in the information field or a reserved value state in the information field.
  • the information field is a dedicated information field of the propagation mode of the MBS or an existing information field in the DCI.
  • the configuration information of the DCI includes the radio network temporary identifier RNTI corresponding to the cyclic redundancy check CRC of the physical downlink control channel PDCCH, and different RNTIs are used to indicate that the DCI is used to schedule the PDSCH broadcast or Multicast PDSCH.
  • the propagation mode of the MBS indicated by the RNTI is divided according to the type of the RNTI.
  • the configuration information of the DCI further includes control resource sets used for scheduling the PDCCH, and different control resource sets are respectively used for broadcast PDSCHs or multicast PDSCHs scheduled associated with the DCI.
  • the configuration information of the DCI further includes a search space corresponding to the scheduled PDCCH, and different search spaces are respectively used for the broadcast PDSCH or the multicast PDSCH associated with the DCI scheduling.
  • the propagation mode of the MBS associated with the search space is divided according to the type of the search space.
  • the type of the search space includes a public search space, a dedicated search space, or a service-specific search space.
  • the propagation mode of the MBS associated with the search space is divided according to preset frequency domain positions.
  • the processing module 702 is further configured to determine the DCI format corresponding to the propagation mode of the MBS.
  • the processing module 702 is further configured to decode the DCI according to the DCI format corresponding to the propagation mode of the MBS.
  • the communication device provided in the embodiment of the present application can execute the actions of the communication method on the terminal device side in the above embodiment, and its implementation principle and technical effect are similar, and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication apparatus may be implemented by software, hardware or a combination of the two, so as to execute the communication method on the network device side in the foregoing embodiments.
  • the communication device 800 includes: a storage module 801 and a sending module 802 .
  • the storage module 801 is used for storing executable programs.
  • the sending module 802 is configured to send downlink control information DCI to the terminal equipment, and the DCI is used for scheduling the network of the multicast broadcast service MBS
  • the indication information and/or configuration information of the physical downlink shared channel PDSCH and DCI are used to determine the propagation mode of the MBS.
  • the MBS transmission mode includes broadcast and multicast.
  • the indication information of the DCI includes an information field in the DCI, and the information field in the DCI is used to indicate that the DCI is used for scheduling a broadcast PDSCH or a multicast PDSCH.
  • the two value states of one bit are respectively used to indicate that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • one bit in the information field is located in the first bit of all information fields in the DCI.
  • the two value states of the target bits in the multiple bits are used to indicate that the DCI is used to schedule the broadcast PDSCH or multicast or, the preset value states of multiple bits are respectively used to indicate that the DCI is used to schedule a broadcast PDSCH or a multicast PDSCH.
  • the preset value state is a multiplexed value state in the information field or a reserved value state in the information field.
  • the information field is a dedicated information field of the propagation mode of the MBS or an existing information field in the DCI.
  • the configuration information of the DCI includes the radio network temporary identifier RNTI corresponding to the cyclic redundancy check CRC of the physical downlink control channel PDCCH, and different RNTIs are used to indicate that the DCI is used to schedule the PDSCH broadcast or Multicast PDSCH.
  • the propagation mode of the MBS indicated by the RNTI is divided according to the type of the RNTI.
  • the configuration information of the DCI further includes control resource sets used for scheduling the PDCCH, and different control resource sets are respectively used for broadcast PDSCHs or multicast PDSCHs scheduled associated with the DCI.
  • the configuration information of the DCI further includes a search space corresponding to the scheduled PDCCH, and different search spaces are respectively used for the broadcast PDSCH or the multicast PDSCH associated with the DCI scheduling.
  • the propagation mode of the MBS associated with the search space is divided according to the type of the search space.
  • the type of the search space includes a public search space, a dedicated search space, or a service-specific search space.
  • the propagation mode of the MBS associated with the search space is divided according to preset frequency domain positions.
  • the communication device provided in the embodiment of the present application can execute the actions of the communication method on the network device side in the above embodiments, and its implementation principle and technical effect are similar, and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • this electronic equipment can comprise: processor 91 (such as CPU), memory 92, receiver 93 and transmitter 94; Receiver 93 and transmitter 94 are coupled to processor 91, and processor 91 controls receiver 93 of the receiving action, the processor 91 controls the sending action of the transmitter 94.
  • the memory 92 may include a high-speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, and various information may be stored in the memory 92 for completing various processing functions and realizing the method of the embodiment of the present application step.
  • the electronic device involved in this embodiment of the present application may further include: a power supply 95 , a communication bus 96 and a communication port 97 .
  • the receiver 93 and the transmitter 94 can be integrated in the transceiver of the electronic device, or can be an independent transceiver antenna on the electronic device.
  • the communication bus 96 is used to implement the communication connection between the components.
  • the above-mentioned communication port 97 is used to realize connection and communication between the electronic device and other peripheral devices.
  • the above-mentioned memory 92 is used to store computer-executable program codes, and the program codes include information; when the processor 91 executes the information, the information causes the processor 91 to execute the processing actions on the terminal device side in the above-mentioned method embodiments,
  • the transmitter 94 is made to perform the sending action on the terminal device side in the above method embodiment, and the receiver 93 is made to perform the receiving action on the terminal device side in the above method embodiment.
  • the information causes the processor 91 to execute the processing action on the network device side in the above method embodiment, make the transmitter 94 execute the sending action on the network equipment side in the above method embodiment, and cause the receiver 93 to execute
  • the implementation principles and technical effects of the receiving actions on the network device side in the foregoing method embodiments are similar, and will not be repeated here.
  • An embodiment of the present application also provides a communication system, including a target terminal, an auxiliary terminal, and a network device, so as to implement the above communication method.
  • the embodiment of the present application also provides a chip, including a processor and an interface.
  • the interface is used to input and output data or instructions processed by the processor.
  • the processor is configured to execute the methods provided in the above method embodiments.
  • the chip can be applied to the communication device mentioned above.
  • the present invention also provides a kind of computer-readable storage medium, and this computer-readable storage medium can comprise: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory) ), a magnetic disk or an optical disk, and other media that can store program codes.
  • the computer-readable storage medium stores program information, and the program information is used in the above-mentioned communication method.
  • the embodiment of the present application also provides a program, which is used to implement the communication method provided in the above method embodiment when executed by a processor.
  • the embodiment of the present application also provides a program product, such as a computer-readable storage medium, where instructions are stored in the program product, and when the program product is run on a computer, it causes the computer to execute the communication method provided by the above method embodiment.
  • a program product such as a computer-readable storage medium
  • An embodiment of the present application also provides a device, and the device may include: at least one processor and an interface circuit, and related program instructions are executed in the at least one processor, so that the communication device implements the communication method provided by the above method embodiment.
  • the embodiment of the present application also provides a communication device, which is configured to execute the communication method provided in the above method embodiment.
  • a computer program product includes one or more computer instructions.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer instructions may be sent from a website, computer, server, or data center via a wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media. Available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,方法包括:终端设备接收下行控制信息DCI,DCI用于调度多播广播业务MBS的网络物理下行共享信道PDSCH。终端设备根据DCI的指示信息和/或配置信息,确定MBS的传播方式。通过该方式,终端设备通过DCI的指示信息和/或配置信息来确定MBS的传播方式,进而使得DCI可以准确解码。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
对于多播广播业务(Broadcast Multicast Service,MBS),网络设备调度发送的方式包括广播(Broadcast)、多播(Multicast)和单播(Unicast)。其中,通过广播的方式发送MBS业务,适用于终端设备处于无线资源控制(Radio Resource Control,RRC)空闲(IDLE)态、RRC非连接(INACTIVE)态和RRC连接(ACTIVE)态。通过组播的方式向一组终端设备发送MBS业务,适用于组内终端设备都处于RRC CONNECTED态,网络设备通过一对多(Point to Multi-point,PTM)的发送方式,向一组终端设备发送相同的MBS业务。
相关技术中,由于不支持MBS业务的发送,因此无需区分PDCCH是用于调度广播还是用于调度多播。当支持MBS业务的发送后,RRC IDLE态和RRC INACTIVE态的终端设备在接收MBS业务时,由于没有进入连接态,只能按照广播的方式接收MBS业务,因此接收到的DCI都是按照调度广播所用的DCI格式以及对应信息域进行解码。
然而,RRC CONNECTED态的终端设备在原有接收通过多播方式发送的MBS业务的同时,还可以接收通过广播方式发送的MBS业务,导致RRC CONNECTED态的终端设备无法确定接收到的DCI调度的MBS的传播方式,进而使得终端设备无法对DCI进行准确解码。
申请内容
本申请实施例提供一种通信方法及装置,以解决现有技术中连接态的终端设备无法确定接收到的DCI调度的MBS的传播方式的技术问题。
本申请第一个方面提供一种通信方法,所述方法包括:
终端设备接收下行控制信息DCI,所述DCI用于调度多播广播业务MBS的网络物理下行共享信道PDSCH;
所述终端设备根据所述DCI的指示信息和/或配置信息,确定所述MBS的传播方式。
在一种可选的实施方式中,所述MBS的传播方式包括广播和多播。
在一种可选的实施方式中,所述DCI的指示信息包括所述DCI中的信息域,所述DCI中的信息域用于指示所述DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,若所述信息域中包含一个比特位,则所述一个比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述信息域中的一个比特位位于所述DCI的所有信息域中的第一比特位。
在一种可选的实施方式中,若所述信息域中包含多个比特位,则所述多个比特位中的目标比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH,或者,所述多个比特位的预设取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述预设取值状态为所述信息域中复用的取值状态或所述信息域中预留的取值状态。
在一种可选的实施方式中,所述信息域为所述MBS的传播方式的专属信息域或所述DCI中已有的信息域。
在一种可选的实施方式中,所述DCI的配置信息包括物理下行控制信道PDCCH的循环冗余校验CRC对应的无线网络临时标识RNTI,不同的RNTI分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述RNTI指示的所述MBS的传播方式是根据所述RNTI的类型划分的。
在一种可选的实施方式中,所述DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述DCI的配置信息还包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述搜索空间关联的所述MBS的传播方式是根据所述搜索空间的类型划分的。
在一种可选的实施方式中,所述搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
在一种可选的实施方式中,所述搜索空间关联的所述MBS的传播方式是根据预设的频域位置划分的。
在一种可选的实施方式中,在所述终端设备根据所述DCI的配置信息,确定所述MBS的传播方式之后,所述方法还包括:
所述终端设备确定所述MBS的传播方式对应的DCI格式。
在一种可选的实施方式中,在所述终端设备确定所述MBS的传播方式对应的DCI格式之后,所述方法还包括:
所述终端设备根据所述MBS的传播方式对应的DCI格式对所述DCI进行解码。
本申请第二个方面提供一种通信方法,所述方法包括:
网络设备向终端设备发送下行控制信息DCI,所述DCI用于调度多播广播业务MBS的网络物理下行共享信道PDSCH,所述DCI的指示信息和/或配置信息用于确定所述MBS的传播方式。
在一种可选的实施方式中,所述MBS的传播方式包括广播和多播。
在一种可选的实施方式中,所述DCI的指示信息包括所述DCI中的信息域,所述DCI中的信息域用于指示所述DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,若所述信息域中包含一个比特位,则所述一个比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述信息域中的一个比特位位于所述DCI的所有信息域中的第一比特位。
在一种可选的实施方式中,若所述信息域中包含多个比特位,则所述多个比特位中的目标比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH,或者,所述多个比特位的预设取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述预设取值状态为所述信息域中复用的取值状态或所述信息域中预留的取值状态。
在一种可选的实施方式中,所述信息域为所述MBS的传播方式的专属信息域或所述DCI中已有的信息域。
在一种可选的实施方式中,所述DCI的配置信息包括物理下行控制信道PDCCH的循环冗余校验CRC对应的无线网络临时标识RNTI,不同的RNTI分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述RNTI指示的所述MBS的传播方式是根据所述RNTI的类型划分的。
在一种可选的实施方式中,所述DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述DCI的配置信息还包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述搜索空间关联的所述MBS的传播方式是根据所述搜索空间的类型划分的。
在一种可选的实施方式中,所述搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
在一种可选的实施方式中,所述搜索空间关联的所述MBS的传播方式是根据预设的频域位置划分的。
本申请第三个方面提供一种通信装置,所述装置包括:
接收模块,用于接收下行控制信息DCI,所述DCI用于调度多播广播业务MBS的网络物理下行共享信道PDSCH;
处理模块,用于根据所述DCI的指示信息和/或配置信息,确定所述MBS的传播方式。
在一种可选的实施方式中,所述MBS的传播方式包括广播和多播。
在一种可选的实施方式中,所述DCI的指示信息包括所述DCI中的信息域,所述DCI中的信息域用于指示所述DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,若所述信息域中包含一个比特位,则所述一个比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述信息域中的一个比特位位于所述DCI的所有信息域中的第一比特位。
在一种可选的实施方式中,若所述信息域中包含多个比特位,则所述多个比特位中的目标比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH,或者,所述多个比特位的预设取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述预设取值状态为所述信息域中复用的取值状态或所述信息域中预留的取值状态。
在一种可选的实施方式中,所述信息域为所述MBS的传播方式的专属信息域或所述DCI中已有的信息域。
在一种可选的实施方式中,所述DCI的配置信息包括物理下行控制信道PDCCH的循环冗余校验CRC对应的无线网络临时标识RNTI,不同的RNTI分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述RNTI指示的所述MBS的传播方式是根据所述RNTI的类型划分的。
在一种可选的实施方式中,所述DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述DCI的配置信息还包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述搜索空间关联的所述MBS的传播方式是根据所述搜索空间的类型划分的。
在一种可选的实施方式中,所述搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
在一种可选的实施方式中,所述搜索空间关联的所述MBS的传播方式是根据预设的频域位置划分的。
在一种可选的实施方式中,所述处理模块,还用于确定所述MBS的传播方式对应的DCI格式。
在一种可选的实施方式中,所述处理模块,还用于根据所述MBS的传播方式对应的DCI格式对所述DCI进行解码。
本申请第四个方面提供一种通信装置,所述装置包括:
发送模块,用于向终端设备发送下行控制信息DCI,所述DCI用于调度多播广播业务MBS的网络
物理下行共享信道PDSCH,所述DCI的指示信息和/或配置信息用于确定所述MBS的传播方式。
在一种可选的实施方式中,所述MBS的传播方式包括广播和多播。
在一种可选的实施方式中,所述DCI的指示信息包括所述DCI中的信息域,所述DCI中的信息域用于指示所述DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,若所述信息域中包含一个比特位,则所述一个比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述信息域中的一个比特位位于所述DCI的所有信息域中的第一比特位。
在一种可选的实施方式中,若所述信息域中包含多个比特位,则所述多个比特位中的目标比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH,或者,所述多个比特位的预设取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述预设取值状态为所述信息域中复用的取值状态或所述信息域中预留的取值状态。
在一种可选的实施方式中,所述信息域为所述MBS的传播方式的专属信息域或所述DCI中已有的信息域。
在一种可选的实施方式中,所述DCI的配置信息包括物理下行控制信道PDCCH的循环冗余校验CRC对应的无线网络临时标识RNTI,不同的RNTI分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述RNTI指示的所述MBS的传播方式是根据所述RNTI的类型划分的。
在一种可选的实施方式中,所述DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述DCI的配置信息还包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
在一种可选的实施方式中,所述搜索空间关联的所述MBS的传播方式是根据所述搜索空间的类型划分的。
在一种可选的实施方式中,所述搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
在一种可选的实施方式中,所述搜索空间关联的所述MBS的传播方式是根据预设的频域位置划分的。
本申请第五个方面提供一种终端设备,包括:
处理器、存储器、发送器以及与终端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面所述的通信方法。
本申请第六个方面提供一种网络设备,包括:
处理器、存储器、发送器以及与终端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第二方面所述的通信方法。
本申请第七个方面提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如第一方面所述的方法。
本申请第八个方面提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如第二方面所述的方法。
本申请第九个方面提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如第一方面所述的方法。
本申请第十个方面提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如第二方面所述的方法。
本申请第十一个方面提供一种计算机程序产品,包括计算机指令,该计算机指令被处理器执行时实现如第一方面所述的方法。
本申请第十二个方面提供一种计算机程序产品,包括计算机指令,该计算机指令被处理器执行时实现如第二方面所述的方法。
本申请第七个方面提供一种计算机程序,所述计算机程序使得计算机执行如第十三方面所述的方法。
本申请第七个方面提供一种计算机程序,所述计算机程序使得计算机执行如第十四方面所述的方法。
本申请第十五个方面提供一种装置,所述装置可以包括:至少一个处理器和接口电路,涉及的程序指令在该至少一个处理器中执行,以使得该通信装置实现如第一方面所述的方法。
本申请第十六个方面提供一种装置,所述装置可以包括:至少一个处理器和接口电路,涉及的程序指令在该至少一个处理器中执行,以使得该通信装置实现如第二方面所述的方法。
本申请第十七个方面提供一种通信装置,所述装置用于执行第一方面述的方法。
本申请第十八个方面提供一种通信装置,所述装置用于执行第二方面述的方法。
本申请实施例提供的通信方法及装置,终端设备接收下行控制信息DCI,该DCI用于调度多播广播业务MBS的物理下行共享信道PDSCH。随后,终端设备根据DCI的指示信息和/或配置信息,确定MBS的传播方式。通过该方式,终端设备可以通过DCI的指示信息和/或配置信息来确定MBS的传播方式,进而使得终端设备可以准确解码DCI。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种带宽示意图;
图2为本申请实施例提供的另一种带宽示意图;
图3为本申请实施例提供的再一种带宽示意图;
图4为本申请实施例提供的一种通信方法的场景示意图;
图5为本申请实施例提供的一种通信方法的信令交互图;
图6为本申请实施例提供的另一种通信方法的信令交互图;
图7为本申请实施例提供的再一种通信方法的信令交互图;
图8为本申请实施例提供的又一种通信方法的信令交互图;
图9为本申请实施例提供的又一种通信方法的信令交互图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的另一种通信装置的结构示意图;
图12为本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
当前,随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性要求,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)国际标准组织开始研发第五代移动通信技术(5th Generation Mobile Communication Technology,5G)。5G的主要应用场景包括增强移动超宽带(Enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-reliable and Low Latency Communications,URLLC)、大规模机器类通信(Massive Machine Type Communication,mMTC)。
其中,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,便如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
5G新空口(New Radio,NR)可以独立部署,在5G网络环境中,为了降低空口信令和快速恢复无线连接,快速恢复数据业务,定义一个新的RRC状态即RRC非激活(INACTIVE)态,RRC INACTIVE态与RRC空闲(IDLE)态和RRC激活(ACTIVE)态的区别如下:
RRC IDLE态:移动性为基于终端设备的小区选择重选,寻呼由核心网设备发起,寻呼区域由核心网设备配置。接入网设备侧不存在终端设备接入层(Access Stratum,AS)上下文,不存在RRC连接。
RRC CONNECTED态:存在RRC连接,接入网设备和终端设备存在终端设备AS上下文。网络侧知道终端设备的位置是具体小区级别的。移动性是网络侧控制的移动性。终端设备和接入网设备之间可以传输单播数据。
RRC INACTIVE态:移动性为基于终端设备的小区选择重选,存在核心网设备至新空口之间的连接,终端设备AS上下文存在某个接入网设备上,寻呼由无限接入网(Radio Access Network,RAN) 触发,基于RAN的寻呼区域由RAN管理,网络侧知道终端设备的位置是基于RAN的寻呼区域级别的。
5G中,最大的信道带宽可以是400MHZ,相比于长期演进技术(Long Term Evolution,LTE)最大20M带宽来说,带宽很大。若终端设备保持工作在宽带载波上,则终端设备的功率消耗较大,则终端设备的射频(Radio Frequency,RF)是可以根据终端设备实际的吞吐量来调整。为此引入带宽部分(Band Width Part,BWP)的动机来优化终端设备的功率消耗。
示例性的,图1为本申请实施例提供的一种带宽示意图,如图1所示,若终端设备的速率较低,则可以给终端设备配置较小的带宽。示例性的,图2为本申请实施例提供的另一种带宽示意图,如图2所示,若终端设备的速率较高,则可以给终端设备配置较高的带宽。示例性的,图3为本申请实施例提供的再一种带宽示意图,如图3所示,若终端设备支持高速率,或者操作在载波聚合(Carrier Aggregation,CA)模式下,可以给配置多个BWP。
此外,应理解,BWP的另一个目的就是触发一个小区中多个基础参数集(numerology)共存。目前idle状态或者inactive状态的终端设备驻留在初始(initial)BWP上,该BWP对于idle状态或者inactive状态的终端设备是可见的,在这个BWP里面可以获取主信息块(Master Information Block,MIB)、剩余最小系统信息(Remaining minimum system information,RMSI)、OSI其他系统信息(Other System Information,OSI)以及寻呼(paging)等信息。
下面对于LTE中的多媒体广播多播服务(Multimedia Broadcast Multicast Service,MBMS)和单点到多点(Single Cell Point To Multiploint,SC-PTM)系统进行说明。
MBMS是一种通过共享网络资源从一个数据源向多个用户设备传送数据的技术,在提供多媒体业务的同时能有效地利用网络资源,实现较高速率(256kbps)的多媒体业务广播和组播。
由于MBMS频谱效率较低,不足以有效地承载和支撑手机电视类型业务的运营。因此在无线接入网LTE项目中,3GPP明确提出增强对下行高速多媒体广播多播服务业务的支持能力,并确定了对物理层和空中接口的设计要求。
增强多媒体广播多播业务(Enhanced Multimedia Broadcast Multicast Service,E-MBMS)提出了单频网(Single Frequency Network,SFN)的概念,即采用统一频率在所有小区同时发送数据,但是要保证小区间的同步。单频网可以极大的提高小区整体信噪比分布和频谱效率,并基于网际互连协议(Internet Protocol,IP)多播协议实现业务的广播和多播。
在LTE/LTE-A中,MBMS只有广播承载模式,没有多播承载模式。MBMS业务的接收适用于RRC_CONNECTED或者RRC_IDLE状态的UE。
3GPP R13中,引入SC-PTM,SC-PTM基于MBMS网络架构,组播协调实体(Multi-cell/multicast Coordination Entity,MCE)定采用SC-PTM传输方式还是组播广播单频网(Multimedia Broadcast multicast service Single Frequency Network,MBSFN)传输方式。
在一些实施例中,引入新的逻辑信道单小区多播控制信道(Single Cell Multicast Control Channel,SC-MCCH)(LCID=11001)和单小区多播传输信道(Single Cell Multicast Transport Channel,SC-MTCH)(LCID=11001),映射到下行共享信道(DL-SCH,Downlink Shared CHannel)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上。SC-MCCH和SC-MTCH不支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)操作。
在一些实施例中,引入新的系统信息块(System Information Block,SIB)类型SIB20来传输SC-MCCH的配置信息,一个小区只有一个SC-MCCH。配置信息包括SC-MCCH的修改周期、重复周期、无线帧和子帧配置信息。
其中,SC-MCCH调度的无线帧为SFN mod mcch-RepetitionPeriod=mcch-Offset。SC-MCCH调度的子帧通过sc-mcch-Subframe指示。SC-MCCH只传输一个消息(SCPTMConfiguration),该消息用于配置SC-PTM的配置信息。
在一些实施例中,引入新的单小区无线网络临时标识(Single Cell RNTI,SC-RNTI)(固定取值FFFC)来识别SC-MCCH在PDCCH上的调度信息。用DCI 1C中8个比特中的一个比特来指示变更通知。修改周期边界定义为SFN mod m=0,其中m是SIB20中配置的修改周期(sc-mcch-ModificationPeriod)。
在NR中,无线链路层控制协议(Radio Link Control,RLC)AM模式带有自动重传请求(Automatic Repeat-reQuest,ARQ)反馈机制。接收端发送RLC状态报告来反馈RLC包的接收状态为确认(Acknowledge character,ACK)或者非确认(Negative Acknowledge character,ACK)NACK。发送端可以重复传输反馈NACK的SN号的RLC包的重复发送。
下面对于BWP的配置进行说明。
下行BWP通过BWP-Downlink参数配置,在一些实施例中,该参数中可以包括bwp-Id域标识当前BWP的ID,bwp-Common用于配置该下行BWP的公共参数。在另一些实施例中,BWP-DownlinkCommon参数中的genericParameters用于配置该下行BWP的频域起点和包含的PRB个数。对于一个终端专用单播BWP,BWP-Downlink中的bwp-Dedicated参数将配置该下行BWP上的下行接收参数,至少包括pdcch-Config,pdsch-Config,和sps-Config。其中,pdcch-Config用于指示该下行BWP上的PDCCH发送方式,pdsch-Config用于指示该下行BWP上的PDSCH发送方式,sps-Config用于指示该下行BWP上的SPS配置。
下面对于NR MBS的传播方式进行说明。
对于MBS业务,网络设备调度发送的方包括三种。
在第一种方式中,可以通过广播的方式发送MBS业务。该方式适用于终端设备处于RRC IDLE态或RRC INACTIVE态,以及终端设备处于RRC CONNECTED态。即,通过广播发送的MBS业务,终端设备无论处于哪种链接状态,只需保证在覆盖范围内能够接收到。
在第二种方式中,可以通过多播的方式发送MBS业务。该方式适用于组内终端都处于RRC CONNECTED态,网络设备通过PTM的发送方式,向一组终端设备发送相同的MBS业务。
在第三种方式中,可以通过单播的方式发送MBS业务。该方式适用于终端处于RRC CONNECTED态,网络设备通过一对一(Point to Point,PTP)的发送方式,向每一个终端设备发送相同的MBS业务。
下面对于NR MBS组调度方式进行说明。
在NR MBS中支持一对多的组播传输,在一对多的组播传输方式中,网络设备需要通过发送公共的下行控制信道(Physical Downlink Control Channel,PDCCH)调度公共的PDSCH,该公共PDCCH和公共PDSCH在一段公共的频域范围(CFR,Common Frequency Resource)内发送。目前,存在两种备选CFR配置方式:
在第一种CFR配置方式中,CFR配置为MBS专用的BWP,MBS专用BWP和终端的专用单播BWP关联,且CFR上配置的子载波间隔和循环前缀和终端专用单播BWP上的配置相同。
应理解,第一种方式中,CFR可以沿用现有的BWP信令配置,有利于减少标准的工作量。然而,由于CFR定义为BWP,若要求终端设备同时在专用单播BWP接收单播和在CFR内接收组播,则终端需要同时在两个BWP上接收下行传输,然而终端在既定时刻只有能力在一个BWP上接收下行。此外,即使终端设备在不同的时间接收单播和组播,由于两者位于不同的BWP,也会引入BWP切换时延。
在第二种CFR配置方式中,CFR配置为终端专用单播BWP范围内连续的多个物理资源块(Physical Resource Block,PRB)。
应理解,第二种方式中,可以避免BWP切换的问题,但由于第二种方式中CFR是连续的多个PRB,无法沿用目前以BWP为基础的信令配置,需要重新设计CFR的资源范围和上下行传输参数等的配置方式,对标准影响较大。
此外,由于调度公共PDSCH的公共PDCCH需要同时发送给多个接收终端,为了保证多个终端设备确定的公共PDCCH中承载的公共DCI的比特数相同,终端设备不能根据各自的专用单播BWP的配置确定公共DCI的比特数。另外,由于CFR的PRB个数可能和终端当前配置的初始BWP或CORESET#0(Control Resource SET 0)不同,终端也无法通过初始BWP或CORESET#0确定公共DCI的比特数。因此,不可避免的,公共DCI的比特数可能和终端设备在现有公共搜索空间(CSS)和用户特定搜索空间(USS)中接收的DCI比特数不同。为了降低终端设备的实现复杂度,目前终端设备在一个小区内最多只能接收4个不同比特数的DCI。其中,由小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)加扰的DCI比特数不超过3种。
传输MBS业务包括三种调度方式,包括PTM1、PTM2和PTP。
其中,PTM 1中,对于连接态的同一组的多个终端设备,可以使用组共享PDCCH调度组共享PDSCH。其中,组共享PDCCH的CRC使用组共享RNTI加扰,组共享PDSCH使用同一个组共享RNTI加扰。
PTM2中,对于连接态的同一组的多个终端设备,对每个终端设备使用终端设备专属PDCCH调度组共享PDSCH。其中,终端设备专属PDCCH的CRC使用终端设备专属RNTI(即C-RNTI)加扰,组共享PDSCH使用组共享RNTI加扰。
PTP中,对于连接态终端设备,对每个终端设备使用终端设备专属PDCCH调度终端设备专属PDSCH。其中,终端设备专属PDCCH的CRC使用终端设备专属RNTI(即C-RNTI)加扰,终端设备专属PDSCH使用终端设备专属RNTI(即C-RNTI)加扰。
应理解,PTM1和PTP已经支持。组共享PDCCH或PDSCH是指网络设备在一套时频资源上发送 的PDCCH或PDSCH,能够被同一组的多个终端设备接收。需要说明的是,本申请实施例中涉及的PTM调度方式均指PTM1。
应理解,MBS业务在连接态基于HARQ-ACK反馈的重传机制支持初传PTM1+重传PTM1的方式,或者,支持初传PTM1+重传PTP的方式。
相关技术中,通过广播调度MBS的DCI,与通过组播调度MBS的DCI采用相同的DCI格式(格式1_0或格式1_1)。无论采用哪种DCI格式,在发送广播和组播的时候,DCI中的信息域是可以根据配置而不同的。
对于广播,当前系统中,广播的发送方式主要用于网络向覆盖小区内发送系统消息,主要面向对象是非连接态/连接态的所有终端用户。因此,发送的DCI的格式、大小、控制资源集、搜索空间等信息对于终端设备均是公共已知的。终端设备只需要按照既定的规则去盲检测和解码对应收到的PDCCH即可,不会出现不匹配的情况。
对于单播,在当前系统中,网络与连接态的终端设备采用一对一通信,DCI的CRC采用终端专属表示C-RNTI进行加扰,并且网络还为终端设备配置了专属的搜索空间。因此,终端设备在盲检和解码PDCCH时都提前知道相关信息,不会出现问题。
需要说明的是,在当前系统中,并不支持MBS业务的发送,因此也就不存在区分PDCCH是用于调度广播的还是用于调度多播。
对于MBS业务,无论是广播,还是多播,都是面向一组终端设备发送的。因此,为了保证终端设备都能够正确接收和解码,相关的信息和配置在终端设备之间公共的。RRC IDLE态或RRC INACTIVE态的终端设备在接收MBS业务时,由于没有进入连接态,只能按照广播的方式接收MBS业务,因此接收到的DCI都是按照调度广播所用的DCI格式以及对应信息域进行解码。
然而,广播发送的MBS不但可以被RRC IDLE态或RRC INACTIVE态的终端设备接收,也可以被RRC CONNECTED态终端设备接收。RRC CONNECTED态终端设备在接收MBS业务时,无法判断收到的DCI是用于广播传输MBS的DCI还是用于多播传输MBS的DCI。
因为,广播和多播传输MBS的PDCCH的CRC校验都是采用GC-RNTI加扰的,单凭解扰GC-RNTI无法获知DCI的传播方式。调度广播的DCI和调度组播的DCI配置的信息域和每个信息域的比特大小不同,因此终端设备不知道采用哪种DCI的方式去解读DCI中的信息域内容,当前的设计中,并未考虑如何区分DCI是用于调度广播发送的MBS还是组播发送的MBS,因此会导致DCI无法正确解码。
示例性的,表1为DCI调度MBS广播和调度MBS多播的信息域对照表。如表1所示,用于调度MBS广播和调度MBS多播的DCI大小(size)一致。然而,DCI中包含的信息域以及每个信息域的大小不一定一致。并且这两种DCI都采用G-RNTI或G-CS-RNTI加扰CRC。因此,当终端设备进行PDCCH盲检测时,只能知道DCI是用于调度MBS业务的,但是无法获知DCI是用于调度广播的,还是用于调度多播的,终端设备也就无法确定应该采用哪种方式对于DCI进行解码。若终端设备假定其中一种方式进行解码,则解码出来的DCI与网络发送的DCI内容会不一致,错误的解码将导致无法正确解码被PDCCH调度的PDSCH,进一步导致系统可靠性下降。
表1
Figure PCTCN2021140598-appb-000001
为解决上述问题,本申请实施例提供一种通信方式及装置,终端设备通过DCI的指示信息和/或配置信息来确定MBS的传播方式,从而可以根据MBS的传播方式确定DCI的解码方式,进而使得DCI 可以准确解码。
下面对于本申请的应用场景进行举例说明。
图4为本申请实施例提供的一种通信方法的场景示意图。如图3所示,网络设备102和终端设备101之间通信。网络设备102向终端设备101发送DCI来调度MBS的PDSCH。终端设备101接收到DCI后,可以根据DCI的指示信息和/或配置信息,确定MBS的传播方式。随后,终端设备101可以进一步根据MBS的传播方式确定DCI的解码方式。
其中,终端设备101包括但不限于卫星或蜂窝电话、可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
网络设备102可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备102可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
下面以终端设备和网络设备等通信设备为例,以具体地实施例对本申请实施例的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图5为本申请实施例提供的一种通信方法的信令交互图。本申请实施例涉及的是如何进行侧行链路感知的过程。如图5所示,该方法包括:
S201、网络设备向终端设备发送下行控制信息DCI,DCI用于调度多播广播业务MBS的物理下行共享信道PDSCH。
S202、终端设备根据DCI的指示信息和/或配置信息,确定MBS的传播方式。
在本申请实施例中,当终端设备接收到终端设备发送的DCI后,终端设备可以识别出该DCI是用于调度广播的PDSCH,还是用于调度多播的PDSCH。
在一些实施例中,在确定DCI是用于调度广播的PDSCH还是用于调度多播的PDSCH后,终端设备还可以确定MBS的传播方式对应的DCI格式,并根据MBS的传播方式对应的DCI格式对DCI进行解码。
其中,DCI格式包括DCI的格式内容和大小。DCI的传播方式包括广播和多播,该多播可以理解为组播或多播。
应理解,本申请实施例对于如何确定MBS的传播方式不作限制,下面示例性的提供四种确定MBS的传播方式的方法。
在第一种方法中,DCI的指示信息包括DCI中的信息域,DCI中的信息域用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
应理解,本申请实施例对于DCI中的信息域的大小不作限制,可以为1比特,也可以为多比特。本申请实施例对于DCI中的信息域的类型也不作限制,可以专属信息域指示,也可以复用现有的信息域。
在一些实施例中,若信息域中包含一个比特位,则一个比特位的两个取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
示例性的,在一个比特位的信息域中,如表2所示,该比特位的取值0可以用于指示DCI用于调度广播的PDSCH,该比特位的取值1可以用于指示DCI用于多播的PDSCH。或者,在一个比特位的信息域中,如表3所示,该比特位的取值1可以用于指示DCI用于调度广播的PDSCH,该比特位的取值0可以用于指示DCI用于多播的PDSCH。
表2
1比特位信息 指示内容
0 用于调度广播的PDSCH
1 用于调度多播的PDSCH
表3
1比特位信息 指示内容
1 用于调度广播的PDSCH
0 用于调度多播的PDSCH
可选的,该信息域信息域中的一个比特位可以位于DCI的所有信息域中的任意位置,优选的,可以位于DCI的所有信息域中的第一比特位。
需要说明的是,该一比特的信息域可以为专属信息域或现有的信息域。若为专属信息域,则该信息域可以专用于广播或多播指示。若为现有的信息域,则可以包括但不限于DCI格式指示(1比特)、虚拟资源块到物理资源块(VRB-to-PRB)映射(1比特)或其他信息域。
在另一些实施例中,若信息域中包含多个比特位,则多个比特位中的目标比特位的两个取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH,或者,多个比特位的预设取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一些实施例中,目标比特位可以为多比特位中的任意比特位,例如,第一比特位。示例性的,多比特中的1比特位可以单独指示DCI用于调度广播的PDSCH或多播的PDSCH。如表4所示,多比特中的第一比特位的取值为0时,可以指示DCI用于调度广播的PDSCH,多比特中的第一比特位的取值为1时,可以指示DCI用于调度多播的PDSCH。
表4
Figure PCTCN2021140598-appb-000002
在一些实施例中,目标比特位的预设取值状态可以为多比特位中复用的取值状态。
示例性的,多比特中的某一个或几个状态对应DCI用于调度广播的PDSCH或多播的PDSCH。如表4所示,多比特信息域的取值状态000、001、010和011用于指示DCI用于调度广播的PDSCH。比特信息域的取值状态100、101、110和111用于指示DCI用于调度多播的PDSCH。
在另一些实施例中,目标比特位的预设取值状态可以为多比特位中预留的取值状态。
示例性的,若原本DCI的某一个信息域只使用了其中的一部分取值状态,其他取值状态并没有使用。在保证原有取值状态不改变的情况下,可以利用预留的两个取值状态,来指示不同的DCI调度方式。如表5所示,预留的取值状态110用于指示DCI用于调度广播的PDSCH,预留的取值状态111用于指示DCI用于调度多播的PDSCH。
表5
Figure PCTCN2021140598-appb-000003
在第二种方法中,DCI的配置信息包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)的循环冗余校验(Cyclic Redundancy Check,CRC)对应的无线网络临时标识(Radio Network Tempory Identity,RNTI)RNTI,不同的RNTI分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一些实施例中,当PDCCH格式1_x的CRC采用Y-RNTI加扰,且系统支持的Y-RNTI的总数为M个时,用于调度MBS广播发送的Y-RNTI个数可以设置为K个,用于调度MBS多播的Y-RNTI个数可以设置为L个。
其中,K≤M,L≤M,K+L≤M,K/L/M均为≥0的整数。DCI格式1_x包含但不限于:DCI格式1_0、1_1、1_2。Y-RNTI可以为组无线网络临时标识(G-RNTI)、组配置调度无线网络临时标识(G-CS-RNTI),或其他调度MBS的RNTI。
示例性的,若系统支持的G-RNTI最大个数为128个,其中第1-64个G-RNTI对应的是DCI用于调度广播的PDSCH,第65-128个G-RNTI对应的是DCI用于调度多播的PDSCH。当终端设备收到PDCCH以后,可以通过解扰CRC上对应的G-RNTI,可以获知DCI用于调度广播的PDSCH还是多播的PDSCH,然后按照对应广播或者多播对应的DCI格式内容和大小解码DCI,获取下行控制信息。
在一些实施例中,RNTI指示的MBS的传播方式是根据RNTI的类型划分的。
示例性的,当PDCCH格式1_x的CRC采用Y-RNTI加扰,Y-RNTI专门用于MBS广播的调度;和/或,当PDCCH格式1_x的CRC采用Z-RNTI加扰,Z-RNTI专门用于MBS多播的调度。其中,Y-RNTI和Z-RNTI为不同的RNTI。
在第三种方法中,DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联DCI调度的广播的PDSCH或多播的PDSCH。
示例性的,用于调度MBS广播的PDCCH使用CORESET#1,相应的CORESET#1与DCI调度的广播的PDSCH关联。用于调度MBS多播的PDCCH使用CORESET#2,相应的CORESET#2与DCI调度的多播的PDSCH关联。终端设备可以根据不同CORESET获取监测到的PDCCH,来判断当前PDCCH适用于广播还是播的。随后,再按照对应广播或者多播对应的DCI格式内容和大小进行解码DCI,获取下行控制信息。
在第四种方法中,DCI的配置信息还包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联DCI调度的广播的PDSCH或多播的PDSCH。
应理解,DCI调度的广播的PDSCH对应的PDCCH和DCI调度的多播的PDSCH对应的PDCCH,不会出现在同一个或同一种搜索空间中。
在一些实施例中,搜索空间关联的MBS的传播方式是根据搜索空间的类型划分的。搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
示例性的,MBS业务的专属搜索空间,可以为在连接态接收多播业务时,配置的用于接收调度MBS业务的PDCCH的专属的搜索空间。
在另一些实施例中,搜索空间关联的MBS的传播方式是根据预设的频域位置划分的。
示例性的,MBS广播的传播方式对应的频域位置为特定的位置,且频域大小为CORESET#0的大小,或频域大小为SIB1配置的DL BWP的大小。连接态的终端设备,只要在该特定的频域位置收到的PDCCH(CRC使用Y-RNTI加扰),则都可以确定是用于调度MBS广播的。除该特定位置以外的搜索空间收到的PDCCH(CRC使用Y-RNTI加扰),则都可以确定是用于调度MBS多播的。随后,可以按照广播或者多播对应的DCI格式内容和大小进行解码DCI,获取下行控制信息。
需要说明的是,上述四种确定MBS的传播方式并不构成对申请的限制,还可以采用任意其他方式,通过指示信息和/或配置信息来确定MBS的传播方式。
本申请实施例提供的通信方法,通过引入DCI的传播方式的识别,可以有效避免DCI的混淆,尤其是对于连接态终端设备在进行盲检测PDCCH时,可以避免错误解码,提升了整体系统的性能,同时能够让广播DCI和多播DCI在相同长度的前提下配置不同的信息域,让MBS的调度更加灵活。
本申请实施例提供的通信方法,终端设备接收下行控制信息DCI,该DCI用于调度多播广播业务MBS的物理下行共享信道PDSCH。随后,终端设备根据DCI的指示信息和/或配置信息,确定MBS的传播方式。通过该方式,终端设备可以通过DCI的指示信息和/或配置信息来确定MBS的传播方式,进而使得终端设备可以准确解码DCI。
在上述实施例的基础上,下面对于上述四种方法进行具体说明。
在第一种方法中,DCI的指示信息包括DCI中的信息域,DCI中的信息域用于指示DCI用于调度广播的PDSCH或多播的PDSCH。图6为本申请实施例提供的另一种通信方法的信令交互图,如图6所示,该方法包括:
S301、终端设备接收下行控制信息DCI,DCI用于调度多播广播业务MBS的物理下行共享信道PDSCH。
S302、终端设备根据DCI中的信息域,确定DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可能的设计中,MBS的传播方式包括广播和多播。
在一种可能的设计中,若信息域中包含一个比特位,则一个比特位的两个取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可能的设计中,信息域中的一个比特位位于DCI的所有信息域中的第一比特位。
在一种可能的设计中,若信息域中包含多个比特位,则多个比特位中的目标比特位的两个取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH,或者,多个比特位的预设取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可能的设计中,预设取值状态为信息域中复用的取值状态或信息域中预留的取值状态。
在一种可能的设计中,信息域为MBS的传播方式的专属信息域或DCI中已有的信息域。
在第二种方法中,DCI的配置信息包括PDCCH的CRC对应的RNTI,不同的RNTI分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。图7为本申请实施例提供的再一种通信方法的信令交互图,如图7所示,该方法包括:
S401、终端设备接收下行控制信息DCI,DCI用于调度多播广播业务MBS的物理下行共享信道PDSCH。
S402、终端设备根据DCI的配置信息中PDCCH的CRC对应的RNTI,确定DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可能的设计中,MBS的传播方式包括广播和多播。
在一种可能的设计中,RNTI指示的MBS的传播方式是根据RNTI的类型划分的。
在第三种方法中,DCI的配置信息包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联DCI调度的广播的PDSCH或多播的PDSCH。图8为本申请实施例提供的又一种通信方法的信令交互图,如图8所示,该方法包括:
S501、终端设备接收下行控制信息DCI,DCI用于调度多播广播业务MBS的物理下行共享信道PDSCH。
S502、终端设备根据DCI的配置信息中调度PDCCH所使用的控制资源集,确定DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可能的设计中,MBS的传播方式包括广播和多播。
在第四种方法中,DCI的配置信息包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联DCI调度的广播的PDSCH或多播的PDSCH。图9为本申请实施例提供的又一种通信方法的信令交互图,如图9所示,该方法包括:
S601、终端设备接收下行控制信息DCI,DCI用于调度多播广播业务MBS的物理下行共享信道 PDSCH。
S602、终端设备根据DCI的配置信息中调度PDCCH对应的搜索空间,确定DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可能的设计中,MBS的传播方式包括广播和多播。
在一种可能的设计中,搜索空间关联的MBS的传播方式是根据搜索空间的类型划分的。
在一种可能的设计中,搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
在一种可能的设计中,搜索空间关联的MBS的传播方式是根据预设的频域位置划分的。
本申请实施例提供的通信方法,终端设备接收下行控制信息DCI,该DCI用于调度多播广播业务MBS的物理下行共享信道PDSCH。随后,终端设备根据DCI的指示信息和/或配置信息,确定MBS的传播方式。通过该方式,终端设备可以通过DCI的指示信息和/或配置信息来确定MBS的传播方式,进而使得终端设备可以准确解码DCI。
图10为本申请实施例提供的一种通信装置的结构示意图。该通信装置可以通过软件、硬件或者两者的结合实现,以执行上述实施例中终端设备侧的通信方法。如图10所示,该通信装置700包括:接收模块701和处理模块702。
接收模块701,用于接收下行控制信息DCI,DCI用于调度多播广播业务MBS的网络物理下行共享信道PDSCH;
处理模块702,用于根据DCI的指示信息和/或配置信息,确定MBS的传播方式。
在一种可选的实施方式中,MBS的传播方式包括广播和多播。
在一种可选的实施方式中,DCI的指示信息包括DCI中的信息域,DCI中的信息域用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,若信息域中包含一个比特位,则一个比特位的两个取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,信息域中的一个比特位位于DCI的所有信息域中的第一比特位。
在一种可选的实施方式中,若信息域中包含多个比特位,则多个比特位中的目标比特位的两个取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH,或者,多个比特位的预设取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,预设取值状态为信息域中复用的取值状态或信息域中预留的取值状态。
在一种可选的实施方式中,信息域为MBS的传播方式的专属信息域或DCI中已有的信息域。
在一种可选的实施方式中,DCI的配置信息包括物理下行控制信道PDCCH的循环冗余校验CRC对应的无线网络临时标识RNTI,不同的RNTI分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,RNTI指示的MBS的传播方式是根据RNTI的类型划分的。
在一种可选的实施方式中,DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联DCI调度的广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,DCI的配置信息还包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联DCI调度的广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,搜索空间关联的MBS的传播方式是根据搜索空间的类型划分的。
在一种可选的实施方式中,搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
在一种可选的实施方式中,搜索空间关联的MBS的传播方式是根据预设的频域位置划分的。
在一种可选的实施方式中,处理模块702,还用于确定MBS的传播方式对应的DCI格式。
在一种可选的实施方式中,处理模块702,还用于根据MBS的传播方式对应的DCI格式对DCI进行解码。
本申请实施例提供的通信装置,可以执行上述实施例中的终端设备侧的通信方法的动作,其实现原理和技术效果类似,在此不再赘述。
图11为本申请实施例提供的另一种通信装置的结构示意图。该通信装置可以通过软件、硬件或者两者的结合实现,以执行上述实施例中网络设备侧的通信方法。如图11所示,该通信装置800包括:存储模块801和发送模块802。
存储模块801,用于存储可执行程序。
发送模块802,用于向终端设备发送下行控制信息DCI,DCI用于调度多播广播业务MBS的网络
物理下行共享信道PDSCH,DCI的指示信息和/或配置信息用于确定MBS的传播方式。
在一种可选的实施方式中,MBS的传播方式包括广播和多播。
在一种可选的实施方式中,DCI的指示信息包括DCI中的信息域,DCI中的信息域用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,若信息域中包含一个比特位,则一个比特位的两个取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,信息域中的一个比特位位于DCI的所有信息域中的第一比特位。
在一种可选的实施方式中,若信息域中包含多个比特位,则多个比特位中的目标比特位的两个取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH,或者,多个比特位的预设取值状态分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,预设取值状态为信息域中复用的取值状态或信息域中预留的取值状态。
在一种可选的实施方式中,信息域为MBS的传播方式的专属信息域或DCI中已有的信息域。
在一种可选的实施方式中,DCI的配置信息包括物理下行控制信道PDCCH的循环冗余校验CRC对应的无线网络临时标识RNTI,不同的RNTI分别用于指示DCI用于调度广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,RNTI指示的MBS的传播方式是根据RNTI的类型划分的。
在一种可选的实施方式中,DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联DCI调度的广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,DCI的配置信息还包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联DCI调度的广播的PDSCH或多播的PDSCH。
在一种可选的实施方式中,搜索空间关联的MBS的传播方式是根据搜索空间的类型划分的。
在一种可选的实施方式中,搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
在一种可选的实施方式中,搜索空间关联的MBS的传播方式是根据预设的频域位置划分的。
本申请实施例提供的通信装置,可以执行上述实施例中的网络设备侧的通信方法的动作,其实现原理和技术效果类似,在此不再赘述。
图12为本申请实施例提供的一种通信设备的结构示意图。如图12所示,该电子设备可以包括:处理器91(例如CPU)、存储器92、接收器93和发送器94;接收器93和发送器94耦合至处理器91,处理器91控制接收器93的接收动作、处理器91控制发送器94的发送动作。存储器92可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器92中可以存储各种信息,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的电子设备还可以包括:电源95、通信总线96以及通信端口97。接收器93和发送器94可以集成在电子设备的收发信机中,也可以为电子设备上独立的收发天线。通信总线96用于实现元件之间的通信连接。上述通信端口97用于实现电子设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器92用于存储计算机可执行程序代码,程序代码包括信息;当处理器91执行信息时,信息使处理器91执行上述方法实施例中终端设备侧的处理动作,使发送器94执行上述方法实施例中终端设备侧的发送动作,使接收器93执行上述方法实施例中终端设备侧的接收动作,其实现原理和技术效果类似,在此不再赘述。
或者,当处理器91执行信息时,信息使处理器91执行上述方法实施例中网络设备侧的处理动作,使发送器94执行上述方法实施例中网络设备侧的发送动作,使接收器93执行上述方法实施例中网络设备侧的接收动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供一种通信系统,包括目标终端、辅助终端和网络设备,以执行上述通信方法。
本申请实施例还提供了一种芯片,包括处理器和接口。其中接口用于输入输出处理器所处理的数据或指令。处理器用于执行以上方法实施例中提供的方法。该芯片可以应用于上述通信装置中。
本发明还提供了一种计算机可读存储介质,该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质,具体的,该计算机可读存储介质中存储有程序信息,程序信息用于上述通信方法。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行以上方法实施例提供的通信方法。
本申请实施例还提供一种程序产品,例如计算机可读存储介质,该程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述方法实施例提供的通信方法。
本申请实施例还提供一种装置,装置可以包括:至少一个处理器和接口电路,涉及的程序指令在该至少一个处理器中执行,以使得该通信装置实现上述方法实施例提供的通信方法。
本申请实施例还提供一种通信装置,装置用于执行上述方法实施例提供的通信方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生根据本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务端或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务端或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务端、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (70)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收下行控制信息DCI,所述DCI用于调度多播广播业务MBS的物理下行共享信道PDSCH;
    所述终端设备根据所述DCI的指示信息和/或配置信息,确定所述MBS的传播方式。
  2. 根据权利要求1所述的方法,其特征在于,所述MBS的传播方式包括广播和多播。
  3. 根据权利要求2所述的方法,其特征在于,所述DCI的指示信息包括所述DCI中的信息域,所述DCI中的信息域用于指示所述DCI用于调度广播的PDSCH或多播的PDSCH。
  4. 根据权利要求3所述的方法,其特征在于,若所述信息域中包含一个比特位,则所述一个比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  5. 根据权利要求4所述的方法,其特征在于,所述信息域中的一个比特位位于所述DCI的所有信息域中的第一比特位。
  6. 根据权利要求3所述的方法,其特征在于,若所述信息域中包含多个比特位,则所述多个比特位中的目标比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH,或者,所述多个比特位的预设取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  7. 根据权利要求6所述的方法,其特征在于,所述预设取值状态为所述信息域中复用的取值状态或所述信息域中预留的取值状态。
  8. 根据权利要求3-7任一项所述的方法,其特征在于,所述信息域为所述MBS的传播方式的专属信息域或所述DCI中已有的信息域。
  9. 根据权利要求2所述的方法,其特征在于,所述DCI的配置信息包括物理下行控制信道PDCCH的循环冗余校验CRC对应的无线网络临时标识RNTI,不同的RNTI分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  10. 根据权利要求9所述的方法,其特征在于,所述RNTI指示的所述MBS的传播方式是根据所述RNTI的类型划分的。
  11. 根据权利要求2所述的方法,其特征在于,所述DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
  12. 根据权利要求2所述的方法,其特征在于,所述DCI的配置信息还包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
  13. 根据权利要求12所述的方法,其特征在于,所述搜索空间关联的所述MBS的传播方式是根据所述搜索空间的类型划分的。
  14. 根据权利要求13所述的方法,其特征在于,所述搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
  15. 根据权利要求12所述的方法,其特征在于,所述搜索空间关联的所述MBS的传播方式是根据预设的频域位置划分的。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,在所述终端设备根据所述DCI的配置信息,确定所述MBS的传播方式之后,所述方法还包括:
    所述终端设备确定所述MBS的传播方式对应的DCI格式。
  17. 根据权利要求16所述的方法,其特征在于,在所述终端设备确定所述MBS的传播方式对应的DCI格式之后,所述方法还包括:
    所述终端设备根据所述MBS的传播方式对应的DCI格式对所述DCI进行解码。
  18. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送下行控制信息DCI,所述DCI用于调度多播广播业务MBS的网络物理下行共享信道PDSCH,所述DCI的指示信息和/或配置信息用于确定所述MBS的传播方式。
  19. 根据权利要求18所述的方法,其特征在于,所述MBS的传播方式包括广播和多播。
  20. 根据权利要求19所述的方法,其特征在于,所述DCI的指示信息包括所述DCI中的信息域,所述DCI中的信息域用于指示所述DCI用于调度广播的PDSCH或多播的PDSCH。
  21. 根据权利要求20所述的方法,其特征在于,若所述信息域中包含一个比特位,则所述一个比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  22. 根据权利要求21所述的方法,其特征在于,所述信息域中的一个比特位位于所述DCI的所有信 息域中的第一比特位。
  23. 根据权利要求20所述的方法,其特征在于,若所述信息域中包含多个比特位,则所述多个比特位中的目标比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH,或者,所述多个比特位的预设取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  24. 根据权利要求23所述的方法,其特征在于,所述预设取值状态为所述信息域中复用的取值状态或所述信息域中预留的取值状态。
  25. 根据权利要求20-24任一项所述的方法,其特征在于,所述信息域为所述MBS的传播方式的专属信息域或所述DCI中已有的信息域。
  26. 根据权利要求19所述的方法,其特征在于,所述DCI的配置信息包括物理下行控制信道PDCCH的循环冗余校验CRC对应的无线网络临时标识RNTI,不同的RNTI分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  27. 根据权利要求26所述的方法,其特征在于,所述RNTI指示的所述MBS的传播方式是根据所述RNTI的类型划分的。
  28. 根据权利要求19所述的方法,其特征在于,所述DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
  29. 根据权利要求19所述的方法,其特征在于,所述DCI的配置信息还包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
  30. 根据权利要求29所述的方法,其特征在于,所述搜索空间关联的所述MBS的传播方式是根据所述搜索空间的类型划分的。
  31. 根据权利要求30所述的方法,其特征在于,所述搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
  32. 根据权利要求29所述的方法,其特征在于,所述搜索空间关联的所述MBS的传播方式是根据预设的频域位置划分的。
  33. 一种通信装置,其特征在于,包括:
    接收模块,用于接收下行控制信息DCI,所述DCI用于调度多播广播业务MBS的网络物理下行共享信道PDSCH;
    处理模块,用于根据所述DCI的指示信息和/或配置信息,确定所述MBS的传播方式。
  34. 根据权利要求33所述的装置,其特征在于,所述MBS的传播方式包括广播和多播。
  35. 根据权利要求34所述的装置,其特征在于,所述DCI的指示信息包括所述DCI中的信息域,所述DCI中的信息域用于指示所述DCI用于调度广播的PDSCH或多播的PDSCH。
  36. 根据权利要求35所述的装置,其特征在于,若所述信息域中包含一个比特位,则所述一个比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  37. 根据权利要求36所述的装置,其特征在于,所述信息域中的一个比特位位于所述DCI的所有信息域中的第一比特位。
  38. 根据权利要求36所述的装置,其特征在于,若所述信息域中包含多个比特位,则所述多个比特位中的目标比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH,或者,所述多个比特位的预设取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  39. 根据权利要求38所述的装置,其特征在于,所述预设取值状态为所述信息域中复用的取值状态或所述信息域中预留的取值状态。
  40. 根据权利要求35-39任一项所述的装置,其特征在于,所述信息域为所述MBS的传播方式的专属信息域或所述DCI中已有的信息域。
  41. 根据权利要求34所述的装置,其特征在于,所述DCI的配置信息包括物理下行控制信道PDCCH的循环冗余校验CRC对应的无线网络临时标识RNTI,不同的RNTI分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  42. 根据权利要求41所述的装置,其特征在于,所述RNTI指示的所述MBS的传播方式是根据所述RNTI的类型划分的。
  43. 根据权利要求34所述的装置,其特征在于,所述DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
  44. 根据权利要求34所述的装置,其特征在于,所述DCI的配置信息还包括调度PDCCH对应的搜 索空间,不同的搜索空间分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
  45. 根据权利要求44所述的装置,其特征在于,所述搜索空间关联的所述MBS的传播方式是根据所述搜索空间的类型划分的。
  46. 根据权利要求45所述的装置,其特征在于,所述搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
  47. 根据权利要求44所述的装置,其特征在于,所述搜索空间关联的所述MBS的传播方式是根据预设的频域位置划分的。
  48. 根据权利要求33-47任一项所述的装置,其特征在于,所述处理模块,还用于确定所述MBS的传播方式对应的DCI格式。
  49. 根据权利要求48所述的装置,其特征在于,所述处理模块,还用于根据所述MBS的传播方式对应的DCI格式对所述DCI进行解码。
  50. 一种通信装置,其特征在于,包括:
    发送模块,用于向终端设备发送下行控制信息DCI,所述DCI用于调度多播广播业务MBS的网络物理下行共享信道PDSCH,所述DCI的指示信息和/或配置信息用于确定所述MBS的传播方式。
  51. 根据权利要求50所述的装置,其特征在于,所述MBS的传播方式包括广播和多播。
  52. 根据权利要求51所述的装置,其特征在于,所述DCI的指示信息包括所述DCI中的信息域,所述DCI中的信息域用于指示所述DCI用于调度广播的PDSCH或多播的PDSCH。
  53. 根据权利要求52所述的装置,其特征在于,若所述信息域中包含一个比特位,则所述一个比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  54. 根据权利要求53所述的装置,其特征在于,所述信息域中的一个比特位位于所述DCI的所有信息域中的第一比特位。
  55. 根据权利要求52所述的装置,其特征在于,若所述信息域中包含多个比特位,则所述多个比特位中的目标比特位的两个取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH,或者,所述多个比特位的预设取值状态分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  56. 根据权利要求55所述的装置,其特征在于,所述预设取值状态为所述信息域中复用的取值状态或所述信息域中预留的取值状态。
  57. 根据权利要求52-56任一项所述的装置,其特征在于,所述信息域为所述MBS的传播方式的专属信息域或所述DCI中已有的信息域。
  58. 根据权利要求51所述的装置,其特征在于,所述DCI的配置信息包括物理下行控制信道PDCCH的循环冗余校验CRC对应的无线网络临时标识RNTI,不同的RNTI分别用于指示所述DCI用于调度所述广播的PDSCH或所述多播的PDSCH。
  59. 根据权利要求58所述的装置,其特征在于,所述RNTI指示的所述MBS的传播方式是根据所述RNTI的类型划分的。
  60. 根据权利要求51所述的装置,其特征在于,所述DCI的配置信息还包括调度PDCCH所使用的控制资源集,不同的控制资源集分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
  61. 根据权利要求51所述的装置,其特征在于,所述DCI的配置信息还包括调度PDCCH对应的搜索空间,不同的搜索空间分别用于关联所述DCI调度的所述广播的PDSCH或所述多播的PDSCH。
  62. 根据权利要求61所述的装置,其特征在于,所述搜索空间关联的所述MBS的传播方式是根据所述搜索空间的类型划分的。
  63. 根据权利要求62所述的装置,其特征在于,所述搜索空间的类型包括公共搜索空间、专属搜索空间或业务专属搜索空间。
  64. 根据权利要求61所述的装置,其特征在于,所述搜索空间关联的所述MBS的传播方式是根据预设的频域位置划分的。
  65. 一种终端设备,其特征在于,包括:处理器、存储器、发送器和接收器;
    所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-17中任一项所述的方法;
    所述发送器用于执行所述终端设备的发送动作,所述接收器用于执行所述终端设备的接收动作。
  66. 一种网络设备,其特征在于,包括:处理器、存储器、发送器和接收器;
    所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求18-32中任一项所述的方法;
    所述发送器用于执行所述网络设备的发送动作,所述接收器用于执行所述网络设备的接收动作。
  67. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-17或18-32中任一项所述的方法。
  68. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-17或18-32中任一项所述的方法。
  69. 一种计算机程序产品,其特征在于,包括计算机程序信息,该计算机程序信息使得计算机执行如权利要求1-17或18-32中任一项所述的方法。
  70. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-17或18-32中任一项所述的方法。
PCT/CN2021/140598 2021-12-22 2021-12-22 通信方法及装置 WO2023115411A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140598 WO2023115411A1 (zh) 2021-12-22 2021-12-22 通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140598 WO2023115411A1 (zh) 2021-12-22 2021-12-22 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023115411A1 true WO2023115411A1 (zh) 2023-06-29

Family

ID=86901070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140598 WO2023115411A1 (zh) 2021-12-22 2021-12-22 通信方法及装置

Country Status (1)

Country Link
WO (1) WO2023115411A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145839A1 (en) * 2016-11-21 2018-05-24 Qualcomm Incorporated Data multicast or broadcast on control channel for narrowband communication
CN111901763A (zh) * 2020-04-24 2020-11-06 中兴通讯股份有限公司 一种传输方法、设备和存储介质
US20210250918A1 (en) * 2020-02-10 2021-08-12 Qualcomm Incorporated Techniques for indicating downlink control information in multicast/broadcast wireless communications
CN113473632A (zh) * 2020-03-31 2021-10-01 维沃移动通信有限公司 物理下行共享信道的调度方法、网络设备及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145839A1 (en) * 2016-11-21 2018-05-24 Qualcomm Incorporated Data multicast or broadcast on control channel for narrowband communication
US20210250918A1 (en) * 2020-02-10 2021-08-12 Qualcomm Incorporated Techniques for indicating downlink control information in multicast/broadcast wireless communications
CN113473632A (zh) * 2020-03-31 2021-10-01 维沃移动通信有限公司 物理下行共享信道的调度方法、网络设备及终端设备
CN111901763A (zh) * 2020-04-24 2020-11-06 中兴通讯股份有限公司 一种传输方法、设备和存储介质

Similar Documents

Publication Publication Date Title
US10939251B2 (en) User equipment and base station
US11949598B2 (en) Window adjustment method and apparatus, network device, terminal device
WO2021134298A1 (zh) 一种资源指示方法及装置、通信设备
WO2021056152A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
CN115088356A (zh) 用于nr多播服务的组调度方法和设备
CN113678500B (zh) 一种反馈资源配置方法及通信方法、装置、通信设备
WO2021138805A1 (zh) 一种业务同步调度方法及装置、通信设备
WO2022006849A1 (zh) Mbs业务的tci状态管理方法及装置、终端设备
US20230361923A1 (en) Mbs service configuration method and terminal device
WO2022205570A1 (zh) 无线通信方法、终端设备和网络设备
WO2022120837A1 (zh) Mbs业务的半静态调度方法及装置、终端设备、网络设备
WO2022141545A1 (zh) 一种mcch调度传输方法及装置、终端设备
CN113728683B (zh) 一种bwp配置方法及装置、终端设备、网络设备
WO2022141088A1 (zh) 一种mbs业务的传输方法及装置、终端设备
WO2023115411A1 (zh) 通信方法及装置
WO2021051321A1 (zh) 一种业务数据传输方法及装置、终端设备
WO2024031307A1 (zh) 混合自动重传请求harq反馈方法、装置、设备及介质
WO2022021024A1 (zh) 一种bwp切换的方法及装置、终端设备
WO2022126658A1 (zh) 一种mbs配置变更的方法及装置、终端设备、网络设备
WO2022141255A1 (zh) 一种mbs业务的配置方法及装置、网络设备、终端设备
WO2024031395A1 (zh) 重复传输方法、终端设备和网络设备
WO2023050319A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151250A1 (zh) 无线通信方法、终端设备以及网络设备
WO2022021410A1 (zh) 一种mbs业务传输方法及装置、终端设备、网络设备
WO2023115492A1 (zh) 信息发送方法、信息接收方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968560

Country of ref document: EP

Kind code of ref document: A1