WO2015170771A1 - Windshield - Google Patents

Windshield Download PDF

Info

Publication number
WO2015170771A1
WO2015170771A1 PCT/JP2015/063392 JP2015063392W WO2015170771A1 WO 2015170771 A1 WO2015170771 A1 WO 2015170771A1 JP 2015063392 W JP2015063392 W JP 2015063392W WO 2015170771 A1 WO2015170771 A1 WO 2015170771A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
region
windshield
opening
intermediate film
Prior art date
Application number
PCT/JP2015/063392
Other languages
French (fr)
Japanese (ja)
Inventor
神吉 哲
尚志 朝岡
永史 小川
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2016518241A priority Critical patent/JP6843614B2/en
Publication of WO2015170771A1 publication Critical patent/WO2015170771A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/1011Properties of the bulk of a glass sheet having predetermined tint or excitation purity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • B32B17/10348Specific parts of the laminated safety glass or glazing being colored or tinted comprising an obscuration band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating

Definitions

  • the present invention relates to an automobile windshield.
  • Patent Document 1 A safety system for operating a brake has been proposed (for example, Patent Document 1).
  • a safety system measures the distance to the vehicle ahead by using a laser radar or a camera.
  • Laser radars and cameras are generally placed inside a windshield and measure by irradiating infrared rays forward.
  • measurement devices such as the above-mentioned laser radar and camera are often attached to the inner surface of the glass plate constituting the windshield, but in order to prevent such measurement equipment from being seen from the outside, the glass plate A mask layer coated with dark ceramic or the like is formed on the inner surface, and a measuring device is disposed thereon. At this time, an opening is formed in the mask layer, and laser light irradiated and received by the laser radar, visible light and / or infrared light received by the camera are irradiated and received through the opening.
  • the windshield as described above is manufactured by applying a mask layer on a glass plate and then heating, and thereafter forming a curved surface.
  • the mask layer is formed in a dark color such as black, the amount of heat absorbed in the glass plate is larger than that in a region where the mask layer is not formed.
  • the thermal expansion coefficient of the mask layer formed of ceramic is different from that of glass, the amount of expansion due to heat absorption is different. Therefore, it has been found that the glass plate is distorted near the boundary between the mask layer and the region where the mask layer is not formed, for example, as shown in FIG. 53, due to the difference in expansion amount.
  • Such a problem is not limited to the inter-vehicle distance measuring device, and may be a problem that may occur in general information acquisition devices that acquire information from outside the vehicle by receiving light such as an optical beacon. Accordingly, the present invention has been made to solve the above-described problem, and in a windshield to which an information acquisition device that performs light irradiation and / or light reception through an opening of a mask layer can be attached, light irradiation and / or An object of the present invention is to provide a windshield that can accurately receive light and accurately process information.
  • Invention 1 provides the invention of the aspect hung up below.
  • the present invention is a windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged, and masks that shield the field of view from outside the vehicle and have at least one opening
  • the glass plate and the mask material constituting the mask layer are different in thermal expansion coefficient, and the glass plate and the mask layer are both heated to form the mask.
  • At least a part of the peripheral edge portion of the opening in the layer is formed with an opening peripheral region in which the ratio of the mask material arranged per unit area is small, and the information acquisition device is provided on the inside of the glass plate. In the surface, information is obtained so that information can be acquired through a region inside the opening peripheral region in the opening.
  • Item 2. The windshield according to Item 1, wherein the opening peripheral region is formed over the entire periphery of the peripheral portion of the opening.
  • the glass plate exposed to the outside inside the opening peripheral region is composed of a strain region along the inner peripheral edge of the opening peripheral region, and a central region adjacent to the inside of the strain region, Item 3.
  • Item 4. The windshield according to Item 3, wherein a width of the strain region is 6 mm or less.
  • the opening peripheral area includes a plurality of mask pieces formed of the mask material, and the plurality of mask pieces are stacked on the glass plate at intervals from each other. Windshield described in.
  • Item 6. The windshield according to Item 5, wherein each of the mask pieces is formed in a circular shape.
  • Item 7. The windshield according to Item 5 or 6, wherein the mask pieces are arranged in a staggered pattern.
  • the glass plate includes an outer glass plate, an inner glass plate disposed to face the outer glass plate, and an intermediate film disposed between the outer glass plate and the inner glass plate. Windshield described in any one.
  • Item 9 The windshield according to any one of Items 1 to 8, wherein at least a part of the mask layer is black.
  • Item 10 The windshield according to any one of Items 1 to 9, wherein an electromagnetic wave shielding film is formed in at least a part of a region to which the information acquisition device is attached in the mask layer, the opening peripheral region, and the strain region.
  • Item 11 In at least a part of the mask layer, the opening peripheral region, and the strain region, the first visual field shielding film, the electromagnetic wave shielding film, and the second visual field shielding film are arranged in this order from the outside to the vehicle interior side.
  • Item 11 The windshield according to Item 10, wherein
  • Measuring devices such as laser radars and cameras as described above are often attached to the inner surface of the glass plate that constitutes the windshield, but in order to prevent such measuring devices from being seen from the outside, the inner surface of the glass plate Is formed with a mask layer coated with dark ceramic or the like, and a measuring device is disposed thereon. At this time, an opening is formed in the mask layer, and laser light irradiated and received by the laser radar, visible light and / or infrared light received by the camera are irradiated and received through the opening.
  • the passing light may be refracted more than expected. As a result, it may not be possible to accurately irradiate light or receive light accurately. As a result, image recognition may be insufficient, and the inter-vehicle distance may not be accurately calculated. Therefore, it is necessary to manufacture a glass plate so that the opening is not distorted.
  • the glass sheet is most likely to be distorted in the glass plate forming process.
  • various methods for this forming For example, in addition to a method of bending a glass plate by pressing with a mold, there is a method of bending the glass plate by its own weight. In the latter method, it mounts so that only the periphery of a glass plate may be supported by a shaping
  • the method of forming a curve by its own weight has a problem that it is not easy to control the heat applied to the glass plate, and distortion is likely to occur.
  • the second aspect of the present invention has been made to solve the above problem, and in the method of manufacturing a windshield in which the windshield is curved by its own weight, light irradiation and / or light reception can be accurately performed.
  • An object of the present invention is to provide a method for manufacturing a windshield, a mold, and a windshield that can accurately process information, can manufacture a windshield.
  • the invention 2 provides the inventions of the embodiments listed below.
  • Item 1 A method of manufacturing a windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged, Forming a windshield on a glass plate by laminating a mask layer that shields a field of view from outside the vehicle and has at least one opening; Placing the windshield on a mold, and heating at least from below the mold to curve the windshield downward by its own weight; With The molding die supports a peripheral portion of the windshield and has a frame-shaped die main body having an internal space penetrating in the vertical direction, and heat shielding means extending from the inner peripheral edge side of the die main body to the center side of the internal space. And comprising The method for manufacturing a windshield, wherein an edge on the center side of the internal space is located closer to the center side of the internal space than directly below the opening of the mask layer.
  • Item 2 A mold used in the method for manufacturing a windshield according to Item 1, A frame-shaped mold body that supports the peripheral portion of the glass plate and has an internal space penetrating in the vertical direction; Heat shielding means extending from the inner peripheral edge side of the mold body to the center side of the inner space; With A molding die in which the edge on the center side of the internal space is located closer to the center side of the internal space than just below the opening of the mask layer.
  • Item 3 A windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged, A glass plate, And a mask layer that is laminated on the glass plate, shields the field of view from the outside of the vehicle, and has at least one opening, The windshield in which the distortion which extends along the circumferential direction of the said glass plate is not formed in the location in which the said opening is formed in the said glass plate.
  • Item 4. The windshield according to Item 3, wherein the glass plate includes a first glass plate, a second glass plate disposed to face the first glass plate, and an intermediate film sandwiched between the two glass plates.
  • Item 5 The windshield according to Item 4, wherein the intermediate film includes a core layer and a pair of outer layers that are harder than the core layer and sandwich the core layer.
  • Item 6. The windshield according to Item 5, wherein the core layer has a frequency of 100 Hz, a temperature of 20 ° C, and a Young's modulus of 1 to 20 MPa.
  • Item 7. The windshield according to Item 5 or 6, wherein the outer layer has a frequency of 100 Hz, a temperature of 20 ° C, and a Young's modulus of 560 MPa or more.
  • a band-shaped shade region colored in green, blue or the like is formed in order to improve antiglare property, heat shield property, etc.
  • the shade region may be provided on the surface of the glass plate, but is often formed by coloring a part of the intermediate film into a strip shape.
  • the windshield since the windshield has a legal field of view where the visible light transmittance should be greater than or equal to a predetermined value (for example, 70% or more), the shade area of the windshield is outside the field of view, that is, normally Located at the top of the windshield.
  • a safety system in which the brake is activated is proposed.
  • the distance to the vehicle ahead is measured by laser or infrared using a device such as a laser radar or a camera.
  • a device such as a laser radar or a camera.
  • a transparent film material 200 that does not contain a colorant or the like is overlaid on an intermediate film 100 in which a shade region is previously formed at one end.
  • This film material 200 is formed of the same material as the intermediate film.
  • the membrane material 200 is disposed at a position where a transmission region in the shade region is to be formed.
  • both the intermediate film 100 and the film material 200 are punched out using a mold having the shape of a transmission region.
  • the punched region in the intermediate film 100 is removed to form the through hole 102, and the opening intermediate film 201 punched from the film material 200 is passed through this through hole. Fit into the hole 102. In this way, a transparent opening through which the laser of the device passes is formed in the shade region.
  • the above-described method has a problem that the film material 200 formed to be small must be separately prepared in order to close the through hole 102, and the process becomes complicated accordingly. Accordingly, the invention 3 has been made to solve such a problem, and a method of manufacturing an intermediate film in which a light passage for a device such as a laser radar can be easily formed in a shade region. And it aims at providing a laminated glass. Specifically, the invention 3 provides the inventions of the following aspects.
  • Item 1 A first step of preparing at least one first interlayer film partially formed with a colored shade region; A second step of preparing at least one second intermediate film partially formed with a colored shade region; A third step of superimposing one of the first intermediate films and the second intermediate film such that a shade area in the first intermediate film overlaps a non-shade area of the second intermediate film; The first intermediate film piece and the second intermediate film piece are cut out so as to form an opening that penetrates at least the shade area of the first intermediate film and the non-shade area of the second intermediate film that are overlapped with each other. A fourth step of cutting out A fifth step of fitting the second intermediate film piece into the opening formed in the first intermediate film by the die cutting; An intermediate film manufacturing method comprising:
  • Item 2 The method for producing an intermediate film according to Item 1, wherein the first intermediate film and the second intermediate film have the same configuration.
  • Item 3 In the first step, a plurality of the first intermediate films are prepared, In the third step, one of the first intermediate films and the second intermediate film are arranged such that a shade area in the first intermediate film overlaps a non-shade area of the second intermediate film in which the opening is not formed.
  • Overlay Item 3. The method for producing an intermediate film according to Item 1 or 2, wherein the third to fifth steps are repeated at least once.
  • the first and second intermediate films are formed so that the thickness varies along the surface direction.
  • the shade region of the first intermediate film is overlapped with the non-shade region in the vicinity of the shade region of the second intermediate film, Item 4.
  • Item 5 An intermediate film produced by the method for producing an intermediate film according to any one of Items 1 to 4, First and second glass plates sandwiching the intermediate film; Laminated glass equipped with.
  • Item 6 The laminated glass according to Item 5, wherein a transmittance of light having a wavelength of 850 to 950 nm is 20 to 80% in a region corresponding to the opening.
  • Item 7 The laminated glass according to Item 5 or 6, wherein a transmittance of light having a wavelength of 700 to 800 nm is 30 to 80% in a region corresponding to the opening.
  • the intermediate film includes a core layer, and a pair of outer layers having a higher hardness than the core layer and sandwiching the core layer, Item 8.
  • the laminated glass according to any one of Items 5 to 7, wherein at least one Young's modulus of the pair of outer layers is 560 MPa or more at a frequency of 100 Hz and a temperature of 20 ° C.
  • Measuring devices such as laser radars and cameras as described above are often attached to the inner surface of the glass plate that constitutes the windshield, but in order to prevent such measuring devices from being seen from the outside, the inner surface of the glass plate Is formed with a mask layer coated with dark ceramic or the like, and a measuring device is disposed thereon. At this time, an opening is formed in the mask layer, and laser light irradiated and received by the laser radar, visible light and / or infrared light received by the camera are irradiated and received through the opening.
  • the invention 4 has been made to solve the above-described problem, and can be easily created in a windshield to which an information acquisition device that irradiates and / or receives light can be attached through the opening of the mask layer.
  • the purpose is to provide a windshield.
  • the invention 4 provides the invention of the aspect hung up below.
  • Item 1 A windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged,
  • the laminated glass includes a first glass plate, a second glass plate disposed to face the first glass plate, and an intermediate film disposed between the first glass plate and the second glass plate, The intermediate film is formed such that a first region and a second region having a higher light transmittance than the first region are adjacent to each other in the surface direction.
  • the second region is formed at a position corresponding to the opening of the mask layer, and at least a part of the second region overlaps the region where the mask layer is laminated;
  • the said information acquisition apparatus is a windshield arrange
  • Item 2. The windshield according to Item 1, wherein the second region is formed of polyvinyl butyral.
  • Item 3. The windshield according to Item 1 or 2, wherein the second region is formed in a band shape along the upper end portions of the two glass plates.
  • Item 4. In the opening, Item 4.
  • Item 5 The windshield according to any one of Items 1 to 4, wherein in the first region, the transmittance of light having a wavelength of 850 to 950 nm is 27.5 to 32.5.
  • Each of the first glass plate and the second glass plate has a thickness of 1 to 2.5 mm, The thickness of the intermediate film is 0.3-2 mm, When the thickness of the first glass plate and the second glass plate is 2 mm, the transmittance of light having a wavelength of 850 to 950 nm is 63% or less, Item 6.
  • Item 7. In the opening, Item 7.
  • Item 8 The windshield according to any one of Items 1 to 7, wherein the first region includes a core layer and a pair of outer layers having higher rigidity than the core layer and sandwiching the core layer.
  • Item 9. The windshield according to any one of Items 1 to 7, wherein the first region contains infrared shielding fine particles, and the second region does not contain the infrared shielding fine particles.
  • Item 10 The first region and the second region contain infrared shielding fine particles, and the amount of the infrared shielding fine particles contained in the first region is contained in the second region.
  • Item 8 The windshield according to any one of Items 1 to 7, wherein the windshield is larger than the amount of the shielding fine particles.
  • Item 11 The windshield according to Item 9 or Item 10, wherein the infrared shielding fine particles are ITO fine particles.
  • ⁇ Invention 5> Conventionally, a glass plate is heated by passing through a heating furnace, and after passing through the heating furnace, is formed into a desired shape with a forming die in a softened state (for example, Patent Document 1: JP 2012-158478 A). Publication).
  • the glass plate must be appropriately softened in order to be molded into a desired shape by the mold, and cracking may occur during molding if the temperature is low. Accordingly, the invention 5 has been made to solve such problems, and includes a glass plate manufacturing method and a windshield that can form a glass plate at an appropriate temperature after passing through a heating furnace. The purpose is to provide. Specifically, the invention 5 provides the inventions of the following aspects.
  • Item 2. The method for producing a glass plate according to Item 1, wherein in the first step, the conveyance speed of the glass plate is increased on the downstream side of the heating furnace until the glass plate is unloaded from the heating furnace.
  • Item 3 The manufacturing method of the glass plate of claim
  • the method further includes a step of forming a mask layer that shields the field of view from outside the vehicle and has at least one opening on the glass plate. Manufacturing method of glass plate.
  • Item 5 A windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged, 1st glass plate and 2nd glass plate manufactured by the method in any one of claim
  • ⁇ Invention 6> 2. Description of the Related Art Conventionally, a head-up display device that projects information such as vehicle speed on a windshield of a vehicle has been proposed (for example, JP-A-2-279437). By using this head-up display device, the driver can check the vehicle speed by looking at the information projected on the windshield instead of an in-vehicle instrument such as a speedometer. There is no need to move your gaze forward. Therefore, there is an advantage that safety during driving can be improved.
  • the image can be seen by reflecting on the inner surface of the windshield and the image can be seen by reflecting on the outer surface of the windshield.
  • an image projected on the windshield that is, a double image phenomenon in which information such as vehicle speed is duplicated occurs.
  • the windshield is composed of an outer glass plate, an inner glass plate, and a resin intermediate film sandwiched between them, and the intermediate film has a wedge-shaped cross section.
  • the intermediate film has a wedge-shaped cross section.
  • the present inventors have found that the double image phenomenon as described above occurs not only when the head-up display device is used but also when light is received from the outside. That is, when laser light emitted and received by the laser radar as described above, visible light and / or infrared light received by the camera is received through the opening of the mask layer, the light incident from the outside is reflected on the windshield. Spectral analysis on the inner surface revealed that there is a risk of forming a double image. More specifically, light from the outside of the vehicle is split into light that is transmitted through the windshield and light that is reflected from the inner surface of the windshield, and further reflected from the outer surface of the windshield and transmitted into the vehicle. It was found that an image by two lights was received by a laser radar or taken by a camera. Thereby, there exists a possibility that exact measurement cannot be performed.
  • the windshield according to the sixth aspect of the invention is made to solve the above-described problem.
  • a first object is to provide a windshield capable of preventing an image phenomenon.
  • a second object is to provide a windshield that can prevent a double image phenomenon caused by the head-up display device.
  • the invention 6 provides the invention of the aspect hung up below.
  • a windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged A first glass plate; A second glass plate disposed opposite to the first glass plate; An intermediate film disposed between the first glass plate and the second glass plate; With The intermediate film has a wedge-shaped region formed in a wedge shape so that the thickness decreases from the upper end side to the lower end side of the windshield, and the light of the information acquisition device passes through the wedge-shaped region.
  • Item 2 The windshield according to Item 1, wherein in the intermediate film, the wedge angle of the wedge-shaped region is 0.05 to 0.3 degrees.
  • a windshield in which information from a head-up display device is projected and an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged, An outer glass plate, An inner glass plate disposed opposite to the outer glass plate; An intermediate film disposed between the outer glass plate and the inner glass plate; With The intermediate film has a first region where information from the head-up display device is projected, and a second region through which light to the information acquisition device passes, A windshield in which the first angle formed by the outer surface and the inner surface of the intermediate film in the first region is different from the second angle formed by the outer surface and the inner surface of the intermediate film in the second region.
  • Item 4. The windshield according to Item 3, wherein the first region is formed in a wedge shape so that the thickness decreases from the upper end side to the lower end side of the windshield.
  • Item 5 The windshield according to Item 3 or 4, wherein the second region is formed in a wedge shape in cross section so that the thickness increases from the upper end side to the lower end side of the windshield.
  • Item 6. The windshield according to any one of Items 3 to 5, wherein the second angle is 0.05 to 0.3 degrees.
  • Item 7. The windshield according to any one of Items 3 to 6, wherein the first angle is 0 to 0.3 degrees.
  • Measuring devices such as laser radars and cameras as described above are often attached to the inner surface of the glass plate that constitutes the windshield, but in order to prevent such measuring devices from being seen from the outside, the inner surface of the glass plate Is formed with a mask layer coated with dark ceramic or the like, and a measuring device is disposed thereon. At this time, an opening is formed in the mask layer, and laser light irradiated and received by the laser radar, visible light and / or infrared light received by the camera are irradiated and received through the opening.
  • the light transmittance of the glass plate decreases as the iron content increases. Therefore, in the windshield to which the above-described measuring device is attached, if the content of iron is large, there arises a problem that the transmittance of light such as laser light is lowered. Therefore, it is conceivable to reduce the iron content in order to increase the light transmittance. However, if this is done, the amount of radiant heat absorbed in the glass plate will decrease, and a new problem will occur that makes it difficult to form. To do.
  • a seventh aspect of the invention is a method for manufacturing a windshield in which an information acquisition device that acquires information from the outside of a vehicle by irradiating and / or receiving light is arranged.
  • An object of the present invention is to provide a method for manufacturing a windshield that can be easily formed even if the iron content is reduced.
  • the invention 7 provides the inventions of the following modes.
  • Item 1 A method of manufacturing a windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged, Preparing a glass raw material having a content of iron oxide converted to iron dioxide of 0.17% by weight or less; Forming a flat glass plate from the glass raw material; Laminating a mask layer on the glass plate for shielding a field of view from outside the vehicle and having at least one opening; Determining the amount of heat applied to the glass plate according to the iron content, and heating the glass plate based on the amount of heat; Forming the glass plate into a curved shape; A method of manufacturing a windshield, comprising:
  • Item 2. The method for manufacturing a windshield according to Item 1, wherein in the step of heating the glass plate, the glass plate is heated at 650 to 675 ° C.
  • Item 3. The method for manufacturing a windshield according to Item 1 or 2, wherein the glass plate is formed of an outer glass plate, an inner glass plate, and an intermediate film disposed between the two glass plates.
  • a windshield to which an information acquisition device that performs light irradiation and / or light reception through an opening of a mask layer can be attached, light irradiation and / or light reception can be accurately performed, and information processing can be performed. Can be done accurately.
  • FIG. 10 is a sectional view taken along line AA in FIG. 9.
  • FIG. 21 is a sectional view taken along line AA in FIG. 20.
  • FIG. 24 is a sectional view taken along line BB in FIG. 23. It is a top view explaining attachment of the intermediate film for opening. It is sectional drawing of a wedge-shaped intermediate film. It is a top view explaining attachment of the intermediate film for opening in a wedge-shaped intermediate film. It is a top view which shows the other example of a laminated glass. It is sectional drawing of FIG. It is a figure which shows the normal distribution regarding the transmittance
  • FIG. 1 is a cross-sectional view of the windshield according to the present embodiment
  • FIG. 2 is a plan view of FIG.
  • the windshield which concerns on this embodiment is equipped with the glass plate 1 and the mask layer 2 formed in the vehicle inner surface of this glass plate 1,
  • a measurement unit 4 for measuring the inter-vehicle distance is attached.
  • each member will be described.
  • the glass plate 1 can have various configurations.
  • the glass plate 1 can be composed of laminated glass having a plurality of glass plates, or can be composed of a single glass plate.
  • laminated glass for example, it can be configured as shown in FIG. FIG. 3 is a sectional view of the laminated glass.
  • this laminated glass includes an outer glass plate 11 and an inner glass plate 12, and a resin intermediate film 13 is disposed between the glass plates 11 and 12.
  • the outer glass plate 11 and the inner glass plate 12 will be described.
  • known glass plates can be used, and they can be formed of heat ray absorbing glass, general clear glass, green glass, or UV green glass.
  • these glass plates 11 and 12 need to realize visible light transmittance in accordance with the safety standards of the country where the automobile is used. For example, the required solar radiation absorption rate can be ensured by the outer glass plate 11, and the visible light transmittance can be adjusted by the inner glass plate 12 so as to satisfy safety standards.
  • a composition of clear glass an example of a heat ray absorption glass composition, and an example of soda-lime-type glass are shown.
  • the composition of the heat-absorbing glass for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO
  • the ratio of 2 is 0 to 2% by mass
  • the ratio of TiO 2 is 0 to 0.5% by mass
  • the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T-Fe 2 O 3 , CeO.
  • the composition can be reduced by an increase of 2 and TiO 2 .
  • the thickness of the laminated glass according to the present embodiment is not particularly limited, but from the viewpoint of weight reduction, the total thickness of the outer glass plate 11 and the inner glass plate 12 is preferably 2.4 to 3.8 mm. The thickness is more preferably 2.6 to 3.4 mm, and particularly preferably 2.7 to 3.2 mm. Thus, since it is necessary to reduce the total thickness of the outer glass plate 11 and the inner glass plate 12 for weight reduction, the thickness of each glass plate is not particularly limited, For example, the thickness of the outer glass plate 11 and the inner glass plate 12 can be determined as follows.
  • the outer glass plate 11 mainly needs durability and impact resistance against external obstacles. For example, when this laminated glass is used as a windshield of an automobile, the outer glass plate 11 has impact resistance performance against flying objects such as pebbles. is necessary. On the other hand, as the thickness is larger, the weight increases, which is not preferable. In this respect, the thickness of the outer glass plate 11 is preferably 1.8 to 2.3 mm, and more preferably 1.9 to 2.1 mm. Which thickness is adopted can be determined according to the application of the glass.
  • the thickness of the inner glass plate 12 can be made equal to that of the outer glass plate 11, but for example, the thickness can be made smaller than that of the outer glass plate 11 in order to reduce the weight of the laminated glass. Specifically, considering the strength of the glass, it is preferably 0.6 to 2.0 mm, more preferably 0.8 to 1.6 mm, and 1.0 to 1.4 mm. Particularly preferred. Further, it is preferably 0.8 to 1.3 mm. Which thickness is used for the inner glass plate 12 can be determined according to the purpose of the glass.
  • the shape of the outer side glass plate 11 and the inner side glass plate 12 which concerns on this embodiment is a curved shape.
  • the double amount is an amount indicating the bending of the glass plate. For example, as shown in FIG. 4, when a straight line L connecting the center of the upper side and the center of the lower side is set, the straight line L and the glass plate are set. The largest distance between the two is defined as a double amount D.
  • FIG. 5 is a graph showing a relationship between a general frequency and sound transmission loss of a curved glass plate and a planar glass plate.
  • the curved glass plate has no significant difference in sound transmission loss in the range of the doubly amount of 30 to 38 mm, but compared with the planar glass plate, the sound transmission is in a frequency band of 4000 Hz or less. It can be seen that the loss is decreasing. Therefore, when producing a curved glass plate, the amount of double is better, but for example, when the amount of double exceeds 30 mm, the Young's modulus of the core layer of the intermediate film is set to 18 MPa (frequency) as will be described later. 100 Hz, temperature 20 ° C.) or less.
  • a method for measuring the thickness when the glass plate is curved will be described.
  • the measuring instrument is not particularly limited, and for example, a thickness gauge such as SM-112 manufactured by Teclock Co., Ltd. can be used.
  • SM-112 manufactured by Teclock Co., Ltd.
  • Teclock Co., Ltd. Teclock Co., Ltd.
  • it is arranged so that the curved surface of the glass plate is placed on a flat surface, and the end of the glass plate is sandwiched by the thickness gauge and measured. Even when the glass plate is flat, it can be measured in the same manner as when the glass plate is curved.
  • the intermediate film 13 is formed of at least one layer.
  • the intermediate film 13 can be configured by three layers in which a soft core layer 131 is sandwiched between harder outer layers 132.
  • it is not limited to this configuration, and may be formed of a plurality of layers including the core layer 131 and at least one outer layer 132 disposed on the outer glass plate 11 side.
  • the intermediate film 13 may be disposed, or the intermediate film 13 may be configured such that the odd outer layer 132 is disposed on one side and the even outer layer 132 is disposed on the other side with the core layer 131 interposed therebetween.
  • the outer layer 132 is provided on the outer glass plate 11 side as described above, but this is to improve the resistance to breakage against an external force from outside the vehicle or outside. Further, when the number of outer layers 132 is large, the sound insulation performance is also enhanced.
  • the hardness thereof is not particularly limited.
  • the material can be selected based on the Young's modulus. Specifically, it is preferably 1 to 20 MPa, more preferably 1 to 18 MPa, and particularly preferably 1 to 14 MPa at a frequency of 100 Hz and a temperature of 20 ° C. With such a range, it is possible to prevent a decrease in sound transmission loss (Sound Transmission Loss: STL) in a low frequency range of approximately 3500 Hz or less.
  • Sound Transmission Loss: STL Sound Transmission Loss
  • Table 1 below shows the sound insulation performance of the laminated glass having an intermediate film composed of an outer glass plate and an inner glass plate made of clear glass, and an outer layer located on both sides of the core layer and the core layer. Show.
  • the thickness of the outer glass plate is 2.0 mm
  • the thickness of the inner glass plate is 1.3 mm
  • the thickness of the intermediate film is 0.10 mm for the core layer and 0.33 mm for the outer layer, for a total of 0.76 mm.
  • Table 1 below shows sound transmission loss when the frequency is between 1250 and 10,000 Hz.
  • the sound transmission loss is calculated when the Young's modulus (measured at a frequency of 100 Hz and a temperature of 20 ° C.) of the intermediate film is 25 MPa, 12.5 MPa, and 6.25 MPa (the calculation method is described in the examples described later).
  • the difference in sound transmission loss when the Young's modulus is 12.5 MPa and 6.25 MPa (unit is dB), based on the case where the Young's modulus is 25 MPa (in the following table, it is 0) Is shown.
  • the Young's modulus of the outer layer is 560 MPa, and tan ⁇ is 0.26 (temperature 20 ° C., frequency 100 Hz).
  • Table 1 when the frequency is between 3150 and 5000 Hz, it can be seen that the sound transmission loss is improved as the Young's modulus of the interlayer film is decreased from 25 MPa to 12.5 MPa and 6.25 MPa.
  • frequency dispersion measurement can be performed with a strain amount of 0.05% using a solid viscoelasticity measuring device DMA 50 manufactured by Metravib.
  • the Young's modulus is a value measured by the above method.
  • the measurement when the frequency is 200 Hz or less uses an actual measurement value.
  • a calculation value based on the actual measurement value is used. This calculated value is based on a master curve calculated by using the WLF method from the actually measured value.
  • the Young's modulus of the outer layer 132 is preferably large in order to improve sound insulation performance in a high frequency region, as will be described later, and is 560 MPa or more, 600 MPa or more, 650 MPa or more, 700 MPa or more at a frequency of 100 Hz and a temperature of 20 degrees. It can be set to 750 MPa or more, 880 MPa or more, or 1300 MPa or more.
  • the upper limit of the Young's modulus of the outer layer 132 is not particularly limited, but can be set from the viewpoint of workability, for example. For example, it is empirically known that when it becomes 1750 MPa or more, workability, particularly cutting becomes difficult.
  • the Young's modulus of the outer layer on the outer glass plate 11 side is preferable to make the Young's modulus of the outer layer on the outer glass plate 11 side larger than the Young's modulus of the outer layer on the inner glass plate 12 side.
  • tan ⁇ of the core layer 131 can be set to, for example, 0.1 to 0.9 at a frequency of 100 Hz and a temperature of 20 ° C. When tan ⁇ is in the above range, the sound insulation performance is improved.
  • Table 2 shows the sound insulation performance of laminated glass having an intermediate film composed of an outer glass plate and an inner glass plate made of clear glass, and an outer layer positioned on both sides of the core layer and the core layer. Show.
  • the thickness of the outer glass plate is 2.0 mm
  • the thickness of the inner glass plate is 1.3 mm
  • the thickness of the intermediate film is 0.10 mm for the core layer and 0.33 mm for the outer layer, for a total of 0.76 mm.
  • the Young's modulus of the core layer and the outer layer at this time is 12.5 MPa and 560 MPa, respectively (measured at a frequency of 100 Hz and a temperature of 20 ° C.).
  • Table 2 below shows sound transmission loss when the frequency is between 1250 and 10000 Hz. Specifically, the sound transmission loss is calculated when the tan ⁇ of the core layer (measured at a frequency of 100 Hz and a temperature of 20 ° C.) is 0.8, 1.2, and 1.6 (the calculation method will be described in an embodiment described later). The difference in sound transmission loss when tan ⁇ is 1.2 and 1.6 (unit is dB), based on the case where tan ⁇ is 0.8 (in the following table, it is 0). ). Note that tan ⁇ of the outer layer is 0.26. According to Table 2, when the frequency is between 5000 and 10,000 Hz, the sound transmission loss is improved as the tan ⁇ of the intermediate film increases from 0.8 to 1.2, 1.6. .
  • each of the layers 131 and 132 is not particularly limited, but it is necessary that the material has at least a Young's modulus in the above range.
  • the outer layer 132 can be made of polyvinyl butyral resin (PVB). Polyvinyl butyral resin is preferable because it is excellent in adhesiveness and penetration resistance with each glass plate.
  • the core layer 131 can be composed of an ethylene vinyl acetate resin (EVA) or a polyvinyl acetal resin that is softer than the polyvinyl butyral resin that constitutes the outer layer 132. By sandwiching the soft core layer 131 in between, the sound insulation performance can be greatly improved while maintaining the same adhesion and penetration resistance as the single-layer resin intermediate film.
  • the hardness of the polyvinyl acetal resin is controlled by (a) the degree of polymerization of the starting polyvinyl alcohol, (b) the degree of acetalization, (c) the type of plasticizer, (d) the addition ratio of the plasticizer, etc. Can do. Therefore, by appropriately adjusting at least one selected from these conditions, a hard polyvinyl butyral resin used for the outer layer 132 and a soft polyvinyl butyral resin used for the core layer 131 even if the same polyvinyl butyral resin is used. Can be made separately.
  • the hardness of the polyvinyl acetal resin can also be controlled by the type of aldehyde used for acetalization, coacetalization with a plurality of aldehydes or pure acetalization with a single aldehyde. Although it cannot generally be said, the polyvinyl acetal resin obtained by using an aldehyde having a large number of carbon atoms tends to be softer.
  • the core layer 131 has an aldehyde having 5 or more carbon atoms (for example, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, n-octylaldehyde) and a polyvinyl acetal resin obtained by acetalization with polyvinyl alcohol can be used.
  • an aldehyde having 5 or more carbon atoms for example, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, n-octylaldehyde
  • a polyvinyl acetal resin obtained by acetalization with polyvinyl alcohol can be used.
  • prescribed Young's modulus is obtained, it is not limited to the said resin.
  • the total thickness of the intermediate film 13 is not particularly limited, but is preferably 0.3 to 6.0 mm, more preferably 0.5 to 4.0 mm, and 0.6 to 2.0 mm. It is particularly preferred.
  • the thickness of the core layer 131 is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 0.6 mm.
  • the thickness of each outer layer 132 is preferably larger than the thickness of the core layer 131. Specifically, the thickness is preferably 0.1 to 2.0 mm, and preferably 0.1 to 1.0 mm. Is more preferable.
  • the total thickness of the intermediate film 3 can be made constant, and the thickness of the core layer 131 can be adjusted therein.
  • the thickness of the core layer 131 and the outer layer 132 can be measured as follows, for example. First, the cross section of the laminated glass is enlarged and displayed by 175 times using a microscope (for example, VH-5500 manufactured by Keyence Corporation). And the thickness of the core layer 131 and the outer layer 132 is specified visually, and this is measured. At this time, in order to eliminate visual variation, the number of measurements is set to 5 times, and the average value is defined as the thickness of the core layer 131 and the outer layer 132. For example, an enlarged photograph of a laminated glass as shown in FIG. 7 is taken, and the core layer and the outer layer 132 are specified in this and the thickness is measured.
  • the thickness of the core layer 131 and the outer layer 132 of the intermediate film 13 does not need to be constant over the entire surface, and can be a wedge shape for laminated glass used for a head-up display, for example.
  • the thickness of the core layer 131 and the outer layer 132 of the intermediate film 13 is measured at the position where the thickness is the smallest, that is, the lowermost side portion of the laminated glass.
  • the intermediate film 3 is wedge-shaped, the outer glass plate and the inner glass plate are not arranged in parallel, but such arrangement is also included in the glass plate in the present invention.
  • the arrangement of the outer glass plate 11 and the inner glass plate 12 when the intermediate film 13 using the core layer 131 and the outer layer 132 whose thickness is increased at a change rate of 3 mm or less per 1 m is used. including.
  • the method for producing the intermediate film 13 is not particularly limited.
  • the resin component such as the polyvinyl acetal resin described above, a plasticizer, and other additives as necessary are blended and kneaded uniformly, and then each layer is collectively And a method of laminating two or more resin films prepared by this method by a pressing method, a laminating method or the like.
  • the resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure.
  • the intermediate film 13 can be formed of a single layer in addition to the above-described plural layers.
  • the windshield according to the present embodiment is used for a vehicle front safety system using a measurement unit such as a laser radar or a camera.
  • a measurement unit such as a laser radar or a camera.
  • the vehicle ahead is irradiated with infrared rays to measure the speed and distance between the vehicles ahead. Therefore, the laminated glass (or one glass plate) is required to achieve a predetermined range of infrared transmittance.
  • transmittance for example, when a general sensor is used for laser radar, it is 20% to 80%, preferably 20% to 60% with respect to light (infrared rays) having a wavelength of 850 to 950 nm.
  • the measuring method of the transmittance can be UV3100 (manufactured by Shimadzu Corporation) as a measuring device according to JIS R3106. Specifically, the transmission of light in one direction irradiated at an angle of 90 degrees with respect to the surface of the laminated glass is measured.
  • some safety systems such as those described above measure the speed and distance between vehicles ahead using an infrared camera without using a laser radar.
  • a camera commonly used for laser radar is used.
  • it is considered useful to be 30% or more and 80% or less, preferably 40% or more and 60% or less, with respect to light (infrared rays) having a wavelength of 700 to 800 nm.
  • the measuring method of the transmittance follows ISO9050.
  • a mask layer 2 as shown in FIG. 8 is formed on the glass plate 1 according to the present embodiment.
  • the mask layer 2 is laminated
  • the glass plate is formed of a single glass plate, the mask layer 2 can be laminated on the inner surface of the vehicle.
  • the glass plate is formed of laminated glass as shown in FIG. 3, the vehicle inner surface of the outer glass plate 11, the vehicle outer surface of the inner glass plate 12, and the vehicle of the inner glass plate 12. It can be laminated to at least one of the inner faces.
  • the portion where the mask layer 2 is laminated is formed. Since the curvature of both the glass plates 11 and 12 corresponds, it is preferable.
  • the mask layer 2 is a region for preventing the glass plate 1 from being seen from the outside, such as an adhesive applied when the glass plate 1 is attached to the vehicle body, and the peripheral mask layer formed on the outer peripheral edge of the glass plate 1.
  • 21 and the peripheral mask layer 21 include a center mask layer 22 extending downward from the center of the upper edge of the glass plate 1.
  • the measurement unit 4 described above is attached to the center mask layer 22.
  • the measurement unit 4 only needs to be arranged so that the light emitted from the sensor 5 can pass through the center of the opening and receive reflected light from the preceding vehicle and the obstacle.
  • These mask layers 2 can be formed of various materials, but are not particularly limited as long as they can shield the field of view from the outside of the vehicle. For example, dark ceramic such as black is applied to the glass plate 1. Can be formed.
  • the center mask layer 22 is formed in a rectangular shape extending in the vertical direction, and two openings arranged in the vertical direction, that is, an upper opening 231 and a lower opening 232 are formed.
  • opening peripheral regions 2311 and 2321 which will be described in detail later are formed on the inner peripheral edges of these openings 231 and 232, respectively.
  • Both the upper opening 231 and the lower opening 232 are formed in a trapezoidal shape, but the width of the lower opening 232 in the left-right direction is about half that of the upper opening 231.
  • the length in the vertical direction is substantially the same.
  • the size of the opening is not particularly limited.
  • the upper opening 231 can be about 58 mm in length and about 58 mm in width
  • the lower opening 232 can be about 52 mm in length and about 27 mm in width
  • opening peripheral regions 2311 and 321 formed in a dot pattern are formed at the peripheral portions of the upper opening 231 and the lower opening 232 as described later.
  • the center mask layer 22 is divided into three regions, an upper region 221 above the upper opening 231, a lower region 222 including both openings 231 and 232 below the upper region 221, and the side of the lower region 222. It is composed of small rectangular side regions 223 formed in the part.
  • the upper region 221 is formed of one layer by a first ceramic layer 241 made of black ceramic.
  • the lower region 222 is formed of three layers including the first ceramic layer 241, the silver layer 242, and the second ceramic layer 243 that are stacked from the inner surface of the glass plate 1.
  • the silver layer 242 is made of silver, and the second ceramic layer 243 is made of the same material as the first ceramic layer 241.
  • region 223 is formed with two layers, the 1st ceramic layer 241 and the silver layer 242, which are laminated
  • the lowermost first ceramic layer 241 is common in each region, and the second silver layer 242 is common in the lower region 222 and the side region 223.
  • the thickness of each ceramic layer 241 and 243 can be set to 10 to 20 ⁇ m, for example.
  • the bracket of the measurement unit 4 is adhered to the center mask layer 22 formed on the inner surface of the inner glass plate 12 with an adhesive, this also ensures the adhesion.
  • Such a thickness is preferred. This is because, for example, the urethane / silicone adhesive may be deteriorated by ultraviolet rays or the like.
  • a plurality of circular dots (mask pieces) 2220 are arranged in a staggered pattern at predetermined intervals.
  • 2321 are formed (see enlarged view). That is, these regions 2311 and 2321 are formed of the same material (mask material) as the center mask layer 22, but the density is lower than the ratio of the same material as the center mask layer 22.
  • the widths of these opening peripheral regions 2311 and 2321, that is, the distances s 1 and s 2 from the peripheral edge of the upper opening 231 or the lower opening 232 are preferably 4 mm or more, and more preferably 6 mm or more.
  • the ratio of the dots 2220 is preferably 20 to 80%, for example.
  • These dots 2220 can be formed of the same material as that of the center mask layer 22.
  • the dots 2220 may be formed by overlapping the first and second ceramic layers 241 and 243, or only the first ceramic layer 241. It can also be formed.
  • the region of about 4 to 6 mm inward from the inner peripheral edge of the opening peripheral edge regions 2311 and 2321 varies slightly depending on the heating process and the slow cooling process. As will be described later, the distortion regions 2312 and 2322 are likely to be distorted. Further, the above-described silver layer 242 can be provided in the strain regions 2312 and 2322.
  • the peripheral mask layer 21, the center mask layer 22, and the opening peripheral regions 2311 and 2321 can be formed as follows, for example. First, the 1st ceramic layer 241 is apply
  • the ceramic layers 241 and 243 and the opening peripheral regions 2311 and 2321 can be formed of various materials. For example, the following compositions can be used.
  • the silver layer 242 is not particularly limited, and for example, the following composition can be used.
  • the screen printing conditions may be, for example, polyester screen: 355 mesh, coat thickness: 20 ⁇ m, tension: 20 Nm, squeegee hardness: 80 degrees, mounting angle: 75 °, printing speed: 300 mm / s, and drying
  • the ceramic layer and the silver layer can be formed by drying at 150 ° C. for 10 minutes in a furnace.
  • what is necessary is just to repeat screen printing and drying mentioned above, when laminating
  • a heating furnace 901 and a molding device 902 are arranged in this order from upstream to downstream in this production line.
  • a roller conveyor 903 is arranged from the heating furnace 901 to the molding apparatus 902 and the downstream side thereof, and the glass plate 10 to be processed is conveyed by the roller conveyor 903.
  • the glass plate 10 is formed in a flat plate shape before being carried into the heating furnace 901. After the mask layer 2 described above is laminated on the glass plate 10, the glass plate 10 is carried into the heating furnace 901.
  • the heating furnace 901 can have various configurations, but can be an electric heating furnace, for example.
  • the heating furnace 901 includes a rectangular tube-shaped furnace main body whose upstream and downstream ends are open, and a roller conveyor 903 is disposed in the interior from upstream to downstream.
  • Heaters (not shown) are respectively arranged on the upper surface, the lower surface, and the pair of side surfaces of the inner wall surface of the heating furnace 901, and the temperature at which the glass plate 10 passing through the heating furnace 901 can be formed, for example, softening of glass Heat to near point.
  • the forming apparatus 902 is configured to press a glass plate with an upper die 921 and a lower die 922 to form a predetermined shape.
  • the upper die 921 has a downwardly convex curved shape so as to cover the entire upper surface of the glass plate 10, and is configured to be movable up and down.
  • the lower die 922 is formed in a frame shape corresponding to the peripheral edge of the glass plate 10, and the upper surface thereof has a curved shape so as to correspond to the upper die 921. With this configuration, the glass plate 10 is press-formed between the upper die 921 and the lower die 922, and formed into a final curved shape.
  • a roller conveyor 903 is disposed in the frame of the lower mold 922, and the roller conveyor 903 can move up and down so as to pass through the frame of the lower mold 922. And although illustration is abbreviate
  • the roller conveyor 903 as described above is a known one, and a plurality of rollers 931 whose both ends are rotatably supported are arranged at predetermined intervals.
  • a sprocket can be attached to the end of each roller 931, and a chain can be wound around each sprocket to drive it.
  • the conveyance speed of the glass plate 10 can also be adjusted by adjusting the rotational speed of each roller 931.
  • molding apparatus 902 shape
  • the intermediate film 13 is subsequently sandwiched between the outer glass plate 11 and the inner glass plate 12, put into a rubber bag, and sucked under reduced pressure. While pre-adhering at about 70-110 ° C. Other pre-adhesion methods are possible.
  • the intermediate film 13 is sandwiched between the outer glass plate 11 and the inner glass plate 12 and heated at 45 to 65 ° C. in an oven. Subsequently, this laminated glass is pressed by a roll at 0.45 to 0.55 MPa. Next, the laminated glass is again heated at 80 to 105 ° C. in an oven and then pressed again with a roll at 0.45 to 0.55 MPa. Thus, preliminary adhesion is completed.
  • the laminated glass that has been pre-adhered is subjected to main bonding by an autoclave at, for example, 8 to 15 atm and 100 to 150 ° C.
  • the main bonding can be performed under the conditions of 14 atm and 145 ° C.
  • the laminated glass according to the present embodiment is manufactured.
  • a glass plate when using one glass as a glass plate, what is necessary is just to use one sheet among the glass mentioned above.
  • the manufacturing method of a glass plate is also the same. After forming a mask layer on the inner surface of the glass plate, heating is performed, and thereafter, it is formed into a curved surface.
  • the mounting angle of the laminated glass is preferably 45 degrees or less from the vertical.
  • FIG. 13 is a plan view of parts constituting the measurement unit.
  • the measurement unit 4 is connected to a bracket 42 fixed to the inner surface of the glass plate 1, a frame-shaped cover base 41 fixed around the bracket 42, a sensor (information acquisition device) 5 supported by the bracket, and the sensor.
  • a harness (not shown) and a cover 43 fixed to the cover base 41 and covering the bracket 42, the sensor 5, and the harness from the vehicle inner side are configured.
  • the bracket 42 is formed in a rectangular shape, and is fixed to the center mask layer 22 described above with an adhesive.
  • An opening 421 is formed in the center of the bracket 42, and the opening 421 is formed to have a size including the two openings 231 and 232 of the center mask layer 22.
  • a cover base 41 for fixing the cover 43 is fixed around the bracket 42 with double-sided tape. At this time, the cover base 41 is formed in such a size that the outer edge of the cover base 41 coincides with the outer edge of the center mask layer 22 or is disposed inside thereof.
  • the rectangular sensor 5 is fixed to the bracket 42 so as to close the opening 421 of the bracket 42. Details of the sensor 5 will be described later.
  • the cover 43 is attached to the cover base 41. That is, the outer edge of the cover 43 is fixed to the outer edge of the cover base 41 by fitting or the like.
  • the cover 43 is attached so as to cover the bracket 42 and the sensor 5 so that the bracket 42 and the sensor 5 cannot be seen from the inside of the vehicle. Since the center mask layer 22 is formed, the measurement unit 4 cannot be seen from the outside of the vehicle except for the upper opening 231 and the lower opening 232.
  • FIG. 14 is a sectional view of the sensor.
  • the sensor 5 includes a housing 51 having a triangular shape in a side view, and the front surface of the housing 51 is disposed so as to coincide with the opening 421 of the bracket 42. It comes in contact with the inner surface.
  • the interior of the casing 51 is partitioned into an upper space 501 having a triangular shape in side view and a lower space 502 having a trapezoidal shape in side view, and the front surface of the casing 51 communicates with the upper space and the lower space.
  • a front opening 52 is formed.
  • a connector 53 is attached to the back side of the casing 51 and is used for connection to an external device.
  • a first support portion 54 is disposed in the upper space 501, and a first control board 541 and a light receiving lens 542 are disposed in the first support portion 54 from the rear to the front.
  • a light receiving element 543 is mounted on the first control board 541 so as to receive laser light that has passed through the light receiving lens 542 and convert it into an electrical signal. This electric signal is amplified by the first control board 541 and transmitted to the second control board 56 described later.
  • the light receiving lens 542 is arranged so as to face the outside through the upper opening 231 of the center mask layer 22 from the front opening 52 described above.
  • the passage of light received by the light receiving element 543 passes through the vicinity of the center X of the upper opening 231 (any part of the region inside the strained region 2312 in FIG. 11 described above).
  • the position, size, position of the sensor 5 and the like are adjusted.
  • reflected light from multiple directions reflected from the preceding vehicle or obstacle passes near the center of the upper opening 231, and the light receiving element 543 receives the reflected light.
  • the second support portion 55 is disposed in the lower space 502, and the laser light emitting element 551 and the irradiation lens 552 are supported on the second support portion 55 in this order from the rear to the front.
  • the laser light emitting element 551 emits laser light having a wavelength of 850 nm to 980 nm, such as a laser diode
  • the irradiation lens 552 is a lens that shapes the laser light from the laser light emitting element 551 into a predetermined beam shape. It is.
  • the irradiation lens 552 is disposed so as to face the outside from the front opening 52 of the housing 51 through the lower opening 232 of the center mask layer 22.
  • the lower opening so that the passage path of the laser light emitted from the laser light emitting element 551 passes through the vicinity of the center Y of the lower opening 232 (any part of the region inside the strain region 2322 of FIG. 11 described above).
  • the position and size of 232 and the position of the sensor 5 are adjusted.
  • a second control board 56 is disposed on the upper surface of the second support portion 55, and drives the laser light emitting element 551, processes an electric signal transmitted from the first control board 541, and the like.
  • the first control board 541 transmits a pulse of laser light from the laser light emitting element 551. Then, the distance between the preceding vehicle or the obstacle and the own vehicle is calculated based on the time until the reflected light reflected by the preceding vehicle or the obstacle is received by the light receiving element 543. The calculated distance is transmitted to an external device via the connector 53 and used for brake control and the like.
  • the antenna is provided on a glass plate for radio and digital television.
  • the antenna 60 is formed in an L shape extending from a part of the upper side to a part of the right side of the inner surface of the glass plate 1.
  • Can do As a manufacturing method, it can form by screen-printing on a glass plate with the same material as the silver layer of a mask layer, for example.
  • a mask layer it is printed on a glass plate before being conveyed to a heating furnace.
  • the mask layer 2 is formed on the glass plate 1. Thereafter, the glass plate 1 is heated and molded. At this time, since the mask layer 2 is a dark color such as black, the amount of heat absorbed in the glass plate 1 is larger than that of a region where the mask layer 2 is not formed, for example, the upper opening 231 and the lower opening 232. Become.
  • the mask layer 2 and the glass plate 1 have different coefficients of thermal expansion.
  • the linear expansion coefficient of the mask layer (ceramic) 2 according to the above is 70 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C.
  • the glass has a linear expansion coefficient of 1 ⁇ 10 ⁇ 6 to 10 ⁇ 10 ⁇ 6 / ° C. Therefore, in the region where the mask layer 2 is formed, compressive stress and tensile stress are generated at the time of molding, and the curvature of the glass surfaces of the outer glass plate and the inner glass plate is different. Distortion occurs near the boundary between the opening 231 and the lower opening 232.
  • the distortion is more pronounced in the laminated glass having different thicknesses because it bends more than the outer glass plate 11 near the boundary of the inner glass plate 12. become.
  • the light may be refracted due to distortion or the like, and there is a possibility that it cannot be irradiated accurately or cannot be received.
  • the present inventor studied as follows. First, the glass plate in which the following mask layers were formed was prepared.
  • Configuration of glass plate A laminated glass in which an outer glass plate and an inner glass plate were made of green glass having a thickness of 2 mm, and a single-layer interlayer film was disposed between them.
  • Mask layer It was set as the composition of Table 1 and Table 2 mentioned above. The upper opening was 58 mm long and 72 mm wide, and the lower opening was 29 mm long and 72 mm wide.
  • (3) Production of glass plate A first ceramic layer, a silver layer, and a second ceramic layer were screen-printed on the inner surface of the inner glass plate to form a mask layer. Thereafter, it was baked at 650 ° C. in a heating furnace with a molding die as shown in FIG. 12, molded into a curved shape, and gradually cooled after being taken out from the heating furnace.
  • the horizontal axis represents the length in the surface direction of the glass plate
  • the vertical axis represents the lens power (mili diopter: reciprocal of focal length).
  • the method for measuring the lens power is as follows. First, light is projected onto a glass plate in a dark room, and a shadow is formed on the screen behind the glass plate. At this time, if there is a convex lens on the glass plate, the light is condensed and the shadow on the screen becomes bright. On the other hand, it becomes dark when there is a concave lens on the glass plate.
  • the lens power of the glass plate can be obtained by arranging the target glass plate and measuring the brightness on the screen over the entire surface of the glass.
  • FIG. 1 This photograph was taken on a glass plate having a trapezoidal opening in the mask layer, based on the perspective distortion test of JIS R3212. From the figure, the true circle is deformed and distorted into an elliptical shape within 4 mm from the boundary between the mask layer 2 and the opening. On the other hand, it can be seen that the vicinity of the center of the opening (region excluding 4 mm from the boundary) is closer to a perfect circle than the vicinity of the boundary.
  • the light irradiation and / or received light passing range is distorted as described above. It is necessary to avoid being placed in a large area.
  • the thermal expansion of the open peripheral regions 2311, 2321 is greater than that of the mask layer 2. I try to make it smaller. Thereby, it is possible to prevent the coefficient of thermal expansion from rapidly changing at the boundary between the mask layer 2 (edge of the opening) and the inside of the opening.
  • the inner peripheral edges of the opening peripheral areas 2311 and 2321 may still be distorted as described above (distorted areas 2312 and 2322), so that the area where the light of the measurement unit 4 passes (for example, FIG. 11).
  • X, Y are preferably provided avoiding the strain regions 2312, 2322.
  • the silver layer 242 is formed on the mask layer 2, it is possible to shield the electromagnetic wave emitted from the sensor 5 from being emitted to the outside. Therefore, the electromagnetic wave from the sensor 5 prevents noise from entering audio (video) such as AM (long wave / medium wave / short wavelength) / FM (frequency over ultra short wavelength) radio and digital TV (frequency 470-720 MHz). can do.
  • audio video
  • FM frequency over ultra short wavelength
  • digital TV frequency 470-720 MHz
  • the silver layer 242 is effective as an electromagnetic wave shielding function.
  • the distance from the sensor 5 is closer, and electromagnetic waves are more affected. Since it is easy to receive, formation of the silver layer 242 is effective.
  • the silver layer 242 in the strain region of the glass plate that is close to the sensor 5. Further, since the silver layer 242 is sandwiched between the black ceramic layers 241, 243, the silver layer 242 is prevented from being seen from outside and inside the vehicle. Therefore, even if the silver layer 242 is formed, the appearance is not affected. Furthermore, since the center mask layer 22 is covered with a bracket, a cover, etc., an electrical influence on the outside can be prevented.
  • the opening peripheral regions 2311, 321 are formed in a staggered dot pattern, but may be a rectangular shape other than a circle, a polygonal shape, an irregular shape, or the like as long as the ceramic density can be reduced. These can be arranged in a staggered manner or at a predetermined interval. Further, the size of the dot 2220 may be changed. Moreover, a linear pattern can be formed at predetermined intervals. In addition, the opening peripheral area can be formed by arranging mask pieces of various shapes at predetermined intervals. For example, as shown in FIG. 18, the size and shape of the dots can be changed, or the shape of the peripheral edge of the opening can be a curved line instead of a straight line.
  • the opening peripheral areas 2311 and 321 do not need to be formed over the entire circumference of the openings 231 and 232, and may be a part thereof or may be changed in width.
  • the opening peripheral region can be formed only along the lower side of the rectangular opening. This is because, for example, when information is acquired by a camera, information is often acquired from below the camera. Therefore, it is advantageous in terms of cost if the opening peripheral region is formed only under the openings 231 and 232.
  • the thickness may change as it goes to the center of the opening. In this case, the thickness may be gradually changed or may be changed stepwise.
  • a material having a smaller thermal expansion coefficient than that of the mask layer 2 can be used as the peripheral edge region of the opening.
  • the example of the sensor 5 for measuring the distance between vehicles was shown, it is not limited to this, The distance between vehicles can be measured by irradiating light and receiving the reflected light. If there is, it is not particularly limited.
  • the senor 5 for measuring the inter-vehicle distance is used as the information acquisition device of the present invention, but the present invention is not limited to this, and various information acquisition devices can be used. That is, there is no particular limitation as long as light is emitted and / or received in order to acquire information from outside the vehicle.
  • a visible light and / or infrared camera for measuring the distance between vehicles a light receiving device for receiving a signal from outside the vehicle such as an optical beacon, a camera using visible light and / or infrared light that reads a white line of a road in an image, etc.
  • the present invention can be applied to various devices.
  • the center mask layer has one opening.
  • a plurality of openings can be provided depending on the type of light.
  • the information acquisition device may or may not be in contact with the glass.
  • the opening may not be completely closed on the entire circumference, but may be partially open. For example, the lower side of the opening may be released without closing. Then, the opening peripheral region and the strain region are formed in a closed portion in the opening.
  • the peripheral area as described above is formed inside the opening of the center mask layer 22, and the field of view (view angle) of the camera is adjusted as follows. That is, as shown in FIG. 19, the field of view (visible light or infrared ray passing range Z) of the camera 80 and the inner edge of the opening peripheral region 250 are substantially matched. More preferably, the field of view of the camera passes through all or a part of the area further inside than the above-described distortion area.
  • the mask layer 2 has a three-layer structure as described above, but is not limited to this. That is, in the above embodiment, the silver layer 242 is provided in order to shield electromagnetic waves, but other materials such as a method of providing a single layer in which silver and a ceramic layer are mixed, or an electromagnetic wave can be shielded. Copper, nickel, etc. may be laminated. In addition, the silver layer 242 is sandwiched between ceramic layers so that the silver layer 242 cannot be seen from the outside. However, in addition to covering with the ceramic layer, a member such as the cover described above can also be used. Further, it is not always necessary to provide an electromagnetic wave shielding layer, and at least a layer that cannot be seen from the outside may be formed. Further, a silver layer can be applied to hide the above-described region where distortion occurs.
  • the mask layer 2 can be other than black, and is not particularly limited as long as it is a dark color such as brown, gray, or dark blue that blocks the field of view from the outside of the vehicle and prevents the inside of the vehicle from being seen.
  • the laminated glass can be provided with a shade region.
  • the laminated glass shown in FIG. 20 includes an outer glass plate 1, an inner glass plate 2, and an intermediate film 50 sandwiched between these glass plates 1 and 2.
  • the intermediate film 50 includes a base intermediate film (first intermediate film) 3 and an opening intermediate film (second intermediate film) 4.
  • the laminated glass is formed with a shade region 10 having a high transmittance loss for visible light and a viewing region 20 having a low transmittance loss.
  • region 10 is a strip
  • the viewing area 20 is used as an optical window.
  • a rectangular transmission region 30 is formed at the center of the shade region 10 in the left-right direction.
  • the transmission region 30 is a transparent region that is not colored, and transmits laser, infrared light, and visible light from a safety system device (information acquisition device) such as a laser radar or a camera. This region is formed by the opening intermediate film 4 described above.
  • the base intermediate film 3 and the opening intermediate film 4 will be described in detail.
  • the base intermediate film 3 can be formed of a plurality of layers.
  • the base intermediate film 3 is composed of three layers in which a soft core layer 31 is sandwiched between harder outer layers 32. Can do.
  • it is not limited to this configuration, and it may be formed of a plurality of layers having the soft core layer 31.
  • material, hardness, thickness, etc. are the same as the said embodiment.
  • a colored region for forming the shade region 10 described above is formed in a part of the base intermediate film 3. This region is formed in a band shape along the upper edge of the base intermediate film 3, and one or more of the core layer 31 and the outer layer 32 are colored green, blue, or the like with a colorant such as a pigment or a dye. is there.
  • a colorant such as a pigment or a dye.
  • the pigment examples include organic pigments such as azo, phthalocyanine, and quinacrine, and inorganic pigments such as metal oxides and metal powders.
  • a colored layer and a clear layer are prepared by extrusion molding from a resin composition obtained by kneading the pigment together with a resin and a plasticizer and a resin composition (resin and plasticizer) not containing the pigment.
  • the colored base intermediate film 3 can be obtained by pinching and forming a colored layer with a clear layer.
  • a dye when a dye is used, a region where the shade region 10 is to be formed is exposed using a mask, and the dye is applied to this region.
  • the dye can be applied, for example, by spraying or printing. Further, the mask can also be arranged in the transmission region 30 described above.
  • the thickness of the base intermediate film 3 does not have to be constant over the entire surface, and may be a wedge shape, for example, for laminated glass used in a head-up display.
  • the thickness of the base intermediate film 3 is measured at the position where the thickness is smallest, that is, the lowermost side portion of the laminated glass.
  • the core layer 31 has a wedge shape in cross section, and the glass plate is aligned along the surface direction from the upper end to the lower end.
  • the thickness of both outer layers 32 can be made constant while the thickness is reduced toward.
  • the base intermediate film can be configured similarly to the intermediate film 13 shown in the above embodiment. Further, the manufacturing method of the base intermediate film can be made the same. However, in order to form the shade region, for example, the shade region may be colored to form a shade region and then laminated, or after lamination, the outer region may be colored to form a shade region. May be.
  • the opening intermediate film 4 is formed of a core layer 41 and an outer layer 42.
  • the difference from the base intermediate film 3 is that it is transparent without being colored and has a shape.
  • the size and shape of the opening intermediate film 4 are not particularly limited, but may be any size as long as the light to the laser radar or camera described above can pass through.
  • the opening intermediate film 4 is attached to the base intermediate film 3 as shown in FIGS.
  • FIG. 23 is a plan view for explaining the mounting method
  • FIG. 24 is a sectional view taken along line BB of FIG.
  • two base intermediate films 3 having no openings are prepared.
  • the opening intermediate film 4 is cut out from one base intermediate film (hereinafter referred to as a cutting base intermediate film 302), and this is attached to the other base intermediate film (hereinafter referred to as a product base intermediate film 301).
  • the two base intermediate films 301 and 302 have shade regions 3011 and 3021 formed in advance at one end thereof, and have the same configuration.
  • the cutting base intermediate film 302 is overlaid on the product base intermediate film 301.
  • the visual field region 3022 of the cutting base intermediate film 302 is arranged at a position where the transmission region 30 is to be formed in the shade region 3011 of the product base intermediate film 301.
  • both the base intermediate film for cutting 302 and the base intermediate film for product 301 are punched out using a mold having the shape of the transmission region 30.
  • the punched region in the product base intermediate film 301 is removed to form the through hole 39, and the punched-out base intermediate film 302 is used for opening as shown in FIG.
  • the intermediate film 4 is fitted into the through hole 39.
  • the boundary portion around the through hole 39 is temporarily bonded using a soldering iron or the like, for example, by applying heat of about 100 to 200 ° C.
  • the product base intermediate film 301 and the opening intermediate film are formed.
  • the intermediate film 50 as shown in FIG. 21 can be formed.
  • the transmission region 30 may be formed so as to open to the visual field region in the shade region 3011 or in the vicinity of the boundary between the shade region 3011 and the visual field region 3012.
  • the cutting base intermediate film 302 is continuously used. For example, as shown in FIG. 25, a visual field region 3022 in which no opening is formed in the cutting base intermediate film 302 is overlapped with a shade region 3011 (position where an opening is to be formed) in the next product base intermediate film 301. Match.
  • the intermediate film 50 as shown in FIG. 21 can be formed. In this way, the cutting base intermediate film 302 is used until the opening intermediate film 4 cannot be cut out from the visual field region 3022.
  • the cut out opening intermediate film 4 is The product is sequentially fitted into the product base intermediate film 301.
  • an opening intermediate film is produced as follows.
  • the thickness of the intermediate film is not constant depending on the position in the plane direction as shown in FIG. Therefore, since the depth T1 of the transmission region 30 is not constant, it is not easy to prepare the opening intermediate film 4 suitable for this.
  • the “near” shade region 3021 of the cutting base intermediate film 302 is arranged in the vicinity of the transmission region 30 of the product base intermediate film 301. That is, the opening intermediate film 4 is cut out from the vicinity of the shade region 3021 of the cutting base intermediate film 302.
  • the opening intermediate film 4 having substantially the same thickness as the shade region 3011 of the product base intermediate film 301 can be extracted. Therefore, the opening intermediate film 4 can be made to substantially match the depth of the transmission region 30. it can. As a result, the opening intermediate film 4 suitable for the transmission region 30 can be easily formed.
  • the “neighborhood” of the shade region 3021 described above will be described.
  • the position where the opening intermediate film 4 can be cut out so that the difference between T4 and T3 is 0.2 mm or less, preferably 0.1 mm or less is referred to as “the vicinity” of the shade region.
  • a plurality of opening intermediate films 4 can be cut along the lower end of the shade region 3021. it can.
  • one base intermediate film 302 can be used for cutting out the opening intermediate film 4. There is no need to prepare a separate film material for cutting. Therefore, the opening intermediate film 4 can be easily produced. Furthermore, since the visual field region 20 other than the shade region 10 is large in the base intermediate film 3, a large number of opening intermediate films can be extracted from one base intermediate film. Therefore, one base intermediate film can be used repeatedly, leading to cost reduction.
  • the base intermediate films 301 and 302 having the same configuration are used, but the same configuration is not necessarily required.
  • the cutting base intermediate film 302 only needs to have substantially the same material and thickness as the product base intermediate film 301.
  • the size and position of the shade region may be different.
  • the intermediate films 301 and 302 are in a wedge shape as described above, if the both intermediate films have the same configuration, the inclination angles of the base intermediate film and the opening intermediate film 4 can be easily matched.
  • the intermediate film in the above description is composed of a plurality of layers, it can be composed of a single layer.
  • the intermediate film can also be configured as follows. That is, as shown in FIG. 28, the intermediate film 13 is formed of a first region 1301 and a second region 1302 that are adjacent in the plane direction. Among these, the 2nd field 1302 is formed in the shape of a belt extended along the upper end part of both glass plates 11 and 12, and the 1st field 1301 is the lower part of the 2nd field 1302 in both glass plates 11 and 12. Is arranged to cover.
  • the first region 1301 and the second region 1302 may be formed of a single layer or a plurality of layers.
  • an intermediate film 13 in which the first region 1301 is formed of three layers and the second region 1302 is formed of one layer will be described as shown in FIG.
  • the second region 1302 extends in a strip shape along the upper ends of the glass plates 11 and 12 and extends so as to pass through the center mask layer.
  • the second region 1302 is formed of a transparent resin material having a higher light transmittance than the first region, and can be formed of, for example, polyvinyl bratil, polyethylene terephthalate (so-called clear film). Note that the length of the second region in the vertical direction depends on the length of the center mask layer 22, but may be, for example, 50 to 150 mm.
  • Such an intermediate film 13 can be manufactured by various methods. For example, when the first region 1301 of the intermediate film is formed of a plurality of layers, a resin component such as the above-described polyvinyl acetal resin, a plasticizer, and other additives as necessary are blended and kneaded uniformly. Thereafter, a method of extruding each layer in a lump and a method of laminating two or more resin films prepared by this method by a press method, a laminating method or the like can be mentioned.
  • the resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure.
  • the first region 1301 and the second region 1302 can be formed by coextrusion.
  • the second region 1302 can be formed by providing a cut portion in the first region 1301 in advance and coextruding a resin colored with a pigment or dye.
  • a highly permeable material 1305 can be disposed on one outer layer 132.
  • a highly permeable material 1305 can be disposed in the other outer layer 132, the core layer 131, or a plurality of layers.
  • FIG. 29C when the intermediate layer 13 is formed as a single layer, a highly permeable material 1305 can be disposed therein.
  • Such a manufacturing method can also be applied to the manufacture of an intermediate film in which a layer containing ITO fine particles and a layer not containing it are described later.
  • the second region 1302 of the intermediate film 13 passes through the center mask layer 22. Therefore, when light is irradiated or received through the openings 231 and 232 of the center mask layer 22, the light passes through the second region 1302.
  • the second region 1302 is formed of a transparent resin, for example, a material having high light transmittance such as polyvinyl platyl or polyethylene terephthalate, the above-described infrared transmittance can be satisfied. .
  • the second region 1302 is formed of a single layer of resin material, light is not refracted in this region, and as a result, light irradiation and / or light reception by the sensor 5 can be performed accurately. Information processing can be performed accurately.
  • the second region 1302 of the intermediate film 13 as described above is provided in a portion through which light passes.
  • the mask layer 2 since most of the second region 1302 is covered with the mask layer 2, it is possible to suppress an increase in the transmittance of the glass plate in a region other than the opening.
  • the second region 1302 of the intermediate film 13 is formed in a strip shape along the upper ends of the glass plates 11 and 12, but the shape of the second region 1302 is not limited to this, and at least the opening of the mask layer 22. It suffices if they are arranged at positions corresponding to 231 and 232. Further, the second region 1302 can be formed along the shape of the mask layer in order to cover a region with high transmittance.
  • the second region 1302 is formed over the entire thickness direction of the intermediate film 13, but the second region can also be formed in a part of the thickness direction.
  • a cut portion may be provided in a part of the intermediate film in the thickness direction, and a highly permeable material may be formed by coextrusion in the cut portion.
  • the transmittance of the windshield in the first region 1301 is 27.
  • FIG. 30 is a diagram showing a normal distribution of transmittance of light having a wavelength of 950 nm in a manufactured laminated glass by simulation.
  • the outer glass and the inner glass are both clear glass having a thickness of 2.0 mm, and in the same figure, a normal distribution in the case of using a plurality of intermediate films is shown.
  • the standard deviation ⁇ is empirically 0.5 to 0.7, but in the normal distribution in this figure, the standard deviation ⁇ is set to 0.6.
  • the average value (expected value) of the transmittance of light having a wavelength of 950 nm is 30%. From the figure, the transmittance range is approximately 30 ⁇ 2.5% (about 4 ⁇ ).
  • the yield is obtained when a clear film having a high light transmittance as described above is inserted in the second region 1301. Will improve.
  • the thickness and composition of the glass plate and the thickness and composition of the interlayer film affect the transmittance.
  • the yield is improved.
  • the thickness of the outer glass plate (first glass plate) and the inner glass plate (second glass plate) is 1 to 2.5 mm, respectively.
  • the thickness of the intermediate film is 0.3 to 2 mm.
  • the transmittance of light having a wavelength of 850 to 950 nm is 63% or less.
  • the transmittance of light having a wavelength of 850 to 950 nm is 75% or less.
  • the intermediate film 13 can be configured to perform various functions. For example, in order to solve the problem that the temperature inside the vehicle rises due to the light passing through the windshield, it is only necessary to absorb the infrared rays by the intermediate film 13. ITO fine particles, which is one of the conductive particles, can be dispersed and blended.
  • the intermediate film 13 can be configured as follows.
  • ITO fine particles are dispersed and blended in the resin formed of the above-described clear film.
  • the ITO fine particles can be formed of, for example, indium tin oxide which is a composite oxide in which indium oxide and tin oxide are approximately 9: 1 in weight ratio.
  • the ITO fine particles used here preferably have an average particle size of 0.2 ⁇ m or less, and more preferably 0.1 ⁇ m or less. This is because fine particles having an average particle diameter larger than 0.2 ⁇ m or aggregated coarse fine particles become a light scattering source of the formed intermediate film 13 and cloud the intermediate film 13.
  • the amount of the ITO fine particles contained in the clear film can be, for example, 0.4 g / m 2 or more and 0.8 g / m 2 or less. This is because if it is less than 0.4 g / m 2 , the heat shielding effect by infrared shielding may be insufficient, and if it exceeds 0.8 g / m 2 , the cost may increase.
  • the intermediate film 13 is cut into approximately 1 cm ⁇ 6 cm, decomposed with an acid, and Sn and In in the decomposed solution are subjected to plasma. A method of quantifying by an emission analysis method can be used.
  • the clear film thus formed is used as the first region 1301.
  • the resin disposed in the second region 1302 is also formed of the above-described clear film, but does not contain ITO fine particles.
  • a clear film that does not contain ITO fine particles is arranged in a region indicated by reference numeral 1305 in the second region 1302 shown in FIG. 29, and other regions, for example, those shown in FIGS. 29 (a) and 29 (b).
  • a clear film containing ITO fine particles can be disposed in the region indicated by reference numeral 132 or the region indicated by reference numeral 1304 in FIG.
  • a clear film that does not contain ITO fine particles can be disposed in any layer of the intermediate film 13.
  • the infrared rays that pass through the first region 1301 from outside the vehicle are absorbed by the ITO fine particles, so that the infrared rays can be suppressed from reaching the inside of the vehicle. As a result, it is possible to prevent the temperature inside the vehicle from rising.
  • the second region 1302 contains no or only a small amount of ITO fine particles, it is possible to prevent the passage of infrared rays irradiated from the information acquisition device from being inhibited. As a result, it is possible to prevent the information acquisition apparatus from malfunctioning.
  • the intermediate film 13 containing ITO fine particles can be manufactured as follows, for example.
  • ITO fine particles dispersed in a plasticizer are kneaded and mixed with a resin constituting the outer layer 132 by a roll mixer. Then, as described above, the obtained resin material is melted and molded together with the core layer 131 by an extruder to obtain the sheet-like intermediate film 13.
  • a vinyl-based resin composition is used as the outer layer 132 and formed into a sheet shape, a heat stabilizer, an antioxidant, or the like is added as necessary, and the sheet penetration is improved. You may mix
  • FIG. 29C in order to form the intermediate film 13 in a single layer (reference numeral 1304), it can be manufactured in the same manner as the outer layer 132 described above.
  • Such ITO fine particles may be dispersed in a plasticizer and added to the vinyl resin in order to improve the dispersion in the vinyl resin.
  • a plasticizer what is generally used for interlayer films can be used, and it may be used alone or two or more kinds may be used in combination.
  • triethylene glycol-di-2-ethylhexanoate (3GO), triethylene glycol-di-2-ethylbutyrate (3GH), dihexyl adipate (DHA), tetraethylene glycol-di- Heptanoate (4G7), tetraethylene glycol-di-2-ethylhexanoate (4GO), triethylene glycol-di-heptanoate (3G7) and the like are preferably used.
  • the amount of the plasticizer added is preferably 30 to 60 parts by weight with respect to 100 parts by weight of the vinyl resin.
  • additives may be added to the vinyl resin.
  • additives include various pigments, various dyes, mixed materials of pigments and dyes, ultraviolet absorbers, fluorescent stabilizers, and the like.
  • an ultraviolet absorber For example, a benzotriazole type thing is used preferably.
  • a benzotriazole type thing is used preferably.
  • a hindered amine type thing is used preferably.
  • ADK STAB LA-5 7 manufactured by Asahi Denka Kogyo Co., Ltd. is used.
  • the conveyance speed of the glass plate 10 can be adjusted by adjusting the rotation speed of each roller 931.
  • the conveyance speed of the glass plate 10 in the heating furnace 901 is made substantially constant, and acceleration is performed in the vicinity of the outlet of the heating furnace 901. And it is carried out of the heating furnace 901 at that speed, and moves to the molding apparatus 902. Thereafter, the glass plate is decelerated immediately before being placed at the molding position of the molding apparatus 902 and stopped at the molding position.
  • the transport speed at this time is not particularly limited.
  • the transport speed V1 in the heating furnace is preferably 100 to 300 mm / sec, and more preferably 200 to 300 mm / sec.
  • the conveying speed V2 after unloading from the heating furnace 901 is preferably 500 to 1500 mm / sec, and more preferably 1000 to 1500 mm / sec.
  • the conveyance time from the heating furnace 901 to the molding position is preferably 1 to 2 seconds, and more preferably 1 to 1.5 seconds.
  • the conveyance speed of the glass plate 10 is accelerated from the front of the outlet of the heating furnace 901, and the conveyance time is shortened from the heating furnace outlet to the forming position. Therefore, the temperature drop from the heating furnace outlet to the molding position can be reduced, and the glass plate can be molded at an appropriate temperature. Therefore, the glass plate can be prevented from cracking. At this time, it is preferable to accelerate the conveyance speed before the tip of the glass plate 10 in the conveyance direction reaches the outlet of the heating furnace 901.
  • the conveyance speed of the glass plate 10 is increased from the front of the outlet of the heating furnace 901.
  • the glass plate 10 can be accelerated after exiting the heating furnace 901. That is, there is no particular limitation as long as the conveyance time from the heating furnace 901 to the forming position can be shortened, and the average conveyance from the heating furnace outlet to the forming position is higher than the average conveyance speed in the heating furnace 901 of the glass plate 10. It only needs to be fast.
  • the conveyance speed in the heating furnace 901 may not be constant. For example, the conveyance speed can be changed between the upstream side and the downstream side in the heating furnace.
  • the lower mold 922 of the molding apparatus 902 is formed in a frame shape, but the present invention is not limited to this. That is, the lower mold may be in contact with the entire surface of the glass plate.
  • the form of the upper mold and the lower mold is not particularly limited as long as the molding apparatus molds glass.
  • FIG. 32 shows the relationship between wavelength and transmittance in glass plates having different iron contents.
  • the iron content in the glass plate the content of iron oxide converted to iron dioxide, the same shall apply hereinafter
  • the light transmittance at a wavelength of 850 to 950 nm is It is equal to or higher than the transmittance of sunlight, that is, approximately 40% or higher.
  • the iron content in the glass plate is 0.035% by weight or less
  • the light transmittance at a wavelength of 850 to 950 nm is approximately 80%. Therefore, it is advantageous for the measurement unit such as the laser radar described above.
  • the temperature in the furnace is preferably 650 to 675 ° C. If it is lower than 650 ° C., cracking may occur due to insufficient heating. On the other hand, when the temperature is higher than 675 ° C., distortion is likely to occur, and the light transmittance may be lowered. Or you may lengthen the heating time in a furnace.
  • the heat absorption amount to be applied to the glass plate is determined in accordance with the content, and the temperature in the furnace is increased to provide the heat amount. Or the time for placing in the furnace can be lengthened.
  • such a glass plate with a low iron content has a reduced amount of radiant heat absorption, and therefore it is necessary to form it as soon as possible after it is unloaded from the furnace and before the temperature drops significantly. Therefore, as described above, it is preferable to increase the conveyance speed after being carried out of the furnace.
  • the iron content of at least one of the two glass plates is 0.17% by weight or less, preferably 0.035% by weight or less, as described above. May be.
  • a glass plate can also be shape
  • FIG. 34 is a plan view of the mold
  • FIG. 35 is a cross-sectional view of FIG. 34 showing a state where the windshield is placed.
  • the mold 800 includes a frame-shaped mold body 810 that substantially matches the outer shape of the windshield 10. Since this mold body 810 is formed in a frame shape, it has an internal space 820 that penetrates in the vertical direction. And the peripheral part of the flat glass plate 10 is mounted in the upper surface of this type
  • the region where deformation is desired to be reduced is, for example, the peripheral portion of the windshield.
  • the reason is as follows. That is, when the peripheral portion of the windshield receives heat from the heater 830, the temperature of this portion increases. Thereby, since the viscosity of the windshield increases, the amount of deformation due to the weight of the windshield increases at the periphery. As a result, the cross section of the windshield becomes flat at the center of the cross section like a so-called pan shape.
  • the molding apparatus is configured to increase the amount of heat received by the central portion of the windshield and decrease the amount of heat received by the peripheral portion in order to prevent such a form.
  • a heat shield plate (heat shield means) 840 that protrudes from the inner periphery of the mold main body 810 to the center side of the internal space 820 in the inner space 820 of the mold main body 810. Is provided.
  • the heat shield plate 840 blocks the heat generated from the lower heater 830 and shields it from reaching the windshield 10 directly. Therefore, since the heat H1 from the lower heater 830 is shielded by the die body 810 and the heat shield plate 840 around the periphery of the windshield 10, the amount of heat applied to the glass plate 10 is small.
  • the heat shield 940 is not provided near the center of the windshield 10, the heat H ⁇ b> 2 from the lower heater 830 is directly applied to the windshield 10 through the internal space 820. Therefore, the amount of heat received near the center of the windshield 10 is large, and the degree of deformation is also large.
  • the heat shield plate 840 is disposed below the windshield 10, but is disposed at a position where the windshield 10 does not contact even if the glass plate 10 is bent by its own weight.
  • the arrangement of the heat shield plate 840 is not particularly limited, and is determined by the required curvature of the windshield 10.
  • the mask layer 2 having the openings 231 and 232 is laminated on the windshield 10, but the inner peripheral edge 841 of the heat shield plate 840 is not positioned directly below the openings 231 and 232.
  • the shape and position of the heat shield plate 840 are adjusted. That is, in the example of FIG. 35, the inner peripheral edge 841 of the heat shield plate 840 is located closer to the center of the internal space 820 than the openings 231 and 232.
  • the windshield 10 passes through the heating furnace 802 as shown in FIG. 33 in a state instructed by such a mold.
  • the windshield 10 When heated to near the softening point temperature in the heating furnace 802, the windshield 10 is bent downward on the inside of the peripheral edge by its own weight, and is formed into a curved surface.
  • the glass plate 10 is carried into the slow cooling furnace 803 from the heating furnace 802, and a slow cooling process is performed. Thereafter, the windshield 10 is taken out of the slow cooling furnace 803 and allowed to cool.
  • the windshield is heated in a state where the periphery is supported by the mold 800 and is bent downward by its own weight.
  • the heat shield receives heat control by the heat shield plate 840. Yes. That is, at the position where the heat shield plate 840 exists, the amount of heat applied to the windshield is small, but at the position where the heat shield plate 840 does not exist, the amount of heat applied to the windshield increases. Therefore, near the inner periphery of the heat shield plate 840, that is, at the boundary between the position where the heat shield plate 840 exists and the position where it does not exist, the amount of heat applied to the windshield changes greatly.
  • the present inventor has found that a distortion that cannot be ignored is formed in the windshield due to a large change in the amount of heat at a position facing such a boundary.
  • the region surrounded by the line on the windshield is a region through which the inner peripheral edge of the heat shield plate passes, but in this region, distortion as shown in FIG. 37 occurs.
  • the windshield is formed with the openings 231 and 232 through which light from the sensor passes. Therefore, when distortion occurs so as to pass through the openings 231 and 232, the laser beam is irradiated with laser light. When light is received, the light may be refracted due to distortion, so that there is a possibility that irradiation cannot be performed accurately or light cannot be received.
  • the inner peripheral edge 841 of the heat shield plate 840 is not positioned directly below the openings 231 and 232. That is, in the example of FIG. 34, the inner peripheral edge 841 of the heat shield plate 840 is located closer to the center of the internal space 820 than the openings 231 and 232. Thereby, the boundary between the position where the heat shield plate 840 exists and the position where it does not exist does not pass directly below the openings 231 and 232. Thereby, it is possible to prevent the distortion due to such a boundary from occurring on the windshield corresponding to the openings 231 and 232.
  • the plate-like member is not necessarily required, and the mode is not particularly limited.
  • heat can be shielded with a block-shaped member.
  • the provisions concerning double images are also prescribed in ECE R43. That is, as shown in FIG. 38B, when the observer inside the vehicle views the object outside the vehicle, the images 1 and 2 are observed, and a double image is generated.
  • the angle at which the double image is generated that is, the angle A formed by the straight line connecting the observer and the image 1 and the straight line connecting the observer and the image 2 needs to be 15 arcmin or less.
  • a windshield is constructed as follows. That is, as shown in FIG. 39, the windshield 1 has a wedge-shaped cross section. More specifically, at least in a region through which light passes (wedge-shaped region), a wedge-shaped cross section is formed such that the thickness decreases toward the upper end of the windshield 1.
  • the wedge angle ⁇ at this time depends on the installation angle of the windshield 1, but can be set to, for example, 0.05 to 0.3 degrees (second angle), and preferably 0.05 to 0.2. Degree, more preferably 0.1 to 0.2 degree. By doing so, the angle at which the above-described double image is generated can be made 15 arcmin or less.
  • the reflected light is incident on point D on the inner surface of the windshield 1 at an incident angle of 20 degrees, and is refracted and incident into the vehicle at an exit angle of 50 degrees.
  • This is spectrum 1. Therefore, since the spectrum 1 and the spectrum 2 enter the vehicle so as to approach each other, the double image phenomenon is eliminated.
  • the angle shown in the above example is merely an example, but the thickness of the windshield 1 in the region where the openings 231 and 232 of the mask layer 2 are formed is formed so as to decrease toward the upper side of the windshield. If this is done, the double image phenomenon of light incident from outside the vehicle is eliminated.
  • a head-up display device that projects information such as a vehicle speed on a windshield of a vehicle has been proposed.
  • this head-up display device When this head-up display device is used, a double image is generated by light projected on a windshield. Is known to form. That is, as shown in FIG. 40, since the image visually recognized by reflecting on the inner surface of the windshield 1 and the image visually recognized by reflecting on the outer surface of the windshield 1 are separately viewed, It was double.
  • the thickness decreases as it goes downward. .
  • the light reflected on the inner surface of the windshield 1 and incident on the interior of the vehicle is substantially coincident with the light reflected on the outer surface of the windshield and then incident on the interior of the vehicle, so that the double image is eliminated.
  • the wedge angle ⁇ of the windshield 1 at this time may be, for example, 0 to 0.3 degrees (first angle), although it depends on the installation angle of the windshield 1.
  • the second angle can be 0.05 to 0.3 degrees.
  • the windshield 1 is disposed on the outer glass plate 11, the inner glass plate 12, and between them.
  • the windshield 1 can be formed in a wedge shape by forming the intermediate film 13 and making the cross-sectional shape of the intermediate film 13 as described above.
  • the intermediate film 13 may be formed in a wedge shape whose thickness decreases upward as shown in FIG.
  • the upper portion (second region) of the intermediate film 13 is moved upward. The thickness may be reduced, and the lower portion (first region) of the intermediate film 13 may be formed so that the thickness decreases as it goes downward.
  • the structure, material, and the like of the intermediate film 13 are as described in the above embodiment.
  • an outer glass plate 11 and an inner glass plate 12 having the same cross-sectional shape are prepared, and these are bent along the outer shape of the intermediate film 13.
  • the outer glass plate 11 and the inner glass plate 12 are formed in a shape that reflects in advance the outer shape of the windshield 1 to be manufactured.
  • the intermediate film 13 having a wedge shape in advance is sandwiched between the glass plates 11 and 12, and then joined by preliminary adhesion and adhesion by an autoclave.
  • positioned between both the glass plates 11 and 12 does not need to be shape
  • a 5 cm square wedge-shaped glass is bonded to a desired position on the inner glass plate facing the measurement unit 4. It may be pasted using, and an autoclave may be performed at the time of main bonding.
  • Embodiments of the windshield according to the present invention will be described below. However, the present invention is not limited to the following examples. ⁇ 1. Evaluation of Young's modulus of core layer> The laminated glass which concerns on an Example and a comparative example was prepared as follows.
  • Each glass plate was formed of the above-described clear glass.
  • the intermediate film was comprised with the core layer and a pair of outer layer which clamps this.
  • the thickness of the intermediate film was 0.76 mm
  • the thickness of the core layer was 0.1 mm
  • the thicknesses of both outer layers were 0.33 mm.
  • the Young's modulus of both outer layers was adjusted to 441 MPa (20 ° C., 100 Hz).
  • the sound transmission loss was evaluated by simulation for the above examples and comparative examples.
  • the simulation conditions are as follows.
  • the simulation was performed using acoustic analysis software (ACTRAN, manufactured by Free Field technology).
  • ACTRAN acoustic analysis software
  • the sound transmission loss (transmitted sound pressure level / incident sound pressure level) of the laminated glass can be calculated by solving the following wave equation using the finite element method.
  • Model setting FIG. 47 shows a model of laminated glass used in this simulation.
  • a laminated glass is defined in which an outer glass plate, an intermediate film, an inner glass plate, and a urethane frame are laminated in this order from the sound source side.
  • the reason why the urethane frame is added to the model is that there is a considerable influence on the calculation result of sound transmission loss due to the presence or absence of the urethane frame, and between the laminated glass and the vehicle windshield. This is because it is generally considered that a urethane frame is used and bonded.
  • Input condition 1 (dimensions, etc.)
  • the size of the glass plate 800 ⁇ 500 mm
  • the STL value tends to worsen because the larger the size, the larger the constrained portion and the greater the resonance mode.
  • the tendency of the relative value for each frequency that is, the laminated glass made of glass plates with different thicknesses becomes worse in a predetermined frequency band than the laminated glass made of glass plates with the same thickness. The trend is the same.
  • the random diffuse sound wave in Table 4 is a sound wave having a sound wave of a predetermined frequency transmitted with an incident angle in any direction with respect to the outer glass plate, and a sound source in a reverberation chamber for measuring sound transmission loss.
  • the STL value due to the different thickness can be suppressed by setting the Young's modulus of the core layer to 20 MPa (20 ° C., 100 Hz) or less as in Examples 1 to 4. Further, as in Examples 2 to 4, by setting the Young's modulus of the core layer to 16 MPa (20 ° C., 100 Hz) or less, compared with Comparative Example 1 in which both glasses have the same thickness, in a frequency region of 2000 to 5000 Hz. Sound transmission loss is high.
  • the laminated glass which concerns on an Example and a comparative example was prepared as follows. Here, the thickness of the core layer was changed and the sound transmission loss was calculated by the simulation method.
  • the intermediate film was composed of three layers, and the thickness of the core layer and the outer layer was changed without changing the total thickness.
  • the Young's modulus of the core layer was 10 MPa (20 ° C., 100 Hz), and the Young's modulus of the outer layer was 441 Mpa (20 ° C., 100 Hz).
  • the thicknesses of the outer glass plate and the inner glass plate were 2.0 mm and 1.0 mm, respectively.
  • the sound transmission loss was evaluated by simulation for the above examples and comparative examples. The results are as shown in FIG. According to the figure, it can be seen that when the thickness of the core layer is smaller than 0.1 mm, the sound transmission loss is reduced in the frequency range of 2000 to 5000 Hz. Therefore, in order to increase the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear, the thickness of the core layer is preferably set to 0.1 mm or more.
  • the mounting angle of laminated glass was evaluated by a simulation in which the incident angle of sound was changed.
  • the sound transmission loss was calculated by changing the angle from the vertical to 0 to 75 degrees.
  • Each glass plate was formed of the above-described clear glass.
  • the intermediate film was comprised with the core layer and a pair of outer layer which clamps this. The thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm.
  • the Young's modulus of the core layer was 10 MPa (20 ° C., 100 Hz), and the Young's modulus of both outer layers was 441 MPa (20 ° C., 100 Hz). Moreover, the thickness of the glass plate was 2.0 mm and 1.0 mm.
  • Example 13 and 14 are shown in FIG.
  • the Young's modulus of the core layer In the evaluation of the Young's modulus of the core layer described above, it was found that when the Young's modulus is 20 MPa or less, the sound transmission loss is increased in a frequency range of 2000 to 5000 Hz that is easy for humans to hear.
  • the Young's modulus of the outer layer was changed while keeping the Young's modulus of the core layer constant.
  • FIG. 51 it was found that in Example 14 where the Young's modulus of the outer layer was high, the sound transmission loss was high in a high frequency region of 5000 Hz or higher.
  • the Young's modulus of the core layer is further lowered and the Young's modulus of the outer layer is increased.
  • the sound transmission loss in the frequency region of 2000 to 5000 Hz is higher than those in Examples 13 and 14, but the values in Examples 13 and 14 are higher than 5000 Hz.
  • the sound transmission loss in the frequency domain is not high.
  • the Young's modulus of the outer layer exceeds 1764 MPa, the sound transmission loss in a high frequency region of 5000 Hz or higher hardly increases.

Abstract

The present invention is a windshield in which it is possible to install an information obtaining device that obtains information from outside the vehicle by radiating light and/or receiving light. The windshield is provided with a glass plate on which a mask layer is laminated, the mask layer blocking visibility from outside the vehicle and having at least one opening. The glass plate and the mask material forming the mask layer have differing coefficients of thermal expansion, and the glass plate and the mask layer are both heated and thereby shaped. In at least a portion of the peripheral edge of the opening in the mask layer, formed is an opening peripheral edge region in which the proportion of the mask material disposed per unit area is low. The information obtaining device is disposed in the opening on the surface of the glass plate inside the vehicle so as to be able to obtain information through a region further inside than the opening peripheral edge region.

Description

ウインドシールドWindshield
 本発明は、自動車のウインドシールドに関する。 The present invention relates to an automobile windshield.
 近年、自動車の安全性能は飛躍的に向上しつつあり、その1つとして前方車両との衝突を回避するため、前方車両との距離及び前方車両の速度を感知し、異常接近時には、自動的にブレーキが作動する安全システムが提案されている(例えば、特許文献1)。このようなシステムは、前方車両との距離などをレーザーレーダーやカメラを用いて計測している。レーザーレーダーやカメラは、一般的に、ウインドシールドの内側に配置され、赤外線を前方に向けて照射することで、計測を行う。 In recent years, the safety performance of automobiles has been dramatically improved, and as one of them, in order to avoid a collision with the preceding vehicle, the distance to the preceding vehicle and the speed of the preceding vehicle are sensed, and automatically when abnormally approaching A safety system for operating a brake has been proposed (for example, Patent Document 1). Such a system measures the distance to the vehicle ahead by using a laser radar or a camera. Laser radars and cameras are generally placed inside a windshield and measure by irradiating infrared rays forward.
 ところで、上記のようなレーザーレーダーやカメラなどの測定装置は、ウインドシールドを構成するガラス板の内面に取り付けられることが多いが、このような測定機器が外部から見えないようにするため、ガラス板の内面には、濃色のセラミックなどが塗布されたマスク層が形成されており、その上に測定装置が配置されている。このとき、マスク層には、開口が形成され、レーザーレーダーにおいて照射及び受光されるレーザ光、カメラで受光する可視光線及び/又は赤外線などは、この開口を通じて照射されたり、受光される。 By the way, measurement devices such as the above-mentioned laser radar and camera are often attached to the inner surface of the glass plate constituting the windshield, but in order to prevent such measurement equipment from being seen from the outside, the glass plate A mask layer coated with dark ceramic or the like is formed on the inner surface, and a measuring device is disposed thereon. At this time, an opening is formed in the mask layer, and laser light irradiated and received by the laser radar, visible light and / or infrared light received by the camera are irradiated and received through the opening.
特開2006-327381号公報JP 2006-327381 A
 ところが、本発明者は、上記のようなマスク層上に測定装置を配置すると、次のような問題が生じ得ることを見出した。上記のようなウインドシールドは、ガラス板上にマスク層を塗布した後に加熱され、その後、曲面状に成形されることで製造される。その際、マスク層は、黒色などの濃色で形成されているため、マスク層が形成されていない領域と比べ、ガラス板における熱の吸収量が多くなる。ここで、セラミックで形成されたマスク層の熱膨張係数は、ガラスとは相違するため、熱の吸収による膨張量が相違する。そのため、ガラス板には、膨張量の差に起因して、例えば、図53に示すように、マスク層と、これが形成されていない領域との境界付近に歪みが生じることが分かった。これにより、ガラス板を通して見える像が歪むという問題が生じていた。そして、本発明者は、この問題に起因しては、上記のような安全システムが設けられるウインドシールドでは、次のような問題を引き起こす可能性を見出した。すなわち、このような歪みがマスク層と開口との境界付近において生じると、レーザ光を照射及び受光したとき、あるいはカメラによって撮影を行うときには、歪みにより光が屈折するなどして、正確に光を照射できなかったり、あるいは受光できないおそれがある。これにより、車間距離などが正確に算出されない可能性もある。 However, the present inventor has found that the following problems may occur when the measuring device is arranged on the mask layer as described above. The windshield as described above is manufactured by applying a mask layer on a glass plate and then heating, and thereafter forming a curved surface. At this time, since the mask layer is formed in a dark color such as black, the amount of heat absorbed in the glass plate is larger than that in a region where the mask layer is not formed. Here, since the thermal expansion coefficient of the mask layer formed of ceramic is different from that of glass, the amount of expansion due to heat absorption is different. Therefore, it has been found that the glass plate is distorted near the boundary between the mask layer and the region where the mask layer is not formed, for example, as shown in FIG. 53, due to the difference in expansion amount. This causes a problem that an image seen through the glass plate is distorted. And this inventor discovered that the following problems may be caused in the windshield provided with the above safety systems due to this problem. In other words, when such distortion occurs near the boundary between the mask layer and the opening, when the laser beam is irradiated and received, or when shooting with a camera, the light is refracted by the distortion, and the light is accurately reflected. There is a possibility that irradiation cannot be performed or light cannot be received. As a result, the inter-vehicle distance may not be accurately calculated.
 このような問題は、車間距離の測定装置に限られず、例えば、光ビーコンなどの光の受光によって車外からの情報を取得する情報取得装置全般に生じうる問題である。そこで、本発明は、上記問題を解決するためになされたものであり、マスク層の開口を通じて光の照射及び/または受光を行う情報取得装置が取り付け可能なウインドシールドにおいて、光の照射及び/または受光を正確に行うことができ、情報の処理を正確に行うことができる、ウインドシールドを提供することを目的とする。 Such a problem is not limited to the inter-vehicle distance measuring device, and may be a problem that may occur in general information acquisition devices that acquire information from outside the vehicle by receiving light such as an optical beacon. Accordingly, the present invention has been made to solve the above-described problem, and in a windshield to which an information acquisition device that performs light irradiation and / or light reception through an opening of a mask layer can be attached, light irradiation and / or An object of the present invention is to provide a windshield that can accurately receive light and accurately process information.
 <発明1>
 発明1は、下記に掲げる態様の発明を提供する。
<Invention 1>
Invention 1 provides the invention of the aspect hung up below.
項1.本発明は、光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置が配置可能なウインドシールドであって、車外からの視野を遮蔽するとともに少なくとも1つの開口を有するマスク層が積層されたガラス板を備え、前記ガラス板と、前記マスク層を構成するマスク材の熱膨張率は相違し、前記ガラス板と前記マスク層は共に加熱されることにより形成され、前記マスク層における前記開口の周縁部の少なくとも一部には、単位面積当たりの前記マスク材が配置されている割合が少ない開口周縁領域が形成されており、前記情報取得装置は、前記ガラス板の車内側の面において、前記開口の中で、前記開口周縁領域よりも内側の領域を通じて情報を取得できるように配置される。 Item 1. The present invention is a windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged, and masks that shield the field of view from outside the vehicle and have at least one opening The glass plate and the mask material constituting the mask layer are different in thermal expansion coefficient, and the glass plate and the mask layer are both heated to form the mask. At least a part of the peripheral edge portion of the opening in the layer is formed with an opening peripheral region in which the ratio of the mask material arranged per unit area is small, and the information acquisition device is provided on the inside of the glass plate. In the surface, information is obtained so that information can be acquired through a region inside the opening peripheral region in the opening.
項2.前記開口周縁領域は、前記開口の周縁部の全周に亘って形成されている、項1に記載のウインドシールド。 Item 2. Item 2. The windshield according to Item 1, wherein the opening peripheral region is formed over the entire periphery of the peripheral portion of the opening.
項3.前記開口周縁領域の内部において外部に露出する前記ガラス板は、当該開口周縁領域の内周縁に沿う歪領域と、当該歪領域の内側に隣接する中央領域と、から構成され、
 前記情報取得装置は、前記ガラス板の車内側の面において、前記中央領域の全部または一部を通じて情報を取得できるように配置される、項1または2に記載のウインドシールド。
Item 3. The glass plate exposed to the outside inside the opening peripheral region is composed of a strain region along the inner peripheral edge of the opening peripheral region, and a central region adjacent to the inside of the strain region,
Item 3. The windshield according to Item 1 or 2, wherein the information acquisition device is arranged so that information can be acquired through all or a part of the central region on the inner surface of the glass plate.
項4.前記歪領域の幅は、6mm以下である、項3に記載のウインドシールド。 Item 4. Item 4. The windshield according to Item 3, wherein a width of the strain region is 6 mm or less.
項5.前記開口周縁領域は、前記マスク材で形成された複数のマスク片を備えており、前記複数のマスク片は互いに間隔をあけて前記ガラス板上に積層されている、項1から4のいずれかに記載のウインドシールド。 Item 5. The opening peripheral area includes a plurality of mask pieces formed of the mask material, and the plurality of mask pieces are stacked on the glass plate at intervals from each other. Windshield described in.
項6.前記各マスク片は、円形状に形成されている、項5に記載のウインドシールド。 Item 6. Item 6. The windshield according to Item 5, wherein each of the mask pieces is formed in a circular shape.
項7.前記マスク片は、千鳥状に配置されている、項5または6に記載のウインドシールド。 Item 7. Item 7. The windshield according to Item 5 or 6, wherein the mask pieces are arranged in a staggered pattern.
項8.前記ガラス板は、外側ガラス板、当該外側ガラス板と対向配置される内側ガラス板、及び前記外側ガラス板と内側ガラス板との間に配置される中間膜を備えている、項1から7のいずれかに記載のウインドシールド。 Item 8. The glass plate includes an outer glass plate, an inner glass plate disposed to face the outer glass plate, and an intermediate film disposed between the outer glass plate and the inner glass plate. Windshield described in any one.
項9.前記マスク層の少なくとも一部は黒色である、項1から8のいずれかに記載のウインドシールド。 Item 9. Item 9. The windshield according to any one of Items 1 to 8, wherein at least a part of the mask layer is black.
項10.前記マスク層、開口周辺領域、及び歪領域において、前記情報取得装置が取付けられる領域の少なくとも一部には、電磁波遮蔽膜が形成されている、項1から9のいずれかに記載のウインドシールド。 Item 10. Item 10. The windshield according to any one of Items 1 to 9, wherein an electromagnetic wave shielding film is formed in at least a part of a region to which the information acquisition device is attached in the mask layer, the opening peripheral region, and the strain region.
項11.前記マスク層、開口周辺領域、及び歪領域の少なくとも一部は、第1の視野遮蔽膜、前記電磁波遮蔽膜、及び第2の視野遮蔽膜が、外部から車内側へこの順で配置されていることで構成されている、項10に記載のウインドシールド。 Item 11. In at least a part of the mask layer, the opening peripheral region, and the strain region, the first visual field shielding film, the electromagnetic wave shielding film, and the second visual field shielding film are arranged in this order from the outside to the vehicle interior side. Item 11. The windshield according to Item 10, wherein
 <発明2>
 上記のようなレーザーレーダーやカメラなどの測定装置は、ウインドシールドを構成するガラス板の内面に取り付けられることが多いが、このような測定機器が外部から見えないようにするため、ガラス板の内面には、濃色のセラミックなどが塗布されたマスク層が形成されており、その上に測定装置が配置されている。このとき、マスク層には、開口が形成され、レーザーレーダーにおいて照射及び受光されるレーザ光、カメラで受光する可視光線及び/又は赤外線などは、この開口を通じて照射されたり、受光される。
<Invention 2>
Measuring devices such as laser radars and cameras as described above are often attached to the inner surface of the glass plate that constitutes the windshield, but in order to prevent such measuring devices from being seen from the outside, the inner surface of the glass plate Is formed with a mask layer coated with dark ceramic or the like, and a measuring device is disposed thereon. At this time, an opening is formed in the mask layer, and laser light irradiated and received by the laser radar, visible light and / or infrared light received by the camera are irradiated and received through the opening.
 ところが、ガラス板において、上記開口に対応する位置に歪みが生じると、通過する光が想定以上に屈折するおそれがある。これにより、正確に光を照射できなかったり、あるいは正確に受光できないことがあり、その結果、画像認識不足になり、車間距離などが正確に算出されない可能性がある。したがって、上記開口には歪みが生じないように、ガラス板を製造する必要がある。 However, if the glass plate is distorted at a position corresponding to the opening, the passing light may be refracted more than expected. As a result, it may not be possible to accurately irradiate light or receive light accurately. As a result, image recognition may be insufficient, and the inter-vehicle distance may not be accurately calculated. Therefore, it is necessary to manufacture a glass plate so that the opening is not distorted.
 ガラス板の製造工程において、最も歪みが生じやすいのは、ガラス板の成形工程であるが、この成形には種々の方法がある。例えば、成形型でプレスしてガラス板を湾曲させる方法のほか、ガラス板の自重によりガラス板を湾曲させる方法がある。後者の方法では、成形型にガラス板の周縁のみが支持されるように載置し、ガラス板を加熱する。これにより、ガラス板が自重によって下方に湾曲する。しかしながら、自重によって湾曲を形成する方法は、ガラス板に付与される熱のコントロールが容易ではなく、歪みが生じやすいという問題があった。 In the glass plate manufacturing process, the glass sheet is most likely to be distorted in the glass plate forming process. There are various methods for this forming. For example, in addition to a method of bending a glass plate by pressing with a mold, there is a method of bending the glass plate by its own weight. In the latter method, it mounts so that only the periphery of a glass plate may be supported by a shaping | molding die, and a glass plate is heated. Thereby, a glass plate curves below by dead weight. However, the method of forming a curve by its own weight has a problem that it is not easy to control the heat applied to the glass plate, and distortion is likely to occur.
 そこで、発明2は、上記問題を解決するためになされたものであり、ウインドシールドを、自重によって湾曲を付与するウインドシールドの製造方法において、光の照射及び/または受光を正確に行うことができ、情報の処理を正確に行うことができる、ウインドシールドを製造することができる、ウインドシールドの製造方法、成形型、及びウインドシールドを提供することを目的とする。具体的には、発明2は、下記に掲げる態様の発明を提供する。 Accordingly, the second aspect of the present invention has been made to solve the above problem, and in the method of manufacturing a windshield in which the windshield is curved by its own weight, light irradiation and / or light reception can be accurately performed. An object of the present invention is to provide a method for manufacturing a windshield, a mold, and a windshield that can accurately process information, can manufacture a windshield. Specifically, the invention 2 provides the inventions of the embodiments listed below.
項1.光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置が配置可能なウインドシールドの製造方法であって、
 ガラス板上に、車外からの視野を遮蔽するとともに少なくとも1つの開口を有するマスク層を積層することで、ウインドシールドを形成するステップと、
 前記ウインドシールドを成形型上に配置し、少なくとも前記成形型の下方から加熱を行うことで、前記ウインドシールドを自重により下方に湾曲させるステップと、
を備え、
 前記成形型は、前記ウインドシールドの周縁部を支持し、上下方向に貫通する内部空間を有する枠状の型本体と、前記型本体の内周縁側から前記内部空間の中心側に延びる遮熱手段と、を備え、
 前記遮熱手段において前記内部空間の中心側の端縁が、前記マスク層の開口の直下よりも前記内部空間の中心側に位置している、ウインドシールドの製造方法。
Item 1. A method of manufacturing a windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged,
Forming a windshield on a glass plate by laminating a mask layer that shields a field of view from outside the vehicle and has at least one opening;
Placing the windshield on a mold, and heating at least from below the mold to curve the windshield downward by its own weight;
With
The molding die supports a peripheral portion of the windshield and has a frame-shaped die main body having an internal space penetrating in the vertical direction, and heat shielding means extending from the inner peripheral edge side of the die main body to the center side of the internal space. And comprising
The method for manufacturing a windshield, wherein an edge on the center side of the internal space is located closer to the center side of the internal space than directly below the opening of the mask layer.
項2.項1に記載のウインドシールドの製造方法に用いられる成形型であって、
 前記ガラス板の周縁部を支持し、上下方向に貫通する内部空間を有する枠状の型本体と、
 前記型本体の内周縁側から前記内部空間の中心側へ延びる遮熱手段と、
を備え、
 前記遮熱手段において前記内部空間の中心側の端縁が、前記マスク層の開口の直下よりも前記内部空間の中心側に位置している、成形型。
Item 2. A mold used in the method for manufacturing a windshield according to Item 1,
A frame-shaped mold body that supports the peripheral portion of the glass plate and has an internal space penetrating in the vertical direction;
Heat shielding means extending from the inner peripheral edge side of the mold body to the center side of the inner space;
With
A molding die in which the edge on the center side of the internal space is located closer to the center side of the internal space than just below the opening of the mask layer.
項3.光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置が配置可能なウインドシールドであって、
 ガラス板と、
 前記ガラス板に積層され、車外からの視野を遮蔽するとともに、少なくとも1つの開口を有するマスク層と、を備え、
 前記ガラス板において、前記開口が形成されている箇所には、当該ガラス板の周方向に沿って延びる歪みが形成されていない、ウインドシールド。
Item 3. A windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged,
A glass plate,
And a mask layer that is laminated on the glass plate, shields the field of view from the outside of the vehicle, and has at least one opening,
The windshield in which the distortion which extends along the circumferential direction of the said glass plate is not formed in the location in which the said opening is formed in the said glass plate.
項4.前記ガラス板は、第1ガラス板、当該第1ガラス板と対向配置される第2ガラス板、及び前記両ガラス板の間に挟持される中間膜、を備えている、項3に記載のウインドシールド。 Item 4. Item 4. The windshield according to Item 3, wherein the glass plate includes a first glass plate, a second glass plate disposed to face the first glass plate, and an intermediate film sandwiched between the two glass plates.
項5.前記中間膜は、コア層と、前記コア層よりも硬度が高く当該コア層を挟持する一対のアウター層と、を備えている、項4に記載のウインドシールド。 Item 5. Item 5. The windshield according to Item 4, wherein the intermediate film includes a core layer and a pair of outer layers that are harder than the core layer and sandwich the core layer.
項6.前記コア層は、周波数100Hz,温度20℃で、ヤング率が1~20MPaである、項5に記載のウインドシールド。 Item 6. Item 6. The windshield according to Item 5, wherein the core layer has a frequency of 100 Hz, a temperature of 20 ° C, and a Young's modulus of 1 to 20 MPa.
項7.前記アウター層は、周波数100Hz,温度20℃で、ヤング率が560MPa以上である、項5または6に記載のウインドシールド。 Item 7. Item 7. The windshield according to Item 5 or 6, wherein the outer layer has a frequency of 100 Hz, a temperature of 20 ° C, and a Young's modulus of 560 MPa or more.
 <発明3>
 一対のガラス板の間に中間膜が配置された車両用合わせガラス、特にウインドシールドには、防眩性、遮熱性などの向上のために、グリーン、ブルーなどに着色した帯状のシェード領域が形成されることがある。シェード領域は、ガラス板の表面に設けられることもあるが、中間膜の一部を帯状に着色することにより形成されることが多い。その一方で、ウインドシールドには、可視光線透過率を所定値以上(例えば70%以上)とするべき法定の視野領域があるため、ウインドシールドのシェード領域は、視野領域の外、つまり、通常はウインドシールドの上部に配置される。
<Invention 3>
In laminated glass for vehicles in which an intermediate film is disposed between a pair of glass plates, particularly a windshield, a band-shaped shade region colored in green, blue or the like is formed in order to improve antiglare property, heat shield property, etc. Sometimes. The shade region may be provided on the surface of the glass plate, but is often formed by coloring a part of the intermediate film into a strip shape. On the other hand, since the windshield has a legal field of view where the visible light transmittance should be greater than or equal to a predetermined value (for example, 70% or more), the shade area of the windshield is outside the field of view, that is, normally Located at the top of the windshield.
 ところで、近年、自動車の安全性能は飛躍的に向上しつつあり、その1つとして前方車両との衝突を回避するため、前方車両との距離及び前方車両の速度を感知し、異常接近時には、自動的にブレーキが作動する安全システムが提案されている。このようなシステムには、前方車両との距離などをレーザーレーダーやカメラなどの機器を用い、レーザーや赤外線などによって計測している。そして、これらの機器は、一般的に、安全性の確保および機器の十分な機能発揮のために、ウインドシールドの上部に取り付けることが望まれる。 By the way, in recent years, the safety performance of automobiles has been dramatically improved, and as one of them, in order to avoid a collision with the preceding vehicle, the distance to the preceding vehicle and the speed of the preceding vehicle are sensed, and when the vehicle approaches abnormally, A safety system in which the brake is activated is proposed. In such a system, the distance to the vehicle ahead is measured by laser or infrared using a device such as a laser radar or a camera. These devices are generally desired to be attached to the upper part of the windshield in order to ensure safety and to exhibit sufficient functions of the devices.
 しかしながら、ウインドシールドの上部には、上記のようにシェード領域が形成されるため、レーザーレーダーなどの機器を取付けるには、シェード領域に、レーザー光などが通過できるような開口を形成する必要がある。そこで、例えば、国際公開第2003/059837号公報には、次のような方法が開示されている。 However, since the shade region is formed on the windshield as described above, it is necessary to form an opening through which laser light or the like can pass in the shade region in order to mount a device such as a laser radar. . Therefore, for example, the following method is disclosed in International Publication No. 2003/059837.
 まず、図54(a)に示すように、予め一端部にシェード領域を形成した中間膜100の上に、着色剤などを含まない透明の膜材200を重ねる。この膜材200は、中間膜と同じ材料で形成されている。そして、膜材200は、シェード領域の中の透過領域を形成すべき位置に配置する。次に、図54(b)に示すように、透過領域の形状を有する型を用いて中間膜100及び膜材200を2枚ともに打ち抜く。これに続いて、図54(c)に示すように、中間膜100において打ち抜かれた領域を取り外して貫通孔102を形成するとともに、膜材200から打ち抜かれた開口用中間膜201を、この貫通孔102に嵌め込む。こうして、シェード領域の中に、上記機器のレーザなどが通過する透明の開口が形成される。 First, as shown in FIG. 54A, a transparent film material 200 that does not contain a colorant or the like is overlaid on an intermediate film 100 in which a shade region is previously formed at one end. This film material 200 is formed of the same material as the intermediate film. Then, the membrane material 200 is disposed at a position where a transmission region in the shade region is to be formed. Next, as shown in FIG. 54B, both the intermediate film 100 and the film material 200 are punched out using a mold having the shape of a transmission region. Subsequently, as shown in FIG. 54 (c), the punched region in the intermediate film 100 is removed to form the through hole 102, and the opening intermediate film 201 punched from the film material 200 is passed through this through hole. Fit into the hole 102. In this way, a transparent opening through which the laser of the device passes is formed in the shade region.
 しかしながら、上記のような方法では、貫通孔102を塞ぐために、小さく形成された膜材200を別途準備しなければならず、その分だけ工程が煩雑になるという問題があった。そこで、発明3は、このような問題を解決するためになされたものであり、レーザレーダーなどの機器用の光の通過経路を、シェード領域内に簡単に形成することができる中間膜の製造方法及び合わせガラスを提供することを目的とする。具体的には、発明3は、下記に掲げる態様の発明を提供する。 However, the above-described method has a problem that the film material 200 formed to be small must be separately prepared in order to close the through hole 102, and the process becomes complicated accordingly. Accordingly, the invention 3 has been made to solve such a problem, and a method of manufacturing an intermediate film in which a light passage for a device such as a laser radar can be easily formed in a shade region. And it aims at providing a laminated glass. Specifically, the invention 3 provides the inventions of the following aspects.
項1.着色されたシェード領域が一部に形成された少なくとも1つの第1中間膜を準備する第1ステップと、
 着色されたシェード領域が一部に形成された少なくとも1つの第2中間膜を準備する第2ステップと、
 前記第1中間膜におけるシェード領域が、前記第2中間膜の非シェード領域と重なるように、当該第1中間膜の1つと第2中間膜とを重ね合わせる第3ステップと、
 重ね合わせた、少なくとも前記第1中間膜のシェード領域及び前記第2中間膜の非シェード領域をともに貫通する開口を形成するように、型抜きを行って第1中間膜片及び第2中間膜片を切り出す第4ステップと、
 前記型抜きにより前記第1中間膜に形成され前記開口に、前記第2中間膜片を嵌め込む第5ステップと、
を備えている、中間膜の製造方法。
Item 1. A first step of preparing at least one first interlayer film partially formed with a colored shade region;
A second step of preparing at least one second intermediate film partially formed with a colored shade region;
A third step of superimposing one of the first intermediate films and the second intermediate film such that a shade area in the first intermediate film overlaps a non-shade area of the second intermediate film;
The first intermediate film piece and the second intermediate film piece are cut out so as to form an opening that penetrates at least the shade area of the first intermediate film and the non-shade area of the second intermediate film that are overlapped with each other. A fourth step of cutting out
A fifth step of fitting the second intermediate film piece into the opening formed in the first intermediate film by the die cutting;
An intermediate film manufacturing method comprising:
項2.前記第1中間膜と第2中間膜とは同一構成である、項1に記載の中間膜の製造方法。 Item 2. The method for producing an intermediate film according to Item 1, wherein the first intermediate film and the second intermediate film have the same configuration.
項3.前記第1ステップでは、複数の前記第1中間膜を準備し、
 前記第3ステップでは、前記第1中間膜におけるシェード領域が、前記開口が形成されていない前記第2中間膜の非シェード領域と重なるように、当該第1中間膜の1つと第2中間膜とを重ね合わせ、
 当該第3ステップから第5ステップを少なくとも1回繰り返す、項1または2に記載の中間膜の製造方法。
Item 3. In the first step, a plurality of the first intermediate films are prepared,
In the third step, one of the first intermediate films and the second intermediate film are arranged such that a shade area in the first intermediate film overlaps a non-shade area of the second intermediate film in which the opening is not formed. Overlay
Item 3. The method for producing an intermediate film according to Item 1 or 2, wherein the third to fifth steps are repeated at least once.
項4.前記第1及び第2中間膜は、面方向に沿って厚みが変化するように形成されており、
 前記第2ステップでは、前記第1中間膜のシェード領域を、前記第2中間膜のシェード領域近傍の前記非シェード領域と重ね合わせ、
 前記第2中間膜片は、前記第2中間膜のシェード領域近傍の前記非シェード領域から切り出す、項1から3のいずれかに記載の中間膜の製造方法。
Item 4. The first and second intermediate films are formed so that the thickness varies along the surface direction.
In the second step, the shade region of the first intermediate film is overlapped with the non-shade region in the vicinity of the shade region of the second intermediate film,
Item 4. The method for manufacturing an interlayer film according to any one of Items 1 to 3, wherein the second interlayer film piece is cut out from the non-shade region in the vicinity of the shade region of the second interlayer film.
項5.項1から4のいずれかの中間膜の製造方法により製造された中間膜と、
 前記中間膜を挟持する第1及び第2のガラス板と、
を備えている、合わせガラス。
Item 5. An intermediate film produced by the method for producing an intermediate film according to any one of Items 1 to 4,
First and second glass plates sandwiching the intermediate film;
Laminated glass equipped with.
項6.前記開口に対応する領域において、波長が850~950nmの光の透過率が20~80%である、項5に記載の合わせガラス。 Item 6. The laminated glass according to Item 5, wherein a transmittance of light having a wavelength of 850 to 950 nm is 20 to 80% in a region corresponding to the opening.
項7.前記開口に対応する領域において、波長が700~800nmの光の透過率が30~80%である、項5または6に記載の合わせガラス。 Item 7. The laminated glass according to Item 5 or 6, wherein a transmittance of light having a wavelength of 700 to 800 nm is 30 to 80% in a region corresponding to the opening.
項8.前記中間膜は、コア層と、前記コア層よりも硬度が高く当該コア層を挟持する一対のアウター層と、を備え、
 前記一対のアウター層の少なくとも1つのヤング率は、周波数100Hz,温度20℃において、560MPa以上である、項5から7のいずれかに記載の合わせガラス。
Item 8. The intermediate film includes a core layer, and a pair of outer layers having a higher hardness than the core layer and sandwiching the core layer,
Item 8. The laminated glass according to any one of Items 5 to 7, wherein at least one Young's modulus of the pair of outer layers is 560 MPa or more at a frequency of 100 Hz and a temperature of 20 ° C.
 <発明4>
 上記のようなレーザーレーダーやカメラなどの測定装置は、ウインドシールドを構成するガラス板の内面に取り付けられることが多いが、このような測定機器が外部から見えないようにするため、ガラス板の内面には、濃色のセラミックなどが塗布されたマスク層が形成されており、その上に測定装置が配置されている。このとき、マスク層には、開口が形成され、レーザーレーダーにおいて照射及び受光されるレーザ光、カメラで受光する可視光線及び/又は赤外線などは、この開口を通じて照射されたり、受光される。
<Invention 4>
Measuring devices such as laser radars and cameras as described above are often attached to the inner surface of the glass plate that constitutes the windshield, but in order to prevent such measuring devices from being seen from the outside, the inner surface of the glass plate Is formed with a mask layer coated with dark ceramic or the like, and a measuring device is disposed thereon. At this time, an opening is formed in the mask layer, and laser light irradiated and received by the laser radar, visible light and / or infrared light received by the camera are irradiated and received through the opening.
 ところで、このような開口は光が透過しやすいように透過率を向上する必要があるが、そのような透過率の高い開口を形成する方法として、上述した国際公開第2003/059837号公報に記載の方法がある。しかしながら、このような方法では、必ずしも容易とは言えず、作業が繁雑になるという問題があった。 Incidentally, it is necessary to improve the transmittance of such an opening so that light can be easily transmitted. However, as a method of forming an opening having such a high transmittance, it is described in the above-mentioned International Publication No. 2003/059837. There is a way. However, such a method is not always easy, and there is a problem that the work becomes complicated.
 そこで、発明4は、上記問題を解決するためになされたものであり、マスク層の開口を通じて光の照射及び/または受光を行う情報取得装置が取り付け可能なウインドシールドにおいて、作成が容易に行うことができる、ウインドシールドを提供することを目的とする。具体的には、発明4は、下記に掲げる態様の発明を提供する。 Accordingly, the invention 4 has been made to solve the above-described problem, and can be easily created in a windshield to which an information acquisition device that irradiates and / or receives light can be attached through the opening of the mask layer. The purpose is to provide a windshield. Specifically, the invention 4 provides the invention of the aspect hung up below.
項1.光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置が配置可能なウインドシールドであって、
 車外からの視野を遮蔽するとともに少なくとも1つの開口を有するマスク層が積層された合わせガラスを備え、
 前記合わせガラスは、第1ガラス板、当該第1ガラス板と対向配置される第2ガラス板、及び前記第1ガラス板と第2ガラス板との間に配置される中間膜を備えており、
 前記中間膜は、第1領域と、当該第1領域よりも光透過率の高い第2領域とが面方向に隣接するように形成され、
 前記第2領域が、前記マスク層の開口と対応する位置に形成され、当該第2領域の少なくとも一部が前記マスク層が積層された領域と重複しており、
 前記情報取得装置は、前記ガラス板の車内側の面において、前記開口を通じて情報を取得できるように配置される、ウインドシールド。
Item 1. A windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged,
A laminated glass on which a mask layer that shields a field of view from outside the vehicle and has at least one opening is laminated;
The laminated glass includes a first glass plate, a second glass plate disposed to face the first glass plate, and an intermediate film disposed between the first glass plate and the second glass plate,
The intermediate film is formed such that a first region and a second region having a higher light transmittance than the first region are adjacent to each other in the surface direction.
The second region is formed at a position corresponding to the opening of the mask layer, and at least a part of the second region overlaps the region where the mask layer is laminated;
The said information acquisition apparatus is a windshield arrange | positioned so that information can be acquired through the said opening in the vehicle inside surface of the said glass plate.
項2.前記第2領域は、ポリビニルブチラールで形成されている、項1に記載のウインドシールド。 Item 2. Item 2. The windshield according to Item 1, wherein the second region is formed of polyvinyl butyral.
項3.前記第2領域は、前記両ガラス板の上端部に沿って帯状に形成されている、項1または2に記載のウインドシールド。 Item 3. Item 3. The windshield according to Item 1 or 2, wherein the second region is formed in a band shape along the upper end portions of the two glass plates.
項4.前記開口においては、
 波長が850~950nmの光の透過率が20~80%である、項1から3のいずれかに記載のウインドシールド。
Item 4. In the opening,
Item 4. The windshield according to any one of Items 1 to 3, wherein the transmittance of light having a wavelength of 850 to 950 nm is 20 to 80%.
項5.前記第1領域において、波長が850~950nmの光の透過率が27.5~32.5である項1~4のいずれかに記載のウインドシールド。 Item 5. Item 5. The windshield according to any one of Items 1 to 4, wherein in the first region, the transmittance of light having a wavelength of 850 to 950 nm is 27.5 to 32.5.
項6.前記第1ガラス板と第2ガラス板の厚みは、それぞれ1~2.5mmであり、
 前記中間膜の厚みは、0.3~2mmであり、
 前記第1ガラス板及び前記第2ガラス板は、その厚みが2mmであるとき、波長が850~950nmの光の透過率がそれぞれ63%以下であり、
 それぞれ厚みが2.5mmのクリアガラスの間に、厚みが0.76mmである前記中間膜を配置したとき、波長が850~950nmの光の透過率が75%以下である項5に記載のウインドシールド。
Item 6. Each of the first glass plate and the second glass plate has a thickness of 1 to 2.5 mm,
The thickness of the intermediate film is 0.3-2 mm,
When the thickness of the first glass plate and the second glass plate is 2 mm, the transmittance of light having a wavelength of 850 to 950 nm is 63% or less,
Item 6. The window according to Item 5, wherein the transmittance of light having a wavelength of 850 to 950 nm is 75% or less when the intermediate film having a thickness of 0.76 mm is disposed between clear glasses having a thickness of 2.5 mm. shield.
項7.前記開口においては、
 波長が700~800nmの光の透過率が30~80%である、項1から6のいずれかに記載のウインドシールド。
Item 7. In the opening,
Item 7. The windshield according to any one of Items 1 to 6, wherein the transmittance of light having a wavelength of 700 to 800 nm is 30 to 80%.
項8.前記第1領域は、コア層と、当該コア層よりも剛性が高く、且つ当該コア層を挟む一対のアウター層と、を備えている、項1から7のいずれかに記載のウインドシールド。 Item 8. Item 8. The windshield according to any one of Items 1 to 7, wherein the first region includes a core layer and a pair of outer layers having higher rigidity than the core layer and sandwiching the core layer.
項9.前記第1領域には、赤外線遮蔽性微粒子が含有され、前記第2領域には、前記赤外線遮蔽性微粒子が含有されていない、項1から7のいずれかに記載のウインドシールド。 Item 9. Item 8. The windshield according to any one of Items 1 to 7, wherein the first region contains infrared shielding fine particles, and the second region does not contain the infrared shielding fine particles.
項10.前記第1領域及び第2領域には、赤外線遮蔽性微粒子が含有されており、前記第1領域に含有されている前記赤外線遮蔽性微粒子の量が、前記第2領域に含有されている前記赤外線遮蔽性微粒子の量よりも多い、項1から7のいずれかに記載のウインドシールド。 Item 10. The first region and the second region contain infrared shielding fine particles, and the amount of the infrared shielding fine particles contained in the first region is contained in the second region. Item 8. The windshield according to any one of Items 1 to 7, wherein the windshield is larger than the amount of the shielding fine particles.
項11.前記赤外線遮蔽性微粒子はITO微粒子である、項9または項10に記載のウインドシールド。 Item 11. Item 11. The windshield according to Item 9 or Item 10, wherein the infrared shielding fine particles are ITO fine particles.
 項9~項11の発明によれば、車外から第1領域を通過する赤外線が、赤外線遮蔽性微粒子に吸収されるため、車内に赤外線が到達するのを防止することができる。その結果、車内の温度が上昇するのを防止することができる。一方、第2領域においては、赤外線遮蔽性微粒子が含有されてないか、少ないため、赤外線の通過が阻害されるのが防止される。その結果、情報取得装置の誤動作を防止することができる。 According to the inventions of Items 9 to 11, since infrared rays passing through the first region from the outside of the vehicle are absorbed by the infrared shielding fine particles, it is possible to prevent the infrared rays from reaching the inside of the vehicle. As a result, it is possible to prevent the temperature inside the vehicle from rising. On the other hand, since the infrared shielding fine particles are not contained or little in the second region, the passage of infrared rays is prevented from being inhibited. As a result, malfunction of the information acquisition device can be prevented.
 <発明5>
 従来より、ガラス板は加熱炉を通過させることで加熱し、加熱炉を通過した後に、軟化させた状態で成形型により所望の形状に成形する(例えば、特許文献1:特開2012-158478号公報)。
<Invention 5>
Conventionally, a glass plate is heated by passing through a heating furnace, and after passing through the heating furnace, is formed into a desired shape with a forming die in a softened state (for example, Patent Document 1: JP 2012-158478 A). Publication).
 しかしながら、成形型により所望の形状に成形するにはガラス板が適切に軟化していなければならず、温度が低いと成形時に割れが生じるおそれがある。そこで、発明5は、このような問題を解決するためになされたものであり、加熱炉を通過後、適切な温度でガラス板を成形することができる、ガラス板の製造方法、及びウインドシールドを提供することを目的とする。具体的には、発明5は、下記に掲げる態様の発明を提供する。 However, the glass plate must be appropriately softened in order to be molded into a desired shape by the mold, and cracking may occur during molding if the temperature is low. Accordingly, the invention 5 has been made to solve such problems, and includes a glass plate manufacturing method and a windshield that can form a glass plate at an appropriate temperature after passing through a heating furnace. The purpose is to provide. Specifically, the invention 5 provides the inventions of the following aspects.
項1.ガラス板を搬送装置によって加熱炉を通過させる第1ステップと、
 前記ガラス板を前記加熱炉から搬出後、当該ガラス板を、成形型が設けられた成形位置に移動させる第2ステップと、
 前記ガラス板を前記成形型により成形する第3ステップと、
を備え、
 前記加熱炉の出口から前記成形位置までの前記ガラス板の平均搬送速度は、前記加熱炉内における前記ガラス板の平均搬送速度より速い、ガラス板の製造方法。
Item 1. A first step of passing the glass plate through the heating furnace by means of a conveying device;
A second step of moving the glass plate to a molding position provided with a molding die after unloading the glass plate from the heating furnace;
A third step of forming the glass plate with the mold;
With
The average conveyance speed of the said glass plate from the exit of the said heating furnace to the said formation position is a manufacturing method of a glass plate faster than the average conveyance speed of the said glass plate in the said heating furnace.
項2.前記第1ステップでは、前記加熱炉の下流側において、前記ガラス板の搬送速度を、当該加熱炉から搬出されるまでの間に増大させる、項1に記載のガラス板の製造方法。 Item 2. Item 2. The method for producing a glass plate according to Item 1, wherein in the first step, the conveyance speed of the glass plate is increased on the downstream side of the heating furnace until the glass plate is unloaded from the heating furnace.
項3.前記ガラス板における、二酸化鉄に換算した酸化鉄の含有率が、0.035重量%以下である、項1または2に記載のガラス板の製造方法。 Item 3. The manufacturing method of the glass plate of claim | item 1 or 2 whose content rate of the iron oxide converted into the iron dioxide in the said glass plate is 0.035 weight% or less.
項4.前記第1ステップに先立って、前記ガラス板上に、車外からの視野を遮蔽するとともに少なくとも1つの開口を有するマスク層を形成するステップを、さらに備えている、項1から3のいずれかに記載のガラス板の製造方法。 Item 4. Prior to the first step, the method further includes a step of forming a mask layer that shields the field of view from outside the vehicle and has at least one opening on the glass plate. Manufacturing method of glass plate.
項5.光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置が配置可能なウインドシールドであって、
 項1から3のいずれかに記載の方法により製造された第1ガラス板及び第2ガラス板と、
 前記第1ガラス板及び第2ガラス板の間に挟持される中間膜と、
を備え、
 前記第1ガラス板及び第2ガラス板のいずれか一方には、車外からの視野を遮蔽するとともに少なくとも1つの開口を有するマスク層が積層されている、ウインドシールド。
Item 5. A windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged,
1st glass plate and 2nd glass plate manufactured by the method in any one of claim | item 1 -3,
An intermediate film sandwiched between the first glass plate and the second glass plate;
With
One of the first glass plate and the second glass plate is a windshield in which a mask layer that shields a visual field from the outside of the vehicle and has at least one opening is laminated.
 <発明6>
 従来より、車両のフロントガラスに、車速等の情報を投射するヘッドアップディスプレイ装置が提案されている(例えば、特開平2-279437号公報)。このヘッドアップディスプレイ装置を用いると、運転者は、スピードメータなどの車内の計器の代わりに、ウインドシールドに投影された情報を見ることで車速を確認できるため、車速の確認のために運転中に前方への視線を大きく動かす必要がない。したがって、運転時の安全性を向上できるという利点がある。
<Invention 6>
2. Description of the Related Art Conventionally, a head-up display device that projects information such as vehicle speed on a windshield of a vehicle has been proposed (for example, JP-A-2-279437). By using this head-up display device, the driver can check the vehicle speed by looking at the information projected on the windshield instead of an in-vehicle instrument such as a speedometer. There is no need to move your gaze forward. Therefore, there is an advantage that safety during driving can be improved.
 しかしながら、厚さが均一なウインドシールドに対して、上記のようなヘッドアップディスプレイ装置を用いると、ウインドシールドの内面で反射することにより視認される像と、ウインドシールドの外面で反射することにより視認される像とが生じるため、ウインドシールド上に投影される像、つまり車速などの情報が二重になる二重像現象が生じるという問題があった。これを解決するため、例えば、特開2011-207645号公報では、ウインドシールドを外側ガラス板、内側ガラス板、及びこれらの間に挟まれる樹脂製の中間膜で構成し、さらに中間膜を断面楔形に形成することで、ウインドシールドを全体として断面楔形に形成することが提案されている。これにより、2つの像が重なるため、二重像現象を防止することができる。 However, if a head-up display device such as that described above is used for a windshield with a uniform thickness, the image can be seen by reflecting on the inner surface of the windshield and the image can be seen by reflecting on the outer surface of the windshield. As a result, there is a problem that an image projected on the windshield, that is, a double image phenomenon in which information such as vehicle speed is duplicated occurs. In order to solve this, for example, in Japanese Patent Application Laid-Open No. 2011-207645, the windshield is composed of an outer glass plate, an inner glass plate, and a resin intermediate film sandwiched between them, and the intermediate film has a wedge-shaped cross section. Thus, it has been proposed to form the windshield as a whole in a wedge shape. Thereby, since two images overlap, a double image phenomenon can be prevented.
 ところで、上記のような二重像現象は、ヘッドアップディスプレイ装置を用いたときのみならず、外部から光を受光する場合にも少なからず生じることが、本発明者により見出された。すなわち、上記のようなレーザーレーダーにおいて照射及び受光されるレーザー光、カメラで受光する可視光線及び/又は赤外線などが、マスク層の開口を通じて受光される場合、外部から入射する光が、ウインドシールドの内面で分光し、二重像が形成されるおそれがあることが分かった。より詳細には、車外からの光が、ウインドシールドを透過する光と、ウインドシールドの内面で反射し、さらにウインドシールドの外面で反射して車内へと透過する光と、に分光し、これら2つの光による像がレーザーレーダーで受光されたり、あるいはカメラで撮像されることが分かった。これにより、正確な計測ができないおそれがある。 By the way, the present inventors have found that the double image phenomenon as described above occurs not only when the head-up display device is used but also when light is received from the outside. That is, when laser light emitted and received by the laser radar as described above, visible light and / or infrared light received by the camera is received through the opening of the mask layer, the light incident from the outside is reflected on the windshield. Spectral analysis on the inner surface revealed that there is a risk of forming a double image. More specifically, light from the outside of the vehicle is split into light that is transmitted through the windshield and light that is reflected from the inner surface of the windshield, and further reflected from the outer surface of the windshield and transmitted into the vehicle. It was found that an image by two lights was received by a laser radar or taken by a camera. Thereby, there exists a possibility that exact measurement cannot be performed.
 そこで、発明6に係るウインドシールドは、上記問題を解決するためになされたものであり、外部からの光を受光して計測を行う情報取得装置が配置される場合、光の受光に際して、二重像現象を防止することができるウインドシールドを提供することを第1の目的とする。また、このウインドシールドにヘッドアップディスプレイ装置をさらに設ける場合、ヘッドアップディスプレイ装置に起因する二重像現象も防止することができるウインドシールドを提供することを第2の目的とする。具体的には、発明6は、下記に掲げる態様の発明を提供する。 Accordingly, the windshield according to the sixth aspect of the invention is made to solve the above-described problem. When an information acquisition device that receives light from the outside and performs measurement is arranged, A first object is to provide a windshield capable of preventing an image phenomenon. Further, when a head-up display device is further provided in the windshield, a second object is to provide a windshield that can prevent a double image phenomenon caused by the head-up display device. Specifically, the invention 6 provides the invention of the aspect hung up below.
項1.光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置が配置可能なウインドシールドであって、
 第1ガラス板と、
 前記第1ガラス板と対向配置される第2ガラス板と、
 前記第1ガラス板と第2ガラス板との間に配置される中間膜と、
を備え、
 前記中間膜は、当該ウインドシールドの上端部側から下端部側に向かって厚みが小さくなるように断面楔状に形成される楔形領域を有し、前記情報取得装置の光は、前記楔形領域を通過するように構成されている、ウインドシールド。
Item 1. A windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged,
A first glass plate;
A second glass plate disposed opposite to the first glass plate;
An intermediate film disposed between the first glass plate and the second glass plate;
With
The intermediate film has a wedge-shaped region formed in a wedge shape so that the thickness decreases from the upper end side to the lower end side of the windshield, and the light of the information acquisition device passes through the wedge-shaped region. A windshield that is configured to be.
項2.前記中間膜において、前記楔形領域の楔角は、0.05~0.3度である、項1に記載のウインドシールド。 Item 2. Item 2. The windshield according to Item 1, wherein in the intermediate film, the wedge angle of the wedge-shaped region is 0.05 to 0.3 degrees.
項3.ヘッドアップディスプレイ装置からの情報が投影されるとともに、光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置が配置可能なウインドシールドであって、
 外側ガラス板と、
 前記外側ガラス板と対向配置される内側ガラス板と、
 前記外側ガラス板と内側ガラス板との間に配置される中間膜と、
を備え、
 前記中間膜は、前記ヘッドアップディスプレイ装置からの情報が投影される第1領域と、前記情報取得装置に対する光が通過する第2領域と、を有し、
 前記第1領域において前記中間膜の外側表面と内側表面とがなす第1角度と、前記第2領域において前記中間膜の外側表面と内側表面とがなす第2角度と、が相違する、ウインドシールド。
Item 3. A windshield in which information from a head-up display device is projected and an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged,
An outer glass plate,
An inner glass plate disposed opposite to the outer glass plate;
An intermediate film disposed between the outer glass plate and the inner glass plate;
With
The intermediate film has a first region where information from the head-up display device is projected, and a second region through which light to the information acquisition device passes,
A windshield in which the first angle formed by the outer surface and the inner surface of the intermediate film in the first region is different from the second angle formed by the outer surface and the inner surface of the intermediate film in the second region. .
項4.前記第1領域は、当該ウインドシールドの上端部側から下端部側に向かって厚みが小さくなるように断面楔状に形成されている、項3に記載のウインドシールド。 Item 4. Item 4. The windshield according to Item 3, wherein the first region is formed in a wedge shape so that the thickness decreases from the upper end side to the lower end side of the windshield.
項5.前記第2領域は、当該ウインドシールドの上端部側から下端部側に向かって厚みが大きくなるように断面楔状に形成されている、項3または4に記載のウインドシールド。 Item 5. Item 5. The windshield according to Item 3 or 4, wherein the second region is formed in a wedge shape in cross section so that the thickness increases from the upper end side to the lower end side of the windshield.
項6.前記第2角度は、0.05~0.3度である、項3から5のいずれかに記載のウインドシールド。 Item 6. Item 6. The windshield according to any one of Items 3 to 5, wherein the second angle is 0.05 to 0.3 degrees.
項7.前記第1角度は、0~0.3度である、項3から6のいずれかに記載のウインドシールド。 Item 7. Item 7. The windshield according to any one of Items 3 to 6, wherein the first angle is 0 to 0.3 degrees.
 <発明7>
 上記のようなレーザーレーダーやカメラなどの測定装置は、ウインドシールドを構成するガラス板の内面に取り付けられることが多いが、このような測定機器が外部から見えないようにするため、ガラス板の内面には、濃色のセラミックなどが塗布されたマスク層が形成されており、その上に測定装置が配置されている。このとき、マスク層には、開口が形成され、レーザーレーダーにおいて照射及び受光されるレーザ光、カメラで受光する可視光線及び/又は赤外線などは、この開口を通じて照射されたり、受光される。
<Invention 7>
Measuring devices such as laser radars and cameras as described above are often attached to the inner surface of the glass plate that constitutes the windshield, but in order to prevent such measuring devices from being seen from the outside, the inner surface of the glass plate Is formed with a mask layer coated with dark ceramic or the like, and a measuring device is disposed thereon. At this time, an opening is formed in the mask layer, and laser light irradiated and received by the laser radar, visible light and / or infrared light received by the camera are irradiated and received through the opening.
 ところで、ガラス板は鉄の含有量が多いほど光の透過率が低下する。そのため、上述した測定装置が取り付けられるウインドシールドにおいて、鉄の含有率が多いと、レーザー光などの光の透過率が低下するという問題が生じる。そこで、光の透過率を上げるため、鉄の含有率を低下させることが考えられるが、そのようにすると、ガラス板における輻射熱の吸収量が低下し、成形がし難くなるという新たな問題が発生する。 By the way, the light transmittance of the glass plate decreases as the iron content increases. Therefore, in the windshield to which the above-described measuring device is attached, if the content of iron is large, there arises a problem that the transmittance of light such as laser light is lowered. Therefore, it is conceivable to reduce the iron content in order to increase the light transmittance. However, if this is done, the amount of radiant heat absorbed in the glass plate will decrease, and a new problem will occur that makes it difficult to form. To do.
 発明7は、上記問題を解決するためになされたものであり、光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置が配置可能なウインドシールドの製造方法であって、鉄の含有量を低減しても成形を容易に行うことができるウインドシールドの製造方法を提供することを目的とする。具体的には、発明7は、下記に掲げる態様の発明を提供する。 A seventh aspect of the invention is a method for manufacturing a windshield in which an information acquisition device that acquires information from the outside of a vehicle by irradiating and / or receiving light is arranged. An object of the present invention is to provide a method for manufacturing a windshield that can be easily formed even if the iron content is reduced. Specifically, the invention 7 provides the inventions of the following modes.
項1.光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置が配置可能なウインドシールドの製造方法であって、
 二酸化鉄に換算した酸化鉄の含有率を0.17重量%以下としたガラス原料を調製するステップと、
 前記ガラス原料から平板状のガラス板を成形するステップと、
 車外からの視野を遮蔽するとともに少なくとも1つの開口を有するマスク層を、前記ガラス板に積層するステップと、
 前記鉄の含有率に応じて、前記ガラス板に付与する熱量を決定し、当該熱量に基づいて前記ガラス板を加熱するステップと、
 前記ガラス板を曲面状に成形するステップと、
を備えている、ウインドシールドの製造方法。
Item 1. A method of manufacturing a windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged,
Preparing a glass raw material having a content of iron oxide converted to iron dioxide of 0.17% by weight or less;
Forming a flat glass plate from the glass raw material;
Laminating a mask layer on the glass plate for shielding a field of view from outside the vehicle and having at least one opening;
Determining the amount of heat applied to the glass plate according to the iron content, and heating the glass plate based on the amount of heat;
Forming the glass plate into a curved shape;
A method of manufacturing a windshield, comprising:
項2.前記ガラス板を加熱するステップでは、前記ガラス板を650~675℃で加熱する、項1に記載のウインドシールドの製造方法。 Item 2. Item 2. The method for manufacturing a windshield according to Item 1, wherein in the step of heating the glass plate, the glass plate is heated at 650 to 675 ° C.
項3.前記ガラス板は、外側ガラス板、内側ガラス板、及び当該両ガラス板の間に配置される中間膜、で形成されている、項1または2に記載のウインドシールドの製造方法。 Item 3. Item 3. The method for manufacturing a windshield according to Item 1 or 2, wherein the glass plate is formed of an outer glass plate, an inner glass plate, and an intermediate film disposed between the two glass plates.
 本発明によれば、マスク層の開口を通じて光の照射及び/または受光を行う情報取得装置が取り付け可能なウインドシールドにおいて、光の照射及び/または受光を正確に行うことができ、情報の処理が正確に行うことができる。 According to the present invention, in a windshield to which an information acquisition device that performs light irradiation and / or light reception through an opening of a mask layer can be attached, light irradiation and / or light reception can be accurately performed, and information processing can be performed. Can be done accurately.
本発明に係るウインドシールドの一実施形態の断面図である。It is sectional drawing of one Embodiment of the windshield which concerns on this invention. 図1の平面図である。It is a top view of FIG. 合わせガラスの断面図である。It is sectional drawing of a laminated glass. 湾曲状の合わせガラスのダブリ量を示す正面図(a)及び断面図(b)である。It is the front view (a) and sectional view (b) which show the amount of doubles of a curved laminated glass. 、湾曲形状のガラス板と、平面形状のガラス板の、一般的な周波数と音響透過損失の関係を示すグラフである。It is a graph which shows the relationship between the general frequency and sound transmission loss of a curved glass plate and a planar glass plate. 合わせガラスの厚みの測定位置を示す概略平面図である。It is a schematic plan view which shows the measurement position of the thickness of a laminated glass. 中間膜の測定に用いる画像の例である。It is an example of the image used for the measurement of an intermediate film. ガラス板の平面図である。It is a top view of a glass plate. センターマスク層の拡大平面図である。It is an enlarged plan view of a center mask layer. 図9のA-A線断面図である。FIG. 10 is a sectional view taken along line AA in FIG. 9. センターマスク層の拡大平面図である。It is an enlarged plan view of a center mask layer. ガラス板の製造方法の一例を示す側面図である。It is a side view which shows an example of the manufacturing method of a glass plate. 測定ユニットを構成するパーツの平面図である。It is a top view of the parts which comprise a measurement unit. センサの断面図である。It is sectional drawing of a sensor. アンテナが取付けられたガラス板の平面図である。It is a top view of the glass plate to which the antenna was attached. ガラス板の歪みを示すグラフである。It is a graph which shows the distortion of a glass plate. ガラス板の歪みを示す写真である。It is a photograph which shows distortion of a glass plate. 開口周縁領域の他の例を示す図である。It is a figure which shows the other example of an opening peripheral area | region. カメラによる撮影範囲を示すガラス板の断面図である。It is sectional drawing of the glass plate which shows the imaging | photography range with a camera. 合わせガラスの他の例を示す平面図である。It is a top view which shows the other example of a laminated glass. 図20のA-A線断面図である。FIG. 21 is a sectional view taken along line AA in FIG. 20. 楔形中間膜の断面図である。It is sectional drawing of a wedge-shaped intermediate film. 開口用中間膜の取付を説明する平面図である。It is a top view explaining attachment of the intermediate film for opening. 図23のB-B線断面図である。FIG. 24 is a sectional view taken along line BB in FIG. 23. 開口用中間膜の取付を説明する平面図である。It is a top view explaining attachment of the intermediate film for opening. 楔形中間膜の断面図である。It is sectional drawing of a wedge-shaped intermediate film. 楔形中間膜における開口用中間膜の取付を説明する平面図である。It is a top view explaining attachment of the intermediate film for opening in a wedge-shaped intermediate film. 合わせガラスの他の例を示す平面図である。It is a top view which shows the other example of a laminated glass. 図28の断面図である。It is sectional drawing of FIG. 透過率に関する正規分布を示す図である。It is a figure which shows the normal distribution regarding the transmittance | permeability. ウインドシールドの他の製造方法を示す側面図である。It is a side view which shows the other manufacturing method of a windshield. 鉄の含有率が異なるガラス板の波長と光透過率との関係を示すグラフである。It is a graph which shows the relationship between the wavelength and light transmittance of the glass plate from which the content rate of iron differs. ウインドシールドの他の製造方法を示す側面図である。It is a side view which shows the other manufacturing method of a windshield. 図32の成形型の平面図である。It is a top view of the shaping | molding die of FIG. ウインドシールドを載置した状態を示す図32の成形型の断面図である。It is sectional drawing of the shaping | molding die of FIG. 32 which shows the state which mounted the windshield. ガラス板の平面を示す写真である。It is a photograph which shows the plane of a glass plate. 図35のガラス板において生じる歪みを示す写真である。It is a photograph which shows the distortion which arises in the glass plate of FIG. 車外から入射する光による二重像現象を説明する断面図である。It is sectional drawing explaining the double image phenomenon by the light which injects from the outside of a vehicle. 車外から入射する光による二重像現象を解消するためのウインドシールドの断面図である。It is sectional drawing of the windshield for eliminating the double image phenomenon by the light which injects from the outside of a vehicle. ヘッドアップディスプレイ装置による二重像現象を説明する断面図である。It is sectional drawing explaining the double image phenomenon by a head-up display apparatus. ヘッドアップディスプレイ装置による二重像現象を解消するウインドシールドを説明する断面図である。It is sectional drawing explaining the windshield which eliminates the double image phenomenon by a head-up display apparatus. 車外から入射する光及びヘッドアップディスプレイ装置による二重像を同時に解消するウインドシールドの断面図である。It is sectional drawing of the windshield which cancels simultaneously the light which injects from the vehicle, and the double image by a head-up display apparatus. 図38のウインドシールドの断面の一例である。It is an example of the cross section of the windshield of FIG. 図41のウインドシールドの断面の一例である。It is an example of the cross section of the windshield of FIG. ウインドシールドの製造方法の他の例を示す図である。It is a figure which shows the other example of the manufacturing method of a windshield. ウインドシールドの製造方法の他の例を示す図である。It is a figure which shows the other example of the manufacturing method of a windshield. 音響透過損失を出力するためのシミュレーションのモデル図である。It is a model figure of the simulation for outputting sound transmission loss. コア層のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of a core layer. コア層の厚みに関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the thickness of a core layer. 合わせガラスの取付角度に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the attachment angle of a laminated glass. アウター層のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an outer layer. アウター層のヤング率に関する評価の結果を示すグラフである。It is a graph which shows the result of evaluation about the Young's modulus of an outer layer. マスク層と非マスク層との境界の像の歪みを示す写真である。It is a photograph which shows the distortion of the image of the boundary of a mask layer and a non-mask layer. 従来の開口用中間膜の取付を説明する平面図である。It is a top view explaining attachment of the conventional intermediate film for opening.
 以下、本発明に係るウインドシールドに車間距離の測定ユニットを取付けた場合の一実施形態について、図面を参照しつつ説明する。図1は、本実施形態に係るウインドシールドの断面図、図2は図1の平面図である。図1及び図2に示すように、本実施形態に係るウインドシールドは、ガラス板1と、このガラス板1の車内側の面に形成されたマスク層2と、を備え、マスク層2に、車間距離の測定を行う測定ユニット4が取付けられている。以下、各部材について説明する。 Hereinafter, an embodiment in which a vehicle distance measuring unit is attached to a windshield according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of the windshield according to the present embodiment, and FIG. 2 is a plan view of FIG. As shown in FIG.1 and FIG.2, the windshield which concerns on this embodiment is equipped with the glass plate 1 and the mask layer 2 formed in the vehicle inner surface of this glass plate 1, A measurement unit 4 for measuring the inter-vehicle distance is attached. Hereinafter, each member will be described.
 <1.ガラス板>
 ガラス板1は、種々の構成が可能であり、例えば、複数のガラス板を有する合わせガラスで構成したり、あるいは一枚のガラス板により構成することもできる。合わせガラスを用いる場合には、例えば、図3に示すように、構成することができる。図3は合わせガラスの断面図である。
<1. Glass plate>
The glass plate 1 can have various configurations. For example, the glass plate 1 can be composed of laminated glass having a plurality of glass plates, or can be composed of a single glass plate. In the case of using laminated glass, for example, it can be configured as shown in FIG. FIG. 3 is a sectional view of the laminated glass.
 同図に示すように、この合わせガラスは、外側ガラス板11及び内側ガラス板12を備え、これらガラス板11、12の間に樹脂製の中間膜13が配置されている。まず、外側ガラス板11及び内側ガラス板12から説明する。外側ガラス板11及び内側ガラス板12は、公知のガラス板を用いることができ、熱線吸収ガラス、一般的なクリアガラスやグリーンガラス、またはUVグリーンガラスで形成することもできる。但し、これらのガラス板11、12は、自動車が使用される国の安全規格に沿った可視光線透過率を実現する必要がある。例えば、外側ガラス板11により必要な日射吸収率を確保し、内側ガラス板12により可視光線透過率が安全規格を満たすように調整することができる。以下に、クリアガラスの組成の一例と、熱線吸収ガラス組成の一例及びソーダ石灰系ガラスの一例を示す。 As shown in the figure, this laminated glass includes an outer glass plate 11 and an inner glass plate 12, and a resin intermediate film 13 is disposed between the glass plates 11 and 12. First, the outer glass plate 11 and the inner glass plate 12 will be described. As the outer glass plate 11 and the inner glass plate 12, known glass plates can be used, and they can be formed of heat ray absorbing glass, general clear glass, green glass, or UV green glass. However, these glass plates 11 and 12 need to realize visible light transmittance in accordance with the safety standards of the country where the automobile is used. For example, the required solar radiation absorption rate can be ensured by the outer glass plate 11, and the visible light transmittance can be adjusted by the inner glass plate 12 so as to satisfy safety standards. Below, an example of a composition of clear glass, an example of a heat ray absorption glass composition, and an example of soda-lime-type glass are shown.
 (クリアガラス)
SiO2:70~73質量%
Al23:0.6~2.4質量%
CaO:7~12質量%
MgO:1.0~4.5質量%
2O:13~15質量%(Rはアルカリ金属)
Fe23に換算した全酸化鉄(T-Fe23):0.08~0.14質量%
(Clear glass)
SiO 2 : 70 to 73% by mass
Al 2 O 3 : 0.6 to 2.4% by mass
CaO: 7 to 12% by mass
MgO: 1.0 to 4.5% by mass
R 2 O: 13 to 15% by mass (R is an alkali metal)
Total iron oxide converted to Fe 2 O 3 (T-Fe 2 O 3 ): 0.08 to 0.14% by mass
 (熱線吸収ガラス)
 熱線吸収ガラスの組成は、例えば、クリアガラスの組成を基準として、Fe23に換算した全酸化鉄(T-Fe23)の比率を0.4~1.3質量%とし、CeO2の比率を0~2質量%とし、TiO2の比率を0~0.5質量%とし、ガラスの骨格成分(主に、SiO2やAl23)をT-Fe23、CeO2およびTiO2の増加分だけ減じた組成とすることができる。
(Heat ray absorbing glass)
The composition of the heat-absorbing glass, for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO The ratio of 2 is 0 to 2% by mass, the ratio of TiO 2 is 0 to 0.5% by mass, and the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T-Fe 2 O 3 , CeO. The composition can be reduced by an increase of 2 and TiO 2 .
 (ソーダ石灰系ガラス)
SiO2:65~80質量%
Al23:0~5質量%
CaO:5~15質量%
MgO:2質量%以上
NaO:10~18質量%
2O:0~5質量%
MgO+CaO:5~15質量%
Na2O+K2O:10~20質量%
SO3:0.05~0.3質量%
23:0~5質量%
Fe23に換算した全酸化鉄(T-Fe23):0.02~0.03質量%
(Soda-lime glass)
SiO 2 : 65-80% by mass
Al 2 O 3 : 0 to 5% by mass
CaO: 5 to 15% by mass
MgO: 2% by mass or more NaO: 10-18% by mass
K 2 O: 0 to 5% by mass
MgO + CaO: 5-15% by mass
Na 2 O + K 2 O: 10 to 20% by mass
SO 3 : 0.05 to 0.3% by mass
B 2 O 3 : 0 to 5% by mass
Fe total iron oxide in terms of 2 O 3 (T-Fe 2 O 3): 0.02 ~ 0.03 wt%
 本実施形態に係る合わせガラスの厚みは特には限定されないが、軽量化の観点からは、外側ガラス板11と内側ガラス板12の厚みの合計を、2.4~3.8mmとすることが好ましく、2.6~3.4mmとすることがさらに好ましく、2.7~3.2mmとすることが特に好ましい。このように、軽量化のためには、外側ガラス板11と内側ガラス板12との合計の厚みを小さくすることが必要であるので、各ガラス板のそれぞれの厚みは、特には限定されないが、例えば、以下のように、外側ガラス板11と内側ガラス板12の厚みを決定することができる。 The thickness of the laminated glass according to the present embodiment is not particularly limited, but from the viewpoint of weight reduction, the total thickness of the outer glass plate 11 and the inner glass plate 12 is preferably 2.4 to 3.8 mm. The thickness is more preferably 2.6 to 3.4 mm, and particularly preferably 2.7 to 3.2 mm. Thus, since it is necessary to reduce the total thickness of the outer glass plate 11 and the inner glass plate 12 for weight reduction, the thickness of each glass plate is not particularly limited, For example, the thickness of the outer glass plate 11 and the inner glass plate 12 can be determined as follows.
 外側ガラス板11は、主として、外部からの障害に対する耐久性、耐衝撃性が必要であり、例えば、この合わせガラスを自動車のウインドシールドとして用いる場合には、小石などの飛来物に対する耐衝撃性能が必要である。他方、厚みが大きいほど重量が増し好ましくない。この観点から、外側ガラス板11の厚みは1.8~2.3mmとすることが好ましく、1.9~2.1mmとすることがさらに好ましい。何れの厚みを採用するかは、ガラスの用途に応じて決定することができる。 The outer glass plate 11 mainly needs durability and impact resistance against external obstacles. For example, when this laminated glass is used as a windshield of an automobile, the outer glass plate 11 has impact resistance performance against flying objects such as pebbles. is necessary. On the other hand, as the thickness is larger, the weight increases, which is not preferable. In this respect, the thickness of the outer glass plate 11 is preferably 1.8 to 2.3 mm, and more preferably 1.9 to 2.1 mm. Which thickness is adopted can be determined according to the application of the glass.
 内側ガラス板12の厚みは、外側ガラス板11と同等にすることができるが、例えば、合わせガラスの軽量化のため、外側ガラス板11よりも厚みを小さくすることができる。具体的には、ガラスの強度を考慮すると、0.6~2.0mmであることが好ましく、0.8~1.6mmであることがさらに好ましく、1.0~1.4mmであることが特に好ましい。更には、0.8~1.3mmであることが好ましい。内側ガラス板12についても、何れの厚みを採用するかは、ガラスの用途に応じて決定することができる。 The thickness of the inner glass plate 12 can be made equal to that of the outer glass plate 11, but for example, the thickness can be made smaller than that of the outer glass plate 11 in order to reduce the weight of the laminated glass. Specifically, considering the strength of the glass, it is preferably 0.6 to 2.0 mm, more preferably 0.8 to 1.6 mm, and 1.0 to 1.4 mm. Particularly preferred. Further, it is preferably 0.8 to 1.3 mm. Which thickness is used for the inner glass plate 12 can be determined according to the purpose of the glass.
 また、本実施形態に係る外側ガラス板11及び内側ガラス板12の形状は、湾曲形状である。 Moreover, the shape of the outer side glass plate 11 and the inner side glass plate 12 which concerns on this embodiment is a curved shape.
 なお、ガラス板が湾曲形状である場合には、ダブリ量が大きくなると遮音性能が低下するとされている。ダブリ量とは、ガラス板の曲げを示す量であり、例えば、図4に示すように、ガラス板の上辺の中央と下辺の中央とを結ぶ直線Lを設定したとき、この直線Lとガラス板との距離のうち最も大きいものをダブリ量Dと定義する。 In addition, when the glass plate has a curved shape, the sound insulation performance decreases as the amount of double increases. The double amount is an amount indicating the bending of the glass plate. For example, as shown in FIG. 4, when a straight line L connecting the center of the upper side and the center of the lower side is set, the straight line L and the glass plate are set. The largest distance between the two is defined as a double amount D.
 図5は、湾曲形状のガラス板と、平面形状のガラス板の、一般的な周波数と音響透過損失の関係を示すグラフである。図5によれば、湾曲形状のガラス板は、ダブリ量が30~38mmの範囲では、音響透過損失に大きな差はないが、平面形状のガラス板と比べると、4000Hz以下の周波数帯域で音響透過損失が低下していることが分かる。したがって、湾曲形状のガラス板を作製する場合、ダブリ量は小さい方がよいが、例えば、ダブリ量が30mmを超える場合には、後述するように、中間膜のコア層のヤング率を18MPa(周波数100Hz,温度20℃)以下とすることが好ましい。 FIG. 5 is a graph showing a relationship between a general frequency and sound transmission loss of a curved glass plate and a planar glass plate. According to FIG. 5, the curved glass plate has no significant difference in sound transmission loss in the range of the doubly amount of 30 to 38 mm, but compared with the planar glass plate, the sound transmission is in a frequency band of 4000 Hz or less. It can be seen that the loss is decreasing. Therefore, when producing a curved glass plate, the amount of double is better, but for example, when the amount of double exceeds 30 mm, the Young's modulus of the core layer of the intermediate film is set to 18 MPa (frequency) as will be described later. 100 Hz, temperature 20 ° C.) or less.
 ここで、ガラス板が湾曲している場合の厚みの測定方法の一例について説明する。まず、測定位置については、図6に示すように、ガラス板の左右方向の中央を上下方向に延びる中央線S上の上下2箇所である。測定機器は、特には限定されないが、例えば、株式会社テクロック製のSM-112のようなシックネスゲージを用いることができる。測定時には、平らな面にガラス板の湾曲面が載るように配置し、上記シックネスゲージでガラス板の端部を挟持して測定する。なお、ガラス板が平坦な場合でも、湾曲している場合と同様に測定することができる。 Here, an example of a method for measuring the thickness when the glass plate is curved will be described. First, about a measurement position, as shown in FIG. 6, it is two places up and down on the center line S extended in the up-down direction at the center of the left-right direction of a glass plate. The measuring instrument is not particularly limited, and for example, a thickness gauge such as SM-112 manufactured by Teclock Co., Ltd. can be used. At the time of measurement, it is arranged so that the curved surface of the glass plate is placed on a flat surface, and the end of the glass plate is sandwiched by the thickness gauge and measured. Even when the glass plate is flat, it can be measured in the same manner as when the glass plate is curved.
 <1-2.中間膜>
 続いて、中間膜13について説明する。中間膜13は、少なくとも一層で形成されており、一例として、図3に示すように、軟質のコア層131を、これよりも硬質のアウター層132で挟持した3層で構成することができる。但し、この構成に限定されるものではなく、コア層131と、外側ガラス板11側に配置される少なくとも1つのアウター層132とを有する複数層で形成されていればよい。例えば、コア層131と、外側ガラス板11側に配置される1つのアウター層132を含む2層の中間膜13、またはコア層131を中心に両側にそれぞれ2層以上の偶数のアウター層132を配置した中間膜13、あるいはコア層131を挟んで一方に奇数のアウター層132、他方の側に偶数のアウター層132を配置した中間膜13とすることもできる。なお、アウター層132を1つだけ設ける場合には、上記のように外側ガラス板11側に設けているが、これは、車外や屋外からの外力に対する耐破損性能を向上するためである。また、アウター層132の数が多いと、遮音性能も高くなる。
<1-2. Interlayer>
Subsequently, the intermediate film 13 will be described. The intermediate film 13 is formed of at least one layer. For example, as shown in FIG. 3, the intermediate film 13 can be configured by three layers in which a soft core layer 131 is sandwiched between harder outer layers 132. However, it is not limited to this configuration, and may be formed of a plurality of layers including the core layer 131 and at least one outer layer 132 disposed on the outer glass plate 11 side. For example, two layers of the intermediate film 13 including the core layer 131 and one outer layer 132 disposed on the outer glass plate 11 side, or an even number of outer layers 132 each having two or more layers on both sides around the core layer 131. Alternatively, the intermediate film 13 may be disposed, or the intermediate film 13 may be configured such that the odd outer layer 132 is disposed on one side and the even outer layer 132 is disposed on the other side with the core layer 131 interposed therebetween. When only one outer layer 132 is provided, the outer layer 132 is provided on the outer glass plate 11 side as described above, but this is to improve the resistance to breakage against an external force from outside the vehicle or outside. Further, when the number of outer layers 132 is large, the sound insulation performance is also enhanced.
 コア層131はアウター層132よりも軟質であるかぎり、その硬さは特には限定されないが、例えば、ヤング率を基準として材料を選択することができる。具体的には、周波数100Hz,温度20℃において、1~20MPaであることが好ましく、1~18MPaであることがさらに好ましく、1~14MPaであることが特に好ましい。このような範囲にすると、概ね3500Hz以下の低周波数域で、音響透過損失(Sound Transmission Loss:STL)が低下するのを防止することができる。 As long as the core layer 131 is softer than the outer layer 132, the hardness thereof is not particularly limited. For example, the material can be selected based on the Young's modulus. Specifically, it is preferably 1 to 20 MPa, more preferably 1 to 18 MPa, and particularly preferably 1 to 14 MPa at a frequency of 100 Hz and a temperature of 20 ° C. With such a range, it is possible to prevent a decrease in sound transmission loss (Sound Transmission Loss: STL) in a low frequency range of approximately 3500 Hz or less.
 この点について、本発明者により、一般的にコア層のヤング率を低下させると、3000~5000Hzの周波数域で遮音性能が向上することが見出されている。この点について、以下の表1には、クリアガラスからなる外側ガラス板と内側ガラス板、及びコア層とコア層の両側に位置するアウター層で構成された中間膜を有する合わせガラスの遮音性能を示している。外側ガラス板の厚みは2.0mm、内側ガラス板の厚みは1.3mm、中間膜の厚みは、コア層が0.10mm、アウター層が0.33mmであり、合計0.76mmである。以下の表1では、周波数が1250~10000Hzの間での音響透過損失を示している。具体的には、中間膜のヤング率(周波数100Hz、温度20℃で測定)を25MPa,12.5MPa,及び6.25MPaとした場合の音響透過損失を算出し(算出方法は後述する実施例の方法に従う)、ヤング率が25MPaの場合を基準として(以下の表では基準であるため0としている)、ヤング率が12.5MPa,6.25MPaのときの音響透過損失の差(単位はdB)を示している。このとき、アウター層のヤング率は560MPa、tanδは0.26(温度20℃、周波数100Hz)である。表1によれば、周波数が、3150~5000Hzの間では、中間膜のヤング率が25MPaから12.5MPa,6.25MPaへと低下するのにしたがって音響透過損失が向上していることが分かる。
Figure JPOXMLDOC01-appb-T000001
In this regard, it has been found by the inventor that sound insulation performance is improved in the frequency range of 3000 to 5000 Hz when the Young's modulus of the core layer is generally lowered. In this regard, Table 1 below shows the sound insulation performance of the laminated glass having an intermediate film composed of an outer glass plate and an inner glass plate made of clear glass, and an outer layer located on both sides of the core layer and the core layer. Show. The thickness of the outer glass plate is 2.0 mm, the thickness of the inner glass plate is 1.3 mm, and the thickness of the intermediate film is 0.10 mm for the core layer and 0.33 mm for the outer layer, for a total of 0.76 mm. Table 1 below shows sound transmission loss when the frequency is between 1250 and 10,000 Hz. Specifically, the sound transmission loss is calculated when the Young's modulus (measured at a frequency of 100 Hz and a temperature of 20 ° C.) of the intermediate film is 25 MPa, 12.5 MPa, and 6.25 MPa (the calculation method is described in the examples described later). According to the method), the difference in sound transmission loss when the Young's modulus is 12.5 MPa and 6.25 MPa (unit is dB), based on the case where the Young's modulus is 25 MPa (in the following table, it is 0) Is shown. At this time, the Young's modulus of the outer layer is 560 MPa, and tan δ is 0.26 (temperature 20 ° C., frequency 100 Hz). According to Table 1, when the frequency is between 3150 and 5000 Hz, it can be seen that the sound transmission loss is improved as the Young's modulus of the interlayer film is decreased from 25 MPa to 12.5 MPa and 6.25 MPa.
Figure JPOXMLDOC01-appb-T000001
 測定方法としては、例えば、Metravib社製固体粘弾性測定装置DMA 50を用い、ひずみ量0.05%にて周波数分散測定を行うことができる。以下、本明細書においては、特に断りのない限り、ヤング率は上記方法での測定値とする。但し、周波数が200Hz以下の場合の測定は実測値を用いるが、200Hzより大きい場合には実測値に基づく算出値を用いる。この算出値とは、実測値からWLF法を用いることで算出されるマスターカーブに基づくものである。 As a measuring method, for example, frequency dispersion measurement can be performed with a strain amount of 0.05% using a solid viscoelasticity measuring device DMA 50 manufactured by Metravib. Hereinafter, unless otherwise specified, in this specification, the Young's modulus is a value measured by the above method. However, the measurement when the frequency is 200 Hz or less uses an actual measurement value. When the frequency is higher than 200 Hz, a calculation value based on the actual measurement value is used. This calculated value is based on a master curve calculated by using the WLF method from the actually measured value.
 一方、アウター層132のヤング率は、後述するように、高周波域における遮音性能の向上のために、大きいことが好ましく、周波数100Hz,温度20度において560MPa以上、600MPa以上、650MPa以上、700MPa以上、750MPa以上、880MPa以上、または1300MPa以上とすることができる。一方、アウター層132のヤング率の上限は特には限定されないが、例えば、加工性の観点から設定することができる。例えば、1750MPa以上となると、加工性、特に切断が困難になることが経験的に知られている。また、外側ガラス板11側のアウター層のヤング率を、内側ガラス板12側のアウター層のヤング率よりも大きくすることが好ましい。これにより、車外や屋外からの外力に対する耐破損性能が向上する。 On the other hand, the Young's modulus of the outer layer 132 is preferably large in order to improve sound insulation performance in a high frequency region, as will be described later, and is 560 MPa or more, 600 MPa or more, 650 MPa or more, 700 MPa or more at a frequency of 100 Hz and a temperature of 20 degrees. It can be set to 750 MPa or more, 880 MPa or more, or 1300 MPa or more. On the other hand, the upper limit of the Young's modulus of the outer layer 132 is not particularly limited, but can be set from the viewpoint of workability, for example. For example, it is empirically known that when it becomes 1750 MPa or more, workability, particularly cutting becomes difficult. Moreover, it is preferable to make the Young's modulus of the outer layer on the outer glass plate 11 side larger than the Young's modulus of the outer layer on the inner glass plate 12 side. Thereby, the damage resistance performance with respect to the external force from the outside of a vehicle or the outdoors improves.
 また、コア層131のtanδは、周波数100Hz,温度20℃において、例えば、0.1~0.9とすることができる。tanδが上記範囲にあると、遮音性能が向上する。 Further, tan δ of the core layer 131 can be set to, for example, 0.1 to 0.9 at a frequency of 100 Hz and a temperature of 20 ° C. When tan δ is in the above range, the sound insulation performance is improved.
 この点について、本発明者により、一般的にコア層のtanδを大きくすると、5000~10000Hzの周波数域で遮音性能が向上することが見出されている。この点について、以下の表2には、クリアガラスからなる外側ガラス板と内側ガラス板、及びコア層とコア層の両側に位置するアウター層で構成された中間膜を有する合わせガラスの遮音性能を示している。外側ガラス板の厚みは2.0mm、内側ガラス板の厚みは1.3mm、中間膜の厚みは、コア層が0.10mm、アウター層が0.33mmであり、合計0.76mmである。なお、このときのコア層、及びアウター層のヤング率はそれぞれ12.5MPa,560MPaである(周波数100Hz,温度20℃で測定)。以下の表2では、周波数が1250~10000Hzの間での音響透過損失を示している。具体的には、コア層のtanδ(周波数100Hz、温度20℃で測定)を0.8,1.2,及び1.6とした場合の音響透過損失を算出し(算出方法は後述する実施例の方法に従う)、tanδが0.8の場合を基準として(以下の表では基準であるため0としている)、tanδが1.2,1.6のときの音響透過損失の差(単位はdB)を示している。なお、アウター層のtanδは、0.26である。表2によれば、周波数が、5000~10000Hzの間では、中間膜のtanδが0.8から1.2,1.6へと大きくなるのにしたがって音響透過損失が向上していることが分かる。
Figure JPOXMLDOC01-appb-T000002
In this regard, it has been found by the present inventor that the sound insulation performance is improved in the frequency range of 5000 to 10000 Hz when the tan δ of the core layer is generally increased. In this regard, Table 2 below shows the sound insulation performance of laminated glass having an intermediate film composed of an outer glass plate and an inner glass plate made of clear glass, and an outer layer positioned on both sides of the core layer and the core layer. Show. The thickness of the outer glass plate is 2.0 mm, the thickness of the inner glass plate is 1.3 mm, and the thickness of the intermediate film is 0.10 mm for the core layer and 0.33 mm for the outer layer, for a total of 0.76 mm. The Young's modulus of the core layer and the outer layer at this time is 12.5 MPa and 560 MPa, respectively (measured at a frequency of 100 Hz and a temperature of 20 ° C.). Table 2 below shows sound transmission loss when the frequency is between 1250 and 10000 Hz. Specifically, the sound transmission loss is calculated when the tan δ of the core layer (measured at a frequency of 100 Hz and a temperature of 20 ° C.) is 0.8, 1.2, and 1.6 (the calculation method will be described in an embodiment described later). The difference in sound transmission loss when tan δ is 1.2 and 1.6 (unit is dB), based on the case where tan δ is 0.8 (in the following table, it is 0). ). Note that tan δ of the outer layer is 0.26. According to Table 2, when the frequency is between 5000 and 10,000 Hz, the sound transmission loss is improved as the tan δ of the intermediate film increases from 0.8 to 1.2, 1.6. .
Figure JPOXMLDOC01-appb-T000002
 各層131,132を構成する材料は、特には限定されないが、少なくともヤング率が上記のような範囲とすることができる材料であることが必要である。例えば、アウター層132は、ポリビニルブチラール樹脂(PVB)によって構成することができる。ポリビニルブチラール樹脂は、各ガラス板との接着性や耐貫通性に優れるので好ましい。一方、コア層131は、エチレンビニルアセテート樹脂(EVA)、またはアウター層132を構成するポリビニルブチラール樹脂よりも軟質なポリビニルアセタール樹脂によって構成することができる。軟質なコア層131を間に挟むことにより、単層の樹脂中間膜と同等の接着性や耐貫通性を保持しながら、遮音性能を大きく向上させることができる。 The material constituting each of the layers 131 and 132 is not particularly limited, but it is necessary that the material has at least a Young's modulus in the above range. For example, the outer layer 132 can be made of polyvinyl butyral resin (PVB). Polyvinyl butyral resin is preferable because it is excellent in adhesiveness and penetration resistance with each glass plate. On the other hand, the core layer 131 can be composed of an ethylene vinyl acetate resin (EVA) or a polyvinyl acetal resin that is softer than the polyvinyl butyral resin that constitutes the outer layer 132. By sandwiching the soft core layer 131 in between, the sound insulation performance can be greatly improved while maintaining the same adhesion and penetration resistance as the single-layer resin intermediate film.
 一般に、ポリビニルアセタール樹脂の硬度は、(a)出発物質であるポリビニルアルコールの重合度、(b)アセタール化度、(c)可塑剤の種類、(d)可塑剤の添加割合などにより制御することができる。したがって、それらの条件から選ばれる少なくとも1つを適切に調整することにより、同じポリビニルブチラール樹脂であっても、アウター層132に用いる硬質なポリビニルブチラール樹脂と、コア層131に用いる軟質なポリビニルブチラール樹脂との作り分けが可能である。さらに、アセタール化に用いるアルデヒドの種類、複数種類のアルデヒドによる共アセタール化か単種のアルデヒドによる純アセタール化かによっても、ポリビニルアセタール樹脂の硬度を制御することができる。一概には言えないが、炭素数の多いアルデヒドを用いて得られるポリビニルアセタール樹脂ほど、軟質となる傾向がある。したがって、例えば、アウター層132がポリビニルブチラール樹脂で構成されている場合、コア層131には、炭素数が5以上のアルデヒド(例えばn-ヘキシルアルデヒド、2-エチルブチルアルデヒド、n-へプチルアルデヒド、n-オクチルアルデヒド)、をポリビニルアルコールでアセタール化して得られるポリビニルアセタール樹脂を用いることができる。なお、所定のヤング率が得られる場合は、上記樹脂等に限定されることはない。 In general, the hardness of the polyvinyl acetal resin is controlled by (a) the degree of polymerization of the starting polyvinyl alcohol, (b) the degree of acetalization, (c) the type of plasticizer, (d) the addition ratio of the plasticizer, etc. Can do. Therefore, by appropriately adjusting at least one selected from these conditions, a hard polyvinyl butyral resin used for the outer layer 132 and a soft polyvinyl butyral resin used for the core layer 131 even if the same polyvinyl butyral resin is used. Can be made separately. Furthermore, the hardness of the polyvinyl acetal resin can also be controlled by the type of aldehyde used for acetalization, coacetalization with a plurality of aldehydes or pure acetalization with a single aldehyde. Although it cannot generally be said, the polyvinyl acetal resin obtained by using an aldehyde having a large number of carbon atoms tends to be softer. Therefore, for example, when the outer layer 132 is made of polyvinyl butyral resin, the core layer 131 has an aldehyde having 5 or more carbon atoms (for example, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, n-octylaldehyde) and a polyvinyl acetal resin obtained by acetalization with polyvinyl alcohol can be used. In addition, when predetermined | prescribed Young's modulus is obtained, it is not limited to the said resin.
 また、中間膜13の総厚は、特に規定されないが、0.3~6.0mmであることが好ましく、0.5~4.0mmであることがさらに好ましく、0.6~2.0mmであることが特に好ましい。また、コア層131の厚みは、0.1~2.0mmであることが好ましく、0.1~0.6mmであることがさらに好ましい。一方、各アウター層132の厚みは、コア層131の厚みよりも大きいことが好ましく、具体的には、0.1~2.0mmであることが好ましく、0.1~1.0mmであることがさらに好ましい。その他、中間膜3の総厚を一定とし、この中でコア層131の厚みを調整することもできる。 The total thickness of the intermediate film 13 is not particularly limited, but is preferably 0.3 to 6.0 mm, more preferably 0.5 to 4.0 mm, and 0.6 to 2.0 mm. It is particularly preferred. The thickness of the core layer 131 is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 0.6 mm. On the other hand, the thickness of each outer layer 132 is preferably larger than the thickness of the core layer 131. Specifically, the thickness is preferably 0.1 to 2.0 mm, and preferably 0.1 to 1.0 mm. Is more preferable. In addition, the total thickness of the intermediate film 3 can be made constant, and the thickness of the core layer 131 can be adjusted therein.
 コア層131及びアウター層132の厚みは、例えば、以下のように測定することができる。まず、マイクロスコープ(例えば、キーエンス社製VH-5500)によって合わせガラスの断面を175倍に拡大して表示する。そして、コア層131及びアウター層132の厚みを目視により特定し、これを測定する。このとき、目視によるばらつきを排除するため、測定回数を5回とし、その平均値をコア層131、アウター層132の厚みとする。例えば、図7に示すような合わせガラスの拡大写真を撮影し、このなかでコア層やアウター層132を特定して厚みを測定する。 The thickness of the core layer 131 and the outer layer 132 can be measured as follows, for example. First, the cross section of the laminated glass is enlarged and displayed by 175 times using a microscope (for example, VH-5500 manufactured by Keyence Corporation). And the thickness of the core layer 131 and the outer layer 132 is specified visually, and this is measured. At this time, in order to eliminate visual variation, the number of measurements is set to 5 times, and the average value is defined as the thickness of the core layer 131 and the outer layer 132. For example, an enlarged photograph of a laminated glass as shown in FIG. 7 is taken, and the core layer and the outer layer 132 are specified in this and the thickness is measured.
 なお、中間膜13のコア層131、アウター層132の厚みは全面に亘って一定である必要はなく、例えば、ヘッドアップディスプレイに用いられる合わせガラス用に楔形にすることもできる。この場合、中間膜13のコア層131やアウター層132の厚みは、最も厚みの小さい箇所、つまり合わせガラスの最下辺部を測定する。中間膜3が楔形の場合、外側ガラス板及び内側ガラス板は、平行に配置されないが、このような配置も本発明におけるガラス板に含まれる物とする。すなわち、本発明においては、例えば、1m当たり3mm以下の変化率で厚みが大きくなるコア層131やアウター層132を用いた中間膜13を使用した時の外側ガラス板11と内側ガラス板12の配置を含む。 In addition, the thickness of the core layer 131 and the outer layer 132 of the intermediate film 13 does not need to be constant over the entire surface, and can be a wedge shape for laminated glass used for a head-up display, for example. In this case, the thickness of the core layer 131 and the outer layer 132 of the intermediate film 13 is measured at the position where the thickness is the smallest, that is, the lowermost side portion of the laminated glass. When the intermediate film 3 is wedge-shaped, the outer glass plate and the inner glass plate are not arranged in parallel, but such arrangement is also included in the glass plate in the present invention. That is, in the present invention, for example, the arrangement of the outer glass plate 11 and the inner glass plate 12 when the intermediate film 13 using the core layer 131 and the outer layer 132 whose thickness is increased at a change rate of 3 mm or less per 1 m is used. including.
 中間膜13の製造方法は特には限定されないが、例えば、上述したポリビニルアセタール樹脂等の樹脂成分、可塑剤及び必要に応じて他の添加剤を配合し、均一に混練りした後、各層を一括で押出し成型する方法、この方法により作成した2つ以上の樹脂膜をプレス法、ラミネート法等により積層する方法が挙げられる。プレス法、ラミネート法等により積層する方法に用いる積層前の樹脂膜は単層構造でも多層構造でもよい。また、中間膜13は、上記のような複数の層で形成する以外に、1層で形成することもできる。 The method for producing the intermediate film 13 is not particularly limited. For example, the resin component such as the polyvinyl acetal resin described above, a plasticizer, and other additives as necessary are blended and kneaded uniformly, and then each layer is collectively And a method of laminating two or more resin films prepared by this method by a pressing method, a laminating method or the like. The resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure. Further, the intermediate film 13 can be formed of a single layer in addition to the above-described plural layers.
 <1-3.ガラス板の赤外線透過率>
 上記のように、本実施形態に係るウインドシールドは、レーザーレーダー、カメラなどの測定ユニットを用いた自動車の前方安全システム用に用いられる。このような安全システムでは、前方の車両に対して赤外線を照射して、前方の自動車の速度や車間距離を計測する。そのため、合わせガラス(または一枚のガラス板)には、所定範囲の赤外線の透過率を達成することが要求される。
<1-3. Infrared transmittance of glass plate>
As described above, the windshield according to the present embodiment is used for a vehicle front safety system using a measurement unit such as a laser radar or a camera. In such a safety system, the vehicle ahead is irradiated with infrared rays to measure the speed and distance between the vehicles ahead. Therefore, the laminated glass (or one glass plate) is required to achieve a predetermined range of infrared transmittance.
 このような透過率としては、例えば、レーザーレーダーに一般的なセンサを使用する場合、波長が850~950nmの光(赤外線)に対して20%以上80%以下、好ましくは、20%以上60%以下であることが有用であるとされている。透過率の測定方法は、JIS R3106にしたがい、測定装置として、UV3100(島津製作所製)を用いることができる。具体的には、合わせガラスの表面に対して90度の角度で照射した、一方向の光の透過を測定する。 As such transmittance, for example, when a general sensor is used for laser radar, it is 20% to 80%, preferably 20% to 60% with respect to light (infrared rays) having a wavelength of 850 to 950 nm. The following are considered useful. The measuring method of the transmittance can be UV3100 (manufactured by Shimadzu Corporation) as a measuring device according to JIS R3106. Specifically, the transmission of light in one direction irradiated at an angle of 90 degrees with respect to the surface of the laminated glass is measured.
 また、上記のような安全システムでは、レーザーレーダーを用いず、赤外線カメラを用いて前方車両の速度や車間距離を測定するものもあるが、その場合には、例えば、レーザーレーダーに一般的なカメラを使用する場合、波長が700~800nmの光(赤外線)に対して30%以上80%以下、好ましくは、40%以上60%以下であることが有用とされている。透過率の測定方法は、ISO9050に従う。 In addition, some safety systems such as those described above measure the speed and distance between vehicles ahead using an infrared camera without using a laser radar. In this case, for example, a camera commonly used for laser radar is used. Is used, it is considered useful to be 30% or more and 80% or less, preferably 40% or more and 60% or less, with respect to light (infrared rays) having a wavelength of 700 to 800 nm. The measuring method of the transmittance follows ISO9050.
 <2.マスク層>
 次に、マスク層2について説明する。本実施形態に係るガラス板1には、図8に示すようなマスク層2が形成される。マスク層2は、ガラス板上に積層されるのであるが、その位置は特には限定されない。例えば、ガラス板が一枚のガラス板で形成されている場合には、車内側の面にマスク層2を積層することができる。一方、ガラス板が、図3に示すような合わせガラスで形成されている場合には、外側ガラス板11の車内側の面、内側ガラス板12の車外側の面、及び内側ガラス板12の車内側の面の少なくとも1つに積層することができる。このなかで、例えば、外側ガラス板11の車内側の面、及び内側ガラス板12の車内側の面の両方に概ね同一形状のマスク層2を形成すると、マスク層2が積層されている箇所において両ガラス板11,12の湾曲が一致するため、好ましい。
<2. Mask layer>
Next, the mask layer 2 will be described. A mask layer 2 as shown in FIG. 8 is formed on the glass plate 1 according to the present embodiment. Although the mask layer 2 is laminated | stacked on a glass plate, the position is not specifically limited. For example, when the glass plate is formed of a single glass plate, the mask layer 2 can be laminated on the inner surface of the vehicle. On the other hand, when the glass plate is formed of laminated glass as shown in FIG. 3, the vehicle inner surface of the outer glass plate 11, the vehicle outer surface of the inner glass plate 12, and the vehicle of the inner glass plate 12. It can be laminated to at least one of the inner faces. Among these, for example, when the mask layer 2 having substantially the same shape is formed on both the inner surface of the outer glass plate 11 and the inner surface of the inner glass plate 12, the portion where the mask layer 2 is laminated is formed. Since the curvature of both the glass plates 11 and 12 corresponds, it is preferable.
 このマスク層2は、ガラス板1を車体に取付ける際の接着剤が塗布されたりするなど、外部から見えないようにするための領域であり、ガラス板1の外周縁に形成された周縁マスク層21と、この周縁マスク層21において、ガラス板1の上縁の中央から下方に延びるセンターマスク層22と、を備えている。そして、センターマスク層22には、上述した測定ユニット4が取付けられる。測定ユニット4は、センサ5から照射される光が開口の中心を通過し、先行車および障害物からの反射光を受光できる程度に配置されていればよい。これらマスク層2は、種々の材料で形成することができるが、車外からの視野を遮蔽できるものであれば特には限定されず、例えば、黒色などの濃色のセラミックをガラス板1に塗布することで形成することができる。 The mask layer 2 is a region for preventing the glass plate 1 from being seen from the outside, such as an adhesive applied when the glass plate 1 is attached to the vehicle body, and the peripheral mask layer formed on the outer peripheral edge of the glass plate 1. 21 and the peripheral mask layer 21 include a center mask layer 22 extending downward from the center of the upper edge of the glass plate 1. The measurement unit 4 described above is attached to the center mask layer 22. The measurement unit 4 only needs to be arranged so that the light emitted from the sensor 5 can pass through the center of the opening and receive reflected light from the preceding vehicle and the obstacle. These mask layers 2 can be formed of various materials, but are not particularly limited as long as they can shield the field of view from the outside of the vehicle. For example, dark ceramic such as black is applied to the glass plate 1. Can be formed.
 次に、センターマスク層22について説明する。図9に示すように、センターマスク層22は、上下方向に延びる矩形状に形成されており、上下方向に並ぶ2つの開口、つまり上側開口231と下側開口232とが形成されている。また、これら開口231,232の内周縁には、後に詳述する開口周縁領域2311、2321がそれぞれ形成されている。上側開口231及び下側開口232はともに台形状に形成されているが、下側開口232の左右方向の幅は、上側開口231の半分ほどの大きさとなっている。但し、上下方向の長さは概ね同じである。開口の大きさは、特には限定されないが、例えば、上側開口231を縦が約58mm、横が約58mm、下側開口232を縦が約52mm、横が約27mmとすることができる。また、上部開口231及び下部開口232の周縁部には、後述するように、ドットパターンで形成された開口周縁領域2311,2321が形成されている。 Next, the center mask layer 22 will be described. As shown in FIG. 9, the center mask layer 22 is formed in a rectangular shape extending in the vertical direction, and two openings arranged in the vertical direction, that is, an upper opening 231 and a lower opening 232 are formed. In addition, opening peripheral regions 2311 and 2321 which will be described in detail later are formed on the inner peripheral edges of these openings 231 and 232, respectively. Both the upper opening 231 and the lower opening 232 are formed in a trapezoidal shape, but the width of the lower opening 232 in the left-right direction is about half that of the upper opening 231. However, the length in the vertical direction is substantially the same. The size of the opening is not particularly limited. For example, the upper opening 231 can be about 58 mm in length and about 58 mm in width, and the lower opening 232 can be about 52 mm in length and about 27 mm in width. In addition, opening peripheral regions 2311 and 321 formed in a dot pattern are formed at the peripheral portions of the upper opening 231 and the lower opening 232 as described later.
 センターマスク層22は、3つの領域に分かれており、上部開口231よりも上側の上部領域221、この上部領域221より下方で両開口231,232を含む下部領域222、及びこの下部領域222の側部に形成された矩形状の小さい側部領域223で構成されている。 The center mask layer 22 is divided into three regions, an upper region 221 above the upper opening 231, a lower region 222 including both openings 231 and 232 below the upper region 221, and the side of the lower region 222. It is composed of small rectangular side regions 223 formed in the part.
 次に、各領域の層構成について説明する。図10に示すように、上部領域221は、黒色セラミックからなる第1セラミック層241により1層で形成されている。下部領域222は、ガラス板1の内表面から積層される上記第1セラミック層241、銀層242、及び第2セラミック層243からなる3層で形成されている。銀層242は銀により形成され、第2セラミック層243は、第1セラミック層241と同じ材料で形成されている。また、側部領域223は、ガラス板1の内表面から積層される第1セラミック層241及び銀層242の2層で形成されており、銀層242が車内側に露出している。最下層の第1セラミック層241は、各領域で共通であり、2層目の銀層242は下部領域222と側部領域223で共通である。なお、遮光性を担保するため、各セラミック層241、243の厚みは、例えば、10~20μmとすることができる。また、後述するように、内側ガラス板12の車内側の面に形成されたセンターマスク層22には、測定ユニット4のブラケットが接着剤で接着されるため、接着性を担保するためにもこのような厚みが好ましい。これは、例えば、ウレタン・シリコン系の接着剤が紫外線などによって劣化するおそれがことによる。 Next, the layer structure of each region will be described. As shown in FIG. 10, the upper region 221 is formed of one layer by a first ceramic layer 241 made of black ceramic. The lower region 222 is formed of three layers including the first ceramic layer 241, the silver layer 242, and the second ceramic layer 243 that are stacked from the inner surface of the glass plate 1. The silver layer 242 is made of silver, and the second ceramic layer 243 is made of the same material as the first ceramic layer 241. Moreover, the side part area | region 223 is formed with two layers, the 1st ceramic layer 241 and the silver layer 242, which are laminated | stacked from the inner surface of the glass plate 1, and the silver layer 242 is exposed to the vehicle inside. The lowermost first ceramic layer 241 is common in each region, and the second silver layer 242 is common in the lower region 222 and the side region 223. In order to secure light shielding properties, the thickness of each ceramic layer 241 and 243 can be set to 10 to 20 μm, for example. As will be described later, since the bracket of the measurement unit 4 is adhered to the center mask layer 22 formed on the inner surface of the inner glass plate 12 with an adhesive, this also ensures the adhesion. Such a thickness is preferred. This is because, for example, the urethane / silicone adhesive may be deteriorated by ultraviolet rays or the like.
 次に、上述した開口周縁領域について説明する。図11に示すように、上部開口231及び下部開口232の開口周縁に沿う領域には、複数の円形状のドット(マスク片)2220が所定間隔をおいて千鳥状に配置された開口周縁領域2311,2321がそれぞれ形成されている(拡大図参照)。すなわち、これらの領域2311,2321はセンターマスク層22と同じ材料(マスク材)で形成されているが、センターマスク層22と同じ材料の配置される割合よりも、密度が小さくなっている。これら開口周縁領域2311,2321の幅、つまり上部開口231または下部開口232の周縁からの距離s1、s2は、4mm以上であることが好ましく、6mm以上であることがさらに好ましい。また、開口周縁領域2311,2321において、ドット2220が占める割合は、例えば、20~80%であることが好ましい。なお、これらドット2220は、センターマスク層22と同じ材料で形成することができ、例えば、第1及び第2セラミック層241,243を重ねることで形成してもよいし、第1セラミック層241のみで形成することもできる。 Next, the opening peripheral area described above will be described. As shown in FIG. 11, in a region along the opening periphery of the upper opening 231 and the lower opening 232, a plurality of circular dots (mask pieces) 2220 are arranged in a staggered pattern at predetermined intervals. , 2321 are formed (see enlarged view). That is, these regions 2311 and 2321 are formed of the same material (mask material) as the center mask layer 22, but the density is lower than the ratio of the same material as the center mask layer 22. The widths of these opening peripheral regions 2311 and 2321, that is, the distances s 1 and s 2 from the peripheral edge of the upper opening 231 or the lower opening 232 are preferably 4 mm or more, and more preferably 6 mm or more. In the opening peripheral areas 2311 and 2321, the ratio of the dots 2220 is preferably 20 to 80%, for example. These dots 2220 can be formed of the same material as that of the center mask layer 22. For example, the dots 2220 may be formed by overlapping the first and second ceramic layers 241 and 243, or only the first ceramic layer 241. It can also be formed.
 なお、マスク層2が積層される内側ガラス板12において、開口周縁領域2311、2321の内周縁から内側へ概ね4~6mmの領域は、加熱工程や徐冷工程に応じて多少の変化はあるものの、後述するように、歪みが生じる可能性のある歪領域2312,2322である。また、この歪領域2312,2322に、上述した銀層242を設けることもできる。 In addition, in the inner glass plate 12 on which the mask layer 2 is laminated, the region of about 4 to 6 mm inward from the inner peripheral edge of the opening peripheral edge regions 2311 and 2321 varies slightly depending on the heating process and the slow cooling process. As will be described later, the distortion regions 2312 and 2322 are likely to be distorted. Further, the above-described silver layer 242 can be provided in the strain regions 2312 and 2322.
 周縁マスク層21、センターマスク層22、及び開口周縁領域2311、2321は、例えば、次のように形成することができる。まず、ガラス板上に第1セラミック層241を塗布する。この第1セラミック層241は周縁マスク層21と共通である。次に、この第1セラミック層241上に、下部領域222及び側部領域223に該当する領域に銀層242を塗布する。最後に、下部領域222に該当する領域に第2セラミック層243を塗布する。なお、下部領域222において、銀層242が形成されている領域は、後述する測定ユニット4のセンサが配置されている位置に相当する。また、側部領域223において露出する銀層242には接地用の配線が施される。セラミック層241,243及び銀層242は、スクリーン印刷法により形成することができるが、これ以外に、焼成用転写フィルムをガラス板に転写し焼成することにより作製することも可能である。 The peripheral mask layer 21, the center mask layer 22, and the opening peripheral regions 2311 and 2321 can be formed as follows, for example. First, the 1st ceramic layer 241 is apply | coated on a glass plate. The first ceramic layer 241 is common with the peripheral mask layer 21. Next, a silver layer 242 is applied on the first ceramic layer 241 in a region corresponding to the lower region 222 and the side region 223. Finally, the second ceramic layer 243 is applied to a region corresponding to the lower region 222. In the lower region 222, the region where the silver layer 242 is formed corresponds to a position where a sensor of the measurement unit 4 described later is disposed. The silver layer 242 exposed in the side region 223 is grounded. The ceramic layers 241 and 243 and the silver layer 242 can be formed by a screen printing method. Alternatively, the ceramic layers 241 and 243 and the silver layer 242 can be formed by transferring a baking transfer film to a glass plate and baking it.
 セラミック層241、243及び開口周縁領域2311、2321は、種々の材料で形成することができるが、例えば、以下の組成とすることができる。
Figure JPOXMLDOC01-appb-T000003
The ceramic layers 241 and 243 and the opening peripheral regions 2311 and 2321 can be formed of various materials. For example, the following compositions can be used.
Figure JPOXMLDOC01-appb-T000003
 また、銀層242も、特には限定されないが、例えば、以下の組成とすることができる。
Figure JPOXMLDOC01-appb-T000004
In addition, the silver layer 242 is not particularly limited, and for example, the following composition can be used.
Figure JPOXMLDOC01-appb-T000004
 また、スクリーン印刷の条件として、例えば、ポリエステルスクリーン:355メッシュ,コート厚み:20μm,テンション:20Nm,スキージ硬度:80度,取り付け角度:75°,印刷速度:300mm/sとすることができ、乾燥炉にて150℃、10分の乾燥により、セラミック層及び銀層を形成することができる。なお、第1セラミック層、銀層、及び第2セラミック層をこの順で積層する場合には、上述したスクリーン印刷及び乾燥を繰り返せばよい。 The screen printing conditions may be, for example, polyester screen: 355 mesh, coat thickness: 20 μm, tension: 20 Nm, squeegee hardness: 80 degrees, mounting angle: 75 °, printing speed: 300 mm / s, and drying The ceramic layer and the silver layer can be formed by drying at 150 ° C. for 10 minutes in a furnace. In addition, what is necessary is just to repeat screen printing and drying mentioned above, when laminating | stacking a 1st ceramic layer, a silver layer, and a 2nd ceramic layer in this order.
 <3.ウインドシールドの製造方法>
 次に、ウインドシールドの製造方法について説明する。まず、ガラス板の製造ラインについて説明する。
<3. Windshield manufacturing method>
Next, a method for manufacturing the windshield will be described. First, a glass plate production line will be described.
 図12に示すように、この製造ラインには、上流から下流へ、加熱炉901、成形装置902がこの順で配置されている。そして、加熱炉901から成形装置902、及びその下流側に亘ってはローラコンベア903が配置されており、加工対象となるガラス板10は、このローラコンベア903により搬送される。ガラス板10は、加熱炉901に搬入される前には、平板状に形成されており、このガラス板10に上述したマスク層2が積層された後、加熱炉901に搬入される。 As shown in FIG. 12, a heating furnace 901 and a molding device 902 are arranged in this order from upstream to downstream in this production line. A roller conveyor 903 is arranged from the heating furnace 901 to the molding apparatus 902 and the downstream side thereof, and the glass plate 10 to be processed is conveyed by the roller conveyor 903. The glass plate 10 is formed in a flat plate shape before being carried into the heating furnace 901. After the mask layer 2 described above is laminated on the glass plate 10, the glass plate 10 is carried into the heating furnace 901.
 加熱炉901は、種々の構成が可能であるが、例えば、電気加熱炉とすることができる。この加熱炉901は、上流側及び下流側の端部が開放する角筒状の炉本体を備えており、その内部に上流から下流へ向かってローラコンベア903が配置されている。加熱炉901の内壁面の上面、下面、及び一対の側面には、それぞれヒータ(図示省略)が配置されており、加熱炉901を通過するガラス板10を成形可能な温度、例えば、ガラスの軟化点付近まで加熱する。 The heating furnace 901 can have various configurations, but can be an electric heating furnace, for example. The heating furnace 901 includes a rectangular tube-shaped furnace main body whose upstream and downstream ends are open, and a roller conveyor 903 is disposed in the interior from upstream to downstream. Heaters (not shown) are respectively arranged on the upper surface, the lower surface, and the pair of side surfaces of the inner wall surface of the heating furnace 901, and the temperature at which the glass plate 10 passing through the heating furnace 901 can be formed, for example, softening of glass Heat to near point.
 成形装置902は、上型921及び下型922によりガラス板をプレスし、所定の形状に成形するように構成されている。上型921はガラス板10の上面全体を覆うような下に凸の曲面形状を有し、上下動可能に構成されている。また、下型922はガラス板10の周縁部に対応するような枠状に形成されており、その上面は上型921と対応するように曲面形状を有している。この構成により、ガラス板10は、上型921と下型922との間でプレス成形され、最終的な曲面形状に成形される。また、下型922の枠内には、ローラコンベア903が配置されており、このローラコンベア903は、下型922の枠内を通過するように、上下動可能となっている。そして、図示を省略するが、成形装置902の下流側には、徐冷装置(図示省略)が配置されており、成形されたガラス板が冷却される。 The forming apparatus 902 is configured to press a glass plate with an upper die 921 and a lower die 922 to form a predetermined shape. The upper die 921 has a downwardly convex curved shape so as to cover the entire upper surface of the glass plate 10, and is configured to be movable up and down. The lower die 922 is formed in a frame shape corresponding to the peripheral edge of the glass plate 10, and the upper surface thereof has a curved shape so as to correspond to the upper die 921. With this configuration, the glass plate 10 is press-formed between the upper die 921 and the lower die 922, and formed into a final curved shape. A roller conveyor 903 is disposed in the frame of the lower mold 922, and the roller conveyor 903 can move up and down so as to pass through the frame of the lower mold 922. And although illustration is abbreviate | omitted, the slow cooling apparatus (illustration omitted) is arrange | positioned in the downstream of the shaping | molding apparatus 902, and the shape | molded glass plate is cooled.
 上記のようなローラコンベア903は公知のものであり、両端部を回転自在に支持された複数のローラ931が、所定間隔をあけて配置されている。各ローラ931の駆動には種々の方法があるが、例えば、各ローラ931の端部にスプロケットを取り付け、各スプロケットにチェーンを巻回して駆動することができる。そして、各ローラ931の回転速度を調整することで、ガラス板10の搬送速度も調整することができる。なお、成形装置902の下型922はガラス板10の全面に亘って接するような形態でもよい。このほか、成形装置902は、ガラス板を成形するものであれば、上型及び下型の形態は特には限定されない。 The roller conveyor 903 as described above is a known one, and a plurality of rollers 931 whose both ends are rotatably supported are arranged at predetermined intervals. There are various methods for driving each roller 931. For example, a sprocket can be attached to the end of each roller 931, and a chain can be wound around each sprocket to drive it. And the conveyance speed of the glass plate 10 can also be adjusted by adjusting the rotational speed of each roller 931. FIG. Note that the lower mold 922 of the forming apparatus 902 may be in contact with the entire surface of the glass plate 10. In addition, if the shaping | molding apparatus 902 shape | molds a glass plate, the form of an upper mold | type and a lower mold | type will not be specifically limited.
 こうして、外側ガラス板11及び内側ガラス板12が成形されると、これに続いて、中間膜13を外側ガラス板11及び内側ガラス板12の間に挟み、これをゴムバッグに入れ、減圧吸引しながら約70~110℃で予備接着する。予備接着の方法は、これ以外でも可能である。例えば、中間膜13を外側ガラス板11及び内側ガラス板12の間に挟み、オーブンにより45~65℃で加熱する。続いて、この合わせガラスを0.45~0.55MPaでロールにより押圧する。次に、この合わせガラスを、再度オーブンにより80~105℃で加熱した後、0.45~0.55MPaでロールにより再度押圧する。こうして、予備接着が完了する。 Thus, when the outer glass plate 11 and the inner glass plate 12 are formed, the intermediate film 13 is subsequently sandwiched between the outer glass plate 11 and the inner glass plate 12, put into a rubber bag, and sucked under reduced pressure. While pre-adhering at about 70-110 ° C. Other pre-adhesion methods are possible. For example, the intermediate film 13 is sandwiched between the outer glass plate 11 and the inner glass plate 12 and heated at 45 to 65 ° C. in an oven. Subsequently, this laminated glass is pressed by a roll at 0.45 to 0.55 MPa. Next, the laminated glass is again heated at 80 to 105 ° C. in an oven and then pressed again with a roll at 0.45 to 0.55 MPa. Thus, preliminary adhesion is completed.
 次に、本接着を行う。予備接着がなされた合わせガラスを、オートクレーブにより、例えば、8~15気圧で、100~150℃によって、本接着を行う。具体的には、例えば、14気圧で145℃の条件で本接着を行うことができる。こうして、本実施形態に係る合わせガラスが製造される。 Next, this bonding is performed. The laminated glass that has been pre-adhered is subjected to main bonding by an autoclave at, for example, 8 to 15 atm and 100 to 150 ° C. Specifically, for example, the main bonding can be performed under the conditions of 14 atm and 145 ° C. Thus, the laminated glass according to the present embodiment is manufactured.
 なお、ガラス板として、一枚のガラスを用いる場合には、上述したガラスのうち、一枚を用いればよい。ガラス板の製造方法も同様であり、ガラス板の内面にマスク層を形成した後、加熱を行い、その後、曲面状に成形する。 In addition, when using one glass as a glass plate, what is necessary is just to use one sheet among the glass mentioned above. The manufacturing method of a glass plate is also the same. After forming a mask layer on the inner surface of the glass plate, heating is performed, and thereafter, it is formed into a curved surface.
 また、このような合わせガラスの自動車への取付において、合わせガラスの取付角度は、垂直から45度以下にすることが好ましい。 In addition, when mounting such a laminated glass to an automobile, the mounting angle of the laminated glass is preferably 45 degrees or less from the vertical.
 <4.測定ユニット>
 図13に示すように、測定ユニット4は、以下のように構成されている。図13は、測定ユニットを構成するパーツの平面図である。この測定ユニット4は、ガラス板1の内面に固定されるブラケット42、ブラケット42の周囲に固定される枠状のカバーベース41、ブラケットに支持されるセンサ(情報取得装置)5、センサに接続するハーネス(図示省略)、及びカバーベース41に固定され、ブラケット42とセンサ5とハーネスを車内側から覆うカバー43に、により構成されている。
<4. Measurement unit>
As shown in FIG. 13, the measurement unit 4 is configured as follows. FIG. 13 is a plan view of parts constituting the measurement unit. The measurement unit 4 is connected to a bracket 42 fixed to the inner surface of the glass plate 1, a frame-shaped cover base 41 fixed around the bracket 42, a sensor (information acquisition device) 5 supported by the bracket, and the sensor. A harness (not shown) and a cover 43 fixed to the cover base 41 and covering the bracket 42, the sensor 5, and the harness from the vehicle inner side are configured.
 ブラケット42は、矩形状に形成されており、上述したセンターマスク層22に、接着剤で固定される。また、このブラケット42の中央には開口421が形成されており、この開口421は、センターマスク層22の2つの開口231,232を含むような大きさに形成されている。そして、このブラケット42の周囲には、カバー43固定用のカバーベース41が両面テープで固定される。このとき、カバーベース41の外縁がセンターマスク層22の外縁に一致するか、それよりも内側に配置される大きさに形成されている。 The bracket 42 is formed in a rectangular shape, and is fixed to the center mask layer 22 described above with an adhesive. An opening 421 is formed in the center of the bracket 42, and the opening 421 is formed to have a size including the two openings 231 and 232 of the center mask layer 22. A cover base 41 for fixing the cover 43 is fixed around the bracket 42 with double-sided tape. At this time, the cover base 41 is formed in such a size that the outer edge of the cover base 41 coincides with the outer edge of the center mask layer 22 or is disposed inside thereof.
 そして、このブラケット42の開口421を塞ぐように、矩形状のセンサ5がブラケット42に固定される。センサ5の詳細は後述する。こうして、ブラケット42に、カバーベース41、センサ5、ハーネスが取り付けられた後、カバーベース41にカバー43を取付ける。すなわち、カバーベース41の外縁にカバー43の外縁が嵌め込みなどにより固定される。 The rectangular sensor 5 is fixed to the bracket 42 so as to close the opening 421 of the bracket 42. Details of the sensor 5 will be described later. Thus, after the cover base 41, the sensor 5, and the harness are attached to the bracket 42, the cover 43 is attached to the cover base 41. That is, the outer edge of the cover 43 is fixed to the outer edge of the cover base 41 by fitting or the like.
 カバー43は、ブラケット42及びセンサ5を覆うように取付けられ、これによって車内側からブラケット42及びセンサ5が見えないようにする。なお、センターマスク層22が形成されているため、上部開口231及び下部開口232を除いては、車外側からも測定ユニット4は見えないようになっている。 The cover 43 is attached so as to cover the bracket 42 and the sensor 5 so that the bracket 42 and the sensor 5 cannot be seen from the inside of the vehicle. Since the center mask layer 22 is formed, the measurement unit 4 cannot be seen from the outside of the vehicle except for the upper opening 231 and the lower opening 232.
 次に、センサ5の概要を図14を参照しつつ説明する。図14はセンサの断面図である。同図に示すように、このセンサ5は、側面視三角形状の筐体51を備えており、この筐体51の前面が、ブラケット42の開口421と一致するように配置され、ガラス板1の内面に接触するようになっている。そして、筐体51の内部は、側面視三角形状の上部空間501と、側面視台形状の下部空間502とに仕切られており、筐体51の前面には、これら上部空間及び下部空間と連通する前面開口52が形成されている。一方、筐体51の背面側にはコネクタ53が取付けられており、外部機器への接続に用いられる。 Next, an outline of the sensor 5 will be described with reference to FIG. FIG. 14 is a sectional view of the sensor. As shown in the figure, the sensor 5 includes a housing 51 having a triangular shape in a side view, and the front surface of the housing 51 is disposed so as to coincide with the opening 421 of the bracket 42. It comes in contact with the inner surface. The interior of the casing 51 is partitioned into an upper space 501 having a triangular shape in side view and a lower space 502 having a trapezoidal shape in side view, and the front surface of the casing 51 communicates with the upper space and the lower space. A front opening 52 is formed. On the other hand, a connector 53 is attached to the back side of the casing 51 and is used for connection to an external device.
 上部空間501には、第1支持部54が配置されており、この第1支持部54には、後方から前方へ向けて第1制御基板541、受光レンズ542が配置されている。また、第1制御基板541上には、受光素子543が実装されており、受光レンズ542を通過したレーザ光を受光し、電気信号に変換するようになっている。この電気信号は、第1制御基板541において増幅され、後述する第2制御基板56に送信される。受光レンズ542は、上述した前面開口52からセンターマスク層22の上部開口231を介して外部を臨むように配置されている。特に、受光素子543で受光される光の通過経路が、上部開口231の中心付近X(上述した図11の歪領域2312よりも内側の領域のいずれか一部)を通るように上部開口231の位置、大きさ、センサ5の位置等が調整されている。また、先行車や障害物から反射された多方向からの反射光が上部開口231の中心付近を通り、その反射光を受光素子543は受光する。 A first support portion 54 is disposed in the upper space 501, and a first control board 541 and a light receiving lens 542 are disposed in the first support portion 54 from the rear to the front. In addition, a light receiving element 543 is mounted on the first control board 541 so as to receive laser light that has passed through the light receiving lens 542 and convert it into an electrical signal. This electric signal is amplified by the first control board 541 and transmitted to the second control board 56 described later. The light receiving lens 542 is arranged so as to face the outside through the upper opening 231 of the center mask layer 22 from the front opening 52 described above. In particular, the passage of light received by the light receiving element 543 passes through the vicinity of the center X of the upper opening 231 (any part of the region inside the strained region 2312 in FIG. 11 described above). The position, size, position of the sensor 5 and the like are adjusted. In addition, reflected light from multiple directions reflected from the preceding vehicle or obstacle passes near the center of the upper opening 231, and the light receiving element 543 receives the reflected light.
 一方、下部空間502には、第2支持部55が配置されており、この第2支持部55に後方から前方へ向かってレーザ発光素子551、照射レンズ552がこの順で支持されている。レーザ発光素子551は、レーザダイオードなどの波長850nm~980nm近赤外線波長域のレーザ光を発信するものであり、照射レンズ552は、レーザ発光素子551からのレーザ光を所定のビーム状に成形するレンズである。この照射レンズ552は、筐体51の前面開口52からからセンターマスク層22の下部開口232を介して外部を臨むように配置されている。特に、レーザ発光素子551から発信されるレーザ光の通過経路が、下部開口232の中心付近Y(上述した図11の歪領域2322よりも内側の領域のいずれか一部)を通るように下部開口232の位置、大きさ、センサ5の位置が調整されている。 On the other hand, the second support portion 55 is disposed in the lower space 502, and the laser light emitting element 551 and the irradiation lens 552 are supported on the second support portion 55 in this order from the rear to the front. The laser light emitting element 551 emits laser light having a wavelength of 850 nm to 980 nm, such as a laser diode, and the irradiation lens 552 is a lens that shapes the laser light from the laser light emitting element 551 into a predetermined beam shape. It is. The irradiation lens 552 is disposed so as to face the outside from the front opening 52 of the housing 51 through the lower opening 232 of the center mask layer 22. In particular, the lower opening so that the passage path of the laser light emitted from the laser light emitting element 551 passes through the vicinity of the center Y of the lower opening 232 (any part of the region inside the strain region 2322 of FIG. 11 described above). The position and size of 232 and the position of the sensor 5 are adjusted.
 また、第2支持部55の上面には、第2制御基板56が配置されており、レーザ発光素子551の駆動、第1制御基板541から送信された電気信号の処理などを行う。 In addition, a second control board 56 is disposed on the upper surface of the second support portion 55, and drives the laser light emitting element 551, processes an electric signal transmitted from the first control board 541, and the like.
 次に、測定ユニットの動作について説明する。まず、第1制御基板541は、レーザ発光素子551からレーザ光のパルスを発信する。そして、このレーザ光が先行車や障害物などで反射された反射光を、受光素子543で受光するまでの時間に基づいて、先行車両や障害物と自車との距離を算出する。算出された距離は、コネクタ53を介して外部機器に送信され、ブレーキの制御などに用いられる。 Next, the operation of the measurement unit will be described. First, the first control board 541 transmits a pulse of laser light from the laser light emitting element 551. Then, the distance between the preceding vehicle or the obstacle and the own vehicle is calculated based on the time until the reflected light reflected by the preceding vehicle or the obstacle is received by the light receiving element 543. The calculated distance is transmitted to an external device via the connector 53 and used for brake control and the like.
 <5.アンテナ>
 アンテナは、ラジオやデジタルテレビのために、ガラス板に設けられる。その態様は種々のものがあるが、例えば、図15に示すように、アンテナ60を、ガラス板1の車内側の面の上辺の一部から右辺の一部に亘るL字状に形成することができる。作製方法としては、例えば、マスク層の銀層と同じ材料で、ガラス板にスクリーン印刷することで形成することができる。また、マスク層と同様に、加熱炉に搬送される前にガラス板上に印刷される。
<5. Antenna>
The antenna is provided on a glass plate for radio and digital television. Although there are various modes, for example, as shown in FIG. 15, the antenna 60 is formed in an L shape extending from a part of the upper side to a part of the right side of the inner surface of the glass plate 1. Can do. As a manufacturing method, it can form by screen-printing on a glass plate with the same material as the silver layer of a mask layer, for example. Moreover, like a mask layer, it is printed on a glass plate before being conveyed to a heating furnace.
 <6.特徴>
 以上のように、本実施形態によれば、次の効果を得ることができる。上記のように、マスク層2は、ガラス板1上に形成される。その後、ガラス板1は加熱され、成形が行われる。その際、マスク層2は、黒色等の濃色であるため、マスク層2が形成されていない領域、例えば、上部開口231及び下部開口232と比べると、ガラス板1における熱の吸収量が多くなる。そして、マスク層2とガラス板1は、熱膨張率が異なっており、例えば、上述したによるマスク層(セラミック)2の線膨張係数は、70×10-7~100×10-7/℃であり、ガラスの線膨張係数は、1×10-6~10×10-6/℃である。そのため、マスク層2が形成された領域では成形時における圧縮応力や引張応力が発生し、また、外側ガラス板と内側ガラス板のガラス表面の曲率が相違することにより、ガラス板1には、上部開口231及び下部開口232との境界付近において、歪みが生じる。また、ウインドシールドが合わせガラスからなり、外側ガラス板11の厚みが内側よりも大きい場合、内側ガラス板12の境界付近では外側ガラス板11よりも大きく曲がるため、異厚合わせガラスでは歪みがより顕著になる。その結果、レーザ光を照射及び受光したときには、歪みによって光が屈折するなどして、正確に照射できなかったり、あるいは受光できないおそれがある。
<6. Features>
As described above, according to the present embodiment, the following effects can be obtained. As described above, the mask layer 2 is formed on the glass plate 1. Thereafter, the glass plate 1 is heated and molded. At this time, since the mask layer 2 is a dark color such as black, the amount of heat absorbed in the glass plate 1 is larger than that of a region where the mask layer 2 is not formed, for example, the upper opening 231 and the lower opening 232. Become. The mask layer 2 and the glass plate 1 have different coefficients of thermal expansion. For example, the linear expansion coefficient of the mask layer (ceramic) 2 according to the above is 70 × 10 −7 to 100 × 10 −7 / ° C. The glass has a linear expansion coefficient of 1 × 10 −6 to 10 × 10 −6 / ° C. Therefore, in the region where the mask layer 2 is formed, compressive stress and tensile stress are generated at the time of molding, and the curvature of the glass surfaces of the outer glass plate and the inner glass plate is different. Distortion occurs near the boundary between the opening 231 and the lower opening 232. In addition, when the windshield is made of laminated glass and the thickness of the outer glass plate 11 is larger than that of the inner side, the distortion is more pronounced in the laminated glass having different thicknesses because it bends more than the outer glass plate 11 near the boundary of the inner glass plate 12. become. As a result, when laser light is irradiated and received, the light may be refracted due to distortion or the like, and there is a possibility that it cannot be irradiated accurately or cannot be received.
 この点について、本発明者は以下のように検討した。まず、以下のようなマスク層が形成されたガラス板を準備した。
(1) ガラス板の構成:外側ガラス板及び内側ガラス板を厚み2mmのグリーンガラスで構成し、これらの間に単層の中間膜を配置した合わせガラスとした。
(2) マスク層:上述した表1及び表2の組成とした。上側開口は、縦58mm、横72mm、下側開口は縦29mm、横72mmとした。
(3) ガラス板の作製:内側ガラス板の車内側の面に、第1セラミック層、銀層、及び第2セラミック層をスクリーン印刷し、マスク層を形成した。その後、図12に示すような成形型で、加熱炉で650℃に焼成し曲面状に成形し、加熱炉から搬出後に徐冷した。
In this regard, the present inventor studied as follows. First, the glass plate in which the following mask layers were formed was prepared.
(1) Configuration of glass plate: A laminated glass in which an outer glass plate and an inner glass plate were made of green glass having a thickness of 2 mm, and a single-layer interlayer film was disposed between them.
(2) Mask layer: It was set as the composition of Table 1 and Table 2 mentioned above. The upper opening was 58 mm long and 72 mm wide, and the lower opening was 29 mm long and 72 mm wide.
(3) Production of glass plate: A first ceramic layer, a silver layer, and a second ceramic layer were screen-printed on the inner surface of the inner glass plate to form a mask layer. Thereafter, it was baked at 650 ° C. in a heating furnace with a molding die as shown in FIG. 12, molded into a curved shape, and gradually cooled after being taken out from the heating furnace.
 続いて、上記のように製造されたガラス板に対し、マスク層2の境界付近におけるガラス板の歪みを測定したところ、図16のようになった。このグラフでは、横軸がガラス板の面方向の長さ、縦軸がレンズパワー(mili diopter:焦点距離の逆数)である。レンズパワーの測定方法は、以下の通りである。まず、暗室内でガラス板に光を投影し、ガラス板の背後のスクリーンに影を形成する。このとき、ガラス板上に凸レンズがあると光が集光し、スクリーン上の影が明るくなる。一方、ガラス板上に凹レンズがあると暗くなる。ここで、レンズパワーとスクリーン上の影の明るさには相関があり、レンズパワーが既知のレンズを置き、そのときのスクリーン上での明るさを測定することで、レンズパワーと明るさの関係を得ることができる。したがって、対象となるガラス板を配置し、スクリーン上での明るさをガラス全面に渡って測定することで、ガラス板のレンズパワーを得ることができる。 Subsequently, when the distortion of the glass plate in the vicinity of the boundary of the mask layer 2 was measured for the glass plate produced as described above, it was as shown in FIG. In this graph, the horizontal axis represents the length in the surface direction of the glass plate, and the vertical axis represents the lens power (mili diopter: reciprocal of focal length). The method for measuring the lens power is as follows. First, light is projected onto a glass plate in a dark room, and a shadow is formed on the screen behind the glass plate. At this time, if there is a convex lens on the glass plate, the light is condensed and the shadow on the screen becomes bright. On the other hand, it becomes dark when there is a concave lens on the glass plate. Here, there is a correlation between the lens power and the brightness of the shadow on the screen. By placing a lens with a known lens power and measuring the brightness on the screen at that time, the relationship between the lens power and the brightness Can be obtained. Therefore, the lens power of the glass plate can be obtained by arranging the target glass plate and measuring the brightness on the screen over the entire surface of the glass.
 このような測定による結果、図16によれば、マスク層から非マスク層に向かうにしたがって、その境界付近では、レンズパワーが急激に増しているため、歪みが増大していることが分かる。そして、境界から所定の長さ離れると、歪みが低減し、さらに離れると消失していることが分かる。 As a result of such measurement, it can be seen from FIG. 16 that the lens power increases rapidly in the vicinity of the boundary from the mask layer to the non-mask layer, and therefore distortion increases. And it turns out that distortion will reduce if it leaves | separates predetermined length from a boundary, and will lose | disappear if it leaves further.
 また、ガラス板の歪みによる像の歪みを検討すると、図17に示すとおりである。この写真は、マスク層に台形状の開口を形成したガラス板において、JIS R3212の透視歪みの試験に基づいて、撮影したものである。同図から、マスク層2と開口との境界から4mm以内では真円が変形して楕円形状に歪んでいる。一方、開口の中央付近(境界から4mmを除いた領域)では、境界付近に比較して真円に近いことが分かる。 Further, the image distortion due to the distortion of the glass plate is examined as shown in FIG. This photograph was taken on a glass plate having a trapezoidal opening in the mask layer, based on the perspective distortion test of JIS R3212. From the figure, the true circle is deformed and distorted into an elliptical shape within 4 mm from the boundary between the mask layer 2 and the opening. On the other hand, it can be seen that the vicinity of the center of the opening (region excluding 4 mm from the boundary) is closer to a perfect circle than the vicinity of the boundary.
 したがって、レーザーレーダーなどの光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置を用いる場合には、光の照射及び/または受光の通過範囲が、上述したような歪みの大きい領域に配置されないようにする必要がある。 Therefore, when using an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light such as a laser radar, the light irradiation and / or received light passing range is distorted as described above. It is necessary to avoid being placed in a large area.
 そこで、本実施形態では、図11に示すように、ドットパターンで形成された開口周縁領域2311,2321を形成することで、この開口周縁領域2311,2321の熱膨張が、マスク層2に比べて小さくなるようにしている。これにより、マスク層2(開口の縁部)と開口内部との境界で熱膨張率が急激に変化するのを防止することができる。すなわち、セラミックの密度が大きいマスク層2(開口の縁部)から、セラミックの密度が小さい周縁領域2311,2321を介して、セラミックが形成されていない開口内部へ、セラミックの密度が遷移するため、熱膨張量の変化が緩やかになり、したがって、上部開口及び下部開口231,232の境界付近でガラス板1に歪みが生じるのを抑制することができる。そのため、開口内部においてレーザ光の屈折など、歪みの影響を受けるのを防止することができる。その結果、レーザ光の照射及び受光、を正確に行うことができ、車間距離を正確に算出することができる。 Therefore, in the present embodiment, as shown in FIG. 11, by forming the opening peripheral regions 2311, 2321 formed in a dot pattern, the thermal expansion of the open peripheral regions 2311, 2321 is greater than that of the mask layer 2. I try to make it smaller. Thereby, it is possible to prevent the coefficient of thermal expansion from rapidly changing at the boundary between the mask layer 2 (edge of the opening) and the inside of the opening. That is, since the ceramic density transitions from the mask layer 2 (edge of the opening) having a high ceramic density to the inside of the opening in which the ceramic is not formed through the peripheral regions 2311 and 2321 having a low ceramic density, The change in the amount of thermal expansion becomes gradual, and therefore it is possible to suppress the distortion of the glass plate 1 near the boundary between the upper opening and the lower opening 231, 232. Therefore, it is possible to prevent the inside of the opening from being affected by distortion such as refraction of laser light. As a result, laser light irradiation and light reception can be performed accurately, and the inter-vehicle distance can be calculated accurately.
 但し、開口周縁領域2311,2321の内周縁においても、なお、上記のように歪みが生じる可能性があるため(歪領域2312,2322)、測定ユニット4の光が通過する領域(例えば、図11のX,Y)は、この歪領域2312,2322を避けて設けられることが好ましい。 However, the inner peripheral edges of the opening peripheral areas 2311 and 2321 may still be distorted as described above (distorted areas 2312 and 2322), so that the area where the light of the measurement unit 4 passes (for example, FIG. 11). X, Y) are preferably provided avoiding the strain regions 2312, 2322.
 また、マスク層2には、銀層242が形成されているため、センサ5から発せられる電磁波が外部に放出されるのを遮蔽することができる。したがって、センサ5からの電磁波によって、AM(長波・中波・短波長)・FM(超短波長以上の周波数)ラジオやデジタルテレビ(周波数470~720MHz)などの音声・映像にノイズが入るのを防止することができる。ガラスにアンテナを搭載した車輌に対し、銀層242は電磁波遮蔽機能として有効であり、ウインドシールドに搭載したラジオ・デジタルテレビアンテナに対しては、センサ5との距離が近く、より電磁波の影響を受けやすいため、銀層242の形成が有効である。特に、センサ5との距離が近いガラス板の歪領域に銀層242を形成すると有利である。また、銀層242は、黒色のセラミック層241,243により挟まれているため、車外及び車内から見えるのを防止している。したがって、銀層242を形成しても外観には影響を及ぼさない。さらに、センターマスク層22は、ブラケット、カバーなどによって覆われているため、外部に対する電気的な影響を防止することができる。 Further, since the silver layer 242 is formed on the mask layer 2, it is possible to shield the electromagnetic wave emitted from the sensor 5 from being emitted to the outside. Therefore, the electromagnetic wave from the sensor 5 prevents noise from entering audio (video) such as AM (long wave / medium wave / short wavelength) / FM (frequency over ultra short wavelength) radio and digital TV (frequency 470-720 MHz). can do. For vehicles equipped with glass antennas, the silver layer 242 is effective as an electromagnetic wave shielding function. For radio and digital television antennas mounted on windshields, the distance from the sensor 5 is closer, and electromagnetic waves are more affected. Since it is easy to receive, formation of the silver layer 242 is effective. In particular, it is advantageous to form the silver layer 242 in the strain region of the glass plate that is close to the sensor 5. Further, since the silver layer 242 is sandwiched between the black ceramic layers 241, 243, the silver layer 242 is prevented from being seen from outside and inside the vehicle. Therefore, even if the silver layer 242 is formed, the appearance is not affected. Furthermore, since the center mask layer 22 is covered with a bracket, a cover, etc., an electrical influence on the outside can be prevented.
 <7.変形例>
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。
<7. Modification>
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible unless it deviates from the meaning.
 <7-1.開口周縁領域>
 上記実施形態では、開口周縁領域2311,2321を千鳥状のドットパターンで形成したが、セラミックの密度を小さくできるものであれば、円形以外の矩形状、多角形状、異形状などであってもよく、これらを千鳥状、あるいは所定の間隔をおいて配置することができる。また、ドット2220の大きさを変化させてもよい。また、線状のパターンを所定間隔おきに形成することができる。このほか、種々の形状のマスク片を所定間隔で配置することで開口周縁領域を形成することができる。例えば、図18に示すように、ドットの大きさ、形状を変化させたり、あるいは開口周縁の形状を直線ではなく,曲線状にすることもできる。
<7-1. Opening peripheral area>
In the above embodiment, the opening peripheral regions 2311, 321 are formed in a staggered dot pattern, but may be a rectangular shape other than a circle, a polygonal shape, an irregular shape, or the like as long as the ceramic density can be reduced. These can be arranged in a staggered manner or at a predetermined interval. Further, the size of the dot 2220 may be changed. Moreover, a linear pattern can be formed at predetermined intervals. In addition, the opening peripheral area can be formed by arranging mask pieces of various shapes at predetermined intervals. For example, as shown in FIG. 18, the size and shape of the dots can be changed, or the shape of the peripheral edge of the opening can be a curved line instead of a straight line.
 また、開口周縁領域2311,2321は、開口231、232の全周に亘って形成される必要はなく、その一部であってもよいし、幅を変化させてもよい。例えば、矩形状の開口のうち、下辺に沿ってのみ開口周縁領域を形成することができる。これは、例えば、カメラで情報を取得する場合には、カメラの下方から情報を取得することが多いからである。したがって、開口231,232の下部にのみ開口周縁領域を形成すると、コスト的に有利である。 Further, the opening peripheral areas 2311 and 321 do not need to be formed over the entire circumference of the openings 231 and 232, and may be a part thereof or may be changed in width. For example, the opening peripheral region can be formed only along the lower side of the rectangular opening. This is because, for example, when information is acquired by a camera, information is often acquired from below the camera. Therefore, it is advantageous in terms of cost if the opening peripheral region is formed only under the openings 231 and 232.
 また、熱膨張量を低減するため、マスク層2と同じ材料で、且つ厚みを小さくした開口周縁領域を形成することもできし、上記のようなパターンを形成し、その厚みを小さくすることもできる。例えば、厚みが開口の中心にいくにしたがって、変化するようにしてもよい。この場合、厚みが漸進的に変化するようにしてもよいし、段階的に変化するようにしてもよい。 Moreover, in order to reduce the amount of thermal expansion, it is also possible to form an opening peripheral region made of the same material as the mask layer 2 and having a reduced thickness, and to form a pattern as described above, thereby reducing the thickness. it can. For example, the thickness may change as it goes to the center of the opening. In this case, the thickness may be gradually changed or may be changed stepwise.
 さらに、開口周縁領域として、マスク層2に比べて熱膨張係数の小さい材料を用いることもできる。 Furthermore, a material having a smaller thermal expansion coefficient than that of the mask layer 2 can be used as the peripheral edge region of the opening.
 上記実施形態では、車間距離を測定するためのセンサ5の一例を示したが、これに限定されるものではなく、光を照射し、その反射光を受光することで車間距離を測定できるものであれば、特には限定されない。 In the said embodiment, although the example of the sensor 5 for measuring the distance between vehicles was shown, it is not limited to this, The distance between vehicles can be measured by irradiating light and receiving the reflected light. If there is, it is not particularly limited.
 上記実施形態では、本発明の情報取得装置として、車間距離を測定するセンサ5を用いたが、これに限定されるものではなく、種々の情報取得装置を用いることができる。すなわち、車外からの情報を取得するために、光の照射及び/または受光を行うものであれば、特には限定されない。例えば、車間距離を測定するための可視光線及び/又は赤外線カメラ、光ビーコンなどの車外からの信号を受信する受光装置、道路の白線等を画像にて読み取る可視光線及び/又は赤外線を使用したカメラなど、種々の装置に適用することができる。ここで、光の照射または受光のいずれか一方のみを行う場合には、センターマスク層の開口は1つになる。また、光の種類に応じて、複数の開口を設けることもできる。なお、情報取得装置はガラスに接触していても接触していなくても良い。また、開口は全周が完全に閉じていなくてもよく、一部が開放されていてもよい。例えば、開口の下側が閉じずに解放されていてもよい。そして、開口周縁領域や歪領域は、開口において閉じた部分に形成される。 In the above embodiment, the sensor 5 for measuring the inter-vehicle distance is used as the information acquisition device of the present invention, but the present invention is not limited to this, and various information acquisition devices can be used. That is, there is no particular limitation as long as light is emitted and / or received in order to acquire information from outside the vehicle. For example, a visible light and / or infrared camera for measuring the distance between vehicles, a light receiving device for receiving a signal from outside the vehicle such as an optical beacon, a camera using visible light and / or infrared light that reads a white line of a road in an image, etc. The present invention can be applied to various devices. Here, when only one of light irradiation and light reception is performed, the center mask layer has one opening. In addition, a plurality of openings can be provided depending on the type of light. Note that the information acquisition device may or may not be in contact with the glass. Further, the opening may not be completely closed on the entire circumference, but may be partially open. For example, the lower side of the opening may be released without closing. Then, the opening peripheral region and the strain region are formed in a closed portion in the opening.
 情報取得装置としてカメラを用いる場合には、センターマスク層22の開口の内側に上述したような周縁領域を形成し、カメラの視野(画角)を次のように調整する。すなわち、図19に示すように、カメラ80の視野(可視光又は赤外線の通過範囲Z)と、開口周縁領域250の内縁とを概ね一致させる。また、さらに好ましくは、カメラの視野は、上述した歪領域よりもさらに内側の領域の全部又は一部を通過するようにしておく。 When a camera is used as the information acquisition device, the peripheral area as described above is formed inside the opening of the center mask layer 22, and the field of view (view angle) of the camera is adjusted as follows. That is, as shown in FIG. 19, the field of view (visible light or infrared ray passing range Z) of the camera 80 and the inner edge of the opening peripheral region 250 are substantially matched. More preferably, the field of view of the camera passes through all or a part of the area further inside than the above-described distortion area.
 マスク層2は、上記のように3層の構成を行っているが、これに限定されない。すなわち、上記実施形態では、電磁波を遮蔽するために、銀層242を設けたが、銀とセラミック層を混ぜ合わせた単層を設ける方法や、電磁波を遮蔽できるのであれば、他の材料、例えば、銅やニッケルなどを積層してもよい。また、銀層242が外部から見えないようにするためにセラミック層で挟んでいるが、セラミック層で覆う以外に、上述したカバーなどの部材を用いることもできる。また、必ずしも電磁波の遮蔽層を設けなくてもよく、少なくとも外部から見えないような層が形成されていればよい。さらに、上述した歪みが生じる領域を隠すために、銀層を塗布することもできる。 The mask layer 2 has a three-layer structure as described above, but is not limited to this. That is, in the above embodiment, the silver layer 242 is provided in order to shield electromagnetic waves, but other materials such as a method of providing a single layer in which silver and a ceramic layer are mixed, or an electromagnetic wave can be shielded. Copper, nickel, etc. may be laminated. In addition, the silver layer 242 is sandwiched between ceramic layers so that the silver layer 242 cannot be seen from the outside. However, in addition to covering with the ceramic layer, a member such as the cover described above can also be used. Further, it is not always necessary to provide an electromagnetic wave shielding layer, and at least a layer that cannot be seen from the outside may be formed. Further, a silver layer can be applied to hide the above-described region where distortion occurs.
 マスク層2は、黒以外でも可能であり、車外からの視野を遮蔽し、車内側が見えないような茶色、灰色、濃紺などの濃色であれば、特には限定されない。 The mask layer 2 can be other than black, and is not particularly limited as long as it is a dark color such as brown, gray, or dark blue that blocks the field of view from the outside of the vehicle and prevents the inside of the vehicle from being seen.
 <7-2.中間膜(態様A)>
 合わせガラスにはシェード領域を設けることができる。例えば、図20に示す合わせガラスは、外側ガラス板1、内側ガラス板2、及びこれらのガラス板1、2の間に挟持される中間膜50で構成されている。この中間膜50は、後述するように、ベース中間膜(第1中間膜)3及び開口用中間膜(第2中間膜)4で構成されている。
<7-2. Intermediate Film (Aspect A)>
The laminated glass can be provided with a shade region. For example, the laminated glass shown in FIG. 20 includes an outer glass plate 1, an inner glass plate 2, and an intermediate film 50 sandwiched between these glass plates 1 and 2. As will be described later, the intermediate film 50 includes a base intermediate film (first intermediate film) 3 and an opening intermediate film (second intermediate film) 4.
 また、この合わせガラスには、可視光線について透過率損失が高いシェード領域10と、透過率損失が低い視野領域20と、が形成されている。シェード領域10は、合わせガラスの上縁全体に沿って着色された帯状の領域であり、減光を伴う諸機能(防眩、遮熱など)が発揮される。一方、視野領域20は光学的窓として利用される。これら2つの領域10,20は、ベース中間膜3により形成されている。 Also, the laminated glass is formed with a shade region 10 having a high transmittance loss for visible light and a viewing region 20 having a low transmittance loss. The shade area | region 10 is a strip | belt-shaped area | region colored along the whole upper edge of a laminated glass, and various functions (Anti-glare, heat insulation, etc.) accompanying a light reduction are exhibited. On the other hand, the viewing area 20 is used as an optical window. These two regions 10 and 20 are formed by the base intermediate film 3.
 また、シェード領域10の左右方向の中央には、矩形状の透過領域30が形成されている。この透過領域30は、着色されていない透明の領域であり、レーザーレーダーやカメラなどの安全システム用の機器(情報取得装置)からのレーザー、赤外線、可視光が透過される。そして、この領域は、上述した開口用中間膜4により形成されている。以下、ベース中間膜3と、開口用中間膜4について、詳細に説明する。 Further, a rectangular transmission region 30 is formed at the center of the shade region 10 in the left-right direction. The transmission region 30 is a transparent region that is not colored, and transmits laser, infrared light, and visible light from a safety system device (information acquisition device) such as a laser radar or a camera. This region is formed by the opening intermediate film 4 described above. Hereinafter, the base intermediate film 3 and the opening intermediate film 4 will be described in detail.
 <7-2-1.ベース中間膜>
 ベース中間膜3は、複数の層で形成することができ、一例として、図21に示すように、軟質のコア層31を、これよりも硬質のアウター層32で挟持した3層で構成することができる。但し、この構成に限定されるものではなく、軟質のコア層31を有する複数層で形成されていればよい。例えば、コア層31を含む2層(コア層が1層と、アウター層が1層)、またはコア層31を中心に配置した5層以上の奇数の層(コア層が1層と、アウター層が4層)、あるいはコア層31を内側に含む偶数の層(コア層が1層と、他の層がアウター層)で形成することもできる。これらコア層及びアウター層については、上記実施形態と材料、硬度、厚みなどは同じである。
<7-2-1. Base interlayer>
The base intermediate film 3 can be formed of a plurality of layers. For example, as shown in FIG. 21, the base intermediate film 3 is composed of three layers in which a soft core layer 31 is sandwiched between harder outer layers 32. Can do. However, it is not limited to this configuration, and it may be formed of a plurality of layers having the soft core layer 31. For example, two layers including the core layer 31 (one core layer and one outer layer), or an odd number of five or more layers arranged around the core layer 31 (one core layer and one outer layer) 4 layers), or an even number of layers including the core layer 31 inside (the core layer is one layer and the other layers are outer layers). About these core layers and outer layers, material, hardness, thickness, etc. are the same as the said embodiment.
 また、ベース中間膜3の一部には、上述したシェード領域10を形成するための着色された領域が形成されている。この領域は、ベース中間膜3の上端縁に沿って帯状に形成され、コア層31及びアウター層32のいずれか1つ以上を、顔料または染料など着色剤によりグリーン、ブルーなどに着色したものである。顔料としては、例えば、アゾ系、フタロシアニン系、キナクドリン系などの有機顔料、金属酸化物、金属粉などの無機顔料を用いることができる。 Further, a colored region for forming the shade region 10 described above is formed in a part of the base intermediate film 3. This region is formed in a band shape along the upper edge of the base intermediate film 3, and one or more of the core layer 31 and the outer layer 32 are colored green, blue, or the like with a colorant such as a pigment or a dye. is there. Examples of the pigment that can be used include organic pigments such as azo, phthalocyanine, and quinacrine, and inorganic pigments such as metal oxides and metal powders.
 顔料を用いる場合は、顔料を樹脂および可塑剤とともに混練した樹脂組成物と、顔料を含まない樹脂組成物(樹脂および可塑剤)とから、それぞれ押出成形法により、着色層とクリアー層とを作製し、クリアー層で着色層を挟持して成形することにより、着色したベース中間膜3を得ることができる。一方、染料を用いる場合には、マスクを用いて、シェード領域10を形成したい領域を露出させ、この領域に染料を塗布する。染料は、例えば、吹き付けまたはプリント印刷により塗布することができる。また、マスクは、上述した透過領域30にも配置しておくこともできる。 When using a pigment, a colored layer and a clear layer are prepared by extrusion molding from a resin composition obtained by kneading the pigment together with a resin and a plasticizer and a resin composition (resin and plasticizer) not containing the pigment. And the colored base intermediate film 3 can be obtained by pinching and forming a colored layer with a clear layer. On the other hand, when a dye is used, a region where the shade region 10 is to be formed is exposed using a mask, and the dye is applied to this region. The dye can be applied, for example, by spraying or printing. Further, the mask can also be arranged in the transmission region 30 described above.
 なお、ベース中間膜3の厚みは全面に亘って一定である必要はなく、例えば、ヘッドアップディスプレイに用いられる合わせガラス用に、楔形にすることもできる。この場合、ベース中間膜3の厚みは、最も厚みの小さい箇所、つまり合わせガラスの最下辺部を測定する。このように中間膜50を楔形にするには、種々の方法があるが、例えば、図22に示すように、コア層31が断面楔形になるように面方向に沿ってガラス板の上端から下端へ向かって厚みを小さくする一方、両アウター層32の厚みを一定とすることができる。 Note that the thickness of the base intermediate film 3 does not have to be constant over the entire surface, and may be a wedge shape, for example, for laminated glass used in a head-up display. In this case, the thickness of the base intermediate film 3 is measured at the position where the thickness is smallest, that is, the lowermost side portion of the laminated glass. There are various methods for making the interlayer film 50 wedged in this way. For example, as shown in FIG. 22, the core layer 31 has a wedge shape in cross section, and the glass plate is aligned along the surface direction from the upper end to the lower end. The thickness of both outer layers 32 can be made constant while the thickness is reduced toward.
 ベース中間膜は、上記実施形態で示した中間膜13と同様に構成することができる。また、ベース中間膜の製造方法も同様にすることができる。但し、シェード領域を形成にするには、例えば、いずれかの層に着色してシェード領域を形成してから積層してもよいし、積層後にいずれかのアウター層に着色してシェード領域を形成してもよい。 The base intermediate film can be configured similarly to the intermediate film 13 shown in the above embodiment. Further, the manufacturing method of the base intermediate film can be made the same. However, in order to form the shade region, for example, the shade region may be colored to form a shade region and then laminated, or after lamination, the outer region may be colored to form a shade region. May be.
 <7-2-2.開口用中間膜とその取付>
 開口用中間膜4はベース中間膜3と同様に、コア層41及びアウター層42で形成されている。ベース中間膜3との相違点は、着色がなさず透明であることと、形状である。開口用中間膜4の大きさ、形状は、特には限定されないが、上述したレーザーレーダーやカメラへの光が通過可能な大きさであればよい。開口用中間膜4は、図23及び図24に示すように、ベース中間膜3に取り付けられる。図23は取り付け方法を説明する平面図、図24は図23のB-B線断面図である。
<7-2-2. Opening interlayer film and its mounting>
Similarly to the base intermediate film 3, the opening intermediate film 4 is formed of a core layer 41 and an outer layer 42. The difference from the base intermediate film 3 is that it is transparent without being colored and has a shape. The size and shape of the opening intermediate film 4 are not particularly limited, but may be any size as long as the light to the laser radar or camera described above can pass through. The opening intermediate film 4 is attached to the base intermediate film 3 as shown in FIGS. FIG. 23 is a plan view for explaining the mounting method, and FIG. 24 is a sectional view taken along line BB of FIG.
 まず、図23に示すように、開口が形成されていない2つのベース中間膜3を準備する。ここでは、一方のベース中間膜(以下、切出用ベース中間膜302という)から開口用中間膜4を切り出し、これを他方のベース中間膜(以下、製品用ベース中間膜301という)に取り付ける。これら2つのベース中間膜301、302には、予め一端部にシェード領域3011、3021が形成されており、同一構成である。 First, as shown in FIG. 23, two base intermediate films 3 having no openings are prepared. Here, the opening intermediate film 4 is cut out from one base intermediate film (hereinafter referred to as a cutting base intermediate film 302), and this is attached to the other base intermediate film (hereinafter referred to as a product base intermediate film 301). The two base intermediate films 301 and 302 have shade regions 3011 and 3021 formed in advance at one end thereof, and have the same configuration.
 次に、製品用ベース中間膜301上に、切出用ベース中間膜302を重ねる。このとき、切出用ベース中間膜302の視野領域3022を、製品用ベース中間膜301のシェード領域3011において透過領域30を形成すべき位置に配置する。続いて、図24(b)に示すように、透過領域30の形状を有する型を用いて切出用ベース中間膜302及び製品用ベース中間膜301を2枚ともに打ち抜く。これに続いて、製品用ベース中間膜301において打ち抜かれた領域を取り外して貫通孔39を形成するとともに、図24(c)に示すように、打ち抜かれた切出用ベース中間膜302を開口用中間膜4として、この貫通孔39に嵌め込む。最後に、貫通孔39の周囲の境界部分を、はんだごてなどを用いて、例えば100~200℃程度の熱をかけて仮接着しておくと、製品用ベース中間膜301と開口用中間膜4との隙間や段差を確実に解消できる。こうして、図21に示すような中間膜50を形成することができる。なお、透過領域30は、シェード領域3011の内部あるいは、シェード領域3011と視野領域3012との境界付近に視野領域に開放するように形成されていてもよい。 Next, the cutting base intermediate film 302 is overlaid on the product base intermediate film 301. At this time, the visual field region 3022 of the cutting base intermediate film 302 is arranged at a position where the transmission region 30 is to be formed in the shade region 3011 of the product base intermediate film 301. Subsequently, as shown in FIG. 24B, both the base intermediate film for cutting 302 and the base intermediate film for product 301 are punched out using a mold having the shape of the transmission region 30. Subsequently, the punched region in the product base intermediate film 301 is removed to form the through hole 39, and the punched-out base intermediate film 302 is used for opening as shown in FIG. The intermediate film 4 is fitted into the through hole 39. Finally, when the boundary portion around the through hole 39 is temporarily bonded using a soldering iron or the like, for example, by applying heat of about 100 to 200 ° C., the product base intermediate film 301 and the opening intermediate film are formed. Clearly eliminates gaps and steps with 4. In this way, the intermediate film 50 as shown in FIG. 21 can be formed. The transmission region 30 may be formed so as to open to the visual field region in the shade region 3011 or in the vicinity of the boundary between the shade region 3011 and the visual field region 3012.
 上記のように、1つの製品用ベース中間膜301に開口用中間膜4を嵌め込むと、次の製品用ベース中間膜301の処理を行う。すなわち、さきほど用いた切出用ベース中間膜302は、開口が形成されていない視野領域3022が多く残存しているので、この切出用ベース中間膜302を引き続き用いる。例えば、図25に示すように、切出用ベース中間膜302において開口が形成されていない視野領域3022を、次の製品用ベース中間膜301におけるシェード領域3011(開口を形成すべき位置)に重ね合わせる。これに続いて、上記と同様に、打ち抜きによる貫通孔39の形成、開口用中間膜4の嵌め込みを行うと、図21に示すような中間膜50を形成することができる。このように、切出用ベース中間膜302は、視野領域3022から開口用中間膜4が切り出すことができなくなるまで使用され、上記工程が繰り返されることで、切り出された開口用中間膜4が、製品用ベース中間膜301に順次嵌め込まれる。 As described above, when the opening intermediate film 4 is fitted into one product base intermediate film 301, the next product base intermediate film 301 is processed. That is, since the cutting base intermediate film 302 used earlier has a large number of viewing regions 3022 in which no openings are formed, the cutting base intermediate film 302 is continuously used. For example, as shown in FIG. 25, a visual field region 3022 in which no opening is formed in the cutting base intermediate film 302 is overlapped with a shade region 3011 (position where an opening is to be formed) in the next product base intermediate film 301. Match. Subsequent to this, when the through hole 39 is formed by punching and the intermediate film 4 for opening is fitted, the intermediate film 50 as shown in FIG. 21 can be formed. In this way, the cutting base intermediate film 302 is used until the opening intermediate film 4 cannot be cut out from the visual field region 3022. By repeating the above steps, the cut out opening intermediate film 4 is The product is sequentially fitted into the product base intermediate film 301.
 また、中間膜が図26に示すように、楔形に形成されている場合には、次のように開口用中間膜を作製する。まず、問題として、中間膜が楔形に形成されている場合には、図26に示すように、面方向の位置によって中間膜の厚さが一定ではない。そのため、透過領域30の深さT1も一定でないため、これに適した開口用中間膜4を準備するのが容易ではない。これに対しては、例えば、図27(a)に示すように、切出用ベース中間膜302のシェード領域3021の「近傍」を、製品用ベース中間膜301の透過領域30付近に配置する。すなわち、切出用ベース中間膜302のシェード領域3021の近傍から開口用中間膜4を切り出す。これにより、製品用ベース中間膜301のシェード領域3011と概ね厚さが同じ開口用中間膜4を抽出することができるため、この開口用中間膜4を透過領域30の深さと概ね一致させることができる。その結果、透過領域30に適した開口用中間膜4を簡単に形成することができる。 Further, when the intermediate film is formed in a wedge shape as shown in FIG. 26, an opening intermediate film is produced as follows. First, as a problem, when the intermediate film is formed in a wedge shape, the thickness of the intermediate film is not constant depending on the position in the plane direction as shown in FIG. Therefore, since the depth T1 of the transmission region 30 is not constant, it is not easy to prepare the opening intermediate film 4 suitable for this. In response to this, for example, as shown in FIG. 27A, the “near” shade region 3021 of the cutting base intermediate film 302 is arranged in the vicinity of the transmission region 30 of the product base intermediate film 301. That is, the opening intermediate film 4 is cut out from the vicinity of the shade region 3021 of the cutting base intermediate film 302. As a result, the opening intermediate film 4 having substantially the same thickness as the shade region 3011 of the product base intermediate film 301 can be extracted. Therefore, the opening intermediate film 4 can be made to substantially match the depth of the transmission region 30. it can. As a result, the opening intermediate film 4 suitable for the transmission region 30 can be easily formed.
 ここで、上述したシェード領域3021の「近傍」について説明する。例えば、透過領域30の厚み(深さ)T3と開口用中間膜4の厚みT4の差が大きいと、先述の本接着後に、両ガラス板の間に空気が残ってしまうおそれがあり、好ましくない。かかる観点から、T4とT3との差が0.2mm以下、好ましくは0.1mm以下となるような開口用中間膜4が切り出せる位置をシェード領域の「近傍」という。なお、図27(b)及び図27(c)に示すように、1つの切出用ベース中間膜302においては、シェード領域3021の下端に沿って、複数の開口用中間膜4を切り出すことができる。 Here, the “neighborhood” of the shade region 3021 described above will be described. For example, if the difference between the thickness (depth) T3 of the transmission region 30 and the thickness T4 of the opening intermediate film 4 is large, air may remain between the two glass plates after the main bonding described above, which is not preferable. From this point of view, the position where the opening intermediate film 4 can be cut out so that the difference between T4 and T3 is 0.2 mm or less, preferably 0.1 mm or less is referred to as “the vicinity” of the shade region. As shown in FIGS. 27B and 27C, in one cutting base intermediate film 302, a plurality of opening intermediate films 4 can be cut along the lower end of the shade region 3021. it can.
 以上のように、同一構成のベース中間膜301,302を2枚準備することで、一方のベース中間膜302を開口用中間膜4の切り出し用として用いることができるため、開口用中間膜4を切り出すための膜材を別途用意する必要がない。したがって、開口用中間膜4を簡単に作製することができる。さらに、ベース中間膜3においてシェード領域10以外の視野領域20は大きいため、一枚のベース中間膜から多数の開口用中間膜を抽出することができる。したがって、一枚のベース中間膜を繰り返し使用することができ、コストの低減にもつながる。 As described above, by preparing two base intermediate films 301 and 302 having the same configuration, one base intermediate film 302 can be used for cutting out the opening intermediate film 4. There is no need to prepare a separate film material for cutting. Therefore, the opening intermediate film 4 can be easily produced. Furthermore, since the visual field region 20 other than the shade region 10 is large in the base intermediate film 3, a large number of opening intermediate films can be extracted from one base intermediate film. Therefore, one base intermediate film can be used repeatedly, leading to cost reduction.
 なお、上記説明では、同一構成のベース中間膜301、302を用いたが、必ずしも同一構成でなくてもよい。例えば、切出用ベース中間膜302は、製品用ベース中間膜301と材料や厚みが概ね同じであればよく、例えば、シェード領域の大きさや位置が異なっていてもよい。但し、上記のように中間膜301、302が傾斜する楔形である場合、両中間膜が同一構成であれば、ベース中間膜と開口用中間膜4の傾斜角度を簡単に一致させることができる。 In the above description, the base intermediate films 301 and 302 having the same configuration are used, but the same configuration is not necessarily required. For example, the cutting base intermediate film 302 only needs to have substantially the same material and thickness as the product base intermediate film 301. For example, the size and position of the shade region may be different. However, when the intermediate films 301 and 302 are in a wedge shape as described above, if the both intermediate films have the same configuration, the inclination angles of the base intermediate film and the opening intermediate film 4 can be easily matched.
 上記説明における中間膜は、複数層で構成されているが、これを単層で構成することもできる。 Although the intermediate film in the above description is composed of a plurality of layers, it can be composed of a single layer.
 <7-3.中間膜(態様B)>
 中間膜は次のように構成することもできる。すなわち、中間膜13は、図28に示すように、面方向に隣接する第1領域1301と第2領域1302とで、形成されている。このうち、第2領域1302は、両ガラス板11,12の上端部に沿って延びる帯状に形成されており、第1領域1301は、両ガラス板11,12において、第2領域1302の下方全体をカバーするように配置されている。
<7-3. Intermediate Film (Aspect B)>
The intermediate film can also be configured as follows. That is, as shown in FIG. 28, the intermediate film 13 is formed of a first region 1301 and a second region 1302 that are adjacent in the plane direction. Among these, the 2nd field 1302 is formed in the shape of a belt extended along the upper end part of both glass plates 11 and 12, and the 1st field 1301 is the lower part of the 2nd field 1302 in both glass plates 11 and 12. Is arranged to cover.
 第1領域1301及び第2領域1302は、一層で形成されていてもよいし、複数の層で形成されていてもよい。ここでは、一例として、図29(a)に示すように、第1領域1301を3層で形成し、第2領域1302を1層で形成した中間膜13について説明する。 The first region 1301 and the second region 1302 may be formed of a single layer or a plurality of layers. Here, as an example, an intermediate film 13 in which the first region 1301 is formed of three layers and the second region 1302 is formed of one layer will be described as shown in FIG.
 まず、第2領域1302から説明する。上述したように、第2領域は、ガラス板11,12の上端に沿って帯状に延び、センターマスク層を通過するように、延びている。第2領域1302は、第1領域よりも光透過率の高い透明の樹脂材料で形成されており、例えば、ポリビニルブラチール、ポリエチレンテレフタレートなどで形成することができる(いわゆるクリア膜)。なお、第2領域の縦方向の長さは、センターマスク層22の長さによるが、例えば、50~150mmとすることができる。 First, the second area 1302 will be described. As described above, the second region extends in a strip shape along the upper ends of the glass plates 11 and 12 and extends so as to pass through the center mask layer. The second region 1302 is formed of a transparent resin material having a higher light transmittance than the first region, and can be formed of, for example, polyvinyl bratil, polyethylene terephthalate (so-called clear film). Note that the length of the second region in the vertical direction depends on the length of the center mask layer 22, but may be, for example, 50 to 150 mm.
 このような中間膜13は種々の方法で製造することができる。例えば、中間膜の第1領域1301を複数の層で形成する場合には、上述したポリビニルアセタール樹脂等の樹脂成分、可塑剤及び必要に応じて他の添加剤を配合し、均一に混練りした後、各層を一括で押出し成型する方法、この方法により作成した2つ以上の樹脂膜をプレス法、ラミネート法等により積層する方法が挙げられる。プレス法、ラミネート法等により積層する方法に用いる積層前の樹脂膜は単層構造でも多層構造でもよい。また、第1領域1301と第2領域1302とは共押出により成形することができる。あるいは、第2領域1302は、第1領域1301にあらかじめ切り込み部を設け、そこに顔料や染料等で着色した樹脂を共押出することにより形成することができる。中間膜13が複数の層で形成されている場合には、例えば、図29(b)に示すように、一方のアウター層132に透過性の高い材料1305を配置することができる。但し、もう一方のアウター層132やコア層131、あるいは複数の層に透過性の高い材料1305を配置することもできる。また、図29(c)に示すように、中間層13を一層で形成する場合には、この中に透過性の高い材料1305を配置することができる。このような製造方法は、後述するITO微粒子を含む層と含まない層とが配置された中間膜の製造にも適用可能である。 Such an intermediate film 13 can be manufactured by various methods. For example, when the first region 1301 of the intermediate film is formed of a plurality of layers, a resin component such as the above-described polyvinyl acetal resin, a plasticizer, and other additives as necessary are blended and kneaded uniformly. Thereafter, a method of extruding each layer in a lump and a method of laminating two or more resin films prepared by this method by a press method, a laminating method or the like can be mentioned. The resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure. The first region 1301 and the second region 1302 can be formed by coextrusion. Alternatively, the second region 1302 can be formed by providing a cut portion in the first region 1301 in advance and coextruding a resin colored with a pigment or dye. When the intermediate film 13 is formed of a plurality of layers, for example, as shown in FIG. 29B, a highly permeable material 1305 can be disposed on one outer layer 132. However, a highly permeable material 1305 can be disposed in the other outer layer 132, the core layer 131, or a plurality of layers. Further, as shown in FIG. 29C, when the intermediate layer 13 is formed as a single layer, a highly permeable material 1305 can be disposed therein. Such a manufacturing method can also be applied to the manufacture of an intermediate film in which a layer containing ITO fine particles and a layer not containing it are described later.
 以上の中間層13によれば、次の効果を得ることができる。上記のように、この中間膜13の第2領域1302は、センターマスク層22を通過している。そのため、センターマスク層22の開口231,232を通じて光の照射や受光を行う際には、光は第2領域1302を通過する。この第2領域1302は上記のように、透明樹脂、例えば、ポリビニルプラチールやポリエチレンテレフタレートのような光透過性の高い材料で形成されているため、上述した赤外線の透過率を充足することができる。特に、第2領域1302は1層の樹脂材料で形成されているため、この領域内で光の屈折が生じず、その結果、センサ5による光の照射及び/または受光を正確に行うことができ、情報の処理を正確に行うことができる。 According to the above intermediate layer 13, the following effects can be obtained. As described above, the second region 1302 of the intermediate film 13 passes through the center mask layer 22. Therefore, when light is irradiated or received through the openings 231 and 232 of the center mask layer 22, the light passes through the second region 1302. As described above, since the second region 1302 is formed of a transparent resin, for example, a material having high light transmittance such as polyvinyl platyl or polyethylene terephthalate, the above-described infrared transmittance can be satisfied. . In particular, since the second region 1302 is formed of a single layer of resin material, light is not refracted in this region, and as a result, light irradiation and / or light reception by the sensor 5 can be performed accurately. Information processing can be performed accurately.
 特に、光が通過する部分に、上記のような中間膜13の第2領域1302が設けられている。 Particularly, the second region 1302 of the intermediate film 13 as described above is provided in a portion through which light passes.
 また、国際公開第2003/059837号公報では、中間膜の一部をくりぬいて開口を形成しているが、それに比べ、作業が簡易である。これは、当該公報に記載の方法では、中間膜の完成後に、開口を形成する必要があるが、この方法では、中間膜の製造過程において、透過率の高い領域を形成することができるからである。さらに、一部をくりぬくと、境界部分が目立つが、上記の方法では、中間膜において、開口付近に境界は生じず、見栄えがよくなるという利点がある。 In addition, in International Publication No. 2003/059837, an opening is formed by hollowing out a part of the intermediate film, but the operation is simpler than that. This is because, in the method described in the publication, it is necessary to form an opening after completion of the intermediate film. However, in this method, a region having a high transmittance can be formed in the process of manufacturing the intermediate film. is there. Further, when a part is hollowed out, the boundary portion becomes conspicuous, but the above method has an advantage that the boundary does not occur in the vicinity of the opening in the intermediate film and the appearance is improved.
 また、第2領域1302は、大部分がマスク層2に覆われているため、開口以外の領域において、ガラス板の透過率が高くなるのを抑制することができる。 In addition, since most of the second region 1302 is covered with the mask layer 2, it is possible to suppress an increase in the transmittance of the glass plate in a region other than the opening.
 上記説明では、中間膜13の第2領域1302をガラス板11,12の上端部に沿う帯状に形成しているが、第2領域1302の形状はこれに限定されず、少なくともマスク層22の開口231,232と対応する位置に配置されていればよい。また、透過率の高い領域を覆うために、マスク層の形状に沿って第2領域1302を形成することもできる。 In the above description, the second region 1302 of the intermediate film 13 is formed in a strip shape along the upper ends of the glass plates 11 and 12, but the shape of the second region 1302 is not limited to this, and at least the opening of the mask layer 22. It suffices if they are arranged at positions corresponding to 231 and 232. Further, the second region 1302 can be formed along the shape of the mask layer in order to cover a region with high transmittance.
 上記説明では、中間膜13の厚み方向の全体に亘って第2領域1302を形成しているが、厚み方向の一部に第2領域を形成することもできる。例えば、中間膜の厚み方向の一部を切り込み部を設け、この切り込み部に透過性の高い材料を共押出により形成することができる。 In the above description, the second region 1302 is formed over the entire thickness direction of the intermediate film 13, but the second region can also be formed in a part of the thickness direction. For example, a cut portion may be provided in a part of the intermediate film in the thickness direction, and a highly permeable material may be formed by coextrusion in the cut portion.
 そして、上述した中間膜と、外側ガラス板、及び内側ガラス板により合わせガラスを形成した場合、第1領域1301におけるこのウインドシールドの透過率は、波長が850~950nmの光の透過率が27.5~32.5%となるように構成されている。 When the laminated glass is formed of the above-described intermediate film, the outer glass plate, and the inner glass plate, the transmittance of the windshield in the first region 1301 is 27. The transmittance of light with a wavelength of 850 to 950 nm. It is configured to be 5 to 32.5%.
 この点について、透過率が上記範囲に入るようにして歩留まりが向上する方策について検討する。まず、図30は、シミュレーションにより、製造した合わせガラスにおける、波長が950nmの光の透過率の正規分布を示す図である。このシミュレーションでは、外側ガラス及び内側ガラスは、いずれも厚みが2.0mmのクリアガラスとしており、同図では、複数の厚みの中間膜を用いた場合の正規分布が示されている。なお、このような正規分布では、経験的に標準偏差σ=0.5~0.7であるが、この図の正規分布では、標準偏差σを0.6としている。 In this regard, a measure for improving the yield by making the transmittance within the above range will be examined. First, FIG. 30 is a diagram showing a normal distribution of transmittance of light having a wavelength of 950 nm in a manufactured laminated glass by simulation. In this simulation, the outer glass and the inner glass are both clear glass having a thickness of 2.0 mm, and in the same figure, a normal distribution in the case of using a plurality of intermediate films is shown. In such a normal distribution, the standard deviation σ is empirically 0.5 to 0.7, but in the normal distribution in this figure, the standard deviation σ is set to 0.6.
 同図に示すように、厚みが0.76mmの中間膜を用いて合わせガラスを製造する場合には、波長が950nmの光の透過率の平均値(期待値)は30%である。そして、同図より透過率の範囲は、概ね30±2.5%である(4σ程度とする)。 As shown in the figure, when a laminated glass is manufactured using an interlayer film having a thickness of 0.76 mm, the average value (expected value) of the transmittance of light having a wavelength of 950 nm is 30%. From the figure, the transmittance range is approximately 30 ± 2.5% (about 4σ).
 ここで、第1領域1301において、950nmの光の透過率が30±2.5%のウインドシールの場合、第2領域1301に上述したような光の透過率の高いクリア膜を入れると、歩留まりが向上する。 Here, in the first region 1301, in the case of a wind seal having a light transmittance of 950 nm of 30 ± 2.5%, the yield is obtained when a clear film having a high light transmittance as described above is inserted in the second region 1301. Will improve.
 具体的には、ガラス板の厚みと組成、中間膜の厚みと組成が透過率に影響しているところ、ウインドシールドを以下のように構成することで、歩留まりが向上する。
・外側ガラス板(第1ガラス板)と内側ガラス板(第2ガラス板)の厚みは、それぞれ1~2.5mmであること
・中間膜の厚みが、0.3~2mmであること
・外側ガラス板と内側ガラス板がそれぞれ厚み2mmであるとき、波長850~950nmの光の透過率が63%以下であること
・外側ガラス板と内側ガラス板がそれぞれ厚み2.5mmであるクリアガラスの間に、厚みが0.76mmである上記中間膜を配したとき、波長850~950nmの光の透過率が75%以下であること
Specifically, the thickness and composition of the glass plate and the thickness and composition of the interlayer film affect the transmittance. By configuring the windshield as follows, the yield is improved.
The thickness of the outer glass plate (first glass plate) and the inner glass plate (second glass plate) is 1 to 2.5 mm, respectively. The thickness of the intermediate film is 0.3 to 2 mm. When the glass plate and the inner glass plate each have a thickness of 2 mm, the transmittance of light having a wavelength of 850 to 950 nm is 63% or less. Between the clear glass with the outer glass plate and the inner glass plate each having a thickness of 2.5 mm Furthermore, when the intermediate film having a thickness of 0.76 mm is disposed, the transmittance of light having a wavelength of 850 to 950 nm is 75% or less.
 ところで、中間膜13は、種々の機能を果たすように構成することができる。例えば、ウインドシールドを通過する光によって車内の温度が上昇するという問題を解決するには、中間膜13によって赤外線を吸収するようにすればよく、そのためには、中間膜13に、例えば、赤外線遮蔽性粒子の1つであるITO微粒子を分散配合することができる。 Incidentally, the intermediate film 13 can be configured to perform various functions. For example, in order to solve the problem that the temperature inside the vehicle rises due to the light passing through the windshield, it is only necessary to absorb the infrared rays by the intermediate film 13. ITO fine particles, which is one of the conductive particles, can be dispersed and blended.
 但し、ITO微粒子が中間膜13に配合されると、上述した情報取得装置から照射される赤外線が透過しにくくなり、装置に不具合が生じるおそれがある。そこで、情報取得装置の不具合を防止するために、中間膜13を次のように構成することができる。 However, when the ITO fine particles are blended in the intermediate film 13, the infrared rays irradiated from the information acquisition apparatus described above are difficult to transmit, and there is a possibility that the apparatus may malfunction. Therefore, in order to prevent problems of the information acquisition device, the intermediate film 13 can be configured as follows.
 まず、上述したクリア膜で形成された樹脂に、ITO微粒子を分散配合する。このITO微粒子は、例えば、酸化インジウムと酸化錫をおよそ重量比で9:1とした複合酸化物であるインジウム錫酸化物で形成することができる。ここで用いられるITO微粒子は、例えば、平均粒径を0.2μm以下とすることが好ましく、0.1μm以下とすることがさらに好ましい。平均粒径が0.2μmよりも大きい微粒子もしくは凝集した粗大微粒子は、成形した中間膜13の光散乱源となって、中間膜13を曇らせるからである。 First, ITO fine particles are dispersed and blended in the resin formed of the above-described clear film. The ITO fine particles can be formed of, for example, indium tin oxide which is a composite oxide in which indium oxide and tin oxide are approximately 9: 1 in weight ratio. For example, the ITO fine particles used here preferably have an average particle size of 0.2 μm or less, and more preferably 0.1 μm or less. This is because fine particles having an average particle diameter larger than 0.2 μm or aggregated coarse fine particles become a light scattering source of the formed intermediate film 13 and cloud the intermediate film 13.
 そして、クリア膜に含有されるITO微粒子の量は、例えば、0.4g/m2以上0.8g/m2以下とすることができる。これは、0.4g/m2未満とすると、赤外線遮蔽による遮熱効果が不十分である可能性があり、0.8g/m2を越えると、コストが高くなる可能性があることによる。なお、中間膜13に含有されるITO微粒子の量の測定方法としては、例えば、中間膜13を約1cm×6cmに切断し、酸を用いて分解し、分解した溶液中のSn,Inをプラズマ発光分析法により定量する方法を用いることができる。このように形成されたクリア膜を第1領域1301として用いる。 The amount of the ITO fine particles contained in the clear film can be, for example, 0.4 g / m 2 or more and 0.8 g / m 2 or less. This is because if it is less than 0.4 g / m 2 , the heat shielding effect by infrared shielding may be insufficient, and if it exceeds 0.8 g / m 2 , the cost may increase. As a method for measuring the amount of ITO fine particles contained in the intermediate film 13, for example, the intermediate film 13 is cut into approximately 1 cm × 6 cm, decomposed with an acid, and Sn and In in the decomposed solution are subjected to plasma. A method of quantifying by an emission analysis method can be used. The clear film thus formed is used as the first region 1301.
 一方、第2領域1302に配置される樹脂も、同様に、上述したクリア膜で形成するが、ITO微粒子を含有しない。例えば、図29に示す第2領域1302中の符号1305で示される領域に、ITO微粒子を含有しないクリア膜を配置し、それ以外の領域、例えば、図29(a)及び図29(b)の符号132で示される領域や、図29(c)の符号1304で示す領域にITO微粒子を含有するクリア膜を配置することができる。なお、図29(b)に示す例では、中間膜13のいずれの層にも、ITO微粒子を含有しないクリア膜を配置することができる。 On the other hand, the resin disposed in the second region 1302 is also formed of the above-described clear film, but does not contain ITO fine particles. For example, a clear film that does not contain ITO fine particles is arranged in a region indicated by reference numeral 1305 in the second region 1302 shown in FIG. 29, and other regions, for example, those shown in FIGS. 29 (a) and 29 (b). A clear film containing ITO fine particles can be disposed in the region indicated by reference numeral 132 or the region indicated by reference numeral 1304 in FIG. In the example shown in FIG. 29B, a clear film that does not contain ITO fine particles can be disposed in any layer of the intermediate film 13.
 こうすることで、車外から第1領域1301を通過する赤外線は、ITO微粒子により吸収されるため、車内に赤外線が達するのを抑制することができる。その結果、車内の温度が上昇するのを防止することができる。一方、第2領域1302には、ITO微粒子が含まれていないか、あるいはわずかにしか含まれていないため、情報取得装置から照射される赤外線の通過が阻害されるのを防止することができる。その結果、情報取得装置が誤動作を起こすのを防止することができる。 By doing so, the infrared rays that pass through the first region 1301 from outside the vehicle are absorbed by the ITO fine particles, so that the infrared rays can be suppressed from reaching the inside of the vehicle. As a result, it is possible to prevent the temperature inside the vehicle from rising. On the other hand, since the second region 1302 contains no or only a small amount of ITO fine particles, it is possible to prevent the passage of infrared rays irradiated from the information acquisition device from being inhibited. As a result, it is possible to prevent the information acquisition apparatus from malfunctioning.
 なお、ITO微粒子を含有する中間膜13は、例えば、以下のように製造することができる。例えば、可塑剤に分散したITO微粒子をアウター層132を構成する樹脂にロールミキサーで練り込み混合する。そして、上述したように、得られた樹脂原料を溶融し、コア層131とともに押出し機で成形してシート状の中間膜13を得る。例えば、アウター層132として、ビニル系樹脂組成物を用い、これをシート状に成形する際には、必要に応じて熱安定剤、酸化防止剤などを配合し、またシートの貫通性を高めるために接着力調整剤( 例えば金属塩) を配合してもよい。図29(c)のように、中間膜13を一層(符号1304)で形成するには、上述したアウター層132と同様に製造することができる。 In addition, the intermediate film 13 containing ITO fine particles can be manufactured as follows, for example. For example, ITO fine particles dispersed in a plasticizer are kneaded and mixed with a resin constituting the outer layer 132 by a roll mixer. Then, as described above, the obtained resin material is melted and molded together with the core layer 131 by an extruder to obtain the sheet-like intermediate film 13. For example, when a vinyl-based resin composition is used as the outer layer 132 and formed into a sheet shape, a heat stabilizer, an antioxidant, or the like is added as necessary, and the sheet penetration is improved. You may mix | blend an adhesive force regulator (for example, metal salt). As shown in FIG. 29C, in order to form the intermediate film 13 in a single layer (reference numeral 1304), it can be manufactured in the same manner as the outer layer 132 described above.
 このようなITO微粒子は、ビニル系樹脂への分散をよくするために、可塑剤に分散させてビニル系樹脂に添加してもよい。可塑剤としては、一般的に中間膜用に用いられているものを用いることができ、単独で用いられても2 種以上が併用されて使用されてもよい。具体的には、例えば、トリエチレングリコール-ジ-2-エチルヘキサノエート(3GO)、トリエチレングリコール-ジ-2-エチルブチレート(3GH)、ジヘキシルアジペート(DHA)、テトラエチレングリコール-ジ-ヘプタノエート(4G7)、テトラエチレングリコール-ジ-2-エチルヘキサノエート(4GO)、トリエチレングリコール-ジ-ヘプタノエート(3G7)等が好ましく用いられる。このような可塑剤の添加量は、ビニル系樹脂100重量部に対して30~60重量部が好ましい。 Such ITO fine particles may be dispersed in a plasticizer and added to the vinyl resin in order to improve the dispersion in the vinyl resin. As a plasticizer, what is generally used for interlayer films can be used, and it may be used alone or two or more kinds may be used in combination. Specifically, for example, triethylene glycol-di-2-ethylhexanoate (3GO), triethylene glycol-di-2-ethylbutyrate (3GH), dihexyl adipate (DHA), tetraethylene glycol-di- Heptanoate (4G7), tetraethylene glycol-di-2-ethylhexanoate (4GO), triethylene glycol-di-heptanoate (3G7) and the like are preferably used. The amount of the plasticizer added is preferably 30 to 60 parts by weight with respect to 100 parts by weight of the vinyl resin.
 ビニル系樹脂には、他の添加剤を加えてもよい。添加剤の例としては、例えば、各種顔料、各種染料、顔料と染料の混合材料、紫外線吸収剤, 光安定剤等が挙げられる。紫外線吸収剤としては、特に限定されるものではないが、例えばベンゾトリアゾール系のものが好ましく用いられる。具体例としては、例えばチバガイキ社製「チヌビンP 」が用いられる。光安定剤としては、特に限定されるものではないが、例えばヒンダードアミン系のものが好ましく用いられる。具体例としては、例えば旭電化工業社製「アデカスタブLA - 5 7 」が用いられる。 Other additives may be added to the vinyl resin. Examples of additives include various pigments, various dyes, mixed materials of pigments and dyes, ultraviolet absorbers, fluorescent stabilizers, and the like. Although it does not specifically limit as an ultraviolet absorber, For example, a benzotriazole type thing is used preferably. As a specific example, for example, “Chinubin P” manufactured by Ciba Gaiki Co., Ltd. is used. Although it does not specifically limit as a light stabilizer, For example, a hindered amine type thing is used preferably. As a specific example, for example, “ADK STAB LA-5 7” manufactured by Asahi Denka Kogyo Co., Ltd. is used.
 <7-4.成形方法> <7-4. Molding method>
 上記図12に示すウインドシールドの製造方法においては、各ローラ931の回転速度を調整することで、ガラス板10の搬送速度も調整することができる。例えば、図31に示すように、加熱炉901内でのガラス板10の搬送速度を概ね一定とし、加熱炉901の出口付近で加速する。そして、その速度で加熱炉901から搬出され、成形装置902に移動する。その後、ガラス板が成形装置902の成形位置に配置される直前に減速し、成形位置で停止させる。このときの搬送速度は特には限定されないが、例えば、加熱炉内の搬送速度V1を100~300mm/secとすることが好ましく200~300mm/secとすることがさらに好ましい。また、加熱炉901から搬出された後の搬送速度V2を500~1500mm/secとすることが好ましく、1000~1500mm/secとすることがさらに好ましい。なお、加熱炉901から成形位置までの搬送時間は、1~2秒とすることが好ましく、1~1.5秒とすることがさらに好ましい。 In the windshield manufacturing method shown in FIG. 12, the conveyance speed of the glass plate 10 can be adjusted by adjusting the rotation speed of each roller 931. For example, as shown in FIG. 31, the conveyance speed of the glass plate 10 in the heating furnace 901 is made substantially constant, and acceleration is performed in the vicinity of the outlet of the heating furnace 901. And it is carried out of the heating furnace 901 at that speed, and moves to the molding apparatus 902. Thereafter, the glass plate is decelerated immediately before being placed at the molding position of the molding apparatus 902 and stopped at the molding position. The transport speed at this time is not particularly limited. For example, the transport speed V1 in the heating furnace is preferably 100 to 300 mm / sec, and more preferably 200 to 300 mm / sec. Further, the conveying speed V2 after unloading from the heating furnace 901 is preferably 500 to 1500 mm / sec, and more preferably 1000 to 1500 mm / sec. The conveyance time from the heating furnace 901 to the molding position is preferably 1 to 2 seconds, and more preferably 1 to 1.5 seconds.
 このように搬送速度の調整を行うと、加熱炉901の出口手前からガラス板10の搬送速度を加速し、加熱炉出口から成形位置まで搬送時間が短くなるようにしている。そのため、加熱炉出口から成形位置までの間の温度低下を小さくすることができ、適切な温度でガラス板の成形を行うことができる。そのため、ガラス板の割れなどを防止することができる。このとき、ガラス板10の搬送方向の先端部が、加熱炉901の出口に達する前に、搬送速度を加速するのが好ましい。 When the conveyance speed is adjusted in this way, the conveyance speed of the glass plate 10 is accelerated from the front of the outlet of the heating furnace 901, and the conveyance time is shortened from the heating furnace outlet to the forming position. Therefore, the temperature drop from the heating furnace outlet to the molding position can be reduced, and the glass plate can be molded at an appropriate temperature. Therefore, the glass plate can be prevented from cracking. At this time, it is preferable to accelerate the conveyance speed before the tip of the glass plate 10 in the conveyance direction reaches the outlet of the heating furnace 901.
 なお、上記説明では、加熱炉901の出口手前からガラス板10の搬送速度を上昇させているが、ガラス板10が加熱炉901から出た後に加速することもできる。すなわち、加熱炉901から成形位置までの搬送時間を短くできるのであれば、特には限定されず、ガラス板10の加熱炉901内の平均搬送速度よりも、加熱炉出口から成形位置までの平均搬送速度が速ければよい。また、加熱炉901内の搬送速度は、一定でなくてもよく、例えば、加熱炉内の上流側と下流側とで搬送速度を変えることもできる。 In the above description, the conveyance speed of the glass plate 10 is increased from the front of the outlet of the heating furnace 901. However, the glass plate 10 can be accelerated after exiting the heating furnace 901. That is, there is no particular limitation as long as the conveyance time from the heating furnace 901 to the forming position can be shortened, and the average conveyance from the heating furnace outlet to the forming position is higher than the average conveyance speed in the heating furnace 901 of the glass plate 10. It only needs to be fast. Moreover, the conveyance speed in the heating furnace 901 may not be constant. For example, the conveyance speed can be changed between the upstream side and the downstream side in the heating furnace.
 また、上記説明では、成形装置902の下型922を枠状に形成しているが、これに限定されない。すなわち、下型もガラス板の全面に亘って接するような形態でもよい。このほか、成形装置は、ガラスを成形するものであれば、上型及び下型の形態は特には限定されない。 In the above description, the lower mold 922 of the molding apparatus 902 is formed in a frame shape, but the present invention is not limited to this. That is, the lower mold may be in contact with the entire surface of the glass plate. In addition, the form of the upper mold and the lower mold is not particularly limited as long as the molding apparatus molds glass.
 ところで、ガラス板は鉄の含有量が多いほど光の透過率が低下する。例えば、図32は、鉄の含有率が異なるガラス板における波長と透過率との関係を示している。同図によれば、ガラス板における鉄の含有率(二酸化鉄に換算した酸化鉄の含有率、以下同じ)が0.17重量%以下であれば、850~950nmの波長における光の透過率が、太陽光の透過率と同等以上、つまり概ね40%以上となっている。さらに、ガラス板における鉄の含有率を0.035重量%以下とすれば、850~950nmの波長における光の透過率は、概ね80%となる。したがって、上述したレーザーレーダーなどの測定ユニットに対して有利である。 By the way, the light transmittance of the glass plate decreases as the iron content increases. For example, FIG. 32 shows the relationship between wavelength and transmittance in glass plates having different iron contents. According to the figure, when the iron content in the glass plate (the content of iron oxide converted to iron dioxide, the same shall apply hereinafter) is 0.17% by weight or less, the light transmittance at a wavelength of 850 to 950 nm is It is equal to or higher than the transmittance of sunlight, that is, approximately 40% or higher. Further, if the iron content in the glass plate is 0.035% by weight or less, the light transmittance at a wavelength of 850 to 950 nm is approximately 80%. Therefore, it is advantageous for the measurement unit such as the laser radar described above.
 このように調製されたガラス板の組成の一例を以下に示す。
SiO2:72.4質量%
Al23:1.42質量%
CaO:8.0質量%
MgO:4.1質量%
NaO:13.1質量%
2O:0.72質量%
SO3:0.23質量%
Fe23に換算した全酸化鉄(T-Fe23):0.027質量%
An example of the composition of the glass plate thus prepared is shown below.
SiO 2 : 72.4% by mass
Al 2 O 3 : 1.42% by mass
CaO: 8.0 mass%
MgO: 4.1% by mass
NaO: 13.1% by mass
K 2 O: 0.72% by mass
SO 3 : 0.23 mass%
Fe total iron oxide in terms of 2 O 3 (T-Fe 2 O 3): 0.027 wt%
 しかしながら、鉄の含有量が低いガラス板は、輻射熱の吸収量が低下するため、加熱温度を高くすることが好ましい。この場合、炉内の温度を650~675℃とすることが好ましい。650℃より低いと加熱が不十分であることにより、割れが生じるおそれがある。一方、675℃よりも高いと歪みが生じやすくなり、光の透過率がかえって低下する可能性がある。あるいは、炉内での加熱時間を長くしてもよい。このように、鉄の含有量が低い場合には、その含有量に応じてガラス板に付与すべき熱の吸収量を決めておき、その熱量を付与するために、炉内の温度を高くしたり、炉内に配置する時間を長くすることができる。 However, it is preferable to increase the heating temperature of a glass plate having a low iron content because the amount of radiation absorbed is reduced. In this case, the temperature in the furnace is preferably 650 to 675 ° C. If it is lower than 650 ° C., cracking may occur due to insufficient heating. On the other hand, when the temperature is higher than 675 ° C., distortion is likely to occur, and the light transmittance may be lowered. Or you may lengthen the heating time in a furnace. Thus, when the iron content is low, the heat absorption amount to be applied to the glass plate is determined in accordance with the content, and the temperature in the furnace is increased to provide the heat amount. Or the time for placing in the furnace can be lengthened.
 また、このような鉄の含有量が低いガラス板は、輻射熱の吸収量が低下するため、炉から搬出された後、温度が大きく低下する前に、できるだけ早く成形することが必要である。したがって、上記のように、炉から搬出された後の搬送速度を上げることが好ましい。 Also, such a glass plate with a low iron content has a reduced amount of radiant heat absorption, and therefore it is necessary to form it as soon as possible after it is unloaded from the furnace and before the temperature drops significantly. Therefore, as described above, it is preferable to increase the conveyance speed after being carried out of the furnace.
 なお、合わせガラスを用いる場合には、2つのガラス板のうち、少なくとも一方のガラス板の鉄の含有率が、上記と同様に0.17重量%以下、好ましくは0.035重量%以下であってもよい。 When laminated glass is used, the iron content of at least one of the two glass plates is 0.17% by weight or less, preferably 0.035% by weight or less, as described above. May be.
 <7-5.成形装置>
 また、ガラス板は、次のように、成形することもできる。まず、内側ガラス板12と外側ガラス板1との間に中間膜を挟んだ平板状のガラス板10を準備する。なお、この平板状のガラス板には、上記のような方法でマスク層を積層し、ウインドシールドを形成する。そして、図33に示すように、このウインドシールド10をリング状(枠状)の成形型800に載置する。この成形型800は搬送台801上に配置されており、成形型800にウインドシールド10が載置された状態で、搬送台801が加熱炉802、徐冷炉803内を通過する。加熱炉には、搬送台の経路の上方及び下方にヒータ(図示省略)が設けられており、このヒータによって、ウインドシールド10が加熱される。
<7-5. Molding device>
Moreover, a glass plate can also be shape | molded as follows. First, a flat glass plate 10 having an intermediate film sandwiched between the inner glass plate 12 and the outer glass plate 1 is prepared. Note that a mask layer is laminated on the flat glass plate by the method as described above to form a windshield. Then, as shown in FIG. 33, the windshield 10 is placed on a ring-shaped (frame-shaped) mold 800. The mold 800 is disposed on the transfer table 801, and the transfer table 801 passes through the heating furnace 802 and the slow cooling furnace 803 with the windshield 10 placed on the mold 800. In the heating furnace, heaters (not shown) are provided above and below the path of the transport table, and the windshield 10 is heated by the heaters.
 ここで、成形型について、図34及び図35を参照しつつ、さらに詳細に説明する。図34は成形型の平面図、図35はウインドシールドを載置した状態を示す図34の断面図である。同図に示すように、この成形型800は、ウインドシールド10の外形と概ね一致するような枠状の型本体810を備えている。この型本体810は、枠状に形成されているため、内側には上下方向に貫通する内部空間820を有している。そして、この型本体810の上面に平板状のガラス板10の周縁部が載置される。そのため、ウインドシールド10は、下側に配置されたヒータ830からは、内部空間820を介して熱が加えられる。これにより、ウインドシールド10は加熱により軟化し、自重によって下方へ湾曲することとなる。このとき、ウインドシールド10に付与される熱量が、ウインドシールド10の変形に影響するため、変形を小さくしたい領域には、ヒータ830からの熱をできるだけ受けないようにすることが必要である。 Here, the mold will be described in more detail with reference to FIG. 34 and FIG. 34 is a plan view of the mold, and FIG. 35 is a cross-sectional view of FIG. 34 showing a state where the windshield is placed. As shown in the figure, the mold 800 includes a frame-shaped mold body 810 that substantially matches the outer shape of the windshield 10. Since this mold body 810 is formed in a frame shape, it has an internal space 820 that penetrates in the vertical direction. And the peripheral part of the flat glass plate 10 is mounted in the upper surface of this type | mold main body 810. FIG. Therefore, heat is applied to the windshield 10 from the heater 830 disposed on the lower side through the internal space 820. Thereby, the windshield 10 is softened by heating and is bent downward by its own weight. At this time, since the amount of heat applied to the windshield 10 affects the deformation of the windshield 10, it is necessary to prevent heat from the heater 830 from being received as much as possible in an area where the deformation is desired to be reduced.
 ここで、変形を小さくしたい領域とは、例えば、ウインドシールドの周縁部である。その理由は、以下の通りである。すなわち、ウインドシールドの周縁部がヒータ830から熱量を受けると、この部分の温度が高くなる。これにより、ウインドシールドの粘性が大きくなるため、周縁部では、ウインドシールドの自重による変形量が大きくなる。結果、ウインドシールドの断面が、いわゆる鍋形状のように、断面央部がフラットになってしまう。そこで、上記成形装置では、このような形態になるのを防止するため、ウインドシールドの中央部が受ける熱量を大きくし、周縁部が受ける熱量を小さくするように構成されている。 Here, the region where deformation is desired to be reduced is, for example, the peripheral portion of the windshield. The reason is as follows. That is, when the peripheral portion of the windshield receives heat from the heater 830, the temperature of this portion increases. Thereby, since the viscosity of the windshield increases, the amount of deformation due to the weight of the windshield increases at the periphery. As a result, the cross section of the windshield becomes flat at the center of the cross section like a so-called pan shape. In view of this, the molding apparatus is configured to increase the amount of heat received by the central portion of the windshield and decrease the amount of heat received by the peripheral portion in order to prevent such a form.
 具体的には、図34及び図35に示すように、型本体810の内部空間820に、この型本体810の内周から内部空間820の中心側へ突出する遮熱板(遮熱手段)840が設けられている。この遮熱板840により、下方のヒータ830から発せられる熱が遮られ、ウインドシールド10に直接的に到達するのを遮蔽することができる。そのため、ウインドシールド10の周縁付近は型本体810及び遮熱板840により、下方のヒータ830からの熱H1が遮蔽されるため、ガラス板10に付与される熱量は少ない。一方、ウインドシールド10の中央付近では、遮熱板940が設けられていないため、下方のヒータ830からの熱H2は内部空間820を介して直接的にウインドシールド10に付与される。したがって、ウインドシールド10の中央付近が受ける熱量は大きく、変形の度合いも大きくなる。 Specifically, as shown in FIGS. 34 and 35, a heat shield plate (heat shield means) 840 that protrudes from the inner periphery of the mold main body 810 to the center side of the internal space 820 in the inner space 820 of the mold main body 810. Is provided. The heat shield plate 840 blocks the heat generated from the lower heater 830 and shields it from reaching the windshield 10 directly. Therefore, since the heat H1 from the lower heater 830 is shielded by the die body 810 and the heat shield plate 840 around the periphery of the windshield 10, the amount of heat applied to the glass plate 10 is small. On the other hand, since the heat shield 940 is not provided near the center of the windshield 10, the heat H <b> 2 from the lower heater 830 is directly applied to the windshield 10 through the internal space 820. Therefore, the amount of heat received near the center of the windshield 10 is large, and the degree of deformation is also large.
 また、この遮熱板840は、ウインドシールド10の下方に配置されているが、ガラス板10が自重により湾曲しても、ウインドシールド10が接触しないような位置に配置されている。なお、遮熱板840の配置は、特には限定されず、要求されるウインドシールド10の湾曲によって決定される。 Further, the heat shield plate 840 is disposed below the windshield 10, but is disposed at a position where the windshield 10 does not contact even if the glass plate 10 is bent by its own weight. The arrangement of the heat shield plate 840 is not particularly limited, and is determined by the required curvature of the windshield 10.
 特に、本実施形態においては、ウインドシールド10に、開口231、232を有するマスク層2が積層されているが、遮熱板840の内周縁841が開口231、232の直下に位置しないように、遮熱板840の形状、位置が調整されている。すなわち、図35の例では、遮熱板840の内周縁841が、開口231、232よりも内部空間820の中心側に位置している。 In particular, in the present embodiment, the mask layer 2 having the openings 231 and 232 is laminated on the windshield 10, but the inner peripheral edge 841 of the heat shield plate 840 is not positioned directly below the openings 231 and 232. The shape and position of the heat shield plate 840 are adjusted. That is, in the example of FIG. 35, the inner peripheral edge 841 of the heat shield plate 840 is located closer to the center of the internal space 820 than the openings 231 and 232.
 そして、ウインドシールド10は、このような成形型に指示された状態で、図33に示すように、加熱炉802を通過する。加熱炉802内で軟化点温度付近まで加熱されると、ウインドシールド10は自重によって周縁部よりも内側が下方に湾曲し、曲面状に成形される。続いて、ガラス板10は加熱炉802から徐冷炉803に搬入され、徐冷処理が行われる。その後、ウインドシールド10は、徐冷炉803から外部に搬出されて放冷される。 Then, the windshield 10 passes through the heating furnace 802 as shown in FIG. 33 in a state instructed by such a mold. When heated to near the softening point temperature in the heating furnace 802, the windshield 10 is bent downward on the inside of the peripheral edge by its own weight, and is formed into a curved surface. Subsequently, the glass plate 10 is carried into the slow cooling furnace 803 from the heating furnace 802, and a slow cooling process is performed. Thereafter, the windshield 10 is taken out of the slow cooling furnace 803 and allowed to cool.
 以上の成形装置によれば、次の効果を得ることができる。上記のように、ウインドシールドは、成形型800に周縁を支持された状態で加熱され、自重によって下方に湾曲するのであるが、ウインドシールドが受ける熱のコントロールは、遮熱板840によって行われている。すなわち、遮熱板840の存在する位置では、ウインドシールドに付与される熱量は小さくなるが、遮熱板840の存在しない位置ではウインドシールドに付与される熱量は大きくなる。そのため、遮熱板840の内周縁付近、つまり遮熱板840が存在する位置と存在しない位置との境界においては、ウインドシールドに付与される熱量が大きく変化する。本発明者は、このような境界と対向する位置では熱量の大きい変化によって、ウインドシールドに無視できない歪みが形成されることを見出した。 According to the above molding apparatus, the following effects can be obtained. As described above, the windshield is heated in a state where the periphery is supported by the mold 800 and is bent downward by its own weight. However, the heat shield receives heat control by the heat shield plate 840. Yes. That is, at the position where the heat shield plate 840 exists, the amount of heat applied to the windshield is small, but at the position where the heat shield plate 840 does not exist, the amount of heat applied to the windshield increases. Therefore, near the inner periphery of the heat shield plate 840, that is, at the boundary between the position where the heat shield plate 840 exists and the position where it does not exist, the amount of heat applied to the windshield changes greatly. The present inventor has found that a distortion that cannot be ignored is formed in the windshield due to a large change in the amount of heat at a position facing such a boundary.
 例えば、図36に示すように、ウインドシールド上の線によって囲まれている領域は、遮熱板の内周縁が通過する領域なのであるが、この領域には、図37に示すような歪みが生じていることが分かる。 For example, as shown in FIG. 36, the region surrounded by the line on the windshield is a region through which the inner peripheral edge of the heat shield plate passes, but in this region, distortion as shown in FIG. 37 occurs. I understand that
 また、上記のように、ウインドシールドには、センサからの光が通過する開口231,232が形成されているため、この開口231,232を通過するように歪みが生じると、レーザ光を照射及び受光したときには、歪みによって光が屈折するなどして、正確に照射できなかったり、あるいは受光できないおそれがある。 In addition, as described above, the windshield is formed with the openings 231 and 232 through which light from the sensor passes. Therefore, when distortion occurs so as to pass through the openings 231 and 232, the laser beam is irradiated with laser light. When light is received, the light may be refracted due to distortion, so that there is a possibility that irradiation cannot be performed accurately or light cannot be received.
 そこで、この例においては、図35に示すように、遮熱板840の内周縁841が開口231、232の直下に位置しないようにされている。すなわち、図34の例では、遮熱板840の内周縁841が、開口231、232よりも内部空間820の中心側に位置している。これにより、遮熱板840が存在する位置と存在しない位置との境界が、開口231、232の直下を通過しなくなる。これにより、開口231、232に対応するウインドシールド上には、このような境界による歪みが生じるのを防止することができる。 Therefore, in this example, as shown in FIG. 35, the inner peripheral edge 841 of the heat shield plate 840 is not positioned directly below the openings 231 and 232. That is, in the example of FIG. 34, the inner peripheral edge 841 of the heat shield plate 840 is located closer to the center of the internal space 820 than the openings 231 and 232. Thereby, the boundary between the position where the heat shield plate 840 exists and the position where it does not exist does not pass directly below the openings 231 and 232. Thereby, it is possible to prevent the distortion due to such a boundary from occurring on the windshield corresponding to the openings 231 and 232.
 また、熱を遮蔽するには、必ずしも板状の部材でなくてもよく、その態様は特には限定されない。例えば、ブロック状の部材で、熱を遮蔽することもできる。 Further, in order to shield heat, the plate-like member is not necessarily required, and the mode is not particularly limited. For example, heat can be shielded with a block-shaped member.
 <7-6.二重像現象の防止>
 ところで、上述した測定ユニット4を用いてマスク層2の開口231、232から光を受光する場合、本発明者は、光がウインドシールド1の内面で分光することにより、測定ユニット4に対して光が二重に入射することを見出した。具体的には、以下の通りである。図38(a)に示すように、このウインドシールド1において、光が入射する開口231が形成されている領域は、厚みが一定である。そして、外部からウインドシールド1に照射された光は、外面(外側ガラス板の外面)のP点で屈折した後、ウインドシールド1の内部に入射し、その後、ウインドシールド1の内面のQ点で屈折した後、車内に入射する。この光が分光1である。その一方で、ウインドシールド1の内面のQ点では、一部の光が反射し、ウインドシールド1の外面に向かう。そして、この外面のR点で反射した光はウインドシールド1の内面のS点で屈折した後、車内に入射する。この光が分光2である。このように、ウインドシールドの内面では、車外から入射した光が分光し、2つの光が車内の測定ユニットに入射する。そのため、測定ユニット4ではこの2つの光による2つの像が形成されることになり、二重像現象が生じる。
<7-6. Prevention of double image phenomenon>
By the way, when light is received from the openings 231 and 232 of the mask layer 2 using the measurement unit 4 described above, the inventor splits the light on the inner surface of the windshield 1 so that the light is transmitted to the measurement unit 4. Was found to be incident twice. Specifically, it is as follows. As shown in FIG. 38 (a), in the windshield 1, the region where the opening 231 through which light enters is formed has a constant thickness. The light irradiated on the windshield 1 from the outside is refracted at the point P on the outer surface (outer surface of the outer glass plate), then enters the inside of the windshield 1, and then at the point Q on the inner surface of the windshield 1. After being refracted, it enters the vehicle. This light is spectrum 1. On the other hand, a part of the light is reflected at the point Q on the inner surface of the windshield 1 and travels toward the outer surface of the windshield 1. The light reflected at the R point on the outer surface is refracted at the S point on the inner surface of the windshield 1 and then enters the vehicle. This light is spectrum 2. In this way, on the inner surface of the windshield, the light incident from the outside of the vehicle is dispersed, and the two lights enter the measurement unit in the vehicle. Therefore, in the measurement unit 4, two images are formed by the two lights, and a double image phenomenon occurs.
 また、二重像に関する規定は、ECE R43にも規定されている。すなわち、図38(b)に示すように、車内の観測者が車外の目的物を見る場合、イメージ1,2が観測され、二重像が生じる。上記ECE R43では、二重像の生じる角度、つまり、観測者とイメージ1とを結ぶ直線と、観測者とイメージ2とを結ぶ直線のなす角Aが、15arcmin以下とする必要がある。 Also, the provisions concerning double images are also prescribed in ECE R43. That is, as shown in FIG. 38B, when the observer inside the vehicle views the object outside the vehicle, the images 1 and 2 are observed, and a double image is generated. In the ECE R43, the angle at which the double image is generated, that is, the angle A formed by the straight line connecting the observer and the image 1 and the straight line connecting the observer and the image 2 needs to be 15 arcmin or less.
 このような二重像現象を解消するためには、以下のようにウインドシールドを構成する。すなわち、図39に示すように、ウインドシールド1の断面が楔状になるようにする。より詳細には、少なくとも光が通過する領域(楔形領域)においては、ウインドシールド1の上端部にいくにしたがって厚みが小さくなるような断面楔形に形成する。このときの楔角αは、ウインドシールド1の設置角度にもよるが、例えば、0.05~0.3度(第2角度)とすることができ、好ましくは、0.05~0.2度であり、さらに好ましくは、0.1~0.2度である。こうすることで、上述した二重像の生じる角度を15arcmin以下とすることができる。 In order to eliminate this double image phenomenon, a windshield is constructed as follows. That is, as shown in FIG. 39, the windshield 1 has a wedge-shaped cross section. More specifically, at least in a region through which light passes (wedge-shaped region), a wedge-shaped cross section is formed such that the thickness decreases toward the upper end of the windshield 1. The wedge angle α at this time depends on the installation angle of the windshield 1, but can be set to, for example, 0.05 to 0.3 degrees (second angle), and preferably 0.05 to 0.2. Degree, more preferably 0.1 to 0.2 degree. By doing so, the angle at which the above-described double image is generated can be made 15 arcmin or less.
 以下では、例として、楔角αが10度のウインドシールド1に対し、65度の入射角で車外から光が入射した場合について説明する。ウインドシールド1の外面のA点に入射した光は屈折し、40度の出射角でウインドシールド1の内面へ向かう。そして、この光の一部は、ウインドシールド1の内面のB点で屈折し、入射角60度で車内に入射する。これが分光2である。一方、ウインドシールド1の内面のB点で反射した光は、ウインドシールド1の外面のC点に入射角30度で入射し、反射する。そして、この反射光はウインドシールド1の内面のD点に20度の入射角で入射し、ここで屈折して出射角50度で車内に入射する。これが分光1である。したがって、分光1と分光2とは、互いに近づくように車内へと入射するため、二重像現象が解消される。 Hereinafter, as an example, a case where light is incident on the windshield 1 having a wedge angle α of 10 degrees from the outside of the vehicle at an incident angle of 65 degrees will be described. The light incident on point A on the outer surface of the windshield 1 is refracted and travels toward the inner surface of the windshield 1 at an emission angle of 40 degrees. A part of this light is refracted at point B on the inner surface of the windshield 1 and enters the vehicle at an incident angle of 60 degrees. This is spectrum 2. On the other hand, the light reflected at the point B on the inner surface of the windshield 1 enters the point C on the outer surface of the windshield 1 at an incident angle of 30 degrees and is reflected. The reflected light is incident on point D on the inner surface of the windshield 1 at an incident angle of 20 degrees, and is refracted and incident into the vehicle at an exit angle of 50 degrees. This is spectrum 1. Therefore, since the spectrum 1 and the spectrum 2 enter the vehicle so as to approach each other, the double image phenomenon is eliminated.
 以上の例で示した角度は、あくまで一例であるが、マスク層2の開口231、232が形成されている領域におけるウインドシールド1の厚みが、ウインドシールドの上方にいくにしたがって小さくなるように形成されていれば、車外から入射する光の二重像現象が解消される。 The angle shown in the above example is merely an example, but the thickness of the windshield 1 in the region where the openings 231 and 232 of the mask layer 2 are formed is formed so as to decrease toward the upper side of the windshield. If this is done, the double image phenomenon of light incident from outside the vehicle is eliminated.
 ところで、近年は、車両のフロントガラスに、車速等の情報を投射するヘッドアップディスプレイ装置が提案されているが、このヘッドアップディスプレイ装置を用いると、ウインドシールドに投影された光により、二重像が形成されることが知られている。すなわち、図40に示すように、ウインドシールド1の内面で反射することで視認される像と、ウインドシールド1の外面で反射することで視認される像とが別々に視認されるため、像が二重になっていた。 By the way, in recent years, a head-up display device that projects information such as a vehicle speed on a windshield of a vehicle has been proposed. When this head-up display device is used, a double image is generated by light projected on a windshield. Is known to form. That is, as shown in FIG. 40, since the image visually recognized by reflecting on the inner surface of the windshield 1 and the image visually recognized by reflecting on the outer surface of the windshield 1 are separately viewed, It was double.
 これを防止するためには、図41に示すように、ウインドシールド1において、少なくともヘッドアップディスプレイ装置500から光が投影される領域においては、厚みが下方にいくにしたがって、小さくなるように形成する。これにより、ウインドシールド1の内面で反射して車内に入射する光と、ウインドシールドの外面で反射した後、車内に入射する光とが、概ね一致するため、二重像が解消される。なお、このときのウインドシールド1の楔角βは、ウインドシールド1の設置角度にもよるが、例えば、0~0.3度(第1角度)とすることができる。この場合、第2角度は、0.05~0.3度とすることができる。 In order to prevent this, as shown in FIG. 41, in the windshield 1, at least in a region where light is projected from the head-up display device 500, the thickness decreases as it goes downward. . As a result, the light reflected on the inner surface of the windshield 1 and incident on the interior of the vehicle is substantially coincident with the light reflected on the outer surface of the windshield and then incident on the interior of the vehicle, so that the double image is eliminated. Note that the wedge angle β of the windshield 1 at this time may be, for example, 0 to 0.3 degrees (first angle), although it depends on the installation angle of the windshield 1. In this case, the second angle can be 0.05 to 0.3 degrees.
 したがって、測定ユニット4とヘッドアップディスプレイ装置500の両方を備えるウインドシールドにおいては、例えば、図42に示すように、ウインドシールドの上部においては上方にいくにしたがって厚みが小さくなるように形成し、ウインドシールドの下部においては、下方にいくにしたがって厚みが小さくなるように形成すればよい。 Therefore, in the windshield provided with both the measurement unit 4 and the head-up display device 500, for example, as shown in FIG. What is necessary is just to form so that thickness may become small in the lower part of a shield as it goes below.
 ところで、上記のように、ウインドシールド1を断面楔形に形成するには、種々の方法があるが、例えば、ウインドシールド1を外面ガラス板11、内面ガラス板12、及びこれらの間に配置される中間膜13により形成し、中間膜13の断面形状を上述したように形状にすることで、ウインドシールド1を断面楔形に形成することができる。例えば、車外から入射する光により二重像現象が生じるのを防止するには、図43のように、中間膜13を、上方に向かって厚みが小さくなる楔状に形成すればよい。一方、測定ユニット4及びヘッドアップディスプレイ装置500の両方に起因する二重像現象を防止するには、図44に示すように、中間膜13の上部(第2領域)においては上方にいくにしたがって厚みが小さくなるように形成し、中間膜13の下部(第1領域)においては、下方にいくにしたがって厚みが小さくなるように形成すればよい。なお、中間膜13の構造、材料などは、上記実施形態で示した通りである。 By the way, as described above, there are various methods for forming the windshield 1 in a wedge shape in cross section. For example, the windshield 1 is disposed on the outer glass plate 11, the inner glass plate 12, and between them. The windshield 1 can be formed in a wedge shape by forming the intermediate film 13 and making the cross-sectional shape of the intermediate film 13 as described above. For example, in order to prevent the double image phenomenon from occurring due to light incident from the outside of the vehicle, the intermediate film 13 may be formed in a wedge shape whose thickness decreases upward as shown in FIG. On the other hand, in order to prevent the double image phenomenon caused by both the measurement unit 4 and the head-up display device 500, as shown in FIG. 44, the upper portion (second region) of the intermediate film 13 is moved upward. The thickness may be reduced, and the lower portion (first region) of the intermediate film 13 may be formed so that the thickness decreases as it goes downward. The structure, material, and the like of the intermediate film 13 are as described in the above embodiment.
 このようなウインドシールドを形成するには、例えば、図45に示すように、同じ断面形状を有する外側ガラス板11と内側ガラス板12とを準備し、これらを中間膜13の外形に沿って曲げながら、中間膜13の外面及び内面にそれぞれ接合する方法がある。このほか、例えば、図46に示すように、外側ガラス板11と内側ガラス板12とを、製造すべきウインドシールド1の外形を予め反映させた形状に成形しておく。そして、予め断面楔形に形成された中間膜13を、これらガラス板11,12の間に挟んだ後、予備接着及びオートクレーブによる接着により接合する。なお、両ガラス板11,12の間に配置される中間膜は最終製品の形状に成形されていなくてもよく、概ね断面楔形であってもよい。この場合、中間膜13は、両ガラス板11、12の間で押圧されるため、最終製品の形状に成形される。 In order to form such a windshield, for example, as shown in FIG. 45, an outer glass plate 11 and an inner glass plate 12 having the same cross-sectional shape are prepared, and these are bent along the outer shape of the intermediate film 13. However, there is a method of bonding to the outer surface and the inner surface of the intermediate film 13 respectively. In addition, as shown in FIG. 46, for example, the outer glass plate 11 and the inner glass plate 12 are formed in a shape that reflects in advance the outer shape of the windshield 1 to be manufactured. Then, the intermediate film 13 having a wedge shape in advance is sandwiched between the glass plates 11 and 12, and then joined by preliminary adhesion and adhesion by an autoclave. In addition, the intermediate film arrange | positioned between both the glass plates 11 and 12 does not need to be shape | molded in the shape of the final product, and may be a wedge shape in general. In this case, since the intermediate film 13 is pressed between the glass plates 11 and 12, it is formed into the shape of the final product.
 なお、上記のように、ウインドシールドが複数の楔角を有するよう成形する以外に、例えば、例えば、5cm角の楔形ガラスを、測定ユニット4と対向する内側ガラス板の所望の位置に、接着剤を用いて貼り付けておき、本接着時にオードクレイブをしてもよい。 In addition to forming the windshield so as to have a plurality of wedge angles as described above, for example, a 5 cm square wedge-shaped glass is bonded to a desired position on the inner glass plate facing the measurement unit 4. It may be pasted using, and an autoclave may be performed at the time of main bonding.
 以下、本発明に係るウインドシールドの実施例について説明する。但し、本発明は、以下の実施例に限定されない。
 <1.コア層のヤング率に関する評価>
 以下の通り、実施例及び比較例に係る合わせガラスを準備した。
Figure JPOXMLDOC01-appb-T000005
Embodiments of the windshield according to the present invention will be described below. However, the present invention is not limited to the following examples.
<1. Evaluation of Young's modulus of core layer>
The laminated glass which concerns on an Example and a comparative example was prepared as follows.
Figure JPOXMLDOC01-appb-T000005
 各ガラス板は、上述したクリアガラスで形成した。また、中間膜はコア層とこれを挟持する一対のアウター層で構成した。中間膜の厚みは0.76mm、コア層の厚みは0.1mm、両アウター層の厚みは0.33mmとした。両アウター層のヤング率は441MPa(20℃、100Hz)に調整した。 Each glass plate was formed of the above-described clear glass. Moreover, the intermediate film was comprised with the core layer and a pair of outer layer which clamps this. The thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm. The Young's modulus of both outer layers was adjusted to 441 MPa (20 ° C., 100 Hz).
 上記実施例及び比較例について、音響透過損失をシミュレーションにより、評価した。シミュレーション条件は、以下の通りである。 The sound transmission loss was evaluated by simulation for the above examples and comparative examples. The simulation conditions are as follows.
 まず、シミュレーションは、音響解析ソフト(ACTRAN、Free Field technology社製)を用いて行った。このソフトでは、有限要素法を用いて次の波動方程式を解くことにより、合わせガラスの音響透過損失(透過音圧レベル/入射音圧レベル)を算出することができる。
Figure JPOXMLDOC01-appb-M000006
First, the simulation was performed using acoustic analysis software (ACTRAN, manufactured by Free Field technology). In this software, the sound transmission loss (transmitted sound pressure level / incident sound pressure level) of the laminated glass can be calculated by solving the following wave equation using the finite element method.
Figure JPOXMLDOC01-appb-M000006
 次に、算出条件について説明する。
(1) モデルの設定
 本シミュレーションで用いた合わせガラスのモデルを図47に示す。このモデルでは、音の発生源側から外側ガラス板、中間膜、内側ガラス板、ウレタン枠の順で積層した合わせガラスを規定している。ここで、ウレタン枠をモデルに追加しているのは、ウレタン枠の有無により音響透過損失の算出結果に少なからず影響があると考えられる点、及び、合わせガラスと車両のウインドシールドの間にはウレタン枠が用いられて接着していることが一般的である点を考慮したためである。
(2) 入力条件1(寸法等)
Figure JPOXMLDOC01-appb-T000007
Next, calculation conditions will be described.
(1) Model setting FIG. 47 shows a model of laminated glass used in this simulation. In this model, a laminated glass is defined in which an outer glass plate, an intermediate film, an inner glass plate, and a urethane frame are laminated in this order from the sound source side. Here, the reason why the urethane frame is added to the model is that there is a considerable influence on the calculation result of sound transmission loss due to the presence or absence of the urethane frame, and between the laminated glass and the vehicle windshield. This is because it is generally considered that a urethane frame is used and bonded.
(2) Input condition 1 (dimensions, etc.)
Figure JPOXMLDOC01-appb-T000007
 なお、ガラス板の寸法である800×500mmは、実際の車両で用いられるサイズよりも小さい。ガラスサイズが大きくなるとSTL値は悪くなる傾向にあるが、これは、サイズが大きいほど拘束箇所が大きくなり、それにともない共振モードが大きくなるからである。但し、ガラスサイズが異なっても、周波数毎の相対的値の傾向、つまり、異なる厚みのガラス板からなる合わせガラスが同厚のガラス板からなる合わせガラスに比して所定の周波数帯で悪くなる傾向は同じである。 Note that the size of the glass plate, 800 × 500 mm, is smaller than the size used in an actual vehicle. As the glass size increases, the STL value tends to worsen because the larger the size, the larger the constrained portion and the greater the resonance mode. However, even if the glass size is different, the tendency of the relative value for each frequency, that is, the laminated glass made of glass plates with different thicknesses becomes worse in a predetermined frequency band than the laminated glass made of glass plates with the same thickness. The trend is the same.
 また、上記表4のランダム拡散音波とは、所定の周波数の音波が外側ガラス板に対してあらゆる方向の入射角をもって伝番していく音波であり、音響透過損失を測定する残響室での音源を想定したものとなっている。
(3) 入力条件2(物性値)
Figure JPOXMLDOC01-appb-T000008
[コア層及び両アウター層のヤング率及び損失係数について]
 主な周波数毎に異なった値を用いた。これは、コア層及び両アウター層は粘弾性体のため、粘性効果によりヤング率は周波数依存性が強いためである。なお、温度依存性も大きいが、今回は温度一定(20℃)を想定した物性値を用いた。
Figure JPOXMLDOC01-appb-T000009
In addition, the random diffuse sound wave in Table 4 is a sound wave having a sound wave of a predetermined frequency transmitted with an incident angle in any direction with respect to the outer glass plate, and a sound source in a reverberation chamber for measuring sound transmission loss. Is assumed.
(3) Input condition 2 (property value)
Figure JPOXMLDOC01-appb-T000008
[About Young's modulus and loss factor of core layer and both outer layers]
Different values were used for each main frequency. This is because the Young's modulus is strongly frequency dependent due to the viscous effect because the core layer and both outer layers are viscoelastic bodies. In addition, although the temperature dependence is large, the physical property value which assumed temperature constant (20 degreeC) was used this time.
Figure JPOXMLDOC01-appb-T000009
 結果は、図48のグラフに示すとおりである。この結果によれば、実施例1~4のように、コア層のヤング率を20MPa(20℃、100Hz)以下とすることで、異厚によるSTL値を抑えることができる。また、実施例2~4のように、コア層のヤング率を16MPa(20℃、100Hz)以下とすることで、両ガラスが同厚である比較例1と比べ、2000~5000Hzの周波数領域で音響透過損失が高くなっている。更に、実施例3,4のように、コア層のヤング率を10MPa(20℃、100Hz)以下とすることで、両ガラスが同厚である比較例1と比べ、2000~5000Hzの周波数領域で音響透過損失が明らかに高くなっている。したがって、内側ガラス板を外側ガラス板よりも薄くし、且つコア層のヤング率を20MPa以下とすることで、人間に聞き取りやすい2000~5000Hzの周波数領域での遮音性能が高くなることが分かった。 The results are as shown in the graph of FIG. According to this result, the STL value due to the different thickness can be suppressed by setting the Young's modulus of the core layer to 20 MPa (20 ° C., 100 Hz) or less as in Examples 1 to 4. Further, as in Examples 2 to 4, by setting the Young's modulus of the core layer to 16 MPa (20 ° C., 100 Hz) or less, compared with Comparative Example 1 in which both glasses have the same thickness, in a frequency region of 2000 to 5000 Hz. Sound transmission loss is high. Further, as in Examples 3 and 4, by setting the Young's modulus of the core layer to 10 MPa (20 ° C., 100 Hz) or less, compared with Comparative Example 1 in which both glasses have the same thickness, in a frequency region of 2000 to 5000 Hz. The sound transmission loss is clearly high. Therefore, it has been found that by making the inner glass plate thinner than the outer glass plate and setting the Young's modulus of the core layer to 20 MPa or less, the sound insulation performance in a frequency range of 2000 to 5000 Hz that is easy for humans to hear is improved.
 <2.コア層の厚みに関する評価>
 以下の通り、実施例及び比較例に係る合わせガラスを準備した。ここでは、コア層の厚みを変化させ、音響透過損失を上記シミュレーション方法により算出した。中間膜は3層で構成し、総厚を変化させず、コア層とアウター層の厚みを変化させた。コア層のヤング率は10MPa(20℃、100Hz),アウター層のヤング率は441Mpa(20℃、100Hz)とした。また、外側ガラス板及び内側ガラス板の厚みはそれぞれ2.0mm、1.0mmとした。
Figure JPOXMLDOC01-appb-T000010
<2. Evaluation of core layer thickness>
The laminated glass which concerns on an Example and a comparative example was prepared as follows. Here, the thickness of the core layer was changed and the sound transmission loss was calculated by the simulation method. The intermediate film was composed of three layers, and the thickness of the core layer and the outer layer was changed without changing the total thickness. The Young's modulus of the core layer was 10 MPa (20 ° C., 100 Hz), and the Young's modulus of the outer layer was 441 Mpa (20 ° C., 100 Hz). The thicknesses of the outer glass plate and the inner glass plate were 2.0 mm and 1.0 mm, respectively.
Figure JPOXMLDOC01-appb-T000010
 上記実施例及び比較例について、音響透過損失をシミュレーションにより評価した。結果は、図49に示すとおりである。同図によれば、コア層の厚みが0.1mmより小さくなると、2000~5000Hzの周波数領域で、音響透過損失が低下していることが分かる。したがって、人間に聞き取りやすい2000~5000Hzの周波数領域での遮音性能を高くするためには、コア層の厚みを0.1mm以上とすることが好ましい。 The sound transmission loss was evaluated by simulation for the above examples and comparative examples. The results are as shown in FIG. According to the figure, it can be seen that when the thickness of the core layer is smaller than 0.1 mm, the sound transmission loss is reduced in the frequency range of 2000 to 5000 Hz. Therefore, in order to increase the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear, the thickness of the core layer is preferably set to 0.1 mm or more.
 <3.合わせガラスの取付角度に関する評価>
 続いて、音の入射角を変化させたシミュレーションにより、合わせガラスの取付角度について評価を行った。ここでは、垂直からの角度を0~75度に変化させて音響透過損失を算出した。各ガラス板は、上述したクリアガラスで形成した。また、中間膜はコア層とこれを挟持する一対のアウター層で構成した。中間膜の厚みは0.76mm、コア層の厚みは0.1mm、両アウター層の厚みは0.33mmとした。コア層のヤング率は10MPa(20℃、100Hz),両アウター層のヤング率は441MPa(20℃、100Hz)とした。また、ガラス板の厚みは、2.0mm、1.0mmとした。
Figure JPOXMLDOC01-appb-T000011
<3. Evaluation of the mounting angle of laminated glass>
Subsequently, the mounting angle of the laminated glass was evaluated by a simulation in which the incident angle of sound was changed. Here, the sound transmission loss was calculated by changing the angle from the vertical to 0 to 75 degrees. Each glass plate was formed of the above-described clear glass. Moreover, the intermediate film was comprised with the core layer and a pair of outer layer which clamps this. The thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm. The Young's modulus of the core layer was 10 MPa (20 ° C., 100 Hz), and the Young's modulus of both outer layers was 441 MPa (20 ° C., 100 Hz). Moreover, the thickness of the glass plate was 2.0 mm and 1.0 mm.
Figure JPOXMLDOC01-appb-T000011
 上記実施例及び比較例について、音響透過損失を上記シミュレーション方法により、評価した。但し、入力条件として合わせガラスの取付角度を追加してシミュレーションを行った。結果は、図50に示すとおりである。同図によれば、取付角度が60度を超えると、3000Hz付近の周波数で、音響透過損失が急激に低下していることが分かる。したがって、人間に聞き取りやすい2000~5000Hzの周波数領域での遮音性能を高くするためには、合わせガラスの垂直からの取付角度を45度以下とすることが好ましいことが分かった。また、60度以下であれば、遮音性能を高めることができ、場合によっては、75度以下とすることで、遮音性能を高めることができる。 For the above examples and comparative examples, sound transmission loss was evaluated by the above simulation method. However, a simulation was performed by adding a laminated glass mounting angle as an input condition. The results are as shown in FIG. According to the figure, it can be seen that when the mounting angle exceeds 60 degrees, the sound transmission loss sharply decreases at a frequency near 3000 Hz. Therefore, it has been found that in order to increase the sound insulation performance in the frequency range of 2000 to 5000 Hz that is easy for humans to hear, it is preferable that the mounting angle of the laminated glass from the vertical is 45 degrees or less. Moreover, if it is 60 degrees or less, sound insulation performance can be improved, and sound insulation performance can be improved by setting it as 75 degrees or less depending on the case.
 <4.アウター層のヤング率に関する評価>
 アウター層のヤング率に関する評価を行うため、以下の通り、実施例及び比較例に係る合わせガラスを準備した。ここでは、外側ガラス及び内側ガラスの厚みを一定にした上で、中間膜のアウター層及びコア層のヤング率を変化させ、音響透過損失を上記シミュレーション方法により算出した。各ガラス板は、上述したクリアガラスで形成し、中間膜はコア層とこれを挟持する一対のアウター層で構成した。中間膜の厚みは0.76mm、コア層の厚みは0.1mm、両アウター層の厚みは0.33mmとした。
Figure JPOXMLDOC01-appb-T000012
<4. Evaluation of Young's modulus of outer layer>
In order to evaluate the Young's modulus of the outer layer, laminated glasses according to Examples and Comparative Examples were prepared as follows. Here, the thickness of the outer glass and the inner glass was made constant, the Young's modulus of the outer layer and the core layer of the intermediate film was changed, and the sound transmission loss was calculated by the simulation method. Each glass plate was formed of the above-described clear glass, and the intermediate film was composed of a core layer and a pair of outer layers sandwiching the core layer. The thickness of the intermediate film was 0.76 mm, the thickness of the core layer was 0.1 mm, and the thicknesses of both outer layers were 0.33 mm.
Figure JPOXMLDOC01-appb-T000012
 結果は、以下の通りである。まず、図51に実施例13及び14の結果を示した。上述したコア層のヤング率の評価では、ヤング率を20MPa以下にすると、人間が聞き取りやすい2000~5000Hzの周波数領域で音響透過損失が高くなっていることが分かった。これに対して、実施例13及び14では、コア層のヤング率を一定にした上で、アウター層のヤング率を変化させた。その結果、図51に示すように、アウター層のヤング率が高い実施例14では、5000Hz以上の高い周波数領域で、音響透過損失が高くなることが分かった。 The results are as follows. First, the results of Examples 13 and 14 are shown in FIG. In the evaluation of the Young's modulus of the core layer described above, it was found that when the Young's modulus is 20 MPa or less, the sound transmission loss is increased in a frequency range of 2000 to 5000 Hz that is easy for humans to hear. On the other hand, in Examples 13 and 14, the Young's modulus of the outer layer was changed while keeping the Young's modulus of the core layer constant. As a result, as shown in FIG. 51, it was found that in Example 14 where the Young's modulus of the outer layer was high, the sound transmission loss was high in a high frequency region of 5000 Hz or higher.
 また、実施例15~18では、コア層のヤング率をさらに下げるとともに、アウター層のヤング率を大きくしている。図52に示すように、これらの例では、実施例13及び14に比べ、2000~5000Hzの周波数領域での音響透過損失が高くなっているものの、実施例13及び実施例14ほど5000Hz以上の高い周波数領域での音響透過損失は高くなっていない。特に、アウター層のヤング率が1764MPaを超えると、5000Hz以上の高い周波数領域での音響透過損失はほとんど高くならない。 In Examples 15 to 18, the Young's modulus of the core layer is further lowered and the Young's modulus of the outer layer is increased. As shown in FIG. 52, in these examples, the sound transmission loss in the frequency region of 2000 to 5000 Hz is higher than those in Examples 13 and 14, but the values in Examples 13 and 14 are higher than 5000 Hz. The sound transmission loss in the frequency domain is not high. In particular, when the Young's modulus of the outer layer exceeds 1764 MPa, the sound transmission loss in a high frequency region of 5000 Hz or higher hardly increases.
1 ガラス板
2 マスク層
22 センターマスク層
241 第1セラミック層(第1の視野遮蔽膜)
242 銀層(電磁波遮蔽膜)
243 第2セラミック層(第2の視野遮蔽膜)
5 センサ(情報取得装置)
DESCRIPTION OF SYMBOLS 1 Glass plate 2 Mask layer 22 Center mask layer 241 1st ceramic layer (1st visual field shielding film)
242 Silver layer (electromagnetic wave shielding film)
243 Second ceramic layer (second visual field shielding film)
5 Sensor (Information acquisition device)

Claims (11)

  1.  光の照射及び/または受光を行うことで車外からの情報を取得する情報取得装置が配置可能なウインドシールドであって、
     車外からの視野を遮蔽するとともに少なくとも1つの開口を有するマスク層が積層されたガラス板を備え、
     前記ガラス板と、前記マスク層を構成するマスク材の熱膨張率は相違し、前記ガラス板と前記マスク層は共に加熱されることにより形成され、
     前記マスク層における前記開口の内周縁に沿う少なくとも一部の領域には、単位面積当たりの前記マスク材が配置されている割合が少ない開口周縁領域が形成されており、
     前記情報取得装置は、前記ガラス板の車内側の面において、前記開口の中で、前記開口周縁領域よりも内側の領域を通じて情報を取得できるように配置される、ウインドシールド。
    A windshield in which an information acquisition device that acquires information from outside the vehicle by irradiating and / or receiving light can be arranged,
    A glass plate on which a mask layer that shields a field of view from outside the vehicle and has at least one opening is laminated;
    The glass plate and the mask material constituting the mask layer have different coefficients of thermal expansion, and both the glass plate and the mask layer are formed by heating,
    In at least a part of the mask layer along the inner peripheral edge of the opening, an opening peripheral area with a small proportion of the mask material disposed per unit area is formed,
    The said information acquisition apparatus is a windshield arrange | positioned so that information can be acquired through the area | region inside the said opening peripheral area in the said opening in the vehicle inner surface of the said glass plate.
  2.  前記開口周縁領域は、前記開口の周縁部の全周に亘って形成されている、請求項1に記載のウインドシールド。 The windshield according to claim 1, wherein the peripheral edge region of the opening is formed over the entire periphery of the peripheral edge of the opening.
  3.  前記開口周縁領域の内部において外部に露出する前記ガラス板は、当該開口周縁領域の内周縁に沿う歪領域と、当該歪領域の内側に隣接する中央領域と、から構成され、
     前記情報取得装置は、前記ガラス板の車内側の面において、前記中央領域の全部または一部を通じて情報を取得できるように配置される、請求項1または2に記載のウインドシールド。
    The glass plate exposed to the outside inside the opening peripheral region is composed of a strain region along the inner peripheral edge of the opening peripheral region, and a central region adjacent to the inside of the strain region,
    3. The windshield according to claim 1, wherein the information acquisition device is arranged so that information can be acquired through all or a part of the central region on the inner surface of the glass plate.
  4.  前記歪領域の幅は、6mm以下である、請求項3に記載のウインドシールド。 The windshield according to claim 3, wherein the width of the strain region is 6 mm or less.
  5.  前記開口周縁領域は、前記マスク材で形成された複数のマスク片を備えており、前記複数のマスク片は互いに間隔をあけて前記ガラス板上に積層されている、請求項1から4のいずれかに記載のウインドシールド。 The opening peripheral region includes a plurality of mask pieces formed of the mask material, and the plurality of mask pieces are stacked on the glass plate at intervals from each other. Windshield described in crab.
  6.  前記各マスク片は、円形状に形成されている、請求項5に記載のウインドシールド。 The windshield according to claim 5, wherein each of the mask pieces is formed in a circular shape.
  7.  前記マスク片は、千鳥状に配置されている、請求項5または6に記載のウインドシールド。 The windshield according to claim 5 or 6, wherein the mask pieces are arranged in a zigzag pattern.
  8.  前記ガラス板は、外側ガラス板、当該外側ガラス板と対向配置される内側ガラス板、及び前記外側ガラス板と内側ガラス板との間に配置される中間膜を備えている、請求項1から7のいずれかに記載のウインドシールド。 The said glass plate is equipped with the outer side glass plate, the inner side glass plate arrange | positioned facing the said outer side glass plate, and the intermediate film arrange | positioned between the said outer side glass plate and an inner side glass plate. Windshield according to any of the above.
  9.  前記マスク層の少なくとも一部は黒色である、請求項1から8のいずれかに記載のウインドシールド。 The windshield according to any one of claims 1 to 8, wherein at least a part of the mask layer is black.
  10.  前記マスク層、開口周辺領域、及び歪領域において、前記情報取得装置が取付けられる領域の少なくとも一部には、電磁波遮蔽膜が形成されている、請求項1から9のいずれかに記載のウインドシールド。 10. The windshield according to claim 1, wherein an electromagnetic wave shielding film is formed in at least a part of a region to which the information acquisition device is attached in the mask layer, the opening peripheral region, and the strain region. .
  11.  前記マスク層、開口周辺領域、及び歪領域の少なくとも一部は、第1の視野遮蔽膜、前記電磁波遮蔽膜、及び第2の視野遮蔽膜が、車外側から車内側へこの順で配置されていることで構成されている、請求項10に記載のウインドシールド。 At least a part of the mask layer, the opening peripheral region, and the strain region includes a first visual field shielding film, the electromagnetic wave shielding film, and a second visual field shielding film arranged in this order from the vehicle outer side to the vehicle inner side. The windshield according to claim 10, comprising:
PCT/JP2015/063392 2014-05-08 2015-05-08 Windshield WO2015170771A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016518241A JP6843614B2 (en) 2014-05-08 2015-05-08 Windshield

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014097152 2014-05-08
JP2014-097152 2014-05-08
JP2015-023732 2015-02-09
JP2015023732 2015-02-09

Publications (1)

Publication Number Publication Date
WO2015170771A1 true WO2015170771A1 (en) 2015-11-12

Family

ID=54392619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063392 WO2015170771A1 (en) 2014-05-08 2015-05-08 Windshield

Country Status (2)

Country Link
JP (3) JP6843614B2 (en)
WO (1) WO2015170771A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016452A1 (en) * 2016-07-20 2018-01-25 日本板硝子株式会社 Windshield and windshield manufacturing method
WO2018021498A1 (en) * 2016-07-29 2018-02-01 日本板硝子株式会社 Method for manufacturing windshield module
WO2018021499A1 (en) * 2016-07-29 2018-02-01 日本板硝子株式会社 Windshield and windshield manufacturing method
WO2018168362A1 (en) * 2017-03-13 2018-09-20 株式会社 豊田自動織機 Vehicle resin panel and vehicle
WO2018173738A1 (en) * 2017-03-21 2018-09-27 Agc株式会社 Vehicle windshield and vehicle article
JP2018162050A (en) * 2016-12-07 2018-10-18 日本板硝子株式会社 Windshield
JP2018537376A (en) * 2015-12-07 2018-12-20 サン−ゴバン グラス フランスSaint−Gobain Glass France Laminated glass for vehicles with built-in optical sensor
CN109130797A (en) * 2018-08-24 2019-01-04 深圳市速腾聚创科技有限公司 Windshield and automobile
JP2019038727A (en) * 2017-08-28 2019-03-14 怡利電子工業股▲ふん▼有限公司 Film sandwich manufacture method for laminated glass
JP2019069888A (en) * 2017-10-05 2019-05-09 Agc株式会社 Glass laminate
JP2019511987A (en) * 2016-03-17 2019-05-09 サン−ゴバン グラス フランス Composite pane with conductive coating for head-up display
JPWO2017204291A1 (en) * 2016-05-26 2019-05-16 日本板硝子株式会社 Laminated glass
WO2019131802A1 (en) * 2017-12-28 2019-07-04 日本板硝子株式会社 Windshield
JP2019527158A (en) * 2016-05-19 2019-09-26 エージーシー オートモーティヴ アメリカズ アールアンドディー,インコーポレイテッド Window assembly for a vehicle having a variable thickness profile associated with a front camera
JP2019527665A (en) * 2016-07-19 2019-10-03 エージーシー グラス ユーロップAgc Glass Europe Glass for self-driving cars
JP2019530628A (en) * 2016-07-19 2019-10-24 エージーシー グラス ユーロップAgc Glass Europe Glass for self-driving cars
JP2019196299A (en) * 2018-05-02 2019-11-14 Agc株式会社 Glass laminate
JP2020514216A (en) * 2016-12-21 2020-05-21 エージーシー グラス ユーロップAgc Glass Europe Laminated glass
WO2020116586A1 (en) * 2018-12-05 2020-06-11 日本板硝子株式会社 Automotive laminated glass
JP2021510352A (en) * 2018-01-11 2021-04-22 サン−ゴバン グラス フランス Vehicle panes, vehicles, and how they are manufactured
WO2021112144A1 (en) * 2019-12-06 2021-06-10 Agc株式会社 Glass for vehicles, and camera unit
TWI737897B (en) * 2017-03-15 2021-09-01 日商積水化學工業股份有限公司 Interlayer film for laminated glass and laminated glass
CN113767080A (en) * 2019-05-07 2021-12-07 Agc株式会社 Vehicle with a steering wheel
US11536375B2 (en) 2020-05-21 2022-12-27 Maxitrol Company Valve seat with seal for use with valve element in valve assembly
US20230121323A1 (en) * 2020-03-13 2023-04-20 Nippon Sheet Glass Company, Limited Laminated glass
US20230166584A1 (en) * 2020-03-13 2023-06-01 Nippon Sheet Glass Company, Limited Laminated glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023150544A (en) * 2022-03-31 2023-10-16 Hoya株式会社 Near-infrared cut filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208244A (en) * 1996-01-30 1997-08-12 Asahi Glass Co Ltd Bending device and bending method for flat glass
JPH11240737A (en) * 1998-02-26 1999-09-07 Asahi Glass Co Ltd Glass plate having printed layer and bend shaping of glass plate
JP2003211956A (en) * 2002-01-25 2003-07-30 Nippon Sheet Glass Co Ltd Laminated glass for windshield
WO2007052600A1 (en) * 2005-10-31 2007-05-10 Nippon Sheet Glass Company, Limited Curved glass plate with light shielding film for vehicle
JP2015024929A (en) * 2013-07-24 2015-02-05 旭硝子株式会社 Vehicle laminated glass

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188133A (en) * 1996-01-12 1997-07-22 Takata Kk Windshield and sensor mounting structure
JP4876362B2 (en) * 2000-09-29 2012-02-15 旭硝子株式会社 Laminated glass and automobile using the same
JP2006327381A (en) * 2005-05-25 2006-12-07 Asahi Glass Co Ltd Laminated glass and its manufacturing method
JP2009035444A (en) 2007-08-01 2009-02-19 Nippon Sheet Glass Co Ltd Windshield and interlayer for windshield
JP2010180068A (en) 2009-02-03 2010-08-19 Asahi Glass Co Ltd Method for manufacturing interlayer for laminated glass for vehicle, interlayer for laminated glass for vehicle and laminated glass for vehicle
JP2011088801A (en) 2009-10-26 2011-05-06 Nippon Sheet Glass Co Ltd Laminated glass
US8506752B2 (en) * 2011-04-11 2013-08-13 Guardian Industries Corp. Techniques for mounting brackets to glass substrates for automotive applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208244A (en) * 1996-01-30 1997-08-12 Asahi Glass Co Ltd Bending device and bending method for flat glass
JPH11240737A (en) * 1998-02-26 1999-09-07 Asahi Glass Co Ltd Glass plate having printed layer and bend shaping of glass plate
JP2003211956A (en) * 2002-01-25 2003-07-30 Nippon Sheet Glass Co Ltd Laminated glass for windshield
WO2007052600A1 (en) * 2005-10-31 2007-05-10 Nippon Sheet Glass Company, Limited Curved glass plate with light shielding film for vehicle
JP2015024929A (en) * 2013-07-24 2015-02-05 旭硝子株式会社 Vehicle laminated glass

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018537376A (en) * 2015-12-07 2018-12-20 サン−ゴバン グラス フランスSaint−Gobain Glass France Laminated glass for vehicles with built-in optical sensor
US10703073B2 (en) 2015-12-07 2020-07-07 Saint-Gobain Glass France Vehicle composite pane with an integrated light sensor
JP2018537377A (en) * 2015-12-07 2018-12-20 サン−ゴバン グラス フランスSaint−Gobain Glass France Laminated glass for vehicles with built-in optical sensor
JP2019511987A (en) * 2016-03-17 2019-05-09 サン−ゴバン グラス フランス Composite pane with conductive coating for head-up display
EP3429844B1 (en) * 2016-03-17 2020-10-28 Saint-Gobain Glass France Composite pane having electrically conductive coating for a head-up display
US10828872B2 (en) 2016-03-17 2020-11-10 Saint-Gobain Glass France Composite pane having electrically conductive coating for a head-up display
JP2019527158A (en) * 2016-05-19 2019-09-26 エージーシー オートモーティヴ アメリカズ アールアンドディー,インコーポレイテッド Window assembly for a vehicle having a variable thickness profile associated with a front camera
JPWO2017204291A1 (en) * 2016-05-26 2019-05-16 日本板硝子株式会社 Laminated glass
US11654658B2 (en) 2016-05-26 2023-05-23 Nippon Sheet Glass Company, Limited Laminated glass
JP7182462B2 (en) 2016-05-26 2022-12-02 日本板硝子株式会社 laminated glass
JP2019527665A (en) * 2016-07-19 2019-10-03 エージーシー グラス ユーロップAgc Glass Europe Glass for self-driving cars
JP2019530628A (en) * 2016-07-19 2019-10-24 エージーシー グラス ユーロップAgc Glass Europe Glass for self-driving cars
EP3487823B1 (en) 2016-07-19 2020-06-03 AGC Glass Europe Glass for autonomous car
JP7145145B2 (en) 2016-07-19 2022-09-30 エージーシー グラス ユーロップ Glass for self-driving cars
CN109496205A (en) * 2016-07-20 2019-03-19 日本板硝子株式会社 The manufacturing method of windshield and windshield
JP6998872B2 (en) 2016-07-20 2022-01-18 日本板硝子株式会社 Windshield and windshield manufacturing method
JPWO2018016452A1 (en) * 2016-07-20 2019-05-16 日本板硝子株式会社 Windshield and method of manufacturing windshield
WO2018016452A1 (en) * 2016-07-20 2018-01-25 日本板硝子株式会社 Windshield and windshield manufacturing method
CN114315175B (en) * 2016-07-29 2023-07-14 日本板硝子株式会社 Windshield and method for manufacturing windshield
CN109641793B (en) * 2016-07-29 2022-02-01 日本板硝子株式会社 Windshield and method for manufacturing windshield
CN114315175A (en) * 2016-07-29 2022-04-12 日本板硝子株式会社 Windshield and method for manufacturing windshield
WO2018021499A1 (en) * 2016-07-29 2018-02-01 日本板硝子株式会社 Windshield and windshield manufacturing method
JPWO2018021498A1 (en) * 2016-07-29 2019-05-23 日本板硝子株式会社 Windshield module manufacturing method
WO2018021498A1 (en) * 2016-07-29 2018-02-01 日本板硝子株式会社 Method for manufacturing windshield module
US11897810B2 (en) 2016-07-29 2024-02-13 Nippon Sheet Glass Company, Limited Windshield and windshield manufacturing method
JP2020073364A (en) * 2016-07-29 2020-05-14 日本板硝子株式会社 Windshield and manufacturing method of windshield
JPWO2018021499A1 (en) * 2016-07-29 2019-05-23 日本板硝子株式会社 Windshield and method of manufacturing windshield
CN109641793A (en) * 2016-07-29 2019-04-16 日本板硝子株式会社 The manufacturing method of windshield and windshield
JP2018162050A (en) * 2016-12-07 2018-10-18 日本板硝子株式会社 Windshield
JP2020514216A (en) * 2016-12-21 2020-05-21 エージーシー グラス ユーロップAgc Glass Europe Laminated glass
JP7372148B2 (en) 2016-12-21 2023-10-31 エージーシー グラス ユーロップ laminated glass
WO2018168362A1 (en) * 2017-03-13 2018-09-20 株式会社 豊田自動織機 Vehicle resin panel and vehicle
JP2018149916A (en) * 2017-03-13 2018-09-27 株式会社豊田自動織機 Resin panel for vehicle, and vehicle
TWI737897B (en) * 2017-03-15 2021-09-01 日商積水化學工業股份有限公司 Interlayer film for laminated glass and laminated glass
JPWO2018173738A1 (en) * 2017-03-21 2020-01-23 Agc株式会社 Vehicle front windows and vehicle articles
WO2018173738A1 (en) * 2017-03-21 2018-09-27 Agc株式会社 Vehicle windshield and vehicle article
JP2019038727A (en) * 2017-08-28 2019-03-14 怡利電子工業股▲ふん▼有限公司 Film sandwich manufacture method for laminated glass
JP2019069888A (en) * 2017-10-05 2019-05-09 Agc株式会社 Glass laminate
JP7028102B2 (en) 2017-10-05 2022-03-02 Agc株式会社 Laminated glass
JP2019119285A (en) * 2017-12-28 2019-07-22 日本板硝子株式会社 Windshield
WO2019131802A1 (en) * 2017-12-28 2019-07-04 日本板硝子株式会社 Windshield
US11312110B2 (en) 2018-01-11 2022-04-26 Saint-Gobain Glass France Vehicle pane, vehicle, and method for producing same
JP2021510352A (en) * 2018-01-11 2021-04-22 サン−ゴバン グラス フランス Vehicle panes, vehicles, and how they are manufactured
JP2019196299A (en) * 2018-05-02 2019-11-14 Agc株式会社 Glass laminate
JP7192567B2 (en) 2018-05-02 2022-12-20 Agc株式会社 laminated glass
CN109130797A (en) * 2018-08-24 2019-01-04 深圳市速腾聚创科技有限公司 Windshield and automobile
WO2020116586A1 (en) * 2018-12-05 2020-06-11 日本板硝子株式会社 Automotive laminated glass
CN113165973A (en) * 2018-12-05 2021-07-23 日本板硝子株式会社 Laminated glass for automobile
CN113767080A (en) * 2019-05-07 2021-12-07 Agc株式会社 Vehicle with a steering wheel
CN113767080B (en) * 2019-05-07 2023-09-26 Agc株式会社 Vehicle with a vehicle body having a vehicle body support
WO2021112144A1 (en) * 2019-12-06 2021-06-10 Agc株式会社 Glass for vehicles, and camera unit
CN114787096A (en) * 2019-12-06 2022-07-22 Agc株式会社 Glass for vehicle and camera unit
CN114787096B (en) * 2019-12-06 2024-03-22 Agc株式会社 Glass for vehicle and camera unit
US20230166584A1 (en) * 2020-03-13 2023-06-01 Nippon Sheet Glass Company, Limited Laminated glass
US20230121323A1 (en) * 2020-03-13 2023-04-20 Nippon Sheet Glass Company, Limited Laminated glass
US11536375B2 (en) 2020-05-21 2022-12-27 Maxitrol Company Valve seat with seal for use with valve element in valve assembly

Also Published As

Publication number Publication date
JP6843614B2 (en) 2021-03-17
JP7102484B2 (en) 2022-07-19
JP2022145685A (en) 2022-10-04
JPWO2015170771A1 (en) 2017-04-20
JP2021014400A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP7102484B2 (en) Windshield
US11065844B2 (en) Laminated glass
EP3118036B1 (en) Windshield
JP6480249B2 (en) Windshield
JP6787776B2 (en) Windshield
WO2015186839A1 (en) Automobile window glass
JP2022020649A (en) Windshield
WO2016088472A1 (en) Windshield and vehicle-mounted system
JP6193777B2 (en) Laminated glass and mounting structure to which the glass is mounted
CN107848467B (en) Glass panel module
EP4025013A1 (en) Windshield
JP6581470B2 (en) Windshield
JP6178738B2 (en) Laminated glass and mounting structure to which the glass is mounted
WO2016072136A1 (en) Windshield
JP7259547B2 (en) laminated glass
WO2021182640A1 (en) Laminated glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016518241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789008

Country of ref document: EP

Kind code of ref document: A1