WO2015168900A1 - 彩色滤光片及其制造方法 - Google Patents

彩色滤光片及其制造方法 Download PDF

Info

Publication number
WO2015168900A1
WO2015168900A1 PCT/CN2014/077026 CN2014077026W WO2015168900A1 WO 2015168900 A1 WO2015168900 A1 WO 2015168900A1 CN 2014077026 W CN2014077026 W CN 2014077026W WO 2015168900 A1 WO2015168900 A1 WO 2015168900A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter pattern
substrate
photoresist material
black matrix
filter
Prior art date
Application number
PCT/CN2014/077026
Other languages
English (en)
French (fr)
Inventor
徐向阳
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/384,388 priority Critical patent/US9494719B2/en
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2015168900A1 publication Critical patent/WO2015168900A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor

Definitions

  • the present invention relates to a color filter and a method of fabricating the same, and more particularly to a sharing The same mask realizes a method of manufacturing a filter layer having three primary colors of red (R), green (G), and blue (B).
  • the liquid crystal display device has been widely used in human life and work, in which the liquid crystal panel of the liquid crystal display device is turned off to the display effect of the liquid crystal display device, including the angle of view, the degree of shading, and the color.
  • the mainstream thin film transistor liquid crystal device is mainly produced by exposure and mask. Since the liquid crystal device belongs to the passive light emitting display mode, the substrate includes two parts of a color filter and a thin film transistor array, although currently Development of a color filter array substrate (Color film On Array, COA) design, but because the COA process is more complicated and the yield is lower, the mainstream technology is still a structure in which the color filter and the thin film transistor array substrate are separated.
  • COA Color film On Array
  • the thin film transistor array substrate mainly includes a data line, a scan line, a thin film transistor switch, a pixel electrode, a peripheral circuit, and the like; and the color filter substrate mainly includes a black matrix (Black) Matrix, BM), red (R), green (G), blue (B) filter layers of the three primary colors.
  • the color filter is a key component of the liquid crystal display.
  • the conventional color filter production requires at least the following five masks as follows: a resin film is sputtered on the glass substrate to form a black matrix, and then a red filter pattern is formed in the opening between the black matrices, and the repetition is repeated.
  • the above steps sequentially form a green filter pattern, a blue filter pattern, and finally form a gap layer (Photo Spacer, PS), and Vertical-Aligned Liquid Crystal Display (Multi-domain Vertical Alignment, MVA)
  • the LCD needs to pass through six masks: a black matrix, a red filter pattern, a green filter pattern, a blue filter pattern, a common electrode, and a gap layer.
  • the red filter pattern, the green filter pattern and the blue filter pattern must be completed by using three different masks in sequence, such as three exposures and development steps, as shown in FIGS. 1 to 3, After the mask 11 forms the red filter pattern 110, the green filter pattern 120 is formed by the second mask 12, and the blue filter pattern 130 is formed by the third mask 13. Since in the prior art, the formation of the red filter pattern, the green filter pattern, and the blue filter pattern must be completed using three different masks, the production cost is high and it takes a long time. Therefore, it is necessary to provide a method of manufacturing a color filter substrate to solve the problems of the prior art.
  • Providing a color filter manufacturing method as follows: providing a substrate; forming a black matrix layer on the substrate; coating a first photoresist material on the substrate on which the black matrix layer is formed, and passing a Masking the substrate coated with the first photoresist material to ultraviolet light exposure and development to form at least a first filter pattern, wherein a photosensitive frequency of the first photoresist material falls on the mask a region of the mold corresponding to the light transmission spectrum of the first filter pattern; coating a second photoresist material on the substrate on which the black matrix and the first filter pattern are formed, and The substrate is subjected to ultraviolet exposure and development by the substrate coated with the second photoresist material to form at least one second filter pattern, and a photosensitive frequency of the second photoresist material falls on the mask Corresponding to a range of a light transmission spectrum of the second filter pattern; and coating a third on the substrate on which the black matrix, the first filter pattern, and the second filter pattern are formed a photo
  • a method of manufacturing a color filter is provided as follows: providing a substrate; forming a black matrix layer on the substrate; and forming at least a mask on the substrate on which the black matrix layer is formed a first filter pattern; on the substrate on which the black matrix and the first filter pattern are formed, at least one second filter pattern is formed through the mask; in forming the black matrix, the Forming at least one third filter pattern through the mask on the substrate of the first filter pattern and the second filter pattern; wherein the mask has the first filter pattern, the first The two filter patterns and the third filter patterns respectively correspond to different light transmission spectra.
  • the method of manufacturing the color filter may further include: a substrate provided with the black matrix layer, the first filter pattern, the second filter pattern, and the third filter pattern Forming a protective layer; forming a common electrode layer over the protective layer; and forming a gap layer over the common electrode layer.
  • the invention is characterized in that the first filter pattern, the second filter pattern and the third filter pattern have different colors and are arranged side by side on the substrate, wherein the black is formed
  • Forming the at least one first filter pattern through a mask on the substrate of the matrix layer comprises: cleaning the substrate provided with the black matrix layer, and coating a first photoresist material on the cleaned substrate, The photosensitive frequency of the first photoresist material falls within a range of the light transmission spectrum of the mask corresponding to the first filter pattern; and the substrate coated with the first photoresist material is subjected to Ultraviolet exposure and development to form a first filter pattern.
  • forming at least one second filter pattern through the mask includes: cleaning the black matrix layer and the a substrate of a filter pattern, and coating a second photoresist material on the cleaned substrate,
  • the photosensitive frequency of the second photoresist material falls within a range of the light transmission spectrum of the mask corresponding to the second filter pattern; and the substrate coated with the second photoresist material is subjected to Ultraviolet exposure and development to form a second filter pattern.
  • the substrate on which the black matrix, the first filter pattern and the second filter pattern are formed forming at least one third filter pattern through the mask, including: cleaning setting a substrate of the black matrix layer, the first filter pattern, and the second filter pattern, and coating a third photoresist material on the cleaned substrate, the third photoresist material
  • the photosensitive frequency falls within a range of the light transmission spectrum of the mask corresponding to the third filter pattern; the substrate coated with the third photoresist material is subjected to ultraviolet exposure and development to form a third Filter pattern.
  • the first photoresist material, the second photoresist material, and the third photoresist material are organic negative photoresists.
  • the first filter pattern, the second filter pattern, and the third filter pattern are respectively red, green, and blue light patterns.
  • a color filter completed by the above manufacturing method, the color filter comprising: a substrate; a plurality of black matrices disposed on the substrate; and a plurality of different A color filter pattern is juxtaposed on the substrate in parallel and each of the filter patterns is disposed between two adjacent black matrices.
  • the color filter may further include: a protective layer disposed above the black matrix and the plurality of filter patterns of different colors; a common electrode layer disposed on Above the protective layer; and a gap layer disposed above the common electrode layer.
  • the mask according to the present invention may select the first photoresist material and the second photoresist according to different light transmission spectra of the first filter pattern, the second filter pattern, and the third filter pattern. a material and a photosensitive frequency of the third photoresist material, so that the first filter pattern, the second filter pattern, and the third filter pattern can share the same mask, thereby reducing the amount of two masks and simplifying color The process of the filter and the production cost of the liquid crystal display device are reduced.
  • FIG. 1 is a schematic view showing a manufacturing process of a first filter pattern of the prior art
  • FIG. 2 is a schematic view showing a manufacturing process of a second filter pattern of the prior art
  • FIG. 3 is a schematic view showing a manufacturing process of a third filter pattern of the prior art
  • FIG. 5 is a schematic view showing a manufacturing process of a black matrix of the present invention.
  • FIG. 6 is a schematic view showing a manufacturing process of a first filter pattern of the present invention.
  • FIG. 7 is a schematic view showing a manufacturing process of a second filter pattern of the present invention.
  • FIG. 8 is a schematic view showing a manufacturing process of a third filter pattern of the present invention.
  • FIG. 9 is a UV transmittance spectrum diagram of a first filter pattern, a second filter pattern, and a third filter pattern of the present invention.
  • FIG. 10 is a photosensitive frequency diagram of a first filter pattern, a second filter pattern, and a third filter pattern of the present invention.
  • Figure 11 is a cross-sectional view showing the structure of a color filter according to an embodiment of the present invention.
  • Figure 12 is a cross-sectional view showing the structure of a color filter according to another embodiment of the present invention.
  • the color filter 10 is permeable to a pigment dispersion method (Pigment). Dispersed Method), the specific steps are as follows:
  • Step S1 A substrate 50 is provided, and the substrate 50 is a transparent glass substrate.
  • Step S2 Referring to FIG. 5, forming the black matrix layer 51 on the substrate 50 may specifically include: step S211, coating the organic black negative photoresist material 51 on the substrate by a crack or rotary coater. On the substrate 50; in step S212, the organic black negative photoresist material 51 is dried by a vacuum dryer; in step S213, the dried substrate 50 is sent to the EBR (Edge).
  • step S211 coating the organic black negative photoresist material 51 on the substrate by a crack or rotary coater.
  • the organic black negative photoresist material 51 is dried by a vacuum dryer; in step S213, the dried substrate 50 is sent to the EBR (Edge).
  • step S214 pre-baking and cooling
  • step S215 using a UV exposure machine, placing a mask 100 having a black matrix pattern over the organic black negative-type photoresist material 51, Exposing the organic black negative-type photoresist material 51; step S216, developing and etching the organic black negative-type photoresist material 51 by a developer; and baking solidifying in step S217 to form a plurality of black matrix layers 51 .
  • the black matrix layer 51 may also be formed of different materials, for example, a positive photoresist material is coated on the chromium or its alloy. Therefore, the above step S2 can also be completed in the following manner: Step S221, forming a film of chromium or chromium alloy on the substrate by evaporation or sputtering; and step S222, applying a positive photoresist material to the surface of the film; Step S223, using a UV exposure machine, placing a mask having a black matrix pattern over the positive photoresist material to expose the positive photoresist material; and step S224, using the positive photoresist of the developer The material is subjected to development etching to remove the film of chromium or chromium alloy at the exposure; and in step S225, the positive photoresist material is completely removed by a remover to form a black matrix layer 51 of chromium or chromium alloy material.
  • step S2 can also use an organic black positive-type photoresist material, or apply a negative-type photoresist material on the chromium or chromium alloy, except that the material at the exposure in step S215 or S223 is insoluble (negative The implementation of the present invention does not affect the difference of the type of photoresist or the soluble (positive photoresist).
  • Step S3 forming a first filter pattern 52 through a mask 200 on a substrate 50 having a plurality of black matrix layers 51, specifically comprising: step S31, cleaning the substrate 50 provided with the black matrix layer 51 And coating the first photoresist material 52 on the cleaned substrate 50, the light-receiving frequency of the first photoresist material 52 falling on the mask corresponding to the first filter pattern 52 In the range of the light spectrum; in step S32, the substrate 50 coated with the first photoresist material 52 is sequentially vacuum dried, edge photoresist removed, pre-baked, cooled, exposed to ultraviolet light, developed, and cured. The steps are to form a first filter pattern 52. Referring to FIG.
  • the first photoresist material 52 is selected according to the light transmission spectrum of the first filter pattern 52 , when the mask 200 is disposed on the first photoresist material 52 , When the upper portion is used, the first photoresist material 52 is naturally exposed according to the photosensitive frequency of the first photoresist material 52 to form a first filter pattern 52.
  • the first filter pattern 52 is red filtered. pattern.
  • Step S4 forming a second filter pattern 53 on the substrate 50 on which the black matrix layer 51 and the first filter pattern 52 are formed, and the method includes: Step S41, the cleaning setting is performed.
  • the black matrix layer 51 and the substrate 50 of the first filter pattern 52 are coated with a second photoresist material 53 on the substrate 50 after cleaning, and the photosensitive frequency of the second photoresist material 53 Falling within a range of the light transmission spectrum of the mask corresponding to the second filter pattern 53; in step S42, the substrate 50 coated with the second photoresist material 53 is sequentially vacuum dried The steps of edge photoresist, prebaking, cooling, ultraviolet exposure, development, and curing are removed to form a second filter pattern 53. Referring to FIG.
  • the second photoresist material 53 is selected according to the light transmission spectrum of the second filter pattern 53 , when the mask 200 is disposed on the second photoresist material 53 .
  • the second photoresist material 53 is naturally exposed according to the photosensitive frequency of the second photoresist material 53 to form a second filter pattern 53, and the second filter pattern 53 is green filtered. pattern.
  • Step S5 forming a third filter pattern 54 through the mask 200 on the substrate 50 on which the black matrix layer 51, the first filter pattern 52, and the second filter pattern 53 are formed, specifically
  • the method includes: step S51, cleaning the substrate 50 provided with the black matrix layer 51, the first filter pattern 52, and the second filter pattern 53, and coating the substrate 50 after cleaning a third photoresist material 54, the photosensitive frequency of the third photoresist material 54 falls within a range of the light transmission spectrum of the mask corresponding to the third filter pattern 54; and step S52, the coating is performed
  • the substrate 50 of the third photoresist material 54 is sequentially subjected to vacuum drying, removing edge photoresist, prebaking, cooling, ultraviolet exposure, development, and curing to form a third filter pattern 54.
  • the third photoresist material 54 is selected according to the light transmission spectrum of the third filter pattern 54 , when the mask 200 is disposed on the third photoresist material 54 .
  • the third photoresist material 54 is naturally exposed according to the photosensitive frequency of the third photoresist material 54 to form a third filter pattern 54.
  • the third filter pattern 54 is blue. Filter pattern.
  • the different ultraviolet light transmission spectra provided by the mask are Forming the first filter pattern, the second filter pattern, and the third filter pattern on the substrate, the first filter pattern, the second filter pattern, and the first
  • the three filter patterns have different colors and are arranged side by side on the substrate. As shown in FIG.
  • the mask 200 shared by the first filter pattern 52, the second filter pattern 53, and the third filter pattern 54 corresponds to the first filter pattern 52
  • the positions of the second filter pattern 53 and the third filter pattern 54 have different ultraviolet light spectral transmittances, according to the first filter pattern 52, the second filter pattern 53 and The first light blocking material 52, the second photoresist material 53 and the third photoresist material 54 corresponding to the light transmission spectrum are selected in different light transmission spectra of the third filter pattern 54.
  • the photoresist material is selected, the light-sensing frequency is naturally determined, so that the first filter pattern 52, the second filter pattern 53, and the third filter pattern 54 can be applied to the same mask. As shown in FIG.
  • the broken line portion indicates the photosensitive frequencies of the first photoresist material 52, the second photoresist material 53, and the third photoresist material 54. Since the first filter pattern 52, the second filter pattern 53 and the third filter pattern 54 of the present invention only need one mask to complete, compared with the prior art, there is no need to respond to different filters. Different masks are used for the light pattern. Therefore, the two masks can be reduced, and the manufacturing process of the color filter substrate can be simplified while reducing the manufacturing cost of the color filter.
  • the method of manufacturing the color filter of the second preferred embodiment of the present invention may further include: in step S6, forming the gap layer 55 on the black matrix layer 51, the first filter pattern 52, the second filter pattern 53, and Above the three filter patterns 54, the main function of the gap layer 55 is to support the uniformity of the distance between the two glass substrates and the liquid crystal layer.
  • the method may specifically be: substrate cleaning, positive photoresist coating, vacuum drying, removing edge photoresist, prebaking and cooling, ultraviolet exposure, development, and baking.
  • step S5 and step S6, step S7 forming a black matrix layer 51, a first filter pattern 52 on the substrate 50 by spin coating or crack coating, or the like.
  • a common electrode layer 57 is formed over the layer 56 for designing a pattern electrode with a liquid crystal (Pattern) Electrodes) constitutes a positive and negative electrode to drive the liquid crystal molecules to rotate.
  • the above steps S7 and S8 can also be performed simultaneously, that is, the protection of the black matrix layer 51, the first filter pattern 52, the second filter pattern 53, and the third filter pattern 54 is simultaneously formed on the substrate 50.
  • Layer 56 and common electrode layer 57 are examples of the black matrix layer 51, the first filter pattern 52, the second filter pattern 53, and the third filter pattern 54 is simultaneously formed on the substrate 50.
  • a color filter 10 which may be formed by the above manufacturing method, and includes: a substrate 50; a plurality of black matrices 51 disposed on On the substrate 50, a plurality of different color filter patterns 52, 53, 54 are juxtaposed on the substrate 50, and each of the filter patterns 52, 53, 54 is disposed on two adjacent ones. Between the black matrixes 51, a gap layer 55 may be further formed over the black matrix 51 and the plurality of different color filter patterns 52, 53, 54.
  • the color filter 10 may further include: a protective layer 56 disposed on the black matrix 51 and the plurality of filter patterns 52 of different colors. Above 53, 53 and below the gap layer 55; and a common electrode layer 57 disposed between the protective layer 56 and the gap layer 55.
  • the substrate 50 is a transparent glass substrate, and the thickness may be selected from 0.7 mm or less, but is not limited thereto.
  • the black matrix 51 Since the amorphous silicon body constituting the TFT semiconductor layer has photoconductivity, in order to maintain a non-conduction state between the drain electrode and the source electrode, the black matrix 51 must be capable of shielding external light and avoiding photoelectron flow of the TFT.
  • the black matrix 51 needs to have low reflectivity, and optical
  • the light blocking ratio of 3 times or more of the concentration is preferably 1 Below ⁇ m, but not limited to this.
  • the photoresist material of the plurality of different color filter patterns 52, 53, 54 is a photoresist, also called photoresist, and the photoresist will respond when receiving light or radiation of a certain wavelength.
  • a photochemical reaction or excitation occurs.
  • It is a light-sensitive mixed liquid composed of three main components of a photosensitive resin, a photosensitizer and a solvent, and the photosensitive resin can be photocured rapidly in the exposed region after being irradiated, so that the photoresist material is obtained.
  • the physical properties, especially the solubility, affinity, etc., are significantly changed, and have high color purity, high light transmittance, high optical rotation and high heat resistance, and the thickness thereof is generally about 1 to 2 ⁇ m. But it is not limited to this.
  • the photoresist material According to the chemical reaction mechanism and development principle of the photoresist material, it can be divided into two types: a negative photoresist material and a positive photoresist material.
  • a negative photoresist material When an insoluble material is formed after illumination, it is a negative photoresist material; on the contrary, it is insoluble to some solvents, and is a positive photoresist material after being irradiated to become a soluble substance.
  • the first photoresist material 52, the second photoresist material 53 and the third photoresist material 54 of the present invention preferably use an organic negative photoresist material.
  • the protective layer 56 may be a polymer material such as an epoxy resin, a polyimide resin, a polyvinyl alcohol resin or an acrylic resin, and the thickness thereof may be selected from about 2 to 2.5 ⁇ m, but not Limited to this.
  • the common electrode layer 57 may be a transparent conductive layer or a metal conductive layer, and the thickness thereof may be selected from about 0.15 ⁇ m, but is not limited thereto. If the transparent conductive layer is optional, indium tin oxide film (Indium) Tin Oxide, ITO); if it is a metal conductive layer, aluminum metal can be used as the conductive material. However, since ITO has advantages of high conductivity (1 to 5 x 10-6 ⁇ m), high light transmittance, and excellent weather resistance, it is preferably a transparent conductive layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

一种彩色滤光片(10)及其制造方法,包括:提供一基板(50);在基板(50)上形成黑矩阵层(51);在形成有黑矩阵层(51)的基板(50)上,通过一掩模(200)形成至少一第一滤光图案(52);在形成有黑矩阵(51)以及第一滤光图案(52)的基板(50)上,通过掩模(200)形成至少一第二滤光图案(53);在形成有黑矩阵(51)、第一滤光图案(52)以及第二滤光图案(53)的基板(50)上,通过掩模(200)形成至少一第三滤光图案(54);其中,掩模(200)具有与第一滤光图案(52)、第二滤光图案(53)以及第三滤光图案(54)分别对应的不同的透光光谱。

Description

彩色滤光片及其制造方法 技术领域
本发明涉及彩色滤光片及其制造方法,特别是涉及一种共用 同一掩膜实现具有红(R),绿(G),蓝(B)三原色的滤光层的制造方法。
背景技术
液晶显示装置已被广泛应用于人类的生活和工作中,其中液晶显示装置的液晶面板攸关到液晶显示装置的显示效果,包括视角、明暗程度以及颜色等。
主流的薄膜晶体管液晶装置(TFT-LCD),其生产流程主要是通过曝光和掩模实现,由于液晶装置属于被动发光显示模式,其基板包括彩色滤光片和薄膜晶体管阵列两个部分,虽然目前发展有一种彩色滤光片阵列基板 (Color film On Array, COA)设计,但由于COA工艺较为复杂,良率也较低,因此主流的技术仍为彩色滤光片和薄膜晶体管阵列基板分离的结构。
上述薄膜晶体管阵列基板主要包括数据线、扫描线、薄膜晶体管开关、像素电极、外围电路等;而彩色滤光片基板上主要包括黑矩阵(Black Matrix, BM)、红(R),绿(G),蓝(B)三原色的滤光层等。由于液晶面板是通过改变驱动集成芯片的电压来控制液晶分子的排列状态,决定背光源的开关,经由滤光层形成不同色光,从而创造出各种色彩,可使液晶显示器呈现逼真,鲜艳的画面,因此彩色滤光片为液晶显示器的关键组件。
传统的彩色滤光片生产至少需要下列5道掩膜(Mask)如下:在玻璃基板上以溅镀树脂层膜以形成黑矩阵、接着在黑矩阵之间的开口部形成红色滤光图案、重复上述步骤再依序形成绿色滤光图案、蓝色滤光图案、最后再形成间隙层(Photo Spacer, PS),而垂直配向液晶显示器(Multi-domain Vertical Alignment, MVA LCD)更需要通过六道掩膜:黑矩阵、红色滤光图案、绿色滤光图案、蓝色滤光图案、共用 电极、间隙层才能实现。
其中,上述红色滤光图案、绿色滤光图案与蓝色滤光图案必须使用三张不同的掩膜,依序进行三次曝光、显影等步骤而完成,如图1至3所示,先利用第一张掩膜11形成红色滤光图案110之后,利用第二张掩膜12形成绿色滤光图案120,再利用第三张掩膜13形成蓝色滤光图案130。由于在现有技术中,形成红色滤光图案、绿色滤光图案与蓝色滤光图案必须利用三张不同的掩膜而完成,因此生产成本高,花费时间长。故,有必要提供一种彩色滤光片基板的制造方法,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种彩色滤光片及其制造方法,特别是一种共用 同一掩膜实现具有红(R),绿(G),蓝(B)三原色滤光层的制造方法以降低掩膜成本。
技术解决方案
[根据细则91更正 26.05.2014] 
提供一种彩色滤光片的制造方法如下:. 提供一基板;在所述基板上形成黑矩阵层;在形成有所述黑矩阵层的基板上涂覆一第一光阻材料,并且通过一掩模将所述涂覆有所述第一光阻材料的所述基板进行紫外线曝光和显影,以形成至少一第一滤光图案,所述第一光阻材料的感光频率落于所述掩模的对应于所述第一滤光图案的透光光谱的范围内;在形成有所述黑矩阵以及所述第一滤光图案的基板上涂覆一第二光阻材料,并且通过所述掩模将涂覆有所述第二光阻材料的所述基板进行紫外线曝光和显影,以形成至少一第二滤光图案,所述第二光阻材料的感光频率落于所述掩模的对应于所述第二滤光图案的透光光谱的范围内;以及,在形成有所述黑矩阵、所述第一滤光图案以及所述第二滤光图案的基板上涂覆一第三光阻材料,并且通过所述掩模将涂覆有所述第三光阻材料的所述基板进行紫外线曝光和显影,以形成至少一第三滤光图案,所述第三光阻材料的感光频率落于所述掩模的对应于所述第三滤光图案的透光光谱的范围内。
根据本发明的另一面向,提供一种彩色滤光片的制造方法如下:提供一基板;在所述基板上形成黑矩阵层;在形成有黑矩阵层的基板上,通过一掩模形成至少一第一滤光图案;在形成有所述黑矩阵以及所述第一滤光图案的基板上,通过所述掩模形成至少一第二滤光图案;在形成有所述黑矩阵、所述第一滤光图案以及所述第二滤光图案的基板上,通过所述掩模形成至少一第三滤光图案;其中,所述掩膜具有与所述第一滤光图案、所述第二滤光图案以及所述第三滤光图案分别对应的不同的透光光谱。
在本发明的一实施例中,所述彩色滤光片的制造方法还可包括:在设置有所述黑矩阵层、第一滤光图案、第二滤光图案以及第三滤光图案的基板上,形成一保护层;在所述保护层的上方形成一公用电极层;以及在所述公用电极层上方形成一间隙层。
本发明的特征在于,所述第一滤光图案、所述第二滤光图案以及所述第三滤光图案具有不同的颜色且直列并排在所述基板上,所述在形成有所述黑矩阵层的基板上,通过一掩模形成至少一第一滤光图案包括:清洗设置有所述黑矩阵层的所述基板,并且在清洗后的所述基板上涂覆第一光阻材料,所述第一光阻材料的感光频率落于所述掩模的对应于所述第一滤光图案的透光光谱的范围内;将涂覆有所述第一光阻材料的所述基板进行紫外线曝光以及显影以形成第一滤光图案。
接着,在所述形成有所述黑矩阵以及所述第一滤光图案的基板上,通过所述掩模形成至少一第二滤光图案包括:清洗设置有所述黑矩阵层以及所述第一滤光图案的所述基板,并且在清洗后的所述基板上涂覆第二光阻材料, 所述第二光阻材料的感光频率落于所述掩模的对应于所述第二滤光图案的透光光谱的范围内;将涂覆有所述第二光阻材料的所述基板进行紫外线曝光以及显影以形成第二滤光图案。
以及,在所述形成有所述黑矩阵、所述第一滤光图案以及所述第二滤光图案的基板上,通过所述掩模形成至少一第三滤光图案包括:清洗设置有所述黑矩阵层、所述第一滤光图案以及所述第二滤光图案的所述基板,并且在清洗后的所述基板上涂覆第三光阻材料,所述第三光阻材料的感光频率落于所述掩模的对应于所述第三滤光图案的透光光谱的范围内;将涂覆有所述第三光阻材料的所述基板进行紫外线曝光以及显影以形成第三滤光图案。
所述第一光阻材料、所述第二光阻材料以及所述第三光阻材料为有机负型光阻。
所述第一滤光图案、所述第二滤光图案以及所述第三滤光图案分别为红光、绿光、蓝光图案。
在本发明的一实施例中,提供一种由上述制造方法所完成的彩色滤光片,所述彩色滤光片包括:基板;多个黑矩阵,设置于所述基板上;以及多个不同颜色的滤光图案,直列并列于所述基板上且每一所述滤光图案设置于两相邻的所述黑矩阵之间。
在本发明的另一实施例中,所述彩色滤光片还可包括:一保护层,设置于所述黑矩阵与所述多个不同颜色的滤光图案上方;一公用电极层,设置于所述保护层上方;以及一间隙层,设置于所述公用电极层上方。
有益效果
由于本发明所述的掩膜可根据第一滤光图案、所述第二滤光图案以及所述第三滤光图案不同的透光光谱,选择第一光阻材料、所述第二光阻材料以及所述第三光阻材料的感光频率,因此所述第一滤光图案、第二滤光图案以及第三滤光图案可共用同一张掩膜,进而减少两张掩膜量,简化彩色滤光片的制程并且降低液晶显示装置的生产成本。
附图说明
图1为现有技术的第一滤光图案制造工艺示意图;
图2为现有技术的第二滤光图案制造工艺示意图;
图3为现有技术的第三滤光图案制造工艺示意图;
图4为本发明彩色滤光片的制造流程图;
图5为本发明的黑矩阵制造工艺示意图;
图6为本发明的第一滤光图案制造工艺示意图;
图7为本发明的第二滤光图案制造工艺示意图;
图8为本发明的第三滤光图案制造工艺示意图;
图9为本发明第一滤光图案、第二滤光图案以及第三滤光图案的紫外线穿透率光谱图;
图10为本发明第一滤光图案、第二滤光图案以及第三滤光图案的感光频率图;
图11为本发明一实施例的彩色滤光片的结构剖面图;
图12为本发明另一实施例的彩色滤光片的结构剖面图。
本发明的最佳实施方式
以下各实施例的说明是参考附图,用以式例本发明可以用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参照图4,显示本发明第一优选实施的彩色滤光片的制造流程图。在本实施例中,所述彩色滤光片10可透过颜料分散法(Pigment Dispersed Method)所形成,具体步骤如下:
步骤S1:提供一基板50,所述基板50为透明玻璃基板。
步骤S2:请参照图5,在所述基板50上形成黑矩阵层51,具体可包括:步骤S211,通过裂缝式或旋转式涂覆机将有机黑色负型光阻材料51涂覆在所述基板上50;步骤S212,通过真空干燥机干燥所述有机黑色负型光阻材料51;步骤S213,将干燥后的基板50送入EBR(Edge Bead Rinse)去除边缘光阻;步骤S214,预烘烤与冷却;步骤S215,利用紫外线曝光机,将具有黑矩阵图案(pattern)的掩模100设置于所述有机黑色负型光阻材料51上方,对所述有机黑色负型光阻材料51进行曝光;步骤S216,利用显影剂对所述有机黑色负型光阻材料51进行显影蚀刻;以及步骤S217烘烤固化,以形成多个黑矩阵层51。
在上述步骤S2中,所述的黑矩阵层51还可选用不同的材料所形成,例如:在铬或其合金上涂覆正型光阻材料。因此,上述步骤S2还可选用下列方式完成:步骤S221,以蒸镀或溅镀的方式在基板上形成铬或铬合金的薄膜;步骤S222,在所述薄膜表面涂覆正型光阻材料;步骤S223,利用紫外线曝光机,将具有黑矩阵图案的掩模设置于所述正型光阻材料上方,对所述正型光阻材料进行曝光;步骤S224,利用显影剂所述正型光阻材料进行显影蚀刻,以去除所述曝光处的铬或铬合金的薄膜;以及步骤S225,利用去除剂将所述正型光阻材料完全去除,以形成铬或铬合金材料的黑矩阵层51。
可以理解的是,上述步骤S2也可使用有机黑色正型光阻材料,或在铬或铬合金上涂覆负型光阻材料,除了在步骤S215或S223中曝光处的材料是不可溶(负型光阻材料)或可溶(正型光阻材料)的差异之外,并不影响本发明的实施。
步骤S3:在形成有多个黑矩阵层51的基板上50,通过一掩模200形成第一滤光图案52,具体包括:步骤S31,清洗设置有所述黑矩阵层51的所述基板50,并且在清洗后的所述基板50上涂覆第一光阻材料52,所述第一光阻材料52的感光频率落于所述掩模的对应于所述第一滤光图案52的透光光谱的范围内;步骤S32,将涂覆有所述第一光阻材料52的所述基板50依序进行真空干燥、去掉边缘光阻、预烘烤、冷却、紫外线曝光、显影以及固化等步骤以形成第一滤光图案52。请参照图6,由于所述第一光阻材料52是依据所述第一滤光图案52的透光光谱所选择的,因此当将所述掩模200设置于所述第一光阻材料52上方时,自然可根据所述第一光阻材料52的感光频率对所述第一光阻材料52进行曝光,以形成第一滤光图案52,所述第一滤光图案52为红色滤光图案。
步骤S4:在形成有所述黑矩阵层51以及所述第一滤光图案52的基板50上,通过所述掩模200形成第二滤光图案53,具体包括:步骤S41,清洗设置有所述黑矩阵层51以及所述第一滤光图案52的所述基板50,并且在清洗后的所述基板50上涂覆第二光阻材料53,所述第二光阻材料53的感光频率落于所述掩模的对应于所述第二滤光图案53的透光光谱的范围内;步骤S42,将涂覆有所述第二光阻材料53的所述基板50依序进行真空干燥、去掉边缘光阻、预烘烤、冷却、紫外线曝光、显影以及固化等步骤以形成第二滤光图案53。请参照图7,由于所述第二光阻材料53是依据所述第二滤光图案53的透光光谱所选择的,因此当将所述掩模200设置于所述第二光阻材料53上方时,自然可根据所述第二光阻材料53的感光频率对所述第二光阻材料53进行曝光,以形成第二滤光图案53,所述第二滤光图案53为绿色滤光图案。
步骤S5:在形成有所述黑矩阵层51、所述第一滤光图案52以及所述第二滤光图案53的基板50上,通过所述掩模200形成第三滤光图案54,具体包括:步骤S51,清洗设置有所述黑矩阵层51、所述第一滤光图案52以及所述第二滤光图案53的所述基板50,并且在清洗后的所述基板50上涂覆第三光阻材料54,所述第三光阻材料54的感光频率落于所述掩模的对应于所述第三滤光图案54的透光光谱的范围内;步骤S52,将涂覆有所述第三光阻材料54的所述基板50依序进行真空干燥、去掉边缘光阻、预烘烤、冷却、紫外线曝光、显影以及固化等步骤以形成第三滤光图案54。请参照图8,由于所述第三光阻材料54是依据所述第三滤光图案54的透光光谱所选择的,因此当将所述掩模200设置于所述第三光阻材料54上方时,自然可根据所述第三光阻材料54的感光频率对对所述第三光阻材料54进行曝光,以形成第三滤光图案54,所述第三滤光图案54为蓝色滤光图案。
需特别说明的是,在上述步骤S3至S5系通过所述掩膜提供的不同紫外线透光光谱, 在所述基板上分别形成所述第一滤光图案、所述第二滤光图案以及所述第三滤光图案,所述第一滤光图案、所述第二滤光图案以及所述第三滤光图案具有不同的颜色且直列并排在所述基板上。如图9所示,其特征在于所述第一滤光图案52、第二滤光图案53以及第三滤光图案54所共用的掩膜200在对应于所述第一滤光图案52、所述第二滤光图案53以及所述第三滤光图案54的位置上具有不同的紫外光光谱透过率,藉由根据所述第一滤光图案52、所述第二滤光图案53以及所述第三滤光图案54不同的透光光谱,选择与上述透光光谱对应的所述第一光阻材料52、所述第二光阻材料53以及所述第三光阻材料54。光阻材料选定后,自然就可确定其感光频率,因此所述第一滤光图案52、第二滤光图案53以及第三滤光图案54可适用于同一张掩膜来完成。如图10所示,其中虚线部分表示所述第一光阻材料52、所述第二光阻材料53以及所述第三光阻材料54的感光频率。由于本发明所述的第一滤光图案52、所述第二滤光图案53以及所述第三滤光图案54仅需一张掩膜来完成,相对于现有技术,无须因应不同的滤光图案而使用不同的掩膜。因此,可减少两张掩膜,在简化彩色滤光片基板制程的同时也减少彩色滤光片的制造成本。
本发明的第二优选实施例的彩色滤光片的制造方法可进一步包括:步骤S6,形成间隙层55于所述黑矩阵层51、第一滤光图案52、第二滤光图案53以及第三滤光图案54上方,所述间隙层55的主要功用为支撑两层玻璃基板与维持液晶层间距的均匀性。其方法具体可为:基板清洗、正光阻涂覆、真空干燥、去掉边缘光阻、预烘烤与冷却、紫外线曝光、显影、以及烘烤等步骤。或是在步骤S5与步骤S6之间更进一步包括:步骤S7,采用旋转涂覆或裂缝涂覆等方法,在所述基板50上形成覆盖所述黑矩阵层51、第一滤光图案52、第二滤光图案53以及第三滤光图案54的一保护层56,用于保护滤光图案以及增加表面平滑性;以及步骤S8,采用真空溅镀装置进行溅镀等方法,在所述保护层56上方形成一公用电极层57,用于与液晶设计图案电极(Pattern Electrodes)构成正负极以驱动液晶分子旋转。上述步骤S7及步骤S8亦可同时进行,即在所述基板50上同时形成覆盖所述黑矩阵层51、第一滤光图案52、第二滤光图案53以及第三滤光图案54的保护层56与公用电极层57。
请参照图11,本发明的另一优选实施例提供一种彩色滤光片10,所述彩色滤光片10可由上述制造方法所形成,其包括:基板50;多个黑矩阵51,设置于所述基板50上;多个不同颜色的滤光图案52、53、54,直列并列于所述基板50上,且每一所述滤光图案52、53、54设置于两相邻的所述黑矩阵51之间,并且可更进一步形成一间隙层55于所述黑矩阵51以及所述多个不同颜色的滤光图案52、53、54上方。
请参照图12,在本发明的另一实施例中,所述彩色滤光片10还可包括:一保护层56,设置于所述黑矩阵51与所述多个不同颜色的滤光图案52、53、54上方,并位于所述间隙层55之下;以及一公用电极层57,设置于所述保护层56以及所述间隙层55之间。
其中,所述基板50为透明玻璃基板,厚度可选自为0.7mm或以下,但不局限于此。
由于构成TFT半导体层的非晶硅体具有光导电性,因此为了维持汲极电极与源极电极之间的非导通状态,所述黑矩阵51必须能遮蔽外光以及避免TFT之光电子流,
且需具有改善色彩对比值、防止相邻的所述多个不同颜色的滤光图案52、53、54互相混色等功能,为达上述目的,所述黑矩阵51需具备低反射率,并且光学浓度3倍以上的遮光率,其厚度优选为1 µm以下,但不局限于此。
所述多个不同颜色的滤光图案52、53、54的光阻材料即为一种光刻胶,又称光致抗蚀剂,光刻胶在接受一定波长的光或者射线时,会相应的发生一种光化学反应或者激励作用。其系为由感光树脂、光增感剂和溶剂三种主要成分组成的对光敏感的混合液体,所述感光树脂经光照后,在曝光区能很快地发生光固化反应,使得光阻材料的物理性能,特别是溶解性、亲合性等发生明显变化,其具备高色纯度、高光穿透率、高旋光性与高耐热性等特性,并且其厚度一般可约为1~2µm,但不局限于此。
根据光阻材料的化学反应机理和显影原理,其可分负型光阻材料和正型光阻材料两类。当光照后形成不可溶物质时为负型光阻材料;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正型光阻材料。而本发明所述的第一光阻材料52、第二光阻材料53以及第三光阻材料54优选采用有机负型光阻材料。
并且,所述保护层56可选用环氧树脂系、聚亚酰胺树脂系、聚乙烯醇树脂或压克力树脂系等高分子材料,并且其厚度可选自为2~2.5µm左右,但不局限于此。
所述公用电极层57可以是透明导电层或金属导电层,其厚度可选自为0.15µm左右,但不局限于此。若为透明导电层可选用氧化铟锡薄膜(Indium Tin Oxide, ITO);若为金属导电层则可选用铝金属作为导电材料。然而,由于ITO具有高导电度(1~5x10-6Ωm)、高透光度及耐候性佳等优势,因此优选为透明导电层。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可做各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (11)

  1. [根据细则91更正 26.05.2014]
    一种彩色滤光片的制造方法,其特征在于, 所述制造方法包括以下步骤:
    提供一基板;
    在所述基板上形成黑矩阵层;
    在形成有所述黑矩阵层的基板上涂覆一第一光阻材料,并且通过一掩模将所述涂覆有所述第一光阻材料的所述基板进行紫外线曝光和显影,以形成至少一第一滤光图案,所述第一光阻材料的感光频率落于所述掩模的对应于所述第一滤光图案的透光光谱的范围内;
    在形成有所述黑矩阵以及所述第一滤光图案的基板上涂覆一第二光阻材料,并且通过所述掩模将涂覆有所述第二光阻材料的所述基板进行紫外线曝光和显影,以形成至少一第二滤光图案,所述第二光阻材料的感光频率落于所述掩模的对应于所述第二滤光图案的透光光谱的范围内;以及
    在形成有所述黑矩阵、所述第一滤光图案以及所述第二滤光图案的基板上涂覆一第三光阻材料,并且通过所述掩模将涂覆有所述第三光阻材料的所述基板进行紫外线曝光和显影,以形成至少一第三滤光图案,所述第三光阻材料的感光频率落于所述掩模的对应于所述第三滤光图案的透光光谱的范围内。
  2. 一种彩色滤光片的制造方法,其特征在于,所述制造方法包括以下步骤:
    提供一基板;
    在所述基板上形成黑矩阵层;
    在形成有黑矩阵层的基板上,通过一掩模形成至少一第一滤光图案;
    在形成有所述黑矩阵以及所述第一滤光图案的基板上,通过所述掩模形成至少一第二滤光图案;
    在形成有所述黑矩阵、所述第一滤光图案以及所述第二滤光图案的基板上,通过所述掩模形成至少一第三滤光图案;其中
    所述掩膜具有与所述第一滤光图案、所述第二滤光图案以及所述第三滤光图案分别对应的不同的透光光谱。
  3. 根据权利要求1所述彩色滤光片的制造方法,其特征在于,所述在所述基板上形成黑矩阵层包括:
    将一黑色光阻材料涂覆在所述基板上;
    利用紫外线曝光机,将一具有黑矩阵图案的掩模设置于所述黑色光阻材料上方,对所述黑色光阻材料进行曝光;
    利用显影剂对所述黑色光阻材料进行显影蚀刻,以形成多个黑矩阵层。
  4. 根据权利要求2所述彩色滤光片的制造方法,其特征在于,所述在所述基板上形成黑矩阵层包括:
    以蒸镀或溅镀方式于基板上形成铬或铬合金的薄膜;
    将一黑色光阻材料涂覆在所述基板上;
    利用紫外线曝光机,将一具有黑矩阵图案的掩模设置于所述黑色光阻材料上方,对所述黑色光阻材料进行曝光;
    利用显影剂对所述黑色光阻材料进行显影蚀刻;
    利用去除剂将所述黑色光阻材料去除,以形成多个黑矩阵层。
  5. 根据权利要求2所述彩色滤光片的制造方法,其特征在于,所述第一滤光图案、所述第二滤光图案以及所述第三滤光图案具有不同的颜色且直列并排在所述基板上, 所述在形成有黑矩阵层的基板上,通过一掩模形成至少一第一滤光图案包括:
    清洗设置有所述黑矩阵层的所述基板,并且在清洗后的所述基板上涂覆第一光阻材料,所述第一光阻材料的感光频率落于所述掩模的对应于所述第一滤光图案的透光光谱的范围内;
    将涂覆有所述第一光阻材料的所述基板进行紫外线曝光以及显影,以形成第一滤光图案。
  6. 根据权利要求2至5中任一项所述彩色滤光片的制造方法,其特征在于, 所述在形成有所述黑矩阵以及所述第一滤光图案的基板上,通过所述掩模形成至少一第二滤光图案包括:
    清洗设置有所述黑矩阵层以及所述第一滤光图案的所述基板,并且在清洗后的所述基板上涂覆第二光阻材料,所述第二光阻材料的感光频率落于所述掩模的对应于所述第二滤光图案的透光光谱的范围内;
    将涂覆有所述第二光阻材料的所述基板进行紫外线曝光以及显影,以形成第二滤光图案。
  7. 根据权利要求2至5中任一项所述彩色滤光片的制造方法,其特征在于,所述在形成有所述黑矩阵、所述第一滤光图案以及所述第二滤光图案的基板上,通过所述掩模形成至少一第三滤光图案包括:
    清洗设置有所述黑矩阵层、所述第一滤光图案以及所述第二滤光图案的所述基板,并且在清洗后的所述基板上涂覆第三光阻材料,所述第三光阻材料的感光频率落于所述掩模的对应于所述第三滤光图案的透光光谱的范围内;
    将涂覆有所述第三光阻材料的所述基板进行紫外线曝光以及显影,以形成第三滤光图案。
  8. 根据权利要求2所述彩色滤光片的制造方法,其特征在于,所述方法还可包括:
    在设置有所述黑矩阵层、第一滤光图案、第二滤光图案以及第三滤光图案的基板上,形成一保护层;
    在所述保护层的上方形成一公用电极层;
    在所述公用电极层上方形成一间隙层。
  9. 根据权利要求5至7中任一项所述彩色滤光片的制造方法,其特征在于,所述第一光阻材料、所述第二光阻材料以及所述第三光阻材料为有机负型光阻。
  10. 根据权利要求2至8中任一项所述彩色滤光片的制造方法,其特征在于,所述第一滤光图案、所述第二滤光图案以及所述第三滤光图案分别为红色、绿色以及蓝色滤光图案。
  11. 一种彩色滤光片,根据权利要求2所述彩色滤光片的制造方法制成,所述彩色滤光片包括:
    基板;
    多个黑矩阵,设置于所述基板上;
    多个不同颜色的滤光图案,直列并列于所述基板上且每一所述滤光图案设置于两个相邻的所述黑矩阵之间。
PCT/CN2014/077026 2014-05-04 2014-05-08 彩色滤光片及其制造方法 WO2015168900A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/384,388 US9494719B2 (en) 2014-05-04 2014-05-06 Color filter and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410184693.4 2014-05-04
CN201410184693.4A CN103984052B (zh) 2014-05-04 2014-05-04 彩色滤光片的制造方法

Publications (1)

Publication Number Publication Date
WO2015168900A1 true WO2015168900A1 (zh) 2015-11-12

Family

ID=51276093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077026 WO2015168900A1 (zh) 2014-05-04 2014-05-08 彩色滤光片及其制造方法

Country Status (2)

Country Link
CN (1) CN103984052B (zh)
WO (1) WO2015168900A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407504B (zh) * 2014-11-28 2017-01-18 南京中电熊猫液晶材料科技有限公司 彩色滤光片中拼接曝光方法
CN105182679B (zh) 2015-10-19 2020-04-21 京东方科技集团股份有限公司 掩膜板及其制作方法、利用掩膜板构图的方法、滤光片
CN106842686A (zh) * 2017-03-24 2017-06-13 惠科股份有限公司 显示面板和显示面板的制程

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470601A (ja) * 1990-07-06 1992-03-05 Konica Corp カラーフィルターの製造方法
CN1576990A (zh) * 2003-07-29 2005-02-09 友达光电股份有限公司 彩色滤光膜基板的制造方法及其结构
CN101435993A (zh) * 2007-11-15 2009-05-20 北京京东方光电科技有限公司 彩色滤光片及其制造方法
CN102213785A (zh) * 2011-06-03 2011-10-12 深圳市华星光电技术有限公司 彩色滤光片基板的制造方法、光学掩膜及光反应层
CN102854656A (zh) * 2012-09-29 2013-01-02 深圳市华星光电技术有限公司 彩色滤光基板以及其相关制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100492067C (zh) * 2005-12-22 2009-05-27 群康科技(深圳)有限公司 彩色滤光片制造方法
CN101105632A (zh) * 2006-07-12 2008-01-16 群康科技(深圳)有限公司 涂布装置和彩色滤光片制造方法
CN100593748C (zh) * 2008-05-30 2010-03-10 上海广电光电子有限公司 彩膜基板的制造方法
CN101770050A (zh) * 2008-12-26 2010-07-07 京东方科技集团股份有限公司 彩色滤光片的制造方法及设备
CN101840100A (zh) * 2009-03-18 2010-09-22 北京京东方光电科技有限公司 液晶显示装置及其彩膜基板的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470601A (ja) * 1990-07-06 1992-03-05 Konica Corp カラーフィルターの製造方法
CN1576990A (zh) * 2003-07-29 2005-02-09 友达光电股份有限公司 彩色滤光膜基板的制造方法及其结构
CN101435993A (zh) * 2007-11-15 2009-05-20 北京京东方光电科技有限公司 彩色滤光片及其制造方法
CN102213785A (zh) * 2011-06-03 2011-10-12 深圳市华星光电技术有限公司 彩色滤光片基板的制造方法、光学掩膜及光反应层
CN102854656A (zh) * 2012-09-29 2013-01-02 深圳市华星光电技术有限公司 彩色滤光基板以及其相关制作方法

Also Published As

Publication number Publication date
CN103984052B (zh) 2017-09-29
CN103984052A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5094010B2 (ja) 液晶表示装置用カラーフィルタ基板及びその製造方法
KR20090066459A (ko) 액정 표시 장치용 컬러 필터 기판 및 그 제조 방법
CN107450224B (zh) Coa型阵列基板的制备方法
WO2020118937A1 (zh) 一种黑色矩阵的制备方法及显示装置
WO2015168900A1 (zh) 彩色滤光片及其制造方法
JP2001183513A (ja) カラーフィルタおよびその製造方法、カラー液晶表示装置
JP2008083364A (ja) カラーフィルタおよびその製造方法
US9494719B2 (en) Color filter and method of making the same
KR20050104338A (ko) 포스트 스페이서 형성 방법, 포스트 스페이서, 디스플레이,액정 셀 및 포토마스크
JPH03167524A (ja) カラー液晶表示装置
KR100305443B1 (ko) 표면에윈도우형및프레임형코팅막이형성된기판의제조방법
WO2018196192A1 (zh) 阵列基板制程和阵列基板
JP4538111B2 (ja) カラー液晶表示装置製造方法
KR100442293B1 (ko) 패턴 형성방법
JP2012042645A (ja) カラーフィルタとその製造方法、カラーフィルタ基板ならびに液晶表示装置
KR20040104799A (ko) 컬러필터 기판의 제조공정이 개선된 액정표시장치 및 그제조방법
JP4369543B2 (ja) カラーフィルタおよびその製造方法
KR100412126B1 (ko) 액정표시소자의 지주 스페이서 형성방법
JP5472868B2 (ja) カラーフィルタ基板及び液晶表示装置
KR0138025B1 (ko) 액정 디스플레이용 컬러 필터의 제조방법
WO2019056507A1 (zh) 一种液晶显示面板
JP3992801B2 (ja) カラーフィルタの製造方法
CN114690476B (zh) 显示面板及其制作方法
KR20050118840A (ko) 배향막 인쇄판과 그 제조방법 및 그를 포함하는 배향막인쇄장치
KR101107707B1 (ko) 액정표시소자의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14384388

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891403

Country of ref document: EP

Kind code of ref document: A1