WO2015167114A1 - Thin film deposition device - Google Patents

Thin film deposition device Download PDF

Info

Publication number
WO2015167114A1
WO2015167114A1 PCT/KR2015/001179 KR2015001179W WO2015167114A1 WO 2015167114 A1 WO2015167114 A1 WO 2015167114A1 KR 2015001179 W KR2015001179 W KR 2015001179W WO 2015167114 A1 WO2015167114 A1 WO 2015167114A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
loop movement
thin film
gas supply
distance
Prior art date
Application number
PCT/KR2015/001179
Other languages
French (fr)
Korean (ko)
Inventor
황상수
이우진
하주일
신기조
이돈희
Original Assignee
주식회사 테스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 테스 filed Critical 주식회사 테스
Publication of WO2015167114A1 publication Critical patent/WO2015167114A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Definitions

  • the present invention relates to a thin film deposition apparatus, and more particularly, the installation area and volume are minimized by the step movement of the substrate support when the gas supply unit supplying a plurality of process gases and the substrate support unit supporting the substrate are moved relative to each other. And further relates to a thin film deposition apparatus that can maintain the quality of the thin film.
  • a deposition method for forming a thin film on a substrate such as a semiconductor wafer (hereinafter referred to as a substrate)
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the atomic layer deposition method injects a raw material gas containing a raw material such as trimethyl aluminum (TMA) on a substrate, and then inert purge such as argon (Ar)
  • TMA trimethyl aluminum
  • Ar argon
  • a single molecular layer is adsorbed onto the substrate through gas injection and unreacted material exhaust, followed by the injection of a reactant gas containing reactants such as ozone (O3) reacting with the raw material followed by inert purge gas injection and unreacted material / byproduct exhaust Through the formation of a single atomic layer (Al-O) on the substrate.
  • Conventional thin film deposition apparatus used in the atomic layer deposition method has a variety of types depending on the direction and method of injecting various gases, such as source gas, reaction gas, purge gas, etc., furthermore, the gas supply unit for supplying the gas and It may be classified according to relative movement of the substrate.
  • FIG. 9 shows a conventional thin film deposition apparatus 10 in a so-called 'scan' manner in which a substrate support for supporting a substrate moves relative to a gas supply.
  • the substrate 12 is supported by the substrate support 14 moving linearly by a predetermined distance, and a gas supply unit 20 for sequentially supplying a plurality of process gases is provided on the substrate support 14.
  • the substrate 12 moves so as not to overlap with the gas supply unit 20. . That is, the substrate 12 is moved below the gas supply part 20 to move past the gas supply part 20 so as not to overlap with the gas supply part 20. Accordingly, as shown in FIG. 9, so-called 'spare spaces S1 and S2' are required on both sides of the gas supply part 20 so that the substrate 12 does not overlap with the gas supply part 20, respectively. .
  • This preliminary space acts as a factor to increase the total volume of the thin film deposition apparatus by increasing the internal volume of the thin film deposition apparatus, and as the internal volume increases, the amount of process gas required for actually depositing a thin film increases as well. It contributed to the increase.
  • the thin film deposition can reduce the installation area by minimizing the internal volume by the relative movement of the substrate and the gas supply unit. It is an object to provide a device.
  • an object of the present invention is to provide a thin film deposition apparatus that can improve the quality of the thin film by the relative movement of the substrate and the gas supply unit.
  • an object of the present invention is to provide a thin film deposition apparatus capable of preventing foreign matter from penetrating the thin film by repeating the relative movement of the substrate and the gas supply unit step by step.
  • An object of the present invention as described above is a gas supply unit for supplying a plurality of process gases and purge gas including the source gas and the reaction gas, and at least one gas supply module for exhausting the remaining process gas or the purge gas And a substrate support part supporting a substrate and movably provided with respect to the gas supply part, wherein the substrate support part performs at least one loop movement including a plurality of stepwise forward and stepwise backward movements, and performs one loop movement.
  • the loop moving distance between the first position and the last position of the substrate is achieved by the thin film deposition apparatus, characterized in that the distance of the one gas supply module or more.
  • the step-by-step backward distance at which the substrate support makes the step backward is determined to be smaller than the step-by-step advance distance at which the substrate support moves forward step by step.
  • the step-up forward distance is 0.1 mm to 15mm
  • the step-up backward distance is determined to be smaller than the step-up forward distance
  • the substrate is linearly moved from the last position of the (m-1) (2 ⁇ m ⁇ n) loop movement to the initial position of the mth loop movement.
  • the initial position of the m-th loop movement is the same as the initial position of the (m-1) loop movement, or the initial position of the m-th loop movement is the initial position of the (m-1) loop movement. It can be moved by shift distance compared to. In this case, the shift distance may be different from the step-by-step advance distance.
  • the initial position of the m-th loop movement is the same as the initial position of the (m-1) loop movement, or the initial position of the m-th loop movement is the initial position of the (m-1) loop movement. It can be moved by shift distance compared to. In this case, the shift distance may be different from the step-by-step advance distance.
  • the gas supply unit including the at least one gas supply module may have a length greater than or equal to the diameter of the substrate.
  • the loop movement distance of the substrate is changed by one relative movement of the substrate and the gas supplier.
  • the internal volume of the thin film deposition apparatus may be minimized by minimizing the distance of the gas supply module or more. Accordingly, the installation area of the thin film deposition apparatus can be significantly reduced, and the cost can be reduced by reducing the amount of process gas required when the thin film is deposited on the substrate according to the decrease of the internal volume.
  • the initial position of the loop movement may be shifted to prevent foreign matter from penetrating along the thin film layer.
  • 1 is a schematic diagram showing one gas supply module for sequentially supplying a plurality of process gases
  • FIG. 2 is a schematic view showing a gas supply unit having a plurality of gas supply modules of FIG. 1;
  • FIG. 3 is a schematic diagram illustrating a process of advancing the substrate by step movement according to one embodiment
  • FIG. 4 is a schematic diagram illustrating a process of reversing the substrate by moving step by step
  • FIG. 5 is a conceptual diagram illustrating a thin film layer formed through the process according to FIG. 3;
  • FIG. 6 is a schematic diagram illustrating a process of advancing the substrate by step movement according to another embodiment
  • FIG. 7 is a conceptual diagram illustrating a thin film layer formed through the process according to FIG. 6;
  • FIG. 8 is a schematic diagram showing the basic concept of the atomic layer deposition method
  • FIG. 9 is a schematic view showing the structure of a conventional thin film deposition apparatus.
  • FIG. 1 illustrates at least one gas supply module 120 provided in the gas supply unit 1200 (see FIG. 2) of the thin film deposition apparatus according to the present invention.
  • the single gas supply module 120 supplies a plurality of process gases and purge gas including a source gas (first process gas) and a reaction gas (second process gas), and the remaining processes And exhaust the gas or purge gas.
  • a source gas first process gas
  • second process gas reaction gas
  • the gas supply module 120 includes a first gas supply port 124 for supplying source gas, a second gas supply port 128 for supplying reaction gas, and a purge gas supply port 122 for supplying purge gas. 126).
  • the purge gas supply holes 122 and 126 may be provided in plural numbers so as to be between the first gas supply port 124 and the second gas supply port 128 or between the first gas supply port 124 and the second gas. It may be provided on at least one side of the supply port (128).
  • the gas supply module 120 is an exhaust gas outlet 150 provided between the first gas supply port 124, the second gas supply port 128, and the purge gas supply ports 122 and 126, respectively. ) May be provided.
  • the exhaust gas outlet 150 is connected by a pumping unit (not shown) to exhaust the remaining process gas or purge gas to the outside.
  • One gas supply module 120 having the above configuration has a distance of 'D' as shown in FIG. 1. Accordingly, when the gas supply module 120 and the substrate move relative to each other, a purge gas, a source gas, and a reaction gas are sequentially supplied toward the substrate to form a thin film on the substrate by atomic layer deposition.
  • FIG. 2 illustrates a gas supply unit 1200 and a substrate 12 having at least one or more gas supply modules 120A, 120B, 120C, and 120D described above.
  • the substrate 12 may be supported by a substrate support part provided to be relatively movable with the gas supply part 1200.
  • the gas supply part 1200 is fixed, and the substrate support part at the lower side moves so that the substrate 12 is movable with respect to the gas supply part 1200.
  • the gas supply unit 1200 may include at least one gas supply module described above.
  • FIG. 2 illustrates a gas supply unit 1200 having four gas supply modules 120A, 120B, 120C, and 120D, this is only an example, and the number of gas supply modules provided in one gas supply unit 1200 is It can be adjusted appropriately.
  • the gas supply unit 1200 may be fixed and the substrate 12 may be provided to be movable with respect to the gas supply unit 1200.
  • a thin film is deposited on the substrate 12, and in order to minimize the moving distance of the substrate 12, the length of the gas supply unit 1200 including the at least one gas supply module is the length of the substrate ( 12) may be determined to be larger than the diameter (Ds). That is, when the substrate 12 moves, the length of the gas supply unit 1200 is determined to be equal to or larger than the diameter of the substrate 12 so that the substrate 12 does not protrude to both sides of the gas supply unit 1200. Done. This eliminates the need for a preliminary space on both sides of the gas supply unit as in the conventional apparatus, thereby making it possible to achieve a slimmer thin film deposition apparatus and to minimize the internal volume.
  • the substrate 12 may perform at least one loop movement including a plurality of stepwise forward and stepwise backward movements.
  • 3 is a schematic diagram illustrating a process in which the substrate 12 performs one loop movement.
  • a thin film may be formed on the substrate 12 by the loop movement, and the number of loop movements may be determined according to the thickness of the thin film formed on the substrate 12.
  • the loop moving distance L between the initial position and the last position of the substrate 12 may be determined to be equal to or greater than the distance of the one gas supply module 120.
  • the loop movement distance L may be determined to be greater than or equal to the distance D of one gas supply module 120A provided in the gas supply unit 1200. If the loop movement distance L is determined to be smaller than the distance D of one gas supply module 1200 provided in the gas supply unit 1200, even when one loop movement is completed, raw material gas or At least one of the reaction gases may not be supplied. This may generate an area in which the thin film is not formed on the substrate 12. Therefore, the loop movement distance L may be determined to be equal to or greater than a distance D of one gas supply module 1200 provided in the gas supply unit 1200 so that a region in which the thin film is not formed on the substrate 12 does not occur. Can be.
  • the substrate 12 repeatedly moves forward and backward step by step a plurality of times.
  • the 'forward' may be defined as the direction in which the substrate 12 is to move relative to the gas supply unit 1200
  • the 'reverse' may be defined as the opposite direction to the forward direction.
  • the right direction in FIG. 3 is determined as the forward direction
  • the reverse direction is determined as the reverse direction.
  • the forward and backward directions are determined according to the direction in which the substrate is to be moved and thus are not fixed and defined in any one direction.
  • the substrate 12 is positioned at the initial position at the start of one loop movement (t0), and then repeats one step forward and one step backward to finish one loop move.
  • the stepwise backward distance Lb at which the substrate support is reversed step by step is the stepwise forward distance Lf at which the substrate support is forwarded step by step. Determined smaller.
  • the substrate 12 advances first step by step forward distance Lf (t1), and then reverses first step by step backward distance Lb (t2).
  • the step forward and the step backward are repeated a plurality of times until the substrate 12 moves from the initial position by a distance corresponding to the loop movement distance L.
  • the step forward distance may be, for example, about 0.1 mm to 15 mm, and the step backward distance may be determined to be smaller than the step forward distance.
  • the step backward distance may be determined to be approximately half of the step forward distance.
  • the stepwise advance distance may be determined, for example, about 0.1 mm to 15 mm.
  • the step advancement distance (Lf) of the substrate support, the number of advancement of the step and the number of loop movement can be determined. Therefore, when the thickness of the thin film to be deposited on the substrate 12 is determined, the stepwise advance distance Lf of the substrate, the number of steps forward and the number of loop movements may be appropriately determined.
  • the loop movement is performed a plurality of times, that is, the loop movement is performed n times (n ⁇ 2, n is an integer), (m-1) (2 ⁇ m ⁇ n, m are integers) which are continuously performed.
  • the integer 'm' is used to define an individual m-th loop movement among the plurality of loop movements.
  • the substrate may move in a linear motion when moving from the last position of the (m-1) th loop movement to the initial position of the mth loop movement.
  • the (m-1) loop movement corresponds to the first loop movement, that is, the first loop movement
  • the m loop movement corresponds to the second loop movement.
  • the substrate 12 may move to the initial position P1 of the second loop movement for the subsequent second loop movement.
  • the substrate may move through linear movement as shown in FIG. 3. This is to quickly move the substrate to the initial position of the second loop movement to quickly perform the subsequent loop movement.
  • the substrate when the substrate is moved to the initial position of the m-th loop movement which is continued from the last position of the (m-1) loop movement as described above, the substrate may be moved through a plurality of step movements including step forward and step backward. have. This is to perform more efficient thin film deposition by depositing a thin film on the substrate even when the substrate is moved for continuous loop movement. Therefore, when the loop movement is performed n times (n ⁇ 2), the substrate is subjected to a plurality of times from the last position of the (m-1) (2 ⁇ m ⁇ n) loop movement to the initial position of the mth loop movement. You can move through stepping movements, including stepping forward and stepping backward.
  • FIG. 4 shows a schematic diagram for moving through a step movement including a plurality of step forward and step backwards when the substrate is moved from the last position of the first loop movement to the first position of the second loop movement. do. Since the description of the drawings of FIG. 4 is similar to the description of FIG. 3 described above, repeated description thereof will be omitted.
  • the left side is defined as the forward direction and the opposite direction is defined as the backward direction.
  • the thin film deposited on the substrate 12 may have a shape as shown in FIG. 5.
  • 5 is a schematic view in side cross-sectional view showing a thin film formed on the substrate 12.
  • a first layer 130 and a second layer 140 are formed on the substrate 12 as illustrated in FIG. 5. Since the thin film layer is formed on the substrate according to the stepwise movement of the substrate, the thin film formed on the substrate is deposited step by step parallel to the surface of the substrate as shown in FIG.
  • the intermediate sidewalls 132 and the second layer 140 of the first layer 130 deposited on the substrate 12 are stepped.
  • Stepwise intermediate sidewalls 142 are formed approximately in a straight line.
  • the foreign material 110 is formed by the so-called 'tunneling' phenomenon in which the thin film is formed along the intermediate side wall 132 of the first layer 130 and the intermediate side wall 142 of the second layer 140. It can invade inside. This leads to the deterioration of the quality of the thin film, and thus looks at another embodiment to solve the above problems.
  • FIG. 6 is a schematic diagram illustrating loop movement of a substrate according to another exemplary embodiment.
  • the loop movement according to the present embodiment has a difference in that the initial position of the m-th loop movement is shifted by a shift distance relative to the initial position of the (m-1) loop movement. have.
  • the difference will be described.
  • the initial position P2 of the second loop movement is The first position of the first loop movement and the shift distance (d) is moved.
  • the shift distance d may be determined to be different from the above-described step-by-step advance distance Lf, for example, to be smaller. This is because if the shift distance d is equal to the above-mentioned step-up distance Lf, the above-mentioned 'tunneling' phenomenon cannot be prevented.
  • the substrate starts at a position spaced apart by the shift distance d as compared with the start of the first loop movement.
  • the substrate starts at a position spaced apart by the shift distance d as compared with the start of the first loop movement.
  • FIG. 7 illustrates a case where the first layer 130 and the second layer 140 are formed on the substrate 12 by performing the loop movement twice by the method according to FIG. 6.
  • the intermediate side wall 132 and the second step wall 132 of the first layer 130 deposited on the substrate 12 are moved.
  • the stepwise intermediate side walls 142 of the layer 140 are arranged so as not to coincide with each other and to be shifted. Therefore, the 'tunneling' phenomenon shown in FIG. 5 does not occur, thereby preventing the invasion of foreign substances.
  • the method according to FIG. 6 described above is linearly moved from the last position of the substrate of the (m ⁇ 1) (2 ⁇ m ⁇ n) loop movement to the initial position of the substrate of the m th loop movement as shown in FIG. 3.
  • the present invention may be applied to a case of moving through a step movement including a plurality of step forward and step backwards.
  • the loop movement distance of the substrate is minimized to the distance of at least one gas supply module by the relative movement of the substrate and the gas supplier.
  • the installation area of the thin film deposition apparatus can be significantly reduced, and the cost can be reduced by reducing the amount of process gas required when the thin film is deposited on the substrate according to the decrease of the internal volume.
  • the initial position of the loop movement may be shifted to prevent foreign matter from penetrating along the thin film layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a thin film deposition device, and the thin film deposition device according to the present invention comprises: a gas supply unit for supplying a plurality of process gases, including a raw material gas and a reaction gas, and a purge gas, the gas supply unit having at least one gas supply module for discharging the remaining process gases or the purge gas; and a substrate support unit for supporting a substrate, the substrate support unit being configured to be able to move with regard to the gas supply unit, the thin film deposition device being characterized in that the substrate support unit performs at least one loop movement including a plurality of times of stepwise forward movements and stepwise backward movements, and the loop movement distance between the initial position of the substrate and the final position thereof, when performing the one loop movement, is equal to or larger than the distance of the one gas supply module.

Description

박막증착장치Thin film deposition apparatus
본 발명은 박막증착장치에 대한 것으로서, 보다 상세하게는 복수의 공정가스를 공급하는 가스공급부와 기판을 지지하는 기판지지부가 상대이동하는 경우에 상기 기판지지부의 단계별 이동에 의해 설치면적 및 체적을 최소화하며 나아가 박막의 품질을 유지할 수 있는 박막증착장치 에 관한 것이다.The present invention relates to a thin film deposition apparatus, and more particularly, the installation area and volume are minimized by the step movement of the substrate support when the gas supply unit supplying a plurality of process gases and the substrate support unit supporting the substrate are moved relative to each other. And further relates to a thin film deposition apparatus that can maintain the quality of the thin film.
반도체 웨이퍼 등의 기판(이하, '기판'이라 함) 상에 박막을 형성하기 위한 증착법으로 화학기상증착법(CVD ; Chemical Vapor Deposition), 원자층증착법(ALD ; Atomic Layer Deposition) 등의 기술이 사용되고 있다.As a deposition method for forming a thin film on a substrate such as a semiconductor wafer (hereinafter referred to as a substrate), techniques such as chemical vapor deposition (CVD) and atomic layer deposition (ALD) are used. .
도 8은 박막 증착법 중 원자층증착법에 관한 기본 개념을 도시하는 개략도이다. 도 8을 참조하여 원자층증착법의 기본 개념에 대해서 살펴보면, 원자층증착법은 기판 상에 트리메틸알루미늄(TMA ; TriMethyl Aluminium) 같은 원료를 포함하는 원료가스를 분사한 후, 아르곤(Ar) 등의 불활성 퍼지 가스 분사 및 미반응 물질 배기를 통해 기판상에 단일 분자층을 흡착시키고, 상기 원료와 반응하는 오존(O3) 같은 반응물을 포함하는 반응가스를 분사한 후 불활성 퍼지 가스 분사 및 미반응 물질/부산물 배기를 통해 기판상에 단일 원자층(Al-O)을 형성하게 된다.8 is a schematic view showing the basic concept of the atomic layer deposition method in the thin film deposition method. Referring to the basic concept of atomic layer deposition with reference to Figure 8, the atomic layer deposition method injects a raw material gas containing a raw material such as trimethyl aluminum (TMA) on a substrate, and then inert purge such as argon (Ar) A single molecular layer is adsorbed onto the substrate through gas injection and unreacted material exhaust, followed by the injection of a reactant gas containing reactants such as ozone (O3) reacting with the raw material followed by inert purge gas injection and unreacted material / byproduct exhaust Through the formation of a single atomic layer (Al-O) on the substrate.
원자층증착법에 사용되는 종래 박막증착장치는 원료가스, 반응가스, 퍼지가스 등의 각종 가스를 기판면에 주입하는 방향 및 방식에 따라 다양한 종류가 존재하며, 나아가, 상기 가스를 공급하는 가스공급부와 기판의 상대이동 여부에 따라 구분될 수 있다.Conventional thin film deposition apparatus used in the atomic layer deposition method has a variety of types depending on the direction and method of injecting various gases, such as source gas, reaction gas, purge gas, etc., furthermore, the gas supply unit for supplying the gas and It may be classified according to relative movement of the substrate.
도 9는 기판을 지지하는 기판지지부가 가스공급부에 대해 이동하는 소위 ‘스캔’ 방식의 종래 박막증착장치(10)를 도시한다.FIG. 9 shows a conventional thin film deposition apparatus 10 in a so-called 'scan' manner in which a substrate support for supporting a substrate moves relative to a gas supply.
기판(12)은 소정거리 직선이동하는 기판지지부(14)에 의해 지지되며, 상기 기판지지부(14)의 상부에는 복수의 공정가스를 순차적으로 공급하는 가스공급부(20)가 구비된다.The substrate 12 is supported by the substrate support 14 moving linearly by a predetermined distance, and a gas supply unit 20 for sequentially supplying a plurality of process gases is provided on the substrate support 14.
그런데, 상기와 같은 박막증착장치(10)에서는 상기 기판(12)이 상기 가스공급부(20)의 아래쪽에서 이동하는 경우에 상기 기판(12)이 상기 가스공급부(20)와 중첩되지 않도록 이동을 하였다. 즉, 상기 기판(12)이 상기 가스공급부(20)의 아래쪽에서 이동하여 상기 가스공급부(20)를 지나 상기 가스공급부(20)와 중첩되지 않도록 이동을 하였다. 따라서, 도 9에 도시된 바와 같이 상기 가스공급부(20)의 양측에 각각 상기 기판(12)이 상기 가스공급부(20)와 중첩되지 않도록 하는 소위 ‘예비공간(S1, S2)’을 필요로 하였다.However, in the thin film deposition apparatus 10 as described above, when the substrate 12 moves below the gas supply unit 20, the substrate 12 moves so as not to overlap with the gas supply unit 20. . That is, the substrate 12 is moved below the gas supply part 20 to move past the gas supply part 20 so as not to overlap with the gas supply part 20. Accordingly, as shown in FIG. 9, so-called 'spare spaces S1 and S2' are required on both sides of the gas supply part 20 so that the substrate 12 does not overlap with the gas supply part 20, respectively. .
이러한 예비공간은 상기 박막증착장치의 내부체적을 크게 하여 상기 박막증착장치의 전체 체적을 늘리는 요인으로 작용하며, 상기 내부체적이 늘어남에 따라 실제 박막을 증착하는 경우에 필요한 공정가스의 양도 증가하여 비용증가의 요인으로 작용하였다.This preliminary space acts as a factor to increase the total volume of the thin film deposition apparatus by increasing the internal volume of the thin film deposition apparatus, and as the internal volume increases, the amount of process gas required for actually depositing a thin film increases as well. It contributed to the increase.
본 발명은 상기와 같은 문제점을 해결하기 위하여 기판과 가스공급부의 상대이동에 따라 박막을 증착하는 경우에 상기 기판과 가스공급부의 단계별 상대이동에 의해 내부 체적을 최소화하여 설치면적을 줄일 수 있는 박막증착장치를 제공하는 것을 목적으로 한다.In order to solve the above problems, when the thin film is deposited according to the relative movement of the substrate and the gas supply unit, the thin film deposition can reduce the installation area by minimizing the internal volume by the relative movement of the substrate and the gas supply unit. It is an object to provide a device.
또한, 본 발명은 상기 기판과 가스공급부의 상대이동에 의해 상기 박막의 품질을 향상시킬 수 있는 박막증착장치를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a thin film deposition apparatus that can improve the quality of the thin film by the relative movement of the substrate and the gas supply unit.
또한, 본 발명은 상기 기판과 가스공급부의 단계별 상대이동을 반복하여 상기 박막으로 이물질이 침투하는 것을 방지할 수 있는 박막증착장치를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a thin film deposition apparatus capable of preventing foreign matter from penetrating the thin film by repeating the relative movement of the substrate and the gas supply unit step by step.
상기와 같은 본 발명의 목적은 원료가스와 반응가스를 포함하는 복수의 공정가스와 퍼지가스를 공급하고, 잔존하는 상기 공정가스 또는 상기 퍼지가스를 배기하는 가스공급모듈을 적어도 하나 이상 구비한 가스공급부 및 기판을 지지하며 상기 가스공급부에 대해 이동 가능하게 구비되는 기판지지부를 포함하고, 상기 기판지지부는 복수회의 단계별 전진 및 단계별 후진을 포함하는 적어도 하나의 루프이동을 수행하며, 상기 하나의 루프이동을 하는 경우에 상기 기판의 최초위치와 최후위치 사이의 루프이동거리는 상기 하나의 가스공급모듈의 거리 이상인 것을 특징으로 하는 박막증착장치에 의해 달성된다.An object of the present invention as described above is a gas supply unit for supplying a plurality of process gases and purge gas including the source gas and the reaction gas, and at least one gas supply module for exhausting the remaining process gas or the purge gas And a substrate support part supporting a substrate and movably provided with respect to the gas supply part, wherein the substrate support part performs at least one loop movement including a plurality of stepwise forward and stepwise backward movements, and performs one loop movement. In this case, the loop moving distance between the first position and the last position of the substrate is achieved by the thin film deposition apparatus, characterized in that the distance of the one gas supply module or more.
여기서, 상기 기판지지부가 상기 단계별 후진을 하는 단계별 후진거리는 상기 기판지지부가 상기 단계별 전진을 하는 단계별 전진거리보다 작도록 결정된다.Here, the step-by-step backward distance at which the substrate support makes the step backward is determined to be smaller than the step-by-step advance distance at which the substrate support moves forward step by step.
나아가, 상기 단계별 전진거리는 0.1 mm 내지 15mm 이며, 상기 단계별 후진거리는 상기 단계별 전진거리보다 작도록 결정된다.Further, the step-up forward distance is 0.1 mm to 15mm, the step-up backward distance is determined to be smaller than the step-up forward distance.
한편, 상기 루프이동을 n번(n≥2) 수행하는 경우에 상기 기판은 제 (m-1)(2≤m≤n) 루프이동의 최후위치에서 상기 제 m 루프이동의 최초위치로 직선 이동할 수 있다. 이 때, 상기 제 m 루프이동의 최초위치는 상기 제 (m-1) 루프이동의 최초위치와 동일하거나, 또는 상기 제 m 루프이동의 최초위치는 상기 제 (m-1) 루프이동의 최초위치에 비해 시프트거리만큼 이동할 수 있다. 이 경우, 상기 시프트거리는 상기 단계별 전진거리와 상이할 수 있다.On the other hand, when performing the loop movement n times (n≥2), the substrate is linearly moved from the last position of the (m-1) (2≤m≤n) loop movement to the initial position of the mth loop movement. Can be. At this time, the initial position of the m-th loop movement is the same as the initial position of the (m-1) loop movement, or the initial position of the m-th loop movement is the initial position of the (m-1) loop movement. It can be moved by shift distance compared to. In this case, the shift distance may be different from the step-by-step advance distance.
한편, 상기 루프이동을 n번(n≥2) 수행하는 경우에 상기 기판의 제 (m-1)(2≤m≤n) 루프이동의 최후위치에서 상기 제 m 루프이동의 최초위치로 복수회의 단계별 전진 및 단계별 후진을 포함하는 단계별 이동을 통해 이동할 수 있다. 이 때, 상기 제 m 루프이동의 최초위치는 상기 제 (m-1) 루프이동의 최초위치와 동일하거나, 또는 상기 제 m 루프이동의 최초위치는 상기 제 (m-1) 루프이동의 최초위치에 비해 시프트거리만큼 이동할 수 있다. 이 경우, 상기 시프트거리는 상기 단계별 전진거리와 상이할 수 있다.On the other hand, when the loop movement is performed n times (n≥2), a plurality of times from the last position of the (m-1) (2≤m≤n) loop movement of the substrate to the initial position of the mth loop movement This can be done by moving step by step, including step forward and step backward. At this time, the initial position of the m-th loop movement is the same as the initial position of the (m-1) loop movement, or the initial position of the m-th loop movement is the initial position of the (m-1) loop movement. It can be moved by shift distance compared to. In this case, the shift distance may be different from the step-by-step advance distance.
또한, 상기 적어도 하나의 가스공급모듈을 구비하는 상기 가스공급부의 길이는 상기 기판의 직경 이상일 수 있다.In addition, the gas supply unit including the at least one gas supply module may have a length greater than or equal to the diameter of the substrate.
상기와 같은 구성을 가지는 본 발명에 따르면 상기 기판과 가스공급부의 상대이동에 따라 박막을 증착하는 경우에 상기 기판과 가스공급부의 단계별 상대이동에 의해 상기 기판의 루프이동거리를 상기 가스공급부의 하나의 가스공급모듈 이상의 거리로 최소화하여 상기 박막증착장치의 내부 체적을 최소화할 수 있다. 이에 따라 상기 박막증착장치의 설치면적을 현저히 줄일 수 있으며, 상기 내부 체적의 감소에 따라 상기 기판에 박막을 증착하는 경우에 필요한 공정가스의 양도 줄여 비용을 감소시킬 수 있다.According to the present invention having the configuration described above, when the thin film is deposited according to the relative movement of the substrate and the gas supplier, the loop movement distance of the substrate is changed by one relative movement of the substrate and the gas supplier. The internal volume of the thin film deposition apparatus may be minimized by minimizing the distance of the gas supply module or more. Accordingly, the installation area of the thin film deposition apparatus can be significantly reduced, and the cost can be reduced by reducing the amount of process gas required when the thin film is deposited on the substrate according to the decrease of the internal volume.
또한, 본 발명에 따르면 상기 기판과 가스공급부의 복수의 단계별 상대이동을 포함하는 루프이동을 반복하는 경우에 상기 루프이동의 최초위치를 시프트시킴으로써, 상기 박막층을 따라 이물질이 침투하는 것을 방지할 수 있다.In addition, according to the present invention, when the loop movement including the relative movement of the plurality of stages of the substrate and the gas supply unit is repeated, the initial position of the loop movement may be shifted to prevent foreign matter from penetrating along the thin film layer. .
도 1 은 복수의 공정가스를 순차적으로 공급하는 하나의 가스공급모듈을 도시한 개략도,1 is a schematic diagram showing one gas supply module for sequentially supplying a plurality of process gases;
도 2는 상기 도 1의 가스공급모듈을 복수개 구비한 가스공급부를 도시한 개략도,2 is a schematic view showing a gas supply unit having a plurality of gas supply modules of FIG. 1;
도 3은 일 실시예에 따라 상기 기판이 단계별 이동을 하여 전진하는 과정을 도시한 개략도,3 is a schematic diagram illustrating a process of advancing the substrate by step movement according to one embodiment;
도 4는 상기 기판이 단계별 이동을 하여 후진하는 과정을 도시한 개략도,4 is a schematic diagram illustrating a process of reversing the substrate by moving step by step;
도 5는 상기 도 3에 따른 과정을 통해 형성된 박막층을 도시한 개념도,5 is a conceptual diagram illustrating a thin film layer formed through the process according to FIG. 3;
도 6은 다른 실시예에 따라 상기 기판이 단계별 이동을 하여 전진하는 과정을 도시한 개략도,6 is a schematic diagram illustrating a process of advancing the substrate by step movement according to another embodiment;
도 7은 상기 도 6에 따른 과정을 통해 형성된 박막층을 도시한 개념도,7 is a conceptual diagram illustrating a thin film layer formed through the process according to FIG. 6;
도 8은 원자층 증착법의 기본개념을 도시한 개략도,8 is a schematic diagram showing the basic concept of the atomic layer deposition method,
도 9는 종래 박막증착장치의 구성을 도시한 개략도이다.9 is a schematic view showing the structure of a conventional thin film deposition apparatus.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the invention is not limited to the embodiments described herein but may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art. Like numbers refer to like elements throughout.
도 1은 본 발명에 따른 박막증착장치의 가스공급부(1200)(도 2 참조)에 적어도 하나 이상 구비되는 하나의 가스공급모듈(120)을 도시한다.1 illustrates at least one gas supply module 120 provided in the gas supply unit 1200 (see FIG. 2) of the thin film deposition apparatus according to the present invention.
도 1을 참조하면, 상기 단일 가스공급모듈(120)은 원료가스(제1 공정가스)와 반응가스(제2 공정가스)를 포함하는 복수의 공정가스와 퍼지가스를 공급하고, 잔존하는 상기 공정가스 또는 퍼지가스를 배기하도록 구성된다. Referring to FIG. 1, the single gas supply module 120 supplies a plurality of process gases and purge gas including a source gas (first process gas) and a reaction gas (second process gas), and the remaining processes And exhaust the gas or purge gas.
구체적으로, 상기 가스공급모듈(120)은 원료가스를 공급하는 제1 가스공급구(124), 반응가스를 공급하는 제2 가스공급구(128)와 퍼지가스를 공급하는 퍼지가스공급구(122, 126)를 구비할 수 있다. 상기 퍼지가스공급구(122, 126)는 복수개로 구비될 수 있어 상기 제1 가스공급구(124)와 제2 가스공급구(128) 사이 또는 상기 제1 가스공급구(124)와 제2 가스공급구(128)의 적어도 어느 일측에 구비될 수 있다. 또한, 상기 가스공급모듈(120)은 전술한 상기 제1 가스공급구(124), 제2 가스공급구(128) 및 퍼지가스공급구(122, 126) 사이에 각각 구비되는 배기가스배출구(150)를 구비할 수 있다. 상기 배기가스배출구(150)는 펌핑부(미도시)에 의해 연결되어 잔존하는 공정가스 또는 퍼지가스를 외부로 배기한다. 상기와 같은 구성을 가지는 하나의 가스공급모듈(120)은 도 1에 도시된 바와 같이 ‘D’의 거리를 가지게 된다. 따라서, 상기 가스공급모듈(120)과 기판이 서로 상대이동을 하게 되면, 상기 기판을 향해 퍼지가스, 원료가스 및 반응가스가 순차적으로 공급되어 상기 기판 상부에 원자층 증착법에 의해 박막이 형성된다.Specifically, the gas supply module 120 includes a first gas supply port 124 for supplying source gas, a second gas supply port 128 for supplying reaction gas, and a purge gas supply port 122 for supplying purge gas. 126). The purge gas supply holes 122 and 126 may be provided in plural numbers so as to be between the first gas supply port 124 and the second gas supply port 128 or between the first gas supply port 124 and the second gas. It may be provided on at least one side of the supply port (128). In addition, the gas supply module 120 is an exhaust gas outlet 150 provided between the first gas supply port 124, the second gas supply port 128, and the purge gas supply ports 122 and 126, respectively. ) May be provided. The exhaust gas outlet 150 is connected by a pumping unit (not shown) to exhaust the remaining process gas or purge gas to the outside. One gas supply module 120 having the above configuration has a distance of 'D' as shown in FIG. 1. Accordingly, when the gas supply module 120 and the substrate move relative to each other, a purge gas, a source gas, and a reaction gas are sequentially supplied toward the substrate to form a thin film on the substrate by atomic layer deposition.
도 2는 전술한 가스공급모듈(120A, 120B, 120C, 120D)을 적어도 하나 이상 구비한 가스공급부(1200) 및 기판(12)을 도시한다. 도 2에 도시되지 않았지만, 상기 기판(12)은 상기 가스공급부(1200)와 상대이동 가능하게 구비되는 기판지지부에 의해 지지될 수 있다. 이하에서는 상기 가스공급부(1200)가 고정되고, 하부의 상기 기판지지부가 이동하여 상기 기판(12)이 상기 가스공급부(1200)에 대해 이동가능하도록 구비되는 것으로 설명한다.2 illustrates a gas supply unit 1200 and a substrate 12 having at least one or more gas supply modules 120A, 120B, 120C, and 120D described above. Although not shown in FIG. 2, the substrate 12 may be supported by a substrate support part provided to be relatively movable with the gas supply part 1200. Hereinafter, it will be described that the gas supply part 1200 is fixed, and the substrate support part at the lower side moves so that the substrate 12 is movable with respect to the gas supply part 1200.
도 2를 참조하면, 가스공급부(1200)는 전술한 가스공급모듈을 적어도 하나 이상 구비할 수 있다. 도 2에서는 4개의 가스공급모듈(120A, 120B, 120C, 120D)을 구비한 가스공급부(1200)를 도시하지만, 이는 일예에 불과하며 하나의 가스공급부(1200)에 구비되는 가스공급모듈의 숫자는 적절하게 조절될 수 있다. Referring to FIG. 2, the gas supply unit 1200 may include at least one gas supply module described above. Although FIG. 2 illustrates a gas supply unit 1200 having four gas supply modules 120A, 120B, 120C, and 120D, this is only an example, and the number of gas supply modules provided in one gas supply unit 1200 is It can be adjusted appropriately.
그런데, 본 발명에서는 예를 들어 상기 가스공급부(1200)가 고정되고 상기 기판(12)이 상기 가스공급부(1200)에 대해 이동 가능하도록 구비될 수 있다. 이 경우, 상기 기판(12) 상부에 박막이 증착되며, 나아가 상기 기판(12)의 이동거리를 최소화하기 위하여 상기 적어도 하나의 가스공급모듈을 구비하는 상기 가스공급부(1200)의 길이는 상기 기판(12)의 직경(Ds) 이상으로 결정될 수 있다. 즉, 상기 기판(12)이 이동을 하는 경우에 상기 기판(12)이 상기 가스공급부(1200)의 양측으로 돌출하지 않도록 상기 가스공급부(1200)의 길이를 상기 기판(12)의 직경 이상으로 결정하게 된다. 이에 의해 종래 장치와 같이 가스공급부의 양측으로 예비공간을 필요로 하지 않게 되어 박막증착장치의 슬림화와 더불어, 내부 체적의 최소화를 달성할 수 있게 된다.However, in the present invention, for example, the gas supply unit 1200 may be fixed and the substrate 12 may be provided to be movable with respect to the gas supply unit 1200. In this case, a thin film is deposited on the substrate 12, and in order to minimize the moving distance of the substrate 12, the length of the gas supply unit 1200 including the at least one gas supply module is the length of the substrate ( 12) may be determined to be larger than the diameter (Ds). That is, when the substrate 12 moves, the length of the gas supply unit 1200 is determined to be equal to or larger than the diameter of the substrate 12 so that the substrate 12 does not protrude to both sides of the gas supply unit 1200. Done. This eliminates the need for a preliminary space on both sides of the gas supply unit as in the conventional apparatus, thereby making it possible to achieve a slimmer thin film deposition apparatus and to minimize the internal volume.
한편, 본 발명에서 상기 기판지지부에 의해 상기 기판(12)은 복수회의 단계별 전진 및 단계별 후진을 포함하는 적어도 하나의 루프이동을 수행할 수 있다. 도 3은 상기 기판(12)이 하나의 루프 이동을 수행하는 과정을 도시한 개략도이다.Meanwhile, in the present invention, the substrate 12 may perform at least one loop movement including a plurality of stepwise forward and stepwise backward movements. 3 is a schematic diagram illustrating a process in which the substrate 12 performs one loop movement.
도 3을 참조하면, 상기 루프이동에 의해 상기 기판(12) 위에 박막이 형성될 수 있으며, 상기 기판(12)에 형성되는 박막의 두께에 따라 상기 루프이동의 횟수가 결정될 수 있다. 이때, 상기 하나의 루프이동을 하는 경우에 상기 기판(12)의 최초위치와 최후위치 사이의 루프이동거리(L)는 상기 하나의 가스공급모듈(120)의 거리 이상으로 결정될 수 있다.Referring to FIG. 3, a thin film may be formed on the substrate 12 by the loop movement, and the number of loop movements may be determined according to the thickness of the thin film formed on the substrate 12. In this case, when the loop is moved, the loop moving distance L between the initial position and the last position of the substrate 12 may be determined to be equal to or greater than the distance of the one gas supply module 120.
상기 기판(12)이 하나의 루프이동을 마치는 경우에 상기 루프이동의 시작 시에 상기 기판(12)의 최초위치(t0의 위치)와 최후위치(t17의 위치) 사이의 거리, 즉 루프이동거리(L)는 가스공급부(1200)에 구비된 하나의 가스공급모듈(120A)의 거리(D) 이상으로 결정될 수 있다. 만약, 상기 루프이동거리(L)가 가스공급부(1200)에 구비된 하나의 가스공급모듈(1200)의 거리(D)보다 작게 결정된다면, 하나의 루프이동을 마치는 경우에도 상기 기판에 원료가스 또는 반응가스 중에 적어도 하나가 공급되지 않을 수 있다. 이는 상기 기판(12)에 박막이 형성되지 않는 영역을 발생시킬 수 있게 된다. 따라서, 상기 루프이동거리(L)는 상기 기판(12)에 박막이 형성되지 않는 영역이 생기지 않도록 상기 가스공급부(1200)에 구비된 하나의 가스공급모듈(1200)의 거리(D) 이상으로 결정될 수 있다.When the substrate 12 finishes one loop movement, the distance between the initial position (position t0) and the last position (position t17) of the substrate 12 at the start of the loop movement, that is, the loop movement distance L may be determined to be greater than or equal to the distance D of one gas supply module 120A provided in the gas supply unit 1200. If the loop movement distance L is determined to be smaller than the distance D of one gas supply module 1200 provided in the gas supply unit 1200, even when one loop movement is completed, raw material gas or At least one of the reaction gases may not be supplied. This may generate an area in which the thin film is not formed on the substrate 12. Therefore, the loop movement distance L may be determined to be equal to or greater than a distance D of one gas supply module 1200 provided in the gas supply unit 1200 so that a region in which the thin film is not formed on the substrate 12 does not occur. Can be.
도 3을 참조하면, 상기 기판(12)은 복수회의 단계별 전진과 단계별 후진을 반복하여 이동하게 된다. 여기서, 상기 ‘전진’은 상기 가스공급부(1200)에 대해 상기 기판(12)이 이동하고자 하는 방향으로 정의될 수 있으며, 상기 ‘후진’은 상기 전진 방향의 반대방향으로 정의될 수 있다. 도 3에서 상기 기판(12)은 도면의 오른쪽으로 이동하고자 하므로 도 3에서 오른쪽 방향이 전진방향, 그 반대방향이 후진방향으로 결정된다. 상기 전진 및 후진 방향은 상기 기판이 이동하고자 하는 방향에 따라 결정되므로 어느 하나의 방향으로 고정되어 정의되지 않는다.Referring to FIG. 3, the substrate 12 repeatedly moves forward and backward step by step a plurality of times. Here, the 'forward' may be defined as the direction in which the substrate 12 is to move relative to the gas supply unit 1200, the 'reverse' may be defined as the opposite direction to the forward direction. In FIG. 3, since the substrate 12 is intended to move to the right side of the drawing, the right direction in FIG. 3 is determined as the forward direction, and the reverse direction is determined as the reverse direction. The forward and backward directions are determined according to the direction in which the substrate is to be moved and thus are not fixed and defined in any one direction.
상기 기판(12)이 하나의 루프이동의 시작 시(t0)에 최초 위치에 위치하며, 이후 반복적인 단계별 전진과 단계별 후진을 반복하여 하나의 루프이동을 마치게 된다. 이 경우, 상기 기판은 종국에는 전진을 하여 원하는 방향으로 이동을 해야 하므로, 상기 기판지지부가 상기 단계별 후진을 하는 단계별 후진거리(Lb)는 상기 기판지지부가 상기 단계별 전진을 하는 단계별 전진거리(Lf)보다 작게 결정된다.The substrate 12 is positioned at the initial position at the start of one loop movement (t0), and then repeats one step forward and one step backward to finish one loop move. In this case, since the substrate eventually moves forward in the desired direction by moving forward, the stepwise backward distance Lb at which the substrate support is reversed step by step is the stepwise forward distance Lf at which the substrate support is forwarded step by step. Determined smaller.
상기 최초위치에서 상기 기판(12)은 단계별 전진거리(Lf)만큼 제1 단계별 전진을 하게 되며(t1), 이어서 단계별 후진거리(Lb)만큼 제1 단계별 후진을 하게 된다(t2).At the initial position, the substrate 12 advances first step by step forward distance Lf (t1), and then reverses first step by step backward distance Lb (t2).
이어서, 상기 기판(12)이 최초 위치에서 루프이동거리(L)에 해당하는 거리만큼 이동할 때까지 상기 단계별 전진 및 단계별 후진을 복수회 반복하게 된다. 이 경우, 상기 단계별 전진거리는 예를 들어 대략 0.1 mm 내지 15mm 이며, 상기 단계별 후진거리는 상기 단계별 전진거리보다 작도록 결정될 수 있다. 예를 들어, 상기 단계별 후진거리는 상기 단계별 전진거리의 대략 절반으로 결정될 수 있다. 한편, 본 발명자의 실험에 따르면 상기 단계별 전진거리가 15mm보다 크게 결정되면 기판(12)에 증착되는 박막에 줄무늬가 형성되어 박막의 품질이 저하되는 것을 발견하였으며, 반면에 상기 단계별 전진거리가 0.1mm보다 작게 결정되면 기판(12)에 복수의 층이 증착되는 경우에 상하부 층의 ‘터널링(tunneling)’ 효과에 의해 박막 외부의 이물질이 용이하게 침투할 수 있음을 발견하였다. 상기 ‘터널링’ 현상에 대해서는 이후에 상세히 설명한다. 따라서, 본 실시예에서 상기 단계별 전진거리는 예를 들어 대략 0.1 mm 내지 15mm로 결정될 수 있다.Subsequently, the step forward and the step backward are repeated a plurality of times until the substrate 12 moves from the initial position by a distance corresponding to the loop movement distance L. FIG. In this case, the step forward distance may be, for example, about 0.1 mm to 15 mm, and the step backward distance may be determined to be smaller than the step forward distance. For example, the step backward distance may be determined to be approximately half of the step forward distance. On the other hand, according to the experiments of the present inventors, when the stepping distance is determined to be larger than 15mm, streaks are formed in the thin film deposited on the substrate 12, the quality of the thin film was found to decrease, while the stepping distance is 0.1mm When it is determined to be smaller, it has been found that when a plurality of layers are deposited on the substrate 12, foreign matters outside the thin film may easily penetrate due to the 'tunneling' effect of the upper and lower layers. The 'tunneling' phenomenon will be described in detail later. Therefore, in the present embodiment, the stepwise advance distance may be determined, for example, about 0.1 mm to 15 mm.
한편, 상기 기판(12)에 증착하고자 하는 박막의 두께에 따라 상기 기판지지부의 상기 단계별 전진거리(Lf), 상기 단계별 전진 횟수와 상기 루프이동의 횟수가 결정될 수 있다. 따라서, 상기 기판(12)에 증착하고자 하는 박막의 두께가 결정되는 경우에 상기 기판의 단계별 전진거리(Lf), 상기 단계별 전진 횟수와 상기 루프이동의 횟수가 적절히 결정될 수 있다.On the other hand, according to the thickness of the thin film to be deposited on the substrate 12, the step advancement distance (Lf) of the substrate support, the number of advancement of the step and the number of loop movement can be determined. Therefore, when the thickness of the thin film to be deposited on the substrate 12 is determined, the stepwise advance distance Lf of the substrate, the number of steps forward and the number of loop movements may be appropriately determined.
한편, 상기 루프이동을 복수회, 즉 상기 루프이동을 n번(n≥2, n은 정수) 수행하는 경우에, 연속하여 수행되는 제(m-1)(2≤m≤n, m은 정수) 루프이동과 제m 루프이동에서 상기 기판의 움직임을 살펴보면 다음과 같다. 즉, 상기 루프이동을 n번 수행하는 경우에, 정수‘m’은 상기 복수회의 루프이동 중에서 개별적인 제m 루프이동을 정의하기 위해 사용된다.On the other hand, in the case where the loop movement is performed a plurality of times, that is, the loop movement is performed n times (n≥2, n is an integer), (m-1) (2≤m≤n, m are integers) which are continuously performed. Looking at the movement of the substrate in the loop movement and the m-th loop movement as follows. That is, in the case where the loop movement is performed n times, the integer 'm' is used to define an individual m-th loop movement among the plurality of loop movements.
본 실시예에서, 상기 기판은 제(m-1) 루프이동의 최후위치에서 제m 루프이동의 최초위치로 이동하는 경우에 직선운동으로 이동할 수 있다.In the present embodiment, the substrate may move in a linear motion when moving from the last position of the (m-1) th loop movement to the initial position of the mth loop movement.
예를 들어, 상기 ‘n’이 ‘2’의 값을 가지는 경우, 즉 상기 루프이동을 2회 반복하는 경우를 상정해본다. 이 경우, ‘m’은 2의 값을 가지게 된다. 상기 ‘m’이 ‘2’의 값을 가지는 경우, 제 (m-1) 루프이동은 제1 루프이동, 즉 최초 루프이동에 해당하며, 제m 루프이동은 제2 루프이동에 해당되어, 상기 제(m-1) 루프이동에 연속하여 수행되는 루프이동에 해당된다. 나아가, 도 3에 도시된 루프이동이 제1 루프이동이라고 가정할 때, 상기 제1 루프이동에서 상기 기판(12)의 최후위치는 ‘t17’의 위치에 해당한다. 이 경우, 이어지는 제2 루프이동을 위하여 상기 기판(12)은 제2 루프이동의 최초위치(P1)로 이동할 수 있다. 이와 같이 제1 루프이동의 최후위치에서 제2 루프이동의 최초위치로 이동하는 경우에 상기 기판은 도 3에 도시된 바와 같이 직선이동을 통해 이동할 수 있다. 상기 기판을 신속히 제2 루프이동의 최초위치로 이동시켜 후속하는 루프이동을 재빨리 실행하기 위함이다.For example, suppose that 'n' has a value of '2', that is, the loop is repeated twice. In this case, ‘m’ will have a value of 2. When the 'm' has a value of '2', the (m-1) loop movement corresponds to the first loop movement, that is, the first loop movement, and the m loop movement corresponds to the second loop movement. Corresponds to the loop movement performed continuously in the (m-1) th loop movement. Further, assuming that the loop movement illustrated in FIG. 3 is the first loop movement, the last position of the substrate 12 in the first loop movement corresponds to the position of 't17'. In this case, the substrate 12 may move to the initial position P1 of the second loop movement for the subsequent second loop movement. As such, when the substrate moves from the last position of the first loop movement to the first position of the second loop movement, the substrate may move through linear movement as shown in FIG. 3. This is to quickly move the substrate to the initial position of the second loop movement to quickly perform the subsequent loop movement.
그런데, 상기와 같이 제(m-1) 루프이동의 최후위치에서 이어지는 제m 루프이동의 최초위치로 상기 기판을 이동시키는 경우에 복수회의 단계별 전진 및 단계별 후진을 포함하는 단계별 이동을 통해 이동시킬 수 있다. 이는 연속하는 루프이동을 위하여 상기 기판을 이동시키는 경우에도 상기 기판에 박막을 증착시킴으로써 좀더 효율적인 박막증착을 수행하기 위함이다. 따라서, 상기 루프이동을 n번(n≥2) 수행하는 경우에 상기 기판이 제 (m-1)(2≤m≤n) 루프이동의 최후위치에서 상기 제 m 루프이동의 최초위치로 복수회의 단계별 전진 및 단계별 후진을 포함하는 단계별 이동을 통해 이동할 수 있게 된다.However, when the substrate is moved to the initial position of the m-th loop movement which is continued from the last position of the (m-1) loop movement as described above, the substrate may be moved through a plurality of step movements including step forward and step backward. have. This is to perform more efficient thin film deposition by depositing a thin film on the substrate even when the substrate is moved for continuous loop movement. Therefore, when the loop movement is performed n times (n ≧ 2), the substrate is subjected to a plurality of times from the last position of the (m-1) (2 ≦ m ≦ n) loop movement to the initial position of the mth loop movement. You can move through stepping movements, including stepping forward and stepping backward.
예를 들어, 도 4는 제1 루프이동의 최후위치에서 이어지는 제2 루프이동의 최초위치로 상기 기판을 이동시키는 경우에 복수회의 단계별 전진 및 단계별 후진을 포함하는 단계별 이동을 통해 이동시키는 개략도를 도시한다. 상기 도 4의 도면에 대한 설명은 전술한 도 3의 설명과 유사하므로 반복적인 설명은 생략한다. 다만, 도 4에서는 왼쪽이 전진방향으로 정의되고, 그 반대방향이 후진방향으로 정의될 것이다.For example, FIG. 4 shows a schematic diagram for moving through a step movement including a plurality of step forward and step backwards when the substrate is moved from the last position of the first loop movement to the first position of the second loop movement. do. Since the description of the drawings of FIG. 4 is similar to the description of FIG. 3 described above, repeated description thereof will be omitted. In FIG. 4, the left side is defined as the forward direction and the opposite direction is defined as the backward direction.
그런데, 전술한 도 3 및 도 4에서는 상기 제 m 루프이동의 최초위치가 상기 제 (m-1) 루프이동의 최초위치와 동일한 경우를 상정하여 설명한다. 즉, 제1 루프이동의 최초위치와 제2 루프이동의 최초위치가 동일하게 결정된다. 이 경우, 상기 기판(12)에 증착되는 박막은 도 5와 같은 형태를 가질 수 있다. 도 5는 기판(12) 상부에 형성되는 박막을 도시한 측단면도 형태의 개략도이다.3 and 4, the case where the initial position of the m-th loop movement is the same as the initial position of the (m-1) loop movement will be described. That is, the initial position of the first loop movement and the initial position of the second loop movement are determined to be the same. In this case, the thin film deposited on the substrate 12 may have a shape as shown in FIG. 5. 5 is a schematic view in side cross-sectional view showing a thin film formed on the substrate 12.
도 5를 참조하면, 예를 들어 2회의 루프이동을 수행한 경우에 상기 기판(12) 상부에는 도 5에 도시된 바와 같이 제1 층(130)과 제2 층(140)이 형성된다. 상기 기판의 단계별 이동에 따라 상기 기판에 박막층이 형성되므로, 상기 기판에 형성되는 박막은 도 5에 도시된 바와 같이 기판의 표면에 평행하게 단계별로 증착된다.Referring to FIG. 5, for example, when two loop movements are performed, a first layer 130 and a second layer 140 are formed on the substrate 12 as illustrated in FIG. 5. Since the thin film layer is formed on the substrate according to the stepwise movement of the substrate, the thin film formed on the substrate is deposited step by step parallel to the surface of the substrate as shown in FIG.
이 때, 상기 제1 루프이동과 제2 루프이동의 최초위치가 동일하게 되므로, 상기 기판(12)에 증착되는 제1 층(130)의 단계별 중간측벽(132)과 제2 층(140)의 단계별 중간측벽(142)이 대략 일직선상에 형성된다. 이 경우, 소위 ‘터널링(tunneling)’ 현상에 의해 이물질(110)이 상기 제1 층(130)의 단계별 중간측벽(132)과 제2 층(140)의 단계별 중간측벽(142)을 따라 박막의 내부로 침입할 수 있다. 이는 박막의 품질 저하로 이어지게 되므로 이하 상기와 같은 문제점을 해결하는 다른 실시예를 살펴본다.At this time, since the first positions of the first loop movement and the second loop movement are the same, the intermediate sidewalls 132 and the second layer 140 of the first layer 130 deposited on the substrate 12 are stepped. Stepwise intermediate sidewalls 142 are formed approximately in a straight line. In this case, the foreign material 110 is formed by the so-called 'tunneling' phenomenon in which the thin film is formed along the intermediate side wall 132 of the first layer 130 and the intermediate side wall 142 of the second layer 140. It can invade inside. This leads to the deterioration of the quality of the thin film, and thus looks at another embodiment to solve the above problems.
도 6은 다른 실시예에 따른 기판의 루프이동을 도시한 개략도이다. 전술한 도 3의 루프이동과 비교하여 본 실시예에 따른 루프이동은 상기 제 m 루프이동의 최초위치가 상기 제 (m-1) 루프이동의 최초위치에 비해 시프트거리만큼 이동된다는 점에서 차이가 있다. 이하, 차이점을 중심으로 살펴본다.6 is a schematic diagram illustrating loop movement of a substrate according to another exemplary embodiment. Compared to the loop movement of FIG. 3 described above, the loop movement according to the present embodiment has a difference in that the initial position of the m-th loop movement is shifted by a shift distance relative to the initial position of the (m-1) loop movement. have. Hereinafter, the difference will be described.
도 6을 참조하면, 예를 들어 제1 루프이동이 종료되는 시점(t17)의 최후위치에서 제2 루프이동의 최초위치로 기판이 이동하는 경우에 상기 제2 루프이동의 최초위치(P2)는 상기 제1 루프이동의 최초위치와 시프트거리(d)만큼 이동된다. 이 경우, 상기 시프트거리(d)는 전술한 단계별 전진거리(Lf)와 상이하도록 결정되며, 예를 들어 더 작도록 결정될 수 있다. 상기 시프트거리(d)가 전술한 단계별 전진거리(Lf)와 동일하다면 전술한 ‘터널링’ 현상을 방지할 수 없기 때문이다.Referring to FIG. 6, for example, when the substrate moves from the last position at the time t17 when the first loop movement ends to the first position of the second loop movement, the initial position P2 of the second loop movement is The first position of the first loop movement and the shift distance (d) is moved. In this case, the shift distance d may be determined to be different from the above-described step-by-step advance distance Lf, for example, to be smaller. This is because if the shift distance d is equal to the above-mentioned step-up distance Lf, the above-mentioned 'tunneling' phenomenon cannot be prevented.
즉, 제2 루프이동의 시작 시에 상기 기판은 상기 제1 루프이동의 시작 시와 비교하여 시프트거리(d)만큼 이격된 위치에서 시작하게 된다. 이와 같이 각 루프이동을 반복하는 경우에 각 루프이동의 최초위치를 시프트거리만큼 이격시키게 되면 전술한 이물질의 침입을 방지할 수 있게 된다.That is, at the start of the second loop movement, the substrate starts at a position spaced apart by the shift distance d as compared with the start of the first loop movement. As described above, in the case of repeating each loop movement, if the initial position of each loop movement is spaced apart by the shift distance, it is possible to prevent the intrusion of the above-mentioned foreign matter.
도 7은 전술한 도 6에 의해 따른 방법에 의해 2회 루프이동을 수행하여, 상기 기판(12) 상부에 제1 층(130)과 제2 층(140)이 형성된 경우를 도시한다. 이 경우, 전술한 바와 같이 제1 루프이동과 제2 루프이동의 최초위치가 시프트거리만큼 이격되므로, 상기 기판(12)에 증착되는 제1 층(130)의 단계별 중간측벽(132)과 제2 층(140)의 단계별 중간측벽(142)이 서로 일치하지 않고 어긋나도록 배열된다. 따라서, 도 5에서 살펴본 ‘터널링’ 현상이 발생하지 않게 되어 외부의 이물질의 침입을 막을 수 있게 된다.FIG. 7 illustrates a case where the first layer 130 and the second layer 140 are formed on the substrate 12 by performing the loop movement twice by the method according to FIG. 6. In this case, as described above, since the initial positions of the first loop movement and the second loop movement are spaced apart by the shift distance, the intermediate side wall 132 and the second step wall 132 of the first layer 130 deposited on the substrate 12 are moved. The stepwise intermediate side walls 142 of the layer 140 are arranged so as not to coincide with each other and to be shifted. Therefore, the 'tunneling' phenomenon shown in FIG. 5 does not occur, thereby preventing the invasion of foreign substances.
전술한 도 6에 따른 방법은 도 3과 같이 제 (m-1)(2≤m≤n) 루프이동의 상기 기판의 최후위치에서 상기 제 m 루프이동의 상기 기판의 최초위치로 직선 이동하는 경우 또는 복수회의 단계별 전진 및 단계별 후진을 포함하는 단계별 이동을 통해 이동하는 경우에 모두 적용될 수 있다.The method according to FIG. 6 described above is linearly moved from the last position of the substrate of the (m−1) (2 ≦ m ≦ n) loop movement to the initial position of the substrate of the m th loop movement as shown in FIG. 3. Alternatively, the present invention may be applied to a case of moving through a step movement including a plurality of step forward and step backwards.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Although the present specification has been described with reference to preferred embodiments of the invention, those skilled in the art may variously modify and change the invention without departing from the spirit and scope of the invention as set forth in the claims set forth below. It could be done. Therefore, it should be seen that all modifications included in the technical scope of the present invention are basically included in the scope of the claims of the present invention.
본 발명에 따르면 기판과 가스공급부의 상대이동에 따라 박막을 증착하는 경우에 상기 기판과 가스공급부의 단계별 상대이동에 의해 상기 기판의 루프이동거리를 상기 가스공급부의 하나의 가스공급모듈 이상의 거리로 최소화하여 상기 박막증착장치의 내부 체적을 최소화할 수 있다. 이에 따라 상기 박막증착장치의 설치면적을 현저히 줄일 수 있으며, 상기 내부 체적의 감소에 따라 상기 기판에 박막을 증착하는 경우에 필요한 공정가스의 양도 줄여 비용을 감소시킬 수 있다.According to the present invention, when the thin film is deposited according to the relative movement of the substrate and the gas supplier, the loop movement distance of the substrate is minimized to the distance of at least one gas supply module by the relative movement of the substrate and the gas supplier. In order to minimize the internal volume of the thin film deposition apparatus. Accordingly, the installation area of the thin film deposition apparatus can be significantly reduced, and the cost can be reduced by reducing the amount of process gas required when the thin film is deposited on the substrate according to the decrease of the internal volume.
또한, 본 발명에 따르면 상기 기판과 가스공급부의 복수의 단계별 상대이동을 포함하는 루프이동을 반복하는 경우에 상기 루프이동의 최초위치를 시프트시킴으로써, 상기 박막층을 따라 이물질이 침투하는 것을 방지할 수 있다.In addition, according to the present invention, when the loop movement including the relative movement of the plurality of stages of the substrate and the gas supply unit is repeated, the initial position of the loop movement may be shifted to prevent foreign matter from penetrating along the thin film layer. .

Claims (12)

  1. 원료가스와 반응가스를 포함하는 복수의 공정가스와 퍼지가스를 공급하고, 잔존하는 상기 공정가스 또는 상기 퍼지가스를 배기하는 가스공급모듈을 적어도 하나 이상 구비한 가스공급부; 및A gas supply unit for supplying a plurality of process gases and purge gases including a source gas and a reaction gas, and at least one gas supply module configured to exhaust the remaining process gases or the purge gas; And
    기판을 지지하며 상기 가스공급부에 대해 이동 가능하게 구비되는 기판지지부;를 포함하고,And a substrate support part supporting a substrate and movably provided with respect to the gas supply part.
    상기 기판지지부는 복수회의 단계별 전진 및 단계별 후진을 포함하는 적어도 하나의 루프이동을 수행하며, 상기 하나의 루프이동을 하는 경우에 상기 기판의 최초위치와 최후위치 사이의 루프이동거리는 상기 하나의 가스공급모듈의 거리 이상인 것을 특징으로 하는 박막증착장치.The substrate support performs at least one loop movement including a plurality of step forward and step backward movements, and the loop movement distance between the initial position and the last position of the substrate is one gas supply when the one loop movement is performed. Thin film deposition apparatus, characterized in that more than the distance of the module.
  2. 제1항에 있어서,The method of claim 1,
    상기 기판지지부가 상기 단계별 후진을 하는 단계별 후진거리는 상기 기판지지부가 상기 단계별 전진을 하는 단계별 전진거리보다 작은 것을 특징으로 하는 박막증착장치.Thin film deposition apparatus, characterized in that the step-by-step backward distance of the substrate support to the step-by-step backward is smaller than the step-by-step forward distance of the step-by-step forward.
  3. 제2항에 있어서, The method of claim 2,
    상기 단계별 전진거리는 0.1 mm 내지 15mm 이며, 상기 단계별 후진거리는 상기 단계별 전진거리보다 작은 것을 특징으로 하는 박막증착장치.The advance step distance is 0.1 mm to 15mm, the step backward distance is a thin film deposition apparatus, characterized in that less than the step advance distance.
  4. 제1항에 있어서,The method of claim 1,
    상기 루프이동을 n번(n≥2) 수행하는 경우에 When the loop movement is performed n times (n≥2)
    상기 기판은 제 (m-1)(2≤m≤n) 루프이동의 최후위치에서 상기 제 m 루프이동의 최초위치로 직선 이동하는 것을 특징으로 하는 박막증착장치.And the substrate is linearly moved from the last position of the (m-1) (2 ≦ m ≦ n) loop movement to the initial position of the m th loop movement.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제 m 루프이동의 최초위치는 상기 제 (m-1) 루프이동의 최초위치와 동일한 것을 특징으로 하는 박막증착장치.The initial position of the m-th loop movement is the same as the initial position of the (m-1) loop movement thin film deposition apparatus.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 제 m 루프이동의 최초위치는 상기 제 (m-1) 루프이동의 최초위치에 비해 시프트거리만큼 이동한 것을 특징으로 하는 박막증착장치.And the initial position of the m-th loop movement is shifted by a shift distance compared to the initial position of the (m-1) loop movement.
  7. 제6항에 있어서,The method of claim 6,
    상기 시프트거리는 상기 단계별 전진거리와 상이한 것을 특징으로 하는 박막증착장치.The shift distance is thin film deposition apparatus, characterized in that different from the advance step distance.
  8. 제1항에 있어서,The method of claim 1,
    상기 루프이동을 n번(n≥2) 수행하는 경우에 When the loop movement is performed n times (n≥2)
    상기 기판의 제 (m-1)(2≤m≤n) 루프이동의 최후위치에서 상기 제 m 루프이동의 최초위치로 복수회의 단계별 전진 및 단계별 후진을 포함하는 단계별 이동을 통해 이동하는 것을 특징으로 하는 박막증착장치.Moving from the last position of the (m-1) (2 ≤ m ≤ n) loop movement of the substrate to a first position of the m-th loop movement by a step movement including a plurality of step forward and step backward movements; Thin film deposition apparatus.
  9. 제8항에 있어서,The method of claim 8,
    상기 제 m 루프이동의 최초위치는 상기 제 (m-1) 루프이동의 최초위치와 동일한 것을 특징으로 하는 박막증착장치.The initial position of the m-th loop movement is the same as the initial position of the (m-1) loop movement thin film deposition apparatus.
  10. 제8항에 있어서,The method of claim 8,
    상기 제 m 루프이동의 최초위치는 상기 제 (m-1) 루프이동의 최초위치에 비해 시프트거리만큼 이동한 것을 특징으로 하는 박막증착장치.And the initial position of the m-th loop movement is shifted by a shift distance compared to the initial position of the (m-1) loop movement.
  11. 제10항에 있어서,The method of claim 10,
    상기 시프트거리는 상기 단계별 전진거리와 상이한 것을 특징으로 하는 박막증착장치.The shift distance is thin film deposition apparatus, characterized in that different from the advance step distance.
  12. 제1항에 있어서,The method of claim 1,
    상기 적어도 하나의 가스공급모듈을 구비하는 상기 가스공급부의 길이는 상기 기판의 직경 이상인 것을 특징으로 하는 박막증착장치.?The gas supply unit having the at least one gas supply module is a thin film deposition apparatus, characterized in that the length of the substrate or more.
PCT/KR2015/001179 2014-05-02 2015-02-05 Thin film deposition device WO2015167114A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0053197 2014-05-02
KR1020140053197A KR101533610B1 (en) 2014-05-02 2014-05-02 Thin film deposition apparatus

Publications (1)

Publication Number Publication Date
WO2015167114A1 true WO2015167114A1 (en) 2015-11-05

Family

ID=53789131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001179 WO2015167114A1 (en) 2014-05-02 2015-02-05 Thin film deposition device

Country Status (4)

Country Link
KR (1) KR101533610B1 (en)
CN (2) CN204714899U (en)
TW (1) TWI561673B (en)
WO (1) WO2015167114A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533610B1 (en) * 2014-05-02 2015-07-06 주식회사 테스 Thin film deposition apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080035735A (en) * 2006-10-20 2008-04-24 삼성전자주식회사 Equipment for plasma enhanced chemical vapor deposition
KR20100023330A (en) * 2008-08-21 2010-03-04 에이피시스템 주식회사 Substrate processing system and method
KR101099191B1 (en) * 2008-08-13 2011-12-27 시너스 테크놀리지, 인코포레이티드 Vapor deposition reactor and method for forming thin film using the same
KR101347046B1 (en) * 2013-02-04 2014-01-06 주식회사 테스 Thin film deposition apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011042949A1 (en) * 2009-10-05 2011-04-14 株式会社島津製作所 Surface wave plasma cvd device and film-forming method
US8771791B2 (en) * 2010-10-18 2014-07-08 Veeco Ald Inc. Deposition of layer using depositing apparatus with reciprocating susceptor
US20120225191A1 (en) * 2011-03-01 2012-09-06 Applied Materials, Inc. Apparatus and Process for Atomic Layer Deposition
KR101533610B1 (en) * 2014-05-02 2015-07-06 주식회사 테스 Thin film deposition apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080035735A (en) * 2006-10-20 2008-04-24 삼성전자주식회사 Equipment for plasma enhanced chemical vapor deposition
KR101099191B1 (en) * 2008-08-13 2011-12-27 시너스 테크놀리지, 인코포레이티드 Vapor deposition reactor and method for forming thin film using the same
KR20100023330A (en) * 2008-08-21 2010-03-04 에이피시스템 주식회사 Substrate processing system and method
KR101347046B1 (en) * 2013-02-04 2014-01-06 주식회사 테스 Thin film deposition apparatus

Also Published As

Publication number Publication date
TWI561673B (en) 2016-12-11
KR101533610B1 (en) 2015-07-06
CN105018901A (en) 2015-11-04
CN204714899U (en) 2015-10-21
TW201542869A (en) 2015-11-16
CN105018901B (en) 2017-11-28

Similar Documents

Publication Publication Date Title
EP2000008B1 (en) Atomic layer deposition system and method for coating flexible substrates
US20100221426A1 (en) Web Substrate Deposition System
US8182608B2 (en) Deposition system for thin film formation
TW200934886A (en) Deposition system for thin film formation
WO2011027987A2 (en) Gas-discharging device and substrate-processing apparatus using same
KR20120056878A (en) Vapor deposition reactor for forming thin film on curved surface
CN102560421B (en) Method and system for thin film deposition
WO2015167114A1 (en) Thin film deposition device
WO2017222348A1 (en) Organic-inorganic thin film deposition apparatus and organic-inorganic thin film deposition method
KR101521813B1 (en) Ald equipment for roll to roll type
WO2018190696A1 (en) Gas supply module for atomic layer deposition
WO2016010185A1 (en) Thin film deposition apparatus and method
WO2017222350A1 (en) Gas module for atomic layer deposition apparatus, atomic layer deposition apparatus, and atomic layer deposition method using same
KR20130021262A (en) Multiple evaporation system sharing an evaporator
KR101887192B1 (en) A roll-to-roll type apparatus for depositing a atomic layer
KR101728765B1 (en) Layer-forming device and layer-forming method
KR20150071724A (en) Atomic layer deposition apparatus
WO2015142131A1 (en) Multi-type deposition apparatus and thin-film forming method using same
WO2015072690A1 (en) Atomic layer deposition apparatus and method
KR101372310B1 (en) Ald equipment for roll to roll type and ald method
KR101372309B1 (en) Ald equipment for roll to roll type and ald method
JP2010541000A (en) Manufacturing method of color filter array
CN117248192A (en) Substrate processing apparatus including improved exhaust structure
WO2020060182A1 (en) Apparatus for depositing atomic layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785405

Country of ref document: EP

Kind code of ref document: A1