WO2015170577A1 - 半導体素子及び絶縁層形成用組成物 - Google Patents

半導体素子及び絶縁層形成用組成物 Download PDF

Info

Publication number
WO2015170577A1
WO2015170577A1 PCT/JP2015/062066 JP2015062066W WO2015170577A1 WO 2015170577 A1 WO2015170577 A1 WO 2015170577A1 JP 2015062066 W JP2015062066 W JP 2015062066W WO 2015170577 A1 WO2015170577 A1 WO 2015170577A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
repeating unit
represented
general formula
insulating layer
Prior art date
Application number
PCT/JP2015/062066
Other languages
English (en)
French (fr)
Inventor
裕三 永田
滝沢 裕雄
山田 悟
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016517857A priority Critical patent/JP6204580B2/ja
Priority to EP15788651.6A priority patent/EP3142160A4/en
Publication of WO2015170577A1 publication Critical patent/WO2015170577A1/ja
Priority to US15/340,831 priority patent/US9905768B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials

Definitions

  • the present invention relates to a semiconductor device and a composition for forming an insulating layer.
  • BACKGROUND Display devices such as liquid crystal displays, organic EL displays, electrophoretic displays and the like include semiconductor elements such as thin film transistors (hereinafter also referred to as TFTs).
  • TFTs thin film transistors
  • the TFT has a gate electrode, a gate insulating layer, a source electrode and a drain electrode, and has a structure in which a source electrode and a drain electrode are connected by a semiconductor layer.
  • a voltage is applied to the gate electrode, a current flow channel is formed at the interface between the semiconductor layer between the source electrode and the drain electrode and the gate insulating layer adjacent to the semiconductor layer. That is, the current flowing between the source electrode and the drain electrode is controlled according to the input voltage applied to the gate electrode.
  • Patent Document 1 discloses an organic thin film transistor insulating layer material including a polymer compound containing a repeating unit having a cyclic ether structure and a repeating unit substituted with an organic group from which a hydroxyl group of vinylphenol is released by an acid. Have been described.
  • the material forming the insulating layer and the insulating layer is important for improving the performance is not limited to the TFT if it is a semiconductor element having the insulating layer provided adjacent to the semiconductor layer, and the case other than the TFT It is common to
  • An object of the present invention is to provide a semiconductor device having high carrier mobility and excellent in on / off ratio. Moreover, this invention makes it a subject to provide the composition for insulating layer formation which can form the insulating layer which was excellent in solvent resistance and surface smoothness, and also excellent in insulation.
  • the present inventors repeat the process for a polymer compound having a specific repeating unit having a carboxy group or capable of generating a carboxy group, and a specific repeating unit having a crosslinkable group that crosslinks with this repeating unit. It has been found that, by crosslinking units to form a crosslinked product, it is possible to form an insulating layer having a smooth surface and high solvent resistance and insulation. In addition, it has been found that a composition containing this polymer compound is excellent as a composition for forming an insulating layer of a TFT excellent in solvent resistance, surface smoothness and insulation. Furthermore, it has been found that a TFT having a gate insulating layer formed of a crosslinked product of this polymer compound exhibits high carrier mobility and is excellent in on / off ratio. The present invention has been completed based on these findings.
  • a semiconductor device having a semiconductor layer and an insulating layer adjacent to the semiconductor layer, A semiconductor in which the insulating layer is formed of a crosslinked product of a polymer compound having a repeating unit (IA) represented by the following general formula (IA) and a repeating unit (IB) represented by the following general formula (IB) element.
  • R 1a represents a hydrogen atom, a halogen atom or an alkyl group.
  • L 1a and L 2a each independently represent a single bond or a linking group.
  • X represents a crosslinkable group.
  • m2a represents an integer of 1 to 5, and when m2a is 2 or more, m2a X's may be the same as or different from each other.
  • m1a is an integer of 1 to 5, if m1a is 2 or more, m1a number of (-L 2a - (X) m2a ) may be the same or different from each other.
  • R 1b represents a hydrogen atom, a halogen atom or an alkyl group.
  • L 1 b represents a single bond or a linking group.
  • Y B represents a degradable group or a hydrogen atom. * Indicates the bonding position of the repeating unit.
  • R 1a represents a hydrogen atom, a halogen atom or an alkyl group.
  • L 3a represents a single bond or a linking group.
  • X represents a crosslinkable group.
  • m3a represents an integer of 1 to 5, and when m3a is 2 or more, m3a X's may be the same as or different from each other. * Indicates the bonding position of the repeating unit.
  • R 1a represents a hydrogen atom, a halogen atom or an alkyl group.
  • L 4a represents a single bond or a linking group.
  • X represents a crosslinkable group.
  • m5a represents an integer of 1 to 5, and when m5a is 2 or more, m5a X's may be the same as or different from each other.
  • m4a represents an integer of 1 to 5, when m4a is 2 or more, m4a number of (-O-L 4a - (X ) m5a) may be the same or different from each other. * Indicates the bonding position of the repeating unit.
  • R 1b represents a hydrogen atom, a halogen atom or an alkyl group.
  • L 1 b represents a single bond or a linking group.
  • R 2b and R 4b each independently represents a monovalent organic group,
  • R 3b represents a hydrogen atom or a monovalent organic group. * Indicates the bonding position of the repeating unit.
  • R 1b represents a hydrogen atom, a halogen atom or an alkyl group.
  • L 1 b represents a single bond or a linking group.
  • Each of R 5b to R 11b independently represents a hydrogen atom or a monovalent organic group. * Indicates the bonding position of the repeating unit.
  • a composition for forming an insulating layer for forming an insulating layer of a semiconductor element The composition for insulating layer formation containing the high molecular compound which has repeating unit (IA) represented by following General formula (IA), and repeating unit (IB) represented by following General formula (IB).
  • R 1a represents a hydrogen atom, a halogen atom or an alkyl group.
  • L 1a and L 2a each independently represent a single bond or a linking group.
  • X represents a crosslinkable group.
  • m2a represents an integer of 1 to 5, and when m2a is 2 or more, m2a X's may be the same as or different from each other.
  • m1a is an integer of 1 to 5, if m1a is 2 or more, m1a number of (-L 2a - (X) m2a ) may be the same or different from each other.
  • R 1b represents a hydrogen atom, a halogen atom or an alkyl group.
  • L 1 b represents a single bond or a linking group.
  • Y B represents a degradable group or a hydrogen atom. * Indicates the bonding position of the repeating unit.
  • substituents and the like when there are a plurality of substituents, linking groups and the like (hereinafter referred to as substituents and the like) represented by specific symbols, or when a plurality of substituents and the like are simultaneously defined, the respective substituents are mutually It means that it may be the same or different. The same applies to the definition of the number of substituents and the like. Moreover, when there exists repetition of several partial structure represented by the same display in Formula, each partial structure thru
  • the expression of a compound is used to include the salt itself and the ion as well as the compound itself. Moreover, it is a meaning including what changed a part of structure in the range from which the objective effect is acquired.
  • a group which does not specify substitution or non-substitution means that the group may have any substituent, as long as the desired effect is exhibited. This is also the same as for compounds in which no substitution or substitution is specified.
  • a numerical range represented using “to” means a range including the numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the semiconductor device of the present invention has high carrier mobility and is excellent in on / off ratio. Moreover, the composition for insulating layer formation of this invention can form the insulating layer excellent in solvent resistance, surface smoothness, and insulation. In particular, it is suitable for the formation of the insulating layer of the organic thin film transistor.
  • FIG. 1 is a view schematically showing the form of an organic thin film transistor as an example of the semiconductor device of the present invention.
  • the semiconductor device of the present invention is not particularly limited as long as it is a device having a semiconductor layer and an insulating layer adjacent to the semiconductor layer, but a TFT is preferable in terms of the improvement of carrier mobility and on / off ratio.
  • a TFT is preferable in terms of the improvement of carrier mobility and on / off ratio.
  • an organic thin film transistor (referred to as OTFT) formed of an organic material is preferable.
  • OTFT organic thin film transistor
  • a TFT will be described as a preferable semiconductor element of the present invention, but the semiconductor element of the present invention is not limited to this.
  • the TFT of the present invention is provided on a substrate in contact with a gate electrode, a semiconductor layer, a gate insulating layer provided between the gate electrode and the semiconductor layer, and the semiconductor layer, and is connected via the semiconductor layer It has a source electrode and a drain electrode.
  • a semiconductor layer and a gate insulating layer are usually provided adjacent to each other. In such a TFT, the current flowing between the source electrode and the drain electrode is controlled as described above.
  • TFTs shown in the respective drawings are schematic views for facilitating the understanding of the present invention, and the sizes or relative magnitude relationships of the respective members may be different in magnitude for convenience of explanation, and the actual relationships Does not indicate that. Moreover, it is not limited to the external shape and shape shown by these figures except the matter prescribed
  • the gate electrode 5 does not necessarily have to cover the whole of the substrate 6, and the form provided in the central part of the substrate 6 is also preferable as the form of the TFT of the present invention .
  • FIGS. 1A to 1D are longitudinal sectional views schematically showing representative preferred embodiments of the TFT.
  • 1 denotes a semiconductor layer
  • 2 denotes a gate insulating layer
  • 3 denotes a source electrode
  • 4 denotes a drain electrode
  • 5 denotes a gate electrode
  • 6 denotes a substrate.
  • 1A shows the bottom gate-bottom contact type
  • FIG. 1B shows the bottom gate-top contact type
  • FIG. 1C shows the top gate-bottom contact type
  • FIG. 1D shows the top gate
  • Each TFT in the top contact form is shown.
  • the TFT of the present invention includes all of the above four forms.
  • an overcoat layer may be formed on the top of each TFT (the top opposite to the substrate 6).
  • the gate electrode 5, the gate insulating layer 2 and the semiconductor layer 1 are disposed in this order on the substrate 6.
  • the semiconductor layer 1, the gate insulating layer 2 and the gate electrode 5 are disposed in this order on the substrate 6.
  • the source electrode 3 and the drain electrode 4 are disposed on the side of the substrate 6 with respect to the semiconductor layer 1 (that is, the lower side in FIG. 1).
  • the source electrode 3 and the drain electrode 4 are disposed on the opposite side of the substrate 6 with respect to the semiconductor layer 1.
  • the semiconductor layer 1, the gate insulating layer 2 and the like are formed of an organic material in the TFT, it is particularly referred to as an OTFT.
  • the semiconductor layer formed of an organic material may be referred to as an organic semiconductor layer.
  • the substrate may be any one as long as it can support a TFT and a display panel or the like manufactured thereon.
  • the substrate is not particularly limited as long as it has insulating properties on the surface, is sheet-like, and has a flat surface.
  • An inorganic material may be used as the material of the substrate.
  • a substrate made of an inorganic material for example, various glass substrates such as soda lime glass and quartz glass, various glass substrates having an insulating film formed on the surface, a silicon substrate having an insulating film formed on the surface, sapphire substrate, stainless steel And metal substrates made of various alloys such as aluminum and nickel and various metals, metal foils, paper and the like.
  • a conductive or semiconductive material such as stainless steel sheet, aluminum foil, copper foil or silicon wafer, usually, an insulating polymer material or metal oxide is applied or laminated on the surface. Used.
  • an organic material may be used as the material of the substrate.
  • polymethyl methacrylate polymethyl methacrylate, PMMA
  • polyvinyl alcohol PVA
  • polyvinyl phenol PVP
  • polyether sulfone PES
  • polyimide polyamide
  • polyacetal polycarbonate
  • PC polyethylene terephthalate
  • flexible plastic substrates also referred to as plastic films and plastic sheets
  • organic polymers exemplified by polyethylene naphthalate (PEN), polyethyl ether ketone, polyolefin, and polycycloolefin.
  • PEN polyethylene naphthalate
  • PEN polyethyl ether ketone
  • polyolefin polycycloolefin
  • mica what was formed with mica can also be mentioned. If such a flexible plastic substrate or the like is used, for example, it becomes possible to incorporate or integrate the TFT into a display device or electronic device having a curved surface shape.
  • the organic material forming the substrate has a high glass transition point, and it is preferable that the glass transition point is 40 ° C. or higher, because the organic material forming the substrate is difficult to soften when laminating other layers or heating.
  • the coefficient of linear expansion be small from the viewpoint that the dimensional change is not easily caused by the heat treatment at the time of manufacture and the stability of the transistor performance is excellent.
  • a material having a linear expansion coefficient of 25 ⁇ 10 ⁇ 5 cm / cm ⁇ C or less is preferable, and a material having 10 ⁇ 10 ⁇ 5 cm / cm ⁇ C or less is more preferable.
  • the organic material constituting the substrate is preferably a material having resistance to a solvent used at the time of manufacturing a TFT, and is preferably a material excellent in adhesion to the gate insulating layer and the electrode. Furthermore, it is also preferable to use a plastic substrate made of an organic polymer having high gas barrier properties. It is also preferable to provide a dense silicon oxide film or the like on at least one side of the substrate, or vapor-deposit or laminate an inorganic material.
  • a conductive substrate (a substrate made of a metal such as gold or aluminum, a substrate made of highly oriented graphite, a stainless steel substrate, etc.) can also be mentioned.
  • the substrate may be provided with a buffer layer for improving adhesion and flatness, a functional film such as a barrier film for improving gas barrier properties, and a surface treatment layer such as an easy adhesion layer on the surface.
  • a functional film such as a barrier film for improving gas barrier properties
  • a surface treatment layer such as an easy adhesion layer on the surface.
  • Surface treatment such as corona treatment, plasma treatment, UV / ozone treatment may be applied.
  • the thickness of the substrate is preferably 10 mm or less, more preferably 2 mm or less, and particularly preferably 1 mm or less. Moreover, on the other hand, it is preferable that it is 0.01 mm or more, and it is more preferable that it is 0.05 mm or more. In particular, in the case of a plastic substrate, the thickness is preferably about 0.05 to 0.1 mm. In the case of a substrate made of an inorganic material, the thickness is preferably about 0.1 to 10 mm.
  • a conventionally known electrode used as a gate electrode of a TFT can be used. It does not specifically limit as a conductive material (it is also called electrode material) which comprises a gate electrode.
  • a conductive material such as platinum, gold, silver, aluminum, chromium, nickel, copper, molybdenum, titanium, magnesium, calcium, barium, sodium, palladium, iron, manganese, etc .
  • InO 2 , SnO 2 indium-tin oxide (ITO Conductive metal oxides such as fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), etc .
  • the method of forming the gate electrode there is no limitation on the method of forming the gate electrode.
  • films formed by physical vapor deposition (PVD) such as vacuum deposition, chemical vapor deposition (CVD), sputtering, printing (coating), transfer, sol-gel, plating, etc.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • sputtering sputtering
  • printing coating
  • transfer sol-gel
  • sol-gel plating
  • a method of patterning into a desired shape can be mentioned.
  • a solution, paste or dispersion of the above-mentioned material can be prepared, applied, dried, fired, photocured or aged to form a film or directly form an electrode.
  • patterning can be performed in combination with the following photolithography method or the like.
  • Examples of the photolithography method include a method of combining patterning of a photoresist with etching such as wet etching with an etching solution or dry etching with reactive plasma, a lift-off method, or the like.
  • etching such as wet etching with an etching solution or dry etching with reactive plasma, a lift-off method, or the like.
  • energy rays such as a laser and an electron beam to polish or change the conductivity of the material.
  • the thickness of the gate electrode is optional, but is preferably 1 nm or more, and particularly preferably 10 nm or more. Moreover, 500 nm or less is preferable and 200 nm or less is especially preferable.
  • the gate insulating layer is not particularly limited as long as it is a layer having an insulating property, and may be a single layer or a multilayer.
  • the gate insulating layer is formed of a crosslinked product of a polymer compound having a repeating unit (IA) represented by the following general formula (IA) and a repeating unit (IB) represented by the following general formula (IB) There is.
  • R 1a represents a hydrogen atom, a halogen atom or an alkyl group.
  • L 1a and L 2a each independently represent a single bond or a linking group.
  • X represents a crosslinkable group.
  • m2a represents an integer of 1 to 5, and when m2a is 2 or more, m2a X's may be the same as or different from each other.
  • m1a is an integer of 1 to 5, if m1a is 2 or more, m1a number of (-L 2a - (X) m2a ) may be the same or different from each other.
  • R 1b represents a hydrogen atom, a halogen atom or an alkyl group.
  • L 1 b represents a single bond or a linking group.
  • Y B represents a degradable group or a hydrogen atom. * Indicates the bonding position of the above repeating unit.
  • the crosslinking reaction of the polymer compound is not particularly limited.
  • it may be a crosslinking reaction between repeating units of a polymer compound, or may be a crosslinking reaction between a crosslinking agent that may coexist and a repeating unit.
  • the crosslinking reaction of the repeating unit (IA) and the repeating unit (IB) is preferred in view of the characteristics of the TFT.
  • the crosslinked product of the polymer compound is preferably one in which the repeating unit (IA) and the repeating unit (IB) are crosslinked.
  • the crosslinked part of the crosslinked product is not uniquely determined by the repeating unit, the crosslinkable group X and the like.
  • it is a crosslinked part formed by the reaction of the crosslinkable group X of the repeating unit (IA) with the carboxy group of the repeating unit (IB).
  • Crosslinking of the repeating units is preferably a crosslinking reaction between molecules, but part of the crosslinking reaction may be intramolecular or reactive.
  • the gate insulating layer When the gate insulating layer is formed of a crosslinked product of the above-described polymer compound, the surface becomes smooth.
  • the repeating unit (IA) and the repeating unit (IB) increase the hydrophobicity of the polymer compound and reduce the cohesive energy.
  • the cohesive energy is reduced when the repeating unit (IB) has a degradable group Y B at the carboxy group.
  • the degradable group Y B is a hydrogen atom, it is considered that the cohesive energy is lowered by the hydrophobicity of the repeating unit (IA) represented by the above general formula (1A).
  • the temporal stability of the polymer compound itself may decrease due to the combination with the crosslinkable group X, but by having the degradable group Y B , It is considered that the crosslinking reaction with time is suppressed and the stability at the time of application is improved.
  • the surface of the gate insulating film is smoothed, the semiconductors provided adjacent thereto are easily aligned uniformly, and carrier paths are efficiently formed. As a result, the carrier mobility of the TFT is considered to be high.
  • a TFT having a gate insulating layer formed of a crosslinked product of the above-described polymer compound has a high on / off ratio and has excellent characteristics.
  • the film quality of the gate insulating layer is improved, and interlayer mixing between the gate insulating layer and the semiconductor layer is suppressed.
  • the insulation performance is also improved. As a result, the on / off ratio of the TFT is considered to be increased.
  • the repeating unit (IA) and the repeating unit (IB) are reacted with an acid, heat or an acid and heat.
  • the repeating unit (IB) has a degradable group Y B
  • the degradable group Y B be decomposed or dissociated (deprotected).
  • the crosslinking reaction of the polymer compound, in order to promote the decomposition of decomposable group Y B, may be used for example to be described later thermal acid generator.
  • the content of the crosslinked product of the polymer compound in the insulating layer is not particularly limited as long as the insulating layer can be formed. From the viewpoint of carrier mobility and on / off ratio, 60 to 100% by mass is preferable, 80 to 100% by mass is more preferable, and 80 to 95% by mass is particularly preferable with respect to the solid content of the insulating layer.
  • the gate insulating layer contains one or more cross-linked products of polymer compounds.
  • the gate insulating layer may contain, in addition to the crosslinked product of the polymer compound, one or more of the above-described polymer compounds that are not crosslinked.
  • the alkyl group of R 1a is not particularly limited, but an alkyl group having 1 to 6 carbon atoms is preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, methyl or ethyl is more preferable, and methyl is particularly preferable.
  • Examples of the substituent which the alkyl group may have include the substituent T described later.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and the like, and a fluorine atom or a chlorine atom is preferable.
  • R 1a is particularly preferably a hydrogen atom or methyl.
  • L 1a is a single bond or a linking group, preferably a linking group, more preferably a divalent linking group.
  • the linking group is not particularly limited, but is preferably a carbonyl group, a thiocarbonyl group, an alkylene group (preferably having a carbon number of 1 to 10, more preferably a carbon number of 1 to 5), an aromatic ring group or an aliphatic ring group And -O-, sulfonyl, -NH- or a combination thereof (preferably having 1 to 20 carbon atoms in total, more preferably 1 to 10 carbon atoms in total).
  • the aromatic ring group may be an aromatic hydrocarbon ring group or an aromatic heterocyclic group. In addition, it may be a single ring or multiple rings, and in the case of multiple rings, it may be a fused ring. An aromatic hydrocarbon ring group and an aromatic ring heterocyclic group are preferable, and an aromatic hydrocarbon ring group is more preferable. As an aromatic hydrocarbon ring group, a benzene ring group, a naphthalene ring group, and an anthracene ring group are preferable, and a benzene ring group is particularly preferable.
  • aromatic ring heterocyclic group examples include thiophene ring group, furan ring group, pyrrole ring group, triazine ring group, imidazole ring group, triazole ring group, thiadiazole ring group, and thiazole ring group.
  • the aliphatic ring group may be an aliphatic hydrocarbon ring group or an aliphatic heterocyclic group. In addition, it may be a single ring or multiple rings, and in the case of multiple rings, it may be a fused ring.
  • An example of the aliphatic hydrocarbon ring group is a cyclohexane group.
  • an aliphatic heterocyclic group an aliphatic cyclic group is mentioned among the heterocyclic rings shown as "a structure which the hydroxymethyl group or the alkoxymethyl group couple
  • a group containing XXX also includes a group consisting of only XXX.
  • L 2a is a single bond or a linking group.
  • it is preferably divalent.
  • at least one of L 1a and L 2a be a linking group.
  • the linking group L 2a is not particularly limited and has the same meaning as the linking group L 1a , but preferred is the following group or a combined group. That is, preferable groups include an alkylene group, an aliphatic ring group, an aromatic ring group and the like.
  • the carbon number of the alkylene group is preferably 1 to 4, and methylene is particularly preferable.
  • the carbon number of the alkylene group in the combined group is preferably 1 to 4, and methylene or ethylene is particularly preferable.
  • L 2a is preferably an alkylene group or -O-alkylene group.
  • L 2a is preferably an alkylene group
  • L 1a is an aromatic ring group
  • L 2a is preferably an —O-alkylene group.
  • the crosslinkable group X is not particularly limited as long as it is a group which reacts with the repeating unit (IB) preferably by at least one of heat and an acid, and examples thereof include a group having a ring structure, a hydroxymethyl group, an alkoxymethyl group Examples thereof include meta) acryloyloxy group, styryl group, vinyl group (including vinyl ether group), -NH-CH 2 -O-R x (R x is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms), and the like.
  • Examples of the group having a ring structure include an epoxy group (oxiranyl group), an oxetanyl group, a thioxiranyl group, a thioxetanyl group and the like.
  • the "ring structure" of the group having a ring structure may be either an aromatic ring or an aliphatic ring. In addition, it may be monocyclic or polycyclic. When it is polycyclic, it may be any of a fused ring, a bridged ring and a spiro ring, but a fused ring or a bridged ring is preferable.
  • a cyclohexane ring as a part of a polycyclic ring, and particularly from the viewpoint of reactivity, it has a cyclohexene oxide structure (a structure in which a cyclohexane ring and an oxirane ring are condensed) and a structure in which cyclohexane and oxetane are condensed. Is preferred.
  • the “ring structure” may have a substituent, and examples of the substituent include a substituent T described later.
  • examples of such a polycyclic ring structure and groups having a ring structure (crosslinkable group X) include the following, but the present invention is not limited thereto.
  • bonding position with L 2a is not specifically limited.
  • alkoxy group of the alkoxymethyl group examples include an alkoxy group having 1 to 10 carbon atoms (eg, methoxy, ethoxy, propoxy, butoxy, hexyl, cyclohexyl and the like).
  • the crosslinkable group X is preferably an epoxy group, an oxetanyl group, a hydroxymethyl group, an alkoxymethyl group, a (meth) acryloyloxy group, a styryl group or a vinyl group, and more preferably an epoxy group or an oxetanyl group.
  • M2a is an integer of 1 to 5, preferably an integer of 1 to 3, and more preferably 1 or 2.
  • m2a is preferably 1 when the crosslinkable group X is a group having a ring structure, and m2a is preferably 2 or 3 when the crosslinkable group X is a group other than a group having a ring structure.
  • the group represented by (-L 2a-(X) m 2a ) is a combination of the above L 2a and X, but the combination of the preferred one of L 2a and the preferred one of X is combined It is preferable that the
  • L 2a contains an aromatic ring or an aliphatic ring, and it is preferable that these rings be bonded to a hydroxymethyl group or an alkoxymethyl group.
  • Examples of the structure in which a hydroxymethyl group or an alkoxymethyl group is bonded to an aromatic ring or an aliphatic ring can include, for example, the following, but the present invention is not limited thereto.
  • the bonding position of the aromatic ring or the aliphatic ring may be any of ring constituent atoms of the aromatic ring or the aliphatic ring.
  • the following structure may have a substituent T.
  • "O-" represents "O-CH 3".
  • M1a is an integer of 1 to 5, preferably an integer of 1 to 4, and more preferably 1 or 2.
  • the repeating unit (IA) is preferably a repeating unit (IA-1) represented by the following general formula (IA-1). * Indicates the bonding position of the repeating unit (IA-1).
  • R 1a represents a hydrogen atom, a halogen atom or an alkyl group, and has the same meaning as R 1a in formula (IA), and preferred examples are also the same.
  • L 3a represents a single bond or a linking group.
  • the carbon number of the alkylene group in the combined group is preferably 1 to 4, and methylene or ethylene is particularly preferable.
  • X represents a crosslinkable group and has the same meaning as X in formula (IA), and the preferred ones are also the same.
  • m3a represents an integer of 1 to 5, and has the same meaning as m2a in formula (IA), and the preferred ones are also the same.
  • the repeating units (IA) and (IA-1) in which the crosslinkable group X is an epoxy group or an oxetanyl group are specifically described.
  • a structural component used as the repeating unit (IA) etc. which have an epoxy group a (meth) acrylic acid ester structural component is mentioned, for example.
  • glycidyl acrylate for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ⁇ -ethyl acrylate, glycidyl ⁇ -n-propyl acrylate, glycidyl ⁇ -n-butyl acrylate, acrylic acid-3,4-epoxy Butyl, methacrylic acid-3,4-epoxybutyl, acrylic acid-3,4-epoxycyclohexylmethyl, methacrylic acid-3,4-epoxycyclohexylmethyl, ⁇ -ethylacrylic acid-3,4-epoxycyclohexylmethyl, o- Vinyl benzyl glycidyl ether, m-vinyl benzyl glycidyl ether, p-vinyl benzyl glycidyl ether, compounds having an alicyclic epoxy skeleton described in paragraph Nos. [0031] to
  • a component to be a repeating unit (IA) having an oxetanyl group for example, (meth) acrylic acid having an oxetanyl group described in paragraph Nos. [0011] to [0016] of JP-A No. 2001-330953.
  • the ester and the compound etc. which are described in Paragraph No. of Unexamined-Japanese-Patent No. 2012-088459 etc. are mentioned, These content is integrated in this-application specification.
  • a component to be the repeating unit (IA) having an epoxy group and an oxetanyl group for example, a monomer having a methacrylic acid ester structure and a monomer having an acrylic acid ester structure are preferable.
  • These constituent units can be used singly or in combination of two or more.
  • repeating unit (IA) and the like include repeating units represented by the following formula.
  • R 1a has the same meaning as R 1a in formula (IA), and the preferred ones are also the same.
  • * indicates a bonding position of the repeating unit (IA) or the like.
  • the following repeating units may each have a substituent T.
  • the repeating unit (IA-1) or the like in which the crosslinkable group X is a vinyl group or a (meth) acryloyloxy group is preferably a structural unit having an ethylenically unsaturated group in the side chain, and has an ethylenically unsaturated group at the terminal And a structural unit having a side chain of 3 to 16 carbon atoms is more preferable.
  • compounds described in paragraph Nos. [0072] to [0090] of JP-A-2011-215580 and paragraph Nos. [0013] to [0031] of JP-A-2008-256974 can be mentioned as preferable ones. , The contents of which are incorporated herein.
  • the repeating unit (IA) is also preferably a repeating unit (IA-2) represented by the following general formula (IA-2). * Indicates the bonding position of the repeating unit (IA-2).
  • R 1a represents a hydrogen atom, a halogen atom or an alkyl group, and has the same meaning as R 1a in formula (IA), and preferred examples are also the same.
  • L 4a represents a single bond or a linking group.
  • the carbon number of the alkylene group is preferably 1 to 4, and methylene or ethylene is particularly preferable.
  • X represents a crosslinkable group and has the same meaning as X in formula (IA), and the preferred ones are also the same.
  • m5a represents an integer of 1 to 5, and has the same meaning as m2a, and preferred ones are also the same.
  • m4a represents an integer of 1 to 5, and has the same meaning as m1a, and preferred ones are also the same.
  • R 1a , L 1a , L 2a , L 3a , L 4a and X each have a substituent It is also good.
  • repeating unit (IA) represented by formula (IA) are shown below, but the invention is not limited thereto.
  • * indicates the bonding position of the repeating unit (IA).
  • the following specific examples may have a substituent T.
  • the content of the repeating unit (IA) is preferably 2 to 50 mol%, more preferably 3 to 50 mol%, and still more preferably 5 to 30 mol%, based on all repeating units of the polymer compound. It is more preferable that the ratio be 10 to 20 mol%. Thus, it is possible to form a gate insulating layer which has a smooth surface and high solvent resistance.
  • the repeating unit (IB) forming the polymer compound is described.
  • the repeating unit (IB) is a repeating unit having a protected carboxy group protected by a carboxy group or a degradable group in the side chain.
  • R 1b represents a hydrogen atom, a halogen atom or an alkyl group.
  • the halogen atom or the alkyl group has the same meaning as the halogen atom or the alkyl group of R 1a above, and preferred ones are also the same.
  • L 1 b is a single bond or a linking group, preferably a single bond.
  • Y B represents a degradable group or a hydrogen atom, and is preferably a degradable group in terms of heat stability.
  • the degradable group can be used without particular limitation as long as it is a group that can be decomposed or dissociated (deprotected) from a carboxy group by acid, heat, or acid and heat.
  • Groups that can form a carboxylic acid acetal group with a carboxy group, such as an ester structure, a cyclic ether group (eg, tetrahydropyranyl group, tetrahydrofuranyl group), an alkoxymethyl group, etc. can be mentioned.
  • a group which is relatively difficult to be decomposed by acid or the like can also be used.
  • a group capable of forming a tertiary alkyl ester with a carboxy group tertiary alkyl group such as tert-butyl group, 1-alkyl (preferably And the like, and tertiary cycloalkyl groups such as methyl, ethyl or butyl) -1-cyclohexyl) and groups capable of forming a tertiary alkyl carbonate group (tert-butyl carbonate group) together with a carboxy group.
  • Y B is preferably a group capable of forming a carboxylic acid acetal group together with a carboxy group, and a group represented by the following formula (Y-1) is preferable.
  • R 2b and R 4b each independently represent a monovalent organic group
  • R 3b represents a hydrogen atom or a monovalent organic group
  • the monovalent organic group is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group and a heteroaryl group.
  • the alkyl group may be linear or branched, and preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • cycloalkyl group preferably has 3 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms.
  • cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, norbornyl, isobornyl and the like can be mentioned.
  • the aryl group preferably has 6 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms. Specific examples thereof include phenyl group, tolyl group, xylyl group, cumenyl group, 1-naphthyl group and the like.
  • the heteroaryl group is synonymous with the below-mentioned aromatic heterocyclic group.
  • the monovalent organic group may have a substituent.
  • a substituent the above-mentioned substituent T and an aryloxy group are mentioned,
  • a halogen atom, an aryl group, an alkoxy group, and an aryloxy group are mentioned.
  • a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned, Among these, a fluorine atom or a chlorine atom is preferable.
  • An alkyl group substituted by a halogen atom is called a haloalkyl group.
  • the aryl group is preferably an aryl group having a carbon number of 6 to 20, more preferably a carbon number of 6 to 12, and specific examples thereof include a phenyl group, an ⁇ -methylphenyl group and a naphthyl group.
  • the alkoxy group is preferably an alkoxy group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and more preferably methoxy or ethoxy.
  • the aryloxy group is preferably an aryloxy group having 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and specific examples thereof include phenoxy and naphthyloxy.
  • the monovalent organic group is a cycloalkyl group, it may have a linear or branched alkyl group having 1 to 10 carbon atoms as a substituent.
  • the monovalent organic group is a linear or branched alkyl group, it may have a cyclic alkyl group having 3 to 12 carbon atoms as a substituent. These substituents may be further substituted by the above-mentioned substituent.
  • R 2 b is more preferably an alkyl group, particularly preferably methyl, and R 3 b is preferably a hydrogen atom.
  • R 4 b is more preferably an alkyl group, particularly preferably n-butyl.
  • the repeating unit (IB) having a carboxy group protected by a degradable group Y B represented by the above formula (Y-1) is preferably a repeating unit (IB) represented by the following general formula (IB-1) -1).
  • * indicates the bonding position of the repeating unit (IB-1).
  • R 1b represents a hydrogen atom, a halogen atom or an alkyl group, and has the same meaning as R 1b in the above general formula (IB), and preferred ones are also the same.
  • L 1b represents a single bond or a linking group, and has the same meaning as L 1b in the above general formula (IB), and preferred ones are also the same.
  • R 2b and R 4b each independently represents a monovalent organic group
  • R 3b represents a hydrogen atom or a monovalent organic group
  • R 2b ⁇ R 4b is, R 2b, respectively, the formula (Y-1) It is synonymous with -R 4b , and preferable ones are also the same.
  • R 2b , R 3b and R 4b are bonded to each other to form a ring structure together with the carbon atom to which R 2b , R 3b and R 4b are bonded It is also good.
  • the ring structure formed include cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl group, tetrahydrofuranyl, adamantyl and tetrahydropyranyl.
  • the cyclic ether formed includes tetrahydrofuranyl, tetrahydropyranyl and the like, with tetrahydrofuranyl being preferred.
  • a repeating unit having tetrahydrofuranyl a repeating unit (IB-2) represented by the following general formula (IB-2) is preferable. In the following general formula (IB-2), * indicates the bonding position of the repeating unit (IB-2).
  • R 1b represents a hydrogen atom, a halogen atom or an alkyl group, and has the same meaning as R 1b in the general formula (IB), and preferred ones are also the same.
  • L 1b represents a single bond or a linking group, and has the same meaning as L 1b in the above general formula (IB), and preferred ones are also the same.
  • Each of R 5b to R 11b independently represents a hydrogen atom or a monovalent organic group, preferably a hydrogen atom, and it is preferable that all of R 5b to R 11b be a hydrogen atom.
  • the monovalent organic group is the same as the monovalent organic group of the above formula (Y-1), and preferred are an alkyl group and an aryl group.
  • the constituent component to be the repeating unit (IB) is unsaturated monocarboxylic acid or unsaturated dicarboxylic acid And unsaturated carboxylic acids having at least one carboxy group in the molecule, such as unsaturated tricarboxylic acids.
  • unsaturated monocarboxylic acid or unsaturated dicarboxylic acid
  • unsaturated carboxylic acids having at least one carboxy group in the molecule, such as unsaturated tricarboxylic acids.
  • examples of such components include (meth) acrylic acid, ⁇ -chloroacrylic acid, 2- (meth) acryloyloxyethyl-succinic acid and the like.
  • unsaturated dicarboxylic acids examples include maleic acid, fumaric acid, itaconic acid, citraconic acid and mesaconic acid.
  • the unsaturated polyvalent carboxylic acid may be its acid anhydride. Specifically, maleic anhydride, itaconic anhydride, citraconic anhydride and the like can be mentioned.
  • the unsaturated polyvalent carboxylic acid may be a mono (2-methacryloyloxyalkyl) ester of polyvalent carboxylic acid, for example, succinic acid mono (2-acryloyloxyethyl), succinic acid mono (2 -Methacryloyloxyethyl), phthalic acid mono (2-acryloyloxyethyl), phthalic acid mono (2-methacryloyloxyethyl) and the like.
  • the unsaturated polyvalent carboxylic acid may be a mono (meth) acrylate of its both terminal dicarboxy polymer, and examples thereof include ⁇ -carboxypolycaprolactone monoacrylate, ⁇ -carboxypolycaprolactone monomethacrylate and the like.
  • unsaturated carboxylic acid acrylic acid 2-carboxyethyl ester, methacrylic acid 2-carboxyethyl ester, monoalkyl ester of maleic acid, monoalkyl ester of fumaric acid, 4-carboxystyrene and the like can also be used.
  • (meth) acrylic acid 2- (meth) acryloyloxyethyl-succinic acid, 2- (meth) acryloyloxyethyl-phthalic acid, an anhydride of unsaturated polyvalent carboxylic acid, etc. .
  • R 1b represents a hydrogen atom, a halogen atom or an alkyl group.
  • * indicates the bonding position of the repeating unit (IB).
  • the following specific examples may have a substituent T.
  • the content of the repeating unit (IB) is preferably 30 to 98% by mole, more preferably 40 to 95% by mole, and more preferably 50 to 90% by mole, based on all repeating units of the polymer compound. It is further preferred that Thus, it is possible to form a gate insulating layer which has a smooth surface and high solvent resistance.
  • the polymer compound may contain other repeating units in addition to the repeating unit (IA) and the repeating unit (IB).
  • a polymer composed of another repeating unit may be contained.
  • a component used as another repeating unit For example, a styrene compound, (meth) acrylic-acid alkylester, (meth) acrylic-acid cycloalkylester, (meth) acrylic-acid arylester, unsaturated dicarboxylic acid
  • a styrene compound (meth) acrylic-acid alkylester, (meth) acrylic-acid cycloalkylester, (meth) acrylic-acid arylester, unsaturated dicarboxylic acid
  • Other repeating units can be used alone or in combination of two or more.
  • styrene methylstyrene, hydroxystyrene, ⁇ -methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, ethyl vinylbenzoate, 4-hydroxybenzoic acid (3-methacryloyloxy Propyl) ester, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, hydroxy Ethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, (meth) acryloyl morpholine, N-cyclohexyl
  • the above-mentioned styrene compound and a group having an aliphatic cyclic skeleton are preferable in that they have no functional group for trapping an electron.
  • the group having an aliphatic cyclic skeleton may be a group having an aliphatic monocyclic or polycyclic (which may be a fused ring, bridged ring or spiro ring) structure, for example, dicyclopentanyl (Meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate and the like.
  • (meth) acrylic acid alkyl ester is preferable from the viewpoint of adhesiveness, and among the above, methyl (meth) acrylate is more preferable.
  • the content of the other repeating unit in the polymer compound is preferably 1 to 30% by mole with respect to all the repeating units constituting the polymer compound, 1 -20 mol% is more preferable, and 2-10 mol% is more preferable.
  • the polymer compound has the above-mentioned repeating units (IA) and (IB) but contains the repeating unit (IA) and does not contain the repeating unit (IB), or contains the repeating unit (IB), and the repeating unit You may contain the polymer which does not contain (IA). Further, in the present invention, the polymer compound includes the repeating unit (IA), a polymer not including the repeating unit (IB), and a polymer including the repeating unit (IB) but not including the repeating unit (IA). It may be a mixture.
  • the polymer compound is prepared by modifying a polymer containing a crosslinkable group X, for example, -L 2a-(X) m 2a group, to a polymer synthesized by radical polymerization method, living radical polymerization method, living anion polymerization method by polymer reaction. Preferably, it is synthesized.
  • the polymer synthesized by radical polymerization method, living radical polymerization method, living anion polymerization method is modified with a polymer having a polycyclic structure containing alkene by polymer reaction Then, it is preferable to synthesize by oxidation with an oxidizing agent (eg, hydrogen peroxide solution, mCPBA, etc.).
  • an oxidizing agent eg, hydrogen peroxide solution, mCPBA, etc.
  • the dissociative group Y B can be introduced, for example, according to a conventional method for protecting a carboxy group.
  • the weight average molecular weight (Mw) of the polymer compound used in the present invention is preferably 1,000 to 200,000, more preferably 2,000 to 100,000, and particularly preferably 2,000 to 50,000.
  • the degree of dispersion (molecular weight distribution) (Mw / Mn) of the polymer compound is preferably 1.0 to 5.0, and more preferably 1.5 to 3.5. According to living polymerization such as living anion polymerization, the degree of dispersion of the polymer compound is uniform, which is preferable.
  • the weight average molecular weight and the degree of dispersion of the polymer compound are defined as polystyrene conversion values by GPC measurement.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are, for example, HLC-8120 (manufactured by Tosoh Corp.), and TSK gel Multipore HXL-M (manufactured by Tosoh Corp., 7.8 mm ID ⁇ ) as a column. 30.0 cm) can be determined by using THF (tetrahydrofuran) as eluent.
  • the polymer compound may be crosslinked by a crosslinking agent contained in the composition for forming an insulating layer.
  • the crosslinked product of the polymer compound is a crosslinked product of the repeating unit (IA) and the repeating unit (IB), and is also a crosslinked product of at least one of both repeating units and a crosslinking agent.
  • crosslinking agent which can be used for this invention, what has a functional group which reacts with at least one of both repeating units is mentioned.
  • acid crosslinking, cationic polymerization, radical polymerization and the like can be used without particular limitation.
  • methylol compounds compounds having a methylol group
  • epoxy compounds, oxetane compounds, (meth) acrylic acid ester compounds, styrene compounds and the like can be used.
  • the number of functional groups of the crosslinking agent is not particularly limited, but is preferably 2 to 6 because the degree of crosslinking increases as the number of functional groups increases.
  • the methylol compound is preferably a compound (C) having two or more hydroxymethyl groups or alkoxymethyl groups in the molecule.
  • Preferred examples of such compound (C) include hydroxymethylated or alkoxymethylated phenol compounds, alkoxymethylated melamine compounds, alkoxymethyl glycoluril compounds and alkoxymethylated urea compounds.
  • Particularly preferable compounds (C) include 3 to 5 benzene rings in the molecule, 2 or more in total of a hydroxymethyl group or an alkoxymethyl group, and a phenol derivative having a molecular weight of 1200 or less, or at least 2 And melamine-formaldehyde derivatives and alkoxymethyl glycoluril derivatives having a free N-alkoxymethyl group.
  • the alkoxymethyl group is preferably a methoxymethyl group or an ethoxymethyl group.
  • a phenol derivative having a hydroxymethyl group can be obtained by reacting a phenol compound having no corresponding hydroxymethyl group with formaldehyde under a base catalyst.
  • a phenol derivative having an alkoxymethyl group can be obtained by reacting an alcohol with a corresponding phenol derivative having a hydroxymethyl group under an acid catalyst.
  • a phenol derivative having an alkoxymethyl group is particularly preferable in terms of sensitivity and storage stability.
  • the above alkoxymethylated melamine compounds, alkoxymethyl glycoluril compounds and alkoxymethylated urea compounds are compounds having an N-hydroxymethyl group or an N-alkoxymethyl group Is preferred.
  • Such compounds include hexamethoxymethylmelamine, hexaethoxymethylmelamine, tetramethoxymethylglycoluril, 1,3-bismethoxymethyl-4,5-bismethoxyethyleneurea, bismethoxymethylurea and the like.
  • EP 0,133,216 A West German Patent Nos. 3,634,671, 3,711,264 and EP 0,212,482 A.
  • crosslinking agents particularly preferred ones are listed below.
  • L 1 to L 8 each independently represent a hydrogen atom, a hydroxymethyl group, a methoxymethyl group, an ethoxymethyl group or an alkyl group having 1 to 6 carbon atoms.
  • crosslinking agent other than the methylol compound examples include compounds described in [0046] to [0061] of JP-A-2006-303465, and compounds [0032] to [0033] of JP-A-2005-354012. It is also preferred to use the crosslinkers mentioned, in particular epoxy compounds with two or more functions, oxetane compounds etc., the content of which is preferably incorporated herein.
  • Crosslinking by a crosslinking agent can be performed by generating an acid or a radical using light, heat or both.
  • crosslinking by acid, crosslinking by cationic polymerization, crosslinking by radical polymerization and the like can be mentioned.
  • radical generator which generates radicals by light or heat
  • the thermal polymerization initiator (H1) and the photopolymerization initiation described in [0182] to [0186] of JP2013-214649A for example, the thermal polymerization initiator (H1) and the photopolymerization initiation described in [0182] to [0186] of JP2013-214649A.
  • Agent (H2), a photo radical generator described in [0046] to [0051] of JP-A-2011-186069, photo radical polymerization initiation described in [0042]-[0056] of JP-A-2010-285518 An agent etc. can be used suitably, Preferably these contents are included in this-application specification.
  • number average molecular weight (Mn) is 140 to 5,000, has a crosslinkable functional group, and does not have a fluorine atom It is also preferred to use the compounds (G), the content of which is preferably incorporated herein.
  • the photocationic polymerization initiator as described in-of Unexamined-Japanese-Patent No. 2010-285518 is mentioned, for example.
  • the acid generators described in JP-A-2012-163946, [0120] to [0136], particularly sulfonium salts, iodonium salts and the like can be preferably used, and the contents thereof are preferably incorporated in the present specification. .
  • thermal acid generator that generates an acid by heat
  • a thermal cationic polymerization initiator described in JP-A-2010-285518, [0035] to [0038], particularly an onium salt, etc.
  • the catalysts described in paragraphs [0034] to [0035] of -354012, particularly sulfonic acids and sulfonic acid amine salts can be preferably used, and their contents are preferably incorporated into the present specification.
  • the gate insulating layer can be formed by applying a composition for forming an insulating layer containing a polymer compound having the repeating unit (IA) and the repeating unit (IB), and crosslinking reaction of these repeating units.
  • the composition for forming an insulating layer of the present invention may contain a partially crosslinked product in which the above-mentioned repeating unit is partially crosslinked, as long as the object of the present invention is not performed.
  • composition for insulating layer formation may contain the above-mentioned crosslinking agent and catalyst.
  • the crosslinking agent and the catalyst may be used alone or in combination of two or more.
  • a surfactant and a coupling agent can be contained to such an extent that the electrical properties such as the insulating property are not impaired.
  • the composition for insulating layer formation may contain a solvent.
  • the solvent is not particularly limited.
  • These organic solvents can be used alone or in combination of two or more.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, cyclohexanone, ethanol and 1-butanol are preferable from the viewpoint of improving the leveling property.
  • the content of the polymer compound is preferably 60 to 100% by mass, and more preferably 80 to 100% by mass, with respect to the total solid content of the composition.
  • the content of the crosslinking agent is preferably 1 to 40% by mass, and more preferably 5 to 20% by mass, with respect to the polymer compound.
  • Examples of the method for applying the composition for forming an insulating layer include spin casting, dipping, die coating, slit coating, dropping, printing such as offset or screen or offset, and inkjet.
  • the method for applying the composition for forming an insulating layer include spin casting, dipping, die coating, slit coating, dropping, printing such as offset or screen or offset, and inkjet.
  • the conditions for crosslinking and curing the composition for forming an insulating layer are not particularly limited, and include conditions under heating, in the presence of an acid, or a combination thereof. Preferably, it is under heating.
  • the heating temperature is preferably 40 to 300 ° C., more preferably 60 to 200 ° C.
  • the heating time is preferably 10 minutes to 3 hours, more preferably 5 minutes to 2 hours.
  • the heating temperature is preferably 40 to 300 ° C., more preferably 60 to 200 ° C., and the heating time is preferably 1 minute to 3 hours, 5 minutes to 2 hours More preferable.
  • the conditions for the said heating under crosslinking conditions are preferable.
  • the gate insulating layer may be subjected to surface treatment such as corona treatment, plasma treatment, UV / ozone treatment, etc. In this case, it is preferable that the surface roughness due to the treatment is not roughened.
  • arithmetic mean roughness Ra or root mean square roughness R MS of the gate insulating layer surface is 0.5 nm or less.
  • a self-assembled monolayer can also be formed on the gate insulating layer.
  • the compound forming the self-assembled monolayer is not particularly limited as long as it is a self-organizing compound, and, for example, one or more types of compounds represented by the following formula 1S are used as the self-assembling compound be able to.
  • R 1S represents any of an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, or a heterocyclic group (thienyl, pyrrolyl, pyridyl, fluorenyl and the like).
  • X S represents an adsorptive or reactive substituent, specifically a -SiX 4 X 5 X 6 group
  • X 4 represents a halide group or an alkoxy group
  • X 5 and X 6 each independently represent a halide group
  • R 1S is preferably unbranched, for example, a linear normal alkyl (n-alkyl) group, a ter-phenyl group in which three phenyl groups are arranged in series, or the para-position of a phenyl group Preferred is a structure in which n-alkyl groups are disposed on both sides.
  • the alkyl chain may have an ether bond, and may have a carbon-carbon double bond or a triple bond.
  • the adsorptive or reactive substituent group X S interacts, adsorbs or reacts with the reactive site (eg, -OH group) on the surface of the corresponding gate insulating layer to form a bond. , Formed on the gate insulating layer. Since the surface of the self-assembled monolayer is smoother and has a low surface energy due to the more dense packing of molecules, the compound represented by the above formula 1S has a linear main skeleton. It is preferable that the molecular lengths be uniform.
  • alkyltril such as methyltrichlorosilane, ethyltrichlorosilane, butyltrichlorosilane, octyltrichlorosilane, decyltrichlorosilane, octadecyltrichlorosilane, phenethyltrichlorosilane, etc.
  • the self-assembled monolayer may be formed by depositing the above compound on the gate insulating layer under vacuum, immersing the gate insulating layer in a solution of the above compound, Langmuir-Blodgett method, etc. it can.
  • the insulating layer can be formed, for example, by treating the gate insulating layer with a solution in which 1 to 10% by mass of an alkylchlorosilane compound or an alkylalkoxysilane compound is dissolved in an organic solvent.
  • the method of forming a self-assembled monolayer is not limited to these. For example, as a preferred method of obtaining a more compact self-assembled monolayer, see Langmuir 19, 1159 (2003) and J. Am. Phys. Chem. B 110, 21101 (2006) and the like.
  • the gate insulating layer is immersed in a highly volatile dehydrating solvent in which the above compound is dispersed to form a film, the gate insulating layer is taken out, and the above compound such as annealing and the gate insulating layer are taken as necessary.
  • the reaction solution is washed away with a dehydrating solvent and then dried to form a self-assembled monolayer.
  • the dehydration solvent is not particularly limited, and, for example, chloroform, trichloroethylene, anisole, diethyl ether, hexane, toluene and the like can be used alone or in combination.
  • an inert gas such as nitrogen as the drying gas.
  • the semiconductor layer is a layer that exhibits semiconductivity and can store carriers.
  • the semiconductor layer is formed of a semiconductor material.
  • an organic semiconductor compound also referred to simply as an organic semiconductor
  • an inorganic semiconductor compound also referred to simply as an inorganic semiconductor
  • it may be an organic semiconductor layer or an inorganic semiconductor layer.
  • Each of the organic semiconductor and the inorganic semiconductor described below may be used alone or in combination of two or more, and an organic semiconductor and an inorganic semiconductor may be used in combination.
  • the organic semiconductor layer may be a layer containing an organic semiconductor.
  • the organic semiconductor is not particularly limited, and examples thereof include organic polymers and their derivatives, low molecular weight compounds, and the like.
  • low molecular weight compounds mean compounds other than organic polymers and their derivatives. That is, the compound does not have a repeating unit.
  • the molecular weight of the low molecular weight compound is not particularly limited as long as it is such a compound.
  • the molecular weight of the low molecular weight compound is preferably 300 to 2,000, and more preferably 400 to 1,000.
  • the low molecular weight compounds include condensed polycyclic aromatic compounds.
  • acene such as naphthacene, pentacene (2,3,6,7-dibenzoanthracene), hexacene, heptacene, dibenzopentacene, tetrabenzopentacene, anthradithiophene, pyrene, benzopyrene, dibenzopyrene, chrysene, perylene, coronene, terrylene , Ovalerene, quaterrylene, circumanthracene, derivatives in which some of these carbon atoms are substituted by atoms such as N, S and O, or at least one hydrogen atom bonded to the above carbon atoms is a functional group such as a carbonyl group Group-substituted derivatives (dioxaanthanthrene compounds including perxanthenoxanthene and its derivatives, triphenodioxazine,
  • metal phthalocyanines represented by copper phthalocyanine, tetrathiapentalene and derivatives thereof, naphthalene-1,4,5,8-tetracarboxylic acid diimide, N, N′-bis (4-trifluoromethylbenzyl) naphthalene 1,4,5,8-tetracarboxylic acid diimide, N, N'-bis (1H, 1H-perfluorooctyl), N, N'-bis (1H, 1H-perfluorobutyl), N, N'-dioctylnaphthalene Naphthalenetetracarboxylic acid diimides such as -1,4,5,8-tetracarboxylic acid diimide derivatives and naphthalene-2,3,6,7-tetracarboxylic acid diimides, anthracene-2,3,6,7-tetracarboxylic acid Condensed ring tetracarboxylic acid diimides such as
  • BPDT 4,4′-biphenyldithiol
  • BEDTTTF bisethylenetetrathiafulvalene
  • BEDTTTF bisethylenetetrathiafulvalene
  • the organic semiconductor is preferably a low molecular weight compound, and in particular, a condensed polycyclic aromatic compound is preferable.
  • the fused polycyclic aromatic compound has a high effect of improving carrier mobility and durability, and also exhibits an excellent effect of reducing the threshold voltage.
  • the fused polycyclic aromatic compound is acene represented by any one of the general formulas (A1) to (A4) and a compound represented by any one of the following general formulas (C) to (T)
  • the compound represented by any one of the following formulas (C) to (T) is more preferable.
  • Acene preferred as the fused polycyclic aromatic compound is one represented by the following general formula (A1) or (A2).
  • R A1 to R A6 , X A1 and X A2 each represent a hydrogen atom or a substituent.
  • Z A1 and Z A2 represent S, O, Se or Te.
  • nA1 and nA2 each represent an integer of 0 to 3. However, nA1 and nA2 can not be 0 simultaneously.
  • each of R A1 to R A6 , X A1 and X A2 is not particularly limited, and an alkyl group (eg, methyl, ethyl, propyl, isopropyl, tert-butyl, pentyl, tert-pentyl, hexyl) , Octyl, tert-octyl, dodecyl, tridecyl, tetradecyl, pentadecyl etc., cycloalkyl groups (eg, cyclopentyl, cyclohexyl etc.), alkenyl groups (eg, vinyl, allyl, 1-propenyl, 2-butenyl, 1,3-butadiene) Butadienyl, 2-pentenyl, isopropenyl etc., alkynyl groups (eg, ethynyl, propargyl etc.), aromatic hydrocarbon groups (aromatic carbocyclic
  • R ⁇ A7> , R ⁇ A8> , X ⁇ A1> and X ⁇ A2> represent a hydrogen atom or a substituent.
  • R A7 , R A8 , X A1 and X A2 may be the same or different.
  • the substituents represented by R A7 and R A8 are preferably those listed above as the substituents which can be adopted as R A1 to R A6 in the general formulas (A1) and (A2).
  • Z A1 and Z A2 represent S, O, Se or Te.
  • nA1 and nA2 each represent an integer of 0 to 3. However, nA1 and nA2 can not be 0 simultaneously.
  • R A7 and R A8 are preferably those represented by the following general formula (SG1).
  • R A9 to R A11 represent substituents.
  • X A represents Si, Ge or Sn.
  • the substituents represented by R A9 to R A11 are preferably those listed above as the substituents which can be adopted as R A1 to R A6 in the general formulas (A1) and (A2).
  • a C1 and A C2 represent an oxygen atom, a sulfur atom or a selenium atom.
  • both A C1 and A C2 represent an oxygen atom or a sulfur atom, more preferably a sulfur atom.
  • R C1 to R C6 represent a hydrogen atom or a substituent. At least one of R C1 to R C6 is a substituent represented by the following general formula (W).
  • X D1 and X D2 each represents NR D9 , an oxygen atom or a sulfur atom.
  • a D1 represents a CR D7 or N atom
  • a D2 represents a CR D8 or N atom
  • R D9 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group or an acyl group.
  • R D1 to R D8 represent a hydrogen atom or a substituent
  • at least one of R D1 to R D8 is a substituent represented by the following general formula (W).
  • X E1 and X E2 represent an oxygen atom, a sulfur atom or NRE 7 .
  • a E1 and A E2 represents CR E8 or nitrogen atom.
  • R E1 to R E8 represent a hydrogen atom or a substituent. At least one of R E1 to R E8 is a substituent represented by the following general formula (W).
  • XF1 and XF2 each represent an oxygen atom, a sulfur atom or a selenium atom.
  • XF1 and XF2 represent an oxygen atom or a sulfur atom, more preferably a sulfur atom.
  • R F1 to R F10 , R Fa and R Fb each represent a hydrogen atom or a substituent. At least one of R F1 to R F10 , R Fa and R Fb is a substituent represented by Formula (W).
  • p and q each represents an integer of 0 to 2;
  • X G1 and X G2 each represent NR G9 , an oxygen atom or a sulfur atom.
  • a G1 represents CR G7 or N atoms.
  • a G2 represents CR G8 or N atoms.
  • R G9 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group or a heteroaryl group.
  • R G1 to R G8 represent a hydrogen atom or a substituent. At least one of R G1 to R G8 is a substituent represented by the following general formula (W).
  • X H1 to X H4 each represent NR H7 , an oxygen atom or a sulfur atom.
  • X H1 to X H4 preferably represent a sulfur atom.
  • R H7 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an acyl group, an aryl group or a heteroaryl group.
  • R H1 to R H6 represent a hydrogen atom or a substituent. At least one of R H1 to R H6 is a substituent represented by the following general formula (W).
  • X J1 and X J2 each represent an oxygen atom, a sulfur atom, a selenium atom or NR J9 .
  • X J3 and X J4 represent an oxygen atom, a sulfur atom or a selenium atom.
  • X J1 , X J2 , X J3 and X J4 preferably represent a sulfur atom.
  • R J1 to R J9 each represent a hydrogen atom or a substituent. At least one of R J1 to R J9 is a substituent represented by the following general formula (W).
  • X K1 and X K2 each represent an oxygen atom, a sulfur atom, a selenium atom or NR K9 .
  • X K3 and X K4 represent an oxygen atom, a sulfur atom or a selenium atom.
  • X K1 , X K2 , X K3 and X K4 preferably represent a sulfur atom.
  • R K1 to R K9 represent a hydrogen atom or a substituent. At least one of R K1 to R K9 is a substituent represented by the following general formula (W).
  • W general formula (L)
  • X L1 and X L2 represent an oxygen atom, a sulfur atom or NRL11 .
  • X L1 and X L2 preferably represent an oxygen atom or a sulfur atom.
  • R L1 to R L11 each represent a hydrogen atom or a substituent, and at least one of R L1 to R L11 is a substituent represented by the following general formula (W).
  • X M1 and X M2 represent an oxygen atom, a sulfur atom, a selenium atom or NRM 9 .
  • X M1 and X M2 preferably represent a sulfur atom.
  • R M1 to R M9 represent a hydrogen atom or a substituent.
  • At least one of R M1 to R M9 is a substituent represented by the following general formula (W).
  • X N1 and X N2 represent an oxygen atom, a sulfur atom, a selenium atom or NRN13 .
  • X N1 and X N2 preferably represent a sulfur atom.
  • R N1 to R N13 represent a hydrogen atom or a substituent.
  • R N1 to R N13 is a substituent represented by the following general formula (W).
  • X P1 and X P2 represent an oxygen atom, a sulfur atom, a selenium atom or NRP13 .
  • X P1 and X P2 preferably represent a sulfur atom.
  • R P1 to R P13 represent a hydrogen atom or a substituent.
  • At least one of R P1 to R P13 is a substituent represented by the following general formula (W).
  • X Q1 and X Q2 represents an oxygen atom, a sulfur atom, a selenium atom or NR Q13.
  • X Q1 and X Q2 preferably represent a sulfur atom.
  • R Q1 to R Q13 represent a hydrogen atom or a substituent.
  • At least one of R Q1 to R Q13 is a substituent represented by the following general formula (W).
  • X R1 , X R2 and X R3 each represent an oxygen atom, a sulfur atom, a selenium atom or NRR 9 .
  • X R1 , X R2 and X R3 preferably represent a sulfur atom.
  • R R1 to R R9 each represent a hydrogen atom or a substituent. At least one of R R1 to R R9 is a substituent represented by the following general formula (W).
  • X S1, X S2, X S3 and X S4 represents an oxygen atom, a sulfur atom, a selenium atom or NR S7.
  • X S1 , X S2 , X S3 and X S4 preferably represent a sulfur atom.
  • R S1 to R S7 represent a hydrogen atom or a substituent. At least one of R S1 to R S7 is a substituent represented by the following general formula (W).
  • X T1, X T2, X T3, and X T4 represents an oxygen atom, a sulfur atom, a selenium atom or NR T7.
  • X T1 , X T2 , X T3 and X T4 preferably represent a sulfur atom.
  • R T1 to R T7 represent a hydrogen atom or a substituent. At least one of R T1 to R T7 is a substituent represented by the following general formula (W).
  • R C1 to R C6 , R D1 to R D8 , R E1 to R E8 , R F1 to R F10 , R Fa and R C1 to R C6 each represents a hydrogen atom or a substituent in the general formulas (C) to (T) below.
  • R Fb R G1 to R G8 , R H1 to R H6 , R J1 to R J9 , R K1 to R K9 , R L1 to R L11 , R M1 to R M9 , R N1 to R N13 , R P1 to R P13 , R Q1 to R Q13 , R R1 to R R9 , R S1 to R S7 and R T1 to R T7 (hereinafter, referred to as substituents R C to R T ).
  • the substituent R C to R T may be a halogen atom or an alkyl group (methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl) as an optional substituent
  • an alkyl group having 1 to 40 carbon atoms such as 2,6-dimethyloctyl, 2-decyltetradecyl, 2-hexyldodecyl, 2-ethyloctyl, 2-decyltetradecyl, 2-butyldecyl, 1-octylnonyl , 2-ethyloctyl, 2-octyltetradecyl, 2-ethylhexyl, cycloalkyl, bicycloalkyl, tricycl
  • substituent R C to R T it is represented by an alkyl group, an aryl group, an alkenyl group, an alkynyl group, a heterocyclic group, an alkoxy group, an alkylthio group, a general formula (W) described later
  • Preferred is an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an alkoxy group having 1 to 11 carbon atoms
  • the heterocyclic group having 5 to 12 carbon atoms, the alkylthio group having 1 to 12 carbon atoms, and the group represented by General Formula (W) described later are more preferable, and the group represented by General Formula (W) described later is particularly preferable. And groups represented by general formula (W) described later are more particularly preferable.
  • the alkyl group, the alkenyl group, the alkynyl group, the acyl group and the aryl group of R D9 , R G9 and R H7 described above are each an alkyl group and an alkenyl group described in the substituent that the substituent R C to R T can take. And an alkynyl group, an acyl group, and an aryl group.
  • the heteroaryl group is the same as the heteroaryl group described for the substituent of R A1 to R A6 .
  • L is a divalent linking group represented by any of the following general formulas (L-1) to (L-25) or two or more (preferably 2 to 10, more preferably 2) This represents a divalent linking group to which is bonded a divalent linking group represented by any of the following general formulas (L-1) to (L-25) of the following: ⁇ 6, more preferably 2 or 3).
  • R W is a substituted or unsubstituted alkyl group, cyano group, vinyl group, ethynyl group, oxyethylene group, oligooxyethylene group having 2 or more repeating number of oxyethylene units, siloxane group, 2 or more silicon atoms It represents an oligosiloxane group or a substituted or unsubstituted trialkylsilyl group.
  • a wavy line portion represents a bonding position to any ring forming each skeleton represented by the above general formulas (C) to (T).
  • L represents a divalent linking group in which two or more divalent linking groups represented by any of general formulas (L-1) to (L-25) are bonded to each other
  • the moiety is a bonding position with any ring forming each skeleton represented by the general formulas (C) to (T) and a divalent group represented by general formulas (L-1) to (L-25).
  • the bonding position with any of the linking groups may be represented.
  • R LZ in formulas (L-1), (L-2), (L-6) and (L-13) to (L-24) each independently represents a hydrogen atom or a substituent
  • R LZ in (1) and (L-2) may combine with R W adjacent to L to form a fused ring.
  • R N represents a hydrogen atom or a substituent
  • each R si independently represents a hydrogen atom, an alkyl group, an alkenyl group or an alkynyl group.
  • divalent linking groups represented by general formulas (L-17) to (L-21), (L-23) and (L-24) are represented by the following general formulas (L-17A) to (L More preferably, they are divalent linking groups represented by -21A), (L-23A) and (L-24A).
  • a substituted or unsubstituted alkyl group an oxyethylene group, an oligooxyethylene group having a repeating number v of 2 or more of an oxyethylene unit, a siloxane group, an oligosiloxane group having a silicon atom number of 2 or more, or a substituted or no group. If a trialkylsilyl group substitutions present on the end of the substituent of the general formula (W) -R W alone and can also be interpreted in, be interpreted as -L-R W in the general formula (W) it can.
  • n-octyl group which is an alkyl group having 8 carbon atoms
  • one (L-1) in which two R LZ are hydrogen atoms
  • an n-heptyl having 7 carbon atoms It is interpreted as a substituent bonded to a group.
  • substituent represented by formula (W) is an alkoxy group having 8 carbon atoms
  • one linking group represented by formula (L-4), which is -O-, and two R It is interpreted as a substituent in which one linking group represented by (L-1) in which LZ is a hydrogen atom is bonded to an n-heptyl group having 7 carbon atoms.
  • an oxyethylene group an oligoethylene group having a repeating number v of 2 or more of oxyethylene units of 2 or more, a siloxane group, an oligosiloxane group having 2 or more silicon atoms, or a substituted or unsubstituted trialkylsilyl
  • a group is present at the end of a substituent, it is interpreted as R W alone in the general formula (W) after including as much of the linking group as possible from the end of the substituent.
  • an oligoethylene having a repetition number v of oxyethylene units of 3 is 3 It is interpreted as a single substituent.
  • substituent R LZ in the general formulas (L-1), (L-2), (L-6) and (L-13) to (L-24) those represented by general formulas (C) to (T) can be used.
  • substituents R C to R T Examples of the substituent which can be taken by the substituents R C to R T can be mentioned.
  • the substituent R LZ in the general formula (L-6) is preferably an alkyl group, and when R LZ in (L-6) is an alkyl group, the carbon number of the alkyl group is 1 to 9 Is preferred, 4 to 9 is more preferred from the viewpoint of chemical stability and carrier transportability, and 5 to 9 is more preferred.
  • R LZ in (L-6) is an alkyl group
  • the alkyl group is preferably a linear alkyl group from the viewpoint of being able to enhance carrier mobility.
  • R N those exemplified as the substituents which can be taken by the substituents R C to R T can be mentioned. Among them a hydrogen atom or a methyl group is preferable as also R N.
  • R si is preferably an alkyl group. There are no particular limitations on the alkyl group R si can take, the preferred range of the alkyl group R si can take is the same as the preferred ranges of the alkyl group can take silyl group when R W is a silyl group.
  • alkenyl group that can be taken by R si there is no particular limitation on the alkenyl group that can be taken by R si, but a substituted or unsubstituted alkenyl group is preferable, a branched alkenyl group is more preferable, and the carbon number of the alkenyl group is preferably 2 to 3 .
  • the alkynyl group that can be taken by R si is not particularly limited, but a substituted or unsubstituted alkynyl group is preferable, a branched alkynyl group is more preferable, and the carbon number of the alkynyl group is preferably 2 to 3 .
  • L is a divalent linking group represented by any of general formulas (L-1) to (L-5), (L-13), (L-17) or (L-18), or a general formula A divalent linkage in which two or more divalent linking groups represented by (L-1) to (L-5), (L-13), (L-17) or (L-18) are bonded
  • a divalent linking group represented by any one of formulas (L-3), (L-13) or (L-18) and a divalent linking group represented by formula (L-1) In the divalent linking group to which is attached, it is preferable that the divalent linking group represented by General Formula (L-1) be bound to the R W side.
  • the linking group be a divalent linking group
  • L be a divalent linking group represented by general formulas (L-18) and (L-1), via (L-1)
  • R W be bonded to R W and R W be a substituted or unsubstituted alkyl group
  • L is a divalent linking group represented by general formulas (L-18A) and (L-1)
  • R.sup.1 is attached to R.sup.W through (L-1), and R.sup.W is a substituted or unsubstituted alkyl group.
  • R W is preferably a substituted or unsubstituted alkyl group.
  • R W when L adjacent to R W is a divalent linking group represented by general formula (L-1), R W is a substituted or unsubstituted alkyl group, an oxyethylene group, It is preferably an oligooxyethylene group having 2 or more repeating oxyethylene units, a siloxane group, or an oligosiloxane group having 2 or more silicon atoms, and more preferably a substituted or unsubstituted alkyl group.
  • R W when L adjacent to R W is a divalent linking group represented by general formulas (L-2) and (L-4) to (L-25), R W is It is more preferable that it is a substituted or unsubstituted alkyl group.
  • R W when L adjacent to R W is a divalent linking group represented by general formula (L-3), R W is a substituted or unsubstituted alkyl group, or a substituted or unsubstituted It is preferable that it is a silyl group of
  • R W is a substituted or unsubstituted alkyl group, it preferably has 4 to 17 carbon atoms, and more preferably 6 to 14 from the viewpoint of chemical stability and carrier transportability. It is further preferred that It is preferable that R W be a long-chain alkyl group within the above range, in particular, a long-chain straight-chain alkyl group, from the viewpoint of enhancing the linearity of the molecule and enhancing the carrier mobility.
  • R W represents an alkyl group, it may be a linear alkyl group, a branched alkyl group or a cyclic alkyl group, but being a linear alkyl group enhances the linearity of the molecule and enhances the carrier mobility.
  • L in the general formulas (C) to (T) is a divalent linking group represented by the general formula (L-1),
  • R W is a linear alkyl group having 4 to 17 carbon atoms; or L is a group represented by any one of formulas (L-3), (L-13) and (L-18)
  • L is a divalent linking group represented by General Formula (L-1), and R W is a linear alkyl group having 4 to 17 carbon atoms, R W is a linear 6 carbon atoms From the viewpoint of enhancing carrier mobility, an alkyl group of ⁇ 14 is more preferable, and a linear alkyl group having 6 to 12 carbon atoms is particularly preferable.
  • R W is a linear alkyl group
  • R W is more preferably a linear alkyl group having 4 to 17 carbon atoms
  • linear Is preferably an alkyl group having 6 to 14 carbon atoms from the viewpoint of chemical stability and carrier transportability
  • a linear alkyl group having 6 to 12 carbon atoms is particularly preferable from the viewpoint of enhancing carrier mobility.
  • R W be a branched alkyl group.
  • R W is an alkyl group having a substituent
  • a fluorine atom is preferable.
  • R W is an alkyl group having a fluorine atom
  • all hydrogen atoms of the alkyl group may be substituted with a fluorine atom to form a perfluoroalkyl group.
  • R W be an unsubstituted alkyl group.
  • R W is an ethyleneoxy group or an oligoethyleneoxy group
  • the “oligooxyethylene group” represented by R W means a group represented by — (OCH 2 CH 2 ) v OY W in the present specification.
  • the repeating number v of the oxyethylene unit represents an integer of 2 or more, and the terminal Y W represents a hydrogen atom or a substituent).
  • the number v of repeating oxyethylene units is preferably 2 to 4, and more preferably 2 to 3. It is preferable that the terminal hydroxy group of the oligooxyethylene group is sealed, that is, Y W represents a substituent.
  • hydroxy group the carbon atoms are sealed with an alkyl group of 1 to 3, i.e. preferably Y W is an alkyl group having 1 to 3 carbon atoms, Y W is a methyl group or an ethyl group And the methyl group is more preferable.
  • R W is a siloxane group or an oligosiloxane group
  • the number of repeating siloxane units is preferably 2 to 4, and more preferably 2 to 3.
  • a hydrogen atom or an alkyl group is preferably bonded to the Si atom.
  • the carbon number of the alkyl group is preferably 1 to 3, and for example, a methyl group or an ethyl group is preferably bonded.
  • the same alkyl group may be bonded to the Si atom, or different alkyl groups or hydrogen atoms may be bonded.
  • all the siloxane units which comprise an oligo siloxane group may be same or different, it is preferable that all are the same.
  • R W is a substituted or unsubstituted silyl group.
  • R W is preferably a substituted silyl group.
  • the substituent of the silyl group is not particularly limited, but a substituted or unsubstituted alkyl group is preferable, and a branched alkyl group is more preferable.
  • R W is a trialkylsilyl group
  • the carbon number of the alkyl group bonded to the Si atom is preferably 1 to 3, and for example, a methyl group, an ethyl group or an isopropyl group is preferably bonded.
  • the same alkyl group may be bonded to a Si atom, or different alkyl groups may be bonded.
  • R W is a trialkylsilyl group further having a substituent on the alkyl group, the substituent is not particularly limited.
  • the total number of carbons contained in L and R W is preferably 5 to 18.
  • the carrier mobility becomes high and the driving voltage becomes low.
  • the solubility with respect to an organic solvent becomes high as the sum total of the carbon number contained in L and R W is below the upper limit of the said range.
  • the total number of carbon atoms contained in L and R W is preferably 5 to 14, more preferably 6 to 14, particularly preferably 6 to 12, and particularly preferably 8 to 12. preferable.
  • one to four groups represented by general formula (W) represent the carrier mobility. It is preferable from the viewpoint of enhancing the solubility in an organic solvent, more preferably one or two, and particularly preferably two.
  • R C to R T the position of the group represented by Formula (W) is not particularly limited.
  • any one of R C1 , R C2 , R C3 and R C6 is preferably a group represented by the general formula (W), and R C1 and R C2 More preferably, both of R.sup.C3 and R.sup.C6 are a group represented by General Formula (W).
  • R D6 is preferably a group represented by the general formula (W), and both R D5 and R D6 are represented by the general formula (W) More preferred is a group.
  • R E6 is preferably a group represented by the general formula (W), and both R E5 and R E6 are represented by the general formula (W) More preferred is a group. Moreover, when R E5 and R E6 are substituents other than the group represented by General Formula (W), it is also preferable that the two R E7 be groups represented by General Formula (W).
  • R F2 , R F3 , R F8 and R F9 is preferably a substituent represented by Formula (W).
  • R G5 or R G6 is a group represented by General Formula (W).
  • R H4 or R H6 is preferably a group represented by the general formula (W)
  • R H4 or R H6 and R H3 or R H5 are generally It is more preferable that it is a group represented by Formula (W).
  • R J8 is preferably a group represented by the general formula (W), and both R J8 and R J4 are represented by the general formula (W) More preferred is a group.
  • R K7 is preferably a group represented by the general formula (W), and both R K7 and R K3 are represented by the general formula (W) More preferred is a group.
  • R L2 , R L3 , R L6 and R L7 is a group represented by General Formula (W).
  • R M2 is preferably a group represented by the general formula (W), and both R M2 and R M6 are represented by the general formula (W) More preferred is a group.
  • R N3 is represented by the general formula (W)
  • both R N3 and R N9 are represented by formula (W) More preferred is a group.
  • R P2 or R P3 be a group represented by the general formula (W)
  • both R P2 and R P8 or R P3 and R P9 More preferably, both of the groups are groups represented by formula (W).
  • R Q3 is preferably a group represented by the general formula (W), and both R Q3 and R Q9 are represented by the general formula (W) More preferred is a group.
  • R R2 is preferably a group represented by the general formula (W), and both R R2 and R R7 are represented by the general formula (W) More preferred is a group.
  • R S2 is preferably a group represented by formula (W), and both R S2 and R S5 are represented by formula (W) More preferred is a group.
  • R T2 is preferably a group represented by the general formula (W), and both R T2 and R T5 are represented by the general formula (W) More preferred is a group.
  • the substituent other than the group represented by General Formula (W) is preferably 0 to 4 and more preferably 0 to 2.
  • the compound represented by formula (C) preferably has a molecular weight of 3,000 or less, more preferably 2,000 or less, still more preferably 1,000 or less, and particularly preferably 850 or less.
  • the molecular weight is in the above range, the solubility in a solvent can be enhanced.
  • the molecular weight is preferably 300 or more, more preferably 350 or more, and still more preferably 400 or more.
  • the molecular weight of the compound represented by the general formula (D) is preferably the same as that of the compound represented by the general formula (C) in the upper limit, because the solubility in a solvent can be enhanced.
  • the molecular weight is preferably 400 or more, more preferably 450 or more, and still more preferably 500 or more.
  • the molecular weights of the above compound E, compound F, compound G and compound H are preferably the same as the compound C represented by the general formula (C) in the upper limit, so that the solubility in a solvent can be enhanced, which is preferable.
  • the lower limit of the molecular weight is the same as that of the compound represented by Formula (D), from the viewpoint of the film quality stability of the thin film.
  • the molecular weight of the compound J and the compound K is preferably the same as that of the compound C represented by the general formula (C) in the upper limit, because the solubility in a solvent can be enhanced.
  • the lower limit of the molecular weight is the same as that of the compound represented by Formula (D), from the viewpoint of the film quality stability of the thin film.
  • the molecular weights of the compound L, the compound M, the compound N, the compound P and the compound Q each have the same upper limit as that of the compound C represented by the general formula (C), but the solubility in a solvent is enhanced Yes, it is preferable.
  • the lower limit of the molecular weight is the same as that of the compound represented by Formula (D), from the viewpoint of the film quality stability of the thin film.
  • the molecular weight of the compound R, the compound S and the compound T is preferably the same as that of the compound C represented by the general formula (C) in the upper limit, because the solubility in a solvent can be enhanced.
  • the lower limit of the molecular weight is the same as that of the compound represented by Formula (D), from the viewpoint of the film quality stability of the thin film.
  • organic polymer and its derivative examples include polypyrrole and its substitution product, polydiketopyrrole and its substitution product, polythiophene and its derivative, isothianaphtene such as polyisothianaphthene, thienylenevinylene such as polythienylenevinylene, and poly (P-phenylenevinylene), poly (p-phenylenevinylene), polyaniline and derivatives thereof, polyacetylene, polydiacetylene, polyazulene, polypyrene, polycarbazole, polyselenophene, polyfuran, poly (p-phenylene), polyindole, polyindole Polymers such as pyridazine, polytellurophene, polynaphthalene, polyvinylcarbazole, polyphenylene sulfide, polyvinylene sulfide and polymers of condensed polycyclic aromatic compounds can be mentioned.
  • the polythiophene and its derivative are not particularly limited.
  • poly-3-hexylthiophene (P3HT) obtained by introducing hexyl group into polythiophene, polyethylenedioxythiophene, poly (3,4-ethylenedioxythiophene) / polystyrene sulfone An acid (PEDOT / PSS) etc. are mentioned.
  • oligomers for example, oligothiophenes having the same repeating unit as these polymers can also be mentioned.
  • examples of the organic polymer include polymer compounds in which compounds represented by the following general formulas (C) to (T) have a repeating structure.
  • ⁇ -conjugated compounds in which compounds represented by the general formulas (C) to (T) exhibit a repeating structure via at least one or more arylene group or heteroarylene group (thiophene, bithiophene etc.)
  • examples thereof include polymers and pendent polymers in which compounds represented by the general formulas (C) to (T) are bonded to the polymer main chain via side chains.
  • the polymer main chain is preferably polyacrylate, polyvinyl, polysiloxane or the like, and the side chain is preferably an alkylene group, polyethylene oxide group or the like.
  • at least one of the substituents R C to R T may have a group derived from a polymerizable group, which may be polymerized.
  • the weight average molecular weight of these organic polymers is preferably 30,000 or more, more preferably 50,000 or more, and still more preferably 100,000 or more.
  • the weight average molecular weight is at least the above lower limit, the intermolecular interaction can be enhanced, and high mobility can be obtained.
  • resins (D) polymethacrylates represented by polystyrene, poly ⁇ -methylstyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysilsesquioxane, polysulfone, polymethyl methacrylate, Polyacrylate represented by polymethyl acrylate, cellulose represented by triacetyl cellulose, insulating polymers such as polyethylene, polypropylene, polyvinyl phenol, polyvinyl alcohol, polyvinyl butyral, and the like, and two or more of these components copolymerized The copolymer obtained can be mentioned.
  • the mass ratio of the organic polymer with respect to the total amount of organic polymer and resin (D) is 10 mass% or more and less than 100 mass%, and it is 20 mass% or more and less than 100 mass% More preferable.
  • the total content of the organic polymer and the resin (D) in the organic semiconductor layer is preferably 1 to 80% by mass, more preferably 5 to 60% by mass, and still more preferably 10 to 50% by mass.
  • the method of forming the organic semiconductor layer is preferably a wet method.
  • the wet method is not particularly limited.
  • the semiconductor material is applied by spin coating, inkjet, nozzle printing, nozzle printing, stamp printing, screen printing, gravure printing, electrospray deposition or the like, and then dried. can do.
  • the organic semiconductor layer be subjected to a crystallization treatment because the OTFT tends to have high performance. It is particularly preferred that the treatment is applied.
  • the method for the crystallization treatment is not particularly limited, and examples thereof include heating with a hot plate, an oven, and the like, laser irradiation, and the like.
  • the heating temperature is preferably a high temperature in view of the tendency of crystallization to progress, and is preferably a low temperature in that the substrate or the like is not easily affected by heat. Specifically, 50 ° C. or higher is preferable, 100 ° C. or higher is particularly preferable, and 300 ° C. or lower is preferable, and 250 ° C. or lower is particularly preferable.
  • Inorganic semiconductor layer> Although it does not specifically limit as an inorganic semiconductor material which forms a semiconductor layer, A coating type semiconductor is preferable and an oxide semiconductor is mentioned as the preferable example.
  • the oxide semiconductor is not particularly limited as long as it is formed of a metal oxide.
  • the semiconductor layer formed of an oxide semiconductor is preferably formed using an oxide semiconductor precursor, that is, a material which is converted into a semiconductor material formed of a metal oxide by conversion treatment such as thermal oxidation.
  • the oxide semiconductor is not particularly limited, for example, indium gallium zinc oxide, indium gallium oxide, indium tin zinc oxide, gallium zinc oxide, indium tin oxide, indium zinc oxide, tin zinc oxide, zinc oxide, tin oxide , for example, InGaZnO x, InGaO x, InSnZnO x, GaZnO x, InSnO x, InZnO x, SnZnO x ( both x> 0), ZnO, SnO 2 and the like.
  • oxide semiconductor precursor examples include metal nitrates, metal halides, and alkoxides.
  • the metal contained in the oxide semiconductor precursor is, for example, Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, Pr, At least one selected from the group consisting of Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • oxide semiconductor precursor examples include, for example, indium nitrate, zinc nitrate, gallium nitrate, tin nitrate, aluminum nitrate, indium chloride, zinc chloride, tin chloride (divalent), tin chloride (tetravalent), gallium chloride , Aluminum chloride, tri-i-propoxy indium, diethoxy zinc, bis (dipivaloylmethanato) zinc, tetraethoxy tin, tetra-i-propoxy tin, tri-i-propoxy gallium, tri-i-propoxy aluminum Be
  • the inorganic semiconductor layer can be provided by a known method.
  • the film thickness of the semiconductor layer is arbitrary, but is preferably 1 nm or more, and more preferably 10 nm or more. Moreover, 10 micrometers or less are preferable, 1 micrometer or less is further more preferable, and 500 nm or less is especially preferable.
  • the source electrode is an electrode into which current flows from the outside through the wiring.
  • the drain electrode is an electrode that sends a current to the outside through a wiring, and is usually provided in contact with the semiconductor layer.
  • the conductive material used for the conventional organic thin-film transistor can be used, For example, the conductive material etc. which were demonstrated by the said gate electrode are mentioned.
  • the source electrode and the drain electrode can be formed by the same method as the method for forming the gate electrode.
  • a lift-off method or an etching method can be adopted as the photolithography method.
  • the source electrode and the drain electrode can be preferably formed also by the etching method.
  • the etching method is a method in which an unnecessary portion is removed by etching after depositing a conductive material. When patterning is performed by the etching method, peeling of the conductive material left on the base at the time of resist removal, reattachment to the base of the resist residue and the conductive material removed can be prevented, and the shape of the electrode edge portion is excellent. In this respect, it is preferable to the lift-off method.
  • a resist is applied to a part of the base, a conductive material is formed into a film on this, and the resist etc. is removed or removed with a solvent to remove the entire conductive material on the resist.
  • each of the source electrode and the drain electrode is arbitrary, but is preferably 1 nm or more, and particularly preferably 10 nm or more. Moreover, 500 nm or less is preferable and 300 nm or less is especially preferable.
  • the distance (channel length) between the source electrode and the drain electrode is arbitrary, but is preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the channel width is preferably 5000 ⁇ m or less, and particularly preferably 1000 ⁇ m or less.
  • the TFT of the present invention may have an overcoat layer.
  • the overcoat layer is usually a layer formed as a protective layer on the surface of the TFT. It may be a single layer structure or a multilayer structure.
  • the overcoat layer may be an organic overcoat layer or an inorganic overcoat layer.
  • the material for forming the organic overcoat layer is not particularly limited, and examples thereof include: polystyrene, acrylic resin, polyvinyl alcohol, polyolefin, polyimide, polyurethane, organic polymers such as polyacetylene and epoxy resin, and organic polymers thereof The derivative etc. which introduce
  • organic polymers and their derivatives can also be used in combination with a crosslinking component, a fluorine compound, a silicon compound and the like.
  • the material for forming the inorganic overcoat layer is not particularly limited, and examples thereof include metal oxides such as silicon oxide and aluminum oxide, and metal nitrides such as silicon nitride. One of these materials may be used, or two or more thereof may be used in any combination and ratio.
  • an organic overcoat layer is prepared, for example, by applying a solution containing a material to be an overcoat layer to the underlying layer and drying it after applying a solution containing a material to be an overcoat layer, exposing after being dried, It can be formed by a method such as development and patterning.
  • patterning of overcoat layer can also be directly formed by the printing method, the inkjet method, etc.
  • the overcoat layer may be crosslinked by exposure or heating.
  • the inorganic overcoat layer can be formed by a dry method such as a sputtering method or a vapor deposition method or a wet method such as a sol-gel method.
  • the TFT of the present invention may be provided with layers and members other than the above.
  • a bank etc. are mentioned, for example.
  • the bank is used for the purpose of blocking the discharge liquid at a predetermined position or the like when forming a semiconductor layer, an overcoat layer or the like by an inkjet method or the like. For this reason, the banks usually have liquid repellency.
  • the bank formation method include a method of performing liquid repellent treatment such as a fluorine plasma method after patterning by a photolithography method and a method of curing a photosensitive composition containing a liquid repellent component such as a fluorine compound.
  • the method of curing the photosensitive composition containing the latter liquid repellent component may be affected by the liquid repellent treatment. Not preferred. Note that a technique may be used in which the background is provided with a liquid-repellent contrast and the same role as the bank is given without using the bank.
  • the TFT of the present invention can be manufactured by forming or providing a gate electrode, a gate insulating layer, a semiconductor layer, a source electrode, a drain electrode and the like on a substrate by the above method.
  • a TFT exhibiting the above-described excellent characteristics can be manufactured while taking advantage of the solution coating method.
  • Display panel A display panel is mentioned as an example of the use of the organic thin-film transistor of this invention.
  • a display panel a liquid crystal panel, an organic electroluminescent panel, an electronic paper panel etc. are mentioned, for example.
  • Polymer compounds AP1 to AP27 used in each example and polymer compounds cAP1 to cAP5 for comparison are shown below (* indicates the bonding position of each repeating unit).
  • Each polymer compound was synthesized by the method described above.
  • the weight average molecular weight (Mw) of each polymer compound was measured by gel permeation chromatography (GPC) based on the above method.
  • the compositional ratio (molar ratio) of each polymer compound was calculated by 1 H-NMR or 13 C-NMR using an NMR measurement apparatus (manufactured by Bruker Biospin Co., Ltd .; AVANCE III 400 type).
  • the description of the compositional ratio corresponds to the description of the repeating unit shown in the chemical formula. The obtained results are shown below.
  • the compound C16 is a compound represented by the general formula (C), and was synthesized according to the following synthesis method of the following compound C1.
  • Example 1 [Manufacture of bottom gate type OTFT] A bottom gate-top contact type OTFT shown in FIG. 1B was manufactured. A glass substrate with an ITO electrode in which an indium tin oxide (ITO) film having a thickness of 100 nm was formed on a glass substrate with a thickness of 0.7 mm was washed with acetone and isopropyl alcohol and dried. This was used as a substrate 6. When forming the gate insulating layer 2, a composition for forming the insulating layer was prepared.
  • ITO indium tin oxide
  • the organic semiconductor shown in Table 1 or 2 was dissolved in 1 mL of toluene to prepare a coating liquid having a compound concentration of 1% by mass.
  • the coating solution was applied on the gate insulating layer 2 by spin coating (rotational speed 500 rpm) at 25 ° C. so that the layer thickness after drying was 150 nm. Thereafter, the organic semiconductor layer 1 was formed by heating on a hot plate at 150 ° C. for 30 minutes.
  • the OTFTs (samples Nos. 1-1 to 1-31 and c1-1 to c1-5 for comparison) shown in FIG. 1B were manufactured.
  • volume resistivity A gold electrode with a thickness of 100 nm was formed by vacuum evaporation on each gate insulating layer formed by the same method as each of the above samples. Using this as a sample, volume resistivity ( ⁇ ⁇ cm) was measured using a source measure unit 237 (manufactured by Keithley).
  • the composition for forming an insulating layer used for each of the above samples was spin-coated on a silicon wafer, and then prebaked at 90 ° C. for 2 minutes using a hot plate to form a film having a thickness of 300 nm. Subsequently, the sample which consists of a silicon wafer in which the insulating layer was formed was obtained by heating at 130 degreeC in air for 1 hour. The surface of the insulating layer of the obtained sample was observed with an atomic force microscope (AMF) to measure the surface roughness (arithmetic mean roughness Ra). The measured Ra was evaluated according to the following evaluation criteria. The evaluation result of the above sample was taken as the evaluation of the gate insulating layer of the OTFT.
  • AMF atomic force microscope
  • the evaluation is determined to be A, A ⁇ , B or B ⁇ , preferably A or A ⁇ , more preferably A.
  • A 0.5nm following A -: 0.5nm beyond, 0.75nm below B : Exceed 0.75 nm, 1.0 nm or less B -: exceed 1.0 nm, 1.25 nm or less C : More than 1.25 nm, less than 1.5 nm D : More than 1.5 nm
  • the glass substrate on which each gate insulating layer was formed was immersed in toluene for 12 hours by the same method as each of the above samples, and the layer thickness before and after immersion of the gate insulating layer was measured.
  • the layer thickness change rate before and behind immersion was computed from the following formula, and it evaluated by the following evaluation criteria. In this test, the evaluation is determined to be A, A ⁇ , B or B ⁇ , preferably A or A ⁇ , more preferably A.
  • Film thickness change rate (%) before and after immersion film thickness after immersion ( ⁇ m) / film thickness before immersion ( ⁇ m) ⁇ 100
  • A More than 90%, 100% or less A -: beyond 85%, 90% or less
  • B More than 80%, 85% or less
  • 80% or less C More than 70%, 75% or less C -: more than 60%
  • 70% or less D 60% or less
  • Id (w / 2 L) ⁇ Ci (Vg-Vth) 2
  • L represents a gate length
  • w represents a gate width
  • Ci represents a capacity per unit area of the gate insulating layer 2
  • Vg represents a gate voltage
  • Vth represents a threshold voltage.
  • A Exceed 0.7cm 2 / Vs, 0.8cm 2 / Vs or less
  • C Exceed 0.05cm 2 / Vs, 0.1cm 2 / Vs or less
  • D Beyond the 0.001cm 2 / Vs, 0.01cm 2 / Vs or less
  • the voltage applied between the source electrode 3 and the drain electrode 4 of each OTFT is fixed at -40 V and the gate voltage Vg is changed from 40 V to -40 V (maximum value of
  • the evaluation is determined to be A, A ⁇ , B or B ⁇ , preferably A or A ⁇ , more preferably A.
  • the gate insulating layer 2 As shown in Tables 1 and 2, polymer compounds AP1 to AP27 having the repeating unit (IA) represented by the general formula (IA) and the repeating unit (IB) represented by the general formula (IB)
  • the gate insulating layer 2 excellent in surface smoothness was able to be formed. Furthermore, the gate insulating layer 2 had a large volume resistivity and exhibited high insulation. It also showed excellent solvent resistance.
  • the gate insulating layer 2 formed of the composition for forming an insulating layer of the present invention contains a cured product of the above-mentioned polymer compound, and has both surface smoothness, volume resistivity (insulation) and solvent resistance.
  • these repeating units can be crosslinked to form a cured product, and the performance improvement effect of OTFT can be obtained even without using a crosslinking agent. It also turned out to have.
  • the performance improvement effect of OTFT tended to increase.
  • the crosslinkable group X of the repeating unit (IA) the performance improvement effect of the OTFT tends to increase in the following order: vinyl group ⁇ methylol group ⁇ oxetanyl group ⁇ epoxy group.
  • the crosslinkable group X is particularly excellent when it becomes a glycidyl group together with the linking group L 2a among epoxy groups.
  • Y B of the repeating unit (IB) Focusing on Y B of the repeating unit (IB), when Y B is a degradable group, the thermal stability of the polymer compound is further improved, and the surface smoothness of the formed gate insulating layer is increased. . As a result, the effect of increasing the mobility ⁇ of the OTFT was large.
  • the effect of improving the surface smoothness of the gate insulating layer and the effect of increasing the mobility ⁇ of the OTFT are that the degradable group Y B is larger in the carboxylic acid acetal than in the tertiary alkyl group and the tertiary cycloalkyl group. I understood.
  • the degradable group Y B was found to be particularly superior in the tetrahydrofuranyl group (repeating unit (IB-2)) than the alkoxymethyl group (repeating unit (IB-1)).
  • Example 2 [Production and evaluation of bottom gate type OTFT with modified organic semiconductor]
  • a bottom gate type OTFT was manufactured using an organic semiconductor other than the above organic semiconductor, and its characteristics and the like were evaluated. That is, in Example 1, as the organic semiconductors, A26, A27, C1, C4, C7, D1, E2, F5, F10, G12, H10, H11, J2, J3, K2, K3, L2, L5, OTFTs were produced in the same manner as in Example 1 except that L6, L8, L9, L15, M8, N4, P3, Q3, R1, S1 or T1 were used.
  • Example 1 The volume resistivity, the surface smoothness, the solvent resistance, the carrier mobility ⁇ , and the on / off ratio were evaluated in the same manner as in Example 1 for each of the manufactured OTFTs. As a result, all the TFTs had excellent characteristics as in Example 1.

Abstract

 半導体層と該半導体層に隣接する絶縁層とを有する半導体素子であって、絶縁層が下記一般式(IA)で表される繰り返し単位(IA)と下記一般式(IB)で表される繰り返し単位(IB)とを有する高分子化合物の架橋物で形成されている半導体素子、並びに、半導体素子の絶縁層を形成するための絶縁層形成用組成物であって下記繰り返し構造(IA)及び(IB)を有する高分子化合物を含有する絶縁層形成用組成物。 一般式中、R1a及びR1bは各々独立に水素原子、ハロゲン原子又はアルキル基を表す。L1a、L2a及びL1bは各々独立に単結合又は連結基を表す。Xは架橋性基を表し、Yは分解性基又は水素原子を表す。m1a及びm2aは各々独立に1~5の整数を表す。*は前記繰り返し単位の結合位置を示す。

Description

半導体素子及び絶縁層形成用組成物
 本発明は、半導体素子及び絶縁層形成用組成物に関する。
 液晶ディスプレイ、有機ELディスプレイ及び電気泳動型ディスプレイ等の表示装置等は、薄膜トランジスタ(以下、TFTともいう)等の半導体素子を備えている。
 TFTは、ゲート電極、ゲート絶縁層、ソース電極及びドレイン電極を有し、ソース電極-ドレイン電極間が半導体層で連結された構造を有している。TFTにおいて、ゲート電極に電圧が印加されると、ソース電極-ドレイン電極間の半導体層と、この半導体層に隣接するゲート絶縁層との界面に電流の流路(チャネル)が形成される。すなわち、ゲート電極に印加される入力電圧に応じてソース電極とドレイン電極との間を流れる電流が制御される。
 このように半導体層に隣接して設けられるゲート絶縁層は、半導体層とともに電流の流路を形成する機能を有する。したがって、TFTの性能を向上させるためには、ゲート絶縁層(単に絶縁層ともいう)やゲート絶縁層を形成する材料が重要になっている。
 例えば、特許文献1には、環状エーテル構造を有する繰り返し単位と、ビニルフェノールの水酸基が酸により脱離する有機基で置換された繰り返し単位とを含有する高分子化合物を含む有機薄膜トランジスタ絶縁層材料が記載されている。
 上記の、絶縁層や絶縁層を形成する材料が性能向上に重要であることは、半導体層に隣接して設けられた絶縁層を有する半導体素子であれば、TFTに限られず、TFT以外の場合にも共通する。
特開2013-102116号公報
 しかし、特許文献1に記載の有機薄膜トランジスタ絶縁層材料でゲート絶縁層を形成しても、薄膜トランジスタの特性は未だ十分ではなく、キャリア移動度及びon/off比において改善の余地があった。
 本発明は、キャリア移動度が高く、on/off比の点でも優れた半導体素子を提供することを課題とする。
 また、本願発明は、耐溶剤性及び表面平滑性が優れ、さらには絶縁性にも優れた絶縁層を形成できる絶縁層形成用組成物を提供することを課題とする。
 本発明者らは、カルボキシ基を有し、もしくはカルボキシ基を生成しうる特定の繰り返し単位と、この繰り返し単位と架橋反応する架橋性基を持つ特定の繰り返し単位とを有する高分子化合物について、繰り返し単位同士を架橋反応させて架橋物とすることにより、表面が平滑でしかも高い耐溶剤性及び絶縁性を示す絶縁層を形成できることを見出した。また、この高分子化合物を含有する組成物が、耐溶剤性、表面平滑性及び絶縁性に優れたTFTの絶縁層を形成する組成物として優れることを見出した。さらに、この高分子化合物の架橋物で形成されたゲート絶縁層を有するTFTが高いキャリア移動度を示し、on/off比にも優れることを見出した。本発明は、これらの知見に基づいて完成された。
 上記の課題は以下の手段により解決された。
[1]半導体層と半導体層に隣接する絶縁層とを有する半導体素子であって、
 絶縁層が、下記一般式(IA)で表される繰り返し単位(IA)と下記一般式(IB)で表される繰り返し単位(IB)とを有する高分子化合物の架橋物で形成されている半導体素子。
Figure JPOXMLDOC01-appb-C000007
 一般式(IA)中、R1aは水素原子、ハロゲン原子又はアルキル基を表す。L1a及びL2aは各々独立に単結合又は連結基を表す。Xは架橋性基を表す。m2aは1~5の整数を表し、m2aが2以上の場合、m2a個のXは互いに同一でも異なっていてもよい。m1aは1~5の整数を表し、m1aが2以上の場合、m1a個の(-L2a-(X)m2a)は互いに同一でも異なっていてもよい。
 一般式(IB)中、R1bは水素原子、ハロゲン原子又はアルキル基を表す。L1bは単結合又は連結基を表す。Yは分解性基又は水素原子を表す。
 *は繰り返し単位の結合位置を示す。
[2]繰り返し単位(IA)が、下記一般式(IA-1)で表される繰り返し単位(IA-1)である[1]に記載の半導体素子。
Figure JPOXMLDOC01-appb-C000008
 一般式(IA-1)中、R1aは水素原子、ハロゲン原子又はアルキル基を表す。L3aは単結合又は連結基を表す。Xは架橋性基を表す。m3aは1~5の整数を表し、m3aが2以上の場合、m3a個のXは互いに同一でも異なっていてもよい。*は繰り返し単位の結合位置を示す。
[3]繰り返し単位(IA)が、下記一般式(IA-2)で表される繰り返し単位(IA-2)である[1]に記載の半導体素子。
Figure JPOXMLDOC01-appb-C000009
 一般式(IA-2)中、R1aは水素原子、ハロゲン原子又はアルキル基を表す。L4aは単結合又は連結基を表す。Xは架橋性基を表す。m5aは1~5の整数を表し、m5aが2以上の場合、m5a個のXは互いに同一でも異なっていてもよい。m4aは1~5の整数を表し、m4aが2以上の場合、m4a個の(-O-L4a-(X)m5a)は互いに同一でも異なっていてもよい。*は繰り返し単位の結合位置を示す。
[4]Xが、エポキシ基、オキセタニル基、ヒドロキシメチル基、アルコキシメチル基、(メタ)アクリロイル基、スチリル基又はビニル基である[1]~[3]のいずれか1つに記載の半導体素子。
[5]Xが、エポキシ基又はオキセタニル基である[1]~[4]のいずれか1つに記載の半導体素子。
[6]Yが、分解性基である[1]~[5]のいずれか1つに記載の半導体素子。
[7]繰り返し単位(IB)が、下記一般式(IB-1)で表される繰り返し単位(IB-1)である[1]~[6]のいずれか1つに記載の半導体素子。
Figure JPOXMLDOC01-appb-C000010
 一般式(IB-1)中、R1bは水素原子、ハロゲン原子又はアルキル基を表す。L1bは単結合又は連結基を表す。R2b及びR4bは各々独立に1価の有機基を表し、R3bは水素原子又は1価の有機基を表す。*は繰り返し単位の結合位置を示す。
[8]繰り返し単位(IB)が、下記一般式(IB-2)で表される繰り返し単位(IB-2)である[1]~[7]のいずれか1つに記載の半導体素子。
Figure JPOXMLDOC01-appb-C000011
 一般式(IB-2)中、R1bは水素原子、ハロゲン原子又はアルキル基を表す。L1bは単結合又は連結基を表す。R5b~R11bは各々独立に水素原子又は1価の有機基を表す。*は繰り返し単位の結合位置を示す。
[9]L1bが、単結合である[1]~[8]のいずれか1つに記載の半導体素子。
[10]半導体層が、有機半導体を含有する[1]~[9]のいずれか1つに記載の半導体素子。
[11]半導体素子の絶縁層を形成するための絶縁層形成用組成物であって、
 下記一般式(IA)で表される繰り返し単位(IA)と下記一般式(IB)で表される繰り返し単位(IB)とを有する高分子化合物を含有する絶縁層形成用組成物。
Figure JPOXMLDOC01-appb-C000012
 一般式(IA)中、R1aは水素原子、ハロゲン原子又はアルキル基を表す。L1a及びL2aは各々独立に単結合又は連結基を表す。Xは架橋性基を表す。m2aは1~5の整数を表し、m2aが2以上の場合、m2a個のXは互いに同一でも異なっていてもよい。m1aは1~5の整数を表し、m1aが2以上の場合、m1a個の(-L2a-(X)m2a)は互いに同一でも異なっていてもよい。
 一般式(IB)中、R1bは水素原子、ハロゲン原子又はアルキル基を表し。L1bは単結合又は連結基を表す。Yは分解性基又は水素原子を表す。
 *は繰り返し単位の結合位置を示す。
 本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、又は複数の置換基等を同時に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。また、式中に同一の表示で表された複数の部分構造の繰り返しがある場合は、各部分構造ないし繰り返し単位は同一でも異なっていてもよい。また、特に断らない場合であっても、複数の置換基等が近接(特に隣接)するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい。
 本明細書において化合物の表示については、当該化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、目的の効果が得られる範囲で、構造の一部を変化させたものを含む意味である。
 本明細書において置換・無置換を明記していない基(連結基についても同様)については、所望の効果を奏する範囲で、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明の半導体素子は、キャリア移動度が高く、on/off比にも優れる。
 また、本発明の絶縁層形成用組成物は、耐溶剤性、表面平滑性及び絶縁性が優れた絶縁層を形成できる。特に有機薄膜トランジスタの絶縁層の形成に好適である。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は本発明の半導体素子の一例である有機薄膜トランジスタの形態を模式的に示す図である。
[半導体素子]
 本発明の半導体素子は、半導体層とこの半導体層に隣接する絶縁層とを有する素子であれば、特に限定されないが、キャリア移動度及びon/off比の改善効果の点で、TFTが好ましく、特に、有機材料により形成される有機薄膜トランジスタ(OTFTという)が好ましい。
 以下に、本発明の好ましい半導体素子としてTFTについて説明するが、本発明の半導体素子はこれに限定されるものではない。
 本発明のTFTは、基板上に、ゲート電極と、半導体層と、ゲート電極及び半導体層の間に設けられたゲート絶縁層と、半導体層に接して設けられ、半導体層を介して連結されたソース電極及びドレイン電極とを有する。TFTにおいては、通常、半導体層とゲート絶縁層が隣接して設けられる。このようなTFTでは、上記のようにしてソース電極とドレイン電極との間を流れる電流が制御される。
 本発明のTFTの好ましい形態を図面に基づいて説明する。各図面に示されるTFTは、本発明の理解を容易にするための模式図であり、各部材のサイズないし相対的な大小関係等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。また、本発明で規定する事項以外はこれらの図面に示された外形、形状に限定されるものでもない。例えば、図1(A)及び(B)において、ゲート電極5は必ずしも基板6のすべてを覆っている必要はなく、基板6の中央部分に設けられた形態も、本発明のTFTの形態として好ましい。
 図1(A)~(D)は、各々、TFTの代表的な好ましい形態を模式的に表す縦断面図である。図1(A)~(D)において、1は半導体層、2はゲート絶縁層、3はソース電極、4はドレイン電極、5はゲート電極、6は基板を示す。
 また、図1(A)はボトムゲート-ボトムコンタクト形態、図1(B)はボトムゲート-トップコンタクト形態、図1(C)はトップゲート-ボトムコンタクト形態、図1(D)はトップゲート-トップコンタクト形態の各TFTを示している。
 本発明のTFTには上記4つの形態のすべてが包含される。図示を省略するが、各TFTの図面最上部(基板6に対して反対側の最上部)には、オーバーコート層が形成されている場合もある。
 ボトムゲート形態は、基板6上にゲート電極5、ゲート絶縁層2及び半導体層1がこの順で配置されたものである。一方、トップゲート形態は、基板6上に半導体層1、ゲート絶縁層2及びゲート電極5がこの順で配置されたものである。
 また、ボトムコンタクト形態は、半導体層1に対して基板6側(すなわち、図1において下方)にソース電極3及びドレイン電極4が配置されたものである。一方、トップコンタクト形態は、半導体層1に対して基板6の反対側にソース電極3及びドレイン電極4が配置されたものである。
 TFTにおいて、半導体層1、ゲート絶縁層2等が有機材料で形成されている場合、特にOTFTという。この場合、有機材料で形成された半導体層は有機半導体層ということがある。
 [基板]
 基板は、TFT及びその上に作製される表示パネル等を支持できるものであればよい。基板は、表面に絶縁性があり、シート状で、表面が平坦であれば特に限定されない。
 基板の材料として、無機材料を用いてもよい。無機材料からなる基板として、例えば、ソーダライムガラス、石英ガラス等の各種ガラス基板や、表面に絶縁膜が形成された各種ガラス基板、表面に絶縁膜が形成されたシリコン基板、サファイヤ基板、ステンレス鋼、アルミニウム、ニッケル等の各種合金や各種金属からなる金属基板、金属箔、紙等を挙げることができる。
 基板がステンレスシート、アルミ箔、銅箔又はシリコンウェハ等の導電性あるいは半導体性の材料で形成されている場合、通常は、表面に絶縁性の高分子材料あるいは金属酸化物等を塗布又は積層して用いられる。
 また、基板の材料として、有機材料を用いてもよい。例えば、ポリメチルメタクリレート(ポリメタクリル酸メチル、PMMA)やポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)、ポリエーテルスルホン(PES)、ポリイミド、ポリアミド、ポリアセタール、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチルエーテルケトン、ポリオレフィン、ポリシクロオレフィンに例示される有機ポリマーから構成された可撓性を有するプラスチック基板(プラスチックフィルム、プラスチックシートともいう)を挙げることができる。また雲母で形成したものも挙げることができる。
 このような可撓性を有するプラスチック基板等を使用すれば、例えば曲面形状を有するディスプレイ装置や電子機器へのTFTの組込みあるいは一体化が可能となる。
 基板を形成する有機材料は、他の層の積層時や加熱時に軟化し難いことから、ガラス転移点が高いことが好ましく、ガラス転移点が40℃以上であるのが好ましい。また、製造時の熱処理により寸法変化を起こし難く、トランジスタ性能の安定性に優れる点から、線膨張係数が小さいことが好ましい。例えば、線膨張係数が25×10-5cm/cm・℃以下である材料が好ましく、10×10-5cm/cm・℃以下である材料がさらに好ましい。
 また、基板を構成する有機材料は、TFT作製時に用いる溶媒に対する耐性を有する材料が好ましく、また、ゲート絶縁層及び電極との密着性に優れる材料が好ましい。
 さらに、ガスバリア性の高い有機ポリマーからなるプラスチック基板を用いることも好ましい。
 基板の少なくとも片面に緻密なシリコン酸化膜等を設けたり、無機材料を蒸着又は積層したりすることも好ましい。
 基板として、上記の他に、導電性基板(金やアルミニウム等の金属からなる基板、高配向性グラファイトからなる基板、ステンレス鋼製基板等)も挙げることができる。
 基板には、密着性や平坦性を改善するためのバッファー層、ガスバリア性を向上させるためのバリア膜等の機能性膜、また表面に易接着層等の表面処理層を形成してもよいし、コロナ処理、プラズマ処理、UV/オゾン処理等の表面処理を施してもよい。
 基板の厚みは、10mm以下であるのが好ましく、2mm以下であるのがさらに好ましく、1mm以下であるのが特に好ましい。また、一方で、0.01mm以上であるのが好ましく、0.05mm以上であるのがさらに好ましい。特に、プラスチック基板の場合は、厚みが0.05~0.1mm程度であるのが好ましい。また、無機材料からなる基板の場合は、厚みが0.1~10mm程度であるのが好ましい。
 [ゲート電極]
 ゲート電極は、TFTのゲート電極として用いられている従来公知の電極を用いることができる。ゲート電極を構成する導電性材料(電極材料ともいう)としては、特に限定されない。例えば、白金、金、銀、アルミニウム、クロム、ニッケル、銅、モリブデン、チタン、マグネシウム、カルシウム、バリウム、ナトリウム、パラジウム、鉄、マンガン等の金属;InO、SnO、インジウム・錫酸化物(ITO)、フッ素ドープ酸化錫(FTO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)等の導電性金属酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(PEDOT/PSS)等の導電性高分子;塩酸、硫酸、スルホン酸等の酸、PF、AsF、FeCl等のルイス酸、ヨウ素等のハロゲン原子、ナトリウム、カリウム等の金属原子等のドーパントを添加した上記導電性高分子、並びに、カーボンブラック、グラファイト粉、金属微粒子等を分散した導電性の複合材料等が挙げられる。これらの材料は、1種のみを用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 また、ゲート電極は、上記導電性材料からなる1層でもよく、2層以上を積層してもよい。
 ゲート電極の形成方法に制限はない。例えば、真空蒸着法等の物理蒸着法(PVD)、化学蒸着法(CVD法)、スパッタ法、印刷法(塗布法)、転写法、ゾルゲル法、メッキ法等により形成された膜を、必要に応じて所望の形状にパターンニングする方法が挙げられる。
 塗布法では、上記材料の溶液、ペースト又は分散液を調製、塗布し、乾燥、焼成、光硬化又はエージング等により、膜を形成し、又は直接電極を形成できる。
 また、インクジェット印刷、スクリーン印刷、(反転)オフセット印刷、凸版印刷、凹版印刷、平版印刷、熱転写印刷、マイクロコンタクトプリンティング法等は、所望のパターニングが可能であり、工程の簡素化、コスト低減、高速化の点で好ましい。
 スピンコート法、ダイコート法、マイクログラビアコート法、ディップコート法を採用する場合も、下記フォトリソグラフィー法等と組み合わせてパターニングすることができる。
 フォトリソグラフィー法としては、例えば、フォトレジストのパターニングと、エッチング液によるウェットエッチングや反応性のプラズマによるドライエッチング等のエッチングやリフトオフ法等とを組み合わせる方法等が挙げられる。
 他のパターニング方法として、上記材料に、レーザーや電子線等のエネルギー線を照射して、研磨し、又は材料の導電性を変化させる方法も挙げられる。
 さらに、基板以外の支持体に印刷したゲート電極用組成物を基板等の下地層の上に転写させる方法も挙げられる。
 ゲート電極の厚みは、任意であるが、1nm以上が好ましく、10nm以上が特に好ましい。また、500nm以下が好ましく、200nm以下が特に好ましい。
 [ゲート絶縁層]
 ゲート絶縁層は、絶縁性を有する層であれば特に限定されず、単層であってもよいし、多層であってもよい。
  <高分子化合物の架橋物>
 ゲート絶縁層は、下記一般式(IA)で表される繰り返し単位(IA)と下記一般式(IB)で表される繰り返し単位(IB)とを有する高分子化合物の、架橋物で形成されている。
Figure JPOXMLDOC01-appb-C000013
 一般式(IA)中、R1aは水素原子、ハロゲン原子又はアルキル基を表す。L1a及びL2aは各々独立に単結合又は連結基を表す。Xは架橋性基を表す。m2aは1~5の整数を表し、m2aが2以上の場合、m2a個のXは互いに同一でも異なっていてもよい。m1aは1~5の整数を表し、m1aが2以上の場合、m1a個の(-L2a-(X)m2a)は互いに同一でも異なっていてもよい。
 一般式(IB)中、R1bは水素原子、ハロゲン原子又はアルキル基を表し。L1bは単結合又は連結基を表す。Yは分解性基又は水素原子を表す。
 *は上記繰り返し単位の結合位置を示す。
 高分子化合物の架橋反応は、特に限定されない。例えば、高分子化合物の繰り返し単位同士の架橋反応であってもよく、また共存してもよい架橋剤と繰り返し単位との架橋反応であってもよい。本発明においては、繰り返し単位(IA)及び繰り返し単位(IB)の架橋反応がTFTの特性の点で好ましい。したがって、高分子化合物の架橋物は、繰り返し単位(IA)及び繰り返し単位(IB)が架橋してなるものが好ましい。
 架橋物の架橋部は、繰り返し単位、架橋性基X等によって、一義的には決定されない。好ましくは、繰り返し単位(IA)の架橋性基Xと繰り返し単位(IB)のカルボキシ基とが反応して形成される架橋部である。
 繰り返し単位同士の架橋は、分子間での架橋反応が好ましいが、架橋反応の一部は分子内でも反応であってもよい。
 上記高分子化合物の架橋物でゲート絶縁層を形成すると、その表面は平滑になる。その理由についてはまだ定かではないが、繰り返し単位(IA)及び繰り返し単位(IB)によって高分子化合物の疎水性が高くなり、凝集エネルギーが低下するためと考えられる。特に、繰り返し単位(IB)がカルボキシ基に分解性基Yを有していると、凝集エネルギーが低下すると考えられる。一方、分解性基Yが水素原子である場合であっても、上記一般式(1A)で表される繰り返し単位(IA)の疎水性により、凝集エネルギーが低下すると考えられる。また、繰り返し単位(IB)のカルボキシ基の保護については、架橋性基Xとの組み合わせにより、高分子化合物自体の経時安定性が低下することがあるが、分解性基Yを有することにより、経時での架橋反応が抑制され、塗布時の安定性が向上するためと、考えられる。ゲート絶縁膜の表面が平滑になると、それに隣接して設けられる半導体が均一に整列しやすくなり、キャリアパスが効率よく形成される。その結果、TFTのキャリア移動度が高くなると考えられる。
 また、上記高分子化合物の架橋物で形成したゲート絶縁層を有するTFTは、on/off比が高くなり、優れた特性を有する。その詳細についてはまだ定かではないが、次のように考えられる。すなわち、架橋反応に与る架橋性基Xと-C(=O)-O-基をそれぞれ繰り返し単位(IA)及び(IB)に担持、導入することにより、繰り返し単位同士の架橋反応の効率が向上する。これにより、ゲート絶縁層の膜質が向上し、ゲート絶縁層と半導体層との層間混合が抑制される。さらには絶縁性能も向上する。その結果、TFTのon/off比が増大すると考えられる。
 高分子化合物の架橋反応は、酸、熱、又は、酸及び熱により、繰り返し単位(IA)と繰り返し単位(IB)とが反応するのが好ましい。このとき、繰り返し単位(IB)が分解性基Yを有している場合には、分解性基Yが分解し、又は解離(脱保護)するのが好ましい。
 高分子化合物の架橋反応、分解性基Yの分解を促進するために、例えば後述する熱酸発生剤を用いてもよい。
 絶縁層中の、高分子化合物の架橋物の含有率は、絶縁層を形成できる限り特に限定されない。キャリア移動度及びon/off比の点で、絶縁層の固形分に対して、60~100質量%が好ましく、80~100質量%がより好ましく、80~95質量%が特に好ましい。
 ゲート絶縁層は、高分子化合物の架橋物を1種又は2種以上含有している。
 ゲート絶縁層は、高分子化合物の架橋物に加えて、架橋していない上記高分子化合物を1種又は2種以上含有していてもよい。
   <繰り返し単位(IA)>
 高分子化合物を形成する繰り返し単位(IA)について説明する。
 R1aのアルキル基は、特に限定されないが、炭素数1~6のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、メチル又はエチルがさらに好ましく、メチルが特に好ましい。アルキル基が有していてもよい置換基としては後述する置換基Tが挙げられる。
 ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられ、フッ素原子又は塩素原子が好ましい。
 R1aは、水素原子又はメチルが特に好ましい。
 L1aは、単結合又は連結基であり、連結基が好ましく、2価の連結基がより好ましい。
 連結基としては、特に限定されないが、好ましくは、カルボニル基、チオカルボニル基、アルキレン基(好ましくは炭素数1~10、より好ましくは炭素数1~5)、芳香族環基、脂肪族環基、-O-基、スルホニル基、-NH-基又はこれらを組合わせた基(好ましくは総炭素数1~20、より好ましくは総炭素数1~10)が挙げられる。
 芳香族環基は、芳香族炭化水素環基であってもよく、芳香族ヘテロ環基であってもよい。また、単環でも多環でもよく、多環の場合は縮合環であってもよい。芳香族炭化水素環基及び芳香環ヘテロ環基が好ましく、芳香族炭化水素環基がより好ましい。
 芳香族炭化水素環基としては、ベンゼン環基、ナフタレン環基、アントラセン環基が好ましく、ベンゼン環基が特に好ましい。芳香環ヘテロ環基は、チオフェン環基、フラン環基、ピロール環基、トリアジン環基、イミダゾール環基、トリアゾール環基、チアジアゾール環基、チアゾール環基等が挙げられる。
 脂肪族環基は、脂肪族炭化水素環基であってもよく、脂肪族ヘテロ環基であってもよい。また、単環でも多環でもよく、多環の場合は縮合環であってもよい。脂肪族炭化水素環基としては、シクロヘキサン基等が挙げられる。脂肪族ヘテロ環基としては、後述する「芳香族環又は脂肪族環にヒドロキシメチル基又はアルコキシメチル基が結合した構造」として示すヘテロ環のうち脂肪族の環基が挙げられる。
 連結基L1aが「組合わせた基」である場合、-C(=O)-O-を含む基、芳香族環基を含む基、-C(=O)-NH-を含む基等が好ましい。
 本発明において、「XXXを含む基」は、XXXのみからなる基も含まれる。
 連結基L1aは、なかでも、-C(=O)-O-基又はベンゼン環が特に好ましい。
 一般式(IA)において、L2aは、単結合又は連結基である。連結基である場合は2価であるのが好ましい。ここで、L1a及びL2aの少なくとも一方が連結基であるのが好ましい。
 連結基L2aは、特に限定されず、上記連結基L1aと同義であるが、好ましいものは以下の基又は組合わせた基である。すなわち、好ましい基は、アルキレン基、脂肪族環基、芳香環基等が挙げられる。ここで、アルキレン基の炭素数は1~4が好ましく、メチレンが特に好ましい。
 一方、好ましい組合わせた基は、好ましくは、-O-アルキレン基、アルキレン基-O-、-O-C(=O)-基、-O-C(=O)-NH-アルキレン基、-O-アルキレン基-C(=O)-O-芳香族環基、アルキレン基-O-、-アルキレン基-O-芳香族環基、-アルキレン基-C(=O)-O-アルキレン基、-アルキレン基-O-C(=O)-アルキレン基-C(=O)-O-アルキレン基等が挙げられ、Lに結合する-O-基を含む基がより好ましい。ここで、組合わせた基におけるアルキレン基の炭素数は1~4が好ましく、メチレン又はエチレンが特に好ましい。
 なかでも、L2aは、アルキレン基、-O-アルキレン基が好ましい。
 特に、L1aが-C(=O)-O-基である場合、L2aはアルキレン基が好ましく、L1aが芳香族環基である場合、L2aは-O-アルキレン基が好ましい。
 架橋性基Xは、繰り返し単位(IB)と、好ましくは熱及び酸の少なくとも一方により反応する基であれば特に限定されず、例えば、環構造を有する基、ヒドロキシメチル基、アルコキシメチル基、(メタ)アクリロイルオキシ基、スチリル基、ビニル基(ビニルエーテル基を含む)、-NH-CH-O-R(Rは水素原子又は炭素数1~20のアルキル基)等が挙げられる。
 環構造を有する基としては、エポキシ基(オキシラニル基)、オキセタニル基、チオキシラニル基、チオキセタニル基等が挙げられる。
 環構造を有する基の「環構造」は、芳香族環でも脂肪族環であってもよい。また、単環でも多環でもよい。多環である場合は、縮合環、有橋式環、スピロ環のいずれであってもよいが、縮合環又は有橋式環であることが好ましい。
 多環の一部としてシクロヘキサン環を含むことが好ましく、特に反応性の観点から、シクロへキセンオキシド構造(シクロヘキサン環とオキシラン環が縮合した構造)、シクロへキサンとオキセタンとが縮合した構造を有することが好ましい。
 上記「環構造」は、置換基を有していてもよく、置換基としては後述する置換基Tが挙げられる。
 このような多環の環構造、及び、環構造を有する基(架橋性基X)として下記のものが挙げられるが、本発明はこれらに限定されない。なお、下記環構造及び環構造を有する基において、L2aとの結合位置は特に限定されない。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 アルコキシメチル基のアルコキシ基としては、例えば、炭素数1~10のアルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ、ヘキシル、シクロヘキシル等)が挙げられる。
 架橋性基Xは、エポキシ基、オキセタニル基、ヒドロキシメチル基、アルコキシメチル基、(メタ)アクリロイルオキシ基、スチリル基、ビニル基が好ましく、エポキシ基又はオキセタニル基がさらに好ましい。
 m2aは、1~5の整数であり、好ましくは1~3の整数であり、より好ましくは1又は2である。特に、架橋性基Xが環構造を有する基である場合、m2aは1がましく、架橋性基Xが環構造を有する基以外の基である場合、m2aは2又は3が好ましい。
 一般式(IA)において、(-L2a-(X)m2a)で表される基は、上記L2a及びXが任意に組み合わされてなるが、L2aの好ましいものとXの好ましいものが組み合わされてなるものが好ましい。
 なお、架橋性基Xがヒドロキシメチル基又はアルコキシメチル基である場合、L2aは芳香族環又は脂肪族環を含み、これらの環とヒドロキシメチル基又はアルコキシメチル基が結合するのが好ましい。芳香族環又は脂肪族環にヒドロキシメチル基又はアルコキシメチル基が結合した構造として、例えば、下記のものを挙げることができるが、本発明はこれらに限定されない。下記構造において、芳香族環又は脂肪族環の結合位置は芳香族環又は脂肪族環の環構成原子のいずれであってもよい。また、下記構造は置換基Tを有していてもよい。下記構造において、「O-」は「O-CH」を表す。
Figure JPOXMLDOC01-appb-C000016
 m1aは、1~5の整数であり、好ましくは1~4の整数であり、より好ましくは1又は2である。
 上記繰り返し単位(IA)は、下記一般式(IA-1)で表される繰り返し単位(IA-1)であることが、好ましい。*は繰り返し単位(IA-1)の結合位置を示す。
Figure JPOXMLDOC01-appb-C000017
 一般式(IA-1)中、R1aは水素原子、ハロゲン原子又はアルキル基を表し、一般式(IA)のR1aと同義であり、好ましいものも同じである。
 L3aは、単結合又は連結基を表す。L3aは、連結基が好ましく、アルキレン基、-アルキレン基-O-芳香族環基、-アルキレン基-C(=O)-O-アルキレン基、-アルキレン基-O-C(=O)-アルキレン基-C(=O)-O-アルキレン基等がより好ましく、アルキレン基がさらに好ましい。ここで、組合わせた基におけるアルキレン基の炭素数は1~4が好ましく、メチレン又はエチレンが特に好ましい。
 Xは、架橋性基を表し、一般式(IA)のXと同義であり、好ましいものも同じである。
 m3aは、1~5の整数を表し、一般式(IA)のm2aと同義であり、好ましいものも同じである。
 架橋性基Xがエポキシ基又はオキセタニル基である繰り返し単位(IA)及び(IA-1)について、具体的に説明する。
 エポキシ基を有する繰り返し単位(IA)等となる構成成分としては、例えば、(メタ)アクリル酸エステル構成成分が挙げられる。このような構成成分として、例えば、アクリル酸グリシジル、メタクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、アクリル酸-3,4-エポキシブチル、メタクリル酸-3,4-エポキシブチル、アクリル酸-3,4-エポキシシクロヘキシルメチル、メタクリル酸-3,4-エポキシシクロヘキシルメチル、α-エチルアクリル酸-3,4-エポキシシクロヘキシルメチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、特許第4168443号公報の段落番号[0031]~[0035]に記載の脂環式エポキシ骨格を含有する化合物等が挙げられ、これらの内容は本願明細書に組み込まれる。
 また、オキセタニル基を有する繰り返し単位(IA)等となる構成成分としては、例えば、特開2001-330953号公報の段落番号[0011]~[0016]に記載のオキセタニル基を有する(メタ)アクリル酸エステルや、特開2012-088459公報の段落番号[0027]に記載されている化合物等が挙げられ、これらの内容は本願明細書に組み込まれる。
 さらに、エポキシ基及びオキセタニル基を有する繰り返し単位(IA)等となる構成成分としては、例えば、メタクリル酸エステル構造を含有するモノマー、アクリル酸エステル構造を含有するモノマーであることが好ましい。
 これらの中でも、メタクリル酸グリシジル、アクリル酸3,4-エポキシシクロヘキシルメチル、メタクリル酸3,4-エポキシシクロヘキシルメチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、アクリル酸(3-エチルオキセタン-3-イル)メチル、及び、メタクリル酸(3-エチルオキセタン-3-イル)メチルが、反応性及び硬化膜の諸特性の向上の観点から好ましい。これらの構成単位は、1種単独又は2種類以上を組み合わせて使用することができる。
 繰り返し単位(IA)等の好ましいものとして、下記式で表される繰り返し単位が挙げられる。下記式中、R1aは一般式(IA)のR1aと同義であり、好ましいものも同じである。なお、下記繰り返し単位において、*は繰り返し単位(IA)等の結合位置を示す。下記繰り返し単位はそれぞれ置換基Tを有していてもよい。
Figure JPOXMLDOC01-appb-C000018
 架橋性基Xがビニル基、(メタ)アクリロイルオキシ基である繰り返し単位(IA-1)等は、側鎖にエチレン性不飽和基を有する構成単位が好ましく、末端にエチレン性不飽和基を有し、炭素数3~16の側鎖を有する構成単位がより好ましい。その他にも、特開2011-215580号公報の段落番号[0072]~[0090]の記載及び特開2008-256974の段落番号[0013]~[0031]に記載の化合物等が好ましいものとして挙げられ、これらの内容は本願明細書に組み込まれる。
 上記繰り返し単位(IA)は、下記一般式(IA-2)で表される繰り返し単位(IA-2)であることも好ましい。*は繰り返し単位(IA-2)の結合位置を示す。
Figure JPOXMLDOC01-appb-C000019
 一般式(IA-2)中、R1aは水素原子、ハロゲン原子又はアルキル基を表し、一般式(IA)のR1aと同義であり、好ましいものも同じである。
 L4aは、単結合又は連結基を表す。L4aは、連結基が好ましく、アルキレン基、-C(=O)-基、-C(=O)-NH-アルキレン基、アルキレン基-C(=O)-O-芳香族環基等がより好ましく、アルキレン基がさらに好ましい。ここで、アルキレン基の炭素数は1~4が好ましく、メチレン又はエチレンが特に好ましい。
 Xは、架橋性基を表し、一般式(IA)のXと同義であり、好ましいものも同じである。
 m5aは1~5の整数を表し、m2aと同義であり、好ましいものも同じである。
 m4aは1~5の整数を表し、m1aと同義であり、好ましいものも同じである。
 繰り返し単位(IA)、繰り返し単位(IA-1)及び繰り返し単位(IA-2)において、R1a、L1a、L2a、L3a、L4a及びXは、それぞれ、置換基を有していてもよい。このような置換基Tとしては、例えば、アルキル基(好ましくは炭素数1~6)、シクロアルキル基(好ましくは炭素数3~10)、アリール基(好ましくは炭素数6~15)、ハロゲン原子、水酸基、アルコキシ基(好ましくは炭素数1~6)、カルボキシル基、カルボニル基、チオカルボニル基、アルコキシカルボニル基(好ましくは炭素数2~7)、オキソ基(=O)及びこれら基を組み合わせてなる基(好ましくは総炭素数1~30、より好ましくは総炭素数1~15)が挙げられる。
 一般式(IA)で表される繰り返し単位(IA)の具体例を以下に示すが、本発明はこれらに限定されるものではない。なお、下記具体例において、*は繰り返し単位(IA)の結合位置を示す。
 下記の具体例は置換基Tを有していてもよい。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 繰り返し単位(IA)の含有率は、高分子化合物の全繰り返し単位に対して、2~50モル%であることが好ましく、3~50モル%であることがより好ましく、5~30モル%であることがさらに好ましく、10~20モル%であることが特に好ましい。これにより、表面が平滑でしかも高い耐溶剤性を示すゲート絶縁層を形成できる。
   <繰り返し単位(IB)>
 高分子化合物を形成する繰り返し単位(IB)について説明する。
 繰り返し単位(IB)は、カルボキシ基又は分解性基によって保護された保護カルボキシ基を側鎖に有する繰り返し単位である。
 上記一般式(IB)で表される上記繰り返し単位(IB)において、R1bは水素原子、ハロゲン原子又はアルキル基を表す。ハロゲン原子又はアルキル基は、上記R1aのハロゲン原子又はアルキル基と同義であり、好ましいものも同じである。
 L1bは、単結合又は連結基であり、単結合が好ましい。
 連結基としては、特に限定されず、L1aの連結基と同義であるが、好ましいものは以下の組合わせた基である。すなわち、R1bを有し、主鎖を構成する炭素原子に結合するカルボニル基を含む基が好ましく、より好ましくは-C(=O)-O-基(カルボニルオキシ基)を含む基である。-C(=O)-O-基を含む基としては、例えば、-C(=O)-O-L2b-基が挙げられる。ここで、L2bは、-アルキレン基-及び-アルキレン基-O-C(=O)-アルキレン基-が挙げられ、アルキレン基の炭素数は1~4が好ましく、メチレン又はエチレンが特に好ましい。
 Yは、分解性基又は水素原子を表し、熱安定性の点で、分解性基が好ましい。
 分解性基は、酸、熱、又は、酸及び熱により、分解、カルボキシ基から解離(脱保護)しうる基であれば特に限定されることなく用いることができる。酸等により比較的分解しやすい基として、例えば、エステル構造、環状エーテル基(例えば、テトラヒドロピラニル基、テトラヒドロフラニル基)、アルコキシメチル基等の、カルボキシ基とともにカルボン酸アセタール基を形成しうる基が挙げられる。また、酸等により比較的分解しにくい基も用いることができ、例えば、カルボキシ基とともに第三級アルキルエステルを形成しうる基(tert-ブチル基等の第三級アルキル基、1-アルキル(好ましくはメチル、エチル又はブチル)-1-シクロヘキシル基等の第3級シクロアルキル基))、カルボキシ基とともに第三級アルキルカーボネート基(tert-ブチルカーボネート基)を形成しうる基等が挙げられる。
 なかでも、Yは、カルボキシ基とともにカルボン酸アセタール基を形成しうる基が好ましく、下記式(Y-1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000036
 式(Y-1)中、R2b及びR4bは各々独立に1価の有機基を表し、R3bは水素原子又は1価の有機基を表す。
 1価の有機基は、特に限定されないが、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基等が挙げられる。
 アルキル基は、直鎖状でも分岐鎖状でもよく、炭素数1~12であることが好ましく、炭素数1~6であることがより好ましく、炭素数1~4であることがさらに好ましい。具体的には、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、sec-ブチル、tert-ブチル、n-ペンチル、ネオペンチル、n-ヘキシル、テキシル(2,3-ジメチル-2-ブチル)、n-ヘプチル、n-オクチル、2-エチルヘキシル、n-ノニル、n-デシル等が挙げられる。
 シクロアルキル基は、炭素数3~12であることが好ましく、炭素数4~8であることがより好ましく、炭素数4~6であることがさらに好ましい。具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、ノルボルニル、イソボルニル等が挙げられる。
 アリール基は、炭素数6~12であることが好ましく、炭素数6~10であることがより好ましい。具体的には、フェニル基、トリル基、キシリル基、クメニル基、1-ナフチル基等が挙げられる。
 ヘテロアリール基は後述する芳香族複素環基と同義である。
 1価の有機基は、置換基を有していてもよい。このような置換基としては上記置換基T、アリールオキシ基が挙げられ、好ましくは、ハロゲン原子、アリール基、アルコキシ基、アリールオキシ基が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、これらの中でもフッ素原子又は塩素原子が好ましい。ハロゲン原子で置換されたアルキル基をハロアルキル基という。
 アリール基としては、炭素数6~20のアリール基が好ましく、より好ましくは炭素数6~12であり、具体的には、フェニル基、α-メチルフェニル基、ナフチル基等が挙げられる。アリール基で置換されたアルキル基、すなわちアラルキル基としては、例えば、ベンジル基、α-メチルベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
 アルコキシ基としては、炭素数1~6のアルコキシ基が好ましく、より好ましくは炭素数1~4であり、メトキシ又はエトキシがより好ましい。
 アリールオキシ基としては、炭素数6~20のアリールオキシ基が好ましく、より好ましくは炭素数6~12であり、具体的には、フェノキシ、ナフチルオキシが挙げられる。
 1価の有機基がシクロアルキル基である場合、置換基として炭素数1~10の直鎖状又は分岐鎖状のアルキル基を有していてもよい。また、1価の有機基が直鎖状又は分岐鎖状のアルキル基である場合、置換基として炭素数3~12の環状アルキル基を有していてもよい。
 これらの置換基は、上記置換基でさらに置換されていてもよい。
 R2bはアルキル基がより好ましく、メチルが特に好ましく、R3bは水素原子が好ましい。R4bは、アルキル基がより好ましく、n-ブチルが特に好ましい。
 上記式(Y-1)で表される分解性基Yで保護されたカルボキシ基を有する繰り返し単位(IB)は、好ましくは、下記一般式(IB-1)で表される繰り返し単位(IB-1)である。下記一般式(IB-1)において、*は繰り返し単位(IB-1)の結合位置を示す。
Figure JPOXMLDOC01-appb-C000037
 一般式(IB-1)において、R1bは水素原子、ハロゲン原子又はアルキル基を表し、上記一般式(IB)のR1bと同義であり、好ましいものも同じである。
 L1bは単結合又は連結基を表し、上記一般式(IB)のL1bと同義であり、好ましいものも同じである。
 R2b及びR4bは各々独立に1価の有機基を表し、R3bは水素原子又は1価の有機基を表し、R2b~R4bは、それぞれ、上記式(Y-1)のR2b~R4bと同義であり、好ましいものも同じである。
 式(Y-1)及び一般式(IB-1)において、R2b、R3b及びR4bは互いに結合して、R2b、R3b及びR4bが結合する炭素原子とともに環構造を形成してもよい。形成される環構造としては、例えば、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル基、テトラヒドロフラニル、アダマンチル及びテトラヒドロピラニル等が挙げられる。
 環構造を形成する場合、R2b又はR3bとR4bとが互いに結合してR2b又はR3bとR4bが結合する炭素原子とともに環状エーテルを形成するのが、好ましい。形成される環状エーテルは、テトラヒドロフラニル、テトラヒドロピラニル等が挙げられ、テトラヒドロフラニルが好ましい。
 テトラヒドロフラニルを有する繰り返し単位として、下記一般式(IB-2)で表される繰り返し単位(IB-2)が好ましい。下記一般式(IB-2)において、*は繰り返し単位(IB-2)の結合位置を示す。
Figure JPOXMLDOC01-appb-C000038
 一般式(IB-2)において、R1bは水素原子、ハロゲン原子又はアルキル基を表し、上記一般式(IB)のR1bと同義であり、好ましいものも同じである。
 L1bは単結合又は連結基を表し、上記一般式(IB)のL1bと同義であり、好ましいものも同じである。
 R5b~R11bは、各々独立に、水素原子又は1価の有機基を表し、水素原子が好ましく、R5b~R11bがすべて水素原子であることが好ましい。1価の有機基は、上記式(Y-1)の1価の有機基と同義であり、好ましいものは、アルキル基、アリール基である。
 繰り返し単位(IB)において、L1bが単結合又は-C(=O)-O-を含む基である場合、繰り返し単位(IB)となる構成成分は、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和トリカルボン酸等の、分子中に少なくとも1個のカルボキシ基を有する不飽和カルボン酸等が挙げられる。このような構成成分としては、例えば、(メタ)アクリル酸、α-クロロアクリル酸、2-(メタ)アクリロイロキシエチル-コハク酸等が挙げられる。
 不飽和ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸等が挙げられる。
 不飽和多価カルボン酸は、その酸無水物であってもよい。具体的には、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。また、不飽和多価カルボン酸は、多価カルボン酸のモノ(2-メタクリロイロキシアルキル)エステルであってもよく、例えば、コハク酸モノ(2-アクリロイロキシエチル)、コハク酸モノ(2-メタクリロイロキシエチル)、フタル酸モノ(2-アクリロイロキシエチル)、フタル酸モノ(2-メタクリロイロキシエチル)等が挙げられる。さらに、不飽和多価カルボン酸は、その両末端ジカルボキシポリマーのモノ(メタ)アクリレートであってもよく、例えば、ω-カルボキシポリカプロラクトンモノアクリレート、ω-カルボキシポリカプロラクトンモノメタクリレート等が挙げられる。また、不飽和カルボン酸としては、アクリル酸-2-カルボキシエチルエステル、メタクリル酸-2-カルボキシエチルエステル、マレイン酸モノアルキルエステル、フマル酸モノアルキルエステル、4-カルボキシスチレン等も用いることができる。
 なかでも、(メタ)アクリル酸、2-(メタ)アクリロイロキシエチル-コハク酸、2-(メタ)アクリロイロキシエチル-フタル酸、不飽和多価カルボン酸の無水物等を用いることが好ましい。
 一般式(IB)で表される繰り返し単位(IB)の具体例を以下に示すが、本発明はこれらに限定されるものではない。なお、R1bは水素原子、ハロゲン原子又はアルキル基を表す。下記繰り返し単位において、*は繰り返し単位(IB)の結合位置を示す。
 下記の具体例は置換基Tを有していてもよい。
Figure JPOXMLDOC01-appb-C000039
 繰り返し単位(IB)の含有率は、高分子化合物の全繰り返し単位に対して、30~98モル%であることが好ましく、40~95モル%であることがより好ましく、50~90モル%であることがさらに好ましい。これにより、表面が平滑でしかも高い耐溶剤性を示すゲート絶縁層を形成できる。
   <他の繰り返し単位>
 高分子化合物は、繰り返し単位(IA)及び繰り返し単位(IB)以外に、他の繰り返し単位を含んでいてもよい。なお、本発明においては、高分子化合物に加えて、他の繰り返し単位からなる重合体を含んでいてもよい。
 他の繰り返し単位となる構成成分としては、特に制限はなく、例えば、スチレン化合物、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸シクロアルキルエステル、(メタ)アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、ビシクロ不飽和化合物、マレイミド化合物、不飽和芳香族化合物、共役ジエン化合物、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸無水物、その他の不飽和化合物が挙げられる。他の繰り返し単位は、単独又は2種類以上を組み合わせて使用することができる。
 具体的には、スチレン、メチルスチレン、ヒドロキシスチレン、α-メチルスチレン、アセトキシスチレン、メトキシスチレン、エトキシスチレン、クロロスチレン、ビニル安息香酸メチル、ビニル安息香酸エチル、4-ヒドロキシ安息香酸(3-メタクリロイルオキシプロピル)エステル、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、ヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、(メタ)アクリロイルモルホリン、N-シクロヘキシルマレイミド、アクリロニトリル、エチレングリコールモノアセトアセテートモノ(メタ)アクリレート等が挙げられる。この他、特開2004-264623号公報の段落番号0021~0024に記載の化合物も挙げられ、この内容は本願明細書に組み込まれる。
 他の繰り返し単位としては、上記スチレン化合物、脂肪族環式骨格を有する基が、電子をトラップする官能基をもたないという点で好ましい。脂肪族環式骨格を有する基としては、脂肪族の単環又は多環(縮合環、有橋式環及びスピロ環のいずれでもよい)構造を有する基であればよく、例えば、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。
 他の繰り返し単位として、(メタ)アクリル酸アルキルエステルが、密着性の観点で好ましく、上記の中でも、(メタ)アクリル酸メチルがより好ましい。
 高分子化合物が上記他の繰り返し単位を含有する場合、他の繰り返し単位の高分子化合物中の含有率は、高分子化合物を構成する全繰り返し単位に対して、1~30モル%が好ましく、1~20モル%がより好ましく、2~10モル%がさらに好ましい。
   <高分子化合物>
 高分子化合物は、上記繰り返し単位(IA)及び(IB)を有するが、繰り返し単位(IA)を含み、繰り返し単位(IB)を含まない重合体、又は、繰り返し単位(IB)を含み、繰り返し単位(IA)を含まない重合体を含有していてもよい。
 また、本発明において、高分子化合物は、繰り返し単位(IA)を含み、繰り返し単位(IB)を含まない重合体と繰り返し単位(IB)を含み、繰り返し単位(IA)を含まない重合体との混合物であってもよい。
 高分子化合物は、ラジカル重合法やリビングラジカル重合法、リビングアニオン重合法で合成したポリマーに、架橋性基Xを含む基、例えば-L2a-(X)m2a基を、高分子反応で修飾して、合成することが好ましい。
 特に、架橋性基Xとして、オキシラン、オキセタンを有する場合は、ラジカル重合法やリビングラジカル重合法、リビングアニオン重合法で合成したポリマーに、アルケンを含む多環構造を有する基を高分子反応で修飾した後、酸化剤(例えば、過酸化水素水、mCPBA等)による酸化により、合成することが好ましい。
 また、解離性基Yは、例えば、通常のカルボキシ基の保護方法に準じて、導入することができる。
 本発明に用いる高分子化合物の重量平均分子量(Mw)は、好ましくは1000~200000であり、より好ましくは2000~100000であり、特に好ましくは2000~50000である。
 高分子化合物の分散度(分子量分布)(Mw/Mn)は、好ましくは1.0~5.0であり、より好ましくは1.5~3.5である。リビングアニオン重合等のリビング重合によると、高分子化合物の分散度が均一となり、好ましい。高分子化合物の重量平均分子量及び分散度は、GPC測定によるポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC-8120(東ソー株製)を用い、カラムとしてTSK gel Multipore HXL-M(東ソー株製、7.8mmID×30.0cm)を、溶離液としてTHF(テトラヒドロフラン)を用いることによって求めることができる。
 繰り返し単位(IA)と繰り返し単位(IB)とを有する高分子化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。なお、下記の具体例は繰り返し単位(IA)と繰り返し単位(IB)との組み合わせとして記載されているが、各繰り返し単位の具体例としての記載も含まれる。下記具体的において、*は繰り返し単位それぞれの結合位置を示す。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
   <架橋剤>
 本発明の一つの実施の形態として、高分子化合物は、絶縁層形成用組成物に含有される架橋剤により架橋されてもよい。架橋剤により架橋されているとゲート絶縁層の耐溶媒性や絶縁耐性が向上する。この場合、高分子化合物の架橋物は繰り返し単位(IA)と繰り返し単位(IB)との架橋物でもあり、また両繰り返し単位の少なくとも一方と架橋剤との架橋物でもある。
 本発明に用いうる架橋剤としては、両繰り返し単位の少なくとも一方と反応する官能基を有しているものが挙げられる。架橋形式としては、酸架橋、カチオン重合、ラジカル重合など、特に限定なく使用することができる。具体的には、メチロール基を含有する化合物(メチロール化合物という)、エポキシ化合物、オキセタン化合物、(メタ)アクリル酸エステル化合物、スチレン化合物等を用いることができる。
 架橋剤の官能基数は、特に限定されないが、官能基数が多いほど架橋度が上がるため、好ましくは2~6である。
 メチロール化合物として、ヒドロキシメチル基又はアルコキシメチル基を分子内に2個以上有する化合物(C)が好ましい。
 このような化合物(C)としては、ヒドロキシメチル化又はアルコキシメチル化系フェノール化合物、アルコキシメチル化メラミン系化合物、アルコキシメチルグリコールウリル系化合物類及びアルコキシメチル化ウレア系化合物が好ましく挙げられる。特に好ましい化合物(C)としては、分子内にベンゼン環を3~5個含み、さらにヒドロキシメチル基又はアルコキシメチル基を合わせて2個以上有し、分子量が1200以下のフェノール誘導体や、少なくとも2個の遊離N-アルコキシメチル基を有するメラミン-ホルムアルデヒド誘導体やアルコキシメチルグリコールウリル誘導体が挙げられる。
 アルコキシメチル基としては、メトキシメチル基、エトキシメチル基が好ましい。
 化合物(C)のうち、ヒドロキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有さないフェノール化合物とホルムアルデヒドを塩基触媒下で反応させることによって得ることができる。また、アルコキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有するフェノール誘導体とアルコールを酸触媒下で反応させることによって得ることができる。
 このようにして合成されたフェノール誘導体のうち、アルコキシメチル基を有するフェノール誘導体が感度、保存安定性の点から特に好ましい。
 好ましい化合物(C)の例として、上記アルコキシメチル化メラミン系化合物、アルコキシメチルグリコールウリル系化合物類及びアルコキシメチル化ウレア系化合物は、N-ヒドロキシメチル基又はN-アルコキシメチル基を有する化合物であるのが好ましい。
 このような化合物としては、具体的には、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、テトラメトキシメチルグリコールウリル、1,3-ビスメトキシメチル-4,5-ビスメトキシエチレンウレア、ビスメトキシメチルウレア等が挙げられ、EP0,133,216A、西独特許第3,634,671号、同第3,711,264号、EP0,212,482A号に開示されている。
 これら架橋剤の中で特に好ましいものを以下に挙げる。
Figure JPOXMLDOC01-appb-C000043
 式中、L~Lは、各々独立に、水素原子、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基又は炭素数1~6のアルキル基を示す。
 上記メチロール化合物以外の架橋剤としては、例えば、特開2006-303465号公報の[0046]~[0061]に記載の化合物、及び、特開2005-354012号公報の[0032]~[0033]に記載の架橋剤、特に二官能以上のエポキシ化合物、オキセタン化合物等を用いることも好ましく、これらの内容は好ましくは本願明細書に組み込まれる。
 架橋剤による架橋は、光、熱又はこれら双方を用いて酸又はラジカルを発生させることにより、行うことができる。例えば、酸による架橋、カチオン重合による架橋、ラジカル重合による架橋等が挙げられる。
 ラジカルにより架橋する場合、光又は熱によりラジカルを発生させるラジカル発生剤として、例えば、特開2013-214649号公報の[0182]~[0186]に記載の熱重合開始剤(H1)及び光重合開始剤(H2)、特開2011-186069号公報の[0046]~[0051]に記載の光ラジカル発生剤、特開2010-285518号公報の[0042]~[0056]に記載の光ラジカル重合開始剤等を好適に用いることができ、好ましくはこれらの内容は本願明細書に組み込まれる。
 また、特開2013-214649号公報の[0167]~[0177]に記載の「数平均分子量(Mn)が140~5,000であり、架橋性官能基を有し、フッ素原子を有さない化合物(G)」を用いることも好ましく、これらの内容は好ましくは本願明細書に組み込まれる。
 酸により架橋する場合、上記したものの他にも、光により酸を発生させる光酸発生剤として、例えば、特開2010-285518号公報の[0033]~[0034]に記載の光カチオン重合開始剤、特開2012-163946号公報の[0120]~[0136]に記載の酸発生剤、特にスルホニウム塩、ヨードニウム塩等を好ましく使用することができ、好ましくはこれらの内容は本願明細書に組み込まれる。
 熱により酸を発生させる熱酸発生剤(触媒)として、例えば、特開2010-285518号公報の[0035]~[0038]に記載の熱カチオン重合開始剤、特にオニウム塩等や、特開2005-354012号公報の[0034]~[0035]に記載の触媒、特にスルホン酸類及びスルホン酸アミン塩等を好ましく使用することができ、好ましくはこれらの内容は本願明細書に組み込まれる。
  <ゲート絶縁層の成膜>
 ゲート絶縁層は、上記繰り返し単位(IA)と上記繰り返し単位(IB)とを有する高分子化合物を含有する絶縁層形成用組成物を塗布し、これらの繰り返し単位を架橋反応させて、形成できる。
 本発明の絶縁層形成用組成物は、本発明の目的を行わない範囲で、上記繰り返し単位が一部架橋した部分架橋物を含有していてもよい。
 本発明の絶縁層形成用組成物において、上記高分子化合物の架橋物の生成を抑えるには、熱、光、及び、酸の存在を避けるのがよい。
 絶縁層形成用組成物は、上記の架橋剤及び触媒を含有していてもよい。本発明において、架橋剤及び触媒は、それぞれ、単独で用いてもよいし、2種以上を併用してもよい。
 絶縁層形成用組成物の基板や電極への濡れ性や密着性を向上させるために、絶縁性等の電気特性を損なわない程度に、界面活性剤やカップリング剤を含有させることもできる。
 絶縁層形成用組成物は、溶媒を含有していてもよい。溶媒としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテル、メチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール等を用いることができる。これらの有機溶剤は単独で、又は二種以上を併用できる。
 なかでも、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、シクロヘキサノン、エタノール、1-ブタノールが、レベリング性の向上の観点から好ましい。
 高分子化合物の含有率は、組成物の全固形分に対して、60~100質量%が好ましく、80~100質量%がより好ましい。
 架橋剤を使用する場合、架橋剤の含有率は、高分子化合物に対して、1~40質量%が好ましく、5~20質量%がより好ましい。このようにすることで、未反応の架橋剤によるキャリア移動度の低下をもたらすことなく、架橋密度を高めてゲート絶縁層の耐溶剤性を向上させることができる。
 絶縁層形成用組成物を塗布する方法は、例えば、スピンキャスト法、ディッピング法、ダイコーティング法、スリットコーティング法、滴下法、オフセット又はスクリーンやオフセット等の印刷法、インクジェット法等が挙げられる。また、得られた膜の表面平滑性を保つために不純物等の混入を防止することが好ましく、塗布前にメンブランフィルタ等でろ過することが好ましい。
 絶縁層形成用組成物を架橋、硬化させる条件は、特に限定されず、加熱下、酸存在下、又は、これらを組み合わせた条件が挙げられる。好ましくは加熱下である。例えば、加熱温度は40~300℃が好ましく、60~200℃がより好ましく、加熱時間は10分~3時間が好ましく、5分~2時間がより好ましい。
 また、架橋剤を用いる場合には、高分子化合物を架橋させるため、上記の適宜の手段を行うのが好ましい。架橋剤としてメチロール化合物を用いる場合、例えば、架橋条件として、加熱温度は40~300℃が好ましく、60~200℃がより好ましく、加熱時間は1分~3時間が好ましく、5分~2時間がより好ましい。架橋剤としてエポキシ化合物、オキセタン化合物を用いる場合、架橋条件は上記加熱下での条件が好ましい。
 ゲート絶縁層は、コロナ処理、プラズマ処理、UV/オゾン処理等の表面処理を施してもよいが、この場合、処理による表面粗さが粗くしないのが好ましい。好ましくは、ゲート絶縁層表面の算術平均粗さRa又は二乗平均粗さRMSは0.5nm以下である。
 [自己組織化単分子膜層(SAM)]
 ゲート絶縁層上には、自己組織化単分子膜層を形成することもできる。
 自己組織化単分子膜層を形成する化合物としては、自己組織化する化合物であれば特に限定されず、例えば、自己組織化する化合物として、下記式1Sで表される一種類以上の化合物を用いることができる。
  式1S:R1S-X
 式1S中、R1Sは、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基、又は、ヘテロ環基(チエニル、ピロリル、ピリジル、フルオレニル等)のいずれかを表す。
 Xは吸着性又は反応性置換基を表し、具体的には、-SiX基(Xは、ハライド基又はアルコキシ基を表し、X、Xはそれぞれ独立にハライド基、アルコキシ基、アルキル基、アリール基を表す。X、X、Xはそれぞれ同じであることが好ましく、クロロ基、メトキシ基、エトキシ基であることがより好ましい)、ホスホン酸基(-PO)、ホスフィン酸基(-PROH、Rはアルキル基)、リン酸基、亜リン酸基、アミノ基、ハライド基、カルボキシ基、スルホン酸基、ホウ酸基(-B(OH))、ヒドロキシ基、チオール基、エチニル基、ビニル基、ニトロ基又はシアノ基のいずれかを表す。
 R1Sは、好ましくは分岐しておらず、例えば、直鎖状のノルマルアルキル(n-アルキル)基や、フェニル基が三個直列に配置されたter-フェニル基や、フェニル基のパラ位の両側にn-アルキル基が配置されたような構造が好ましい。また、アルキル鎖の中にエーテル結合を有していてもよく、炭素-炭素の二重結合や三重結合を有していてもよい。
 自己組織化単分子膜層は、吸着性又は反応性置換基Xが、対応するゲート絶縁層表面の反応性部位(例えば-OH基)と相互作用、吸着又は反応し結合を形成することにより、ゲート絶縁層上に形成される。分子がより緻密に充填されることにより、自己組織化単分子膜層の表面は、より平滑で表面エネルギーの低い表面を与えることから、上記式1Sで表される化合物は、主骨格が直線状であり、分子長が揃っていることが好ましい。
 式1Sで表される化合物の特に好ましい例として具体的には、例えば、メチルトリクロロシラン、エチルトリクロロシラン、ブチルトリクロロシラン、オクチルトリクロロシラン、デシルトリクロロシラン、オクタデシルトリクロロシラン、フェネチルトリクロロシラン等のアルキルトリクロロシラン化合物、メチルトリメトキシシラン、エチルトリメトキシシラン、ブチルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、オクタデシルトリメトキシシラン等のアルキルトリアルコキシシラン化合物、アルキルホスホン酸、アリールホスホン酸、アルキルカルボン酸、アリールホスホン酸、アルキルホウ酸基、アリールホウ酸基、アルキルチオール基、アリールチオール基等が挙げられる。
 自己組織化単分子膜層は、上記化合物を真空下でゲート絶縁層に蒸着する方法、上記化合物の溶液中にゲート絶縁層を浸漬する方法、Langmuir-Blodgett法等を用いて、形成することができる。また、例えば、アルキルクロロシラン化合物又はアルキルアルコキシシラン化合物を有機溶媒中に1~10質量%溶解した溶液でゲート絶縁層を処理することにより形成できる。本発明において、自己組織化単分子膜層を形成する方法はこれらに限るものではない。
 例えば、より緻密な自己組織化単分子膜層を得る好ましい方法として、Langmuir 19, 1159 (2003)及びJ. Phys. Chem. B 110, 21101 (2006)等に記載の方法が挙げられる。
 具体的には、上記化合物を分散させた揮発性の高い脱水溶媒中にゲート絶縁層を浸漬させて膜を形成し、ゲート絶縁層を取り出し、必要に応じてアニール等の上記化合物とゲート絶縁層の反応工程を行った後、脱水溶媒で洗い流してから、乾燥させて自己組織化単分子膜層を形成できる。
 脱水溶媒としては、特に限定されないが、例えば、クロロホルム、トリクロロエチレン、アニソール、ジエチルエーテル、ヘキサン、トルエン等を単独又は混合して用いることかできる。
 さらに、乾燥雰囲気中又は乾燥気体の噴きつけによって、膜を乾燥させることが好ましい。乾燥気体には窒素等の不活性気体を用いるのが好ましい。このような自己組織化単分子膜層の製造方法を用いることにより、緻密で凝集や欠損のない自己組織化単分子膜層が形成されることから、自己組織化単分子膜層の表面粗さを0.3nm以下に抑えることができる。
 [半導体層]
 半導体層は、半導体性を示し、キャリアを蓄積可能な層である。
 半導体層は、半導体材料により形成される。有機半導体化合物(単に有機半導体ともいう)で形成される場合、有機半導体層といい、無機半導体化合物(単に無機半導体ともいう)で形成される場合、無機半導体層という。本発明においては、有機半導体層であってもよく、無機半導体層であってもよい。
 以下に説明する有機半導体及び無機半導体は、それぞれ、1種を用いても2種以上を併用してもよく、また、有機半導体と無機半導体を併用してもよい。
 <有機半導体層>
 有機半導体層は、有機半導体を含有する層であればよい。
 有機半導体としては、特に限定されず、有機ポリマー及びその誘導体、低分子化合物等が挙げられる。
 本発明において、低分子化合物は、有機ポリマー及びその誘導体以外の化合物を意味する。すなわち、繰り返し単位を有さない化合物をいう。低分子化合物は、このような化合物である限り、分子量は特に限定されるものではない。低分子化合物の分子量は、好ましくは300~2000であり、さらに好ましくは400~1000である。
 低分子化合物としては、縮合多環芳香族化合物が挙げられる。例えば、ナフタセン、ペンタセン(2,3,6,7-ジベンゾアントラセン)、ヘキサセン、ヘプタセン、ジベンゾペンタセン、テトラベンゾペンタセン等のアセン、アントラジチオフェン、ピレン、ベンゾピレン、ジベンゾピレン、クリセン、ペリレン、コロネン、テリレン、オバレン、クオテリレン、サーカムアントラセン、及び、これらの炭素原子の一部をN、S、O等の原子で置換した誘導体又は上記炭素原子に結合している少なくとも1つの水素原子をカルボニル基等の官能基で置換した誘導体(ペリキサンテノキサンテン及びその誘導体を含むジオキサアンタントレン系化合物、トリフェノジオキサジン、トリフェノジチアジン、ヘキサセン-6,15-キノン等)、並びに、上記水素原子を他の官能基で置換した誘導体を挙げることができる。
 また、銅フタロシアニンで代表される金属フタロシアニン、テトラチアペンタレン及びその誘導体、ナフタレン-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ビス(4-トリフルオロメチルベンジル)ナフタレン-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ビス(1H,1H-ペルフルオロオクチル)、N,N’-ビス(1H,1H-ペルフルオロブチル)、N,N’-ジオクチルナフタレン-1,4,5,8-テトラカルボン酸ジイミド誘導体、ナフタレン-2,3,6,7-テトラカルボン酸ジイミド等のナフタレンテトラカルボン酸ジイミド、アントラセン-2,3,6,7-テトラカルボン酸ジイミド等のアントラセンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド、C60、C70、C76、C78、C84等のフラーレン及びこれらの誘導体、SWNT(Single-wall nanotubes)等のカーボンナノチューブ、メロシアニン色素、ヘミシアニン色素等の色素とこれらの誘導体等を挙げることもできる。
 さらに、ポリアントラセン、トリフェニレン、キナクリドンを挙げることができる。
 また、低分子化合物としては、例えば、4,4’-ビフェニルジチオール(BPDT)、4,4’-ジイソシアノビフェニル、4,4’-ジイソシアノ-p-テルフェニル、2,5-ビス(5’-チオアセチル-2’-チオフェニル)チオフェン、2,5-ビス(5’-チオアセトキシル-2’-チオフェニル)チオフェン、4,4’-ジイソシアノフェニル、ベンジジン(ビフェニル-4,4’-ジアミン)、テトラシアノキノジメタン(TCNQ)、テトラチアフルバレン(TTF)及びその誘導体、テトラチアフルバレン(TTF)-TCNQ錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、BEDTTTF-ヨウ素錯体、TCNQ-ヨウ素錯体に代表される電荷移動錯体、ビフェニル-4,4’-ジカルボン酸、1,4-ジ(4-チオフェニルアセチリニル)-2-エチルベンゼン、1,4-ジ(4-イソシアノフェニルアセチリニル)-2-エチルベンゼン、1,4-ジ(4-チオフェニルエチニル)-2-エチルベンゼン、2,2”-ジヒドロキシ-1,1’:4’,1”-テルフェニル、4,4’-ビフェニルジエタナール、4,4’-ビフェニルジオール、4,4’-ビフェニルジイソシアネート、1,4-ジアセチニルベンゼン、ジエチルビフェニル-4,4’-ジカルボキシレート、ベンゾ[1,2-c;3,4-c’;5,6-c”]トリス[1,2]ジチオール-1,4,7-トリチオン、α-セキシチオフェン、テトラチアテトラセン、テトラセレノテトラセン、テトラテルルテトラセン、ポリ(3-アルキルチオフェン)、ポリ(3-チオフェン-β-エタンスルホン酸)、ポリ(N-アルキルピロール)ポリ(3-アルキルピロール)、ポリ(3,4-ジアルキルピロール)、ポリ(2,2’-チエニルピロール)、ポリ(ジベンゾチオフェンスルフィド)を例示することができる。
 有機半導体は、低分子化合物が好ましく、なかでも、縮合多環芳香族化合物が好ましい。縮合多環芳香族化合物はキャリア移動度及び耐久性の向上効果が高く、さらには優れた閾値電圧の低減効果をも示す。
 縮合多環芳香族化合物は、一般式(A1)~(A4)のいずれかの式で表されるアセン、及び、下記一般式(C)~(T)のいずれかの式で表される化合物が好ましく、下記一般式(C)~(T)のいずれかの式で表される化合物がより好ましい。
 縮合多環芳香族化合物として好ましいアセンは、下記一般式(A1)又は(A2)で表されるものである。
Figure JPOXMLDOC01-appb-C000044
 式中、RA1~RA6、XA1及びXA2は、水素原子又は置換基を表す。
 ZA1及びZA2は、S、O、Se又はTeを表す。
 nA1及びnA2は0~3の整数を表す。ただし、nA1及びnA2が同時に0になることはない。
 RA1~RA6、XA1及びXA2で各々表される置換基としては、特に限定されないが、アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、tert-ブチル、ペンチル、tert-ペンチル、ヘキシル、オクチル、tert-オクチル、ドデシル、トリデシル、テトラデシル、ペンタデシル等)、シクロアルキル基(例えば、シクロペンチル、シクロヘキシル等)、アルケニル基(例えば、ビニル、アリル、1-プロペニル、2-ブテニル、1,3-ブタジエニル、2-ペンテニル、イソプロペニル等)、アルキニル基(例えば、エチニル、プロパルギル等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル、p-クロロフェニル、メシチル、トリル、キシリル、ナフチル、アントリル、アズレニル、アセナフテニル、フルオレニル、フェナントリル、インデニル、ピレニル、ビフェニリル等)、芳香族複素環基(ヘテロアリール基ともいい、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(ヘテロアリール環基等ともいい、例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ、エトキシ、プロピルオキシ、ペンチルオキシ、ヘキシルオキシ、オクチルオキシ、ドデシルオキシ等)、シクロアルコキシ基(例えば、シクロペンチルオキシ、シクロヘキシルオキシ等)、アリールオキシ基(例えば、フェノキシ、ナフチルオキシ等)、アルキルチオ基(例えば、メチルチオ、エチルチオ、プロピルチオ、ペンチルチオ、ヘキシルチオ、オクチルチオ、ドデシルチオ等)、シクロアルキルチオ基(例えば、シクロペンチルチオ、シクロヘキシルチオ等)、アリールチオ基(例えば、フェニルチオ、ナフチルチオ等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル、エチルオキシカルボニル、ブチルオキシカルボニル、オクチルオキシカルボニル、ドデシルオキシカルボニル等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル、ナフチルオキシカルボニル等)、スルファモイル基(例えば、アミノスルホニル、メチルアミノスルホニル、ジメチルアミノスルホニル、ブチルアミノスルホニル、ヘキシルアミノスルホニル、シクロヘキシルアミノスルホニル、オクチルアミノスルホニル、ドデシルアミノスルホニル、フェニルアミノスルホニル、ナフチルアミノスルホニル、2-ピリジルアミノスルホニル等)、アシル基(例えば、アセチル、エチルカルボニル、プロピルカルボニル、ペンチルカルボニル、シクロヘキシルカルボニル、オクチルカルボニル、2-エチルヘキシルカルボニル、ドデシルカルボニル、フェニルカルボニル、ナフチルカルボニル、ピリジルカルボニル等)、アシルオキシ基(例えば、アセチルオキシ、エチルカルボニルオキシ、ブチルカルボニルオキシ、オクチルカルボニルオキシ、ドデシルカルボニルオキシ、フェニルカルボニルオキシ等)、アミド基(例えば、メチルカルボニルアミノ、エチルカルボニルアミノ、ジメチルカルボニルアミノ、プロピルカルボニルアミノ、ペンチルカルボニルアミノ、シクロヘキシルカルボニルアミノ、2-エチルヘキシルカルボニルアミノ、オクチルカルボニルアミノ、ドデシルカルボニルアミノ、フェニルカルボニルアミノ、ナフチルカルボニルアミノ等)、カルバモイル基(例えば、アミノカルボニル、メチルアミノカルボニル、ジメチルアミノカルボニル、プロピルアミノカルボニル、ペンチルアミノカルボニル、シクロヘキシルアミノカルボニル、オクチルアミノカルボニル、2-エチルヘキシルアミノカルボニル、ドデシルアミノカルボニル、フェニルアミノカルボニル、ナフチルアミノカルボニル、2-ピリジルアミノカルボニル等)、ウレイド基(例えば、メチルウレイド、エチルウレイド、ペンチルウレイド、シクロヘキシルウレイド、オクチルウレイド、ドデシルウレイド、フェニルウレイド、ナフチルウレイド、2-ピリジルアミノウレイド等)、スルフィニル基(例えば、メチルスルフィニル、エチルスルフィニル、ブチルスルフィニル、シクロヘキシルスルフィニル、2-エチルヘキシルスルフィニル、ドデシルスルフィニル、フェニルスルフィニル、ナフチルスルフィニル、2-ピリジルスルフィニル等)、アルキルスルホニル基(例えば、メチルスルホニル、エチルスルホニル、ブチルスルホニル、シクロヘキシルスルホニル、2-エチルヘキシルスルホニル、ドデシルスルホニル等)、アリールスルホニル基(フェニルスルホニル、ナフチルスルホニル、2-ピリジルスルホニル等)、アミノ基(例えば、アミノ、エチルアミノ、ジメチルアミノ、ブチルアミノ、シクロペンチルアミノ、2-エチルヘキシルアミノ、ドデシルアミノ、アニリノ、ナフチルアミノ、2-ピリジルアミノ等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル、トリフルオロメチル、ペンタフルオロエチル、ペンタフルオロフェニル等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル、トリイソプロピルシリル、トリフェニルシリル、フェニルジエチルシリル等)、下記一般式(SG1)で表される基(ただし、XはGe又はSn)等が挙げられる。
 これらの置換基は、さらに置換基を複数有していてもよい。複数有していてもよい置換基としては、上記、RA1~RA6で表される置換基が挙げられる。
 上記アセンの中でも、下記一般式(A3)又は(A4)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000045
 式中、RA7、RA8、XA1及びXA2は、水素原子又は置換基を表す。RA7、RA8、XA1及びXA2は同じであっても異なっていてもよい。RA7及びRA8で表される置換基は一般式(A1)及び(A2)のRA1~RA6として採用しうる置換基として上記で列挙したものが好ましい。
 ZA1及びZA2は、S、O、Se又はTeを表す。
 nA1及びnA2は0~3の整数を表す。ただし、nA1とnA2が同時に0になることはない。
 一般式(A3)又は(A4)において、RA7及びRA8は、下記一般式(SG1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000046
 式中、RA9~RA11は置換基を表す。XはSi、Ge又はSnを表す。RA9~RA11で表される置換基は、一般式(A1)及び(A2)のRA1~RA6として採用しうる置換基として上記で列挙したものであることが好ましい。
 以下に、一般式(A1)~(A4)で表されるアセン又はアセン誘導体の具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
 縮合多環芳香族化合物としては、さらに、下記一般式(C)~(T)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000051
 一般式(C)中、AC1、AC2は酸素原子、硫黄原子又はセレン原子を表す。好ましくはAC1、AC2共に酸素原子、硫黄原子を表し、より好ましくは硫黄原子を表す。RC1~RC6は水素原子又は置換基を表す。RC1~RC6のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(D)中、XD1及びXD2はNRD9、酸素原子又は硫黄原子を表す。AD1はCRD7又はN原子を表し、AD2はCRD8又はN原子を表し、RD9は水素原子、アルキル基、アルケニル基、アルキニル基又はアシル基を表す。RD1~RD8は水素原子又は置換基を表し、RD1~RD8のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(E)中、XE1及びXE2は酸素原子、硫黄原子又はNRE7を表す。AE1及びAE2はCRE8又は窒素原子を表す。RE1~RE8は水素原子又は置換基を表す。RE1~RE8のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(F)中、XF1及びXF2は酸素原子、硫黄原子又はセレン原子を表す。好ましくはXF1及びXF2は酸素原子、硫黄原子を表し、より好ましくは、硫黄原子を表す。RF1~RF10、RFa及びRFbは水素原子又は置換基を表す。RF1~RF10、RFa及びRFbのうち少なくとも一つは一般式(W)で表される置換基である。p及びqは0~2の整数を表す。
 一般式(G)中、XG1及びXG2はNRG9、酸素原子又は硫黄原子を表す。AG1はCRG7又はN原子を表す。AG2はCRG8又はN原子を表す。RG9は水素原子、アルキル基、アルケニル基、アルキニル基、アシル基、アリール基又はヘテロアリール基を表す。RG1~RG8は水素原子又は置換基を表す。RG1~RG8のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(H)中、XH1~XH4は、NRH7、酸素原子又は硫黄原子を表す。XH1~XH4は、好ましくは硫黄原子を表す。RH7は水素原子、アルキル基、アルケニル基、アルキニル基、アシル基、アリール基又はヘテロアリール基を表す。RH1~RH6は水素原子又は置換基を表す。RH1~RH6のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(J)中、XJ1及びXJ2は酸素原子、硫黄原子、セレン原子又はNRJ9を表す。XJ3及びXJ4は酸素原子、硫黄原子又はセレン原子を表す。XJ1、XJ2、XJ3及びXJ4は好ましくは硫黄原子を表す。RJ1~RJ9は水素原子又は置換基を表す。RJ1~RJ9のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(K)中、XK1及びXK2は酸素原子、硫黄原子、セレン原子又はNRK9を表す。XK3及びXK4は酸素原子、硫黄原子又はセレン原子を表す。XK1、XK2、XK3及びXK4は好ましくは硫黄原子を表す。RK1~RK9は水素原子又は置換基を表す。RK1~RK9のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(L)中、XL1及びXL2は酸素原子、硫黄原子又はNRL11を表す。XL1及びXL2は好ましくは酸素原子又は硫黄原子を表す。RL1~RL11は水素原子又は置換基を表し、RL1~RL11のうち少なくとも1つが下記一般式(W)で表される置換基である。
 一般式(M)中、XM1及びXM2は酸素原子、硫黄原子、セレン原子又はNRM9を表す。XM1及びXM2は好ましくは硫黄原子を表す。RM1~RM9は水素原子又は置換基を表す。RM1~RM9のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(N)中、XN1及びXN2は酸素原子、硫黄原子、セレン原子又はNRN13を表す。XN1及びXN2は好ましくは硫黄原子を表す。RN1~RN13は水素原子又は置換基を表す。RN1~RN13のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(P)中、XP1及びXP2は酸素原子、硫黄原子、セレン原子又はNRP13を表す。XP1及びXP2は好ましくは硫黄原子を表す。RP1~RP13は水素原子又は置換基を表す。RP1~RP13のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(Q)中、XQ1及びXQ2は酸素原子、硫黄原子、セレン原子又はNRQ13を表す。XQ1及びXQ2は好ましくは硫黄原子を表す。RQ1~RQ13は水素原子又は置換基を表す。RQ1~RQ13のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(R)中、XR1、XR2及びXR3は酸素原子、硫黄原子、セレン原子又はNRR9を表す。XR1、XR2及びXR3は好ましくは硫黄原子を表す。RR1~RR9は水素原子又は置換基を表す。RR1~RR9のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(S)中、XS1、XS2、XS3及びXS4は酸素原子、硫黄原子、セレン原子又はNRS7を表す。XS1、XS2、XS3及びXS4は好ましくは硫黄原子を表す。RS1~RS7は水素原子又は置換基を表す。RS1~RS7のうち少なくとも1つは下記一般式(W)で表される置換基である。
 一般式(T)中、XT1、XT2、XT3、及びXT4は酸素原子、硫黄原子、セレン原子又はNRT7を表す。XT1、XT2、XT3及びXT4は好ましくは硫黄原子を表す。RT1~RT7は水素原子又は置換基を表す。RT1~RT7のうち少なくとも1つは下記一般式(W)で表される置換基である。
 以下に、上記一般式(C)~(T)において、水素原子又は置換基を表す、RC1~RC6、RD1~RD8、RE1~RE8、RF1~RF10、RFa及びRFb、RG1~RG8、RH1~RH6、RJ1~RJ9、RK1~RK9、RL1~RL11、RM1~RM9、RN1~RN13、RP1~RP13、RQ1~RQ13、RR1~RR9、RS1~RS7及びRT1~RT7(以下、置換基R~Rという)について、説明する。
 置換基R~Rが、とりうる置換基として、ハロゲン原子、アルキル基(メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル等の炭素数1~40のアルキル基、ただし、2,6-ジメチルオクチル、2-デシルテトラデシル、2-ヘキシルドデシル、2-エチルオクチル、2-デシルテトラデシル、2-ブチルデシル、1-オクチルノニル、2-エチルオクチル、2-オクチルテトラデシル、2-エチルヘキシル、シクロアルキル、ビシクロアルキル、トリシクロアルキル等を含む)、アルケニル基(1-ペンテニル、シクロアルケニル、ビシクロアルケニル等を含む)、アルキニル基(1-ペンチニル、トリメチルシリルエチニル、トリエチルシリルエチニル、トリ-i-プロピルシリルエチニル、2-p-プロピルフェニルエチニル等を含む)、アリール基(フェニル、ナフチル、p-ペンチルフェニル、3,4-ジペンチルフェニル、p-ヘプトキシフェニル、3,4-ジヘプトキシフェニルの炭素数6~20のアリール基等を含む)、複素環基(ヘテロ環基といってもよい。2-ヘキシルフラニル等を含む)、シアノ基、ヒドロキシ基、ニトロ基、アシル基(ヘキサノイル、ベンゾイル等を含む。)、アルコキシ基(ブトキシ等を含む)、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アミノ基(アニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基(ウレイド基含む)、アルコキシ及びアリールオキシカルボニルアミノ基、アルキル及びアリールスルホニルアミノ基、メルカプト基、アルキル及びアリールチオ基(メチルチオ、オクチルチオ等を含む)、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルフィニル基、アルキル及びアリールスルホニル基、アルキル及びアリールオキシカルボニル基、カルバモイル基、アリール及びヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基(ジトリメチルシロキシメチルブトキシ基等)、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、その他の公知の置換基が挙げられる。
 これら置換基は、さらに上記置換基を有していてもよい。
 これらの中でも、置換基R~Rがとりうる置換基として、アルキル基、アリール基、アルケニル基、アルキニル基、複素環基、アルコキシ基、アルキルチオ基、後述の一般式(W)で表される基が好ましく、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数1~11のアルコキシ基、炭素数5~12の複素環基、炭素数1~12のアルキルチオ基、後述の一般式(W)で表される基がより好ましく、後述の一般式(W)で表される基が特に好ましく、後述の一般式(W)で表される基がより特に好ましい。
 上記RD9、RG9及びRH7の、アルキル基、アルケニル基、アルキニル基、アシル基、アリール基は、それぞれ、置換基R~Rがとりうる置換基で説明した、アルキル基、アルケニル基、アルキニル基、アシル基、アリール基と同義である。
 また、ヘテロアリール基は、RA1~RA6の置換基で説明したヘテロアリール基と同義である。
 一般式(W):-L-R で表される基について説明する。
 一般式(W)中、Lは下記一般式(L-1)~(L-25)のいずれかで表される2価の連結基又は2以上(好ましくは2~10個、より好ましくは2~6個、さらに好ましくは2又は3個)の下記一般式(L-1)~(L-25)のいずれかで表される2価の連結基が結合した2価の連結基を表す。Rは置換又は無置換のアルキル基、シアノ基、ビニル基、エチニル基、オキシエチレン基、オキシエチレン単位の繰り返し数vが2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、あるいは、置換又は無置換のトリアルキルシリル基を表す。
Figure JPOXMLDOC01-appb-C000052
 一般式(L-1)~(L-25)中、波線部分は上記一般式(C)~(T)で表される各骨格を形成するいずれかの環との結合位置を表す。なお、本明細書中、Lが一般式(L-1)~(L-25)のいずれかで表される2価の連結基が2つ以上結合した2価の連結基を表す場合、波線部分は上記一般式(C)~(T)で表される各骨格を形成するいずれかの環との結合位置及び一般式(L-1)~(L-25)で表される2価の連結基のいずれかとの結合位置を表してもよい。
 *はRwとの結合位置又は一般式(L-1)~(L-25)の波線部分との結合位置を表す。
 一般式(L-13)におけるmは4を表し、一般式(L-14)及び(L-15)におけるmは3を表し、一般式(L-16)~(L-20)におけるmは2を表し、(L-22)におけるmは6を表す。
 一般式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)におけるRLZはそれぞれ独立に水素原子又は置換基を表し、一般式(L-1)及び(L-2)中のRLZはそれぞれLに隣接するRと結合して縮合環を形成してもよい。
 Rは水素原子又は置換基を表し、Rsiはそれぞれ独立に水素原子、アルキル基、アルケニル基又はアルキニル基を表す。
 この中でも、一般式(L-17)~(L-21)、(L-23)及び(L-24)で表される2価の連結基は、下記一般式(L-17A)~(L-21A)、(L-23A)及び(L-24A)で表される2価の連結基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000053
 ここで、置換又は無置換のアルキル基、オキシエチレン基、オキシエチレン単位の繰り返し数vが2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、あるいは、置換又は無置換のトリアルキルシリル基が置換基の末端に存在する場合は、一般式(W)における-R単独と解釈することもでき、一般式(W)における-L-Rと解釈することもできる。
 本発明では、主鎖が炭素数N個の置換又は無置換のアルキル基が置換基の末端に存在する場合は、置換基の末端から可能な限りの連結基を含めた上で一般式(W)における-L-Rと解釈することとし、一般式(W)における-R単独とは解釈しない。具体的には「一般式(W)におけるLに相当する(L-1)1個」と「一般式(W)におけるRに相当する主鎖が炭素数N-1個の置換又は無置換のアルキル基」とが結合した置換基として解釈する。例えば、炭素数8のアルキル基であるn-オクチル基が置換基の末端に存在する場合、2個のRLZが水素原子である(L-1)1個と、炭素数7のn-ヘプチル基とが結合した置換基として解釈する。また、一般式(W)で表される置換基が炭素数8のアルコキシ基である場合、-O-である一般式(L-4)で表される連結基1個と、2個のRLZが水素原子である(L-1)で表される連結基1個と、炭素数7のn-ヘプチル基とが結合した置換基として解釈する。
 一方、本発明では、オキシエチレン基、オキシエチレン単位の繰り返し数vが2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基、あるいは、置換又は無置換のトリアルキルシリル基が置換基の末端に存在する場合は、置換基の末端から可能な限りの連結基を含めた上で、一般式(W)におけるR単独と解釈する。例えば、-(OCHCH)-(OCHCH)-(OCHCH)-OCH基が置換基の末端に存在する場合、オキシエチレン単位の繰り返し数vが3のオリゴオキシエチレン基単独の置換基として解釈する。
 Lが一般式(L-1)~(L-25)のいずれかで表される2価の連結基が結合した連結基を形成する場合、一般式(L-1)~(L-25)のいずれかで表される2価の連結基の結合数は2~4であることが好ましく、2又は3であることがより好ましい。
 一般式(L-1)、(L-2)、(L-6)及び(L-13)~(L-24)中の置換基RLZとしては、一般式(C)~(T)の置換基R~Rが採りうる置換基として例示したものを挙げることができる。その中でも一般式(L-6)中の置換基RLZはアルキル基であることが好ましく、(L-6)中のRLZがアルキル基である場合は、アルキル基の炭素数は1~9であることが好ましく、4~9であることが化学的安定性、キャリア輸送性の観点からより好ましく、5~9であることがさらに好ましい。(L-6)中のRLZがアルキル基である場合は、アルキル基は直鎖アルキル基であることが、キャリア移動度を高めることができる観点から好ましい。
 Rとしては、置換基R~Rが採りうる置換基として例示したものを挙げることができる。その中でもRとしては水素原子又はメチル基が好ましい。
 Rsiは、アルキル基であることが好ましい。Rsiがとり得るアルキル基としては特に制限はないが、Rsiがとり得るアルキル基の好ましい範囲はRがシリル基である場合にシリル基がとり得るアルキル基の好ましい範囲と同様である。Rsiがとり得るアルケニル基としては特に制限はないが、置換又は無置換のアルケニル基が好ましく、分枝アルケニル基であることがより好ましく、アルケニル基の炭素数は2~3であることが好ましい。Rsiがとり得るアルキニル基としては特に制限はないが、置換又は無置換のアルキニル基が好ましく、分枝アルキニル基であることがより好ましく、アルキニル基の炭素数は2~3であることが好ましい。
 Lは、一般式(L-1)~(L-5)、(L-13)、(L-17)もしくは(L-18)のいずれかで表される2価の連結基、又は一般式(L-1)~(L-5)、(L-13)、(L-17)もしくは(L-18)のいずれかで表される2価の連結基が2以上結合した2価の連結基であることが好ましく、一般式(L-1)、(L-3)、(L-13)もしくは(L-18)のいずれかで表される2価の連結基又は一般式(L-1)、(L-3)、(L-13)もしくは(L-18)で表される2価の連結基が2以上結合した2価の連結基であることがより好ましく、(L-1)、(L-3)、(L-13)もしくは(L-18)で表される2価の連結基、あるいは一般式(L-3)、(L-13)又は(L-18)のいずれか1つで表される2価の連結基と一般式(L-1)で表される2価の連結基が結合した2価の連結基であることが特に好ましい。一般式(L-3)、(L-13)又は(L-18)のいずれか1つで表される2価の連結基と一般式(L-1)で表される2価の連結基が結合した2価の連結基は、一般式(L-1)で表される2価の連結基がR側に結合することが好ましい。
 化学的安定性、キャリア輸送性の観点から一般式(L-1)で表される2価の連結基を含む2価の連結基であることが特に好ましく、一般式(L-1)で表される2価の連結基であることがより特に好ましく、Lが一般式(L-18)及び(L-1)で表される2価の連結基であり、(L-1)を介してRと結合し、Rが置換又は無置換のアルキル基であることがさらにより特に好ましく、Lが一般式(L-18A)及び(L-1)で表される2価の連結基であり、(L-1)を介してRと結合し、Rが置換又は無置換のアルキル基であることがさらにより特に好ましい。
 一般式(W)において、Rは、好ましくは、置換又は無置換のアルキル基である。一般式(W)において、Rに隣接するLが一般式(L-1)で表される2価の連結基である場合は、Rは置換又は無置換のアルキル基、オキシエチレン基、オキシエチレン単位の繰り返し数が2以上のオリゴオキシエチレン基、シロキサン基、ケイ素原子数が2以上のオリゴシロキサン基であることが好ましく、置換又は無置換のアルキル基であることがより好ましい。
 一般式(W)において、Rに隣接するLが一般式(L-2)及び(L-4)~(L-25)で表される2価の連結基である場合は、Rは置換又は無置換のアルキル基であることがより好ましい。
 一般式(W)において、Rに隣接するLが一般式(L-3)で表される2価の連結基である場合は、Rは置換又は無置換のアルキル基、置換又は無置換のシリル基であることが好ましい。
 Rが置換又は無置換のアルキル基の場合、炭素数は4~17であることが好ましく、6~14であることが化学的安定性、キャリア輸送性の観点からより好ましく、6~12であることがさらに好ましい。Rが上記の範囲の長鎖アルキル基であること、特に長鎖の直鎖アルキル基であることが、分子の直線性が高まり、キャリア移動度を高めることができる観点から好ましい。
 Rがアルキル基を表す場合、直鎖アルキル基でも、分枝アルキル基でも、環状アルキル基でもよいが、直鎖アルキル基であることが、分子の直線性が高まり、キャリア移動度を高めることができる観点から好ましい。
 これらの中でも、一般式(W)におけるRとLの組み合わせとしては、一般式(C)~(T)のLが一般式(L-1)で表される2価の連結基であり、かつ、Rが直鎖の炭素数4~17のアルキル基であるか;あるいは、Lが一般式(L-3)、(L-13)又は(L-18)のいずれか1つで表される2価の連結基と一般式(L-1)で表される2価の連結基が結合した2価の連結基であり、かつ、Rが直鎖のアルキル基であることが、キャリア移動度を高める観点から好ましい。
 Lが一般式(L-1)で表される2価の連結基であり、かつ、Rが直鎖の炭素数4~17のアルキル基である場合、Rが直鎖の炭素数6~14のアルキル基であることがキャリア移動度を高める観点からより好ましく、直鎖の炭素数6~12のアルキル基であることが特に好ましい。
 Lが一般式(L-3)、(L-13)又は(L-18)のいずれか1つで表される2価の連結基と一般式(L-1)で表される2価の連結基が結合した2価の連結基であり、かつ、Rが直鎖のアルキル基である場合、Rが直鎖の炭素数4~17のアルキル基であることがより好ましく、直鎖の炭素数6~14のアルキル基であることが化学的安定性、キャリア輸送性の観点からより好ましく、直鎖の炭素数6~12のアルキル基であることがキャリア移動度を高める観点から特に好ましい。
 一方、有機溶媒への溶解度を高める観点からは、Rが分枝アルキル基であることが好ましい。
 Rが置換基を有するアルキル基である場合の置換基としては、ハロゲン原子等を挙げることができ、フッ素原子が好ましい。なお、Rがフッ素原子を有するアルキル基である場合はアルキル基の水素原子がすべてフッ素原子で置換されてパーフルオロアルキル基を形成してもよい。ただし、Rは無置換のアルキル基であることが好ましい。
 Rがエチレンオキシ基又はオリゴエチレンオキシ基の場合、Rが表す「オリゴオキシエチレン基」とは本明細書中、-(OCHCHOYで表される基のことをいう(オキシエチレン単位の繰り返し数vは2以上の整数を表し、末端のYは水素原子又は置換基を表す)。なお、オリゴオキシエチレン基の末端のYが水素原子である場合はヒドロキシ基となる。オキシエチレン単位の繰り返し数vは2~4であることが好ましく、2~3であることがさらに好ましい。オリゴオキシエチレン基の末端のヒドロキシ基は封止されていること、すなわちYが置換基を表すことが好ましい。この場合、ヒドロキシ基は、炭素数が1~3のアルキル基で封止されること、すなわちYが炭素数1~3のアルキル基であることが好ましく、Yがメチル基やエチル基であることがより好ましく、メチル基であることが特に好ましい。
 Rが、シロキサン基又はオリゴシロキサン基の場合、シロキサン単位の繰り返し数は2~4であることが好ましく、2~3であることがさらに好ましい。また、Si原子には、水素原子やアルキル基が結合することが好ましい。Si原子にアルキル基が結合する場合、アルキル基の炭素数は1~3であることが好ましく、例えば、メチル基やエチル基が結合することが好ましい。Si原子には、同一のアルキル基が結合してもよく、異なるアルキル基又は水素原子が結合してもよい。また、オリゴシロキサン基を構成するシロキサン単位はすべて同一であっても異なっていてもよいが、すべて同一であることが好ましい。
 Rに隣接するLが一般式(L-3)で表される2価の連結基である場合、Rが置換又は無置換のシリル基であることも好ましい。Rが置換又は無置換のシリル基である場合はその中でも、Rが置換シリル基であることが好ましい。シリル基の置換基としては特に制限はないが、置換又は無置換のアルキル基が好ましく、分枝アルキル基であることがより好ましい。Rがトリアルキルシリル基の場合、Si原子に結合するアルキル基の炭素数は1~3であることが好ましく、例えば、メチル基やエチル基やイソプロピル基が結合することが好ましい。Si原子には、同一のアルキル基が結合してもよく、異なるアルキル基が結合してもよい。Rがアルキル基上にさらに置換基を有するトリアルキルシリル基である場合の置換基としては、特に制限はない。
 一般式(W)において、L及びRに含まれる炭素数の合計は5~18であることが好ましい。L及びRに含まれる炭素数の合計が上記範囲の下限値以上であると、キャリア移動度が高くなり、駆動電圧を低くなる。L及びRに含まれる炭素数の合計が上記範囲の上限値以下であると、有機溶媒に対する溶解性が高くなる。
 L及びRに含まれる炭素数の合計は5~14であることが好ましく、6~14であることがより好ましく、6~12であることが特に好ましく、8~12であることがより特に好ましい。
 一般式(C)~(T)で表される各化合物において置換基R~Rのうち、一般式(W)で表される基は1~4個であることが、キャリア移動度を高め、有機溶媒への溶解性を高める観点から好ましく、1又は2個であることがより好ましく、2個であることが特に好ましい。
 置換基R~Rのうち、一般式(W)で表される基の位置に特に制限はない。
 一般式(C)で表される化合物においては、RC1、RC2、RC3、RC6のいずれかが一般式(W)で表される基であることが好ましく、RC1とRC2との両方又はRC3とRC6の両方が一般式(W)で表される基であることがより好ましい。
 一般式(D)で表される化合物においては、RD6が一般式(W)で表される基であることが好ましく、RD5とRD6との両方が一般式(W)で表される基であることがより好ましい。
 一般式(E)で表される化合物においては、RE6が一般式(W)で表される基であることが好ましく、RE5とRE6との両方が一般式(W)で表される基であることがより好ましい。また、RE5及びRE6が一般式(W)で表される基以外の置換基である場合、2つのRE7が一般式(W)で表される基であるのも好ましい。
 一般式(F)で表される化合物においては、RF2、RF3、RF8及びRF9のうち少なくとも一つは一般式(W)で表される置換基であるのが好ましい。
 一般式(G)で表される化合物においては、RG5又はRG6が一般式(W)で表される基であることが、キャリア移動度を高め、有機溶媒への溶解性を高める観点から好ましい。
 一般式(H)で表される化合物においては、RH4又はRH6が一般式(W)で表される基であるのが好ましく、RH4又はRH6、及び、RH3又はRH5が一般式(W)で表される基であるのがより好ましい。
 一般式(J)で表される化合物においては、RJ8が一般式(W)で表される基であるのが好ましく、RJ8とRJ4との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(K)で表される化合物においては、RK7が一般式(W)で表される基であるのが好ましく、RK7とRK3との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(L)で表される化合物においては、RL2、RL3、RL6及びRL7のうち少なくとも一つが一般式(W)で表される基であるのがより好ましい。
 一般式(M)で表される化合物においては、RM2が一般式(W)で表される基であるのが好ましく、RM2とRM6との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(N)で表される化合物においては、RN3が一般式(W)で表される基であるのが好ましく、RN3とRN9との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(P)で表される化合物においては、RP2又はRP3が一般式(W)で表される基であるのが好ましく、RP2とRP8との両方又はRP3とRP9との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(Q)で表される化合物においては、RQ3が一般式(W)で表される基であるのが好ましく、RQ3とRQ9との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(R)で表される化合物においては、RR2が一般式(W)で表される基であるのが好ましく、RR2とRR7との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(S)で表される化合物においては、RS2が一般式(W)で表される基であるのが好ましく、RS2とRS5との両方が一般式(W)で表される基であるのがより好ましい。
 一般式(T)で表される化合物においては、RT2が一般式(W)で表される基であるのが好ましく、RT2とRT5との両方が一般式(W)で表される基であるのがより好ましい。
 置換基R~Rのうち、一般式(W)で表される基以外の置換基は、0~4個であることが好ましく、0~2個であることがより好ましい。
 以下に、一般式(C)~一般式(T)で表される各化合物の具体例を以下に示すが、本発明に用いることができる化合物は、これらの具体例により限定的に解釈されるべきものではない。
 一般式(C)で表される化合物Cの具体例を示す。
Figure JPOXMLDOC01-appb-C000054
 一般式(C)で表される化合物は、分子量が3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることがさらに好ましく、850以下であることが特に好ましい。分子量が上記範囲内にあると、溶媒への溶解性を高めることができる。
 一方で、薄膜の膜質安定性の観点からは、分子量は300以上であることが好ましく、350以上であることがより好ましく、400以上であることがさらに好ましい。
 一般式(D)で表される化合物Dの具体例を示す。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 一般式(D)で表される化合物の分子量は、上限が一般式(C)で表される化合物と同じであるのが、溶媒への溶解性を高めることができ、好ましい。一方で、薄膜の膜質安定性の観点からは、分子量は400以上であることが好ましく、450以上であることがより好ましく、500以上であることがさらに好ましい。
 一般式(E)で表される化合物E、一般式(F)で表される化合物F、一般式(G)で表される化合物G及び一般式(H)で表される化合物Hそれぞれの具体例を、順に示す。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
 上記化合物E、化合物F、化合物G及び化合物Hの分子量は、それぞれ、上限が一般式(C)で表される化合物Cと同じであるのが、溶媒への溶解性を高めることができ、好ましい。一方で、薄膜の膜質安定性の観点から、分子量の下限は一般式(D)で表される化合物と同じである。
 一般式(J)及び一般式(K)で表される化合物J及び化合物Kの具体例を示す。
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
 上記化合物J及び化合物Kの分子量は、それぞれ、上限が一般式(C)で表される化合物Cと同じであるのが、溶媒への溶解性を高めることができ、好ましい。一方で、薄膜の膜質安定性の観点から、分子量の下限は一般式(D)で表される化合物と同じである。
 一般式(L)で表される化合物L、一般式(M)で表される化合物M、一般式(N)で表される化合物N、一般式(P)で表される化合物P及び一般式(Q)で表される化合物Qそれぞれの具体例を、順に示す。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
 上記化合物L、化合物M、化合物N、化合物P及び化合物Qの分子量は、それぞれ、上限が一般式(C)で表される化合物Cと同じであるのが、溶媒への溶解性を高めることができ、好ましい。一方で、薄膜の膜質安定性の観点から、分子量の下限は一般式(D)で表される化合物と同じである。
 一般式(R)で表される化合物R、一般式(S)で表される化合物S及び一般式(T)で表される化合物Tそれぞれの具体例を、順に示す。
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
 上記化合物R、化合物S及び化合物Tの分子量は、それぞれ、上限が一般式(C)で表される化合物Cと同じであるのが、溶媒への溶解性を高めることができ、好ましい。一方で、薄膜の膜質安定性の観点から、分子量の下限は一般式(D)で表される化合物と同じである。
 有機ポリマー及びその誘導体としては、例えば、ポリピロール及びその置換体、ポリジケトピロール及びその置換体、ポリチオフェン及びその誘導体、ポリイソチアナフテン等のイソチアナフテン、ポリチエニレンビニレン等のチエニレンビニレン、ポリ(p-フェニレンビニレン)等のポリ(p-フェニレンビニレン)、ポリアニリン及びその誘導体、ポリアセチレン、ポリジアセチレン、ポリアズレン、ポリピレン、ポリカルバゾール、ポリセレノフェン、ポリフラン、ポリ(p-フェニレン)、ポリインドール、ポリピリダジン、ポリテルロフェン、ポリナフタレン、ポリビニルカルバゾール、ポリフェニレンスルフィド、ポリビニレンスルフィド等のポリマー及び縮合多環芳香族化合物の重合体等を挙げることができる。
 ポリチオフェン及びその誘導体としては、特に限定されないが、例えば、ポリチオフェンにヘキシル基を導入したポリ-3-ヘキシルチオフェン(P3HT)、ポリエチレンジオキシチオフェン、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(PEDOT/PSS)等が挙げられる。
 また、これらのポリマーと同じ繰り返し単位を有するオリゴマー(例えば、オリゴチオフェン)を挙げることもできる。
 また、有機ポリマーとして、下記一般式(C)~(T)で表される化合物が繰り返し構造を有する高分子化合物が挙げられる。
 このような高分子化合物としては、一般式(C)~(T)で表される化合物が少なくとも1つ以上のアリーレン基、ヘテロアリーレン基(チオフェン、ビチオフェン等)を介して繰り返し構造を示すπ共役ポリマーや、一般式(C)~(T)で表される化合物が高分子主鎖に側鎖を介して結合したペンダント型ポリマーが挙げられる。高分子主鎖としては、ポリアクリレート、ポリビニル、ポリシロキサン等が好ましく、側鎖としては、アルキレン基、ポリエチレンオキシド基等が好ましい。ペンダント型ポリマーの場合、高分子主鎖は置換基R~Rの少なくとも1つが重合性基由来の基を有し、これが重合してなるものであってもよい。
 これらの有機ポリマーは、重量平均分子量が3万以上であることが好ましく、5万以上であることがより好ましく、10万以上であることがさらに好ましい。重量平均分子量が上記下限値以上とすることにより、分子間相互作用を高めることができ、高い移動度が得られる。
 上記有機ポリマーに加えて、さらにそれ以外の樹脂(D)を用いることも好ましい。樹脂(D)としては、ポリスチレン、ポリα-メチルスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリシルセスキオキサン、ポリスルフォン、ポリメチルメタクリレートに代表されるポリメタクリレート、ポリメチルアクリレートに代表されるポリアクリレート、トリアセチルセルロースに代表されるセルロース、ポリエチレン、ポリプロピレン、ポリビニルフェノール、ポリビニルアルコール、ポリビニルブチラールなどの絶縁性ポリマー、及び、これらの構成成分を2種以上共重合して得られる共重合体を挙げることができる。
 樹脂(D)を用いる場合、有機ポリマーと樹脂(D)の総量に対する有機ポリマーの質量割合は10質量%以上100質量%未満であることが好ましく、20質量%以上100質量%未満であることがより好ましい。
 有機半導体層中、有機ポリマー及び樹脂(D)の合計含有率は、1~80質量%が好ましく、5~60質量%がより好ましく、10~50質量%がさらに好ましい。
 有機半導体層はゲート絶縁層上に湿式法(ウエットコーティング法)で形成されると、簡便で低コストに高性能なOTFTを得やすいうえに、大面積化にも適している。したがって、有機半導体層の形成方法は湿式法が好ましい。
 湿式法としては、特に限定されないが、例えば、スピンコート法、インクジェット法、ノズルプリント、スタンプ印刷、スクリーン印刷、グラビア印刷、エレクトロスプレイデポジション法等により半導体材料を塗布した後、乾燥させることにより形成することができる。
 ゲート絶縁層上に有機半導体層をウエットコーティング法により形成する場合、OTFTが高性能になりやすいことから、有機半導体層は結晶化処理が施されているのが好ましく、加熱やレーザー照射による結晶化処理が施されているのが特に好ましい。
 結晶化処理の方法としては、特に限定されないが、ホットプレート、オーブン等による加熱又はレーザー照射等が挙げられる。加熱温度については、結晶化が進行しやすい点では高温が好ましく、また、一方で、基板等に熱の影響を与え難い点では低温が好ましい。具体的には、50℃以上が好ましく、100℃以上が特に好ましく、また、一方で、300℃以下が好ましく、250℃以下が特に好ましい。
<無機半導体層>
 半導体層を形成する無機半導体材料としては、特に限定されないが、塗布型半導体が好ましく、その好ましい例として酸化物半導体が挙げられる。
 酸化物半導体としては、金属酸化物からなるものであれば特に限定されない。酸化物半導体からなる半導体層は、酸化物半導体前駆体、すなわち熱酸化等の変換処理によって金属酸化物からなる半導体材料に変換される材料を用いて形成するのが好ましい。
 酸化物半導体は特に限定されるものではないが、例えば、酸化インジウムガリウム亜鉛、酸化インジウムガリウム、酸化インジウムスズ亜鉛、酸化ガリウム亜鉛、酸化インジウムスズ、酸化インジウム亜鉛、酸化スズ亜鉛、酸化亜鉛、酸化スズ、例えば、InGaZnO、InGaO、InSnZnO、GaZnO、InSnO、InZnO、SnZnO(いずれもx>0)、ZnO、SnOが挙げられる。
 上記酸化物半導体前駆体としては、例えば、金属の硝酸塩、金属のハロゲン化物、アルコキシドが挙げられる。上記酸化物半導体前駆体が含有する金属は、例えば、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる少なくとも1種が挙げられる。
 酸化物半導体前駆体の具体例としては、例えば、硝酸インジウム、硝酸亜鉛、硝酸ガリウム、硝酸スズ、硝酸アルミニウム、塩化インジウム、塩化亜鉛、塩化スズ(2価)、塩化スズ(4価)、塩化ガリウム、塩化アルミニウム、トリ-i-プロポキシインジウム、ジエトキシ亜鉛、ビス(ジピバロイルメタナト)亜鉛、テトラエトキシスズ、テトラ-i-プロポキシスズ、トリ-i-プロポキシガリウム、トリ-i-プロポキシアルミニウムが挙げられる。
 無機半導体層は、公知の方法により、設けることができる。
 半導体層の膜厚は、任意であるが、1nm以上が好ましく、10nm以上がさらに好ましい。また、10μm以下が好ましく、1μm以下がさらに好ましく、500nm以下が特に好ましい。
 [ソース電極、ドレイン電極]
 本発明のTFTにおいて、ソース電極は、配線を通じて外部から電流が流入する電極である。また、ドレイン電極は、配線を通じて外部に電流を送り出す電極であり、通常、上記半導体層に接して設けられる。
 ソース電極及びドレイン電極の材料としては、従来の有機薄膜トランジスタに用いられている導電性材料を用いることができ、例えば、上記ゲート電極で説明した導電性材料等が挙げられる。
 ソース電極及びドレイン電極は、それぞれ、上記ゲート電極の形成方法と同様の方法により形成することができる。
 上記フォトリソグラフィー法としては、リフトオフ法又はエッチング法を採用できる。
 特に、ゲート絶縁層がエッチング液や剥離液に対する耐性に優れていることから、ソース電極及びドレイン電極はエッチング法でも好適に形成することができる。エッチング法は、導電性材料を成膜した後に不要部分をエッチングにより除去する方法である。エッチング法によりパターニングすると、レジスト除去時に下地に残った導電性材料の剥がれ、レジスト残渣や除去された導電性材料の下地への再付着を防止でき、電極エッジ部の形状に優れる。この点で、リフトオフ法よりも好ましい。
 リフトオフ法は、下地の一部にレジストを塗布し、この上に導電性材料を成膜し、レジスト等を溶媒により溶出又は剥離等することにより、レジスト上の導電性材料ごと除去して、レジストが塗布されていなかった部分にのみ導電性材料の膜を形成する方法である。
 ソース電極及びドレイン電極の厚みは、任意であるが、それぞれ、1nm以上が好ましく、10nm以上が特に好ましい。また、500nm以下が好ましく、300nm以下が特に好ましい。
 ソース電極とドレイン電極との間の間隔(チャネル長)は、任意であるが、100μm以下が好ましく、50μm以下が特に好ましい。また、チャネル幅は、5000μm以下が好ましく、1000μm以下が特に好ましい。
 [オーバーコート層]
 本発明のTFTは、オーバーコート層を有していてもよい。オーバーコート層は、通常、TFTの表面に保護層として形成される層である。単層構造でも多層構造でもよい。
 オーバーコート層は、有機系のオーバーコート層でも無機系のオーバーコート層でもよい。
 有機系のオーバーコート層を形成する材料としては、特に限定されないが、例えば、ポリスチレン、アクリル樹脂、ポリビニルアルコール、ポリオレフィン、ポリイミド、ポリウレタン、ポリアセナチレン、エポキシ樹脂等の有機ポリマー、及び、これらの有機ポリマーに架橋性基や撥水基等を導入した誘導体等が挙げられる。これらの有機ポリマーやその誘導体は、架橋成分、フッ素化合物、シリコン化合物等と併用することもできる。
 無機系のオーバーコート層を形成する材料としては、特に限定されないが、酸化ケイ素、酸化アルミニウム等の金属酸化物、窒化ケイ素等の金属窒化物等が挙げられる。
 これらの材料は、1種を用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 オーバーコート層の形成方法に制限はなく、公知の各種の方法により形成することができる。
 例えば、有機系のオーバーコート層は、例えば、その下地となる層に、オーバーコート層となる材料を含む溶液を塗布後に乾燥させる、オーバーコート層となる材料を含む溶液を塗布、乾燥後に露光、現像してパターニングする等の方法により形成することができる。なお、オーバーコート層のパターニングは、印刷法やインクジェット法等により直接形成することもできる。また、オーバーコート層のパターニング後に、露光や加熱することにより、オーバーコート層を架橋させてもよい。
 一方、無機系のオーバーコート層は、スパッタリング法、蒸着法等の乾式法やゾルゲル法のような湿式法により形成することができる。
 [その他の層]
 本発明のTFTは、上記以外の層や部材を設けてもよい。
 その他の層又は部材としては、例えば、バンク等が挙げられる。バンクは、インクジェット法等により半導体層やオーバーコート層等を形成するときに、吐出液を所定の位置に塞き止める目的等で用いられる。このため、バンクには、通常、撥液性がある。バンクの形成方法としては、フォトリソグラフィー法等によりパターニングした後にフッ素プラズマ法等の撥液処理を施す方法、フッ素化合物等の撥液成分を含む感光性組成物等を硬化させる方法等が挙げられる。
 本発明の有機薄膜トランジスタの場合、ゲート絶縁層が有機層であることから、後者の撥液成分を含む感光性組成物を硬化させる方法が、ゲート絶縁層が撥液処理の影響を受ける可能性がなく、好ましい。なお、バンクを用いずに下地に撥液性のコントラストを持たせてバンクと同じ役割を持たせる技術を用いてもよい。
 [製造方法]
 本発明のTFTは、上記の方法により、ゲート電極、ゲート絶縁層、半導体層、ソース電極及びドレイン電極等を、上記した方法により、基板上に成膜又は設けて、製造できる。
 特に、ゲート絶縁層や半導体層を形成する材料として有機材料を用いると、溶液塗布法の利点を生かしつつ、上記の優れた特性を発揮するTFTを製造することができる。
[表示パネル]
 本発明の有機薄膜トランジスタの用途の一例として表示パネルが挙げられる。表示パネルとしては、例えば、液晶パネル、有機ELパネル、電子ペーパーパネル等が挙げられる。
 以下に実施例に基づき本発明をさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 各例に用いた高分子化合物AP1~AP27及び比較のための高分子化合物cAP1~cAP5を以下に示す(*は繰り返し単位それぞれの結合位置を示す。)。各高分子化合物は上述の方法により合成した。
 各高分子化合物について、上記方法に基づいてゲル浸透クロマトグラフィー(GPC)により、重量平均分子量(Mw)を測定した。また、NMR測定装置(ブルカー・バイオスピン社製;AVANCEIII400型)を用い、H-NMR又は13C-NMRにより、各高分子化合物の組成比(モル比)を算出した。なお、組成比の記載は化学式で示した繰り返し単位の記載に対応する。得られた結果を以下に示す。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
 各例において、有機半導体として化合物A6、化合物C16、化合物M3、化合物F2及びポリ(3-へキシルチオフェン)(PHT)を用いた。
 下記PHTにおいて、*は3-へキシルチオフェンの結合位置を示す。
Figure JPOXMLDOC01-appb-C000078
 化合物A6、M3、PHT及びF2は、公知の方法に準じて、合成した。
 化合物C16は、一般式(C)で表される化合物あり、下記化合物C1の下記合成方法に準じて、合成した。
Figure JPOXMLDOC01-appb-C000079
 (化合物C1aの合成)
 1,5-ジアミノナフタレン(10g)のピリジン溶液(125mL)に、p-トルエンスルホニルクロリド(34g)をゆっくりと添加し、室温で2時間撹拌した。反応液を氷水に注ぎ、析出物を減圧ろ過した。得られた粗結晶をメタノールで洗浄し、化合物C1a(29g)を得た。
 (化合物C1bの合成)
 化合物C1a(10g)の氷酢酸溶液を95℃で加熱撹拌し、そこに氷酢酸10mLで希釈した臭素(2mL)をゆっくりと滴下した。10分間反応させ、放冷後にろ過することで粗結晶を灰色固体として得た。粗結晶をニトロベンゼン中で再結晶することで化合物C1b(6.8g)を得た。
 (化合物C1cの合成)
 化合物C1b(5g)の濃硫酸溶液を室温で24時間撹拌した。反応液を氷水に注ぎ、析出している固体をろ過して回収した。その固体を氷水中に再度分散し、アンモニア水で中和し、化合物C1c(0.5g)を得た。
 (化合物C1dの合成)
 室温下、化合物C1c(2g)のピリジン溶液にペンタノイルクロリド(バレリン酸クロリド)(2.6mL)を滴下して2時間撹拌した。氷水に反応液を注ぎ、固体を減圧ろ過した。メタノール中に分散し1時間撹拌した後、固体をろ過することで化合物C1d(1.39g)を得た。
 (化合物C1eの合成)
 THF(360mL)及びトルエン(72mL)の混合溶液中に化合物C1d(1.2g)とローソン試薬(1.48g)を添加した後、加熱還流しながら3時間撹拌した。エバポレーションでTHFのみ除去してトルエン溶液とした後、60℃で1時間撹拌した。その後、不溶物をろ過することで化合物C1e(0.5g)を得た。
 (化合物C1の合成)
 化合物C1e(0.4g)と炭酸セシウム(1.33g)をジメチルアセトアミド中、120℃で2時間反応させた。反応液を水に注ぎ析出物をろ過した。ろ過した固体をTHF中で再結晶を繰り返し、目的化合物C1(0.12g)を合成した。得られた化合物C1の同定は、H-NMR及びMassスペクトルにより行った。
[実施例1]
 [ボトムゲート形態のOTFTの製造]
 図1(B)に示すボトムゲート-トップコンタクト形態のOTFTを製造した。
 厚さ0.7mmのガラス基板上に膜厚100nmの酸化インジウムスズ(ITO)膜を形成したITO電極付きガラス基板をアセトン、イソプロピルアルコールで洗浄し、乾燥させた。これを基板6として、用いた。
 ゲート絶縁層2の形成に際して絶縁層形成用組成物を調製した。すなわち、下記表1又は表2に示す高分子化合物5gと添加剤(p-トルエンスルホン酸)0.1gとをそれぞれ1-ブタノール/エタノール=1/1(体積比)の混合溶媒に溶解させた。この溶解液をφ0.2μmのポリテトラフルオロエチレン(PTFE)メンブランフィルタでろ過して、絶縁層形成用組成物を調製した。
 上記ガラス基板6のITO電極(ゲート電極5)上に絶縁層形成用組成物をスピンコート法で塗布し、送風乾燥機により180℃で30分加熱して、層厚300nmのゲート絶縁層2を設けた。
 有機半導体層を形成する塗布液として、表1又は表2に示す有機半導体をトルエン1mLに溶解して、化合物濃度が1質量%の塗布液を調製した。この塗布液を、それぞれ、ゲート絶縁層2上に、乾燥後の層厚が150nmとなるように、25℃でスピンコート法(回転数500rpm)により塗布した。その後、ホットプレート上にて150℃で30分加熱して、有機半導体層1を成膜した。
 次いで、図1(B)に示すようにソース電極3及びドレイン電極4として、くし型に配置されたクロム/金からなる電極(ゲート幅W=100mm、ゲート長L=100μm)を、金属蒸着マスクを用いて真空蒸着法にて、形成した。
 このようにして、図1(B)に示されるOTFT(試料No.1-1~1-31及び比較のためのc1-1~c1-5)を、それぞれ、製造した。
 [ゲート絶縁層の評価]
 上記試料それぞれと同じ方法により形成したゲート絶縁層又は下記方法により形成した絶縁層について、その特性を評価した。その結果を表1又は表2に示す。
(体積抵抗率の測定)
 上記試料それぞれと同じ方法により形成した各ゲート絶縁層上に厚さ100nmの金電極を真空蒸着により形成した。これをサンプルとして、ソースメジャーユニット237(Keithley社製)を用いて、体積抵抗率(Ω・cm)を測定した。
(表面平滑性の評価)
 上記試料それぞれに用いた絶縁層形成用組成物をシリコンウェハ上にスピンコートした後、ホットプレートを用いて90℃で2分間プリベークして、厚さ300nmの膜を形成した。次いで、空気中において130℃で1時間加熱することにより、絶縁層が形成されたシリコンウェハからなるサンプルを得た。
 得られたサンプルの絶縁層の表面を原子間力顕微鏡(AMF)にて観察し、表面粗さ(算術平均粗さRa)を測定した。測定されたRaを下記評価基準により評価した。上記サンプルの評価結果をOTFTのゲート絶縁層の評価とした。本試験において、評価がA、A、B又はBであることが求められ、A又はAであることが好ましく、Aであることがより好ましい。
 A :0.5nm以下
 A:0.5nmを超え、0.75nm以下
 B :0.75nmを超え、1.0nm以下
 B:1.0nmを超え、1.25nm以下
 C :1.25nmを超え、1.5nm以下
 D :1.5nmを超える
(耐溶剤性の評価)
 上記試料それぞれと同じ方法により、各ゲート絶縁層を形成したガラス基板を、トルエン中に12時間浸漬させ、ゲート絶縁層の浸漬前後の層厚を測定した。浸漬前後の層厚変化率を下記式から算出し、下記評価基準により評価した。本試験において、評価がA、A、B又はBであることが求められ、A又はAであることが好ましく、Aであることがより好ましい。
 浸漬前後の膜厚変化率(%)=浸漬後の膜厚(μm)/浸漬前の膜厚(μm)×100
 A :90%を超え、100%以下
 A:85%を超え、90%以下
 B :80%を超え、85%以下
 B:75%を超え、80%以下
 C :70%を超え、75%以下
 C:60%を超え、70%以下
 D :60%以下
 [TFTの評価]
 製造した各OTFTの特性について下記評価をした。その結果を表1又は表2に示す。
(キャリア移動度μの測定)
 各OTFTのソース電極3及びドレイン電極4間に-40Vの電圧を印加し、ゲート電圧Vgを40V~-40Vの範囲で変化させ、ドレイン電流Idを表す下記式を用いてキャリア移動度μ(cm/Vs)を算出し、下記評価基準により、評価した(表1において「移動度」と表記した)。本試験において、評価がA、A、B又はBであることが求められ、A又はAであることが好ましく、Aであることがより好ましい。
  Id=(w/2L)μCi(Vg-Vth)
 式中、Lはゲート長、wはゲート幅、Ciはゲート絶縁層2の単位面積当たりの容量、Vgはゲート電圧、Vthは閾値電圧、それぞれ、表す。
 A :0.7cm/Vsを超え、0.8cm/Vs以下
 A:0.5cm/Vsを超え、0.7cm/Vs以下
 B :0.3cm/Vsを超え、0.5cm/Vs以下
 B:0.1cm/Vsを超え、0.3cm/Vs以下
 C :0.05cm/Vsを超え、0.1cm/Vs以下
 C:0.01cm/Vsを超え、0.05cm/Vs以下
 D :0.001cm/Vsを超え、0.01cm/Vs以下
(on/off比の測定)
 各OTFTのソース電極3及びドレイン電極4間にかかる電圧を-40Vに固定し、ゲート電圧Vgを40V~-40Vまで変化させた時の(|Id|の最大値)/(|Id|の最小値)をon/off比とした。本試験において、評価がA、A、B又はBであることが求められ、A又はAであることが好ましく、Aであることがより好ましい。
 A :1×10以上
 A:5×10以上、1×10未満
 B :1×10以上、5×10未満
 B:5×10以上、1×10未満
 C :1×10以上、5×10未満
 C:1×10以上、1×10未満
 D :1×10未満
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
 表1及び表2に示されるように、一般式(IA)で表される繰り返し単位(IA)と一般式(IB)で表される繰り返し単位(IB)とを有する高分子化合物AP1~AP27を含有する絶縁層形成用組成物を用いてこれらの高分子化合物を架橋させると、表面平滑性が優れたゲート絶縁層2を形成できた。さらには、ゲート絶縁層2は体積抵抗率が大きく、高い絶縁性を示した。また、優れた耐溶剤性をも示した。
 このように本発明の絶縁層形成用組成物で形成したゲート絶縁層2は、上記高分子化合物の硬化物を含有し、表面平滑性、体積抵抗率(絶縁性)及び耐溶剤性を兼ね備えていた。したがって、このゲート絶縁層2と半導体層とを隣接させて設けた本発明のOTFTは、いずれも、キャリア移動度μ及びon/off比が高く、優れた性能を有していた。
 これに対して、繰り返し単位(IA)のみの高分子化合物を用いた試料No.c1-1及びc1-2、繰り返し単位(IB)に代えてフェノール性水酸基を生じる繰り返し単位を有する高分子化合物を用いた試料No.c1-3~c1-5は、いずれも、架橋反応の効率が低く、ゲート絶縁層の平面平滑性、絶縁性及び耐溶剤性のいずれも悪かった。そのため、これらのOTFTは、いずれも、キャリア移動度μ及びon/off比のTFT特性が不十分であった。
 また、上記繰り返し単位(IA)及び繰り返し単位(IB)を有する高分子化合物は、これらの繰り返し単位同士が架橋して硬化物を形成でき、架橋剤を用いなくても、OTFTの性能向上効果を有することも分かった。
 繰り返し単位(IA)の連結基L1aに着目すると、芳香族環基(繰り返し単位(IA-2))よりも-C(=O)-O-基(繰り返し単位(IA-1))の方がOTFTの性能向上効果が増大する傾向があった。
 一方、繰り返し単位(IA)の架橋性基Xに着目すると、ビニル基<メチロール基<オキセタニル基<エポキシ基の順で、OTFTの性能向上効果が増大する傾向があった。また、架橋性基Xは、エポキシ基の中でも連結基L2aとともにグリシジル基となると特に優れることが分かった。
 繰り返し単位(IB)のYに着目すると、Yが分解性基である場合に、高分子化合物の熱安定性がより向上して、形成されるゲート絶縁層の表面平滑性が高くなった。その結果、OTFTの移動度μの増大効果が大きかった。このゲート絶縁層の表面平滑性の向上効果及びOTFTの移動度μの増大効果は、分解性基Yが、3級アルキル基及び3級シクロアルキル基よりもカルボン酸アセタールの方が大きいことが分かった。
 また、分解性基Yは、カルボン酸アセタールの中でも、アルコキシメチル基(繰り返し単位(IB-1))よりもテトラヒドロフラニル基(繰り返し単位(IB-2))が特に優れることが分かった。
[実施例2]
 [有機半導体を変更したボトムゲート形態のOTFTの製造及び評価]
 実施例2では、上記有機半導体以外の有機半導体を用いて、ボトムゲート形態のOTFTを製造し、その特性等を評価した。
 すなわち、実施例1において、有機半導体として、上記A26、A27、C1、C4、C7、D1、E2、F5、F10、G12、G14、H10、H11、J2、J3、K2、K3、L2、L5、L6、L8、L9、L15、M8、N4、P3、Q3、R1、S1又はT1を用いたこと以外は実施例1と同様にして、OTFTを、それぞれ、製造した。
 製造したOTFTそれぞれについて、実施例1と同様にして、体積抵抗率、表面平滑性、耐溶剤性、キャリア移動度μ、on/off比を評価した。その結果、いずれのTFTも実施例1と同様に優れた特性を有していた。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2014年5月8日に日本国で特許出願された特願2014-097186に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 半導体層(有機半導体層)
2 ゲート絶縁層
3 ソース電極
4 ドレイン電極
5 ゲート電極
6 基板

Claims (11)

  1.  半導体層と該半導体層に隣接する絶縁層とを有する半導体素子であって、
     前記絶縁層が、下記一般式(IA)で表される繰り返し単位(IA)と下記一般式(IB)で表される繰り返し単位(IB)とを有する高分子化合物の架橋物で形成されている半導体素子。
    Figure JPOXMLDOC01-appb-C000001
     一般式(IA)中、R1aは水素原子、ハロゲン原子又はアルキル基を表す。L1a及びL2aは各々独立に単結合又は連結基を表す。Xは架橋性基を表す。m2aは1~5の整数を表し、m2aが2以上の場合、m2a個のXは互いに同一でも異なっていてもよい。m1aは1~5の整数を表し、m1aが2以上の場合、m1a個の(-L2a-(X)m2a)は互いに同一でも異なっていてもよい。
     一般式(IB)中、R1bは水素原子、ハロゲン原子又はアルキル基を表す。L1bは単結合又は連結基を表す。Yは分解性基又は水素原子を表す。
     *は前記繰り返し単位の結合位置を示す。
  2.  前記繰り返し単位(IA)が、下記一般式(IA-1)で表される繰り返し単位(IA-1)である請求項1に記載の半導体素子。
    Figure JPOXMLDOC01-appb-C000002
     一般式(IA-1)中、R1aは水素原子、ハロゲン原子又はアルキル基を表す。L3aは単結合又は連結基を表す。Xは架橋性基を表す。m3aは1~5の整数を表し、m3aが2以上の場合、m3a個のXは互いに同一でも異なっていてもよい。*は前記繰り返し単位の結合位置を示す。
  3.  前記繰り返し単位(IA)が、下記一般式(IA-2)で表される繰り返し単位(IA-2)である請求項1に記載の半導体素子。
    Figure JPOXMLDOC01-appb-C000003
     一般式(IA-2)中、R1aは水素原子、ハロゲン原子又はアルキル基を表す。L4aは単結合又は連結基を表す。Xは架橋性基を表す。m5aは1~5の整数を表し、m5aが2以上の場合、m5a個のXは互いに同一でも異なっていてもよい。m4aは1~5の整数を表し、m4aが2以上の場合、m4a個の(-O-L4a-(X)m5a)は互いに同一でも異なっていてもよい。*は前記繰り返し単位の結合位置を示す。
  4.  前記Xが、エポキシ基、オキセタニル基、ヒドロキシメチル基、アルコキシメチル基、(メタ)アクリロイル基、スチリル基又はビニル基である請求項1~3のいずれか1項に記載の半導体素子。
  5.  前記Xが、エポキシ基又はオキセタニル基である請求項1~4のいずれか1項に記載の半導体素子。
  6.  前記Yが、分解性基である請求項1~5のいずれか1項に記載の半導体素子。
  7.  前記繰り返し単位(IB)が、下記一般式(IB-1)で表される繰り返し単位(IB-1)である請求項1~6のいずれか1項に記載の半導体素子。
    Figure JPOXMLDOC01-appb-C000004
     一般式(IB-1)中、R1bは水素原子、ハロゲン原子又はアルキル基を表す。L1bは単結合又は連結基を表す。R2b及びR4bは各々独立に1価の有機基を表し、R3bは水素原子又は1価の有機基を表す。*は前記繰り返し単位の結合位置を示す。
  8.  前記繰り返し単位(IB)が、下記一般式(IB-2)で表される繰り返し単位(IB-2)である請求項1~7のいずれか1項に記載の半導体素子。
    Figure JPOXMLDOC01-appb-C000005
     一般式(IB-2)中、R1bは水素原子、ハロゲン原子又はアルキル基を表す。L1bは単結合又は連結基を表す。R5b~R11bは各々独立に水素原子又は1価の有機基を表す。*は前記繰り返し単位の結合位置を示す。
  9.  前記L1bが、単結合である請求項1~8のいずれか1項に記載の半導体素子。
  10.  前記半導体層が、有機半導体を含有する請求項1~9のいずれか1項に記載の半導体素子。
  11.  半導体素子の絶縁層を形成するための絶縁層形成用組成物であって、
     下記一般式(IA)で表される繰り返し単位(IA)と下記一般式(IB)で表される繰り返し単位(IB)とを有する高分子化合物を含有する絶縁層形成用組成物。
    Figure JPOXMLDOC01-appb-C000006
     一般式(IA)中、R1aは水素原子、ハロゲン原子又はアルキル基を表す。L1a及びL2aは各々独立に単結合又は連結基を表す。Xは架橋性基を表す。m2aは1~5の整数を表し、m2aが2以上の場合、m2a個のXは互いに同一でも異なっていてもよい。m1aは1~5の整数を表し、m1aが2以上の場合、m1a個の(-L2a-(X)m2a)は互いに同一でも異なっていてもよい。
     一般式(IB)中、R1bは水素原子、ハロゲン原子又はアルキル基を表し。L1bは単結合又は連結基を表す。Yは分解性基又は水素原子を表す。
     *は前記繰り返し単位の結合位置を示す。
PCT/JP2015/062066 2014-05-08 2015-04-21 半導体素子及び絶縁層形成用組成物 WO2015170577A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016517857A JP6204580B2 (ja) 2014-05-08 2015-04-21 薄膜トランジスタ及び絶縁層形成用組成物
EP15788651.6A EP3142160A4 (en) 2014-05-08 2015-04-21 Semiconductor element and insulating layer-forming composition
US15/340,831 US9905768B2 (en) 2014-05-08 2016-11-01 Semiconductor device and insulating layer-forming composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014097186 2014-05-08
JP2014-097186 2014-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/340,831 Continuation US9905768B2 (en) 2014-05-08 2016-11-01 Semiconductor device and insulating layer-forming composition

Publications (1)

Publication Number Publication Date
WO2015170577A1 true WO2015170577A1 (ja) 2015-11-12

Family

ID=54392430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062066 WO2015170577A1 (ja) 2014-05-08 2015-04-21 半導体素子及び絶縁層形成用組成物

Country Status (5)

Country Link
US (1) US9905768B2 (ja)
EP (1) EP3142160A4 (ja)
JP (1) JP6204580B2 (ja)
TW (1) TWI682954B (ja)
WO (1) WO2015170577A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530558A (ja) * 2014-09-25 2017-10-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 光架橋性誘電体としてのエーテル系ポリマー

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170154790A1 (en) * 2015-11-30 2017-06-01 Intel Corporation Sam assisted selective e-less plating on packaging materials
WO2017159702A1 (ja) * 2016-03-18 2017-09-21 株式会社リコー 電界効果型トランジスタの製造方法
TWI611587B (zh) * 2016-08-31 2018-01-11 明新科技大學 氧化物薄膜電晶體
JP7107374B2 (ja) * 2018-08-30 2022-07-27 株式会社ニコン トランジスタの製造方法
JP7192577B2 (ja) * 2019-03-06 2022-12-20 信越化学工業株式会社 エポキシ化合物、レジスト組成物及びパターン形成方法
KR102458414B1 (ko) * 2021-01-26 2022-10-25 한국화학연구원 절연성 수지 조성물, 이로부터 제조된 절연체 및 이를 포함하는 유기박막트랜지스터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195580A (ja) * 2011-03-03 2012-10-11 Mitsubishi Chemicals Corp 電界効果トランジスタのゲート絶縁層用組成物、ゲート絶縁層、電界効果トランジスタ及び表示パネル
JP2013210616A (ja) * 2012-02-29 2013-10-10 Fujifilm Corp 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置及び有機el表示装置
JP2014039010A (ja) * 2012-07-19 2014-02-27 Jsr Corp 半導体素子、感放射線性樹脂組成物、硬化膜および表示素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5366410B2 (ja) * 2008-01-30 2013-12-11 富士フイルム株式会社 電磁波検出素子の製造方法
EP2676979B1 (en) * 2010-09-02 2016-07-13 Merck Patent GmbH Gate insulator layer for electronic devices
JP6034056B2 (ja) 2011-05-24 2016-11-30 住友化学株式会社 有機薄膜トランジスタ絶縁層材料
JP5919122B2 (ja) * 2012-07-27 2016-05-18 富士フイルム株式会社 樹脂組成物及びそれを用いたパターン形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195580A (ja) * 2011-03-03 2012-10-11 Mitsubishi Chemicals Corp 電界効果トランジスタのゲート絶縁層用組成物、ゲート絶縁層、電界効果トランジスタ及び表示パネル
JP2013210616A (ja) * 2012-02-29 2013-10-10 Fujifilm Corp 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置及び有機el表示装置
JP2014039010A (ja) * 2012-07-19 2014-02-27 Jsr Corp 半導体素子、感放射線性樹脂組成物、硬化膜および表示素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3142160A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530558A (ja) * 2014-09-25 2017-10-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 光架橋性誘電体としてのエーテル系ポリマー

Also Published As

Publication number Publication date
EP3142160A1 (en) 2017-03-15
US9905768B2 (en) 2018-02-27
JP6204580B2 (ja) 2017-09-27
TWI682954B (zh) 2020-01-21
US20170054076A1 (en) 2017-02-23
JPWO2015170577A1 (ja) 2017-04-20
TW201542658A (zh) 2015-11-16
EP3142160A4 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
US9799832B2 (en) Organic thin-film transistor and method for manufacturing same
JP6204580B2 (ja) 薄膜トランジスタ及び絶縁層形成用組成物
US10008671B2 (en) Organic thin-film transistor and method for manufacturing same
US9755160B2 (en) Thin film transistor
JP6034326B2 (ja) 半導体素子及び絶縁層形成用組成物
JP6110802B2 (ja) 薄膜トランジスタ
JP6118287B2 (ja) 半導体素子及び半導体素子の絶縁層形成用組成物
WO2016117389A1 (ja) 有機薄膜トランジスタ及びその製造方法
TWI660531B (zh) 有機薄膜電晶體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015788651

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015788651

Country of ref document: EP