WO2016088472A1 - Windshield and vehicle-mounted system - Google Patents

Windshield and vehicle-mounted system Download PDF

Info

Publication number
WO2016088472A1
WO2016088472A1 PCT/JP2015/080117 JP2015080117W WO2016088472A1 WO 2016088472 A1 WO2016088472 A1 WO 2016088472A1 JP 2015080117 W JP2015080117 W JP 2015080117W WO 2016088472 A1 WO2016088472 A1 WO 2016088472A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
windshield
vehicle
shielding layer
stereo camera
Prior art date
Application number
PCT/JP2015/080117
Other languages
French (fr)
Japanese (ja)
Inventor
神吉 哲
橘高 重雄
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2016088472A1 publication Critical patent/WO2016088472A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to a windshield and an in-vehicle system.
  • some windshields for automobiles are provided with a shielding layer for blocking the field of view from the outside of the vehicle.
  • This shielding layer is provided along the peripheral edge of the windshield so that the adhesive for attaching the windshield to the automobile cannot be seen from the outside of the vehicle.
  • an in-vehicle system in which a camera for photographing the situation outside the vehicle is installed in the vehicle.
  • This in-vehicle system recognizes oncoming vehicles, preceding vehicles, pedestrians, traffic signs, lane boundaries, etc. by analyzing captured images of the subject acquired by the camera, and informs the driver of various dangers. Driving assistance can be provided.
  • the camera of this in-vehicle system is often installed at a position where the shielding layer is included in the photographing range of the camera, such as in the vicinity of the support portion of the rearview mirror, and the shielding layer may hinder the photographing of the camera. is there.
  • Patent Documents 1 and 2 propose providing a transmission window in a part of the shielding layer. For example, by replacing a part of the intermediate film with a material having a high visible light transmittance, or by providing a region not laminated with ceramic, a region with a high visible light transmittance (transmission window) is provided on a part of the shielding layer. ) Can be formed. As a result, the camera installed in the vehicle can photograph the situation outside the vehicle without being blocked by the shielding layer.
  • Patent Documents 1 and 2 since a single transmission window is provided in the windshield and a traffic situation outside the vehicle is photographed from the single transmission window using a single camera, The distance, the moving speed of the subject, etc. could not be measured only by information from the camera. Therefore, the conventional in-vehicle system is further equipped with different types of measuring devices such as millimeter wave radar and laser radar to measure the distance between the subject and the vehicle, the moving speed of the subject, etc. There is a problem that the system configuration becomes complicated as much as connecting the two.
  • the present invention has been made in view of such a situation in one aspect, and an object thereof is to provide a windshield applicable to an in-vehicle system capable of acquiring sufficient information with a simple configuration.
  • the present invention adopts the following configuration in order to solve the above-described problems.
  • a windshield according to one aspect of the present invention is a windshield for an automobile in which a stereo camera having a plurality of imaging devices spaced apart from each other can be obtained so that a plurality of images with parallax can be acquired. And a shielding layer that is provided on the glass plate and shields the field of view from the outside of the vehicle.
  • the shielding layer includes a plurality of photographing windows respectively corresponding to the plurality of photographing devices so that each of the plurality of photographing devices of the stereo camera arranged in the vehicle can photograph a situation outside the vehicle.
  • the shielding layer provided on the glass plate includes a plurality of photographing devices corresponding to the photographing devices so that each photographing device of the stereo camera arranged in the vehicle can photograph the situation outside the vehicle. Has a window. Therefore, the windshield according to the present invention can be applied to a stereo camera that can measure the distance to the subject by parallax generated between a plurality of images. Therefore, according to the configuration, it is possible to acquire information such as the distance to the subject without connecting different types of data with the stereo camera, and thus it is possible to acquire sufficient information with a simple configuration.
  • a windshield applicable to an in-vehicle system can be provided.
  • the present invention does not exclude the provision of different types of measuring devices such as millimeter wave radars and laser radars that do not have advanced image analysis functions such as subject recognition as described above.
  • the shielding layer may be configured by laminating a ceramic having a thermal expansion coefficient different from that of the glass plate on the inner surface of the glass plate.
  • a strain region in which the glass plate is distorted at a peripheral portion of the shielding layer due to a difference in coefficient of thermal expansion between the glass plate and the ceramic, and a visual field range in which a driver driving the automobile confirms traffic conditions when driving May be arranged so as not to overlap.
  • the shielding layer is made of a ceramic having a different thermal expansion coefficient from that of the glass plate, due to the difference in thermal expansion coefficient between the glass plate and the ceramic, the glass plate is formed on the periphery of the shielding layer when forming the windshield. A strain region having a large strain is formed. The width of the strain region is about 8 mm.
  • the shielding layer is arranged so that the strain region of the glass plate and the visual field range of the driver do not overlap.
  • the field of view for confirming the traffic situation when the driver driving the car is the range that the driver in the driver's seat is careful when driving, and can be set as appropriate according to the embodiment. is there.
  • the glass plate is a laminated glass in which an outer glass plate arranged on the vehicle outer side and an inner glass plate arranged on the vehicle inner side are bonded to each other through an intermediate film. It may be constituted by.
  • the said shielding layer may be comprised by laminating
  • the glass plate is a laminated glass in which an outer glass plate arranged on the vehicle outer side and an inner glass plate arranged on the vehicle inner side are bonded to each other through an intermediate film. It may be constituted by. And the said shielding layer laminates
  • the shielding layer is formed by providing the ceramic layer on each of the inner surface of the outer glass plate and the inner surface of the inner glass plate. Therefore, a two-layer shielding layer can be formed, and the appearance can be improved.
  • each of the plurality of photographing windows may be formed such that the vertical and horizontal widths of the plurality of photographing windows satisfy Expression (1).
  • H represents the vertical and horizontal widths of the imaging window.
  • a shows the width
  • b indicates the diameter of the entrance pupil.
  • c shows an attachment error.
  • the plate glass is heat-treated at the boundary between the laminated region of the ceramic having a different coefficient of thermal expansion from the glass plate and the non-laminated region of the ceramic, in other words, at the boundary between the photographing window and the shielding layer. Due to the difference in thermal expansion coefficient, optical defects due to strain are likely to be formed (strain region).
  • the width a of the strain region is formed in a range of about 8 mm from the boundary between the photographing window and the shielding layer.
  • the mounting error c is about 5 mm. Therefore, in the case of the above conditions, the vertical and horizontal widths of each photographing window are configured to be 25 mm or less. Thus, according to this configuration, it is possible to make the size of each imaging window relatively small while avoiding the influence of distortion on each imaging device.
  • a heater may be installed around each shooting window to prevent condensation on each shooting window.
  • a heater may be installed around each shooting window to prevent condensation on each shooting window.
  • the central region of each photographing window there is a problem that dew condensation tends to remain due to being far from the heater installed around each photographing window.
  • the size of each photographing window can be formed relatively small, it is possible to prevent dew condensation from easily remaining in the central region of each photographing window, and in the heater. Power consumption can be reduced.
  • each of the plurality of photographing windows may be formed such that the vertical and horizontal widths of the plurality of photographing windows satisfy Expression (2).
  • the entrance pupil is an image when the aperture stop of the optical system constituting the photographing apparatus is viewed from the subject side, and corresponds to an “entrance” of light used in the optical system.
  • the diameter of the entrance pupil is (f / F). Therefore, in order not to block the light beam required by the photographing apparatus, the diameter of the photographing window is required to be a minimum (f / F + 2D ⁇ tan ⁇ ).
  • D is the distance between the imaging window and the entrance pupil
  • is the field of view (half angle) of the imaging apparatus
  • the imaging window is perpendicular to the optical axis of the imaging apparatus.
  • An in-vehicle system is an in-vehicle system for mounting on an automobile including the windshield according to any one of the above aspects, and is separated from each other so that a plurality of images with parallax can be acquired.
  • a stereo camera having a plurality of photographing devices, and an image processing device that analyzes a plurality of images acquired by the stereo camera and calculates a position of a subject appearing in a photographing range of the stereo camera.
  • the image processing apparatus holds correction data for correcting an image deformed by the windshield, the correction data having a deformation amount determined according to the surface on which the ceramics are laminated, and the correction data Is used to execute correction processing for each image.
  • the present inventors have found that when the shielding layer is formed of a ceramic having a different coefficient of thermal expansion from that of the glass plate, the lens power of the photographing window varies depending on the surface of the ceramic laminated glass plate. Therefore, in this configuration, the image processing apparatus executes correction processing for each image using correction data in which the amount of deformation is determined according to the surface on which the ceramics are stacked. As a result, it is possible to realize an image correction process suitable for the photographing window provided in the windshield.
  • An in-vehicle system is an in-vehicle system for mounting on an automobile including the windshield according to any one of the above aspects, and is separated from each other so that a plurality of images with parallax can be acquired.
  • a stereo camera having a plurality of photographing devices, and an image processing device that analyzes a plurality of images acquired by the stereo camera and calculates a position of a subject that appears in the photographing range of the stereo camera.
  • the optical system in each of the plurality of photographing devices of the stereo camera may be configured such that the entrance pupil exists on the subject side with respect to the optical component.
  • each photographing apparatus since the entrance pupil of each photographing apparatus exists on the subject side of the optical component, it can be arranged on or near the windshield. Therefore, the incident light area on the windshield that enters the stereo camera can be reduced, and the size of each imaging window corresponding to each imaging apparatus can be reduced. This also makes it less likely to be affected by distortion on each shooting window.
  • the stereo camera is configured such that, in the optical axis direction of each of the plurality of imaging devices, the entrance pupil of the optical system and the plurality of windshields in each of the plurality of imaging devices. It may be arranged so that the distance from each of the imaging windows is within a range of 10 mm or less.
  • the present inventors arrange a stereo camera so that the distance between the entrance pupil of the lens constituting each photographing apparatus and each photographing window of the windshield is within 10 mm in the front and rear direction in the optical axis direction of each photographing apparatus.
  • the amount of deformation due to distortion of an image taken through the shooting window is less likely to fluctuate. Therefore, according to this configuration, it is possible to prevent the amount of distortion of the image captured through each imaging window from fluctuating greatly due to a manufacturing error of the windshield, and to correct the captured image without considering individual differences.
  • the value can be set uniformly.
  • the present invention it is possible to provide a windshield applicable to an in-vehicle system capable of acquiring sufficient information with a simple configuration.
  • FIG. 1 is a plan view illustrating a windshield according to an embodiment.
  • FIG. 2 is a cross-sectional view illustrating a windshield according to the embodiment.
  • FIG. 3A illustrates the relationship between the shooting window of the windshield and the shooting range of the shooting device according to the embodiment.
  • FIG. 3B illustrates the relationship between the imaging window of the windshield and the entrance pupil of the imaging apparatus according to the embodiment.
  • FIG. 4A illustrates the imaging device according to the embodiment.
  • FIG. 4B illustrates an imaging apparatus in which the entrance pupil exists inside the lens system.
  • FIG. 5 illustrates an in-vehicle system according to the embodiment.
  • FIG. 6 illustrates the manufacturing process of the glass plate of the windshield according to the embodiment.
  • FIG. 7 is a cross-sectional view illustrating a windshield according to another embodiment.
  • FIG. 8 illustrates a photographing apparatus according to another embodiment.
  • FIG. 9 illustrates a photographing apparatus according to another embodiment.
  • FIG. 10 shows an example of a method for manufacturing a windshield according to another embodiment.
  • FIG. 11 illustrates a shooting window according to another embodiment.
  • FIG. 12 is a graph showing the distortion of the glass plate.
  • FIG. 13 is a photograph showing the distortion of the glass plate.
  • FIG. 14A is a graph showing the relationship between the surface on which the shielding layer is provided and the lens power of the left imaging window.
  • FIG. 14B is a graph showing the relationship between the surface on which the shielding layer is provided and the lens power of the right imaging window.
  • FIG. 15 illustrates a scene in which the amount of image distortion due to the windshield is simulated.
  • FIG. 16 is a graph showing the amount of image distortion when the distance between the windshield and the entrance pupil is varied.
  • FIG. 17 is a graph showing the amount of image distortion when the radius of curvature of the surface on the subject side
  • this embodiment will be described with reference to the drawings.
  • this embodiment described below is only an illustration of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. That is, in implementing the present invention, a specific configuration according to the embodiment may be adopted as appropriate.
  • FIG. 1 is a plan view schematically illustrating a windshield 1 according to this embodiment.
  • FIG. 2 is a cross-sectional view schematically illustrating the windshield 1 according to this embodiment.
  • the up and down direction in FIGS. 1 and 2 is referred to as “up and down”
  • the left and right direction in FIG. 1 is referred to as “left and right”
  • the windshield 1 includes a substantially trapezoidal glass plate and is attached to an automobile by being inclined from the vertical.
  • This glass plate is composed of a laminated glass in which an outer glass plate 13 disposed on the outer side of the vehicle and an inner glass plate 14 disposed on the inner side of the vehicle are bonded to each other via a resin intermediate film 15.
  • the inner glass plate 14 constituting the laminated glass is provided with a shielding layer 11 that shields the field of view from the outside of the vehicle, and the stereo camera 2 is mounted inside the vehicle so as to be shielded by the shielding layer 11.
  • the stereo camera 2 has two photographing devices (21A, 21B) separated from each other so that two images with parallax can be simultaneously acquired.
  • the shielding layer 11 has two imaging devices (21A, 21B) corresponding to the imaging devices (21A, 21B) so that the imaging devices (21A, 21B) arranged inside the vehicle can capture the situation outside the vehicle.
  • Shooting windows (113A, 113B) are formed.
  • the stereo camera 2 is connected to the image processing device 3 and constitutes an in-vehicle system 5 that can analyze the distance between the subject and the own vehicle based on a plurality of images acquired by the stereo camera 2.
  • first surface the vehicle outer surface of the outer glass plate 13
  • second surface the vehicle inner surface of the outer glass plate 13
  • inner glass plate 14 is described below.
  • a surface outside the vehicle may be referred to as a “third surface”
  • a surface inside the vehicle of the inner glass plate 14 may be referred to as a “fourth surface”.
  • the glass plate constituting the windshield 1 can have various configurations.
  • the glass plate of the windshield 1 is composed of laminated glass in which an outer glass plate 13 and an inner glass plate 14 are bonded to each other via an intermediate film 15.
  • This laminated glass is manufactured by a manufacturing method to be described later, so that it is formed in a curved shape from the peripheral part to the central part.
  • Each of the outer glass plate 13 and the inner glass plate 14 constituting such a laminated glass can be a known glass plate, and can also be formed of heat ray absorbing glass, clear glass, green glass, UV green glass, or the like. .
  • the outer glass plate 13 and the inner glass plate 14 are each configured to realize visible light transmittance in accordance with the safety standards of the country where the automobile is used.
  • a desired solar radiation absorptivity can be secured by the outer glass plate 13
  • the visible light transmittance can be adjusted by the inner glass plate 14 so as to satisfy safety standards.
  • the composition of the glass which can comprise the outer side glass plate 13 and the inner side glass plate 14 an example of a composition of a clear glass and an example of a heat ray absorption glass composition are shown.
  • the composition of the heat-absorbing glass for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO
  • the ratio of 2 is 0 to 2% by mass
  • the ratio of TiO 2 is 0 to 0.5% by mass
  • the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T-Fe 2 O 3 , CeO.
  • the composition can be reduced by an increase of 2 and TiO 2 .
  • the thickness of the laminated glass according to this embodiment is not particularly limited, but from the viewpoint of weight reduction, the total thickness of the outer glass plate 13 and the inner glass plate 14 is preferably 2.4 to 4.6 mm, More preferably, the thickness is 2.6 to 3.8 mm, and particularly preferably 2.7 to 3.2 mm. Thus, what is necessary is just to make the total thickness of the outer side glass plate 13 and the inner side glass plate 14 small for weight reduction.
  • the thickness of each of the outer glass plate 13 and the inner glass plate 14 is not particularly limited, for example, the thickness of each of the outer glass plate 13 and the inner glass plate 14 can be determined as follows.
  • the outer glass plate 13 is mainly required to have durability and impact resistance against impacts of flying objects such as pebbles.
  • the thickness of the outer glass plate 13 is preferably 1.8 to 2.3 mm, and more preferably 1.9 to 2.1 mm. Which thickness is adopted can be appropriately determined according to the embodiment.
  • the thickness of the inner side glass plate 14 can be made equal to the thickness of the outer side glass plate 13, for example, thickness can be made smaller than the outer side glass plate 13 for weight reduction of a laminated glass.
  • the thickness of the inner glass plate 14 is preferably 0.6 to 2.0 mm, more preferably 0.8 to 1.6 mm, It is particularly preferable that the thickness is ⁇ 1.4 mm.
  • the thickness of the inner glass plate 14 is preferably 0.8 to 1.3 mm. Which thickness is used for the inner glass plate 14 can be appropriately determined according to the embodiment.
  • the intermediate film 15 can have various configurations according to the embodiment.
  • the intermediate film 15 can have a three-layer structure in which a soft core layer is sandwiched between a pair of harder outer layers. In this way, the damage resistance performance and sound insulation performance of the windshield 1 can be improved by configuring the intermediate film 15 with a plurality of layers of a soft layer and a hard layer.
  • the material of the intermediate film 15 is not particularly limited, and can be appropriately selected according to the embodiment.
  • polyvinyl butyral resin PVB
  • PVB polyvinyl butyral resin
  • EVA ethylene vinyl acetate resin
  • polyvinyl acetal resin softer than the polyvinyl butyral resin used for the outer layer
  • the hardness of the polyvinyl acetal resin is (a) the degree of polymerization of the starting polyvinyl alcohol, (b) the degree of acetalization, (c) the type of plasticizer, (d) the addition ratio of the plasticizer, etc. Can be controlled. Therefore, a hard polyvinyl acetal resin used for the outer layer and a soft polyvinyl acetal resin used for the core layer may be produced by appropriately adjusting at least one of the conditions (a) to (d).
  • the hardness of the polyvinyl acetal resin can be controlled by the type of aldehyde used for acetalization, coacetalization with a plurality of types of aldehydes or pure acetalization with a single aldehyde. Although it cannot generally be said, the polyvinyl acetal resin obtained by using an aldehyde having a large number of carbon atoms tends to be softer.
  • the core layer has an aldehyde having 5 or more carbon atoms (for example, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, n- Octyl aldehyde) can be used as a polyvinyl acetal resin obtained by acetalization with polyvinyl alcohol.
  • an aldehyde having 5 or more carbon atoms for example, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, n- Octyl aldehyde
  • the total thickness of the intermediate film 15 can be appropriately set according to the embodiment, and can be set to, for example, 0.3 to 6.0 mm, preferably 0.5 to 4.0 mm. More preferably, it is 0.6 to 2.0 mm.
  • the thickness of the core layer is preferably 0.1 to 2.0 mm, More preferably, it is ⁇ 0.6 mm.
  • the thickness of each outer layer is preferably larger than the thickness of the core layer. Specifically, it is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 1.0 mm. preferable.
  • the method for producing the intermediate film 15 is not particularly limited. For example, after blending a resin component such as the above-described polyvinyl acetal resin, a plasticizer, and other additives as necessary, and kneading uniformly, Examples thereof include a method of extruding each layer at once, and a method of laminating two or more resin films prepared by this method by a press method, a laminating method, or the like.
  • the resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure. Further, the intermediate film 15 can be formed of a single layer in addition to the above-described plural layers.
  • ⁇ Shielding layer> Next, the shielding layer 11 provided on the glass plate of the windshield 1 will be described. As illustrated in FIG. 1, in this embodiment, a shielding layer 11 is formed on the peripheral edge of the windshield 1. Specifically, as illustrated in FIG. 2, the shielding layer 11 is laminated on the inner surface (fourth surface) of the inner glass plate 14.
  • the material of the shielding layer 11 may be appropriately selected according to the embodiment as long as the field of view from the outside of the vehicle can be shielded.
  • a dark color ceramic such as black, brown, gray, or dark blue is used. Also good.
  • black ceramic is laminated on the inner surface of the inner glass plate 14 by screen printing or the like, and the laminated ceramic together with the inner glass plate 14 is heated. Thereby, the shielding layer 11 can be formed on the peripheral edge of the windshield 1.
  • Various materials can be used for the ceramic used for the shielding layer 11.
  • a ceramic having the following composition can be used for the shielding layer 11.
  • Main component Copper oxide, Chromium oxide, Iron oxide and Manganese oxide * 2
  • Main component Bismuth borosilicate, Zinc borosilicate
  • the shielding layer 11 includes a peripheral region 111 along the peripheral portion of the windshield 1 and a protruding region 112 that protrudes downward in a rectangular shape from the upper side portion of the windshield 1. Can be divided.
  • the peripheral region 111 shields light incident from the peripheral portion of the windshield 1.
  • the protruding region 112 prevents the stereo camera 2 arranged in the vehicle from being seen from outside the vehicle.
  • the projecting region 112 of the shielding layer 11 has two areas corresponding to each imaging device (21A, 21B) so that each imaging device (21A, 21B) can capture the situation outside the vehicle.
  • Substantially trapezoidal imaging windows (113A, 113B) are provided.
  • the photographing windows (113A, 113B) are regions that are spaced apart in the left-right direction and are not laminated with ceramic. That is, when screen-printing ceramic on the fourth surface, two shooting windows (113A, 113B) can be formed by providing two areas in the protruding area 112 where the ceramic is not printed.
  • FIG. 3A illustrates the relationship between each imaging window (113A, 113B) provided in the shielding layer 11 and the imaging range of each imaging device (21A, 21B).
  • FIG. 3B illustrates the relationship between each imaging window (113A, 113B) provided in the shielding layer 11 and the entrance pupil of each imaging device (21A, 21B).
  • the windshield 1 (laminated glass) according to this embodiment is heated at about 650 degrees in the shaping process.
  • the ceramic as the material of the shielding layer 11 is a dark color such as black, the amount of heat absorbed is smaller than that of a region where the ceramics are not stacked, for example, the region of each imaging window (113A, 113B). Become more.
  • the ceramic that is the material of the shielding layer 11 has a thermal expansion coefficient different from that of the inner glass plate 14, in the region where the shielding layer 11 is formed, compressive stress and tensile stress are generated during the shaping process.
  • This distortion is formed in a range of about 8 mm from the peripheral edge of each photographing window (113A, 113B) according to an embodiment to be described later (corresponding to the width a of the distortion area in Equation 1 above). For this reason, as illustrated in FIG. 3A, in the vertical direction and the horizontal direction, the respective shooting windows (113A, 113B) are arranged so that regions each having a width of 8 mm are arranged on both sides of the shooting range of each shooting device (21A, 21B). ) Can be avoided the influence of the distortion on the captured image.
  • the width a of the strain region is formed in a range of about 8 mm from the boundary between the imaging window and the shielding layer.
  • the laminated glass which comprises the windshield 1 inclines from a perpendicular direction, and is attached to a motor vehicle. Therefore, the vicinity of the upper side of the windshield 1 is closer to each imaging device (21A, 21B), and the vicinity of the lower side of the windshield 1 is farther from each imaging device (21A, 21B). Therefore, in FIG. 3A, the width of the upper side approaching each imaging device (21A, 21B) is reduced in the imaging range of each imaging device (21A, 21B), and the width of the lower side away from each imaging device (21A, 21B) is It becomes trapezoid shape by becoming long.
  • each photographing device (21A, 21B) is closer the respective photographing devices (21A, 21B) are to the respective photographing windows (113A, 113B), the smaller the photographing range on each photographing window (113A, 113B).
  • each shooting window (113A, 113B) is positioned on each shooting window (113A, 113B).
  • the size of the light beam that passes through is the smallest.
  • each shooting window (113A, 113B) is formed so that the vertical and horizontal widths of each shooting window (113A, 113B) satisfy the above formula (2). Good.
  • the diameter of the entrance pupil is 4 mm
  • the total angle of view of the photographing apparatus is 30 °
  • the distance between the entrance pupil and the windshield is Dmm.
  • the diameter F of the photographing window that is required because the photographing of the photographing apparatus is not hindered by the shielding layer can be expressed by the above formula 3.
  • each photographing window (113A, 113B) in which each photographing device (21A, 21B) can photograph the outside of the vehicle without being obstructed by the shielding layer 11.
  • a guideline for the size of each photographing window (113A, 113B) is determined, so that the size of each photographing window (113A, 113B) can be determined relatively freely.
  • the visual field range 60 in which the driver confirms the traffic situation when driving the vehicle is arranged so as not to overlap the distortion region.
  • the visual field range 60 is a range that a driver on the driver's seat pays attention when driving, and can be set as appropriate according to the embodiment.
  • the test area A defined in the appendix “Test Area for Optical Properties and Light Resistance of Safety Glass” of JIS R3212 (1998, “Safety Glass Test Method for Automobiles”) is adopted as this field of view. May be.
  • the vehicle equipped with the windshield 1 can provide the driver with a good field of view during driving.
  • photography window (113A, 113B) may be arrange
  • each photographing window (113A, 113B) is configured so that the visible light transmittance in each photographing window (113A, 113B) is 70% or more as defined in JIS R 3211, for example.
  • permeability can be measured by the spectroscopic method prescribed
  • a heater for preventing the condensation of each of the photographing windows (113A, 113B) may be installed around each of the photographing windows (113A, 113B). With this heater, condensation in each photographing window (113A, 113B) can be prevented, and the field of view of each photographing device (21A, 21B) can be kept in a good state. However, in this case, in the central region of each photographing window (113A, 113B), there is a possibility that condensation is likely to remain due to being far from the heater installed around each photographing window (113A, 113B).
  • each photographing window (113A, 113B) since the size of each photographing window (113A, 113B) can be formed to be relatively small, condensation is likely to remain in the central region of each photographing window (113A, 113B). Can be prevented. In addition, since the amount of heat for preventing condensation is small, power consumption in the heater can be suppressed.
  • the non-shielding region 12 of the windshield 1 is configured to have a visible light transmittance so that at least traffic conditions outside the vehicle can be visually observed.
  • FIG. 4A shows an example of the configuration of each imaging device (21A, 21B) of the stereo camera 2 according to the present embodiment.
  • FIG. 4B shows an example of a camera in which the entrance pupil exists inside the lens system (optical system).
  • Each photographing apparatus (21A, 21B) according to the present embodiment includes a lens system 22 having four lenses 221 to 224, an aperture stop 23 disposed between the third lens 223 and the fourth lens 224, and a lens. And an image sensor 24 that captures an image using light that has passed through the system 22.
  • the lenses 221 to 223 on the subject side (left side in FIG. 4A) with respect to the aperture stop 23 are configured so that the entrance pupil, which is a real image of the aperture stop 23, is located on the subject side with respect to the lens system 22. Is done.
  • the position of the entrance pupil is inside the lens system. Therefore, it is difficult to set the distance between the entrance pupil and the windshield 1 to a certain value or less.
  • the distance between the entrance pupil and the windshield 1 can be reduced, and is set to zero or a negative value. It is also possible to set.
  • the aperture stop 23 defines the thickness of the light beam incident on the image sensor 24.
  • the image sensor 24 images a subject by forming an image of light that has passed through the lens system 22 on a light receiving plane.
  • the image sensor 24 is an image pickup device constituted by, for example, a CCD.
  • the type of the image sensor 24 is not limited to the CCD, and may be appropriately selected according to the embodiment.
  • the stereo camera 2 can simultaneously acquire a plurality of images with parallax using each of the imaging devices (21A, 21B).
  • Such a stereo camera 2 is arranged in the upper part of the vehicle so as to be hidden by the protruding region 112 of the shielding layer 11.
  • the stereo camera 2 is disposed in the vicinity of the support portion of the rearview mirror symmetrically about the rearview mirror as the target axis.
  • each of the entrance pupil of the lens system 22 constituting each imaging device (21A, 21B) and each of the windshield 1 By disposing the stereo camera 2 so that the distance from the shooting window (113A, 113B) is within 10 mm before and after, the amount of distortion of the image shot through each shooting window (113A, 113B) is unlikely to fluctuate. I found out. Therefore, in this embodiment, in the optical axis direction of each imaging device (21A, 21B), the entrance pupil of the lens system 22 constituting each imaging device (21A, 21B) and each imaging window (113A, 113B) of the windshield 1 are used.
  • the stereo camera 2 is arranged so that the distance to the front and rear is within 10 mm. As a result, it is possible to prevent the amount of distortion of the image photographed through each photographing window (113A, 113B) from fluctuating greatly due to a manufacturing error of the windshield 1, and without considering individual differences of the windshield 1.
  • the correction values of the correction data 311 can be determined uniformly.
  • FIG. 5 illustrates the configuration of the in-vehicle system 5.
  • the in-vehicle system 5 includes the stereo camera 2 and an image processing device 3 connected to the stereo camera 2.
  • the stereo camera 2 acquires a plurality of images with parallax.
  • the image processing device 3 is a device that analyzes a plurality of images acquired by the stereo camera 2 and analyzes the distance between the subject and the vehicle, the moving speed of the subject, the type of the subject, and the like.
  • the image processing apparatus 3 has general hardware such as a storage unit 31, a control unit 32, and an input / output unit 33 connected by a bus as a hardware configuration.
  • the storage unit 31 stores various data and programs used in processing executed by the control unit 32 (not shown).
  • the storage unit 31 may be realized, for example, by a hard disk or a recording medium such as a USB memory.
  • the various data and programs stored in the storage unit 31 may be acquired from a recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the storage unit 31 may be referred to as an auxiliary storage device.
  • the stereo camera 2 photographs the situation outside the vehicle via the windshield 1. Therefore, each image acquired by the stereo camera 2 is deformed according to the shape, refractive index, optical defect, and the like of the windshield 1. Therefore, in the present embodiment, the storage unit 31 stores correction data 311 for correcting the image deformed by the windshield 1.
  • the present inventors have different surfaces depending on the surface on which the ceramic is printed on the laminated glass. It has been found that the lens power of the imaging windows (113A, 113B) varies. The lens power indicates the degree to which the light is bent. The larger the lens power value of each photographing window (113A, 113B), the more the direction of the light beam changes due to the passage of each photographing window (113A, 113B). That is, the present inventors have found that the amount of deformation generated in an image acquired through each photographing window (113A, 113B) differs depending on the surface of the laminated glass on which the ceramic is printed.
  • the control unit 32 can appropriately correct each image acquired by the stereo camera 2 by using such correction data 311.
  • the data format of the correction data 311 may be appropriately selected according to the embodiment.
  • the correction data 311 may be data in a table format.
  • Such correction data 311 may be obtained, for example, by actually measuring the amount of distortion of a laminated glass (windshield) manufactured as a test product, and has the lens power shown in FIGS. 14A and 14B described later. It may be obtained by simulating the amount of distortion of the windshield.
  • the method for obtaining the amount of distortion corresponding to the surface on which the ceramics are laminated can be appropriately selected according to the embodiment.
  • the control unit 32 includes one or more processors such as a microprocessor or a CPU (Central Processing Unit), and peripheral circuits (ROM (Read Only Memory), RAM (Random Access Memory), an interface circuit) used for processing of the processor. Etc.). ROM, RAM, and the like may be referred to as a main storage device in the sense that they are arranged in an address space handled by the processor in the control unit 32.
  • the control unit 32 functions as the image analysis unit 321 by executing various data and programs stored in the storage unit 31.
  • the image analysis unit 321 analyzes the plurality of images acquired by the stereo camera 2 and calculates the position of the subject in the plurality of images, thereby acquiring information related to the situation outside the vehicle.
  • the position of the subject can be calculated by a known stereo vision method.
  • the image analysis unit 321 may acquire various information regarding the situation outside the vehicle based on a plurality of images with parallax based on a known method. Good.
  • the image analysis unit 321 can specify the type of subject by pattern matching or the like.
  • the image analysis unit 321 can specify the moving speed of the subject by periodically calculating the position of the subject and referring to the traveling speed of the own vehicle.
  • the input / output unit 33 is one or a plurality of interfaces for transmitting / receiving data to / from an apparatus existing outside the image processing apparatus 3.
  • the input / output unit 33 is, for example, an interface for connecting to a user interface or an interface such as USB (Universal Serial Bus).
  • the image processing apparatus 3 is connected to the stereo camera 2 via the input / output unit 33 and acquires a plurality of images taken by the stereo camera 2.
  • Such an image processing device 3 may be a general-purpose device such as a PC (Personal Computer) or a tablet terminal in addition to a device designed exclusively for the service to be provided.
  • PC Personal Computer
  • tablet terminal in addition to a device designed exclusively for the service to be provided.
  • FIG. 6 schematically illustrates a manufacturing process of each glass plate (13, 14) of the windshield 1 according to the present embodiment.
  • the manufacturing method of the windshield 1 demonstrated below is only an example, and each step may be changed as much as possible. Further, in the manufacturing process described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
  • each glass plate (13, 14) of the windshield 1 will be described.
  • a heating furnace 901 and a molding device 902 are arranged in this order from upstream to downstream.
  • the roller conveyor 903 is arrange
  • Each glass plate (13, 14) used as a process target is conveyed by this roller conveyor 903.
  • Each glass plate (13, 14) is formed in a flat plate shape before being carried into the heating furnace 901, and is carried into the heating furnace 901. Among these, the inner glass plate 14 is carried into the heating furnace 901 after the shielding layer 11 is further laminated.
  • the heating furnace 901 can have various configurations, but can be an electric heating furnace, for example.
  • the heating furnace 901 includes a rectangular tube-shaped furnace main body whose upstream and downstream ends are open, and a roller conveyor 903 is disposed in the interior from upstream to downstream.
  • Heaters (not shown) are respectively arranged on the upper surface, the lower surface, and the pair of side surfaces of the inner wall surface of the furnace body, and the temperature at which each glass plate (13, 14) passing through the heating furnace 901 can be formed, for example, Heat to near the softening point of the glass.
  • the forming apparatus 902 is configured to press a glass plate with an upper die 921 and a lower die 922 to form a predetermined shape.
  • the upper die 921 has a curved surface that protrudes downward so as to cover the entire upper surface of each glass plate (13, 14), and is configured to be movable up and down.
  • the lower mold 922 is formed in a frame shape corresponding to the peripheral edge of each glass plate (13, 14), and the upper surface thereof has a curved surface shape corresponding to the upper mold 921. With this configuration, each glass plate (13, 14) is press-formed between the upper die 921 and the lower die 922 and formed into a final curved shape.
  • a roller conveyor 903 is disposed in the frame of the lower mold 922, and the roller conveyor 903 can move up and down so as to pass through the frame of the lower mold 922. And although illustration is abbreviate
  • the heating furnace 901 is heated at about 650 degrees.
  • the ceramic that is the material of the shielding layer 11 is a dark color such as black, compared with a region where the ceramic is not laminated, for example, the region of each imaging window (113A, 113B) and the non-shielding region 12. Increases heat absorption.
  • stacked on the shielding layer 11 has a thermal expansion coefficient different from the inner side glass plate 14 in the ceramic which is the material of the shielding layer 11, in the area
  • the boundary between the inner glass plate 14 and the shielding layer 11 is likely to be distorted. That is, a distorted region in which the distortion described below is generated is formed at the peripheral portion of each photographing window (113A, 113B) and the boundary between the non-shielding region 12 and the shielding layer 11.
  • the shielding layer 11 is disposed so that the driver's visual field range 60 does not overlap the strain region.
  • the vehicle equipped with the windshield 1 can provide the driver with a good field of view during driving.
  • each photographing window (113A, 113B) is formed so that the vertical and horizontal widths of each photographing window (113A, 113B) satisfy the above formula (1). Can do. Accordingly, it is possible to make the size of each shooting window (113A, 113B) relatively small while avoiding the influence of distortion on each shooting device (21A, 21B).
  • the roller conveyor 903 as described above is a known one, and a plurality of rollers 931 whose both ends are rotatably supported are arranged at predetermined intervals.
  • a sprocket can be attached to the end of each roller 931, and a chain can be wound around each sprocket to drive it.
  • the conveyance speed of each glass plate (13, 14) can also be adjusted by adjusting the rotational speed of each roller 931.
  • the lower mold 922 of the forming apparatus 902 may be in contact with the entire surface of each glass plate (13, 14).
  • molding apparatus 902 shape
  • the intermediate film 15 is sandwiched between the outer glass plate 13 and the inner glass plate 14, and this is put in a rubber bag and sucked under reduced pressure. While pre-adhering at about 70-110 ° C.
  • the pre-adhesion method may be other methods.
  • the intermediate film 15 is sandwiched between the outer glass plate 13 and the inner glass plate 14 and heated at 45 to 65 ° C. in an oven. Subsequently, this laminated glass is pressed by a roll at 0.45 to 0.55 MPa. Next, the laminated glass is again heated at 80 to 105 ° C. in an oven and then pressed again with a roll at 0.45 to 0.55 MPa. Thus, preliminary adhesion is completed.
  • the laminated glass that has been pre-bonded is subjected to main bonding by an autoclave at, for example, 8 to 15 atm and 100 to 150 ° C.
  • the main bonding can be performed under the conditions of 14 atm and 145 ° C. In this way, the laminated glass which comprises the windshield 1 which concerns on this embodiment is manufactured.
  • attachment angle can be appropriately set according to the embodiment.
  • the mounting angle of the laminated glass can be 45 degrees or less from the vertical.
  • the shielding layer 11 that shields the field of view from the outside of the vehicle has the two imaging windows (113A, 113B).
  • the stereo camera 2 installed in the vehicle can capture the situation outside the vehicle via the respective imaging windows (113A, 113B) and simultaneously acquire two images with parallax.
  • a known analysis process such as stereo vision to these two images, it is possible to acquire information such as the distance between the subject and the vehicle that is difficult to acquire with a single photographing device. Therefore, according to the present embodiment, it is possible to acquire information that is difficult to acquire with a single imaging device without using different types of measurement devices such as millimeter wave radar and laser radar. It is possible to provide the windshield 1 applicable to an in-vehicle system capable of acquiring sufficient information with a simple configuration.
  • the shielding layer 11 is formed by laminating ceramic on the inner surface of the inner glass plate 14 constituting the windshield 1 and heating the ceramic together with the inner glass plate 14.
  • the present inventors have found that when the shielding layer 11 is formed on the fourth surface with ceramic, the amount of distortion in each photographing window (113A, 113B) is the smallest. Therefore, according to the present embodiment, each imaging window (113A, 113B) with less distortion can be provided by forming a ceramic layer as the shielding layer 11 on the inner surface of the inner glass plate 14.
  • the glass plate of the windshield 1 is made of laminated glass in which an outer glass plate 13 and an inner glass plate 14 are bonded to each other via an intermediate film 15.
  • the windshield 1 can have various configurations, and may be configured by a single glass plate, for example.
  • the glass plate of the windshield 1 is formed in the substantially trapezoid shape.
  • the shape of the glass plate of the windshield 1 may not be limited to such a shape, and may be appropriately selected according to the embodiment.
  • the shielding layer 11 is provided along the peripheral edge of the windshield 1.
  • the region where the shielding layer 11 is provided can be set as appropriate according to the embodiment.
  • the shielding layer 11 is laminated
  • the surface on which the shielding layer 11 is laminated need not be limited to the fourth surface of the laminated glass, and can be appropriately selected according to the embodiment.
  • the shielding layer 11 may be laminated on the second surface and / or the third surface of the laminated glass.
  • FIG. 7 is a cross-sectional view schematically illustrating the windshield 1 according to this modification.
  • dark ceramics such as black are screened on the inner surface (second surface) of the outer glass plate 13 and the inner surface (fourth surface) of the inner glass plate 14.
  • the shielding layer 11 may be formed by laminating by printing or the like and heating the ceramic together with the glass plates (13, 14).
  • the shielding layer 11 by laminating ceramics on the second surface and the fourth surface in this way, the shielding layer 11 having a two-layer structure can be formed.
  • the color of the shielding layer 11 can be increased. Therefore, according to the said structure, the appearance on the external appearance of the shielding layer 11 can be improved.
  • the ceramic laminated on the fourth surface serves as a cushion between the inner glass plate 14 and the mounting portion of the automobile, so that the windshield 1 can be prevented from being easily broken at the mounting portion.
  • each photographing apparatus (21A, 21B) includes four lenses 221 to 224.
  • the configuration of each imaging device (21A, 21B) can be changed as appropriate according to the embodiment.
  • each imaging device (25A, 25B) can be configured.
  • FIG. 8 illustrates the configuration of each photographing apparatus (25A, 25B) according to this modification.
  • Each imaging device (25A, 25B) illustrated in FIG. 8 includes a lens system 26 having two plano-convex lenses (261, 262), an aperture stop 27 disposed on the subject side from the lens system 26, and the lens system 26. And an image sensor 28 that picks up an image by light that has passed through.
  • the aperture stop 27 is disposed on the subject side (left side in FIG. 8) of the lens system 26.
  • each imaging window (113A, 113B) since the position and size of the aperture stop 27 coincide with the entrance pupil, by providing the aperture stop 27 on each imaging window (113A, 113B), it is incident on each imaging window (113A, 113B). The pupil can appear. Therefore, in this case, the size of each imaging window (113A, 113B) can be reduced to the size of the entrance pupil.
  • the photographing apparatus may include a distortion correction plate 29.
  • FIG. 9 shows an example in which the distortion correction plate 29 is provided in each of the imaging devices (25A, 25B) in the above modification.
  • This distortion correction plate 29 can correct, for example, distortion (numerized by lens power) caused by a difference in curvature between the outer glass plate 13 and the inner glass plate 14 of the windshield 1 and can make the lens power zero.
  • Such a distortion correction plate 29 can be configured to fit a windshield by appropriately processing a transparent plate member having a free-form surface.
  • the molding apparatus 902 that press-molds the outer glass plate 13 and the inner glass plate 14 of the windshield 1 has been described.
  • the method for forming the glass plate of the windshield 1 is not limited to such an example, and may be formed by, for example, the self-weight bending method illustrated in FIG.
  • FIG. 10 illustrates a glass plate forming apparatus according to this modification.
  • a laminated glass (windshield 1) is prepared in which an intermediate film 15 is sandwiched between an outer glass plate 13 and an inner glass plate 14 on a flat plate.
  • the shielding layer 11 is laminated on the fourth surface and / or the second surface by screen printing or the like.
  • this laminated glass is placed on a ring-shaped (frame-shaped) mold 800.
  • This forming die 800 is disposed on a conveying table 801, and the conveying table 801 sequentially passes through the heating furnace 802 and the slow cooling furnace 803 in a state where the laminated glass is placed on the forming mold 800.
  • the mold 800 is ring-shaped, the laminated glass passes through the heating furnace 802 with only the peripheral edge supported.
  • the laminated glass is bent downward on the inner side from the peripheral edge by its own weight, and is formed into a curved surface shape.
  • the windshield 1 is not a laminated glass but a single glass plate, it can be formed by the same method.
  • the intermediate film 15 can employ various modes. For example, a part of the intermediate film 15 may be dyed in a dark color such as black, and one region (stained region) of the intermediate film 15 may be configured as a part of the shielding layer 11. However, if this stained area overlaps each imaging window (113A, 113B), this stained area may hinder imaging by each imaging apparatus (21A, 21B). For this reason, the portion where the staining area and each imaging window (113A, 113B) overlap is replaced with a material having a high visible light transmittance so that the staining area does not overlap each imaging window (113A, 113B). May be.
  • the stereo camera 2 has two imaging devices (21A, 21B).
  • the number of imaging devices included in the stereo camera 2 is not limited to two, and may be three or more.
  • the number of photographing windows provided in the shielding layer 11 may be set according to the number of photographing devices.
  • the correction data 311 in the above embodiment, the size of each photographing window (113A, 113B), and the surface of the laminated glass on which the shielding layer 11 is provided can be applied not only to a stereo camera but also to a single camera. It is. Therefore, when a single camera is used without using a stereo camera, the number of shooting windows may be one.
  • the shielding layer 11 is a single layer structure.
  • the shielding layer 11 can have a multilayer structure.
  • the first ceramic layer is formed by laminating ceramics on the inner surface of the inner glass plate 14.
  • a silver layer is formed by laminating silver on the first ceramic layer.
  • a second ceramic layer is formed by laminating a ceramic on the silver layer.
  • the shielding layer 11 having a three-layer structure can shield electromagnetic waves by a silver layer.
  • the material of the composition shown in the following Table 2 can be utilized for this silver layer.
  • region 12 are spaced apart.
  • each imaging window (113 ⁇ / b> A, 113 ⁇ / b> B) may be formed to be continuous with the non-shielding region 12.
  • (1) Configuration of glass plate A laminated glass in which an outer glass plate and an inner glass plate are made of green glass having a thickness of 2 mm, and a single-layer interlayer film is disposed therebetween.
  • Shielding layer A shielding layer having a three-layer structure in which a silver layer was arranged in the composition shown in Table 2 between the first ceramic layer and the second ceramic layer having the composition shown in Table 1 above was formed. In addition, a trapezoidal photographing window was formed in the shielding layer.
  • (3) Production of glass plate A first ceramic layer, a silver layer, and a second ceramic layer were screen-printed on the inner surface of the inner glass plate to form a shielding layer. The composition of the silver layer is shown in Table 2 below. Thereafter, it was baked to 650 ° C. in a heating furnace with a molding die as shown in FIG. 6 and formed into a curved shape, and gradually cooled after being conveyed from the heating furnace.
  • the horizontal axis indicates the length in the surface direction of the glass plate, and the vertical axis indicates the lens power (millimeter diopter). (Diopter) is the reciprocal of the focal length due to the lens action, and its unit is (1 / m).
  • the method for measuring the lens power is as follows. First, light is projected onto a glass plate in a dark room, and a shadow is formed on the screen behind the glass plate. At this time, if there is a convex lens action on the glass plate, the light is condensed and the shadow on the screen becomes bright. On the other hand, when there is a concave lens action on the glass plate, it becomes dark. Here, there is a correlation between the lens power and the brightness of the shadow on the screen. By placing a lens with a known lens power and measuring the brightness on the screen at that time, the relationship between the lens power and the brightness Can be obtained. Therefore, the lens power of the glass plate can be obtained by arranging the target glass plate and measuring the brightness on the screen over the entire surface of the glass.
  • the lens power increases rapidly and the distortion of the glass plate increases near the boundary from the shielding layer toward the non-shielding region. Recognize. And when it leaves
  • FIG. 13 shows a photograph thus obtained.
  • the perfect circle is deformed into an elliptical shape within 8 mm from the boundary between the shielding layer and the imaging window (distortion region).
  • the vicinity of the center of the imaging window is closer to a perfect circle than the vicinity of the boundary.
  • the imaging window so that the vertical and horizontal widths satisfy the above-described formula 1 so that the imaging range of the imaging apparatus does not include the above-described distortion region with large distortion. Is done.
  • Each photographing window was formed in a trapezoidal shape having an upper side width of 20 mm, a lower side width of 50 mm, and a height of 40 mm. Then, using the depth gauge (manufacturer name: Mitutoyo Corporation, model number: ID-C112RB), the horizontal curvature radii of each of the outer surface and the inner surface of the left and right photographing windows were measured. . In addition, the width of the depth gauge was 50 mm, and the radius of curvature of each surface of each imaging window was measured by applying a depth gauge to the portion where the width of the center of each imaging window (position of 30 mm height) was 50 mm. . Furthermore, the lens power in the horizontal direction of each photographing window was calculated by substituting the radius of curvature of each surface into the following equation (4).
  • the unit of lens power is (1 / m)
  • the unit of R1 and R2 is m
  • 1.52 is the refractive index of glass.
  • the radius of curvature of the vehicle outer surface is substituted for R1 in Equation 4, and the radius of curvature of the vehicle inner surface is substituted for R2.
  • the lens power of the left photographing window was obtained as shown in FIG. 14A.
  • the result shown by FIG. 14B was obtained about the lens power of the right imaging
  • the scale of the vertical axis is milli-diopter.
  • a lens power of 0 means that the curvature of the first surface and the fourth surface are the same, so the windshield does not have a concave lens function or a convex lens function, in other words, there is no convergence or divergence. To do. Therefore, from the result, it was found that by forming a shielding layer by laminating ceramics on the fourth surface, it is possible to form a photographing window that hardly generates lens power due to distortion. Moreover, it turned out that the deformation amount which arises in the image acquired through the imaging
  • the value of the lens power can be different depending on other factors such as the difference in curvature of the surface between the outer glass plate and the inner glass plate, but only on the fourth surface as shown in FIGS. 14A and 14B. It has been found that when ceramics are laminated, the lens power due to distortion hardly occurs in the photographing window. Further, it has been found that when ceramic is laminated only on the second surface, the lens power due to distortion occurs most in the photographing window. Further, in the case where ceramics are laminated on the second surface and the fourth surface, in the photographing window, a lens caused by distortion that is intermediate between the result of laminating the ceramic only on the second surface and the result of laminating the ceramic only on the fourth surface. It turns out that power is generated.
  • the vertical radius of curvature of the outer surface of the vehicle was varied from 1600 mm to 2000 mm at intervals of 200 mm.
  • the distance (optical length in terms of air layer) between the entrance pupil of the photographing apparatus and the windshield (inner surface) was varied from -10 mm to 30 mm at intervals of 5 to 10 mm.
  • a measurement point was set on a target placed at a position 1500 mm away from the windshield.
  • This amount of distortion is a numerical value that does not depend on the focal length and F value of the photographing apparatus.
  • the evaluated measurement points and directions were the Ay and Y directions, the Cy and Y directions, and the Ex and X directions shown in FIG. As a result, the results shown in FIGS. 16 and 17 were obtained. Note that the distance between the entrance pupil and the windshield being ⁇ 10 mm means that the entrance pupil is separated from the windshield (inner surface) by an optical length of 10 mm toward the outside of the vehicle.
  • FIG. 16 shows the amount of distortion of the target imaged through the windshield when the distance between the entrance pupil of the camera and the windshield was varied from ⁇ 10 mm to 30 mm at intervals of 10 mm.
  • the amount of distortion changes depending on the curvature of the windshield.
  • the distance D between the windshield and the entrance pupil By setting the distance D between the windshield and the entrance pupil to about 3 mm, the change in the amount of distortion due to the curvature of the windshield can be suppressed.
  • D when D is set to ⁇ 10 mm, the amount of distortion of the target Cy varies from 1.1% to 2.7% when the curvature of the windshield is varied from 1600 mm to 2000 mm.
  • D was set to approximately 3 mm, even when the curvature of the windshield was varied from 1600 mm to 2000 mm, the amount of distortion of the target Cy did not vary at 1.9%.
  • the variation in the distortion amount becomes almost zero.
  • the target Cy has a larger amount of absolute distortion and variation, it can be seen that the change in the amount of distortion due to the curvature of the windshield can be suppressed by setting the distance D between the windshield and the entrance pupil to approximately 3 mm. It was.
  • the shape of the windshield is curved for design and aerodynamic reasons. Since the glass plate has a constant thickness in terms of design, the lens power is almost zero, and distortion caused by the lens power hardly occurs. Further, if the shape of the curve is as designed, the amount of distortion caused by the curve can be calculated and dealt with. However, the distortion due to the lens power caused by the difference in curvature between the outer surface (first surface) and the inner surface (fourth surface) of the windshield causes a deviation from the design value. For this reason, when such distortion caused by the lens power occurs, it is difficult to correct the deformation of the image captured by the stereo camera only by the design value of the windshield, and it is difficult to correct the distortion caused by the lens power. Is required separately. On the other hand, as described above, since the generation of lens power can be suppressed by laminating ceramic only on the fourth surface, it is not necessary to deal with distortion caused by such lens power.
  • FIG. 17 shows the amount of distortion of the target imaged through the windshield when the curvature radius in the vertical direction of the outer surface of the vehicle is varied from 1600 mm to 2000 mm at intervals of 100 mm.
  • Cy had the largest variation in distortion.
  • the curvature of the point Cy is 3.3 when the vertical curvature radius of the outer surface of the vehicle is 1600 mm and 2000 mm. It varied by approximately 2.9% from% to 0.4%.
  • the variation in the distortion of the point Cy is 2.3% when the vertical curvature radius of the outer surface of the vehicle is 1600 mm and 2000 mm. From about 1.5% to about 0.8%.
  • the variation in the distortion at the point Cy is 1.1 when the vertical curvature radius of the outer surface of the vehicle is 1600 mm and 2000 mm. % To 2.6% could be reduced to about 1.5%.
  • the distance between the entrance pupil of the camera and the windshield in a range of ⁇ 10 mm to 10 mm, the image is taken through the windshield even if the vertical curvature radius of the outer surface of the vehicle is changed. It was found that the variation of the target distortion amount can be suppressed to some extent.
  • the distance between the entrance pupil of the camera and the windshield in the range of 2 mm to 3 mm, even if the vertical radius of curvature of the outer surface of the vehicle is changed, for example, the surface provided with the shielding layer
  • the variation in the vertical radius of curvature of the vehicle outer surface indicates a manufacturing error of the windshield
  • the variation in the distance between the windshield and the entrance pupil indicates an error when the camera is attached.
  • the curvature radius of the vehicle outer surface and the curvature radius of the vehicle inner surface are the same, the lens effect hardly occurs with the windshield, so the amount of distortion of the image taken through the windshield is Even if the distance between the windshield and the camera fluctuates, the value is almost constant.
  • the correction value for correcting the image photographed through the windshield becomes a value specific to each windshield, and the correction value must be specified every time the windshield is manufactured.
  • the curvature radius of the vehicle outer surface and the curvature radius of the vehicle inner surface are set. It was found that even if the disagreement fluctuates, the fluctuation of the distortion amount of the image taken through the windshield can be suppressed to some extent. In particular, it has been found that by setting the distance between the entrance pupil of the camera and the windshield in the range of 2 mm to 3 mm, fluctuations in the amount of distortion of the image taken through the windshield can be substantially suppressed. As a result, it is possible to prevent the amount of distortion of the image captured through each imaging window from fluctuating greatly due to manufacturing errors of the Indian shield, and to uniformly determine a correction value for correcting the captured image without considering individual differences. be able to.
  • Image sensor 29 ... Distortion correction plate, 3 ... Image processing device, 31 ... Storage unit, 311 ... Correction data, 32 ... Control unit, 321 ... Image analysis unit, 33 ... Input / output unit, 60 ... field of view, 800 ... Mold, 801 ... Transfer, 802 ... Heating furnace, 803 ... Slow cooling furnace, 901 ... Heating furnace, 931 ... Roller, 902 ... Molding device, 921 ... Upper mold, 922 ... Lower mold, 903 ... Roller conveyor

Abstract

Provided is a windshield that can be used in a vehicle-mounted system capable of acquiring sufficient information using a simple configuration. A windshield according to an aspect of the present invention is a windshield for an automobile in which a stereo camera including a plurality of mutually spaced-apart photography devices can be installed so as to enable acquisition of a plurality of images between which parallax arises, the windshield being provided with a glass plate and a shielding layer which is disposed on the glass plate and which shields a field of view from outside the vehicle. The shielding layer is provided with a plurality of photography windows corresponding respectively to the plurality of photography devices, to enable each of the plurality of photography devices of the stereo camera installed in the vehicle to capture images of the situation outside the vehicle.

Description

ウインドシールド及び車載システムWindshield and in-vehicle system
 本発明は、ウインドシールド及び車載システムに関する。 The present invention relates to a windshield and an in-vehicle system.
 従来、自動車用のウインドシールドには、車外からの視野を遮るための遮蔽層を備えたものがある。この遮蔽層は、ウインドシールドの周縁部に沿って設けられ、ウインドシールドを自動車に取り付けるための接着剤を車外から見えないようにする。 Conventionally, some windshields for automobiles are provided with a shielding layer for blocking the field of view from the outside of the vehicle. This shielding layer is provided along the peripheral edge of the windshield so that the adhesive for attaching the windshield to the automobile cannot be seen from the outside of the vehicle.
 また、近年、車外の状況を撮影するカメラを車内に設置する車載システムが提案されている。この車載システムでは、カメラにより取得した被写体の撮影画像を解析することで、対向車、前走車、歩行者、交通標識、車線境界線等を認識し、運転者に危険を知らせる等の様々な運転の支援を行うことができる。ただし、この車載システムのカメラは、ルームミラーの支持部近傍等、カメラの撮影範囲に上記遮蔽層が含まれる位置に設置されるケースが多く、遮蔽層がこのカメラの撮影を阻害する可能性がある。 In recent years, an in-vehicle system has been proposed in which a camera for photographing the situation outside the vehicle is installed in the vehicle. This in-vehicle system recognizes oncoming vehicles, preceding vehicles, pedestrians, traffic signs, lane boundaries, etc. by analyzing captured images of the subject acquired by the camera, and informs the driver of various dangers. Driving assistance can be provided. However, the camera of this in-vehicle system is often installed at a position where the shielding layer is included in the photographing range of the camera, such as in the vicinity of the support portion of the rearview mirror, and the shielding layer may hinder the photographing of the camera. is there.
 そこで、特許文献1及び2では、遮蔽層の一部に透過窓を設けることが提案されている。例えば、中間膜の一部を可視光の透過率の高い素材に置き換えたり、セラミックの積層をしない領域を設けたりすることで、遮蔽層の一部に可視光の透過率の高い領域(透過窓)を形成することができる。これによって、車内に設置されたカメラは、遮蔽層に阻害されることなく、車外の状況を撮影することができる。 Therefore, Patent Documents 1 and 2 propose providing a transmission window in a part of the shielding layer. For example, by replacing a part of the intermediate film with a material having a high visible light transmittance, or by providing a region not laminated with ceramic, a region with a high visible light transmittance (transmission window) is provided on a part of the shielding layer. ) Can be formed. As a result, the camera installed in the vehicle can photograph the situation outside the vehicle without being blocked by the shielding layer.
特開2006-327381号公報JP 2006-327381 A 特開2007-039278号公報JP 2007-039278 A
 しかしながら、特許文献1及び2では、ウインドシールドに単一の透過窓を設け、この単一の透過窓から単一のカメラを利用して車外の交通状況を撮影するため、被写体と自車との距離、被写体の移動速度等をカメラからの情報のみでは測定することができなかった。そのため、従来の車載システムでは、被写体と自車との距離、被写体の移動速度等を測定するために、ミリ波レーダ、レーザレーダ等の異なるタイプの測定装置を更に備えており、異なる種類のデータを連結する分だけシステム構成が複雑になるという問題点があった。 However, in Patent Documents 1 and 2, since a single transmission window is provided in the windshield and a traffic situation outside the vehicle is photographed from the single transmission window using a single camera, The distance, the moving speed of the subject, etc. could not be measured only by information from the camera. Therefore, the conventional in-vehicle system is further equipped with different types of measuring devices such as millimeter wave radar and laser radar to measure the distance between the subject and the vehicle, the moving speed of the subject, etc. There is a problem that the system configuration becomes complicated as much as connecting the two.
 本発明は、一側面では、このような実情を鑑みてなされたものであり、その目的は、簡易な構成で十分な情報を取得可能な車載システムに適用できるウインドシールドを提供することである。 The present invention has been made in view of such a situation in one aspect, and an object thereof is to provide a windshield applicable to an in-vehicle system capable of acquiring sufficient information with a simple configuration.
 本発明は、上述した課題を解決するために、以下の構成を採用する。 The present invention adopts the following configuration in order to solve the above-described problems.
 すなわち、本発明の一側面に係るウインドシールドは、視差の生じた複数の画像を取得可能に、互いに離間した複数の撮影装置を有するステレオカメラを配置可能な自動車のウインドシールドであって、ガラス板と、前記ガラス板に設けられ、車外からの視野を遮蔽する遮蔽層と、を備える。そして、前記遮蔽層は、車内に配置された前記ステレオカメラの前記複数の撮影装置それぞれが車外の状況を撮影可能なように、前記複数の撮影装置それぞれにそれぞれ対応する複数の撮影窓を備える。 In other words, a windshield according to one aspect of the present invention is a windshield for an automobile in which a stereo camera having a plurality of imaging devices spaced apart from each other can be obtained so that a plurality of images with parallax can be acquired. And a shielding layer that is provided on the glass plate and shields the field of view from the outside of the vehicle. The shielding layer includes a plurality of photographing windows respectively corresponding to the plurality of photographing devices so that each of the plurality of photographing devices of the stereo camera arranged in the vehicle can photograph a situation outside the vehicle.
 当該構成に係るウインドシールドでは、ガラス板に設けられる遮蔽層は、車内に配置されたステレオカメラの各撮影装置が車外の状況を撮影可能なように、当該各撮影装置にそれぞれ対応する複数の撮影窓を有する。そのため、本発明に係るウインドシールドは、複数の画像間で生じる視差によって被写体との距離等を測定可能なステレオカメラに適用可能である。したがって、当該構成によれば、ステレオカメラによって、異なる種類のデータを連結しなくても被写体との距離等の情報を取得することが可能であるため、簡易な構成で十分な情報を取得可能な車載システムに適用可能なウインドシールドを提供することができる。ステレオカメラにより取得した被写体の撮影画像を解析することで、対向車、前走車、歩行者、交通標識、車線境界線等を認識し、運転者に危険を知らせる等の様々な運転の支援を行うことも勿論可能である。ただし、本発明は、上記のような被写体の認識等の高度な画像解析の機能を有さないミリ波レーダ、レーザレーダ等の異なるタイプの測定装置を備えることを除外するものではない。 In the windshield according to the configuration, the shielding layer provided on the glass plate includes a plurality of photographing devices corresponding to the photographing devices so that each photographing device of the stereo camera arranged in the vehicle can photograph the situation outside the vehicle. Has a window. Therefore, the windshield according to the present invention can be applied to a stereo camera that can measure the distance to the subject by parallax generated between a plurality of images. Therefore, according to the configuration, it is possible to acquire information such as the distance to the subject without connecting different types of data with the stereo camera, and thus it is possible to acquire sufficient information with a simple configuration. A windshield applicable to an in-vehicle system can be provided. By analyzing the captured image of the subject acquired by the stereo camera, it recognizes oncoming vehicles, preceding vehicles, pedestrians, traffic signs, lane boundaries, etc., and supports various driving such as notifying the driver of danger. It is of course possible to do this. However, the present invention does not exclude the provision of different types of measuring devices such as millimeter wave radars and laser radars that do not have advanced image analysis functions such as subject recognition as described above.
 また、上記構成に係るウインドシールドの別の形態として、前記遮蔽層は、前記ガラス板の車内側の面に、前記ガラス板と異なる熱膨張率を有するセラミックを積層することで構成されてもよく、前記ガラス板及び前記セラミックの熱膨張率の違いによって前記遮蔽層の周縁部で前記ガラス板が歪む歪領域と、前記自動車を運転する運転者が運転の際に交通状況を確認する視野範囲と、が重ならないように配置されてもよい。 As another form of the windshield according to the above configuration, the shielding layer may be configured by laminating a ceramic having a thermal expansion coefficient different from that of the glass plate on the inner surface of the glass plate. A strain region in which the glass plate is distorted at a peripheral portion of the shielding layer due to a difference in coefficient of thermal expansion between the glass plate and the ceramic, and a visual field range in which a driver driving the automobile confirms traffic conditions when driving , May be arranged so as not to overlap.
 ガラス板と異なる熱膨張率を有するセラミックによって遮蔽層を構成した場合、ガラス板とセラミックとの熱膨張率の相違に起因して、ウインドシールドを成形する際に遮蔽層の周縁部にガラス板の歪みが大きい歪領域が形成されてしまう。この歪領域の幅は凡そ8mm程度である。 When the shielding layer is made of a ceramic having a different thermal expansion coefficient from that of the glass plate, due to the difference in thermal expansion coefficient between the glass plate and the ceramic, the glass plate is formed on the periphery of the shielding layer when forming the windshield. A strain region having a large strain is formed. The width of the strain region is about 8 mm.
 そこで、本実施形態では、ガラス板の歪領域と運転者の視野範囲とが重ならないように遮蔽層を配置する。これによって、このウインドシールドを取り付けた自動車では、運転の際に運転者に良好な視界を提供することができる。 Therefore, in this embodiment, the shielding layer is arranged so that the strain region of the glass plate and the visual field range of the driver do not overlap. As a result, an automobile equipped with this windshield can provide a driver with a good field of view during driving.
 なお、自動車を運転する運転者が運転する際の交通状況を確認する視野範囲は、運転席についた運転者が運転を行う際に注意する範囲であり、実施の形態に応じて適宜設定可能である。例えば、JIS R 3212(1998年、「自動車用安全ガラス試験方法」)に規定された試験領域Aをこの視野範囲として採用してもよい。 The field of view for confirming the traffic situation when the driver driving the car is the range that the driver in the driver's seat is careful when driving, and can be set as appropriate according to the embodiment. is there. For example, you may employ | adopt the test area | region A prescribed | regulated to JIS (R) 3212 (1998, "the safety glass test method for motor vehicles") as this visual field range.
 また、上記構成に係るウインドシールドの別の形態として、前記ガラス板は、車外側に配置される外側ガラス板と車内側に配置される内側ガラス板とを中間膜を介して互いに接合した合わせガラスで構成されてもよい。そして、前記遮蔽層は、前記内側ガラス板の車内側の面に、前記内側ガラス板と異なる熱膨張率を有するセラミックを積層することで構成されてもよい。当該構成によれば、内側ガラス板にセラミックの層を形成することにより、歪みの少ない撮影窓を提供することが可能である。また、当該構成によれば、撮影窓に光学的欠陥が生じるのを低減することができるため、被写体と自車との距離を正確に測定可能になる。 Further, as another form of the windshield according to the above configuration, the glass plate is a laminated glass in which an outer glass plate arranged on the vehicle outer side and an inner glass plate arranged on the vehicle inner side are bonded to each other through an intermediate film. It may be constituted by. And the said shielding layer may be comprised by laminating | stacking the ceramic which has a different thermal expansion coefficient from the said inner side glass plate on the surface inside the vehicle of the said inner side glass plate. According to this configuration, it is possible to provide a photographing window with less distortion by forming a ceramic layer on the inner glass plate. Further, according to this configuration, it is possible to reduce the occurrence of an optical defect in the photographing window, so that it is possible to accurately measure the distance between the subject and the own vehicle.
 また、上記構成に係るウインドシールドの別の形態として、前記ガラス板は、車外側に配置される外側ガラス板と車内側に配置される内側ガラス板とを中間膜を介して互いに接合した合わせガラスで構成されてもよい。そして、前記遮蔽層は、前記外側ガラス板の車内側の面及び前記内側ガラス板の車内側の面それぞれに、前記外側ガラス板及び前記内側ガラス板と異なる熱膨張率を有するセラミックを積層することで構成されてもよい。 Further, as another form of the windshield according to the above configuration, the glass plate is a laminated glass in which an outer glass plate arranged on the vehicle outer side and an inner glass plate arranged on the vehicle inner side are bonded to each other through an intermediate film. It may be constituted by. And the said shielding layer laminates | stacks the ceramic which has a thermal expansion coefficient different from the said outer side glass plate and the said inner side glass plate on the inner surface of the said outer side glass plate and the inner surface of the said inner side glass plate, respectively. It may be constituted by.
 当該構成によれば、外側ガラス板の車内側の面及び内側ガラス板の車内側の面それぞれにセラミックの層を設けることで遮蔽層を形成する。そのため、二層の遮蔽層を形成することができ、外観上の見栄えを良くすることができる。 According to this configuration, the shielding layer is formed by providing the ceramic layer on each of the inner surface of the outer glass plate and the inner surface of the inner glass plate. Therefore, a two-layer shielding layer can be formed, and the appearance can be improved.
 また、中間膜にワイヤー、アンテナ等が埋め込まれている場合がある。この場合に、外側ガラス板の車内側の面及び内側ガラス板の車内側の面それぞれにセラミックの層を設けることで、車外側及び車内側からこれらを隠すことができる。そのため、このような場合にも、外環上の見栄えを良くすることができる。 Also, there are cases where wires, antennas, etc. are embedded in the intermediate film. In this case, by providing a ceramic layer on each of the inner surface of the outer glass plate and the inner surface of the inner glass plate, these can be hidden from the outer side and the inner side of the vehicle. Therefore, even in such a case, the appearance on the outer ring can be improved.
 また、上記構成に係るウインドシールドの別の形態として、前記複数の撮影窓それぞれは、前記複数の撮影窓それぞれの垂直方向及び水平方向の幅が式(1)を満たすよう形成されてもよい。 Further, as another form of the windshield according to the above configuration, each of the plurality of photographing windows may be formed such that the vertical and horizontal widths of the plurality of photographing windows satisfy Expression (1).
Figure JPOXMLDOC01-appb-M000001
 なお、Hは、撮影窓の垂直方向及び水平方向の幅を示す。aは、撮影窓の周縁部における歪領域の幅を示す。bは、入射瞳の直径を示す。cは、取付誤差を示す。
Figure JPOXMLDOC01-appb-M000001
Note that H represents the vertical and horizontal widths of the imaging window. a shows the width | variety of the distortion area | region in the peripheral part of an imaging | photography window. b indicates the diameter of the entrance pupil. c shows an attachment error.
 ガラス板と異なる熱膨張率を有するセラミックの積層されている領域と当該セラミックの積層されていない領域との境界、換言すると、撮影窓と遮蔽層との境界では、板ガラスを加熱処理する際にこの熱膨張率の違いによって歪みによる光学的欠陥が形成されやすい(歪領域)。後述するとおり、この歪領域の幅aは、撮影窓と遮蔽層との境界から凡そ8mmの範囲で形成される。また、入射瞳の直径bは、焦点距離f=8mm及び口径比F=2のカメラ(撮影装置)の場合に4mmとなる。更に、取付誤差cは、凡そ5mmとなる。したがって、上記条件の場合には、各撮影窓の垂直方向及び水平方向の幅は、25mm以下になるように構成される。これによって、当該構成によれば、各撮影装置に対する歪みの影響を回避しつつ、各撮影窓の大きさを比較的に小さく形成することが可能になる。 When the plate glass is heat-treated at the boundary between the laminated region of the ceramic having a different coefficient of thermal expansion from the glass plate and the non-laminated region of the ceramic, in other words, at the boundary between the photographing window and the shielding layer. Due to the difference in thermal expansion coefficient, optical defects due to strain are likely to be formed (strain region). As will be described later, the width a of the strain region is formed in a range of about 8 mm from the boundary between the photographing window and the shielding layer. The diameter b of the entrance pupil is 4 mm in the case of a camera (imaging device) having a focal length f = 8 mm and an aperture ratio F = 2. Furthermore, the mounting error c is about 5 mm. Therefore, in the case of the above conditions, the vertical and horizontal widths of each photographing window are configured to be 25 mm or less. Thus, according to this configuration, it is possible to make the size of each imaging window relatively small while avoiding the influence of distortion on each imaging device.
 また、各撮影窓の周囲には、各撮影窓の結露を防ぐためのヒーターが設置される場合がある。この場合に、各撮影窓の中央領域では、各撮影窓の周囲に設置されるヒーターから遠いことによって、結露が残りやすいという問題が生じうる。これに対して、当該構成によれば、各撮影窓の大きさを比較的に小さく形成することができるため、各撮影窓の中央領域で結露が残りやすくなるのを防止し、かつ、ヒーターにおける電力消費を抑えることができる。 Also, a heater may be installed around each shooting window to prevent condensation on each shooting window. In this case, in the central region of each photographing window, there is a problem that dew condensation tends to remain due to being far from the heater installed around each photographing window. On the other hand, according to the configuration, since the size of each photographing window can be formed relatively small, it is possible to prevent dew condensation from easily remaining in the central region of each photographing window, and in the heater. Power consumption can be reduced.
 また、上記構成に係るウインドシールドの別の形態として、前記複数の撮影窓それぞれは、前記複数の撮影窓それぞれの垂直方向及び水平方向の幅が式(2)を満たすよう形成されてもよい。 Further, as another form of the windshield according to the above configuration, each of the plurality of photographing windows may be formed such that the vertical and horizontal widths of the plurality of photographing windows satisfy Expression (2).
Figure JPOXMLDOC01-appb-M000002
 入射瞳は、撮影装置を構成する光学系の開口絞りを被写体側から見たときの像であり、光学系で用いる光の「入口」に相当する。焦点距離f、口径比Fのカメラレンズの場合、入射瞳の直径は(f/F)となる。そのため、撮影装置で必要とする光線を遮らないためには、撮影窓の直径は最低限として(f/F+2D・tanφ)が必要である。ただし、Dは撮影窓と入射瞳との間の距離であり、φは撮影装置の視野(半角)であり、撮影窓は撮影装置の光軸と垂直な場合である。よって、撮影窓の最小限の大きさは、D=0の場合の(f/F)、すなわち入射瞳の直径である。これによって、各撮影窓の最低限度に係る大きさの指針が定まるため、各撮影窓の大きさを比較的自由に決定することが可能になる。
Figure JPOXMLDOC01-appb-M000002
The entrance pupil is an image when the aperture stop of the optical system constituting the photographing apparatus is viewed from the subject side, and corresponds to an “entrance” of light used in the optical system. In the case of a camera lens having a focal length f and an aperture ratio F, the diameter of the entrance pupil is (f / F). Therefore, in order not to block the light beam required by the photographing apparatus, the diameter of the photographing window is required to be a minimum (f / F + 2D · tanφ). However, D is the distance between the imaging window and the entrance pupil, φ is the field of view (half angle) of the imaging apparatus, and the imaging window is perpendicular to the optical axis of the imaging apparatus. Therefore, the minimum size of the imaging window is (f / F) when D = 0, that is, the diameter of the entrance pupil. As a result, since a guideline for the size of each photographing window is determined, the size of each photographing window can be determined relatively freely.
 また、本発明の一側面に係る車載システムは、上記いずれかの形態に係るウインドシールドを備える自動車に搭載するための車載システムであって、視差の生じた複数の画像を取得可能なよう互いに離間した複数の撮影装置を有するステレオカメラと、前記ステレオカメラにより取得された複数の画像を解析して、前記ステレオカメラの撮影範囲内に写る被写体の位置を算出する画像処理装置と、を備える。そして、前記画像処理装置は、前記ウインドシールドによって変形した画像を補正するための補正データであって、前記セラミックの積層した面に応じて変形量が定められた補正データを保持し、当該補正データを用いて各画像の補正処理を実行する。 An in-vehicle system according to an aspect of the present invention is an in-vehicle system for mounting on an automobile including the windshield according to any one of the above aspects, and is separated from each other so that a plurality of images with parallax can be acquired. A stereo camera having a plurality of photographing devices, and an image processing device that analyzes a plurality of images acquired by the stereo camera and calculates a position of a subject appearing in a photographing range of the stereo camera. The image processing apparatus holds correction data for correcting an image deformed by the windshield, the correction data having a deformation amount determined according to the surface on which the ceramics are laminated, and the correction data Is used to execute correction processing for each image.
 本発明者らは、ガラス板と熱膨張率の異なるセラミックにより遮蔽層を形成した場合に、セラミックの積層したガラス板の面によって撮影窓のレンズパワーが変動することを見出した。そこで、当該構成では、画像処理装置は、セラミックの積層した面に応じて変形量が定められた補正データを用いて各画像の補正処理を実行する。これによって、ウインドシールドに設けられた撮影窓に適合した画像の補正処理を実現することができる。 The present inventors have found that when the shielding layer is formed of a ceramic having a different coefficient of thermal expansion from that of the glass plate, the lens power of the photographing window varies depending on the surface of the ceramic laminated glass plate. Therefore, in this configuration, the image processing apparatus executes correction processing for each image using correction data in which the amount of deformation is determined according to the surface on which the ceramics are stacked. As a result, it is possible to realize an image correction process suitable for the photographing window provided in the windshield.
 また、本発明の一側面に係る車載システムは、上記いずれかの形態に係るウインドシールドを備える自動車に搭載するための車載システムであって、視差の生じた複数の画像を取得可能なよう互いに離間した複数の撮影装置を有するステレオカメラと、前記ステレオカメラにより取得された複数の画像を解析して、前記ステレオカメラの撮影範囲内に写る被写体の位置を算出する画像処理装置と、を備えてもよい。そして、前記ステレオカメラの複数の撮影装置それぞれにおける光学系は、入射瞳が光学部品よりも被写体側に存在するよう構成されてもよい。当該構成によれば、各撮影装置の入射瞳は、光学部品の被写体側に存在するため、ウインドシールド上又は近傍に配置することができる。そのため、ステレオカメラに入射するウインドシールド上での入射光領域を小さくすることができ、各撮影装置に対応する各撮影窓の大きさを小さくすることができる。また、これによって、各撮影窓上の歪みの影響を受けにくいようにすることができる。 An in-vehicle system according to an aspect of the present invention is an in-vehicle system for mounting on an automobile including the windshield according to any one of the above aspects, and is separated from each other so that a plurality of images with parallax can be acquired. A stereo camera having a plurality of photographing devices, and an image processing device that analyzes a plurality of images acquired by the stereo camera and calculates a position of a subject that appears in the photographing range of the stereo camera. Good. The optical system in each of the plurality of photographing devices of the stereo camera may be configured such that the entrance pupil exists on the subject side with respect to the optical component. According to this configuration, since the entrance pupil of each photographing apparatus exists on the subject side of the optical component, it can be arranged on or near the windshield. Therefore, the incident light area on the windshield that enters the stereo camera can be reduced, and the size of each imaging window corresponding to each imaging apparatus can be reduced. This also makes it less likely to be affected by distortion on each shooting window.
 また、上記構成に係る載システムの別の形態として、前記ステレオカメラは、前記複数の撮影装置それぞれの光軸方向において、前記複数の撮影装置それぞれにおける前記光学系の入射瞳とウインドシールドの前記複数の撮影窓それぞれとの距離が前後10mm以内の範囲になるように配置されてもよい。本発明者らは、各撮影装置の光軸方向において、各撮影装置を構成するレンズの入射瞳とウインドシールドの各撮影窓との距離が前後10mm以内の範囲になるようにステレオカメラを配置することで、撮影窓を介して撮影した画像の歪曲による変形量が変動しにくいことを見出した。そのため、当該構成によれば、ウインドシールドの製造誤差によって各撮影窓を介して撮影した画像の歪曲量が大きく変動するのを防止し、個体差を考慮することなく、撮影した画像を補正する補正値を一律に定めることができる。 As another form of the mounting system according to the above-described configuration, the stereo camera is configured such that, in the optical axis direction of each of the plurality of imaging devices, the entrance pupil of the optical system and the plurality of windshields in each of the plurality of imaging devices. It may be arranged so that the distance from each of the imaging windows is within a range of 10 mm or less. The present inventors arrange a stereo camera so that the distance between the entrance pupil of the lens constituting each photographing apparatus and each photographing window of the windshield is within 10 mm in the front and rear direction in the optical axis direction of each photographing apparatus. Thus, it has been found that the amount of deformation due to distortion of an image taken through the shooting window is less likely to fluctuate. Therefore, according to this configuration, it is possible to prevent the amount of distortion of the image captured through each imaging window from fluctuating greatly due to a manufacturing error of the windshield, and to correct the captured image without considering individual differences. The value can be set uniformly.
 本発明によれば、簡易な構成で十分な情報を取得可能な車載システムに適用できるウインドシールドを提供することができる。 According to the present invention, it is possible to provide a windshield applicable to an in-vehicle system capable of acquiring sufficient information with a simple configuration.
図1は、実施の形態に係るウインドシールドを例示する平面図である。FIG. 1 is a plan view illustrating a windshield according to an embodiment. 図2は、実施の形態に係るウインドシールドを例示する断面図である。FIG. 2 is a cross-sectional view illustrating a windshield according to the embodiment. 図3Aは、実施の形態に係るウインドシールドの撮影窓と撮影装置の撮影範囲との関係を例示する。FIG. 3A illustrates the relationship between the shooting window of the windshield and the shooting range of the shooting device according to the embodiment. 図3Bは、実施の形態に係るウインドシールドの撮影窓と撮影装置の入射瞳との関係を例示する。FIG. 3B illustrates the relationship between the imaging window of the windshield and the entrance pupil of the imaging apparatus according to the embodiment. 図4Aは、実施の形態に係る撮影装置を例示する。FIG. 4A illustrates the imaging device according to the embodiment. 図4Bは、入射瞳がレンズ系の内部に存在する撮影装置を例示する。FIG. 4B illustrates an imaging apparatus in which the entrance pupil exists inside the lens system. 図5は、実施の形態に係る車載システムを例示する。FIG. 5 illustrates an in-vehicle system according to the embodiment. 図6は、実施の形態に係るウインドシールドのガラス板の製造工程を例示する。FIG. 6 illustrates the manufacturing process of the glass plate of the windshield according to the embodiment. 図7は、他の形態に係るウインドシールドを例示する断面図である。FIG. 7 is a cross-sectional view illustrating a windshield according to another embodiment. 図8は、他の形態に係る撮影装置を例示する。FIG. 8 illustrates a photographing apparatus according to another embodiment. 図9は、他の形態に係る撮影装置を例示する。FIG. 9 illustrates a photographing apparatus according to another embodiment. 図10は、他の形態に係るウインドシールドの製造方法の一例を示す。FIG. 10 shows an example of a method for manufacturing a windshield according to another embodiment. 図11は、他の形態に係る撮影窓を例示する。FIG. 11 illustrates a shooting window according to another embodiment. 図12は、ガラス板の歪みを示すグラフである。FIG. 12 is a graph showing the distortion of the glass plate. 図13は、ガラス板の歪みを示す写真である。FIG. 13 is a photograph showing the distortion of the glass plate. 図14Aは、遮蔽層を設ける面と左側の撮影窓のレンズパワーとの関係を示すグラフである。FIG. 14A is a graph showing the relationship between the surface on which the shielding layer is provided and the lens power of the left imaging window. 図14Bは、遮蔽層を設ける面と右側の撮影窓のレンズパワーとの関係を示すグラフである。FIG. 14B is a graph showing the relationship between the surface on which the shielding layer is provided and the lens power of the right imaging window. 図15は、ウインドシールドによる画像の歪曲量をシミュレーションする場面を例示する。FIG. 15 illustrates a scene in which the amount of image distortion due to the windshield is simulated. 図16は、ウインドシールドと入射瞳との間の距離を変動させた場合における画像の歪曲量を示すグラフである。FIG. 16 is a graph showing the amount of image distortion when the distance between the windshield and the entrance pupil is varied. 図17は、被写体側の面の曲率半径を変動させた場合における画像の歪曲量を示すグラフである。FIG. 17 is a graph showing the amount of image distortion when the radius of curvature of the surface on the subject side is varied.
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。ただし、以下で説明する本実施形態は、あらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、本発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter also referred to as “this embodiment”) will be described with reference to the drawings. However, this embodiment described below is only an illustration of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. That is, in implementing the present invention, a specific configuration according to the embodiment may be adopted as appropriate.
 §1 構成例
 最初に、図1及び図2を用いて、本実施形態に係るウインドシールド1を説明する。図1は、本実施形態に係るウインドシールド1を模式的に例示する平面図である。また、図2は、本実施形態に係るウインドシールド1を模式的に例示する断面図である。なお、説明の便宜のため、図1及び図2の上下方向を「上下」と、図1の左右方向を「左右」と、図2の左右方向を「前後」と称することとする。
§1 Configuration Example First, the windshield 1 according to this embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a plan view schematically illustrating a windshield 1 according to this embodiment. FIG. 2 is a cross-sectional view schematically illustrating the windshield 1 according to this embodiment. For convenience of explanation, the up and down direction in FIGS. 1 and 2 is referred to as “up and down”, the left and right direction in FIG. 1 is referred to as “left and right”, and the left and right direction in FIG.
 図1及び図2で例示されるように、本実施形態に係るウインドシールド1は略台形状のガラス板を備えており、垂直から傾けて自動車に取り付けられる。このガラス板は、車外側に配置される外側ガラス板13と車内側に配置される内側ガラス板14とを樹脂製の中間膜15を介して互いに接合した合わせガラスで構成されている。 As illustrated in FIGS. 1 and 2, the windshield 1 according to this embodiment includes a substantially trapezoidal glass plate and is attached to an automobile by being inclined from the vertical. This glass plate is composed of a laminated glass in which an outer glass plate 13 disposed on the outer side of the vehicle and an inner glass plate 14 disposed on the inner side of the vehicle are bonded to each other via a resin intermediate film 15.
 この合わせガラスを構成する内側ガラス板14には、車外からの視野を遮蔽する遮蔽層11が設けられており、この遮蔽層11で遮蔽するようにステレオカメラ2が車内に取り付けられている。このステレオカメラ2は、視差の生じた2枚の画像を同時に取得可能なように、互いに離間した2つの撮影装置(21A、21B)を有している。これに対応して、遮蔽層11には、車内に配置された各撮影装置(21A、21B)が車外の状況を撮影可能なように、当該各撮影装置(21A、21B)に対応する2つの撮影窓(113A、113B)が形成されている。 The inner glass plate 14 constituting the laminated glass is provided with a shielding layer 11 that shields the field of view from the outside of the vehicle, and the stereo camera 2 is mounted inside the vehicle so as to be shielded by the shielding layer 11. The stereo camera 2 has two photographing devices (21A, 21B) separated from each other so that two images with parallax can be simultaneously acquired. Correspondingly, the shielding layer 11 has two imaging devices (21A, 21B) corresponding to the imaging devices (21A, 21B) so that the imaging devices (21A, 21B) arranged inside the vehicle can capture the situation outside the vehicle. Shooting windows (113A, 113B) are formed.
 また、ステレオカメラ2は画像処理装置3に接続しており、ステレオカメラ2により取得した複数の画像によって被写体と自車との距離等を解析可能な車載システム5を構成している。以下、各構成要素について説明する。なお、説明の便宜のため、以下では、外側ガラス板13の車外側の面を「第1面」と、外側ガラス板13の車内側の面を「第2面」と、内側ガラス板14の車外側の面を「第3面」と、内側ガラス板14の車内側の面を「第4面」と称する場合がある。 Further, the stereo camera 2 is connected to the image processing device 3 and constitutes an in-vehicle system 5 that can analyze the distance between the subject and the own vehicle based on a plurality of images acquired by the stereo camera 2. Hereinafter, each component will be described. For convenience of explanation, the vehicle outer surface of the outer glass plate 13 is referred to as “first surface”, the vehicle inner surface of the outer glass plate 13 is referred to as “second surface”, and the inner glass plate 14 is described below. A surface outside the vehicle may be referred to as a “third surface”, and a surface inside the vehicle of the inner glass plate 14 may be referred to as a “fourth surface”.
 <ガラス板>
 ウインドシールド1を構成するガラス板は、実施の形態に応じて、種々の構成が可能である。本実施形態では、図2に例示されるように、ウインドシールド1のガラス板は、外側ガラス板13と内側ガラス板14とを中間膜15を介して互いに接合した合わせガラスで構成されている。この合わせガラスは、後述する製造方法によって製造されることで、周縁部から中央部にかけて湾曲した形状に形成されている。このような合わせガラスを構成する外側ガラス板13及び内側ガラス板14はそれぞれ、公知のガラス板を用いることができ、熱線吸収ガラス、クリアガラス、グリーンガラス、UVグリーンガラス等で形成することもできる。
<Glass plate>
Depending on the embodiment, the glass plate constituting the windshield 1 can have various configurations. In the present embodiment, as illustrated in FIG. 2, the glass plate of the windshield 1 is composed of laminated glass in which an outer glass plate 13 and an inner glass plate 14 are bonded to each other via an intermediate film 15. This laminated glass is manufactured by a manufacturing method to be described later, so that it is formed in a curved shape from the peripheral part to the central part. Each of the outer glass plate 13 and the inner glass plate 14 constituting such a laminated glass can be a known glass plate, and can also be formed of heat ray absorbing glass, clear glass, green glass, UV green glass, or the like. .
 但し、外側ガラス板13及び内側ガラス板14はそれぞれ、自動車の使用される国の安全規格に沿った可視光線透過率を実現するように構成される。例えば、外側ガラス板13によって所望の日射吸収率を確保し、内側ガラス板14によって可視光線透過率が安全規格を満たすように調整することもできる。以下に、外側ガラス板13及び内側ガラス板14を構成可能なガラスの組成の一例として、クリアガラスの組成の一例と、熱線吸収ガラス組成の一例を示す。 However, the outer glass plate 13 and the inner glass plate 14 are each configured to realize visible light transmittance in accordance with the safety standards of the country where the automobile is used. For example, a desired solar radiation absorptivity can be secured by the outer glass plate 13, and the visible light transmittance can be adjusted by the inner glass plate 14 so as to satisfy safety standards. Below, as an example of the composition of the glass which can comprise the outer side glass plate 13 and the inner side glass plate 14, an example of a composition of a clear glass and an example of a heat ray absorption glass composition are shown.
 (クリアガラス)
SiO2:70~73質量%
Al23:0.6~2.4質量%
CaO:7~12質量%
MgO:1.0~4.5質量%
2O:13~15質量%(Rはアルカリ金属)
Fe23に換算した全酸化鉄(T-Fe23):0.08~0.14質量%
(Clear glass)
SiO 2 : 70 to 73% by mass
Al 2 O 3 : 0.6 to 2.4% by mass
CaO: 7 to 12% by mass
MgO: 1.0 to 4.5% by mass
R 2 O: 13 to 15% by mass (R is an alkali metal)
Total iron oxide converted to Fe 2 O 3 (T-Fe 2 O 3 ): 0.08 to 0.14% by mass
 (熱線吸収ガラス)
 熱線吸収ガラスの組成は、例えば、クリアガラスの組成を基準として、Fe23に換算した全酸化鉄(T-Fe23)の比率を0.4~1.3質量%とし、CeO2の比率を0~2質量%とし、TiO2の比率を0~0.5質量%とし、ガラスの骨格成分(主に、SiO2やAl23)をT-Fe23、CeO2およびTiO2の増加分だけ減じた組成とすることができる。
(Heat ray absorbing glass)
The composition of the heat-absorbing glass, for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO The ratio of 2 is 0 to 2% by mass, the ratio of TiO 2 is 0 to 0.5% by mass, and the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T-Fe 2 O 3 , CeO. The composition can be reduced by an increase of 2 and TiO 2 .
 本実施形態に係る合わせガラスの厚みは特に限定されないが、軽量化の観点からは、外側ガラス板13及び内側ガラス板14の厚みの合計を、2.4~4.6mmとすることが好ましく、2.6~3.8mmとすることがさらに好ましく、2.7~3.2mmとすることが特に好ましい。このように、軽量化のためには、外側ガラス板13及び内側ガラス板14の合計の厚みを小さくすればよい。外側ガラス板13及び内側ガラス板14それぞれの厚みは特に限定されないが、例えば、以下のように、外側ガラス板13及び内側ガラス板14それぞれの厚みを決定することができる。 The thickness of the laminated glass according to this embodiment is not particularly limited, but from the viewpoint of weight reduction, the total thickness of the outer glass plate 13 and the inner glass plate 14 is preferably 2.4 to 4.6 mm, More preferably, the thickness is 2.6 to 3.8 mm, and particularly preferably 2.7 to 3.2 mm. Thus, what is necessary is just to make the total thickness of the outer side glass plate 13 and the inner side glass plate 14 small for weight reduction. Although the thickness of each of the outer glass plate 13 and the inner glass plate 14 is not particularly limited, for example, the thickness of each of the outer glass plate 13 and the inner glass plate 14 can be determined as follows.
 すなわち、外側ガラス板13は、主として、小石等の飛来物等の衝撃に対する耐久性及び耐衝撃性が求められる。他方、外側ガラス板13の厚みを大きくするほど重量が増し好ましくない。この観点から、外側ガラス板13の厚みは、1.8~2.3mmとすることが好ましく、1.9~2.1mmとすることがさらに好ましい。何れの厚みを採用するかは、実施の形態に応じて適宜決定することができる。 That is, the outer glass plate 13 is mainly required to have durability and impact resistance against impacts of flying objects such as pebbles. On the other hand, as the thickness of the outer glass plate 13 is increased, the weight increases, which is not preferable. In this respect, the thickness of the outer glass plate 13 is preferably 1.8 to 2.3 mm, and more preferably 1.9 to 2.1 mm. Which thickness is adopted can be appropriately determined according to the embodiment.
 また、内側ガラス板14の厚みは、外側ガラス板13の厚みと同等にすることができるが、例えば、合わせガラスの軽量化のために、外側ガラス板13よりも厚みを小さくすることができる。具体的には、ガラスの強度を考慮すると、内側ガラス板14の厚みは、0.6~2.0mmであることが好ましく、0.8~1.6mmであることがさらに好ましく、1.0~1.4mmであることが特に好ましい。更には、内側ガラス板14の厚みは、0.8~1.3mmであることが好ましい。内側ガラス板14についても、何れの厚みを採用するかは、実施の形態に応じて適宜決定することができる。 Moreover, although the thickness of the inner side glass plate 14 can be made equal to the thickness of the outer side glass plate 13, for example, thickness can be made smaller than the outer side glass plate 13 for weight reduction of a laminated glass. Specifically, considering the strength of the glass, the thickness of the inner glass plate 14 is preferably 0.6 to 2.0 mm, more preferably 0.8 to 1.6 mm, It is particularly preferable that the thickness is ˜1.4 mm. Furthermore, the thickness of the inner glass plate 14 is preferably 0.8 to 1.3 mm. Which thickness is used for the inner glass plate 14 can be appropriately determined according to the embodiment.
 <中間膜>
 次に、外側ガラス板13及び内側ガラス板14を接合する中間膜15について説明する。中間膜15は、実施の形態に応じて種々の構成が可能であり、例えば、軟質のコア層を、これよりも硬質の一対のアウター層で挟持した3層構造で構成することができる。このように中間膜15を軟質の層及び硬質の層の複数層で構成することによって、ウインドシールド1の耐破損性能及び遮音性能を高めることができる。
<Intermediate film>
Next, the intermediate film 15 that joins the outer glass plate 13 and the inner glass plate 14 will be described. The intermediate film 15 can have various configurations according to the embodiment. For example, the intermediate film 15 can have a three-layer structure in which a soft core layer is sandwiched between a pair of harder outer layers. In this way, the damage resistance performance and sound insulation performance of the windshield 1 can be improved by configuring the intermediate film 15 with a plurality of layers of a soft layer and a hard layer.
 中間膜15の材料は、特に限定されず、実施の形態に応じて適宜選択することができる。例えば、中間膜15を上記のように硬さの異なる複数の層で構成する場合、硬質のアウター層には、ポリビニルブチラール樹脂(PVB)を用いることができる。このポリビニルブチラール樹脂(PVB)は、各ガラス板(13、14)との接着性及び耐貫通性に優れるため、アウター層の材料として好ましい。また、軟質のコア層には、エチレンビニルアセテート樹脂(EVA)、又はアウター層に利用するポリビニルブチラール樹脂よりも軟質のポリビニルアセタール樹脂を用いることができる。 The material of the intermediate film 15 is not particularly limited, and can be appropriately selected according to the embodiment. For example, when the intermediate film 15 is composed of a plurality of layers having different hardness as described above, polyvinyl butyral resin (PVB) can be used for the hard outer layer. Since this polyvinyl butyral resin (PVB) is excellent in adhesiveness and penetration resistance with each glass plate (13, 14), it is preferable as a material for the outer layer. Further, for the soft core layer, an ethylene vinyl acetate resin (EVA) or a polyvinyl acetal resin softer than the polyvinyl butyral resin used for the outer layer can be used.
 なお、一般的に、ポリビニルアセタール樹脂の硬度は、(a)出発物質であるポリビニルアルコールの重合度、(b)アセタール化度、(c)可塑剤の種類、(d)可塑剤の添加割合などにより制御することができる。したがって、(a)~(d)の少なくともいずれかの条件を適切に調整することにより、アウター層に用いる硬質のポリビニルアセタール樹脂とコア層に用いる軟質のポリビニルアセタール樹脂とを作製してもよい。 In general, the hardness of the polyvinyl acetal resin is (a) the degree of polymerization of the starting polyvinyl alcohol, (b) the degree of acetalization, (c) the type of plasticizer, (d) the addition ratio of the plasticizer, etc. Can be controlled. Therefore, a hard polyvinyl acetal resin used for the outer layer and a soft polyvinyl acetal resin used for the core layer may be produced by appropriately adjusting at least one of the conditions (a) to (d).
 更に、アセタール化に用いるアルデヒドの種類、複数種類のアルデヒドによる共アセタール化か単種のアルデヒドによる純アセタール化によって、ポリビニルアセタール樹脂の硬度を制御することができる。一概には言えないが、炭素数の多いアルデヒドを用いて得られるポリビニルアセタール樹脂ほど、軟質となる傾向がある。したがって、例えば、アウター層がポリビニルブチラール樹脂で構成されている場合、コア層には、炭素数が5以上のアルデヒド(例えばn-ヘキシルアルデヒド、2-エチルブチルアルデヒド、n-へプチルアルデヒド、n-オクチルアルデヒド)、をポリビニルアルコールでアセタール化して得られるポリビニルアセタール樹脂を用いることができる。 Furthermore, the hardness of the polyvinyl acetal resin can be controlled by the type of aldehyde used for acetalization, coacetalization with a plurality of types of aldehydes or pure acetalization with a single aldehyde. Although it cannot generally be said, the polyvinyl acetal resin obtained by using an aldehyde having a large number of carbon atoms tends to be softer. Therefore, for example, when the outer layer is made of polyvinyl butyral resin, the core layer has an aldehyde having 5 or more carbon atoms (for example, n-hexylaldehyde, 2-ethylbutyraldehyde, n-heptylaldehyde, n- Octyl aldehyde) can be used as a polyvinyl acetal resin obtained by acetalization with polyvinyl alcohol.
 また、中間膜15の総厚は、実施の形態に応じて適宜設定可能であり、例えば、0.3~6.0mmとすることができ、0.5~4.0mmであることが好ましく、0.6~2.0mmであることが更に好ましい。例えば、コア層とコア層を挟持する一対のアウター層との3層構造で中間膜15を構成する場合、コア層の厚みは、0.1~2.0mmであることが好ましく、0.1~0.6mmであることがさらに好ましい。一方、各アウター層の厚みは、コア層の厚みよりも大きいことが好ましく、具体的には、0.1~2.0mmであることが好ましく、0.1~1.0mmであることがさらに好ましい。 The total thickness of the intermediate film 15 can be appropriately set according to the embodiment, and can be set to, for example, 0.3 to 6.0 mm, preferably 0.5 to 4.0 mm. More preferably, it is 0.6 to 2.0 mm. For example, when the intermediate film 15 is configured with a three-layer structure of a core layer and a pair of outer layers sandwiching the core layer, the thickness of the core layer is preferably 0.1 to 2.0 mm, More preferably, it is ˜0.6 mm. On the other hand, the thickness of each outer layer is preferably larger than the thickness of the core layer. Specifically, it is preferably 0.1 to 2.0 mm, and more preferably 0.1 to 1.0 mm. preferable.
 このような中間膜15の製造方法は特には限定されないが、例えば、上述したポリビニルアセタール樹脂等の樹脂成分、可塑剤及び必要に応じて他の添加剤を配合し、均一に混練りした後、各層を一括で押出し成型する方法、この方法により作成した2つ以上の樹脂膜をプレス法、ラミネート法等により積層する方法が挙げられる。プレス法、ラミネート法等により積層する方法に用いる積層前の樹脂膜は単層構造でも多層構造でもよい。また、中間膜15は、上記のような複数の層で形成する以外に、1層で形成することもできる。 The method for producing the intermediate film 15 is not particularly limited. For example, after blending a resin component such as the above-described polyvinyl acetal resin, a plasticizer, and other additives as necessary, and kneading uniformly, Examples thereof include a method of extruding each layer at once, and a method of laminating two or more resin films prepared by this method by a press method, a laminating method, or the like. The resin film before lamination used in a method of laminating by a press method, a laminating method or the like may have a single layer structure or a multilayer structure. Further, the intermediate film 15 can be formed of a single layer in addition to the above-described plural layers.
 <遮蔽層>
 次に、ウインドシールド1のガラス板に設けられる遮蔽層11について説明する。図1に例示されるように、本実施形態では、ウインドシールド1の周縁部には遮蔽層11が形成されている。具体的には、図2に例示されるように、遮蔽層11は、内側ガラス板14の車内側の面(第4面)上に積層されている。
<Shielding layer>
Next, the shielding layer 11 provided on the glass plate of the windshield 1 will be described. As illustrated in FIG. 1, in this embodiment, a shielding layer 11 is formed on the peripheral edge of the windshield 1. Specifically, as illustrated in FIG. 2, the shielding layer 11 is laminated on the inner surface (fourth surface) of the inner glass plate 14.
 この遮蔽層11の材料は、車外からの視野を遮蔽可能であれば、実施の形態に応じて適宜選択されても良く、例えば、黒色、茶色、灰色、濃紺等の濃色のセラミックを用いてもよい。この場合、黒色のセラミックをスクリーン印刷等によって内側ガラス板14の車内側の面上に積層し、内側ガラス板14と共に積層したセラミックを加熱する。これによって、ウインドシールド1の周縁部に遮蔽層11を形成することができる。なお、遮蔽層11に利用するセラミックは、種々の材料を利用することができる。例えば、以下の組成のセラミックを遮蔽層11に利用することができる。 The material of the shielding layer 11 may be appropriately selected according to the embodiment as long as the field of view from the outside of the vehicle can be shielded. For example, a dark color ceramic such as black, brown, gray, or dark blue is used. Also good. In this case, black ceramic is laminated on the inner surface of the inner glass plate 14 by screen printing or the like, and the laminated ceramic together with the inner glass plate 14 is heated. Thereby, the shielding layer 11 can be formed on the peripheral edge of the windshield 1. Various materials can be used for the ceramic used for the shielding layer 11. For example, a ceramic having the following composition can be used for the shielding layer 11.
Figure JPOXMLDOC01-appb-T000003
*1,主成分:酸化銅、酸化クロム、酸化鉄及び酸化マンガン
*2,主成分:ホウケイ酸ビスマス、ホウケイ酸亜鉛
Figure JPOXMLDOC01-appb-T000003
* 1, Main component: Copper oxide, Chromium oxide, Iron oxide and Manganese oxide * 2, Main component: Bismuth borosilicate, Zinc borosilicate
 図1に例示されるように、本実施形態に係る遮蔽層11は、ウインドシールド1の周縁部に沿う周縁領域111とウインドシールド1の上辺部から下方に矩形状に突出した突出領域112とに分けることができる。周縁領域111は、ウインドシールド1の周縁部からの光の入射を遮蔽する。一方、突出領域112は、車内に配置されるステレオカメラ2を車外から見えないようにする。 As illustrated in FIG. 1, the shielding layer 11 according to this embodiment includes a peripheral region 111 along the peripheral portion of the windshield 1 and a protruding region 112 that protrudes downward in a rectangular shape from the upper side portion of the windshield 1. Can be divided. The peripheral region 111 shields light incident from the peripheral portion of the windshield 1. On the other hand, the protruding region 112 prevents the stereo camera 2 arranged in the vehicle from being seen from outside the vehicle.
 ただし、ステレオカメラ2の各撮影装置(21A、21B)の撮影範囲を遮蔽層11が遮蔽してしまうと、ステレオカメラ2によって車外前方の状況を撮影することができない。そこで、本実施形態では、遮蔽層11の突出領域112には、各撮影装置(21A、21B)が車外の状況を撮影可能なように、当該各撮影装置(21A、21B)に対応する2つの略台形状の撮影窓(113A、113B)が設けられる。具体的には、撮影窓(113A、113B)は、左右方向に離間した、セラミックが積層されない領域である。すなわち、セラミックを第4面にスクリーン印刷をする際に、突出領域112においてセラミックを印刷しない領域を二か所設けることで、2つの撮影窓(113A、113B)を形成することができる。 However, if the shielding layer 11 blocks the photographing range of each photographing device (21A, 21B) of the stereo camera 2, the stereo camera 2 cannot photograph the situation in front of the vehicle. Therefore, in the present embodiment, the projecting region 112 of the shielding layer 11 has two areas corresponding to each imaging device (21A, 21B) so that each imaging device (21A, 21B) can capture the situation outside the vehicle. Substantially trapezoidal imaging windows (113A, 113B) are provided. Specifically, the photographing windows (113A, 113B) are regions that are spaced apart in the left-right direction and are not laminated with ceramic. That is, when screen-printing ceramic on the fourth surface, two shooting windows (113A, 113B) can be formed by providing two areas in the protruding area 112 where the ceramic is not printed.
 ここで、図3A及び図3Bを用いて、各撮影窓(113A、113B)の大きさについて説明する。図3Aは、遮蔽層11に設けられる各撮影窓(113A、113B)と各撮影装置(21A、21B)の撮影範囲との関係を例示する。また、図3Bは、遮蔽層11に設けられる各撮影窓(113A、113B)と各撮影装置(21A、21B)の入射瞳との関係を例示する。 Here, the size of each photographing window (113A, 113B) will be described with reference to FIGS. 3A and 3B. FIG. 3A illustrates the relationship between each imaging window (113A, 113B) provided in the shielding layer 11 and the imaging range of each imaging device (21A, 21B). FIG. 3B illustrates the relationship between each imaging window (113A, 113B) provided in the shielding layer 11 and the entrance pupil of each imaging device (21A, 21B).
 後述する図6で示されるように、本実施形態に係るウインドシールド1(合わせガラス)は、シェーピング工程において凡そ650度で加熱される。その際、遮蔽層11の材料であるセラミックは黒色等の濃色であるため、セラミックの積層されていない領域、例えば、各撮影窓(113A、113B)の領域と比べると、熱の吸収量が多くなる。そしてまた、遮蔽層11の材料であるセラミックは内側ガラス板14と異なる熱膨張率を有するため、遮蔽層11の形成される領域では、シェーピング工程時において圧縮応力及び引張応力が発生し、また、外側ガラス板13及び内側ガラス板14のガラス表面の曲率が相違することにより、内側ガラス板14と遮蔽層11との境界に歪みが生じやすくなる。そのため、内側ガラス板14と遮蔽層11との境界である各撮影窓(113A、113B)の周縁部においても、歪みが生じやすくなる。 As shown in FIG. 6 described later, the windshield 1 (laminated glass) according to this embodiment is heated at about 650 degrees in the shaping process. At that time, since the ceramic as the material of the shielding layer 11 is a dark color such as black, the amount of heat absorbed is smaller than that of a region where the ceramics are not stacked, for example, the region of each imaging window (113A, 113B). Become more. In addition, since the ceramic that is the material of the shielding layer 11 has a thermal expansion coefficient different from that of the inner glass plate 14, in the region where the shielding layer 11 is formed, compressive stress and tensile stress are generated during the shaping process. When the curvatures of the glass surfaces of the outer glass plate 13 and the inner glass plate 14 are different, the boundary between the inner glass plate 14 and the shielding layer 11 is likely to be distorted. Therefore, distortion is likely to occur also in the peripheral portion of each photographing window (113A, 113B) that is a boundary between the inner glass plate 14 and the shielding layer 11.
 この歪みは、後述する実施例によると、各撮影窓(113A、113B)の周縁部から凡そ8mmの範囲で形成される(上記式1の歪領域の幅aに相当)。そのため、図3Aに例示されるように、垂直方向及び水平方向に、各撮影装置(21A、21B)の撮影範囲の両側にそれぞれ8mm幅の領域が配置されるように各撮影窓(113A、113B)を形成することで、撮影画像に対する上記歪みの影響を回避することができる。 This distortion is formed in a range of about 8 mm from the peripheral edge of each photographing window (113A, 113B) according to an embodiment to be described later (corresponding to the width a of the distortion area in Equation 1 above). For this reason, as illustrated in FIG. 3A, in the vertical direction and the horizontal direction, the respective shooting windows (113A, 113B) are arranged so that regions each having a width of 8 mm are arranged on both sides of the shooting range of each shooting device (21A, 21B). ) Can be avoided the influence of the distortion on the captured image.
 一方、各撮影窓(113A、113B)を大きくするほど、上記歪みの影響を回避することができるが、遮蔽層11の領域が小さくなってしまい、車外からの視野の遮蔽性を損なってしまう。そこで、遮蔽層11による視野の遮蔽性を担保しつつ、各撮影装置(21A、21B)の撮影画像に変形が生じにくいようにするためには、各撮影窓(113A、113B)の垂直方向及び水平方向の幅が上記式(1)を満たすように形成するのが好ましい。上述のとおり、歪領域の幅aは、撮影窓と遮蔽層との境界から凡そ8mmの範囲で形成される。また、各撮影装置(21A、21B)が焦点距離f=8mm及び口径比F=2のカメラで構成される場合には、入射瞳の直径bは4mmとなる。更に、取付誤差cは、5mm程度に設定したとする。このような場合には、各撮影窓(113A、113B)の垂直方向及び水平方向の幅は、25mm以下になるように構成されるのが好ましい。 On the other hand, the larger the photographing windows (113A, 113B), the more the influence of the distortion can be avoided, but the area of the shielding layer 11 becomes smaller, and the shielding property of the visual field from the outside of the vehicle is impaired. Therefore, in order to prevent the captured image of each imaging device (21A, 21B) from being deformed while ensuring the shielding of the visual field by the shielding layer 11, the vertical direction of each imaging window (113A, 113B) and It is preferable that the width in the horizontal direction satisfy the above formula (1). As described above, the width a of the strain region is formed in a range of about 8 mm from the boundary between the imaging window and the shielding layer. When each photographing apparatus (21A, 21B) is configured by a camera having a focal length f = 8 mm and an aperture ratio F = 2, the diameter b of the entrance pupil is 4 mm. Furthermore, it is assumed that the attachment error c is set to about 5 mm. In such a case, it is preferable that the vertical and horizontal widths of the photographing windows (113A, 113B) are 25 mm or less.
 なお、ウインドシールド1を構成する合わせガラスは垂直方向から傾斜して自動車に取り付けられる。そのため、ウインドシールド1の上辺付近ほど各撮影装置(21A、21B)に近づいており、ウインドシールド1の下辺付近ほど各撮影装置(21A、21B)から遠ざかっている。そのため、図3Aにおいて、各撮影装置(21A、21B)の撮影範囲は、各撮影装置(21A、21B)に近づく上辺の幅が短くなり、各撮影装置(21A、21B)から遠ざかる下辺の幅が長くなることで、台形状になっている。 In addition, the laminated glass which comprises the windshield 1 inclines from a perpendicular direction, and is attached to a motor vehicle. Therefore, the vicinity of the upper side of the windshield 1 is closer to each imaging device (21A, 21B), and the vicinity of the lower side of the windshield 1 is farther from each imaging device (21A, 21B). Therefore, in FIG. 3A, the width of the upper side approaching each imaging device (21A, 21B) is reduced in the imaging range of each imaging device (21A, 21B), and the width of the lower side away from each imaging device (21A, 21B) is It becomes trapezoid shape by becoming long.
 また、基本的には、各撮影装置(21A、21B)を各撮影窓(113A、113B)に近づけるほど、各撮影窓(113A、113B)上の撮影範囲の大きさは小さくなる。具体的には、後述するステレオカメラ2を構成する光学系の入射瞳が各撮影窓(113A、113B)上に位置するようにステレオカメラ2を配置したときに、各撮影窓(113A、113B)を通過する光束の大きさが最も小さくなる。 Basically, the closer the respective photographing devices (21A, 21B) are to the respective photographing windows (113A, 113B), the smaller the photographing range on each photographing window (113A, 113B). Specifically, when the stereo camera 2 is arranged so that an entrance pupil of an optical system constituting the stereo camera 2 to be described later is positioned on each shooting window (113A, 113B), each shooting window (113A, 113B). The size of the light beam that passes through is the smallest.
 そのため、図3Bに例示されるように、各撮影窓(113A、113B)は、各撮影窓(113A、113B)の垂直方向及び水平方向の幅が上記式(2)を満たすように形成すればよい。各撮影装置(21A、21B)が焦点距離f=8mm及び口径比F=2のカメラで構成される場合には、各撮影窓(113A、113B)の垂直方向及び水平方向の幅は4mm以上になるように形成される。 Therefore, as illustrated in FIG. 3B, each shooting window (113A, 113B) is formed so that the vertical and horizontal widths of each shooting window (113A, 113B) satisfy the above formula (2). Good. When each photographing apparatus (21A, 21B) is configured with a camera having a focal length f = 8 mm and an aperture ratio F = 2, the vertical width and the horizontal width of each photographing window (113A, 113B) are 4 mm or more. Formed to be.
Figure JPOXMLDOC01-appb-M000004
 また、例えば、入射瞳の直径を4mmとし、撮影装置の全画角が30°とし、入射瞳とウインドシールドとの間の距離をDmmとする。この場合に、撮影装置の撮影が遮蔽層に阻害されないために求められる撮影窓の直径Fは、上記の数3で表すことができる。
Figure JPOXMLDOC01-appb-M000004
Further, for example, the diameter of the entrance pupil is 4 mm, the total angle of view of the photographing apparatus is 30 °, and the distance between the entrance pupil and the windshield is Dmm. In this case, the diameter F of the photographing window that is required because the photographing of the photographing apparatus is not hindered by the shielding layer can be expressed by the above formula 3.
 これによって、各撮影装置(21A、21B)が遮蔽層11に阻害されずに車外を撮影可能な各撮影窓(113A、113B)の最小限の大きさを確保することができる。また、これによって、各撮影窓(113A、113B)の最低限度に係る大きさの指針が定まるため、各撮影窓(113A、113B)の大きさを比較的に自由に決定することが可能になる。 Thereby, it is possible to secure the minimum size of each photographing window (113A, 113B) in which each photographing device (21A, 21B) can photograph the outside of the vehicle without being obstructed by the shielding layer 11. In addition, as a result, a guideline for the size of each photographing window (113A, 113B) is determined, so that the size of each photographing window (113A, 113B) can be determined relatively freely. .
 なお、本実施形態では、自動車を運転する際に運転者が交通状況を確認する視野範囲60は上記歪領域に重ならないように配置される。この視野範囲60は、運転席についた運転者が運転を行う際に注意する範囲であり、実施の形態に応じて適宜設定可能である。例えば、JIS R 3212(1998年、「自動車用安全ガラス試験方法」)の附属書「安全ガラスの光学的特性及び耐光性についての試験領域」において規定されている試験領域Aをこの視野範囲として採用してもよい。これによって、このウインドシールド1を取り付けた自動車では、運転の際に運転者に良好な視界を提供することができる。 In this embodiment, the visual field range 60 in which the driver confirms the traffic situation when driving the vehicle is arranged so as not to overlap the distortion region. The visual field range 60 is a range that a driver on the driver's seat pays attention when driving, and can be set as appropriate according to the embodiment. For example, the test area A defined in the appendix “Test Area for Optical Properties and Light Resistance of Safety Glass” of JIS R3212 (1998, “Safety Glass Test Method for Automobiles”) is adopted as this field of view. May be. As a result, the vehicle equipped with the windshield 1 can provide the driver with a good field of view during driving.
 そして、各撮影窓(113A、113B)は、自動車を運転する際に運転者が交通状況を確認する視野範囲60の外側に配置されてもよい。これによって、自動車に搭載されるステレオカメラ2が運転者の視界を塞ぐのを防止し、運転の際に運転者に良好な視界を提供することができる。 And each imaging | photography window (113A, 113B) may be arrange | positioned outside the visual field range 60 in which a driver | operator confirms a traffic condition, when driving a motor vehicle. This prevents the stereo camera 2 mounted on the automobile from blocking the driver's field of view, and provides the driver with a good field of view during driving.
 また、各撮影窓(113A、113B)は、例えば、JIS R 3211で定められるように、各撮影窓(113A、113B)における可視光の透過率が70%以上になるように構成される。なお、この透過率は、JIS R 3212(3.11 可視光透過率試験)で定められているように、JIS Z 8722に規定された分光測定法によって測定することができる。 In addition, each photographing window (113A, 113B) is configured so that the visible light transmittance in each photographing window (113A, 113B) is 70% or more as defined in JIS R 3211, for example. In addition, this transmittance | permeability can be measured by the spectroscopic method prescribed | regulated to JISJZ 8722 as prescribed in JIS R 3212 (3.11 visible light transmittance test).
 更に、各撮影窓(113A、113B)の周囲には、各撮影窓(113A、113B)の結露を防ぐためのヒーターが設置されてもよい。このヒーターによって、各撮影窓(113A、113B)の結露を防止し、各撮影装置(21A、21B)の視野を良好な状態に保つことができる。ただし、この場合、各撮影窓(113A、113B)の中央領域では、各撮影窓(113A、113B)の周囲に設置されるヒーターから遠いことによって、結露が残りやすい可能性がある。これに対して、当該構成によれば、各撮影窓(113A、113B)の大きさを比較的に小さく形成することができるため、各撮影窓(113A、113B)の中央領域で結露が残りやすくなるのを防止することができる。また、結露を防止するための熱量が少なくて済むため、ヒーターにおける電力消費を抑えることができる。 Further, a heater for preventing the condensation of each of the photographing windows (113A, 113B) may be installed around each of the photographing windows (113A, 113B). With this heater, condensation in each photographing window (113A, 113B) can be prevented, and the field of view of each photographing device (21A, 21B) can be kept in a good state. However, in this case, in the central region of each photographing window (113A, 113B), there is a possibility that condensation is likely to remain due to being far from the heater installed around each photographing window (113A, 113B). On the other hand, according to the configuration, since the size of each photographing window (113A, 113B) can be formed to be relatively small, condensation is likely to remain in the central region of each photographing window (113A, 113B). Can be prevented. In addition, since the amount of heat for preventing condensation is small, power consumption in the heater can be suppressed.
 また、ウインドシールド1において、遮蔽層11より面方向内側の領域は、遮蔽層11の形成されない非遮蔽領域12である。運転者及び助手席に座る同行者は、この非遮蔽領域12を介して車外の交通状況を確認する。そのため、ウインドシールド1の非遮蔽領域12は、少なくとも車外の交通状況を目視可能な程度に可視光の透過率を有するように構成される。 Further, in the windshield 1, a region on the inner side in the plane direction from the shielding layer 11 is a non-shielding region 12 where the shielding layer 11 is not formed. The driver and a companion sitting in the passenger seat check the traffic situation outside the vehicle through the non-shielding area 12. Therefore, the non-shielding region 12 of the windshield 1 is configured to have a visible light transmittance so that at least traffic conditions outside the vehicle can be visually observed.
 <ステレオカメラ>
 次に、図4A及び図4Bを用いて、ステレオカメラ2の各撮影装置(21A、21B)の構成について説明する。図4Aは、本実施形態に係るステレオカメラ2の各撮影装置(21A、21B)の構成の一例を示す。また、図4Bは、入射瞳がレンズ系(光学系)の内部に存在するカメラの一例を示す。本実施形態に係る各撮影装置(21A、21B)は、4つのレンズ221~224を有するレンズ系22と、第3レンズ223と第4レンズ224との間に配置される開口絞り23と、レンズ系22を通過した光によって撮像するイメージセンサ24と、を備える。
<Stereo camera>
Next, the configuration of each imaging device (21A, 21B) of the stereo camera 2 will be described with reference to FIGS. 4A and 4B. FIG. 4A shows an example of the configuration of each imaging device (21A, 21B) of the stereo camera 2 according to the present embodiment. FIG. 4B shows an example of a camera in which the entrance pupil exists inside the lens system (optical system). Each photographing apparatus (21A, 21B) according to the present embodiment includes a lens system 22 having four lenses 221 to 224, an aperture stop 23 disposed between the third lens 223 and the fourth lens 224, and a lens. And an image sensor 24 that captures an image using light that has passed through the system 22.
 本実施形態では、開口絞り23よりも被写体側(図4Aでは左側)にあるレンズ221~223により、開口絞り23の実像である入射瞳が、レンズ系22よりも被写体側に位置するように構成される。図4Bのように、一般的なカメラレンズでは、入射瞳の位置がレンズ系の内部にある。そのため、入射瞳とウインドシールド1との距離を一定値以下に設定することが困難である。これに対して、本実施形態によれば、入射瞳がレンズ系22よりも被写体側に位置するため、入射瞳とウインドシールド1との間の距離を小さくすることができ、ゼロ又はマイナス値に設定することも可能である。 In the present embodiment, the lenses 221 to 223 on the subject side (left side in FIG. 4A) with respect to the aperture stop 23 are configured so that the entrance pupil, which is a real image of the aperture stop 23, is located on the subject side with respect to the lens system 22. Is done. As shown in FIG. 4B, in a general camera lens, the position of the entrance pupil is inside the lens system. Therefore, it is difficult to set the distance between the entrance pupil and the windshield 1 to a certain value or less. On the other hand, according to the present embodiment, since the entrance pupil is located closer to the subject side than the lens system 22, the distance between the entrance pupil and the windshield 1 can be reduced, and is set to zero or a negative value. It is also possible to set.
 開口絞り23は、イメージセンサ24に入射する光束の太さを規定する。開口絞り23の直径の大きさは変更可能に構成されてもよい。なお、例えば、各撮影装置(21A、21B)が、焦点距離 f=8mm、口径比 F=2 のカメラとして構成される場合、入射瞳の直径は4mmとなる。 The aperture stop 23 defines the thickness of the light beam incident on the image sensor 24. The size of the diameter of the aperture stop 23 may be configured to be changeable. For example, when each imaging device (21A, 21B) is configured as a camera having a focal length f = 8 mm and an aperture ratio F = 2, the diameter of the entrance pupil is 4 mm.
 イメージセンサ24は、レンズ系22を通過した光を受光平面で結像することで、被写体の撮像を行う。このイメージセンサ24は、例えば、CCD等で構成される撮像素子である。ただし、イメージセンサ24の種類は、CCDに限られず、実施の形態に応じて適宜選択されてよい。ステレオカメラ2は、このような各撮影装置(21A、21B)により、視差の生じた複数の画像を同時に取得することができる。 The image sensor 24 images a subject by forming an image of light that has passed through the lens system 22 on a light receiving plane. The image sensor 24 is an image pickup device constituted by, for example, a CCD. However, the type of the image sensor 24 is not limited to the CCD, and may be appropriately selected according to the embodiment. The stereo camera 2 can simultaneously acquire a plurality of images with parallax using each of the imaging devices (21A, 21B).
 このようなステレオカメラ2は、遮蔽層11の突出領域112に隠れるように、車内上部に配置される。例えば、このステレオカメラ2は、ルームミラーの支持部近傍に、ルームミラーを対象軸として左右対称に配置される。 Such a stereo camera 2 is arranged in the upper part of the vehicle so as to be hidden by the protruding region 112 of the shielding layer 11. For example, the stereo camera 2 is disposed in the vicinity of the support portion of the rearview mirror symmetrically about the rearview mirror as the target axis.
 ここで、後述するとおり、本発明者らは、各撮影装置(21A、21B)の光軸方向において、各撮影装置(21A、21B)を構成するレンズ系22の入射瞳とウインドシールド1の各撮影窓(113A、113B)との距離が前後10mm以内の範囲になるようにステレオカメラ2を配置することで、各撮影窓(113A、113B)を介して撮影した画像の歪曲量が変動しにくいことを見出した。そこで、本実施形態では、各撮影装置(21A、21B)の光軸方向において、各撮影装置(21A、21B)を構成するレンズ系22の入射瞳とウインドシールド1の各撮影窓(113A、113B)との距離が前後10mm以内の範囲になるようにステレオカメラ2を配置する。これによって、ウインドシールド1の製造誤差によって各撮影窓(113A、113B)を介して撮影した画像の歪曲量が大きく変動するのを防止することができ、ウインドシールド1の個体差を考慮することなく、補正データ311の各補正値を一律に定めることができる。 Here, as will be described later, in the optical axis direction of each imaging device (21A, 21B), the inventors of the present invention each of the entrance pupil of the lens system 22 constituting each imaging device (21A, 21B) and each of the windshield 1 By disposing the stereo camera 2 so that the distance from the shooting window (113A, 113B) is within 10 mm before and after, the amount of distortion of the image shot through each shooting window (113A, 113B) is unlikely to fluctuate. I found out. Therefore, in this embodiment, in the optical axis direction of each imaging device (21A, 21B), the entrance pupil of the lens system 22 constituting each imaging device (21A, 21B) and each imaging window (113A, 113B) of the windshield 1 are used. The stereo camera 2 is arranged so that the distance to the front and rear is within 10 mm. As a result, it is possible to prevent the amount of distortion of the image photographed through each photographing window (113A, 113B) from fluctuating greatly due to a manufacturing error of the windshield 1, and without considering individual differences of the windshield 1. The correction values of the correction data 311 can be determined uniformly.
 <車載システム>
 次に、図5を用いて、ステレオカメラ2と画像処理装置3とによって構成される車載システム5について説明する。図5は、車載システム5の構成を例示する。図5に例示されるように、本実施形態に係る車載システム5は、上記ステレオカメラ2と、当該ステレオカメラ2に接続する画像処理装置3と、を備えている。上述のとおり、ステレオカメラ2は、視差の生じた複数の画像を取得する。
<In-vehicle system>
Next, the in-vehicle system 5 constituted by the stereo camera 2 and the image processing device 3 will be described with reference to FIG. FIG. 5 illustrates the configuration of the in-vehicle system 5. As illustrated in FIG. 5, the in-vehicle system 5 according to the present embodiment includes the stereo camera 2 and an image processing device 3 connected to the stereo camera 2. As described above, the stereo camera 2 acquires a plurality of images with parallax.
 画像処理装置3は、ステレオカメラ2により取得された複数の画像を解析し、被写体と自車との距離、被写体の移動速度、被写体の種別等を解析する装置である。この画像処理装置3は、ハードウェア構成として、バスで接続される、記憶部31、制御部32、入出力部33等の一般的なハードウェアを有している。 The image processing device 3 is a device that analyzes a plurality of images acquired by the stereo camera 2 and analyzes the distance between the subject and the vehicle, the moving speed of the subject, the type of the subject, and the like. The image processing apparatus 3 has general hardware such as a storage unit 31, a control unit 32, and an input / output unit 33 connected by a bus as a hardware configuration.
 記憶部31は、制御部32で実行される処理で利用される各種データ及びプログラムを記憶する(不図示)。記憶部31は、例えば、ハードディスクによって実現されてもよいし、USBメモリ等の記録媒体により実現されてもよい。また、記憶部31が格納する当該各種データ及びプログラムは、CD(Compact Disc)又はDVD(Digital Versatile Disc)等の記録媒体から取得されてもよい。更に、記憶部31は、補助記憶装置と呼ばれてもよい。 The storage unit 31 stores various data and programs used in processing executed by the control unit 32 (not shown). The storage unit 31 may be realized, for example, by a hard disk or a recording medium such as a USB memory. The various data and programs stored in the storage unit 31 may be acquired from a recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc). Furthermore, the storage unit 31 may be referred to as an auxiliary storage device.
 上記のとおり、ステレオカメラ2は、ウインドシールド1を介して車外の状況を撮影する。そのため、ステレオカメラ2により取得される各画像は、当該ウインドシールド1の形状、屈折率、光学的欠陥等に応じて、変形している。そこで、本実施形態では、記憶部31は、このようなウインドシールド1によって変形した画像を補正するための補正データ311を記憶している。 As described above, the stereo camera 2 photographs the situation outside the vehicle via the windshield 1. Therefore, each image acquired by the stereo camera 2 is deformed according to the shape, refractive index, optical defect, and the like of the windshield 1. Therefore, in the present embodiment, the storage unit 31 stores correction data 311 for correcting the image deformed by the windshield 1.
 ここで、後述する図14A及び図14Bで示されるとおり、本発明者らは、ガラス板と熱膨張率の異なるセラミックにより遮蔽層11を形成した場合に、合わせガラスにおいてセラミックを印刷する面によって各撮影窓(113A、113B)のレンズパワーが変動することを見出した。レンズパワーは光を曲げる度合いを示し、各撮影窓(113A、113B)のレンズパワーの値が大きいほど、各撮影窓(113A、113B)の通過により光線の方向が大きく変化する。すなわち、本発明者らは、合わせガラスにおいてセラミックを印刷する面に応じて、各撮影窓(113A、113B)を介して取得した画像に生じる変形量が異なることを見出した。 Here, as shown in FIGS. 14A and 14B to be described later, when the shielding layer 11 is formed of a ceramic having a different thermal expansion coefficient from that of the glass plate, the present inventors have different surfaces depending on the surface on which the ceramic is printed on the laminated glass. It has been found that the lens power of the imaging windows (113A, 113B) varies. The lens power indicates the degree to which the light is bent. The larger the lens power value of each photographing window (113A, 113B), the more the direction of the light beam changes due to the passage of each photographing window (113A, 113B). That is, the present inventors have found that the amount of deformation generated in an image acquired through each photographing window (113A, 113B) differs depending on the surface of the laminated glass on which the ceramic is printed.
 そこで、記憶部31の記憶する補正データ311では、ウインドシールド1を構成する合わせガラスにおいてセラミックを印刷した面に応じた変形量が定められている。制御部32は、このような補正データ311を利用することで、ステレオカメラ2により取得した各画像を適切に補正することができる。なお、この補正データ311のデータ形式は、実施の形態に適宜選択されてもよく、例えば、この補正データ311はテーブル形式のデータであってもよい。 Therefore, in the correction data 311 stored in the storage unit 31, the amount of deformation corresponding to the surface on which the ceramic is printed on the laminated glass constituting the windshield 1 is determined. The control unit 32 can appropriately correct each image acquired by the stereo camera 2 by using such correction data 311. The data format of the correction data 311 may be appropriately selected according to the embodiment. For example, the correction data 311 may be data in a table format.
 このような補正データ311は、例えば、テスト品として作製した合わせガラス(ウインドシールド)の歪曲量を実測することで得られてもよいし、後述する図14A及び図14Bに示されるレンズパワーを有するウインドシールドの歪曲量をシミュレートすることで得られてもよい。セラミックを積層した面に応じた歪曲量を得る方法は、実施の形態に応じて適宜選択可能である。 Such correction data 311 may be obtained, for example, by actually measuring the amount of distortion of a laminated glass (windshield) manufactured as a test product, and has the lens power shown in FIGS. 14A and 14B described later. It may be obtained by simulating the amount of distortion of the windshield. The method for obtaining the amount of distortion corresponding to the surface on which the ceramics are laminated can be appropriately selected according to the embodiment.
 制御部32は、マイクロプロセッサ又はCPU(Central Processing Unit)等の1又は複数のプロセッサと、このプロセッサの処理に利用される周辺回路(ROM(Read Only Memory)、RAM(Random Access Memory)、インタフェース回路等)と、を有する。ROM、RAM等は、制御部32内のプロセッサが取り扱うアドレス空間に配置されているという意味で主記憶装置と呼ばれてもよい。制御部32は、記憶部31に格納されている各種データ及びプログラムを実行することにより、画像解析部321として機能する。 The control unit 32 includes one or more processors such as a microprocessor or a CPU (Central Processing Unit), and peripheral circuits (ROM (Read Only Memory), RAM (Random Access Memory), an interface circuit) used for processing of the processor. Etc.). ROM, RAM, and the like may be referred to as a main storage device in the sense that they are arranged in an address space handled by the processor in the control unit 32. The control unit 32 functions as the image analysis unit 321 by executing various data and programs stored in the storage unit 31.
 画像解析部321は、ステレオカメラ2により取得される複数の画像を解析し、当該複数の画像に写る被写体の位置等を算出することで、車外の状況に関する情報を取得する。被写体の位置は、公知のステレオビジョンの方法によって、算出することができる。画像解析部321は、この被写体の位置、すなわち、被写体と自車との距離の他、視差の生じた複数の画像から公知の方法に基づいて、車外の状況に関する様々な情報を取得してもよい。例えば、画像解析部321は、パターンマッチング等によって、被写体の種類を特定することができる。また、例えば、画像解析部321は、定期的に被写体の位置を算出し、自車の走行速度を参照することで、被写体の移動速度を特定することができる。 The image analysis unit 321 analyzes the plurality of images acquired by the stereo camera 2 and calculates the position of the subject in the plurality of images, thereby acquiring information related to the situation outside the vehicle. The position of the subject can be calculated by a known stereo vision method. In addition to the position of the subject, that is, the distance between the subject and the vehicle, the image analysis unit 321 may acquire various information regarding the situation outside the vehicle based on a plurality of images with parallax based on a known method. Good. For example, the image analysis unit 321 can specify the type of subject by pattern matching or the like. Further, for example, the image analysis unit 321 can specify the moving speed of the subject by periodically calculating the position of the subject and referring to the traveling speed of the own vehicle.
 入出力部33は、画像処理装置3の外部に存在する装置とデータの送受信を行うための1又は複数のインタフェースである。入出力部33は、例えば、ユーザインタフェースと接続するためのインタフェース、又はUSB(Universal Serial Bus)等のインタフェースである。なお、本実施形態では、画像処理装置3は、当該入出力部33を介して、ステレオカメラ2と接続し、当該ステレオカメラ2により撮影された複数の画像を取得する。 The input / output unit 33 is one or a plurality of interfaces for transmitting / receiving data to / from an apparatus existing outside the image processing apparatus 3. The input / output unit 33 is, for example, an interface for connecting to a user interface or an interface such as USB (Universal Serial Bus). In the present embodiment, the image processing apparatus 3 is connected to the stereo camera 2 via the input / output unit 33 and acquires a plurality of images taken by the stereo camera 2.
 このような画像処理装置3は、提供されるサービス専用に設計された装置の他、PC(Personal Computer)、タブレット端末等の汎用の装置が用いられてもよい。 Such an image processing device 3 may be a general-purpose device such as a PC (Personal Computer) or a tablet terminal in addition to a device designed exclusively for the service to be provided.
 §2 製造方法
 次に、図6を用いて、本実施形態に係るウインドシールド1の製造方法を説明する。図6は、本実施形態に係るウインドシールド1の各ガラス板(13、14)の製造工程を模式的に例示する。なお、以下で説明するウインドシールド1の製造方法は一例に過ぎず、各ステップは可能な限り変更されてもよい。また、以下で説明する製造工程について、実施の形態に応じて、適宜、ステップの省略、置換及び追加が可能である。
§2 Manufacturing Method Next, a manufacturing method of the windshield 1 according to the present embodiment will be described with reference to FIG. FIG. 6 schematically illustrates a manufacturing process of each glass plate (13, 14) of the windshield 1 according to the present embodiment. In addition, the manufacturing method of the windshield 1 demonstrated below is only an example, and each step may be changed as much as possible. Further, in the manufacturing process described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
 まず、ウインドシールド1の各ガラス板(13、14)の製造ラインにおけるシェーピング工程について説明する。図6に例示されるように、この製造ラインでは、上流から下流に向けて、加熱炉901及び成形装置902がこの順で配置されている。そして、加熱炉901から成形装置902及びその下流側に亘ってローラコンベア903が配置されており、加工対象となる各ガラス板(13、14)はこのローラコンベア903により搬送される。各ガラス板(13、14)は、加熱炉901に搬入される前には、平板状に形成されており、加熱炉901に搬入される。このうち、内側ガラス板14は、上記の遮蔽層11が更に積層された後に、加熱炉901に搬入される。 First, the shaping process in the production line of each glass plate (13, 14) of the windshield 1 will be described. As illustrated in FIG. 6, in this production line, a heating furnace 901 and a molding device 902 are arranged in this order from upstream to downstream. And the roller conveyor 903 is arrange | positioned from the heating furnace 901 to the shaping | molding apparatus 902 and its downstream, Each glass plate (13, 14) used as a process target is conveyed by this roller conveyor 903. Each glass plate (13, 14) is formed in a flat plate shape before being carried into the heating furnace 901, and is carried into the heating furnace 901. Among these, the inner glass plate 14 is carried into the heating furnace 901 after the shielding layer 11 is further laminated.
 加熱炉901は、種々の構成が可能であるが、例えば、電気加熱炉とすることができる。この加熱炉901は、上流側及び下流側の端部が開放する角筒状の炉本体を備えており、その内部に上流から下流へ向かってローラコンベア903が配置されている。炉本体の内壁面の上面、下面、及び一対の側面には、それぞれヒータ(図示省略)が配置されており、加熱炉901を通過する各ガラス板(13、14)を成形可能な温度、例えば、ガラスの軟化点付近まで加熱する。 The heating furnace 901 can have various configurations, but can be an electric heating furnace, for example. The heating furnace 901 includes a rectangular tube-shaped furnace main body whose upstream and downstream ends are open, and a roller conveyor 903 is disposed in the interior from upstream to downstream. Heaters (not shown) are respectively arranged on the upper surface, the lower surface, and the pair of side surfaces of the inner wall surface of the furnace body, and the temperature at which each glass plate (13, 14) passing through the heating furnace 901 can be formed, for example, Heat to near the softening point of the glass.
 成形装置902は、上型921及び下型922によりガラス板をプレスし、所定の形状に成形するように構成されている。上型921は、各ガラス板(13、14)の上面全体を覆うような下に凸の曲面形状を有し、上下動可能に構成されている。また、下型922は、各ガラス板(13、14)の周縁部に対応するような枠状に形成されており、その上面は上型921と対応するように曲面形状を有している。この構成により、各ガラス板(13、14)は、上型921と下型922との間でプレス成形され、最終的な曲面形状に成形される。また、下型922の枠内には、ローラコンベア903が配置されており、このローラコンベア903は、下型922の枠内を通過するように、上下動可能となっている。そして、図示を省略するが、成形装置902の下流側には、徐冷装置(図示省略)が配置されており、成形されたガラス板が冷却される。 The forming apparatus 902 is configured to press a glass plate with an upper die 921 and a lower die 922 to form a predetermined shape. The upper die 921 has a curved surface that protrudes downward so as to cover the entire upper surface of each glass plate (13, 14), and is configured to be movable up and down. The lower mold 922 is formed in a frame shape corresponding to the peripheral edge of each glass plate (13, 14), and the upper surface thereof has a curved surface shape corresponding to the upper mold 921. With this configuration, each glass plate (13, 14) is press-formed between the upper die 921 and the lower die 922 and formed into a final curved shape. A roller conveyor 903 is disposed in the frame of the lower mold 922, and the roller conveyor 903 can move up and down so as to pass through the frame of the lower mold 922. And although illustration is abbreviate | omitted, the slow cooling apparatus (illustration omitted) is arrange | positioned in the downstream of the shaping | molding apparatus 902, and the shape | molded glass plate is cooled.
 ここで、上記加熱炉901では650度程度で加熱される。その際、遮蔽層11の材料であるセラミックは黒色等の濃色であるため、セラミックの積層されていない領域、例えば、各撮影窓(113A、113B)の領域及び非遮蔽領域12と比べると、熱の吸収量が多くなる。そして、遮蔽層11に積層されるセラミックは、遮蔽層11の材料であるセラミックは内側ガラス板14と異なる熱膨張率を有するため、遮蔽層11の形成される領域では、シェーピング工程時において圧縮応力及び引張応力が発生する。更に、外側ガラス板13及び内側ガラス板14のガラス表面の曲率が相違することにより、内側ガラス板14と遮蔽層11との境界に歪みが生じやすくなる。すなわち、各撮影窓(113A、113B)の周縁部及び非遮蔽領域12と遮蔽層11との境界部において、後述する程度の歪みの生じる歪領域が形成される。 Here, the heating furnace 901 is heated at about 650 degrees. At that time, since the ceramic that is the material of the shielding layer 11 is a dark color such as black, compared with a region where the ceramic is not laminated, for example, the region of each imaging window (113A, 113B) and the non-shielding region 12. Increases heat absorption. And since the ceramic laminated | stacked on the shielding layer 11 has a thermal expansion coefficient different from the inner side glass plate 14 in the ceramic which is the material of the shielding layer 11, in the area | region in which the shielding layer 11 is formed, it is a compressive stress at the time of a shaping process. And tensile stress is generated. Furthermore, when the curvatures of the glass surfaces of the outer glass plate 13 and the inner glass plate 14 are different, the boundary between the inner glass plate 14 and the shielding layer 11 is likely to be distorted. That is, a distorted region in which the distortion described below is generated is formed at the peripheral portion of each photographing window (113A, 113B) and the boundary between the non-shielding region 12 and the shielding layer 11.
 そこで、本実施形態では、遮蔽層11は、運転者の視野範囲60が歪領域に重ならないように配置される。これによって、このウインドシールド1を取り付けた自動車では、運転の際に運転者に良好な視界を提供することができる。 Therefore, in this embodiment, the shielding layer 11 is disposed so that the driver's visual field range 60 does not overlap the strain region. As a result, the vehicle equipped with the windshield 1 can provide the driver with a good field of view during driving.
 また、歪領域の幅を考慮して、各撮影窓(113A、113B)は、各撮影窓(113A、113B)の垂直方向及び水平方向の幅を上記式(1)を満たすように形成することができる。これによって、各撮影装置(21A、21B)に対する歪みの影響を回避しつつ、各撮影窓(113A、113B)の大きさを比較的に小さく形成することが可能になる。 In consideration of the width of the distorted area, each photographing window (113A, 113B) is formed so that the vertical and horizontal widths of each photographing window (113A, 113B) satisfy the above formula (1). Can do. Accordingly, it is possible to make the size of each shooting window (113A, 113B) relatively small while avoiding the influence of distortion on each shooting device (21A, 21B).
 上記のようなローラコンベア903は公知のものであり、両端部を回転自在に支持された複数のローラ931が、所定間隔をあけて配置されている。各ローラ931の駆動には種々の方法があるが、例えば、各ローラ931の端部にスプロケットを取り付け、各スプロケットにチェーンを巻回して駆動することができる。そして、各ローラ931の回転速度を調整することで、各ガラス板(13、14)の搬送速度も調整することができる。なお、成形装置902の下型922は各ガラス板(13、14)の全面に亘って接するような形態でもよい。このほか、成形装置902は、ガラス板を成形するものであれば、上型及び下型の形態は特には限定されない。 The roller conveyor 903 as described above is a known one, and a plurality of rollers 931 whose both ends are rotatably supported are arranged at predetermined intervals. There are various methods for driving each roller 931. For example, a sprocket can be attached to the end of each roller 931, and a chain can be wound around each sprocket to drive it. And the conveyance speed of each glass plate (13, 14) can also be adjusted by adjusting the rotational speed of each roller 931. FIG. The lower mold 922 of the forming apparatus 902 may be in contact with the entire surface of each glass plate (13, 14). In addition, if the shaping | molding apparatus 902 shape | molds a glass plate, the form of an upper mold | type and a lower mold | type will not be specifically limited.
 こうして、外側ガラス板13及び内側ガラス板14が成形されると、これに続いて、外側ガラス板13及び内側ガラス板14の間に中間膜15を挟み、これをゴムバッグに入れ、減圧吸引しながら約70~110℃で予備接着する。予備接着の方法は、これ以外の方法であってもよい。例えば、外側ガラス板13及び内側ガラス板14の間に中間膜15を挟み、オーブンにより45~65℃で加熱する。続いて、この合わせガラスを0.45~0.55MPaでロールにより押圧する。次に、この合わせガラスを、再度オーブンにより80~105℃で加熱した後、0.45~0.55MPaでロールにより再度押圧する。こうして、予備接着が完了する。 Thus, when the outer glass plate 13 and the inner glass plate 14 are formed, the intermediate film 15 is sandwiched between the outer glass plate 13 and the inner glass plate 14, and this is put in a rubber bag and sucked under reduced pressure. While pre-adhering at about 70-110 ° C. The pre-adhesion method may be other methods. For example, the intermediate film 15 is sandwiched between the outer glass plate 13 and the inner glass plate 14 and heated at 45 to 65 ° C. in an oven. Subsequently, this laminated glass is pressed by a roll at 0.45 to 0.55 MPa. Next, the laminated glass is again heated at 80 to 105 ° C. in an oven and then pressed again with a roll at 0.45 to 0.55 MPa. Thus, preliminary adhesion is completed.
 次に、本接着を行う。予備接着の完了した合わせガラスを、オートクレーブにより、例えば、8~15気圧で、100~150℃によって、本接着を行う。例えば、14気圧で145℃の条件で本接着を行うことができる。こうして、本実施形態に係るウインドシールド1を構成する合わせガラスが製造される。 Next, this bonding is performed. The laminated glass that has been pre-bonded is subjected to main bonding by an autoclave at, for example, 8 to 15 atm and 100 to 150 ° C. For example, the main bonding can be performed under the conditions of 14 atm and 145 ° C. In this way, the laminated glass which comprises the windshield 1 which concerns on this embodiment is manufactured.
 なお、このような合わせガラスを自動車に取り付ける角度(以下、「取付角度」とも称する)は、実施の形態に応じて適宜設定することができる。例えば、この合わせガラスの取付角度は、垂直から45度以下にすることができる。 It should be noted that the angle at which such a laminated glass is attached to the automobile (hereinafter also referred to as “attachment angle”) can be appropriately set according to the embodiment. For example, the mounting angle of the laminated glass can be 45 degrees or less from the vertical.
 §3 特徴
 以上のように、本実施形態に係るウインドシールド1では、車外からの視野を遮蔽する遮蔽層11が2つの撮影窓(113A、113B)を有している。これによって、車内に設置されたステレオカメラ2は、各撮影窓(113A、113B)を介して車外の状況を撮影し、視差の生じた2つの画像を同時に取得することができる。また、ステレオビジョン等の公知の解析処理をこの2つの画像に適用することにより、単一の撮影装置では取得困難な被写体と自車との距離等の情報を取得することが可能になる。したがって、本実施形態によれば、ミリ波レーダ、レーザレーダ等の異なるタイプの測定装置を利用しなくても、単一の撮影装置では取得困難な情報を取得することができるようになるため、簡易な構成で十分な情報を取得可能な車載システムに適用可能なウインドシールド1を提供することができる。
§3 Features As described above, in the windshield 1 according to this embodiment, the shielding layer 11 that shields the field of view from the outside of the vehicle has the two imaging windows (113A, 113B). As a result, the stereo camera 2 installed in the vehicle can capture the situation outside the vehicle via the respective imaging windows (113A, 113B) and simultaneously acquire two images with parallax. In addition, by applying a known analysis process such as stereo vision to these two images, it is possible to acquire information such as the distance between the subject and the vehicle that is difficult to acquire with a single photographing device. Therefore, according to the present embodiment, it is possible to acquire information that is difficult to acquire with a single imaging device without using different types of measurement devices such as millimeter wave radar and laser radar. It is possible to provide the windshield 1 applicable to an in-vehicle system capable of acquiring sufficient information with a simple configuration.
 また、本実施形態では、遮蔽層11は、ウインドシールド1を構成する内側ガラス板14の車内側の面にセラミックを積層し、内側ガラス板14と共にセラミックを加熱することで形成される。ここで、本発明者らは、後述するとおり、セラミックで第4面に遮蔽層11を形成した場合に、各撮影窓(113A、113B)における歪み量が最も小さくなることを見出した。そのため、本実施形態によれば、内側ガラス板14の車内側の面に遮蔽層11としてセラミックの層を形成することで、歪みの少ない各撮影窓(113A、113B)を提供することができる。 In the present embodiment, the shielding layer 11 is formed by laminating ceramic on the inner surface of the inner glass plate 14 constituting the windshield 1 and heating the ceramic together with the inner glass plate 14. Here, as described later, the present inventors have found that when the shielding layer 11 is formed on the fourth surface with ceramic, the amount of distortion in each photographing window (113A, 113B) is the smallest. Therefore, according to the present embodiment, each imaging window (113A, 113B) with less distortion can be provided by forming a ceramic layer as the shielding layer 11 on the inner surface of the inner glass plate 14.
 §4 変形例
 以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、ウインドシールド1、ステレオカメラ2及び画像処理装置3の各構成要素に関して、実施の形態に応じて、適宜、構成要素の省略、置換及び追加が行われてもよい。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、適宜説明を省略した。
§4 Modifications Embodiments of the present invention have been described in detail above, but the above description is merely an illustration of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. For example, with respect to the constituent elements of the windshield 1, the stereo camera 2, and the image processing device 3, the constituent elements may be omitted, replaced, and added as appropriate according to the embodiment. For example, the following changes are possible. In the following description, the same components as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
 <4.1>
 例えば、上記実施形態に係るウインドシールド1のガラス板は、外側ガラス板13と内側ガラス板14とを中間膜15を介して互いに接合した合わせガラスにより構成されている。しかしながら、ウインドシールド1は、種々の構成が可能であり、例えば、1枚のガラス板により構成してもよい。更に、上記実施形態では、ウインドシールド1のガラス板は略台形状に形成されている。しかしながら、ウインドシールド1のガラス板の形状は、このような形状に限定されなくてもよく、実施の形態に応じて適宜選択されてよい。
<4.1>
For example, the glass plate of the windshield 1 according to the above embodiment is made of laminated glass in which an outer glass plate 13 and an inner glass plate 14 are bonded to each other via an intermediate film 15. However, the windshield 1 can have various configurations, and may be configured by a single glass plate, for example. Furthermore, in the said embodiment, the glass plate of the windshield 1 is formed in the substantially trapezoid shape. However, the shape of the glass plate of the windshield 1 may not be limited to such a shape, and may be appropriately selected according to the embodiment.
 <4.2>
 また、例えば、上記実施形態では、遮蔽層11は、ウインドシールド1の周縁部に沿うように設けられている。しかしながら、遮蔽層11を設ける領域は、実施の形態に応じて、適宜設定可能である。ただし、運転者の視野範囲に遮蔽層11が重なってしまうと、運転の際に遮蔽層11によって運転者の視界が妨げられてしまう。そのため、運転者の視野範囲60に重ならないよう遮蔽層11の領域を設定するのが好ましい。
<4.2>
Further, for example, in the above embodiment, the shielding layer 11 is provided along the peripheral edge of the windshield 1. However, the region where the shielding layer 11 is provided can be set as appropriate according to the embodiment. However, if the shielding layer 11 overlaps the visual field range of the driver, the visibility of the driver is hindered by the shielding layer 11 during driving. Therefore, it is preferable to set the region of the shielding layer 11 so as not to overlap the driver's visual field range 60.
 <4.3>
 また、例えば、上記実施形態では、遮蔽層11は、ウインドシールド1を構成する合わせガラスの第4面に積層されている。しかしながら、遮蔽層11を積層する面は、合わせガラスの第4面に限定されなくてもよく、実施の形態に応じて適宜選択可能である。例えば、合わせガラスの第2面及び/又は第3面に遮蔽層11が積層されてもよい。
<4.3>
For example, in the said embodiment, the shielding layer 11 is laminated | stacked on the 4th surface of the laminated glass which comprises the windshield 1. FIG. However, the surface on which the shielding layer 11 is laminated need not be limited to the fourth surface of the laminated glass, and can be appropriately selected according to the embodiment. For example, the shielding layer 11 may be laminated on the second surface and / or the third surface of the laminated glass.
 図7は、本変形例に係るウインドシールド1を模式的に例示する断面図である。図7に例示されるように、外側ガラス板13の車内側の面(第2面)及び内側ガラス板14の車内側の面(第4面)それぞれに、黒色等の濃色のセラミックをスクリーン印刷等によって積層し、各ガラス板(13、14)と共にセラミックを加熱することで、遮蔽層11を形成してもよい。 FIG. 7 is a cross-sectional view schematically illustrating the windshield 1 according to this modification. As illustrated in FIG. 7, dark ceramics such as black are screened on the inner surface (second surface) of the outer glass plate 13 and the inner surface (fourth surface) of the inner glass plate 14. The shielding layer 11 may be formed by laminating by printing or the like and heating the ceramic together with the glass plates (13, 14).
 なお、このように第2面及び第4面にセラミックを積層して遮蔽層11を形成することで、二層構造の遮蔽層11を形成することができ、これによって、車外側又は車内側から遮蔽層11を見た場合に、遮蔽層11の色を濃くすることができる。よって、当該構成によれば、遮蔽層11の外観上の見栄えを良くすることができる。また、第4面にセラミックを積層することによって、ウインドシールド1を自動車に取り付ける際の接着性を高めることができる。更に、この第4面に積層したセラミックが内側ガラス板14と自動車の取り付け部分との間でクッションとなることによって、ウインドシールド1が取り付け部分において割れやすくなるのを防止することができる。 In addition, by forming the shielding layer 11 by laminating ceramics on the second surface and the fourth surface in this way, the shielding layer 11 having a two-layer structure can be formed. When the shielding layer 11 is viewed, the color of the shielding layer 11 can be increased. Therefore, according to the said structure, the appearance on the external appearance of the shielding layer 11 can be improved. Further, by laminating the ceramic on the fourth surface, it is possible to improve the adhesiveness when attaching the windshield 1 to the automobile. Further, the ceramic laminated on the fourth surface serves as a cushion between the inner glass plate 14 and the mounting portion of the automobile, so that the windshield 1 can be prevented from being easily broken at the mounting portion.
 <4.4>
 また、上記実施形態では、各撮影装置(21A、21B)は、4つのレンズ221~224を備えている。しかしながら、各撮影装置(21A、21B)の構成は、実施の形態に応じて適宜変更可能である。例えば、図8及び図9で例示するように、各撮影装置(25A、25B)を構成することができる。
<4.4>
In the above-described embodiment, each photographing apparatus (21A, 21B) includes four lenses 221 to 224. However, the configuration of each imaging device (21A, 21B) can be changed as appropriate according to the embodiment. For example, as illustrated in FIGS. 8 and 9, each imaging device (25A, 25B) can be configured.
 図8は、本変形例に係る各撮影装置(25A、25B)の構成を例示する。図8で例示される各撮影装置(25A、25B)は、2つの平凸レンズ(261、262)を有するレンズ系26と、レンズ系26から被写体側に配置された開口絞り27と、レンズ系26を通過した光によって撮像するイメージセンサ28と、を備える。本変形例では、開口絞り27がレンズ系26の被写体側(図8では左側)に配置されている。 FIG. 8 illustrates the configuration of each photographing apparatus (25A, 25B) according to this modification. Each imaging device (25A, 25B) illustrated in FIG. 8 includes a lens system 26 having two plano-convex lenses (261, 262), an aperture stop 27 disposed on the subject side from the lens system 26, and the lens system 26. And an image sensor 28 that picks up an image by light that has passed through. In this modification, the aperture stop 27 is disposed on the subject side (left side in FIG. 8) of the lens system 26.
 したがって、この場合、開口絞り27の位置及び大きさが入射瞳と一致するため、開口絞り27を各撮影窓(113A、113B)上に設けることによって、各撮影窓(113A、113B)上に入射瞳が現れるようにすることができる。よって、この場合、各撮影窓(113A、113B)の大きさを入射瞳の大きさまで小さくすることができる。 Therefore, in this case, since the position and size of the aperture stop 27 coincide with the entrance pupil, by providing the aperture stop 27 on each imaging window (113A, 113B), it is incident on each imaging window (113A, 113B). The pupil can appear. Therefore, in this case, the size of each imaging window (113A, 113B) can be reduced to the size of the entrance pupil.
 また、図9に例示されるように、撮影装置は歪曲補正板29を備えてもよい。図9は、上記変形例における各撮影装置(25A、25B)に歪曲補正板29を設けた場合の一例を示す。この歪曲補正板29は、例えば、ウインドシールド1の外側ガラス板13と内側ガラス板14との曲率差で生じる歪み(レンズパワーで数値化)を補正し、レンズパワーをゼロにすることができる。このような歪曲補正板29は、自由曲面を有する透明な板部材適宜加工することで、ウインドシールドに適合するよう構成することができる。 Further, as illustrated in FIG. 9, the photographing apparatus may include a distortion correction plate 29. FIG. 9 shows an example in which the distortion correction plate 29 is provided in each of the imaging devices (25A, 25B) in the above modification. This distortion correction plate 29 can correct, for example, distortion (numerized by lens power) caused by a difference in curvature between the outer glass plate 13 and the inner glass plate 14 of the windshield 1 and can make the lens power zero. Such a distortion correction plate 29 can be configured to fit a windshield by appropriately processing a transparent plate member having a free-form surface.
 <4.5>
 また、上記実施形態では、ウインドシールド1の外側ガラス板13及び内側ガラス板14それぞれをプレス成形する成形装置902を説明した。しかしながら、ウインドシールド1のガラス板を成形する方法は、このような例に限られなくてもよく、例えば、図10で例示される自重曲げ工法によって成形してもよい。
<4.5>
In the above embodiment, the molding apparatus 902 that press-molds the outer glass plate 13 and the inner glass plate 14 of the windshield 1 has been described. However, the method for forming the glass plate of the windshield 1 is not limited to such an example, and may be formed by, for example, the self-weight bending method illustrated in FIG.
 図10は、本変形例に係るガラス板の成形装置を例示する。この成形装置では、まず、平板上の外側ガラス板13及び内側ガラス板14の間に中間膜15を挟んだ合わせガラス(ウインドシールド1)を準備する。なお、この前の段階で、遮蔽層11はスクリーン印刷等によって第4面及び/又は第2面に積層されている。 FIG. 10 illustrates a glass plate forming apparatus according to this modification. In this molding apparatus, first, a laminated glass (windshield 1) is prepared in which an intermediate film 15 is sandwiched between an outer glass plate 13 and an inner glass plate 14 on a flat plate. In this previous stage, the shielding layer 11 is laminated on the fourth surface and / or the second surface by screen printing or the like.
 そして、リング状(枠状)の成形型800に、この合わせガラスを載置する。この成形型800は搬送台801上に配置されており、成形型800に合わせガラスを載置した状態で、搬送台801は、加熱炉802及び徐冷炉803内を順に通過する。このとき、成形型800はリング状であるため、合わせガラスは周縁部のみが支持された状態で加熱炉802を通過する。そして、加熱炉802内で軟化点温度付近まで加熱されると、合わせガラスは自重によって周縁部よりも内側が下方に湾曲し、曲面状に成形される。なお、ウインドシールド1が、合わせガラスではなく、一枚のガラス板で構成される場合であっても、同様の方法によって成形することができる。 Then, this laminated glass is placed on a ring-shaped (frame-shaped) mold 800. This forming die 800 is disposed on a conveying table 801, and the conveying table 801 sequentially passes through the heating furnace 802 and the slow cooling furnace 803 in a state where the laminated glass is placed on the forming mold 800. At this time, since the mold 800 is ring-shaped, the laminated glass passes through the heating furnace 802 with only the peripheral edge supported. Then, when heated to near the softening point temperature in the heating furnace 802, the laminated glass is bent downward on the inner side from the peripheral edge by its own weight, and is formed into a curved surface shape. In addition, even if the windshield 1 is not a laminated glass but a single glass plate, it can be formed by the same method.
 <4.6>
 また、中間膜15は、種々の態様を採用することができる。例えば、中間膜15の一部を黒色等の濃色に染色して、中間膜15の一領域(染色領域)を遮蔽層11の一部として構成してもよい。ただし、この染色領域が各撮影窓(113A、113B)に重なる場合には、各撮影装置(21A、21B)による撮影をこの染色領域が阻害する可能性がある。そのため、染色領域と各撮影窓(113A、113B)とが重なる部分については、可視光の透過率の高い素材に置き換えることで、各撮影窓(113A、113B)に染色領域が重ならないように構成してもよい。
<4.6>
The intermediate film 15 can employ various modes. For example, a part of the intermediate film 15 may be dyed in a dark color such as black, and one region (stained region) of the intermediate film 15 may be configured as a part of the shielding layer 11. However, if this stained area overlaps each imaging window (113A, 113B), this stained area may hinder imaging by each imaging apparatus (21A, 21B). For this reason, the portion where the staining area and each imaging window (113A, 113B) overlap is replaced with a material having a high visible light transmittance so that the staining area does not overlap each imaging window (113A, 113B). May be.
 <4.7>
 また、上記実施形態では、ステレオカメラ2は、2つの撮影装置(21A、21B)を有する。しかしながら、ステレオカメラ2の備える撮影装置の数は、2つに限られなくてもよく、3つ以上であってもよい。なお、この場合、遮蔽層11に設けられる撮影窓の数は、撮影装置の数に応じて設定されてよい。
<4.7>
Moreover, in the said embodiment, the stereo camera 2 has two imaging devices (21A, 21B). However, the number of imaging devices included in the stereo camera 2 is not limited to two, and may be three or more. In this case, the number of photographing windows provided in the shielding layer 11 may be set according to the number of photographing devices.
 <4.8>
 また、上記実施形態における補正データ311、各撮影窓(113A、113B)の大きさ、及び遮蔽層11を設ける合わせガラスの面は、ステレオカメラだけではなく、単一のカメラの場合にも適用可能である。そのため、ステレオカメラを利用せずに単一のカメラを利用する場合には、撮影窓の数は1つであってもよい。
<4.8>
Further, the correction data 311 in the above embodiment, the size of each photographing window (113A, 113B), and the surface of the laminated glass on which the shielding layer 11 is provided can be applied not only to a stereo camera but also to a single camera. It is. Therefore, when a single camera is used without using a stereo camera, the number of shooting windows may be one.
 <4.9>
 また、上記実施形態では、遮蔽層11は一層構造である。しかしながら、遮蔽層11は、多層構造にすることができる。例えば、内側ガラス板14の車内側の面にセラミックを積層することで第1セラミック層を形成する。次に、第1セラミック層の上に銀を積層することで銀層を形成する。更に、この銀層の上にセラミックを積層することで第2セラミック層を形成する。これによって、3層構造の遮蔽層11を形成することができる。この3層構造の遮蔽層11は、銀層によって電磁波を遮蔽することができる。なお、この銀層には以下の表2に示される組成の材料を利用することができる。
<4.9>
Moreover, in the said embodiment, the shielding layer 11 is a single layer structure. However, the shielding layer 11 can have a multilayer structure. For example, the first ceramic layer is formed by laminating ceramics on the inner surface of the inner glass plate 14. Next, a silver layer is formed by laminating silver on the first ceramic layer. Furthermore, a second ceramic layer is formed by laminating a ceramic on the silver layer. Thereby, the shielding layer 11 having a three-layer structure can be formed. The shielding layer 11 having a three-layer structure can shield electromagnetic waves by a silver layer. In addition, the material of the composition shown in the following Table 2 can be utilized for this silver layer.
Figure JPOXMLDOC01-appb-T000005
*1,主成分:ホウケイ酸ビスマス、ホウケイ酸亜鉛
Figure JPOXMLDOC01-appb-T000005
* 1, Main component: Bismuth borosilicate, Zinc borosilicate
 <4.10>
 また、上記実施形態では、各撮影窓(113A、113B)と非遮蔽領域12とは離間している。しかしながら、図11に例示されるように、各撮影窓(113A、113B)は非遮蔽領域12と連続するように形成されてもよい。
<4.10>
Moreover, in the said embodiment, each imaging | photography window (113A, 113B) and the non-shielding area | region 12 are spaced apart. However, as illustrated in FIG. 11, each imaging window (113 </ b> A, 113 </ b> B) may be formed to be continuous with the non-shielding region 12.
 以下、本発明の実施例について説明する。ただし、本発明はこの実施例に限定される訳ではない。 Hereinafter, examples of the present invention will be described. However, the present invention is not limited to this embodiment.
 <遮蔽層及び撮影窓の境界付近における歪み>
 まず、セラミックを用いて遮蔽層を形成した場合に、遮蔽層の形成された領域と遮蔽層の形成されていない領域との境界でどのような歪みが生じるかを調べるために、以下のガラス板を準備した。
<Distortion near the boundary between shielding layer and shooting window>
First, in order to investigate what kind of distortion occurs at the boundary between the region where the shielding layer is formed and the region where the shielding layer is not formed when the shielding layer is formed using ceramic, the following glass plate is used. Prepared.
(1)ガラス板の構成:外側ガラス板及び内側ガラス板を厚み2mmのグリーンガラスで構成し、これらの間に単層の中間膜を配置した合わせガラスとした。
(2)遮蔽層:上記の表1で示される組成の第1セラミック層及び第2セラミック層の間に表2で示される組成に銀層を配置した三層構造の遮蔽層を形成した。また、遮蔽層には台形状の撮影窓を形成した。
(3)ガラス板の作製:内側ガラス板の車内側の面に、第1セラミック層、銀層、及び第2セラミック層をスクリーン印刷し、遮蔽層を形成した。銀層の組成は、以下の表2で示される。その後、図6に示すような成形型で、加熱炉で650℃に焼成し曲面状に成形し、加熱炉から搬送後徐冷した。
(1) Configuration of glass plate: A laminated glass in which an outer glass plate and an inner glass plate are made of green glass having a thickness of 2 mm, and a single-layer interlayer film is disposed therebetween.
(2) Shielding layer: A shielding layer having a three-layer structure in which a silver layer was arranged in the composition shown in Table 2 between the first ceramic layer and the second ceramic layer having the composition shown in Table 1 above was formed. In addition, a trapezoidal photographing window was formed in the shielding layer.
(3) Production of glass plate: A first ceramic layer, a silver layer, and a second ceramic layer were screen-printed on the inner surface of the inner glass plate to form a shielding layer. The composition of the silver layer is shown in Table 2 below. Thereafter, it was baked to 650 ° C. in a heating furnace with a molding die as shown in FIG. 6 and formed into a curved shape, and gradually cooled after being conveyed from the heating furnace.
 続いて、上記のように製造されたガラス板に対し、遮蔽層の境界付近におけるガラス板の歪みを測定したところ、図12に示される結果を得た。図12のグラフでは、横軸がガラス板の面方向の長さを示し、縦軸がレンズパワー(ミリ diopter)を示す。(Diopter)はレンズ作用による焦点距離の逆数であり、単位は(1/m)である。 Subsequently, when the distortion of the glass plate near the boundary of the shielding layer was measured for the glass plate produced as described above, the result shown in FIG. 12 was obtained. In the graph of FIG. 12, the horizontal axis indicates the length in the surface direction of the glass plate, and the vertical axis indicates the lens power (millimeter diopter). (Diopter) is the reciprocal of the focal length due to the lens action, and its unit is (1 / m).
 なお、レンズパワーの測定方法は、以下のとおりである。まず、暗室内でガラス板に光を投影し、ガラス板の背後のスクリーンに影を形成する。このとき、ガラス板上に凸レンズ作用があると光が集光し、スクリーン上の影が明るくなる。一方、ガラス板上に凹レンズ作用があると暗くなる。ここで、レンズパワーとスクリーン上の影の明るさには相関があり、レンズパワーが既知のレンズを置き、そのときのスクリーン上での明るさを測定することで、レンズパワーと明るさの関係を得ることができる。したがって、対象となるガラス板を配置し、スクリーン上での明るさをガラス全面に渡って測定することで、ガラス板のレンズパワーを得ることができる。 The method for measuring the lens power is as follows. First, light is projected onto a glass plate in a dark room, and a shadow is formed on the screen behind the glass plate. At this time, if there is a convex lens action on the glass plate, the light is condensed and the shadow on the screen becomes bright. On the other hand, when there is a concave lens action on the glass plate, it becomes dark. Here, there is a correlation between the lens power and the brightness of the shadow on the screen. By placing a lens with a known lens power and measuring the brightness on the screen at that time, the relationship between the lens power and the brightness Can be obtained. Therefore, the lens power of the glass plate can be obtained by arranging the target glass plate and measuring the brightness on the screen over the entire surface of the glass.
 このような測定の結果、図12によれば、遮蔽層から非遮蔽領域に向かうにしたがって、その境界付近では、レンズパワーが急激に大きくなっており、ガラス板の歪みが増大していることがわかる。そして、境界から所定の長さを離れると、歪みが低減し、更に離れると歪みが消失していることが分かる。 As a result of such measurement, according to FIG. 12, the lens power increases rapidly and the distortion of the glass plate increases near the boundary from the shielding layer toward the non-shielding region. Recognize. And when it leaves | separates predetermined length from a boundary, it turns out that distortion reduces, and when it leaves | separates further, distortion lose | disappears.
 また、ガラス板の歪みによる画像の変形を検討するため、遮蔽層に台形状の撮影窓を形成したガラス板において、JIS R3212の透視歪みの試験を行い、その場面を写真撮影した。図13は、これによって得た写真を示す。図13に示されるように、遮蔽層と撮影窓との境界から8mm以内で真円が変形して楕円形状に変形している(歪領域)。一方、撮影窓の中央付近(境界から8mmを除いた領域)では、境界付近に比較して真円に近いことが分かる。 Also, in order to examine the deformation of the image due to the distortion of the glass plate, a JIS-R3212 perspective distortion test was conducted on a glass plate having a trapezoidal shooting window in the shielding layer, and the scene was photographed. FIG. 13 shows a photograph thus obtained. As shown in FIG. 13, the perfect circle is deformed into an elliptical shape within 8 mm from the boundary between the shielding layer and the imaging window (distortion region). On the other hand, it can be seen that the vicinity of the center of the imaging window (the area excluding 8 mm from the boundary) is closer to a perfect circle than the vicinity of the boundary.
 したがって、上記のとおり、撮影装置の撮影範囲が上述した歪みの大きい歪領域を含まないように、撮影窓の垂直方向及び水平方向の幅を上記式1を満たすように形成するのが好ましいと推定される。 Therefore, as described above, it is presumed that it is preferable to form the imaging window so that the vertical and horizontal widths satisfy the above-described formula 1 so that the imaging range of the imaging apparatus does not include the above-described distortion region with large distortion. Is done.
 <遮蔽層を設ける面と撮影窓の歪みとの関係>
 次に、上記と同様の方法により、セラミックを第2面に積層して遮蔽層を形成したガラス板、セラミックを第2面及び第4面に積層して遮蔽層を形成したガラス板、及びセラミックを第4面に積層して遮蔽層を形成したガラス板をそれぞれ準備し、遮蔽層を設ける面と撮影窓の歪みとの関係を調べた。なお、本実施例では、左右に離間した2つの撮影窓を遮蔽層に形成した。各撮影窓は、上辺の幅が20mm、下辺の幅が50mm、高さが40mmの台形形状に形成した。そして、デプスゲージ(メーカー名:ミツトヨ社、型番: ID-C112RB)を利用して、左右ぞれぞれの撮影窓の車外側の面及び車内側の面それぞれの、水平方向の曲率半径を測定した。なお、デプスゲージの幅は50mmとし、各撮影窓の高さ方向中央(高さ30mmの位置)の幅が50mmとなる部分にデプスゲージを当てることで、各撮影窓の各面の曲率半径を測定した。更に、以下の数4にそれぞれの面の曲率半径を代入することで、各撮影窓の水平方向におけるレンズパワーを算出した。
<Relationship between the surface on which the shielding layer is provided and the distortion of the shooting window>
Next, by the same method as described above, a glass plate in which a shielding layer is formed by laminating ceramic on the second surface, a glass plate in which a shielding layer is formed by laminating ceramic on the second surface and the fourth surface, and ceramic A glass plate in which a shielding layer was formed by laminating the film on the fourth surface was prepared, and the relationship between the surface on which the shielding layer was provided and the distortion of the photographing window was examined. In this embodiment, two photographing windows spaced apart from each other are formed on the shielding layer. Each photographing window was formed in a trapezoidal shape having an upper side width of 20 mm, a lower side width of 50 mm, and a height of 40 mm. Then, using the depth gauge (manufacturer name: Mitutoyo Corporation, model number: ID-C112RB), the horizontal curvature radii of each of the outer surface and the inner surface of the left and right photographing windows were measured. . In addition, the width of the depth gauge was 50 mm, and the radius of curvature of each surface of each imaging window was measured by applying a depth gauge to the portion where the width of the center of each imaging window (position of 30 mm height) was 50 mm. . Furthermore, the lens power in the horizontal direction of each photographing window was calculated by substituting the radius of curvature of each surface into the following equation (4).
Figure JPOXMLDOC01-appb-M000006
 ただし、レンズパワーの単位は(1/m)、R1、R2の単位はm、1.52はガラスの屈折率である。
Figure JPOXMLDOC01-appb-M000006
However, the unit of lens power is (1 / m), the unit of R1 and R2 is m, and 1.52 is the refractive index of glass.
 なお、数4におけるR1には車外側の面の曲率半径を代入し、R2には車内側の面の曲率半径を代入した。これにより、左側の撮影窓のレンズパワーについては図14Aで示される結果を得た。また、右側の撮影窓のレンズパワーについては図14Bで示される結果を得た。縦軸の目盛は ミリ diopter である。 Note that the radius of curvature of the vehicle outer surface is substituted for R1 in Equation 4, and the radius of curvature of the vehicle inner surface is substituted for R2. As a result, the lens power of the left photographing window was obtained as shown in FIG. 14A. Moreover, the result shown by FIG. 14B was obtained about the lens power of the right imaging | photography window. The scale of the vertical axis is milli-diopter.
 図14A及び図14Bに示される結果によると、第4面にセラミックを積層した場合に、左右共にレンズパワーがほぼ0であることが示された。レンズパワーが0であることは、第1面と第4面との曲率が同じであるため、ウインドシールドには凹レンズ作用又は凸レンズ作用の役割がなく、換言すると、収束及び発散がないことを意味する。したがって、当該結果により、第4面にセラミックを積層して遮蔽層を形成することで、歪みによるレンズパワーの発生が殆どない撮影窓を形成することができることが分かった。また、セラミックを積層する面に応じて、撮影窓を介して取得した画像に生じる変形量が異なることが分かった。そのため、上記のように、セラミックを印刷する面に応じて補正値を定めておくことで、撮影窓を介して取得した画像を適正に補正することができることが分かった。 14A and 14B show that when the ceramic is laminated on the fourth surface, the lens power is almost zero on both the left and right sides. A lens power of 0 means that the curvature of the first surface and the fourth surface are the same, so the windshield does not have a concave lens function or a convex lens function, in other words, there is no convergence or divergence. To do. Therefore, from the result, it was found that by forming a shielding layer by laminating ceramics on the fourth surface, it is possible to form a photographing window that hardly generates lens power due to distortion. Moreover, it turned out that the deformation amount which arises in the image acquired through the imaging | photography window differs according to the surface which laminates | stacks a ceramic. For this reason, as described above, it has been found that the image acquired through the photographing window can be corrected appropriately by setting the correction value according to the surface on which the ceramic is printed.
 一方、第2面にセラミックを積層した場合には、各撮影窓のレンズパワーが、-21.6~-20mdptとなり、凹レンズの傾向を示していた。また、第2面及び第4面にセラミックを積層した場合には、第2面にセラミックを積層した場合と4面にセラミックを積層した場合との中間程度の結果が得られた。 On the other hand, when ceramic was laminated on the second surface, the lens power of each photographing window was −21.6 to −20 mdpt, indicating a tendency of a concave lens. When ceramics were laminated on the second surface and the fourth surface, an intermediate result was obtained between the case where the ceramics were laminated on the second surface and the case where the ceramics were laminated on the four surfaces.
 これらの結果より、外側ガラス板及び内側ガラス板における表面の曲率の違い等のその他の要因によってレンズパワーの値は相違しうるところ、図14A及び図14Bに示されるように、第4面のみにセラミックを積層した場合に、撮影窓において歪みによるレンズパワーが最も生じないことが分かった。また、第2面のみにセラミックを積層した場合に、撮影窓において歪みによるレンズパワーが最も生じることが分かった。更に、第2面及び第4面にセラミックを積層した場合には、撮影窓において、第2面のみにセラミックを積層した結果及び第4面のみにセラミックを積層した結果の中間程度の歪みによるレンズパワーが生じることが分かった。 From these results, the value of the lens power can be different depending on other factors such as the difference in curvature of the surface between the outer glass plate and the inner glass plate, but only on the fourth surface as shown in FIGS. 14A and 14B. It has been found that when ceramics are laminated, the lens power due to distortion hardly occurs in the photographing window. Further, it has been found that when ceramic is laminated only on the second surface, the lens power due to distortion occurs most in the photographing window. Further, in the case where ceramics are laminated on the second surface and the fourth surface, in the photographing window, a lens caused by distortion that is intermediate between the result of laminating the ceramic only on the second surface and the result of laminating the ceramic only on the fourth surface. It turns out that power is generated.
 <入射瞳の位置と歪曲量との関係>
 最後に、入射瞳の位置と撮影窓における歪曲量との関係を調べるため、図15に例示されるような光学シミュレーションを行った。この光学シミュレーションには、米国Lambda Research社製のソフトウェア OSLO Premium(Release6.3)を利用した。そして、ウインドシールドは1枚のガラス板で構成されるものとし、ウインドシールドの厚みを4.8mmとした。また、ガラス板は水平方向に対して30°傾いているものとし、ガラス板の屈折率を1.52とした。更に、車外側の面の水平方向の曲率半径を4800mmとした。そして、車内側の面の垂直方向の曲率半径を1800mmとし、車内側の面の水平方向の曲率半径を4800mmとした。
<Relationship between entrance pupil position and distortion>
Finally, in order to investigate the relationship between the position of the entrance pupil and the amount of distortion in the imaging window, an optical simulation as exemplified in FIG. 15 was performed. For this optical simulation, software OSLO Premium (Release 6.3) manufactured by Lambda Research, USA was used. And the windshield shall be comprised with one glass plate, and the thickness of the windshield was 4.8 mm. The glass plate was inclined 30 ° with respect to the horizontal direction, and the refractive index of the glass plate was 1.52. Furthermore, the curvature radius in the horizontal direction of the outer surface of the vehicle was 4800 mm. And the curvature radius of the vertical direction of the surface inside the vehicle was 1800 mm, and the curvature radius of the horizontal direction of the surface inside the vehicle was 4800 mm.
 ここで、車外側の面の垂直方向の曲率半径を1600mm~2000mmまで200mmの間隔で変動させた。また、撮影装置の入射瞳とウインドシールド(内側の面)との距離(空気層換算の光学長)を-10mm~30mmまで5ないし10mmの間隔で変動させた。更に、ウインドシールドから1500mm離れた位置に配置されたターゲット上に測定点を設定した。 Here, the vertical radius of curvature of the outer surface of the vehicle was varied from 1600 mm to 2000 mm at intervals of 200 mm. Further, the distance (optical length in terms of air layer) between the entrance pupil of the photographing apparatus and the windshield (inner surface) was varied from -10 mm to 30 mm at intervals of 5 to 10 mm. Furthermore, a measurement point was set on a target placed at a position 1500 mm away from the windshield.
 そして、測定点から発して入射瞳の中心を通る光線(主光線)の、入射瞳位置における方向を、
(a)ウインドシールドを配置した場合(角度P)
(b)ウインドシールドを配置しなかった場合(角度Q)
についてそれぞれ計算し、以下の数5により歪曲量を算出した。
And the direction at the entrance pupil position of the light ray (chief ray) that emanates from the measurement point and passes through the center of the entrance pupil,
(A) When a windshield is placed (angle P)
(B) When no windshield is placed (angle Q)
The amount of distortion was calculated by the following equation (5).
Figure JPOXMLDOC01-appb-M000007
 この歪曲量は、撮影装置の焦点距離及びF値には依存しない数値である。評価した測定点及び方向は、図15に示すAy及びY方向、Cy及びY方向、並びに、Ex及びX方向とした。これにより、図16及び図17に示される結果が得られた。なお、入射瞳とウインドシールドとの間の距離が-10mmであるとは、入射瞳がウインドシールド(内側の面)から車外側に光学長10mm離れた状態を意味する。
Figure JPOXMLDOC01-appb-M000007
This amount of distortion is a numerical value that does not depend on the focal length and F value of the photographing apparatus. The evaluated measurement points and directions were the Ay and Y directions, the Cy and Y directions, and the Ex and X directions shown in FIG. As a result, the results shown in FIGS. 16 and 17 were obtained. Note that the distance between the entrance pupil and the windshield being −10 mm means that the entrance pupil is separated from the windshield (inner surface) by an optical length of 10 mm toward the outside of the vehicle.
 図16は、カメラの入射瞳とウインドシールドとの距離を-10mm~30mmまで10mmの間隔で変動させた場合においてウインドシールドを介して撮影したターゲットの歪曲量を示す。この結果によると、車外側の垂直方向の曲率半径を1800mmに設定した場合、すなわち、ウインドシールドの車外側の面と車内側の面とで同じ曲率半径の形状になっている場合に、カメラの入射瞳とウインドシールドとの距離を変動させても、歪曲量の変動が小さいことが分かった。 FIG. 16 shows the amount of distortion of the target imaged through the windshield when the distance between the entrance pupil of the camera and the windshield was varied from −10 mm to 30 mm at intervals of 10 mm. According to this result, when the curvature radius in the vertical direction outside the vehicle is set to 1800 mm, that is, when the shape of the same curvature radius is formed on the vehicle outer surface and the vehicle inner surface of the windshield, It was found that even when the distance between the entrance pupil and the windshield was varied, the variation in the amount of distortion was small.
 また、図16では、ウインドシールドの曲率によって歪曲量が変化するところ、ウインドシールドと入射瞳との間隔Dを略3mmとすることによって、ウインドシールドの曲率による歪曲量の変化を抑えることができることが分かった。すなわち、例えば、Dを-10mmに設定した場合には、ウインドシールドの曲率を1600mm~2000mmに変動させた場合に、ターゲットCyの歪曲量は1.1%~2.7%に変動した。一方、Dを略3mmに設定した場合には、ウインドシールドの曲率を1600mm~2000mmに変動させても、ターゲットCyの歪曲量は1.9%で変動しなかった。また、ターゲットAyについては、Dを概略6mmとすることによって歪曲量の変動がほぼゼロとなる。しかし、ターゲットCyのほうが歪曲の絶対量と変動量が大きいので、ウインドシールドと入射瞳との間隔Dを略3mmとすることによって、ウインドシールドの曲率による歪曲量の変化を抑えることができることが分かった。 In FIG. 16, the amount of distortion changes depending on the curvature of the windshield. By setting the distance D between the windshield and the entrance pupil to about 3 mm, the change in the amount of distortion due to the curvature of the windshield can be suppressed. I understood. That is, for example, when D is set to −10 mm, the amount of distortion of the target Cy varies from 1.1% to 2.7% when the curvature of the windshield is varied from 1600 mm to 2000 mm. On the other hand, when D was set to approximately 3 mm, even when the curvature of the windshield was varied from 1600 mm to 2000 mm, the amount of distortion of the target Cy did not vary at 1.9%. Further, for the target Ay, by setting D to approximately 6 mm, the variation in the distortion amount becomes almost zero. However, since the target Cy has a larger amount of absolute distortion and variation, it can be seen that the change in the amount of distortion due to the curvature of the windshield can be suppressed by setting the distance D between the windshield and the entrance pupil to approximately 3 mm. It was.
 なお、ウインドシールドの形状は、デザイン上および空気力学的な理由により湾曲している。設計上は厚さ一定のガラス板であるからレンズパワーはほぼゼロであり、レンズパワーに起因する歪曲はほとんど発生しない。また、湾曲の形状が設計値通りであれば、湾曲に起因する歪曲量を計算して対処することができる。しかしながら、ウインドシールドの外面(第1面)及び内面(第4面)の曲率差により生じるレンズパワーによる歪曲は、設計値からのずれを生じさせる。そのため、このようなレンズパワーに起因する歪曲が生じる場合には、ウインドシールドの設計値のみによってステレオカメラが撮影する画像の変形を補正することは困難であり、レンズパワーに起因する歪曲への対処が別途必要となる。これに対して、上述のとおり、第4面のみにセラミックを積層することで、レンズパワーの発生を抑えることができるので、そのようなレンズパワーに起因する歪曲への対処が不要となる。 The shape of the windshield is curved for design and aerodynamic reasons. Since the glass plate has a constant thickness in terms of design, the lens power is almost zero, and distortion caused by the lens power hardly occurs. Further, if the shape of the curve is as designed, the amount of distortion caused by the curve can be calculated and dealt with. However, the distortion due to the lens power caused by the difference in curvature between the outer surface (first surface) and the inner surface (fourth surface) of the windshield causes a deviation from the design value. For this reason, when such distortion caused by the lens power occurs, it is difficult to correct the deformation of the image captured by the stereo camera only by the design value of the windshield, and it is difficult to correct the distortion caused by the lens power. Is required separately. On the other hand, as described above, since the generation of lens power can be suppressed by laminating ceramic only on the fourth surface, it is not necessary to deal with distortion caused by such lens power.
 また、図17は、車外側の面の垂直方向の曲率半径を1600mm~2000mmまで100mmの間隔で変動させた場合においてウインドシールドを介して撮影したターゲットの歪曲量を示す。この結果によると、Cyが最も歪曲率の変動が大きかった。具体的には、カメラの入射瞳とウインドシールドとの距離を30mmに設定すると、車外側の面の垂直方向の曲率半径が1600mmの場合と2000mmの場合とで点Cyの歪曲率が3.3%から0.4%まで凡そ2.9%変動した。 FIG. 17 shows the amount of distortion of the target imaged through the windshield when the curvature radius in the vertical direction of the outer surface of the vehicle is varied from 1600 mm to 2000 mm at intervals of 100 mm. According to this result, Cy had the largest variation in distortion. Specifically, when the distance between the entrance pupil of the camera and the windshield is set to 30 mm, the curvature of the point Cy is 3.3 when the vertical curvature radius of the outer surface of the vehicle is 1600 mm and 2000 mm. It varied by approximately 2.9% from% to 0.4%.
 一方、カメラの入射瞳とウインドシールドとの距離を10mmに設定すると、車外側の面の垂直方向の曲率半径が1600mmの場合と2000mmの場合とで点Cyの歪曲率の変動は2.3%から1.5%まで凡そ0.8%程度にまで抑えることができた。また、カメラの入射瞳とウインドシールドとの距離を-10mmに設定すると、車外側の面の垂直方向の曲率半径が1600mmの場合と2000mmの場合とで点Cyの歪曲率の変動は1.1%から2.6%まで凡そ1.5%程度にまで抑えることができた。 On the other hand, if the distance between the entrance pupil of the camera and the windshield is set to 10 mm, the variation in the distortion of the point Cy is 2.3% when the vertical curvature radius of the outer surface of the vehicle is 1600 mm and 2000 mm. From about 1.5% to about 0.8%. When the distance between the entrance pupil of the camera and the windshield is set to -10 mm, the variation in the distortion at the point Cy is 1.1 when the vertical curvature radius of the outer surface of the vehicle is 1600 mm and 2000 mm. % To 2.6% could be reduced to about 1.5%.
 したがって、カメラの入射瞳とウインドシールドとの距離を-10mm~10mmの範囲で設定しておくことによって、車外側の面の垂直方向の曲率半径を変動させても、ウインドシールドを介して撮影したターゲットの歪曲量の変動をある程度抑えることができることが分かった。特に、カメラの入射瞳とウインドシールドとの距離を2mm~3mmの範囲で設定することで、車外側の面の垂直方向の曲率半径を変動させても、また、例えば、遮蔽層の設けた面により、レンズパワーによりバラツキが生じても、ウインドシールドを介して撮影したターゲットの歪曲量の変動をほぼ抑えることができることが分かった。 Therefore, by setting the distance between the entrance pupil of the camera and the windshield in a range of −10 mm to 10 mm, the image is taken through the windshield even if the vertical curvature radius of the outer surface of the vehicle is changed. It was found that the variation of the target distortion amount can be suppressed to some extent. In particular, by setting the distance between the entrance pupil of the camera and the windshield in the range of 2 mm to 3 mm, even if the vertical radius of curvature of the outer surface of the vehicle is changed, for example, the surface provided with the shielding layer Thus, it has been found that even if variations occur due to lens power, fluctuations in the amount of distortion of the target imaged through the windshield can be substantially suppressed.
 ここで、車外側の面の垂直方向の曲率半径の変動はウインドシールドの製造誤差を示し、ウインドシールドと入射瞳の間隔の変動はカメラ取り付け時の誤差を示している。すなわち、車外側の面の曲率半径と車内側の面の曲率半径とが一致している場合には、ウインドシールドでレンズ効果はほとんど生じないので、ウインドシールドを介して撮影した画像の歪曲量は、ウインドシールドとカメラの間隔が変動してもほぼ一定値となる。一方、車外側の面の曲率半径と車内側の面の曲率半径とが製造時のばらつきによって一致しない場合には、その不一致具合によって、ウインドシールドにおいてレンズ効果が生じやすくなり、ウインドシールドを介して撮影した画像の歪曲量は、ウインドシールドとカメラの間隔が変動すると大きく変化する。 Here, the variation in the vertical radius of curvature of the vehicle outer surface indicates a manufacturing error of the windshield, and the variation in the distance between the windshield and the entrance pupil indicates an error when the camera is attached. In other words, when the curvature radius of the vehicle outer surface and the curvature radius of the vehicle inner surface are the same, the lens effect hardly occurs with the windshield, so the amount of distortion of the image taken through the windshield is Even if the distance between the windshield and the camera fluctuates, the value is almost constant. On the other hand, if the radius of curvature of the vehicle outer surface and the radius of curvature of the vehicle inner surface do not match due to manufacturing variations, the lens effect tends to occur in the windshield due to the mismatch, and the windshield The amount of distortion of the photographed image changes greatly when the distance between the windshield and the camera changes.
 この不一致具合は製造誤差によって変動し得るため、この不一致具合の変動によって、ウインドシールドを介して撮影した画像の歪曲量が変動してしまう。そうすると、ウインドシールドを介して撮影した画像を補正するための補正値は個々のウインドシールドに特有の値になってしまい、ウインドシールドを作製する度に補正値を特定しなければならなくなってしまう。 Since this discrepancy can vary due to manufacturing errors, the amount of distortion of the image taken through the windshield fluctuates due to this discrepancy. In this case, the correction value for correcting the image photographed through the windshield becomes a value specific to each windshield, and the correction value must be specified every time the windshield is manufactured.
 これに対して、上記シミュレーションの結果によると、カメラの入射瞳とウインドシールドとの距離を-10mm~10mmの範囲で設定することによって、車外側の面の曲率半径と車内側の面の曲率半径と不一致具合が変動しても、ウインドシールドを介して撮影した画像の歪曲量の変動をある程度抑えられることが分かった。特に、カメラの入射瞳とウインドシールドとの距離を2mm~3mmの範囲で設定することで、ウインドシールドを介して撮影した画像の歪曲量の変動をほぼ抑えられることが分かった。これによって、インドシールドの製造誤差によって各撮影窓を介して撮影した画像の歪曲量が大きく変動するのを防止し、個体差を考慮することなく、撮影した画像を補正する補正値を一律に定めることができる。 On the other hand, according to the result of the above simulation, by setting the distance between the entrance pupil of the camera and the windshield in the range of −10 mm to 10 mm, the curvature radius of the vehicle outer surface and the curvature radius of the vehicle inner surface are set. It was found that even if the disagreement fluctuates, the fluctuation of the distortion amount of the image taken through the windshield can be suppressed to some extent. In particular, it has been found that by setting the distance between the entrance pupil of the camera and the windshield in the range of 2 mm to 3 mm, fluctuations in the amount of distortion of the image taken through the windshield can be substantially suppressed. As a result, it is possible to prevent the amount of distortion of the image captured through each imaging window from fluctuating greatly due to manufacturing errors of the Indian shield, and to uniformly determine a correction value for correcting the captured image without considering individual differences. be able to.
 1…ウインドシールド、
 11…遮蔽層、111…周縁領域、112…突出領域、113(A・B)…撮影窓、
 12…非遮蔽領域、
 13…外側ガラス板、14…内側ガラス板、15…中間膜、
 2…ステレオカメラ、
 21(A・B)…撮影装置、
 22…レンズ系、221~224…平凸レンズ、23…開口絞り、
 24…イメージセンサ、
 25(A・B)…撮影装置、
 26…レンズ系、261・262…平凸レンズ、27…開口絞り、
 28…イメージセンサ、29…歪曲補正板、
 3…画像処理装置、
 31…記憶部、311…補正データ、32…制御部、321…画像解析部、
 33…入出力部、
 60…視野範囲、
 800…成形型、801…搬送台、802…加熱炉、803…徐冷炉、
 901…加熱炉、931…ローラ、
 902…成形装置、921…上型、922…下型、
 903…ローラコンベア
1 ... Windshield,
DESCRIPTION OF SYMBOLS 11 ... Shielding layer, 111 ... Peripheral area | region, 112 ... Protrusion area | region, 113 (A * B) ... Shooting window,
12 ... non-shielding area,
13 ... outer glass plate, 14 ... inner glass plate, 15 ... intermediate film,
2 ... Stereo camera,
21 (A / B): photographing apparatus,
22 ... Lens system, 221 to 224 ... Plano-convex lens, 23 ... Aperture stop,
24. Image sensor,
25 (A / B) ... photographing device,
26: Lens system, 261, 262: Plano-convex lens, 27 ... Aperture stop,
28 ... Image sensor, 29 ... Distortion correction plate,
3 ... Image processing device,
31 ... Storage unit, 311 ... Correction data, 32 ... Control unit, 321 ... Image analysis unit,
33 ... Input / output unit,
60 ... field of view,
800 ... Mold, 801 ... Transfer, 802 ... Heating furnace, 803 ... Slow cooling furnace,
901 ... Heating furnace, 931 ... Roller,
902 ... Molding device, 921 ... Upper mold, 922 ... Lower mold,
903 ... Roller conveyor

Claims (9)

  1.  視差の生じた複数の画像を取得可能に、互いに離間した複数の撮影装置を有するステレオカメラを配置可能な自動車のウインドシールドであって、
     ガラス板と、
     前記ガラス板に設けられ、車外からの視野を遮蔽する遮蔽層と、
    を備え、
     前記遮蔽層は、車内に配置された前記ステレオカメラの前記複数の撮影装置それぞれが車外の状況を撮影可能なように、前記複数の撮影装置それぞれにそれぞれ対応する複数の撮影窓を備える、
    ウインドシールド。
    A windshield for an automobile capable of arranging a stereo camera having a plurality of photographing devices spaced apart from each other so that a plurality of images with parallax can be obtained,
    A glass plate,
    A shielding layer that is provided on the glass plate and shields a field of view from outside the vehicle;
    With
    The shielding layer includes a plurality of photographing windows respectively corresponding to the plurality of photographing devices so that each of the plurality of photographing devices of the stereo camera arranged in a vehicle can photograph a situation outside the vehicle.
    Windshield.
  2.  前記遮蔽層は、前記ガラス板の車内側の面に、前記ガラス板と異なる熱膨張率を有するセラミックを積層することで構成され、前記ガラス板及び前記セラミックの熱膨張率の違いによって前記遮蔽層の周縁部で前記ガラス板が歪む歪領域と、前記自動車を運転する運転者が運転の際に交通状況を確認する視野範囲と、が重ならないように配置される、
    請求項1に記載のウインドシールド。
    The shielding layer is configured by laminating a ceramic having a thermal expansion coefficient different from that of the glass plate on the inner surface of the glass plate, and the shielding layer depends on a difference in thermal expansion coefficient between the glass plate and the ceramic. Disposed so that the strain area where the glass plate is distorted at the peripheral edge of the vehicle and the visual field range where the driver driving the automobile confirms the traffic situation during driving do not overlap,
    The windshield according to claim 1.
  3.  前記ガラス板は、車外側に配置される外側ガラス板と車内側に配置される内側ガラス板とを中間膜を介して互いに接合した合わせガラスで構成され、
     前記遮蔽層は、前記内側ガラス板の車内側の面に、前記内側ガラス板と異なる熱膨張率を有するセラミックを積層することで構成される、
    請求項1又は2に記載のウインドシールド。
    The glass plate is composed of laminated glass obtained by bonding an outer glass plate arranged on the vehicle outer side and an inner glass plate arranged on the vehicle inner side via an intermediate film,
    The shielding layer is configured by laminating a ceramic having a thermal expansion coefficient different from that of the inner glass plate on the inner surface of the inner glass plate.
    The windshield according to claim 1 or 2.
  4.  前記ガラス板は、車外側に配置される外側ガラス板と車内側に配置される内側ガラス板とを中間膜を介して互いに接合した合わせガラスで構成され、
     前記遮蔽層は、前記外側ガラス板の車内側の面及び前記内側ガラス板の車内側の面それぞれに、前記外側ガラス板及び前記内側ガラス板と異なる熱膨張率を有するセラミックを積層することで構成される、
    請求項1又は2に記載のウインドシールド。
    The glass plate is composed of laminated glass obtained by bonding an outer glass plate arranged on the vehicle outer side and an inner glass plate arranged on the vehicle inner side via an intermediate film,
    The shielding layer is configured by laminating ceramics having different thermal expansion coefficients from the outer glass plate and the inner glass plate on the inner surface of the outer glass plate and the inner surface of the inner glass plate, respectively. To be
    The windshield according to claim 1 or 2.
  5.  前記複数の撮影窓それぞれは、前記複数の撮影窓それぞれの垂直方向及び水平方向の幅が式(1)を満たすよう形成される、
    請求項3又は4に記載のウインドシールド。
     H≦2a+b+c …式(1)
     なお、
     Hは、撮影窓の垂直方向及び水平方向の幅を、
     aは、撮影窓の周縁部における歪領域の幅を、
     bは、入射瞳の直径を、
     cは、取付誤差を、
    示す。
    Each of the plurality of shooting windows is formed such that the vertical and horizontal widths of the plurality of shooting windows satisfy Expression (1).
    The windshield according to claim 3 or 4.
    H ≦ 2a + b + c (1)
    In addition,
    H is the vertical and horizontal width of the shooting window,
    a is the width of the distorted region at the periphery of the imaging window,
    b is the diameter of the entrance pupil,
    c is the mounting error,
    Show.
  6.  前記複数の撮影窓それぞれは、前記複数の撮影窓それぞれの垂直方向及び水平方向の幅が式(2)を満たすよう形成される、
    請求項5に記載のウインドシールド。
     b≦H …式(2)
    Each of the plurality of shooting windows is formed such that the vertical and horizontal widths of the plurality of shooting windows satisfy the formula (2).
    The windshield according to claim 5.
    b ≦ H (2)
  7.  請求項3から6のいずれか1項に記載されたウインドシールドを備える自動車に搭載するための車載システムであって、
     視差の生じた複数の画像を取得可能なよう互いに離間した複数の撮影装置を有するステレオカメラと、
     前記ステレオカメラにより取得された複数の画像を解析して、前記ステレオカメラの撮影範囲内に写る被写体の位置を算出する画像処理装置と、
    を備え、
     前記画像処理装置は、前記ウインドシールドによって変形した画像を補正するための補正データであって、前記セラミックの積層した面に応じて変形量が定められた補正データを保持し、当該補正データを用いて各画像の補正処理を実行する、
    車載システム。
    An in-vehicle system for mounting on a vehicle including the windshield according to any one of claims 3 to 6,
    A stereo camera having a plurality of imaging devices separated from each other so that a plurality of images with parallax can be acquired;
    An image processing device that analyzes a plurality of images acquired by the stereo camera and calculates a position of a subject that is captured within a shooting range of the stereo camera;
    With
    The image processing device holds correction data for correcting an image deformed by the windshield, the correction data having a deformation amount determined in accordance with the ceramic laminated surface, and uses the correction data. To execute correction processing for each image,
    In-vehicle system.
  8. 請求項3から6のいずれか1項に記載されたウインドシールドを備える自動車に搭載するための車載システムであって、
     視差の生じた複数の画像を取得可能なよう互いに離間した複数の撮影装置を有するステレオカメラと、
     前記ステレオカメラにより取得された複数の画像を解析して、前記ステレオカメラの撮影範囲内に写る被写体の位置を算出する画像処理装置と、
    を備え、
     前記ステレオカメラの複数の撮影装置それぞれにおける光学系は、入射瞳が光学部品よりも被写体側に存在するよう構成される、
    車載システム。
    An in-vehicle system for mounting on a vehicle including the windshield according to any one of claims 3 to 6,
    A stereo camera having a plurality of imaging devices separated from each other so that a plurality of images with parallax can be acquired;
    An image processing device that analyzes a plurality of images acquired by the stereo camera and calculates a position of a subject that is captured within a shooting range of the stereo camera;
    With
    The optical system in each of the plurality of photographing devices of the stereo camera is configured such that the entrance pupil is present on the subject side with respect to the optical component.
    In-vehicle system.
  9.  前記ステレオカメラは、前記複数の撮影装置それぞれの光軸方向において、前記複数の撮影装置それぞれにおける前記光学系の入射瞳とウインドシールドの前記複数の撮影窓それぞれとの距離が前後10mm以内の範囲になるように配置される、
    請求項8に記載の車載システム。
    In the stereo camera, the distance between the entrance pupil of the optical system in each of the plurality of imaging devices and each of the plurality of imaging windows of the windshield in each of the plurality of imaging devices is within a range of within 10 mm in the front and rear direction. Arranged to be
    The in-vehicle system according to claim 8.
PCT/JP2015/080117 2014-12-04 2015-10-26 Windshield and vehicle-mounted system WO2016088472A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014245905A JP2016107755A (en) 2014-12-04 2014-12-04 Windshield and on-vehicle system
JP2014-245905 2014-12-04

Publications (1)

Publication Number Publication Date
WO2016088472A1 true WO2016088472A1 (en) 2016-06-09

Family

ID=56091428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080117 WO2016088472A1 (en) 2014-12-04 2015-10-26 Windshield and vehicle-mounted system

Country Status (2)

Country Link
JP (1) JP2016107755A (en)
WO (1) WO2016088472A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109878416A (en) * 2019-04-09 2019-06-14 江苏铁锚玻璃股份有限公司 Based on camera and the acquisition of glass for vehicle window car scene and display system
JP2021148465A (en) * 2020-03-16 2021-09-27 京セラ株式会社 Detection device, sensor adjustment system, vehicle, and method for adjusting sensor
EP3737558B1 (en) 2018-01-11 2021-10-27 Saint-Gobain Glass France Vehicle window, vehicle and method of manufacturing
US11826987B2 (en) 2019-03-26 2023-11-28 Pilkington Group Limited Laminated glazing and process
EP4071122A4 (en) * 2019-12-06 2023-12-06 Agc Inc. Glass for vehicles, and camera unit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658363B2 (en) * 2016-07-06 2020-03-04 Agc株式会社 Laminated glass and vehicle windows
JP6998661B2 (en) * 2017-02-22 2022-02-10 日本板硝子株式会社 Rear glass
WO2019012962A1 (en) * 2017-07-13 2019-01-17 Agc株式会社 Window glass for automobiles
RU2734640C1 (en) 2017-10-26 2020-10-21 Сэн-Гобэн Гласс Франс Mounting element for vehicle with integrated camera module
FR3077761B1 (en) * 2018-02-14 2020-02-21 Saint-Gobain Glass France AUTOMOTIVE WINDSHIELD WITH A CAMERA FIELD ZONE WITH REDUCED OPTICAL DISTORTION
JP7324683B2 (en) 2019-10-17 2023-08-10 株式会社Subaru Image processing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605729A2 (en) * 2004-04-15 2005-12-14 Pilkington Plc Electrically heated window
JP2006327381A (en) * 2005-05-25 2006-12-07 Asahi Glass Co Ltd Laminated glass and its manufacturing method
WO2007052600A1 (en) * 2005-10-31 2007-05-10 Nippon Sheet Glass Company, Limited Curved glass plate with light shielding film for vehicle
JP2009069369A (en) * 2007-09-12 2009-04-02 Fujinon Corp Imaging lens and imaging apparatus
JP2009280195A (en) * 2008-04-25 2009-12-03 Fuji Heavy Ind Ltd Stereo camera unit
JP2013112314A (en) * 2011-11-30 2013-06-10 Hitachi Automotive Systems Ltd Installation device of on-vehicle camera
JP2013255064A (en) * 2012-06-06 2013-12-19 Denso Corp Reflection reductive on-vehicle camera system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029348A (en) * 2000-07-17 2002-01-29 Honda Motor Co Ltd Outside recognizer for vehicle
JP2009229875A (en) * 2008-03-24 2009-10-08 Sony Corp Zoom lens and imaging apparatus
JP5561871B2 (en) * 2011-09-29 2014-07-30 日立オートモティブシステムズ株式会社 Stereo camera and stereo camera calibration method
JP2014001106A (en) * 2012-06-19 2014-01-09 Asahi Glass Co Ltd Antifogging glass article and method for manufacturing the same, and article for transportation equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605729A2 (en) * 2004-04-15 2005-12-14 Pilkington Plc Electrically heated window
JP2006327381A (en) * 2005-05-25 2006-12-07 Asahi Glass Co Ltd Laminated glass and its manufacturing method
WO2007052600A1 (en) * 2005-10-31 2007-05-10 Nippon Sheet Glass Company, Limited Curved glass plate with light shielding film for vehicle
JP2009069369A (en) * 2007-09-12 2009-04-02 Fujinon Corp Imaging lens and imaging apparatus
JP2009280195A (en) * 2008-04-25 2009-12-03 Fuji Heavy Ind Ltd Stereo camera unit
JP2013112314A (en) * 2011-11-30 2013-06-10 Hitachi Automotive Systems Ltd Installation device of on-vehicle camera
JP2013255064A (en) * 2012-06-06 2013-12-19 Denso Corp Reflection reductive on-vehicle camera system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3737558B1 (en) 2018-01-11 2021-10-27 Saint-Gobain Glass France Vehicle window, vehicle and method of manufacturing
US11826987B2 (en) 2019-03-26 2023-11-28 Pilkington Group Limited Laminated glazing and process
CN109878416A (en) * 2019-04-09 2019-06-14 江苏铁锚玻璃股份有限公司 Based on camera and the acquisition of glass for vehicle window car scene and display system
EP4071122A4 (en) * 2019-12-06 2023-12-06 Agc Inc. Glass for vehicles, and camera unit
JP2021148465A (en) * 2020-03-16 2021-09-27 京セラ株式会社 Detection device, sensor adjustment system, vehicle, and method for adjusting sensor

Also Published As

Publication number Publication date
JP2016107755A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
WO2016088472A1 (en) Windshield and vehicle-mounted system
JP6577456B2 (en) Windshield
JP2022145685A (en) windshield
JP6480249B2 (en) Windshield
JP6787776B2 (en) Windshield
WO2016143582A1 (en) Windshield
WO2015186839A1 (en) Automobile window glass
JP6785794B2 (en) Laminated glass
JP2016168996A (en) Windshield
JPWO2016208370A1 (en) Windshield
JP2019119631A (en) Windshield
US20220338311A1 (en) Windshield
JP6697435B2 (en) Window glass for vehicles and in-vehicle system
CN115335342A (en) Window glass for automobile
JP6581470B2 (en) Windshield
JP6785541B2 (en) Glass plate module
JP2017061276A (en) Windshield and bracket
WO2016072136A1 (en) Windshield
JP7469459B2 (en) Laminated Glass
WO2023042785A1 (en) Windshield
CN115298046A (en) Laminated glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866141

Country of ref document: EP

Kind code of ref document: A1