WO2015170431A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2015170431A1
WO2015170431A1 PCT/JP2014/084498 JP2014084498W WO2015170431A1 WO 2015170431 A1 WO2015170431 A1 WO 2015170431A1 JP 2014084498 W JP2014084498 W JP 2014084498W WO 2015170431 A1 WO2015170431 A1 WO 2015170431A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
indoor unit
type indoor
refrigerant pipe
air conditioner
Prior art date
Application number
PCT/JP2014/084498
Other languages
English (en)
French (fr)
Inventor
尊宣 村上
Original Assignee
株式会社エコファクトリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エコファクトリー filed Critical 株式会社エコファクトリー
Priority to EP14835685.0A priority Critical patent/EP3141824B1/en
Priority to SG11201501227WA priority patent/SG11201501227WA/en
Priority to US14/419,526 priority patent/US20160047577A1/en
Priority to AU2014393532A priority patent/AU2014393532B2/en
Priority to MYPI2015700312A priority patent/MY184976A/en
Priority to CN201480002160.8A priority patent/CN105264296A/zh
Priority to JP2016517798A priority patent/JP6304783B2/ja
Priority to PH12015500378A priority patent/PH12015500378A1/en
Publication of WO2015170431A1 publication Critical patent/WO2015170431A1/ja
Priority to HK16106808.1A priority patent/HK1218949A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/20Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/06Hollow fins; fins with internal circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/08Fastening; Joining by clamping or clipping
    • F28F2275/085Fastening; Joining by clamping or clipping with snap connection

Definitions

  • the present invention relates to an air conditioner. More specifically, the present invention relates to an apparatus provided with a convection type indoor unit and a radiation type indoor unit that prevents damage to the compressor and prevents deterioration of the reliability of the compressor.
  • An air conditioner having a refrigerant pipe connecting a compressor, an outdoor heat exchanger, an expansion valve, a convection indoor unit, and these devices is generally used.
  • cooled or heated air is blown by a fan into a room which is an air conditioning target space, and air is conditioned by circulating or convection in the room.
  • air conditioning is also performed to cool or heat indoor air, which is a space to be air-conditioned, through a refrigerant in a radiant indoor unit.
  • Patent Document 1 An air conditioner in which a radiation type indoor unit is added to an air conditioner equipped with a convection type indoor unit has already been proposed in Patent Document 1 by the present inventor.
  • the present inventor has conducted experiments toward practical use of an air conditioner in which a radiant indoor unit is added to an air conditioner equipped with a convection type indoor unit, and refrigerant tubes of the radiant type indoor unit are arranged in parallel in the vertical direction.
  • a plurality of straight pipes and connection pipes connecting between the upper end and the lower end of adjacent straight pipes are formed in a meandering shape (hereinafter, the refrigerant pipe is referred to as a “meander pipe”), It has been found that an oil reservoir is formed in the lower part of the refrigerant pipe.
  • the refrigerant of the air conditioner partially circulates in the refrigerant pipe as a two-phase refrigerant of gas and liquid, and this refrigerant contains the lubricating oil of the compressor.
  • the pool is thought to be the separation of the lubricating oil in the refrigerant. If the lubricating oil in the refrigerant is separated and lost, the compressor becomes insufficient in lubricating oil, and an excessive load is applied to the compressor, which may cause a failure.
  • the cause of the separation of the lubricating oil in the refrigerant is not well understood, but may be considered as follows. That is, when a radiation type indoor unit is added to an air conditioner equipped with a convection type indoor unit, it can be considered in the same manner as when the refrigerant pipe becomes long.
  • the capacity of the compressor is determined by a design that does not take into account the expansion of the radiant indoor unit. As a result, the capacity of the compressor is insufficient, and the flow rate of the refrigerant is reduced, which causes the radiant indoor unit to be reduced. It seems that an oil sump has occurred in the lower part of the refrigerant pipe.
  • This measure can be solved by increasing the capacity of the compressor, but when adding a radiant indoor unit to an existing air conditioner, replace the existing compressor with a compressor with higher capacity. Is difficult in terms of cost. Further, in the case of a newly manufactured air conditioner, it is likely to increase the cost to increase the compression capacity by planning the deployment of a radiation type indoor unit that is not used or not.
  • the present inventor has conducted extensive research on the solution of this problem on the side of the radiant indoor unit, and pays attention to the problem of oil sump unless the flow rate of the refrigerant flowing through the radiant indoor unit is reduced.
  • the present invention has been completed.
  • the present invention has been made to solve the above-mentioned problems, and in an air conditioner equipped with a convection type indoor unit and a radiation type indoor unit, it prevents separation of lubricating oil in the refrigerant and thus prevents damage to the compressor.
  • the first object of the present invention is to provide an air conditioner that can prevent a reduction in the reliability of the compressor.
  • a second object is to provide an air conditioner that prevents the flow rate of the refrigerant from decreasing even when the radiation type indoor unit is enlarged.
  • the present invention includes at least an outdoor unit having a compressor, an outdoor heat exchanger and an expansion valve, an air conditioner having a convection type indoor unit and a refrigerant pipe connecting these devices, the convection type indoor unit, An air conditioner including a radiation-type indoor unit that is provided between the outdoor unit and has a refrigerant pipe having an inner diameter smaller than that of the refrigerant pipe for connecting the convection type indoor unit and the outdoor unit. .
  • the inner diameter and length of the refrigerant pipe of the radiant indoor unit can be arbitrarily determined within the design range in which the air conditioner functions, as described below and in the embodiment.
  • the inner diameter of the refrigerant pipe is too small, the flow rate of the refrigerant is increased, but the pressure loss due to the resistance increases, and the load on the compressor is increased, which seems to deteriorate the efficiency.
  • the refrigerant pipe of an air conditioner [inner diameter 7.92 ⁇ (49.2mm 2 )] is a refrigerant pipe of a radiant indoor unit composed of two meandering pipes [inner diameter 4.75 ⁇ (17.7mm 2 )] To branch into two systems.
  • the straight pipe part of the meandering pipe is arranged in the vertical direction.
  • Total cross-sectional area of the refrigerant tube having an inner diameter 4.75 ⁇ (17.7mm 2) (35.4mm 2 ) is about 72% compared to the inside diameter of the refrigerant pipe 7.92 ⁇ (49.2mm 2), the inside diameter of the refrigerant pipe than the refrigerant pipe Therefore, the flow rate of the refrigerant in the refrigerant pipe is small.
  • the number of heat generating elements of the radiation type indoor unit including the refrigerant pipe is six per one meandering pipe, and the number of the two meandering pipes, that is, the number of heat radiation plates of one unit is 12, which is the same as that of one radiation type indoor unit.
  • a reference unit was used. The experiment was conducted with this reference unit.
  • the refrigerant pipe of the refrigerant flowing through the refrigerant pipe of an air conditioner mm Inside diameter 11.1 ⁇ (96.7mm 2)] the radiation type indoor unit constituted by serpentine tubes of two systems [inner diameter 7.92Fai (49.2 mm 2 )] To branch into two systems.
  • the straight pipe part of the meandering pipe is arranged in the vertical direction.
  • Total cross-sectional area of the refrigerant tube having an inner diameter 7.92 ⁇ (49.2mm 2) (98.4mm 2 ) is 101.7% compared to the inside diameter of the refrigerant pipe 11.1 ⁇ (96.7mm 2), the flow rate of the refrigerant is substantially identical.
  • the radiation type indoor unit constituted by serpentine tubes of two systems [inner diameter 6.4 ⁇ (32.2mm 2 Branches into two refrigerant piping systems.
  • the straight pipe part of the meandering pipe is arranged in the vertical direction. If 4 lines are juxtaposed serpentine tube of two systems (two radiation type indoor unit), the total cross-sectional area of the refrigerant tube having an inner diameter of 6.4 ⁇ (32.2mm 2) (128.8mm 2 ) has an inner diameter of the refrigerant pipe Compared to the area of 13.88 ⁇ (151.2mm 2 ), it is 85.1%, and the flow velocity is faster.
  • the refrigerant pipe becomes longer. Since the refrigerant moves from the vicinity of the inlet of the refrigerant pipe to the outlet while gradually radiating heat, there is a temperature difference between the vicinity of the inlet and the vicinity of the outlet, and the capability of the heating element of the radiation type indoor unit may not be sufficiently exhibited. That is, there arises a situation in which the heat dissipating ability of the heat generating element cannot be sufficiently exhibited due to uneven temperature of the heat generating element. In addition, the flow rate of the refrigerant is slowed down, causing oil accumulation.
  • the radiant indoor unit has a branching part that branches the refrigerant flow into a plurality of parts, and a refrigerant branched by the branching part. And a collecting portion for collecting. If the inside diameter of the refrigerant pipe is reduced within the design range in which the air conditioner functions and a plurality of radiant indoor units are installed, the thermal efficiency of the radiant indoor unit as a whole can be increased.
  • the refrigerant pipe of the radiant indoor unit has a plurality of straight pipes arranged in parallel in the vertical direction, and a connecting pipe that connects between the upper ends and lower ends of adjacent straight pipes, and is formed in a meandering shape. Is preferable from the viewpoint of smoothing the flow of the refrigerant.
  • the plurality of straight pipes are covered with an elliptical heat radiating portion in which the outer surface of the opposing wall bulges outward, and the heat radiating portion is arranged in a broken line shape in which the end portions of the adjacent heat radiating portions are not continuous.
  • the bulging portions of the heat radiating portion are arranged facing each other, the temperature difference in the vertical direction of the radiation type indoor unit becomes large. This is presumably because warming and cooling of the air is promoted by facing the bulging portions of the heat radiation part.
  • the bulging part of a thermal radiation part is arrange
  • a plurality of radiation type indoor units can be connected in series to the refrigerant circuit.
  • a route through which some refrigerant flows to the outdoor unit and the convective indoor unit without passing through the radiant indoor unit If it is ensured, the pressure loss of the refrigerant caused by the radiation type indoor unit can be prevented, and the operation can be performed without applying a load to the compressor.
  • the refrigerant pipe of the radiant type indoor unit is made smaller than the refrigerant pipe of the air conditioner, so that the flow velocity of the refrigerant flowing through the refrigerant pipe is reduced. It is possible to prevent the oil pool phenomenon that occurs in the refrigerant pipe of the radiation type indoor unit.
  • the inner diameter of the refrigerant pipe of the radiation type indoor unit is made smaller than that of the refrigerant pipe of the air conditioner. It is possible to provide an air-conditioning apparatus that can prevent oil from being separated, thereby preventing damage to the compressor and preventing deterioration in the reliability of the compressor.
  • the radiation type indoor unit is provided with a branching part that branches the flow of the refrigerant flowing through the refrigerant pipe into a plurality of parts and a collecting part that collects the refrigerant branched by the branching part. Even if it does, it can prevent that the flow velocity of the refrigerant
  • FIG. 4 is a schematic explanatory diagram viewed from the AA direction in FIG. 3.
  • FIG. 2 is a schematic plan view illustrating the structure of a refrigerant pipe of a radiant indoor unit, in which the refrigerant flow during heating is indicated by arrows.
  • FIG. 6 is a schematic front view illustrating the structure of the refrigerant pipe of the radiation type indoor unit illustrated in FIG.
  • FIG. 5 is a schematic front view illustrating the structure of a refrigerant pipe in a modification of the radiation type indoor unit of the present invention.
  • the air conditioner 100 includes a single outdoor unit 1 and two indoor units connected in series to the outdoor unit 1.
  • One of the two indoor units is a general convection type indoor unit 2, and the other is a radiation type indoor unit 10.
  • the convection type indoor unit 2 and the radiation type indoor unit 10 are installed in a room or the like having an air conditioning target area, and have a function of cooling or heating the air conditioning target area.
  • the convection type indoor unit 2 and the radiant type indoor unit 10 are connected by a refrigerant pipe 7 for communication. Therefore, the convection type indoor unit 2 and the radiant type indoor unit 10 of the air conditioner 100 form part of the refrigerant circuit, and the refrigerant can be circulated through the refrigerant circuit, thereby enabling a cooling operation or a heating operation. It has become.
  • each of the outdoor unit, the convection type indoor unit 2 and the radiation type indoor unit 10 has a single configuration, but is not limited to the illustrated number.
  • the outdoor unit 1 has a known structure including a compressor 3, an outdoor heat exchanger 4, and an expansion valve 5.
  • the convection type indoor unit 2 has a known structure including an indoor heat exchanger 6 and a blower fan (not shown) that sends air to the indoor heat exchanger 6.
  • the indoor heat exchanger 6 functions as an evaporator during cooling operation, and functions as a condenser (heat radiator) during heating operation, and performs heat exchange between air supplied from a blower such as a fan (not shown) and the refrigerant. Then, heating air or cooling air to be supplied to the air conditioning target area is created.
  • the devices are connected by a refrigerant pipe 7 and constitute a part of the refrigeration cycle (refrigerant circuit) of the air conditioner 100.
  • the refrigeration cycle of the air conditioner 100 is provided with a radiation type indoor unit 10.
  • the radiant indoor unit 10 includes a heating element 11 and a frame 12 that fixes and supports the heating element 11.
  • the frame 12 includes vertical frames 12a and 12b that are erected in parallel in the vertical direction on both the left and right sides.
  • a metal such as wood, synthetic resin, or aluminum can be adopted.
  • the frame 12 includes a back plate serving as a reflective material or a heat insulating material that reflects radiant heat, but may have a structure without a back plate.
  • a heating element 11 is disposed between the vertical frames 12a and 12b.
  • the heating element 11 has a straight pipe 112 in which the longitudinal direction is arranged in the vertical direction and a plurality of pipes are arranged in parallel in the lateral direction, and a connecting pipe 114 that connects between the upper end and the lower end of the adjacent straight pipes 112.
  • the refrigerant pipe 110 is formed by arranging the whole shape in a meandering manner. As shown in FIG. 3 in the refrigerant pipe 110, the straight pipe 112 is surrounded by a heat radiating area expanding member 111, and the heating element 11 is configured.
  • the refrigerant pipe 110 may be made of a metal such as aluminum or copper, or other materials as required.
  • a branch portion 113 that branches into a plurality of refrigerant flows through the refrigerant pipe 7, and in this embodiment, a branch portion 113, and a collecting portion 115 that collects the refrigerant branched by the branch portion 113,
  • the connection port of the branch part 113 and the connection port of the concentration part 115 are each connected to the refrigerant pipe 7, and the radiation type indoor unit 10 is incorporated in the refrigerant circuit.
  • the branch part 113 and the concentration part 115 are arrange
  • FIG. As shown in a modification of the radiation type indoor unit), the branching portion 113 and the concentrating portion 115 may be arranged below the heating element 11.
  • the branch part 113 includes branch pipes 113a and 113b.
  • the refrigerant is divided by the branch pipes 113a and 113b, so that two refrigerant flows are obtained.
  • the arrows in FIG. 6 indicate the flow of the refrigerant, and one flow by the branch pipe 113a flows through the six straight pipes 112 on the right side of FIG. 6 (second heating element 11b), and by the branch pipe 113b.
  • the other flow flows in the six straight pipes 112 on the left side in FIG. 6 (first heating element 11a).
  • These refrigerants merge at the collecting portion 115 and flow from the collecting portion 115 to the refrigerant circuit 7.
  • the refrigerant flow indicated by the arrows is the refrigerant flow during heating.
  • the flow of the refrigerant during cooling is the reverse of the flow during heating (the direction of the arrow is reversed).
  • the reason for this setting is that, particularly during heating, when the refrigerant flowing in the heating element 11 flows from the center side to the outside side (that is, the refrigerant enters from the direction of the branch portion 113 and flows out toward the concentration portion 115). This is because the heat dissipation efficiency is better.
  • the reason for this is as follows. That is, the temperature of the refrigerant is highest near the inlet of the refrigerant during heating, and gradually decreases as the temperature approaches the vicinity of the outlet as heat is dissipated, but the refrigerant inlet is outside the heating element 11.
  • the heat is shielded by the vertical frames 12a and 12b (in other words, the outermost heat generation) due to the structure of the radiation type indoor unit 10 in the present embodiment.
  • the body is in the shadow of the vertical frame), and it is difficult to say that the heat dissipation efficiency is the best.
  • the inlet of the refrigerant is on the center side of the heating element 11, there is nothing to block the heat dissipation like the vertical frames 12a and 12b, so that the heat dissipation efficiency is the best.
  • the vertical frames 12a and 12b are provided from the viewpoint of safety and device (especially heating element) protection, but the vertical frames 12a and 12b are not provided.
  • the refrigerant flowing in the heating element 11 flows from the outside side to the center side during heating (that is, the refrigerant enters from the direction of the collecting portion 115). In other words, it may be a flow that flows out in the direction of the branching portion 113, or a reverse flow during cooling).
  • the lengths of the refrigerant tubes of the first heating element 11a and the second heating element 11b are the same, and are approximately 6 m.
  • Refrigerant pipe inner diameter 7.92 ⁇ (49.2mm 2) is branched into the refrigerant pipes 2 systems of internal diameter 4.75 ⁇ (17.7mm 2).
  • the flow rate of the refrigerant in the heating element 11 between the branching portion 113 and the concentrating portion 115 is faster than the flow rate in the refrigerant pipe 7, and separation of the lubricating oil in the two-phase refrigerant can be prevented.
  • each straight pipe 112 is surrounded by an elliptical heat radiation area expanding member 111 in which the outer surface of the opposing wall bulges outward.
  • the heat radiating area expanding member 111 is made of, for example, aluminum, so that the straight pipe 112 expands the heat radiating area for heat exchange in the indoor space.
  • the heat dissipating area expanding member 111 is composed of two parts 111a and 111b, and is joined from both sides of the straight pipe 112 by fitting a contact portion with the straight pipe 112 interposed therebetween. Further, the pressure contact between the straight pipe 112 and the heat radiating area expanding member 111 has such a strength that the heat radiating area expanding member 111 can rotate around the straight pipe 112. Thereby, the direction of the heat radiation surface of the heat radiation area expanding member 111 can be changed. In addition, it can also be made not to rotate.
  • a drain pan 116 which is a bowl-shaped water collecting member whose upper side is opened, is fixed at both ends between the vertical frames 12 a and 12 b below the heating element 11.
  • a drain pipe is connected to one end side of the bottom of the drain pan 116.
  • Reference numeral 117 denotes a blindfolded decorative board.
  • Fig. 2 (a) When the air-conditioning apparatus 100 performs the cooling operation, the four-way valve 8 is switched so that the refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 4, and the compressor 3 is driven.
  • the refrigerant sucked into the compressor 3 is discharged in a high-pressure and high-temperature gas state by the compressor 3 and flows into the outdoor heat exchanger 4 through the four-way valve 8.
  • the refrigerant that has flowed into the outdoor heat exchanger 4 is cooled while dissipating heat to air supplied from a blower (not shown), and flows out of the outdoor heat exchanger 4 as a low-pressure and high-temperature liquid refrigerant.
  • the refrigerant flowing into the convection indoor unit 2 becomes a two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the indoor heat exchanger 6 and is evaporated and gasified by absorbing heat from air supplied from a blower (not shown). At this time, cooling air is supplied to an air conditioning target space such as a room, and cooling operation of the air conditioning target space is realized.
  • the refrigerant that has flowed into the radiant indoor unit 10 releases radiant heat through the refrigerant pipe 110 of the heating element 11 to warm the atmosphere of the air-conditioning target space such as the room.
  • the refrigerant flowing out from the radiation type indoor unit 10 flows into the indoor heat exchanger 6 of the convection type indoor unit 2.
  • the refrigerant that has flowed into the indoor heat exchanger 6 is cooled while dissipating heat to air supplied from a blower (not shown), and becomes a liquid refrigerant. At this time, heating air is supplied to an air conditioning target space such as a room, and a heating operation of the air conditioning target space is realized.
  • the liquid refrigerant that has flowed out of the indoor heat exchanger 6 is decompressed by the expansion valve 5 and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the outdoor heat exchanger 4 of the outdoor unit 1.
  • the low-pressure two-phase refrigerant that has flowed into the outdoor heat exchanger 4 is evaporated and gasified by absorbing heat from air supplied from a blower (not shown).
  • the low-pressure gas refrigerant flows out of the outdoor heat exchanger 4, passes through the four-way valve 8, and is sucked into the compressor 3 again.
  • a heating operation is performed by repeating the above refrigerant cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】 対流型室内機と輻射型室内機を備えた空気調和装置において、冷媒中の潤滑油の分離を防止し、ひいては圧縮機の損傷を防止し、圧縮の信頼性の低下を防止できる空気調和装置を提供する。 【解決手段】空気調和装置は、圧縮機3、室外熱交換器4、膨張弁5、対流型室内機2及びこれらの機器類を接続する冷媒配管を有する空気調和機と、前記対流型室内機2と圧縮機3との間に配備され、前記冷媒配管よりも内径が小さい冷媒管を有する輻射型室内機10と、を備える。

Description

空気調和装置
 本発明は、空気調和装置に関するものである。更に詳しくは、対流型室内機と輻射型室内機を備えたものにおいて、圧縮機の損傷を防止し、圧縮機の信頼性の低下を防止したものに関する。
 圧縮機、室外熱交換器、膨張弁、対流型室内機及びこれらの機器類を接続する冷媒配管を有する空気調和機が、一般的に使用されている。この空気調和機は、冷却または加熱した空気を空気調和対象空間である室内にファンで送風し、室内の空気を循環または対流して空気調和を行う。
 また、輻射型室内機の中に冷媒を通して、空調対象空間である室内の空気を冷却または加熱する空気調和も行われている。
 対流型室内機を使用した対流式空気調和の場合は、立ち上がり時間は早いが、送風した空気を体感する、いわゆるドラフト感を感じるため快感度が低い。
 他方、輻射型室内機を使用した輻射式空気調和は、立ち上がり時間が長い欠点はあるが、人体に対する快感度が高く、室内の空気温度が低くても暖房効果があり、熱損失が少ないという長所を有する。
 したがって、対流式空気調和と輻射式空気調和を併せて使用すれば、それぞれの長所によって短所が打ち消されて、快適で理想的な空気調和が可能となる。
 対流型室内機を備えた空気調和機に輻射型室内機を増設した空気調和装置は、本発明者によって既に特許文献1において提案している。
特許第5285179号
 本発明者は、対流型室内機を備えた空気調和機に輻射型室内機を増設した空気調和装置の実用化に向けて実験を重ね、輻射型室内機の冷媒管を、鉛直方向に並設されている複数の直管と、隣接する直管の上端間と下端間とを接続する接続管と、を備えて蛇行状に形成(以下、該冷媒管を「蛇行管」という)したところ、冷媒管の下部に油溜まりが生じることを知見した。
 空気調和機の冷媒は、一部、気体と液体の二相冷媒となって冷媒配管内を循環しているが、この冷媒の中には、圧縮機の潤滑油が含まれており、前記油溜まりは、冷媒中の潤滑油が分離したものと思われる。冷媒中の潤滑油が分離して失われると圧縮機は潤滑油不足となり、圧縮機に過剰な負荷がかかり、故障の原因となりうる。
 冷媒中の潤滑油が分離する原因はよく分かっていないが、一応次のように考えられる。つまり、対流型室内機を備えた空気調和機に輻射型室内機を増設した場合は、冷媒配管が長くなった場合と同様に考えられる。圧縮機の能力は、輻射型室内機の増設を考慮していない設計で決まっているため、結果的に圧縮機の能力不足を招き、このため冷媒の流速が低下し、これによって輻射型室内機の冷媒管の下部に油溜まりが生じたもののようである。
 この対策としては、圧縮機の能力を高めれば解決できると思われるが、既設の空気調和機に輻射型室内機を増設する場合、既設の圧縮機を、より能力の高い圧縮機と交換することは、コストの点で難点がある。また、新規に製造する空気調和機の場合は、使用するかどうかわからない輻射型室内機の配備を予定して圧縮の能力を高いものにすることは、コストの増加につながる。
 本発明者は、この課題の解決について、輻射型室内機側で対応することについて鋭意研究を重ね、輻射型室内機を流れる冷媒の流速を低下させなければ、油溜まりの課題は解決できることに着目し、本発明を完成するに到った。
(本発明の目的)
 本発明は前記課題を解決するためになされたもので、対流型室内機と輻射型室内機を備えた空気調和装置において、冷媒中の潤滑油の分離を防止し、ひいては圧縮機の損傷を防止し、圧縮機の信頼性の低下を防止できる空気調和装置を提供することを第1の目的としている。
 また第1の目的に加えて、輻射型室内機が大型化した場合でも、冷媒の流速が低下するのを防止する空気調和装置を提供することを第二の目的としている。
 前記課題を解決するために本発明が講じた手段は次のとおりである。
 本発明は、少なくとも、圧縮機、室外熱交換器及び膨張弁を有する室外機と、対流型室内機及びこれらの機器類を接続する冷媒配管を有する空気調和機と、前記対流型室内機と前記室外機との間に配備され、同対流型室内機と同室外機との間を接続するための前記冷媒配管よりも内径が小さい冷媒管を有する輻射型室内機とを備える空気調和装置である。
 輻射型室内機の冷媒管の内径及び長さは、下記の説明及び実施の形態における説明のように、空気調和装置が機能する設計の範囲内において任意に定めることができる。冷媒管の内径が小さすぎる場合は、冷媒の流速は速くなるが、抵抗による圧力損失が増し、圧縮機の負荷を増大させて、効率が悪くなるようである。
 空気調和機の冷媒配管の内径及び輻射型室内機の冷媒管の内径の関係は、具体的には、下記のようである。
(1)例えば、空気調和機の冷媒配管〔内径7.92φ(49.2mm2)〕中を流れる冷媒を、2系統の蛇行管で構成した輻射型室内機の冷媒管〔内径4.75φ(17.7mm2)〕で2系統に分岐する。蛇行管の直管部分は鉛直方向に配置する。
 内径4.75φ(17.7mm2)の冷媒管の合計断面積(35.4mm2)は、冷媒配管の内径7.92φ(49.2mm2)と比べ約72%であり、冷媒配管よりも冷媒管の内径は小さく、したがって冷媒管内の冷媒の流速は速くなる。
[規則91に基づく訂正 16.01.2015] 
 冷媒管を備える輻射型室内機の発熱体は、1系統の蛇行管につき6枚とし、蛇行管2系統、つまり1ユニットの放熱板の枚数は12枚とし、これを輻射型室内機1台の基準ユニットとした。なお、前記実験はこの基準ユニットで行ったものである。
(2)例えば、空気調和機の冷媒配管〔内径11.1φ(96.7mm2)〕中を流れる冷媒を、2系統の蛇行管で構成した輻射型室内機の冷媒管〔内径7.92φ(49.2mm2)〕で2系統に分岐する。蛇行管の直管部分を鉛直方向に配置する。
 内径7.92φ(49.2mm2)の冷媒管の合計断面積(98.4mm2)は、冷媒配管の内径11.1φ(96.7mm2)と比べ101.7%であり、冷媒の流速は略同じとなる。
(3)例えば、空気調和機の冷媒配管〔内径13.88φ(151.2mm2)〕中を流れる冷媒を、2系統の蛇行管で構成した輻射型室内機の冷媒管〔内径6.4φ(32.2mm2)〕の冷媒配管2系統に分岐する。蛇行管の直管部分は鉛直方向に配置する。2系統の蛇行管を並設して4系統(輻射型室内機2台)とすれば、内径6.4φ(32.2mm2)の冷媒管の合計断面積(128.8mm2)は、冷媒配管の内径13.88φ(151.2mm2)の面積と比べ85.1%であり、流速は速くなる。
 輻射型室内機が大型化すると、それに伴って冷媒管が長くなる。冷媒は、冷媒管の入口付近から徐々に放熱しながら出口まで移動する為、入口付近と出口付近に温度差が生じ、輻射型室内機の発熱体の能力が十分に発揮されない事が考えられる。つまり、発熱体の温度むらにより発熱体の放熱能力が十分に発揮できない事態が生じる。また、冷媒の流速が遅くなり油溜まりの原因ともなる。
 したがって、空気調和装置が十分に機能する設計の範囲内において、冷媒を分岐するために、輻射型室内機は、冷媒の流れを複数に分岐する分岐部と、該分岐部によって分岐された冷媒を集める集結部と、を備えるのが好ましい。
 なお、冷媒管の内径を空気調和装置が機能する設計の範囲内において小さくし、輻射型室内機を複数台設置すると、輻射型室内機全体として熱効率を高めることができる。
 輻射型室内機の冷媒管は、鉛直方向に並設されている複数の直管と、隣接する直管の上端間と下端間とを接続する接続管と、を備えて蛇行状に形成するのが、冷媒の流れを円滑にする観点から好ましい。
 複数の直管は、対向壁の外面が外方に向けて膨出する楕円形状の放熱部で覆われており、該放熱部は、隣接する放熱部の端部が連続しない折れ線状に配置するとよい。
 実験によれば、放熱部の膨出部分を互いに向かい合わせに配置した場合、輻射型室内機の上下方向の温度差は大きくなる。これは放熱部の膨出部分を向かい合わせることによって、空気を暖め、また、冷やすことが促進されるからと思われる。
 また、放熱部の膨出部分を横一列方向に配置した場合は、輻射型室内機の輻射熱の放出能力に優れる。したがって、放熱部を折れ線状に配置することによって、必要な輻射放熱面を確保しながら室内空気の上下の対流も確保できるようである。
 室外側熱交換器には、冬期に霜または氷が付着し、運転能力を低下させるので、定期的に除霜運転が行われる。輻射型室内機を配備することによって、配備しない場合と比べて除霜運転の回数が減るようである。その理由ははっきりしないが、輻射型室内機を配備することによって冷媒の凝縮と蒸発の効率がよくなり、圧縮機への負荷が小さくなるので、室外機の熱交換器に霜がつきにくくなることのようである。
 この除霜運転の回数が少なくなることによって、省エネルギーとなる。また、除霜運転の際の室内側の温度低下も防止できる。
 圧縮機の能力が大きい場合は、複数の輻射型室内機を冷媒回路に直列に接続することができる。
 その他の方法として、全ての冷媒を輻射型室内機を経由した冷媒回路構成とする以外に、一部の冷媒が、輻射型室内機を経由せずに、室外機と対流型室内機に流れる経路を確保すれば、輻射型室内機による、冷媒の圧力損失を防止して、コンプレッサーに負荷を与える事無く、稼働させることもできる。
(作用)
 対流型室内機と輻射型室内機を備えた空気調和装置において、輻射型室内機の冷媒管の内径を、空気調和機の冷媒配管よりも小さくしたので、冷媒管を流れる冷媒の流速の低下を防止し、輻射型室内機の冷媒管に生じる油だまり現象を防止できる。
 本発明によれば、対流型室内機と輻射型室内機を備えた空気調和装置において、輻射型室内機の冷媒管の内径を、空気調和機の冷媒配管よりも小さくしたので、冷媒中の潤滑油の分離を防止し、ひいては圧縮機の損傷を防止し、圧縮機の信頼性の低下を防止できる空気調和装置が提供できる。
 また、輻射型室内機が、冷媒管を流れる冷媒の流れを複数に分岐する分岐部と、該分岐部によって分岐された冷媒を集める集結部と、を備えるものは、輻射型室内機が大型化した場合でも、冷媒管を複数に分岐することによって冷媒管中の冷媒の流速が低下するのを防止することができる。
[規則91に基づく訂正 16.01.2015] 
実施の形態にかかる空気調和装置の概略説明図である。 図1に示す空気調和装置の冷媒回路図である。 上部の目隠し化粧板を一部省略した輻射型室内機の概略説明図である。 図3のA-A方向から見た概略説明図である。 輻射型室内機の冷媒管の構造を示し、暖房時における冷媒の流れを矢印で示した平面視概略説明図である。 図5に示す輻射型室内機の冷媒管の構造を示し、暖房時における冷媒の流れを矢印で示した正面視概略説明図である。 図3の輻射型室内機を上方向から見た概略説明図である。 直管と放熱面積拡大部材との関係を示す概略断面説明図である。 輻射型室内機の冷媒管の構造を示し、冷房時における冷媒の流れを矢印で示した平面視概略説明図である。 図9に示す輻射型室内機の冷媒管の構造を示し、冷房時における冷媒の流れを矢印で示した正面視概略説明図である。 本発明の輻射型室内機の変形例における冷媒管の構造を示した正面視概略説明図である。
 本発明を図に示した実施の形態に基づき詳細に説明する。なお、図に付した符号は、煩雑さを避けるため、理解を助ける範囲で付している。
[規則91に基づく訂正 16.01.2015] 
 図1に示すように、空気調和装置100は、一台の室外機1と、この室外機1に直列に接続されている二台の室内機で構成されている。二台の室内機のうち一台は、一般的な対流型室内機2であり、他の一台は輻射型室内機10である。
 対流型室内機2及び輻射型室内機10は、空気調和対象域を有する部屋等に設置され、その空気調和対象域に冷房または暖房する機能を有している。
 対流型室内機2と輻射型室内機10とは、冷媒配管7で接続されて連絡している。したがって、空気調和装置100の対流型室内機2と輻射型室内機10は、冷媒回路の一部を形成し、この冷媒回路に冷媒を循環させることによって、冷房運転又は暖房運転することが可能になっている。
 なお、図1,2では室外機一台、対流型室内機2及び輻射型室内機10は、それぞれ一台の構成となっているが、図示してある台数に限定するものではない。
 図2に示すように、室外機1は、圧縮機3、室外側熱交換器4、膨張弁5を備える公知の構造である。また、対流型室内機2は、室内側熱交換器6と、室内側熱交換器6に風を送る送風ファン(図示省略)を備えている公知の構造である。
 室内側熱交換器6は、冷房運転時には蒸発器として、暖房運転時には凝縮器(放熱器)として機能し、図示省略のファン等の送風機から供給される空気と冷媒との間で熱交換を行ない、空気調和対象域に供給するための暖房空気あるいは冷房空気を作成する。
 前記機器類は、冷媒配管7により接続されて、空気調和装置100の冷凍サイクル(冷媒回路)の一部を構成している。
〔輻射型室内機〕
 空気調和装置100の冷凍サイクルには、輻射型室内機10が配備されている。
 輻射型室内機10は、発熱体11と、発熱体11を固定し支持するフレーム12を備える。フレーム12は、左右両側に、鉛直方向に並行に立設された縦フレーム12a、12bを備える。フレーム12の材料は、例えば、木、合成樹脂やアルミニウム等の金属を採用することができる。
 本実施の形態では、フレーム12は、輻射熱を反射する反射材又は断熱材となる背面板を備えているが、背面板がない構造とすることもできる。
 縦フレーム12a、12bの間には、発熱体11が配置されている。
 発熱体11は、長手方向を鉛直方向に配置し、横方向に複数本が並行に配置された直管112と、隣接する直管112の上端間と下端間を接続する接続管114を有し、全体形状を蛇行状に配置して形成した冷媒管110を有する。冷媒管110のうち図3に示すように直管112は、放熱面積拡大部材111で囲繞されて、発熱体11は構成されている。
 冷媒管110は、アルミニウムや銅等の金属製のほか、必要に応じて他の素材を使用することもできる。
 発熱体11の上側には、冷媒配管7を流れる冷媒の流れを複数に、本実施の形態では二つに分岐する分岐部113と、該分岐部113によって分岐された冷媒を集める集結部115とを有する。分岐部113の接続口と集結部115の接続口は、それぞれ、冷媒配管7に接続され、輻射型室内機10は冷媒回路に組み込まれている。
 なお、図3,4,6に示す本実施の形態においては、分岐部113と集結部115が発熱体11の上側に配置されているが、これに限定するものではなく、例えば、図11(輻射型室内機の変形例)に示すように、分岐部113と集結部115を発熱体11の下側に配置するものであってもよい。
[規則91に基づく訂正 16.01.2015] 
 分岐部113は、分岐管113a、113bを備える。分岐管113a、113bで冷媒を分流し、二つの冷媒の流れとなる。例えば、図6における矢印は冷媒の流れを示しており、分岐管113aによる一方の流れは、図6右側の6本の直管112中を流れ(第2の発熱体11b)、分岐管113bによる他方の流れは、図6における左側の6本の直管112中を流れる(第1の発熱体11a)。これらの冷媒は、集結部115で合流し、集結部115から冷媒回路7に流れる。
 なお、図5,6において矢印で示す冷媒の流れは、暖房時の冷媒の流れである。
 一方、冷房時の冷媒の流れは、図9,10に示すように、暖房時とは逆の流れ(矢印の向きが逆)となる。
 このように設定したのは、特に暖房時において、発熱体11の中を流れる冷媒が中央側から外方側に流れる場合(即ち、冷媒が分岐部113方向から入って集結部115方向へ出る流れ)の方が、放熱の効率が良いためである。
 この理由は、以下の通りである。即ち、暖房時において最も冷媒の温度が高いのは冷媒の入口付近であり、放熱に伴って出口付近に近づくにつれて徐々に温度が低下するのであるが、冷媒の入口が発熱体11の外側である(集結部115方向からの冷媒が流入する場合である)と、本実施の形態における輻射型室内機10の構造上、縦フレーム12a,12bによって熱が遮蔽される(換言すると、最も外側の発熱体が縦フレームの陰になる)こととなり、放熱の効率が最良とは言い難い。
 一方、冷媒の入口が発熱体11の中央側であると、縦フレーム12a,12bのような放熱を遮るものがないため、放熱の効率が最良となる。
 なお、本実施の形態においては、安全性や装置(特に発熱体)保護の観点から、縦フレーム12a,12bを設けているが、縦フレーム12a,12bを設けない態様、あるいは、縦フレーム12a,12bがスリットを設けるなどして放熱を妨げない態様である場合は、暖房時に、発熱体11の中を流れる冷媒が外方側から中央側に流れるもの(即ち、冷媒が集結部115方向から入って分岐部113方向へ出る流れであるもの。冷房時は逆の流れ)であってもよい。
[規則91に基づく訂正 16.01.2015] 
 本実施の形態では、第1の発熱体11aと第2の発熱体11bの冷媒管の長さは同じであり、各々略6mである。また、冷媒配管7の径は、内径7.92φ(49.2mm2)、直管112の径は内径4.75(17.7mm2)で、冷媒配管7よりも径小となっている。
 内径7.92φ(49.2mm2)の冷媒配管は、内径4.75φ(17.7mm2)の冷媒管2系統に分岐している。これによって、分岐部113と集結部115との間の発熱体11内における冷媒の流速は、冷媒配管7における流速よりも速く、二相冷媒中の潤滑油の分離が防止できる。
 図8に示すように、各直管112は、対向壁の外面が外方に向けて膨出する楕円形状の放熱面積拡大部材111で囲繞されている。放熱面積拡大部材111は、例えばアルミニウムで作られており、これによって直管112は、室内空間において熱交換を行う放熱面積を拡張する。
 放熱面積拡大部材111は、二つの部品111a、111bで構成され、直管112の両側から直管112を挟んで当接部分の嵌着により結合されている。
 また、直管112と放熱面積拡大部材111間との圧接接触は、放熱面積拡大部材111が、直管112を中心として回動することができる程度の強さである。これによって放熱面積拡大部材111の放熱面の方向を変えることができる。なお、回動しないようにすることもできる。
 また、図3,4に示すように、発熱体11の下側には、上方が開放された樋形状の集水部材であるドレンパン116が両端部を縦フレーム12a、12bの間に固定して配置されている。ドレンパン116の底部の一端側にはドレン管が接続されている。冷房時、発熱体11の表面に結露した結露水は、ドレンパン116に滴下し、適宜、ドレン管を通して集められ、処理される。符号117は、目隠し化粧板である。
(作用)
 図1,2を参照して空気調和装置100の各種運転時の冷媒の流れについて説明する。
〔冷房運転時 図2(a)〕
 空気調和装置100が冷房運転を実行する場合、圧縮機3からの吐出冷媒が室外側熱交換器4に流入するように四方弁8が切り替えられ、圧縮機3が駆動される。
 圧縮機3に吸入された冷媒は、圧縮機3で高圧・高温のガス状態となって吐出され、四方弁8を介して室外側熱交換器4に流入する。この室外側熱交換器4に流入した冷媒は、図示省略の送風機から供給される空気に放熱しながら冷却され、低圧・高温の液冷媒となって室外側熱交換器4から流出する。
 室外側熱交換器4から流出した液冷媒は、膨張弁5を通り対流型室内機2に流入する。対流型室内機2に流入した冷媒は、二相冷媒となる。この低圧二相冷媒は、室内側熱交換器6に流入し、図示省略の送風機から供給される空気から吸熱することで蒸発、ガス化する。このとき、室内等の空気調和対象空間に冷房空気が供給され、空気調和対象空間の冷房運転が実現される。
 室内側熱交換器6から流出した二相冷媒は、対流型室内機2から流出し、輻射型室内機10に流入し、冷媒管110内を通る。このとき、雰囲気との吸熱作用と共に室内等の空気調和対象空間の雰囲気、すなわち空気が冷され、空気調和対象空間の冷房が実現される。
[規則91に基づく訂正 16.01.2015] 
 輻射型室内機10から流出した冷媒は、室外機1に流入し、室外機1の四方弁8を通り、圧縮機3に再度吸入される。
 以上の冷媒サイクルを繰り返して冷房運転を行う。
[規則91に基づく訂正 16.01.2015] 
〔暖房運転時 図2(b)〕
 空気調和装置100が暖房運転を実行する場合、圧縮機3からの吐出冷媒が室内側熱交換器6に流入するように四方弁8が切り替えられ、圧縮機3が駆動される。圧縮機3に吸入された冷媒は、圧縮機3で高圧・高温のガス状態となって吐出され、四方弁8を介して輻射型室内機10に流入する。
[規則91に基づく訂正 16.01.2015] 
 輻射型室内機10に流入した冷媒は、発熱体11の冷媒管110で輻射熱を放出して室内等の空気調和対象空間の雰囲気を温める。輻射型室内機10から流出した冷媒は、対流型室内機2の室内側熱交換器6に流入する。室内側熱交換器6に流入した冷媒は、図示省略の送風機から供給される空気に放熱しながら冷却され、液冷媒となる。このとき、室内等の空気調和対象空間に暖房空気が供給され、空気調和対象空間の暖房運転が実現される。
 室内側熱交換器6から流出した液冷媒は、膨張弁5で減圧され、低圧二相冷媒となる。この低圧二相冷媒は、室外機1の室外側熱交換器4に流入する。室外側熱交換器4に流入した低圧二相冷媒は、図示省略の送風機から供給される空気から吸熱することで蒸発、ガス化する。この低圧ガス冷媒は、室外側熱交換器4から流出し、四方弁8を通り、圧縮機3に再度吸入される。
 以上の冷媒サイクルを繰り返して暖房運転を行う。
 なお、本明細書で使用している用語と表現は、あくまでも説明上のものであって、なんら限定的なものではなく、本明細書に記述された特徴およびその一部と等価の用語や表現を除外する意図はない。また、本発明の技術思想の範囲内で、種々の変形態様が可能であるということは言うまでもない。
 また、第1、第2などの言葉は、等級や重要度を意味するものではなく、一つの要素を他の要素から区別するために使用したものである。
 1 室外機、 2 対流型室内機、 3 圧縮機、 4 室外側熱交換器、 5 膨張弁、 6 室内側熱交換器、 7 冷媒配管、 8 四方弁、 10 輻射型室内機、 11 発熱体、 12 フレーム、 100 空気調和装置、 110 冷媒管、 111 放熱面積拡大部材、 112 直管、 113 分岐部、 115 集結部

Claims (4)

  1.  少なくとも、圧縮機、室外熱交換器及び膨張弁を有する室外機と、対流型室内機及びこれらの機器類を接続する冷媒配管を有する空気調和機と、
     前記対流型室内機と前記室外機との間に配備され、同対流型室内機と同室外機との間を接続するための前記冷媒配管よりも内径が小さい冷媒管を有する輻射型室内機とを備える
     空気調和装置。
  2.  前記輻射型室内機は、冷媒管を流れる冷媒の流れを複数に分岐する分岐部と、該分岐部によって分岐された冷媒を集める集結部とを備える
     請求項1記載の空気調和装置。
  3.  前記輻射型室内機の冷媒管は、鉛直方向に並設されている複数の直管と、
     隣接する前記直管の上端間と下端間とを接続する接続管とを備えて、蛇行状に形成されている
     請求項1または2記載の空気調和装置。
  4.  前記複数の直管は、対向壁の外面が外方に向けて膨出する楕円形状の放熱部で覆われており、該放熱部は、隣接する放熱部の端部が連続しない折れ線状に配置されている
     請求項3記載の空気調和装置。
PCT/JP2014/084498 2014-05-09 2014-12-26 空気調和装置 WO2015170431A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP14835685.0A EP3141824B1 (en) 2014-05-09 2014-12-26 Air conditioning system
SG11201501227WA SG11201501227WA (en) 2014-05-09 2014-12-26 Air conditioning system
US14/419,526 US20160047577A1 (en) 2014-05-09 2014-12-26 Air conditioning system
AU2014393532A AU2014393532B2 (en) 2014-05-09 2014-12-26 Air conditioning system
MYPI2015700312A MY184976A (en) 2014-05-09 2014-12-26 Air conditioning system
CN201480002160.8A CN105264296A (zh) 2014-05-09 2014-12-26 空调装置
JP2016517798A JP6304783B2 (ja) 2014-05-09 2014-12-26 空気調和装置
PH12015500378A PH12015500378A1 (en) 2014-05-09 2015-02-20 Air conditioning system
HK16106808.1A HK1218949A1 (zh) 2014-05-09 2016-06-14 空調裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-097916 2014-05-09
JP2014097916 2014-05-09

Publications (1)

Publication Number Publication Date
WO2015170431A1 true WO2015170431A1 (ja) 2015-11-12

Family

ID=54392296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084498 WO2015170431A1 (ja) 2014-05-09 2014-12-26 空気調和装置

Country Status (10)

Country Link
US (1) US20160047577A1 (ja)
EP (1) EP3141824B1 (ja)
JP (1) JP6304783B2 (ja)
CN (1) CN105264296A (ja)
AU (1) AU2014393532B2 (ja)
HK (1) HK1218949A1 (ja)
MY (1) MY184976A (ja)
PH (1) PH12015500378A1 (ja)
SG (1) SG11201501227WA (ja)
WO (1) WO2015170431A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948208B2 (en) * 2018-01-21 2021-03-16 Daikin Industries, Ltd. System and method for heating and cooling
WO2019159721A1 (ja) * 2018-02-19 2019-08-22 ダイキン工業株式会社 空気調和装置
CN108489027B (zh) * 2018-03-23 2021-01-15 陈旸 一种对流和辐射自适应供给暖通系统的控制方法
CN111535726A (zh) * 2020-05-08 2020-08-14 广东工业大学 一种湿式辐射对流调温门窗

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317975U (ja) * 1986-07-21 1988-02-05
JPS63185023U (ja) * 1987-05-21 1988-11-28
JPH0379079U (ja) * 1990-11-09 1991-08-12
JPH04371735A (ja) * 1991-06-19 1992-12-24 Daiken Trade & Ind Co Ltd 輻射冷房用材
JP2008275201A (ja) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp 冷凍空調装置
JP2010243127A (ja) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co 輻射パネル装置
JP2011027359A (ja) * 2009-07-28 2011-02-10 Aoki Jutaku Kizai Hanbai Kk 天井輻射システム
JP2013040720A (ja) * 2011-08-17 2013-02-28 Asahi Kasei Homes Co 輻射パネル装置
JP5285179B1 (ja) 2012-11-07 2013-09-11 株式会社 エコファクトリー 空気調和機
JP2013245832A (ja) * 2012-05-23 2013-12-09 Sharp Corp 輻射式空気調和機

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1252272A (en) * 1983-05-09 1989-04-11 Satoshi Tanno Method of manufacturing fin-tube heat exchangers
EP0269282B1 (en) * 1986-10-30 1992-09-30 Kabushiki Kaisha Toshiba Air conditioner
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
US5189887A (en) * 1989-12-29 1993-03-02 Kool-Fire Research & Development Heat condensing furnace with de-intensifier tubes
FR2689215B1 (fr) * 1992-03-30 1994-07-01 Sari Installation de traitement d'air.
JPH06307705A (ja) * 1993-04-20 1994-11-01 Toshiba Corp 空気調和機の湿度制御方法
US5647225A (en) * 1995-06-14 1997-07-15 Fischer; Harry C. Multi-mode high efficiency air conditioning system
US5752389A (en) * 1996-10-15 1998-05-19 Harper; Thomas H. Cooling and dehumidifying system using refrigeration reheat with leaving air temperature control
JPH11316067A (ja) * 1997-12-16 1999-11-16 Matsushita Electric Ind Co Ltd 可燃性冷媒を用いた空気調和装置
US5937665A (en) * 1998-01-15 1999-08-17 Geofurnace Systems, Inc. Geothermal subcircuit for air conditioning unit
FR2776757B1 (fr) * 1998-03-24 2000-05-12 Electricite De France Climatiseur assurant le chauffage et le refroidissement
JP2002130704A (ja) * 2000-10-23 2002-05-09 Sanyo Electric Co Ltd 暖房用放熱器
DE10233506B4 (de) * 2002-07-24 2004-12-09 Bayer Technology Services Gmbh Mischer/Wärmeaustauscher
IT1397613B1 (it) * 2009-07-16 2013-01-18 Termal Srl Dispositivo di riscaldamento ad irraggiamento
JP2011058648A (ja) * 2009-09-07 2011-03-24 Tokyo Gas Co Ltd 暖房用ラジエータ
JP2012017967A (ja) * 2010-06-09 2012-01-26 Best-Thermal Co Ltd 空調装置
US20120012292A1 (en) * 2010-07-16 2012-01-19 Evapco, Inc. Evaporative heat exchange apparatus with finned elliptical tube coil assembly
JP2012083011A (ja) * 2010-10-08 2012-04-26 Daikin Industries Ltd 空気調和機
JP2012141114A (ja) * 2011-01-06 2012-07-26 Tabuchi Corp 輻射パネル式冷暖房機
US8640474B2 (en) * 2011-12-31 2014-02-04 Richard Ackner System and method for increasing the efficiency of a solar heating system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317975U (ja) * 1986-07-21 1988-02-05
JPS63185023U (ja) * 1987-05-21 1988-11-28
JPH0379079U (ja) * 1990-11-09 1991-08-12
JPH04371735A (ja) * 1991-06-19 1992-12-24 Daiken Trade & Ind Co Ltd 輻射冷房用材
JP2008275201A (ja) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp 冷凍空調装置
JP2010243127A (ja) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co 輻射パネル装置
JP2011027359A (ja) * 2009-07-28 2011-02-10 Aoki Jutaku Kizai Hanbai Kk 天井輻射システム
JP2013040720A (ja) * 2011-08-17 2013-02-28 Asahi Kasei Homes Co 輻射パネル装置
JP2013245832A (ja) * 2012-05-23 2013-12-09 Sharp Corp 輻射式空気調和機
JP5285179B1 (ja) 2012-11-07 2013-09-11 株式会社 エコファクトリー 空気調和機

Also Published As

Publication number Publication date
AU2014393532B2 (en) 2018-09-27
HK1218949A1 (zh) 2017-03-17
JPWO2015170431A1 (ja) 2017-05-25
AU2014393532A1 (en) 2017-01-05
MY184976A (en) 2021-04-30
JP6304783B2 (ja) 2018-04-04
EP3141824A4 (en) 2017-12-27
PH12015500378B1 (en) 2015-09-28
SG11201501227WA (en) 2015-12-30
PH12015500378A1 (en) 2015-09-28
CN105264296A (zh) 2016-01-20
EP3141824A1 (en) 2017-03-15
US20160047577A1 (en) 2016-02-18
EP3141824B1 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
EP3580516B1 (en) Condenser with tube support structure
WO2016092943A1 (ja) 空気調和機
JP6304783B2 (ja) 空気調和装置
US10941985B2 (en) Heat exchanger
ES2747048T3 (es) Bobina modular para enfriadores enfriados por aire
WO2018131309A1 (ja) 空気調和機
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP2006284133A (ja) 熱交換器
JP5627635B2 (ja) 空気調和機
JP2004069228A (ja) 熱交換器
JP6104378B2 (ja) 空気調和装置
JP5681572B2 (ja) 車両用空調装置
JP6298992B2 (ja) 空気調和機
JP5864030B1 (ja) 熱交換器、及び、この熱交換器を備えた冷凍サイクル装置
JP3918284B2 (ja) クロスフィンチューブ型熱交換器
JP4902625B2 (ja) ヒートポンプ給湯機及び冷凍機器
JP2021032428A (ja) ヒートポンプ式冷凍サイクル用室外熱交換器
JP6921323B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP2015087038A (ja) 熱交換器及び冷凍サイクル装置
WO2018037452A1 (ja) 空気調和装置
JP2007210376A (ja) 車両用空調装置
JP5849697B2 (ja) 室外ユニット
JP2021196076A (ja) 室外熱交換器
JP2021175923A (ja) 室外熱交換器およびこれを用いたヒートポンプ式冷凍サイクル
JP2020199955A (ja) 車両用空調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480002160.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 14419526

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014835685

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014835685

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12015500378

Country of ref document: PH

Ref document number: PH12015500378

Country of ref document: PH

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014393532

Country of ref document: AU

Date of ref document: 20141226

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016517798

Country of ref document: JP

Kind code of ref document: A