WO2015142131A1 - Multi-type deposition apparatus and thin-film forming method using same - Google Patents

Multi-type deposition apparatus and thin-film forming method using same Download PDF

Info

Publication number
WO2015142131A1
WO2015142131A1 PCT/KR2015/002783 KR2015002783W WO2015142131A1 WO 2015142131 A1 WO2015142131 A1 WO 2015142131A1 KR 2015002783 W KR2015002783 W KR 2015002783W WO 2015142131 A1 WO2015142131 A1 WO 2015142131A1
Authority
WO
WIPO (PCT)
Prior art keywords
process chamber
substrate
chamber
atomic layer
layer deposition
Prior art date
Application number
PCT/KR2015/002783
Other languages
French (fr)
Korean (ko)
Inventor
김운태
Original Assignee
김운태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김운태 filed Critical 김운태
Publication of WO2015142131A1 publication Critical patent/WO2015142131A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32366Localised processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32743Means for moving the material to be treated for introducing the material into processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32788Means for moving the material to be treated for extracting the material from the process chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32899Multiple chambers, e.g. cluster tools

Definitions

  • the present invention relates to a multi-type deposition apparatus and a method for forming a thin film using the same.
  • ALD atomic layer deposition
  • a process chamber and a process chamber for an atomic layer deposition process capable of separating and combining upper and lower portions are possible.
  • the present invention relates to a multi-type atomic layer deposition apparatus and method in which a plurality of process modules composed of vacuum chambers for maintaining a vacuum space in a stacked form are arranged in a stacked form.
  • a method of depositing a thin film having a predetermined thickness on a substrate such as a semiconductor substrate or glass includes physical vapor deposition (PVD) using physical collision, such as sputtering, and chemical reaction using a chemical reaction.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • This atomic layer deposition method is similar to the general chemical vapor deposition method in that it uses a chemical reaction between gas molecules. However, unlike conventional CVD in which a plurality of gas molecules are simultaneously injected into a process chamber to deposit a reaction product generated on a substrate, an atomic layer deposition method is heated by injecting a gas containing one source material into the process chamber. The difference is that the product is deposited by chemical reaction between the source materials at the substrate surface by chemisorbing to the substrate and then injecting a gas containing another source material into the process chamber.
  • the atomic layer deposition method described above is a thin film bag for replacing a conventional glass bag in an AMOLED display, a barrier film of a flexible substrate, a buffer layer for photovoltaics, and a ferroelectric for semiconductors (high).
  • -k can be used to form high dielectric materials for capacitors or aluminum (Al), copper (Cu) wiring diffusion barriers (TiN, TaN, etc.) and the like.
  • the atomic layer deposition method is a process in which the sheet-fed, batch and substrates used in plasma enhanced chemical vapor deposition (PECVD) are transported to the bottom of the small reactor, or the method is carried out by the scan reactor to transport the substrate. have.
  • PECVD plasma enhanced chemical vapor deposition
  • the single sheet method is processed after the input of one substrate, and consists of a moving susceptor for input / export and heating of the substrate, a diffuser (mainstream of the showerhead type) and an exhaust part for process gas input and diffusion.
  • the chamber is very thick to prevent deformation of the process chamber and the periphery according to the external atmospheric pressure during vacuum formation, and the internal volume is required when constructing the equipment for the large-area substrate due to the need for a gate valve for loading / exporting the substrate and distinguishing the process area.
  • the batch type process which processes several substrates at the same time has a large volume of atomic layer deposition equipment, so that the raw material precursors and the reaction precursors require a lot of maintenance costs and low productivity. At the same time, the process is performed.
  • this batch type is partially applied to the solar cell process, there is a problem that simultaneous film formation is performed not only on the front side of the substrate but also on the back side, the uniformity and reproducibility of the thin film on a plurality of substrates, and one process compartment according to the unclear classification of the process area. Even when contamination occurs, there is a problem in that the entire ultra large chamber needs to be cleaned.
  • the scanning reactor method is a method in which a plurality of small reactors corresponding to the length of one side of the substrate in the vacuum chamber are disposed so that the substrate or the small reactor is reciprocated to form a film. Difficulties in controlling the gas flow of the reactor are known to have low productivity due to particle issues and long deposition times.
  • a plurality of process modules each of which has a separate vacuum forming and pressure control vacuum chamber as a basic unit, are disposed in the form of a plurality of process chambers that can separate and combine the upper and lower parts, and each unit process.
  • the process chamber and the vacuum chamber of the module are implemented to have only the minimum space for the optimal process, and the atomic layer deposition process can be performed simultaneously in the process chambers in the multiple process modules, thereby reducing the amount of raw material precursors and reaction precursors.
  • a multi-atomic layer deposition apparatus and method in which an atomic layer deposition target substrate or mask is in close contact with an upper process chamber or a lower process chamber in an optimized process chamber can prevent film formation on the back side of a substrate and simultaneously form two substrates.
  • the present invention described above is a multi-type atomic layer deposition apparatus, wherein a process module having a process chamber and a vacuum chamber as a minimum unit has an upper process chamber and a lower process chamber, and is loaded or unloaded when a substrate to be subjected to an atomic layer deposition process is formed.
  • the process chamber is separated from the upper process chamber and the lower process chamber, the process chamber for combining the upper process chamber and the lower process chamber to form a sealed reaction space during the deposition process on the substrate, at least one or more of the process
  • At least two vacuum chambers which support the chambers in a vertically stacked form and maintain or vacuum the space of the process chamber are included.
  • the upper process chamber is fixed to the vacuum chamber
  • the lower process chamber is characterized in that it is coupled to or separated from the upper process chamber by moving up and down in the vacuum chamber.
  • the upper process chamber may include a gas supply unit that supplies a process gas or purge gas to the sealed reaction space on one side of the upper process chamber, and exhausts the gas supplied to the sealed reaction space. A part is provided on the other side of the upper process chamber.
  • the gas supply unit characterized in that formed in the outer or central portion on the side or the upper surface of the upper process chamber.
  • an electrode for plasma generation is formed on the lower surface of the upper process chamber.
  • the electrode is characterized in that the coupling and detachment with the insulator and the power inlet contact portion of the upper process chamber by the detachable device of the upper process chamber.
  • an electrode for generating plasma may be formed at an introduction portion of the gas supply unit through which the process gas or the purge gas is introduced into the closed reaction space.
  • the electrode may be surrounded by an insulator so as to be insulated from the upper process chamber.
  • the gas supply unit may be formed as a diffusion space or a showerhead diffuser for uniform gas flow in the side or central portion of the upper process chamber, so that the process gas may be perpendicular or horizontal to the substrate in the sealed reaction space. It characterized in that the injection of the purge gas.
  • the vacuum chamber is characterized in that it comprises a guide unit for supporting or carrying in / carrying out by stacking the process chamber in the inner space of the vacuum chamber.
  • the vacuum chamber may include fixing means for fixing the upper process chamber and transfer means for moving the lower process chamber up and down.
  • the present invention is a stacked atomic layer deposition method, the step of loading a substrate and a mask in the process chamber, and when the substrate and mask is loaded, the upper process chamber and the lower process chamber of the process chamber is combined and sealed reaction Forming a space, and performing an atomic layer deposition process on the substrate in a closed reaction space.
  • the stacked atomic layer deposition method is characterized in that when the atomic layer deposition process is completed, the upper process chamber and the lower process chamber is separated, the substrate is unloaded.
  • the atomic layer deposition process is characterized in that carried out simultaneously in the process chamber in the two or more process modules.
  • the atomic layer deposition process is characterized in that performed separately in the process chamber for each vacuum chamber unit in the two or more process modules.
  • the upper process chamber is fixed to the vacuum chamber
  • the lower process chamber is characterized in that it is coupled to or separated from the upper process chamber by moving up and down by a transfer means provided in the vacuum chamber.
  • the performing of the atomic layer deposition process may include supplying a raw material precursor to the substrate in the reaction space through a gas supply part formed at one upper surface of the process chamber, and adsorbing the raw material precursor onto the substrate. And exhausting the raw material precursor that has not been adsorbed onto the substrate by supplying purge gas to the substrate through the gas supply unit, and supplying the reaction precursor to the substrate through the gas supply unit after exhausting the raw material precursor.
  • At least one of the raw material precursor, the reaction precursor, the purge gas is characterized in that the supply or exhaust through the shared gas pipe.
  • At least one of the raw material precursor, the reaction precursor, and the purge gas may be supplied through a gas supply part formed as a diffusion space or a shower head diffuser for uniform gas flow in the side or the center of the upper process chamber, It is characterized in that the injection in the vertical or horizontal direction to the substrate.
  • reaction precursor when supplied to the substrate, generating a plasma in the lower surface of the upper process chamber corresponding to the substrate or the inlet connected to the reaction space, and chemical reaction of the reaction precursor and the raw material precursor using the plasma Forming an atomic layer thin film through the reaction is characterized in that it further comprises.
  • a process module having one or more process chambers housed inside at least two or more stacked vacuum chambers is independently an atomic layer in the process chambers housed in each vacuum chamber.
  • the combination of the optimized process module can be performed simultaneously in each process chamber has the advantage that can significantly improve the productivity.
  • the volume optimization in the process chamber reduces the adsorption time of the precursor, the reaction time of the precursor and the purge time, thereby improving productivity, and increasing the precursor, reaction precursor, and purge.
  • reducing the consumption of gas has the advantage of reducing the cost of the atomic layer deposition process.
  • the separate external vacuum chamber configuration can simplify the process chamber and reduce the weight, thereby reducing the maintenance cost of the atomic layer deposition equipment and increasing the convenience of maintenance.
  • the atomic layer deposition target substrate in the optimized process chamber is in close contact with the upper process chamber or the lower process chamber has the advantage of preventing the film deposition on the back of the substrate.
  • FIG. 1 is a block diagram of an atomic layer deposition apparatus according to an embodiment of the present invention
  • FIG. 2 is a three-dimensional perspective view of an atomic layer deposition apparatus according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional structure of an atomic layer deposition equipment according to an embodiment of the present invention, individual transfer and alignment device or simultaneous transfer and alignment device configuration diagram
  • FIG. 4 is a three-dimensional perspective view of a process chamber according to an embodiment of the present invention.
  • FIG. 5 is a detailed cross-sectional structural view of a process chamber according to an embodiment of the present invention.
  • FIG. 6 is a schematic configuration diagram of a cross-sectional structure of a process chamber according to an embodiment of the present invention in which a process gas crosses or moves on a substrate, and a plasma process is possible;
  • FIG. 7 is a schematic configuration diagram of a process chamber and purge gas and an exhaust part as a cross-sectional structure of a process chamber according to an exemplary embodiment of the present invention, and a multi-part deposition process using plasma;
  • FIG. 7 is a schematic configuration diagram of a process chamber and purge gas and an exhaust part as a cross-sectional structure of a process chamber according to an exemplary embodiment of the present invention, and a multi-part deposition process using plasma;
  • FIG. 8 is a cross-sectional configuration diagram of a process chamber according to an embodiment of the present invention.
  • the process module 1300 of the atomic layer deposition apparatus 1000 includes a plurality of vacuum chambers 1100 and the vacuum chamber ( At least one process chamber 1200 in 1100 may be included.
  • the process module 1300 is a heterogeneous thin film deposition, such as A or B, or each of the unit process modules 1300, each of which can be individually configured to control pressure and atmosphere, or have different processes such as ALD and CVD having different deposition pressures and deposition rates. Applicability is also easy to optimize the process of various combinations, and it is possible to maximize the use efficiency of the device is possible by the maintenance per unit process module (1300).
  • the process chamber 1200 is implemented as a chamber capable of performing an atomic layer deposition process on a substrate, each having an independent space, and at least one or more stacked in a vertical direction to form an external vacuum chamber 1100. Is accommodated in.
  • the process chamber 1200 is moved up and down by the upper process chamber 1210 and the transfer unit provided in the vacuum chamber 1100 when the position is fixed in the vacuum chamber 1100 is coupled to the upper process chamber 1210 or It may be composed of a separate lower process chamber 1220.
  • the process chamber 1200 is configured to be separated or combined into the upper process chamber 1210 and the lower process chamber 1220 as described above to ensure only the space for the optimal atomic layer deposition process to ensure the volume of the atomic layer deposition apparatus It can be designed to minimize the.
  • the process chamber 1200 may enter and exit the vacuum chamber 1100 in conjunction with the guide portion 1204 installed on the upper or side surfaces of the vacuum chamber 1100, and may be introduced into a reference position in the vacuum chamber 1100. It is possible to fix by adjusting the guide portion 1204 in the state.
  • the vacuum chamber 1100 has a multi-stage support portion 1202, a guide portion 1204, and the like, in which at least one or more process chambers can be loaded in a vertical direction, and maintains a vacuum state to process chamber 1200. Allow atomic layer deposition process to take place.
  • FIG. 2 is a three-dimensional perspective view showing the configuration of the atomic layer deposition apparatus 1000 and the process module 1300 according to the embodiment of the present invention described above.
  • a unit process module 1300 comprising a process chamber 1200 including an upper process chamber 1210 and a lower process chamber 1220 and at least two vacuum chambers 1100 including at least one process chamber. It is composed of a plurality of process modules 1300 are stacked.
  • a buffer space 1101 is configured to minimize deformation due to the difference.
  • FIG. 4 shows a detailed cross-sectional structure of a process chamber according to an embodiment of the present invention.
  • the lower process chamber 1220 is moved downward to load the substrate 1010 and the mask 1020 into the process chamber 1200, and the process chamber is opened.
  • the substrate 1010 and the mask 1020 are moved to a process chamber in a state in which the lower process chamber 1220 is moved from the upper process chamber 1210 to the lower portion in the vertical direction by the transfer unit 1110.
  • the substrate support 1015 and the mask support 1017 inside the 1200 are sequentially loaded.
  • the upper process chamber 1210 of the process chamber 1200 is fixed to and supported by the vacuum chamber 1100
  • the lower process chamber 1220 is supported by the conveying unit 1110 provided in the vacuum chamber 1100. It can be moved up and down in the vertical direction with respect to 1100.
  • the lower process chamber 1220 is raised by the transfer unit 1110, and the substrate 1010 and As the mask 1020 is sequentially seated in the lower process chamber 1220, the lower process chamber 1220 is finally coupled to the upper process chamber 1210.
  • the loading of the substrate 1010 and the mask 1020 may be performed separately for each process chamber 1200, or may be simultaneously performed in a state in which a plurality of process chambers 1200 in the vacuum chamber 1100 are opened. have.
  • the lower process chamber 1220 is raised by the transfer unit 1110 so that the lower process chamber 1220 becomes the upper process chamber ( By coupling to the 1210, an independent space of the process chamber 1200 may be formed.
  • the required gas is introduced into the process gas supply unit 1212 as the process proceeds, thereby providing a substrate 1010.
  • An atomic layer deposition process may be performed.
  • the lower process chamber 1220 is moved by the transfer unit 1110.
  • An unloading operation is performed in which the upper process chamber 1210 and the lower process chamber 1220 are separated by being lowered and carried out to the outside of the process chamber 1200 with respect to the substrate 1010 on which the process is completed in such an unloading state. You lose.
  • a gas supply part 1212 and an exhaust part 1211 may be formed on an upper surface of the upper process chamber 1210.
  • the gas supply part 1212 may be formed in a round tube shape at the center of both sides of the upper process chamber 1210.
  • the gas supplied from the gas supply unit 1212 is formed on the lower surface of the upper process chamber 1210 including an internal diffusion region to ensure a uniform flow of process gas on the entire surface on the substrate.
  • a mask support 1017 for seating the mask 1020 and a substrate support 1015 for seating the substrate 1010 may be formed on an upper surface of the lower process chamber 1220.
  • the mask 1020 and the substrate 1010 are loaded to be seated on the mask support 1017 and the substrate support 1015, respectively, and then in an independent space in the process chamber generated when the lower process chamber and the upper process chamber are combined. Will be located.
  • the lower surface of the lower process chamber, the height limit of the mask support 1017 and the substrate support 1015, the connection portion 1018 for stable support is formed, and the support hole of the lower process chamber and the Separate sealing parts such as O-rings and bellows can be added between the supports.
  • a mask using an image information processing (vision) apparatus for accurately securing and mounting the substrate 1020 and the mask 1020. It can be configured to enable accurate alignment by configuring the control unit portion that can control the left and right, front and rear, rotation of the unit or the substrate unit.
  • a lower surface of the upper process chamber 1210 constitutes a mask support portion 1017 for seating the mask 1020 and a substrate support portion 1015 for seating the substrate 1010 to form the upper process chamber 1210. Can be formed on the substrate and the substrate of the lower process chamber 1220 at the same time.
  • FIG. 5 is an exploded three-dimensional perspective view of the process chamber according to another embodiment of the present invention, a gas supply unit shows a three-dimensional perspective view of the process chamber formed by the showerhead method.
  • a gas supply part 1212 and an exhaust part 1211 may be formed on an upper surface of the upper process chamber 1210.
  • the gas supply part 1212 may be formed on the upper side or the side of the upper process chamber 1210.
  • a showerhead type diffuser 1312 is formed on a lower surface of the upper process chamber 1210 for spraying a process gas for spraying the gas supplied from the gas supply unit 1212 onto the entire surface of the substrate.
  • a mask support 1017 for seating the mask 1020 and a substrate support 1015 for seating the substrate 1010 may be formed on an upper surface of the lower process chamber 1220.
  • the mask 1020 and the substrate 1010 are loaded to be seated on the mask support 1017 and the substrate support 1015, and then a process generated when the lower process chamber 1220 and the upper process chamber 1210 are combined. It is located in an independent space in the chamber 1200.
  • a connection portion 1018 is formed on the lower surface of the lower process chamber 1220 to fix the mask support 1017 and the substrate support 1015 to the process chamber 1200.
  • FIG. 6 is a cross-sectional structure of a process chamber according to an exemplary embodiment of the present invention and illustrates a schematic configuration in which process gas is injected in a cross flow or moving wave manner on a substrate.
  • an atomic layer includes a raw material precursor, a reaction precursor, and a purge gas from a side surface of the upper process chamber 1210 to the substrate 1010 located inside the process chamber 1200 through the gas supply unit 1212. It supplies sequentially according to the order of the deposition process, and shows a structure to exhaust the process gas or purge gas used in each process through the gas exhaust unit 1211 formed on the other side of the upper process chamber 1210 have.
  • the raw material precursor (TMA, etc.) supplied to the gas supply unit 1212 passes through a solid or wavy region in which one side of the upper process chamber 1210 is easily diffused, and then the one of the substrate 1010. It is uniformly supplied to the side surface, and thus, an adsorption reaction occurs on the upper surface of the substrate 1010 seated in the lower process chamber 1220.
  • the purge gas Ar, O 2 , N 2 , N 2 O, etc.
  • the purge gas Ar, O 2 , N 2 , N 2 O, etc.
  • the purge gas is supplied to the gas supply unit 1212 again to remove all remaining reactive precursors that do not bond with the raw material precursors on the substrate 1010.
  • the atomic layer thin film on the substrate 1010 is formed to have a desired thickness through a repeating process using the above-described four-step process as one cycle.
  • a susceptor function may be performed by providing a heater function to the lower process chamber 1220 to enable temperature control of the substrate 1010.
  • the lower part may be prevented from generating particles due to gas leakage to the outside of the process chamber 1200 due to incomplete coupling of the process chamber 1200.
  • a basic sealing part 1221 and an additional sealing part 1222 may be configured on the outer side of the process chamber 1220, and a surface contact forming part for perfect surface contact between the upper process chamber 1210 and the lower process chamber 1220. It can also be configured additionally.
  • the gas supply unit ( The raw material precursor is supplied through 1212, and the raw material precursor supplied through the gas supply unit 1212 is sprayed onto the substrate 1010 to be subjected to the atomic layer deposition process so that a single molecular layer of the raw material precursor is provided on the substrate 1010.
  • the raw material precursor is sufficiently injected onto the substrate 1010, physical adsorption that is physically coupled onto the substrate 1010 by supplying a purge gas to the gas supply unit 1212 in the second step of the atomic layer deposition process.
  • the bond with the substrate 1010 is separated by the purge gas to be exhausted through the gas exhaust unit 1211 to obtain a single molecular layer of the precursor precursor.
  • the raw material precursor when the raw material precursor is injected onto the substrate 1010, the raw material precursor is chemically or physically adsorbed onto the surface of the substrate 1010 to form a thin film. In this state, the inert purge gas is transferred to the substrate 1010.
  • the precursor precursor of the physical adsorption layer which has a relatively weak bonding force, is separated from the substrate 1010 and exhausted, but is chemically bonded to the substrate 1010 through covalent bonding to provide a relatively strong bonding force compared to the physical adsorption layer.
  • the raw material precursor of the chemisorption layer is not separated.
  • the reaction precursor is supplied through the gas supply unit 1212 to inject the reaction precursor onto the substrate 1010.
  • the reaction precursor sprayed on the substrate 1010 reacts with the raw material precursor adsorbed on the substrate 1010 to form an atomic layer thin film.
  • the purge gas is supplied through the gas supply unit 1212 to supply excess gas on the substrate 1010. Remove precursor or physisorption molecules.
  • the atomic layer thin film is formed on the substrate 1010 by a desired thickness through an iterative process using the above four-step atomic layer deposition process as one cycle.
  • the gas supply unit 1212 is formed on one side of the process chamber 1200, and the process gas is described by way of example, which is injected by the cross flow or moving wave method on the substrate.
  • the gas supply unit 1212 may be formed in a shower head type on the upper process chamber 1210 so that the precursor is sprayed perpendicularly to the surface of the substrate 1010.
  • an electrode 1313 for forming plasma is disposed in the center of the upper process chamber 1210, and an insulator 1314 is formed between the electrode 1313 and the upper process chamber 1210 to form the upper process chamber 1210.
  • the structure which prevents a short between the electrodes 1313 is shown.
  • the raw material precursor is supplied to the gas supply unit 1212 and uniformly supplied to one side of the substrate 1010, and thus the upper layer of the substrate 1010 seated in the lower process chamber 1220. At this point, adsorption reaction occurs.
  • the purge gas is supplied to the gas supply part 1212 to discharge the raw material precursor remaining on the substrate 1010 to the gas exhaust part 1211.
  • the reaction precursor is supplied to the gas supply unit 1212 and sprayed onto the substrate, and then, power is supplied to the electrode 1313 to generate a plasma 1030 directly onto the substrate 1010 to generate a plasma 1030.
  • the atomic layer thin film is formed through the chemical reaction between the raw material precursor and the reaction precursor by.
  • the plasma 1030 is supplied when the raw material precursor on the substrate 1010 is completely removed by supplying a purge gas including the reaction precursor. May be formed to form a film.
  • a structure in which the gas supply unit 1212 has a separate electrode 1313 and the insulator 1314 may be configured.
  • a raw material precursor, a reaction precursor, and a purge gas are sequentially disposed in an order of the atomic layer deposition process through the gas supply unit 1212 to the substrate 1010 located inside the process chamber 1200 outside the upper process chamber 1210.
  • the gas supply unit 1211 may be configured to supply a process gas or purge gas used in each process through the gas exhaust unit 1211 formed at the center of the upper process chamber 1210.
  • the process proceeds while the gas supply unit 1212 and the gas exhaust unit 1211 are shared with the substrate or the blank mask 1050 which can be periodically replaced by the robot while minimizing contamination of the upper process chamber 1210. It is possible.
  • the raw material precursor, the reaction precursor, and the purge gas are transferred to the substrate 1010 located in the process chamber 1200 through the shower head diffuser 1312 formed at the center of the upper process chamber 1210.
  • the gas exhaust unit 1211 formed on both sides of the upper process chamber 1210 may be configured to exhaust the process gas or purge gas used in each process. .
  • the exhaust region adjacent to the substrate 1010 may be composed of both ends or the entire four sides of the substrate 1010, and improves the uniformity of flow such as a corrugated shape, a wavy shape, a hole diffuser, and a slit diffuser in a predetermined region of the exhaust path.
  • the exhaust entry portion may be disposed as close as possible to the substrate 1010 to minimize contamination of unnecessary areas other than the substrate 1010 requiring film formation.
  • a gap insulator between the electrode 1413 and the showerhead diffuser 1312 in addition to the insulator 1314 may be used to prevent the risk of damage to the lower layer.
  • 1414 may be further configured to generate a plasma 1030 only between the electrode 1413 and the diffuser 1312 to supply radicals through dissociation of the reaction precursor, thereby not damaging the substrate 1010. It can be configured to be formed.
  • FIG. 7 is a cross-sectional structure of a process chamber 1200 according to another embodiment of the present invention.
  • the upper process chamber 1210 is applied to the large area substrate 1010.
  • At least two regions may be divided to perform an atomic layer deposition process for each region, and the raw material precursor, the reaction precursor, and the purge gas may be sequentially disposed on the substrate 1010 for each region in the order of the atomic layer deposition process.
  • the structure to supply is shown.
  • each atomic layer deposition process unit 1340 has a gas supply unit 1312 for supplying a process gas to the substrate 1010 in each region, the process gas or purge gas used in each process on the outer periphery
  • the structure which has the gas exhaust part 1311 for exhausting the gas is shown.
  • the shower head-type diffuser, the central hole diffuser, the slit-type diffuser, etc. to form a uniform gas flow as possible, and the process proceeds using a direct plasma or an indirect plasma generated by supplying power to each diffuser.
  • a purge gas supply unit 1412 for additionally supplying purge gas to the boundary position may be provided to form a closed loop in connection with the gas exhaust unit 1311, so that the boundary between each divided region may be more clearly realized.
  • the shower head type diffuser and the center hole diffuser may be configured.
  • FIG. 8 is a detailed cross-sectional structure of a process chamber 1200 according to an exemplary embodiment of the present invention, and a schematic configuration for controlling a deposition region of a substrate 1010 and a driving gas 1415 is used without applying a mask 1020.
  • the schematic configuration for adjusting the height of the gap between the upper process chamber 1200 and the lower process chamber 1220, and the schematic configuration for implementing the removable electrode (1313) is shown.
  • a gas supply unit 1312 for supplying a process gas onto the substrate 1010 and a purge gas supply unit 1412 on the other side thereof, and a gas exhaust unit 1311 for exhausting the process gas and the purge gas in the center thereof.
  • the deposition material 1 is deposited, and the deposition material 2 is deposited in another process module or another process device and then reloaded. Expandable deposition is possible to completely cover the outer side of the film forming portion, thereby completely sealing each layer of the deposition material.
  • the basic sealing part 1221 is configured with a device part 1416 capable of adjusting the displacement according to the pressure having a membrane-like function, thereby easily increasing the height of the gap between the upper process chamber 1210 and the lower process chamber 1220. It can be adjusted to enable various process applications.
  • the detachable device part 1315 of the electrode 1313 formed in the upper process chamber 1210 is configured to easily carry the electrode 1313 into the substrate using a vertical transfer robot or a lower process chamber 1220. And since it is possible to carry out, a separate maintenance time for cleaning after a long process can be omitted, thereby increasing productivity.
  • a plurality of unit process chambers for the atomic layer deposition process capable of separating and combining the upper and lower portions are arranged in a stacked form, and the plurality of process chambers arranged in the stacked form.

Abstract

In the present invention, a plurality of process modules, each having a process chamber and a vacuum chamber as a basic unit, are disposed in a stacked form, wherein the process chamber has upper and lower process chambers that can be separated from and coupled to each other, and the vacuum chamber is separately disposed outside the process chamber to form a vacuum and adjust pressure. Further, the process chamber and the vacuum chamber of each unit process module are implemented to have a minimum space in which an optimal process can be performed, and atomic layer deposition processes can be simultaneously performed in the process chambers of the plurality of process modules. Therefore, the amount of used source and reactant precursors can be reduced, and a process time can be minimized, thereby achieving cost reduction and productivity enhancement, and a process or maintenance can be independently performed for each process module, thereby easily increasing extensibility in the operation of the apparatus. In addition, a substrate or a mask subjected to atomic layer deposition is brought close to the upper or lower process chamber within the optimized process chamber, thereby preventing a film from being formed on the backside of the substrate, and simultaneously forming films on two substrates.

Description

[규칙 제26조에 의한 보정 02.05.2015] 멀티형 증착 장치 및 이를 이용한 박막 형성 방법[Calibration by Rule 26.05.2015] 26Multi-type deposition apparatus and thin film formation method using the same
본 발명은 멀티형 증착 장치 및 이를 이용한 박막 형성 방법에 관한 것으로, 특히 원자층 증착(Atomic Layer Deposition : ALD)에 있어서, 상부 및 하부의 분리 및 결합이 가능한 원자층 증착 공정을 위한 공정챔버와 공정쳄버의 공간을 진공상태로 유지시키는 진공쳄버로 구성된 공정모듈이 적층 형태로 다수개 배치한 멀티형 타입의 원자층 증착 장치 및 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-type deposition apparatus and a method for forming a thin film using the same. In particular, in atomic layer deposition (ALD), a process chamber and a process chamber for an atomic layer deposition process capable of separating and combining upper and lower portions are possible. The present invention relates to a multi-type atomic layer deposition apparatus and method in which a plurality of process modules composed of vacuum chambers for maintaining a vacuum space in a stacked form are arranged in a stacked form.
일반적으로, 반도체 기판이나 글라스 등의 기판 상에 소정 두께의 박막을 증착하는 방법으로는 스퍼터링(sputtering)과 같이 물리적인 충돌을 이용하는 물리 기상 증착법(physical vapor deposition, PVD)과, 화학반응을 이용하는 화학 기상 증착법(chemical vapor deposition, CVD) 등이 있다. In general, a method of depositing a thin film having a predetermined thickness on a substrate such as a semiconductor substrate or glass includes physical vapor deposition (PVD) using physical collision, such as sputtering, and chemical reaction using a chemical reaction. Chemical vapor deposition (CVD) and the like.
그러나, 최근들어 반도체 소자의 디자인 룰(design rule)이 급격하게 미세해짐에 따라 미세 패턴의 박막이 요구되고 박막이 형성되는 영역의 단차 또한 매우 커지고 있어 원자층 두께의 미세 패턴을 매우 균일하게 형성할 수 있을 뿐만 아니라 스텝커버리지(step coverage)가 우수한 원자층 증착방법(atomic layer deposition : ALD)의 사용이 증대되고 있다. However, in recent years, as the design rule of a semiconductor device is drastically fined, a thin film of a fine pattern is required, and the step height of the region where the thin film is formed is also very large, so that a fine pattern of atomic layer thickness can be formed very uniformly. In addition, the use of atomic layer deposition (ALD) with excellent step coverage is increasing.
이러한 원자층 증착방법은 기체 분자들 간의 화학반응을 이용한다는 점에 있어서 일반적인 화학 기상 증착방법과 유사하다. 하지만, 통상의 CVD가 복수의 기체 분자들을 동시에 프로세스 챔버 내로 주입하여 발생된 반응 생성물을 기판에 증착하는 것과 달리, 원자층 증착방법은 하나의 소스 물질을 포함하는 가스를 프로세스 챔버 내로 주입하여 가열된 기판에 화학흡착시키고 이후 다른 소스 물질을 포함하는 가스를 프로세스 챔버에 주입함으로써 기판 표면에서 소스 물질 사이의 화학반응에 의한 생성물이 증착된다는 점에서 차이가 있다.This atomic layer deposition method is similar to the general chemical vapor deposition method in that it uses a chemical reaction between gas molecules. However, unlike conventional CVD in which a plurality of gas molecules are simultaneously injected into a process chamber to deposit a reaction product generated on a substrate, an atomic layer deposition method is heated by injecting a gas containing one source material into the process chamber. The difference is that the product is deposited by chemical reaction between the source materials at the substrate surface by chemisorbing to the substrate and then injecting a gas containing another source material into the process chamber.
한편, 위와 같은 원자층 증착방법은 AMOLED 디스플레이에서 기존의 글라스 봉지의 대체를 위한 박막 봉지, 플렉시블(flexible) 기판의 베리어막(barrier film), 태양광용 버퍼 레이어(buffer layer), 반도체용 강유전체(high-k) 캐패시터용 고유전 물질 또는 알루미늄(Al), 구리(Cu) 배선 확산 방지막(TiN, TaN 등) 등을 형성하는데 사용될 수 있다.On the other hand, the atomic layer deposition method described above is a thin film bag for replacing a conventional glass bag in an AMOLED display, a barrier film of a flexible substrate, a buffer layer for photovoltaics, and a ferroelectric for semiconductors (high). -k) can be used to form high dielectric materials for capacitors or aluminum (Al), copper (Cu) wiring diffusion barriers (TiN, TaN, etc.) and the like.
이러한 원자층 증착방법은 현재까지 PECVD(plasma enhanced chemical vapor deposition)에서 사용되던 매엽식, 배치식 및 기판이 소형 반응기 하부를 이송하는 방식 또는 스캔형 반응기가 기판 상부를 이송하는 방식으로 공정이 이루어지고 있다.The atomic layer deposition method is a process in which the sheet-fed, batch and substrates used in plasma enhanced chemical vapor deposition (PECVD) are transported to the bottom of the small reactor, or the method is carried out by the scan reactor to transport the substrate. have.
먼저, 매엽 방식은 1장의 기판 투입후 공정진행이 이루어지며, 기판의 입/반출 및 히팅을 위한 무빙용 서셉터, 공정가스 투입 및 확산을 위한 디퓨져(샤워헤드 타입이 주류) 및 배기부로 구성되어 있다. 그러나, 매엽 방식에서는 진공 형성시 외부 대기압에 따른 공정챔버 및 주변부의 변형방지를 위하여 챔버가 매우 두껍고 기판의 반입/반출 및 공정 영역 구분을 위한 게이트 밸브의 필요로 대면적 기판용 장비 구성시 내부 부피가 엄청나게 늘어나게 되므로 원료전구체 및 반응전구체의 소모량 급증, 유지비용 급증, 흡착-퍼지-반응-퍼지시간 증가에 따른 공정시간 증가로 생산성이 현저히 감소하는 문제점이 있다.First of all, the single sheet method is processed after the input of one substrate, and consists of a moving susceptor for input / export and heating of the substrate, a diffuser (mainstream of the showerhead type) and an exhaust part for process gas input and diffusion. have. However, in the single-leaf method, the chamber is very thick to prevent deformation of the process chamber and the periphery according to the external atmospheric pressure during vacuum formation, and the internal volume is required when constructing the equipment for the large-area substrate due to the need for a gate valve for loading / exporting the substrate and distinguishing the process area. Since there is an enormous increase in productivity, there is a problem in that the productivity is significantly reduced due to the rapid increase in the consumption of the raw material precursor and the reaction precursor, the increase in the maintenance cost, and the increase in the process time due to the increase in the adsorption-purge-reaction-purge time.
다음으로, 다수의 기판에 대해 동시에 공정을 진행하는 배치형 방식은 원자층 증착 장비의 부피가 커서 원료전구체와 반응전구체가 많이 소요됨에 따른 유지비용 증가와 저생산성 문제점을 해결하고자 여러 장의 기판에 대해 동시에 공정을 수행하는 방식이다. 이러한 배치형 방식은 태양전지 공정에 일부 적용되고 있으나, 기판 전면 뿐만 아니라 뒷면에도 동시 성막이 이루어지는 문제점, 다수 기판에 대한 박막의 균일도 및 재현성의 문제점, 공정영역의 불명확한 구분에 따른 하나의 공정구획 오염 발생시에도 초대형 챔버 전체를 세정해야 하는 문제점이 있다.Next, the batch type process which processes several substrates at the same time has a large volume of atomic layer deposition equipment, so that the raw material precursors and the reaction precursors require a lot of maintenance costs and low productivity. At the same time, the process is performed. Although this batch type is partially applied to the solar cell process, there is a problem that simultaneous film formation is performed not only on the front side of the substrate but also on the back side, the uniformity and reproducibility of the thin film on a plurality of substrates, and one process compartment according to the unclear classification of the process area. Even when contamination occurs, there is a problem in that the entire ultra large chamber needs to be cleaned.
다음으로, 스캔형 반응기 방식은 진공챔버내 기판의 한면의 길이에 대응하는 소형 반응기를 여러개 배치하여 기판 또는 소형 반응기가 왕복 운동하여 성막하는 방식으로, 일부 디스플레이 박막봉지 공정에서 적용되었으나, 기판과 소형 반응기의 가스 유동 제어의 어려움으로 파티클 이슈 및 긴 증착시간 소요에 따른 저생산성의 문제점이 있는 것으로 알려져 있다.Next, the scanning reactor method is a method in which a plurality of small reactors corresponding to the length of one side of the substrate in the vacuum chamber are disposed so that the substrate or the small reactor is reciprocated to form a film. Difficulties in controlling the gas flow of the reactor are known to have low productivity due to particle issues and long deposition times.
따라서, 본 발명에서는 상부 및 하부의 분리 및 결합이 가능한 공정챔버와 공정쳄버의 외부에 별도의 진공형성 및 압력 조절용 진공쳄버를 기본 단위로 하는 공정모듈을 적층형태로 다수개 배치하며, 각 단위 공정모듈의 공정쳄버 및 진공쳄버는 최적의 공정이 가능한 최소의 공간만을 가지도록 구현되며, 다수개의 공정모듈내 공정챔버에서 동시에 원자층 증착 공정진행이 가능하도록 함으로써, 원료전구체 및 반응전구체의 사용량 감소 및 공정시간 최소화를 통해 비용을 절감시키면서 생산성을 향상시킬 수 있도록 하며, 각 공정모듈별 개별 공정 진행 또는 개별 유지보수가 가능하여 장치운용의 확정성이 용이하다. 또한 최적화된 공정챔버 내에서 원자층 증착 대상 기판 또는 마스크가 상부 공정챔버 또는 하부 공정챔버에 밀착하게 되어 기판 뒷면의 성막 방지 및 동시에 두 장의 기판을 성막시킬 수 있도록 하는 멀티형 원자층 증착 장치 및 방법을 제공하고자 한다.Therefore, in the present invention, a plurality of process modules, each of which has a separate vacuum forming and pressure control vacuum chamber as a basic unit, are disposed in the form of a plurality of process chambers that can separate and combine the upper and lower parts, and each unit process. The process chamber and the vacuum chamber of the module are implemented to have only the minimum space for the optimal process, and the atomic layer deposition process can be performed simultaneously in the process chambers in the multiple process modules, thereby reducing the amount of raw material precursors and reaction precursors. By minimizing the process time, it is possible to improve productivity while reducing costs, and it is easy to determine the device operation by enabling individual process progress or individual maintenance for each process module. In addition, a multi-atomic layer deposition apparatus and method in which an atomic layer deposition target substrate or mask is in close contact with an upper process chamber or a lower process chamber in an optimized process chamber can prevent film formation on the back side of a substrate and simultaneously form two substrates. To provide.
상술한 본 발명은 멀티형 원자층 증착장치로서, 공정쳄버 및 진공쳄버를 최소단위로 구성되는 공정모듈은, 상부 공정챔버와 하부 공정챔버를 구비하고, 원자층 증착 공정 대상 기판의 로딩 또는 언로딩 시에는 상기 상부 공정챔버와 하부 공정챔버가 분리되며, 상기 기판에 대한 증착 공정의 진행시에는 상기 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 공정챔버와, 적어도 한개 이상의 상기 공정챔버를 수직 방향으로 적층된 형태로 지지하고, 상기 공정챔버의 공간을 진공상태로 유지 또는 압력조절이 가능한 진공챔버를 적어도 두 개 이상 포함한다.The present invention described above is a multi-type atomic layer deposition apparatus, wherein a process module having a process chamber and a vacuum chamber as a minimum unit has an upper process chamber and a lower process chamber, and is loaded or unloaded when a substrate to be subjected to an atomic layer deposition process is formed. The process chamber is separated from the upper process chamber and the lower process chamber, the process chamber for combining the upper process chamber and the lower process chamber to form a sealed reaction space during the deposition process on the substrate, at least one or more of the process At least two vacuum chambers which support the chambers in a vertically stacked form and maintain or vacuum the space of the process chamber are included.
또한, 상기 상부 공정챔버는 상기 진공챔버에 고정되며, 상기 하부 공정챔버는 상기 진공챔버 내에서 상하방향으로 이동하여 상기 상부 공정챔버와 결합되거나 분리되는 것을 특징으로 한다.In addition, the upper process chamber is fixed to the vacuum chamber, the lower process chamber is characterized in that it is coupled to or separated from the upper process chamber by moving up and down in the vacuum chamber.
또한, 상기 상부 공정챔버는, 상기 밀폐된 반응공간에 공정가스 또는 퍼지가스를 공급하는 가스 공급부를 상기 상부 공정챔버의 일측면에 구비하고, 상기 밀폐된 반응공간에 공급된 가스를 배기시키는 가스 배기부를 상기 상부 공정챔버의 타측면에 구비하는 것을 특징으로 한다.The upper process chamber may include a gas supply unit that supplies a process gas or purge gas to the sealed reaction space on one side of the upper process chamber, and exhausts the gas supplied to the sealed reaction space. A part is provided on the other side of the upper process chamber.
또한, 상기 가스 공급부는, 상기 상부 공정챔버의 측면 또는 상부면 상의 외곽 또는 중앙부에 형성되는 것을 특징으로 한다.In addition, the gas supply unit, characterized in that formed in the outer or central portion on the side or the upper surface of the upper process chamber.
또한, 상기 상부 공정챔버의 하부면에 플라즈마 발생을 위한 전극이 형성되는 것을 특징으로 한다.In addition, an electrode for plasma generation is formed on the lower surface of the upper process chamber.
또한, 상기 전극은, 상기 상부 공정쳄버의 탈부착 장치에 의해 상부 공정쳄버의 절연체 및 파워 인입용 접촉부와 결합 및 분리가 가능한 것을 특징으로 한다.In addition, the electrode is characterized in that the coupling and detachment with the insulator and the power inlet contact portion of the upper process chamber by the detachable device of the upper process chamber.
또한, 상기 공정가스 또는 상기 퍼지가스가 상기 밀폐된 반응공간으로 인입되는 상기 가스 공급부의 도입부에 플라즈마 발생을 위한 전극이 형성되는 것을 특징으로 한다.In addition, an electrode for generating plasma may be formed at an introduction portion of the gas supply unit through which the process gas or the purge gas is introduced into the closed reaction space.
또한, 상기 전극은, 상기 상부 공정챔버와 절연되도록 절연체에 의해 둘러싸이는 것을 특징으로 한다.The electrode may be surrounded by an insulator so as to be insulated from the upper process chamber.
또한, 상기 가스 공급부는, 상기 상부 공정챔버의 측면 또는 중앙부에 균일한 가스유동을 위한 확산공간 또는 샤워헤드형 디퓨져로 형성되어 상기 밀폐된 반응공간내의 상기 기판에 수직 또는 수평 방향으로 상기 공정가스 또는 상기 퍼지가스를 분사하는 것을 특징으로 한다.The gas supply unit may be formed as a diffusion space or a showerhead diffuser for uniform gas flow in the side or central portion of the upper process chamber, so that the process gas may be perpendicular or horizontal to the substrate in the sealed reaction space. It characterized in that the injection of the purge gas.
또한, 상기 진공챔버는, 상기 진공챔버의 내부 공간에 상기 공정챔버를 적층하여 지지 또는 반입/반출 이송하기 위한 가이드부를 포함하는 것을 특징으로 한다.In addition, the vacuum chamber is characterized in that it comprises a guide unit for supporting or carrying in / carrying out by stacking the process chamber in the inner space of the vacuum chamber.
또한, 상기 진공챔버는, 상기 상부 공정챔버를 고정시키는 고정수단 및 상기 하부 공정챔버를 상하로 이동시키는 이송수단을 구비하는 것을 특징으로 한다.The vacuum chamber may include fixing means for fixing the upper process chamber and transfer means for moving the lower process chamber up and down.
또한, 본 발명은 적층형 원자층 증착방법으로서, 상기 공정챔버내에서 기판 및 마스크가 로딩되는 단계와, 상기 기판 및 마스크가 로딩되면 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와, 밀폐된 반응공간에서 상기 기판에 대한 원자층 증착 공정을 수행하는 단계를 포함한다.In addition, the present invention is a stacked atomic layer deposition method, the step of loading a substrate and a mask in the process chamber, and when the substrate and mask is loaded, the upper process chamber and the lower process chamber of the process chamber is combined and sealed reaction Forming a space, and performing an atomic layer deposition process on the substrate in a closed reaction space.
또한, 상기 적층형 원자층 증착방법은 원자층 증착 공정이 완료되면, 상기 상부 공정챔버와 상기 하부 공정챔버가 분리되고, 상기 기판이 언로딩 되는 것을 특징으로 한다.In addition, the stacked atomic layer deposition method is characterized in that when the atomic layer deposition process is completed, the upper process chamber and the lower process chamber is separated, the substrate is unloaded.
또한, 원자층 증착 공정은 상기 2개 이상의 공정모듈내 공정챔버에서 동시에 수행되는 것을 특징으로 한다.In addition, the atomic layer deposition process is characterized in that carried out simultaneously in the process chamber in the two or more process modules.
또한, 원자층 증착 공정은 상기 2개 이상의 공정모듈내 진공쳄버 단위별 공정쳄버에서 개별로 수행하는 것을 특징으로 한다.In addition, the atomic layer deposition process is characterized in that performed separately in the process chamber for each vacuum chamber unit in the two or more process modules.
또한, 상기 상부 공정챔버는 상기 진공챔버에 고정되며, 상기 하부 공정챔버는 상기 진공챔버에 구비되는 이송수단에 의해 상하로 이동하여 상기 상부 공정챔버와 결합되거나 분리되는 것을 특징으로 한다.In addition, the upper process chamber is fixed to the vacuum chamber, the lower process chamber is characterized in that it is coupled to or separated from the upper process chamber by moving up and down by a transfer means provided in the vacuum chamber.
또한, 상기 원자층 증착 공정을 수행하는 단계는, 상기 공정챔버의 일측 상부면에 형성되는 가스 공급부를 통해 상기 반응공간내의 상기 기판으로 원료전구체를 공급하는 단계와, 상기 기판상에 원료전구체가 흡착된 후, 상기 가스 공급부를 통해 상기 기판으로 퍼지가스를 공급하여 상기 기판상에 흡착되지 못한 원료전구체를 배기시키는 단계와, 상기 배기 후, 상기 가스 공급부를 통해 상기 기판으로 반응전구체를 공급하여 상기 원료전구체와 화학적 반응을 통해 원자층 박막을 형성시키는 단계와, 상기 원자층 박막의 형성 후, 상기 가스 공급부를 통해 상기 기판으로 퍼지가스를 공급하여 상기 원료전구체와 결합하지 못한 반응전구체를 배기시키는 단계를 포함하는 것을 특징으로 한다.The performing of the atomic layer deposition process may include supplying a raw material precursor to the substrate in the reaction space through a gas supply part formed at one upper surface of the process chamber, and adsorbing the raw material precursor onto the substrate. And exhausting the raw material precursor that has not been adsorbed onto the substrate by supplying purge gas to the substrate through the gas supply unit, and supplying the reaction precursor to the substrate through the gas supply unit after exhausting the raw material precursor. Forming an atomic layer thin film through a chemical reaction with a precursor, and exhausting a reaction precursor that is not bonded to the raw material precursor by supplying a purge gas to the substrate through the gas supply unit after the atomic layer thin film is formed. It is characterized by including.
또한, 상기 원료전구체, 반응전구체, 퍼지가스중 적어도 하나는 공유된 가스배관을 통하여 공급 또는 배기가 되는 것을 특징으로 한다.In addition, at least one of the raw material precursor, the reaction precursor, the purge gas is characterized in that the supply or exhaust through the shared gas pipe.
또한, 상기 원료전구체, 반응전구체, 퍼지가스중 적어도 하나는, 상기 상부 공정챔버의 측면 또는 중앙부에 균일한 가스 유동을 위한 확산공간 또는 샤워헤드 디퓨져로 형성되는 가스 공급부를 통해 공급되어 상기 반응공간내의 기판에 수직 또는 수평방향으로 분사되는 것을 특징으로 한다. In addition, at least one of the raw material precursor, the reaction precursor, and the purge gas may be supplied through a gas supply part formed as a diffusion space or a shower head diffuser for uniform gas flow in the side or the center of the upper process chamber, It is characterized in that the injection in the vertical or horizontal direction to the substrate.
또한, 상기 기판으로 반응전구체를 공급 시 상기 기판과 대응하는 상부 공정챔버의 하부면 또는 상기 반응공간과 연결되는 도입부에 플라즈마를 발생시키는 단계와, 상기 플라즈마를 이용한 상기 반응전구체와 상기 원료전구체의 화학적 반응을 통해 원자층 박막을 형성시키는 단계를 더 포함하는 것을 특징으로 한다.In addition, when the reaction precursor is supplied to the substrate, generating a plasma in the lower surface of the upper process chamber corresponding to the substrate or the inlet connected to the reaction space, and chemical reaction of the reaction precursor and the raw material precursor using the plasma Forming an atomic layer thin film through the reaction is characterized in that it further comprises.
본 발명에 따르면, 원자층 증착에 있어서, 적어도 두 개 이상 적층된 진공챔버의 내측에 수납되는 한 개 이상의 공정챔버를 구비한 공정모듈은, 각각의 진공쳄버에 수납된 공정챔버에서 독립적으로 원자층 증착 공정이 수행될 수 있도록 함으로써, 단위 공정모듈별 다양한 공정의 조합이 가능하여 공정 최적화에 따른 장비효율 향상 및 개별 유지보수가 가능하여 유지보수를 위한 인력 및 시간 최소화를 통한 비용절감 및 생산성을 대폭 향상 시킬 수 있다.According to the present invention, in atomic layer deposition, a process module having one or more process chambers housed inside at least two or more stacked vacuum chambers is independently an atomic layer in the process chambers housed in each vacuum chamber. By allowing the deposition process to be performed, it is possible to combine various processes per unit process module to improve equipment efficiency and individual maintenance according to process optimization, greatly reducing cost and productivity by minimizing manpower and time for maintenance. Can improve.
또한, 최적화된 공정모듈의 조합을 통해서 각각의 공정챔버에서 동시 공정 진행이 가능하여 생산성을 대폭 향상시킬 수 있는 이점이 있다.In addition, the combination of the optimized process module can be performed simultaneously in each process chamber has the advantage that can significantly improve the productivity.
또한, 각각의 공정챔버 내에서 공정을 위한 공간을 최소화하여 공정챔버내 부피 최적화로 원료전구체의 흡착시간, 반응전구체의 반응시간 및 퍼지시간을 감소시켜 생산성을 향상시키고, 원료전구체, 반응전구체, 퍼지가스의 소모량을 감소시켜 원자층 증착 공정에 소요되는 비용을 절감시킬 수 있는 이점이 있다.In addition, by minimizing the space for the process in each process chamber, the volume optimization in the process chamber reduces the adsorption time of the precursor, the reaction time of the precursor and the purge time, thereby improving productivity, and increasing the precursor, reaction precursor, and purge. By reducing the consumption of gas has the advantage of reducing the cost of the atomic layer deposition process.
*또한, 별도의 외부 진공챔버 구성으로 공정챔버의 단순화를 구현하고 무게를 감소시킬 수 있어 원자층 증착 장비의 유지보수 비용을 감소시킬 수 있고, 유지보수 편의성을 증대시킬 수 있는 이점이 있다.In addition, the separate external vacuum chamber configuration can simplify the process chamber and reduce the weight, thereby reducing the maintenance cost of the atomic layer deposition equipment and increasing the convenience of maintenance.
또한, 최적화된 공정챔버 내에서 원자층 증착 대상 기판이 상부 공정챔버 또는 하부 공정챔버에 적절하게 밀착하게 되어 기판 뒷면의 성막을 방지시킬 수 있는 이점이 있다.In addition, the atomic layer deposition target substrate in the optimized process chamber is in close contact with the upper process chamber or the lower process chamber has the advantage of preventing the film deposition on the back of the substrate.
또한, 다수개의 진공쳄버내 공정챔버가 고정되는 고정타입으로 구현하여 기판과 공정챔버의 상대운동에 따른 가스제어의 어려움으로 발생하는 파티클 문제를 해결할 수 있고, 원료전구체, 반응전구체, 퍼지가스의 입/출부의 다양한 구성이 용이하여 향후 다양한 공정특성 및 기판에 맞게 구성의 변경 적용이 용이한 이점이 있다.In addition, by implementing a fixed type in which a plurality of vacuum chamber process chambers are fixed, it is possible to solve the particle problem caused by the difficulty of gas control due to the relative movement of the substrate and the process chamber, and the raw material precursor, reaction precursor, purge gas Various configurations of the / exit is easy, there is an advantage that it is easy to apply the change of configuration to suit a variety of process characteristics and substrate in the future.
도 1은 본 발명의 실시예에 따른 원자층 증착 장치의 구성도,1 is a block diagram of an atomic layer deposition apparatus according to an embodiment of the present invention,
도 2는 본 발명의 실시예에 따른 원자층 증착 장치의 입체 사시도,2 is a three-dimensional perspective view of an atomic layer deposition apparatus according to an embodiment of the present invention,
도 3은 본 발명의 실시예에 따른 원자층 증착 장비의 단면 구조로서 개별 이송 및 정렬 장치 또는 동시 이송 및 정렬 장치 구성도 3 is a cross-sectional structure of an atomic layer deposition equipment according to an embodiment of the present invention, individual transfer and alignment device or simultaneous transfer and alignment device configuration diagram
도 4는 본 발명의 실시예에 따른 공정챔버의 입체 사시도,4 is a three-dimensional perspective view of a process chamber according to an embodiment of the present invention;
도 5는 본 발명의 실시예에 따른 공정챔버의 상세한 단면 구조도,5 is a detailed cross-sectional structural view of a process chamber according to an embodiment of the present invention;
도 6은 본 발명의 실시예에 따른 공정챔버의 단면 구조로서 공정가스가 기판상 교차흐름 또는 이동파 방식 및 플라즈마 공정이 가능한 개략적인 구성도,6 is a schematic configuration diagram of a cross-sectional structure of a process chamber according to an embodiment of the present invention in which a process gas crosses or moves on a substrate, and a plasma process is possible;
도 7은 본 발명의 실시예에 따른 공정챔버의 단면 구조로서 공정가스 및 퍼지가스와 배기부의 구성 및 플라즈마를 이용한 다분할 증착 공정이 가능한 개략적인 구성도.FIG. 7 is a schematic configuration diagram of a process chamber and purge gas and an exhaust part as a cross-sectional structure of a process chamber according to an exemplary embodiment of the present invention, and a multi-part deposition process using plasma; FIG.
도 8은 본 발명의 실시예에 따른 공정쳄버의 단면 구성도8 is a cross-sectional configuration diagram of a process chamber according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described in detail the operating principle of the present invention. In the following description of the present invention, when it is determined that a detailed description of a known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. Terms to be described later are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators. Therefore, the definition should be made based on the contents throughout the specification.
도 1은 본 발명의 실시예에 따른 원자층 증착 장치 구조의 다양한 배치형태를 도시한 것으로, 원자층 증착 장치(1000)의 공정모듈(1300)은 다수개의 진공챔버(1100)와 상기 진공챔버(1100)내 적어도 한 개 이상의 공정챔버(1200)를 포함할 수 있다.1 illustrates various arrangements of the structure of an atomic layer deposition apparatus according to an embodiment of the present invention. The process module 1300 of the atomic layer deposition apparatus 1000 includes a plurality of vacuum chambers 1100 and the vacuum chamber ( At least one process chamber 1200 in 1100 may be included.
상기의 공정모듈(1300)은 개별로 압력조절 및 대기 구성이 가능한 각각의 단위 공정모듈(1300)별로 A 또는 B 등의 이종 박막 증착 또는 증착 압력 및 증착률이 다른 ALD와 CVD 처럼 서로 다른 공정의 적용도 가능하여 다양한 조합의 공정 최적화가 용이하며, 단위 공정모듈(1300)별 유지보수가 가능하여 장치의 사용효율을 극대화 할 수 있다.The process module 1300 is a heterogeneous thin film deposition, such as A or B, or each of the unit process modules 1300, each of which can be individually configured to control pressure and atmosphere, or have different processes such as ALD and CVD having different deposition pressures and deposition rates. Applicability is also easy to optimize the process of various combinations, and it is possible to maximize the use efficiency of the device is possible by the maintenance per unit process module (1300).
이하, 도 1 및 도 2를 참조하여 본 발명의 원자층 증착 장치(1000)의 구조를 상세히 설명하기로 한다.Hereinafter, the structure of the atomic layer deposition apparatus 1000 of the present invention will be described in detail with reference to FIGS. 1 and 2.
먼저, 공정챔버(1200)는 기판에 대한 원자층 증착공정을 수행할 수 있는 챔버(chamber)로서 각각 독립적인 공간을 가지도록 구현되며, 적어도 한 개 이상 수직 방향으로 적층되어 외부 진공챔버(1100)에 수용된다. 이러한 공정챔버(1200)는 진공챔버(1100)에 인입 시 위치가 고정되는 상부 공정챔버(1210)와 진공챔버(1100)에 구비되는 이송부에 의해 상하로 이동되어 상부 공정챔버(1210)와 결합되거나 분리되는 하부 공정챔버(1220)로 구성될 수 있다.First, the process chamber 1200 is implemented as a chamber capable of performing an atomic layer deposition process on a substrate, each having an independent space, and at least one or more stacked in a vertical direction to form an external vacuum chamber 1100. Is accommodated in. The process chamber 1200 is moved up and down by the upper process chamber 1210 and the transfer unit provided in the vacuum chamber 1100 when the position is fixed in the vacuum chamber 1100 is coupled to the upper process chamber 1210 or It may be composed of a separate lower process chamber 1220.
이러한 공정챔버(1200)는 위와 같은 상부 공정챔버(1210)와 하부 공정챔버(1220)로 분리 또는 결합되도록 하는 구성을 통해 최적의 원자층 증착 공정이 가능한 공간만 확보하도록 하여 원자층 증착 장치의 부피를 최소화할 수 있도록 설계될 수 있다.The process chamber 1200 is configured to be separated or combined into the upper process chamber 1210 and the lower process chamber 1220 as described above to ensure only the space for the optimal atomic layer deposition process to ensure the volume of the atomic layer deposition apparatus It can be designed to minimize the.
또한, 공정챔버(1200)는 진공챔버(1100)의 상부 또는 측면에 설치되는 가이드부(1204)와 연계하여 진공챔버(1100)로의 입출이 가능하며, 진공챔버(1100)내 기준위치에 인입된 상태에서 가이드부(1204)를 조절하여 고정이 가능하게 된다.In addition, the process chamber 1200 may enter and exit the vacuum chamber 1100 in conjunction with the guide portion 1204 installed on the upper or side surfaces of the vacuum chamber 1100, and may be introduced into a reference position in the vacuum chamber 1100. It is possible to fix by adjusting the guide portion 1204 in the state.
다음으로, 진공챔버(1100)는 내부에 적어도 한 개 이상의 공정챔버를 수직 방향으로 적재할 수 있는 다단지지부(1202)와 가이드부(1204) 등을 가지며 진공상태를 유지하여 공정챔버(1200)에서 원자층 증착 공정이 이루어질 수 있도록 한다.Next, the vacuum chamber 1100 has a multi-stage support portion 1202, a guide portion 1204, and the like, in which at least one or more process chambers can be loaded in a vertical direction, and maintains a vacuum state to process chamber 1200. Allow atomic layer deposition process to take place.
즉, 진공챔버(1100)는 원자층 증착 공정을 위해 분리 결합이 가능하도록 구성된 공정챔버(1200)가 적층되어 배치된 내측의 다수개의 공정챔버(1200)를 지지하고 각 공정챔버에서 기판이 반입/반출 가능하도록 하며, 외부의 대기 및 압력차가 존재하는 환경으로부터 내측 공정챔버(1200)에 가해지는 외력의 영향을 최소화시킬 수 있다.That is, the vacuum chamber 1100 supports a plurality of inner process chambers 1200 in which process chambers 1200 configured to be separated and coupled for an atomic layer deposition process are stacked, and a substrate is loaded / loaded in each process chamber. It is possible to carry out, and it is possible to minimize the influence of the external force applied to the inner process chamber 1200 from the environment where the external atmosphere and pressure difference exists.
따라서, 위 도 1에서와 같이 독립적인 원자층 증착 공정이 수행되는 다수개의 공정챔버(1200)를 하나의 진공챔버(1100)에 수직으로 적층한 구조 또는 각각의 진공쳄버(1100)내 공정쳄버(1200)를 동시에 이용하는 경우 다수개의 공정챔버(1200)에서 다수개의 기판에 동시에 성막이 이루어지므로 종래 단일 기판용 증착기에 대비하여 몇 배의 생산성 향상을 가질 수 있도록 한다.Therefore, as shown in FIG. 1, a structure in which a plurality of process chambers 1200 in which independent atomic layer deposition processes are performed is vertically stacked on one vacuum chamber 1100 or a process chamber in each vacuum chamber 1100 ( In the case of using 1200 at the same time, since a plurality of substrates are simultaneously formed in a plurality of process chambers 1200, the productivity can be improved several times compared to a conventional single substrate evaporator.
도 2는 전술한 본 발명의 실시예에 따른 원자층 증착 장치(1000) 및 공정모듈(1300)의 구성을 나타내는 입체 사시도이다.2 is a three-dimensional perspective view showing the configuration of the atomic layer deposition apparatus 1000 and the process module 1300 according to the embodiment of the present invention described above.
상부 공정챔버(1210)및 하부 공정챔버(1220)로 구성되는 공정쳄버(1200)와 상기 공정쳄버를 적어도 한 개 이상 포함하는 적어도 두 개 이상의 진공쳄버(1100)로 구성되는 단위 공정모듈(1300)이 다수개 적층되는 공정모듈(1300)로 구성된다.A unit process module 1300 comprising a process chamber 1200 including an upper process chamber 1210 and a lower process chamber 1220 and at least two vacuum chambers 1100 including at least one process chamber. It is composed of a plurality of process modules 1300 are stacked.
도 3은 전술한 본 발명의 실시예에 따른 원자층 증착 장치(1000)의 단면 구조로서 하부 공정챔버(1220)의 개별 이송 또는 동시 이송을 위한 이송부(1110) 및 각 진공쳄버(1100)별 압력차에 따른 변형 최소화를 위한 버퍼공간(1101)을 구성한다.3 is a cross-sectional structure of the atomic layer deposition apparatus 1000 according to the embodiment of the present invention described above, the transfer unit 1110 and the pressure for each vacuum chamber 1100 for individual transfer or simultaneous transfer of the lower process chamber 1220. A buffer space 1101 is configured to minimize deformation due to the difference.
도 4는 본 발명의 실시예에 따른 공정챔버의 단면 상세 구조를 도시한 것이다.4 shows a detailed cross-sectional structure of a process chamber according to an embodiment of the present invention.
공정챔버(1200)내로 기판(1010) 및 마스크(1020)를 로딩시키기 위해 하부 공정챔버(1220)가 하부로 이동되어 공정챔버가 개방된 상태를 도시한 것이다.The lower process chamber 1220 is moved downward to load the substrate 1010 and the mask 1020 into the process chamber 1200, and the process chamber is opened.
도 4를 참조하면, 하부 공정챔버(1220)가 이송부(1110)에 의해 상부 공정챔버(1210)로부터 수직방향의 하부로 이동되어 개방된 상태에서 기판(1010)과 마스크(1020)가 공정챔버(1200) 내부의 기판 지지부(1015)와 마스크 지지부(1017)에 순차적으로 로딩된다. 이때, 공정챔버(1200)의 상부 공정챔버(1210)는 진공챔버(1100)에 고정되어 지지되며, 하부 공정챔버(1220)는 진공챔버(1100)에 구비되는 이송부(1110)에 의해 진공챔버(1100)에 대해 수직방향으로 상하 이동될 수 있다. Referring to FIG. 4, the substrate 1010 and the mask 1020 are moved to a process chamber in a state in which the lower process chamber 1220 is moved from the upper process chamber 1210 to the lower portion in the vertical direction by the transfer unit 1110. The substrate support 1015 and the mask support 1017 inside the 1200 are sequentially loaded. In this case, the upper process chamber 1210 of the process chamber 1200 is fixed to and supported by the vacuum chamber 1100, and the lower process chamber 1220 is supported by the conveying unit 1110 provided in the vacuum chamber 1100. It can be moved up and down in the vertical direction with respect to 1100.
위와 같이, 기판 지지부(1015)와 마스크 지지부(1017)에 기판(1010)과 마스크(1020)가 로딩되는 경우, 이송부(1110)에 의해 하부 공정챔버(1220)가 상승하고, 기판(1010)과 마스크(1020)가 하부 공정챔버(1220)에 순차적으로 안착되면서 하부 공정챔버(1220)가 상부 공정챔버(1210)에 최종 결합하게 된다.As described above, when the substrate 1010 and the mask 1020 are loaded on the substrate support 1015 and the mask support 1017, the lower process chamber 1220 is raised by the transfer unit 1110, and the substrate 1010 and As the mask 1020 is sequentially seated in the lower process chamber 1220, the lower process chamber 1220 is finally coupled to the upper process chamber 1210.
한편, 이때 기판(1010)과 마스크(1020)의 로딩은 각각의 공정챔버(1200)별로 개별적으로 이루어질 수도 있으며, 진공챔버(1100)내 다수의 공정챔버(1200)가 개방된 상태에서 동시에 이루어질 수도 있다.Meanwhile, at this time, the loading of the substrate 1010 and the mask 1020 may be performed separately for each process chamber 1200, or may be simultaneously performed in a state in which a plurality of process chambers 1200 in the vacuum chamber 1100 are opened. have.
공정챔버(1200)가 개방된 상태에서 기판(1010)과 마스크(1020)가 로딩된 후, 이송부(1110)에 의해 하부 공정챔버(1220)가 상승되어 하부 공정챔버(1220)가 상부 공정챔버(1210)에 결합하게 됨으로서 공정챔버(1200)의 독립적인 공간이 형성될 수 있다.After the substrate 1010 and the mask 1020 are loaded in the state in which the process chamber 1200 is opened, the lower process chamber 1220 is raised by the transfer unit 1110 so that the lower process chamber 1220 becomes the upper process chamber ( By coupling to the 1210, an independent space of the process chamber 1200 may be formed.
이와 같이 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합되어 공정 진행이 가능한 독립적인 공간이 형성되는 경우, 공정 진행에 따라 공정 가스 공급부(1212)로 필요한 가스가 인입되면서 기판(1010)에 대한 원자층 증착 공정이 수행될 수 있다.As such, when the upper process chamber 1210 and the lower process chamber 1220 are combined to form an independent space for process progress, the required gas is introduced into the process gas supply unit 1212 as the process proceeds, thereby providing a substrate 1010. An atomic layer deposition process may be performed.
한편, 위와 같이 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 기판(1010)에 대한 원자층 증착 공정이 완료되는 경우, 하부 공정챔버(1220)가 이송부(1110)에 의해 하강되어 상부 공정챔버(1210)와 하부 공정챔버(1220)가 분리되는 언로딩 동작이 수행되며, 이와 같은 언로딩 상태에서 공정이 완료된 기판(1010)에 대해 공정챔버(1200) 외부로 반출이 이루어지게 된다.Meanwhile, when the atomic layer deposition process for the substrate 1010 is completed while the upper process chamber 1210 and the lower process chamber 1220 are coupled as described above, the lower process chamber 1220 is moved by the transfer unit 1110. An unloading operation is performed in which the upper process chamber 1210 and the lower process chamber 1220 are separated by being lowered and carried out to the outside of the process chamber 1200 with respect to the substrate 1010 on which the process is completed in such an unloading state. You lose.
도 4 를 참조하면, 상부 공정챔버(1210)의 상부면에는 가스 공급부(1212)와 배기부(1211)가 형성될 수 있다. 이때 가스 공급부(1212)는 상부 공정챔버(1210)의 양측면의 중앙부에 둥근 관 형태로 형성될 수 있다. 또한, 상부 공정챔버(1210)의 하부면에는 가스 공급부(1212)에서 공급된 가스가 기판상 전체면에 균일한 공정가스의 유동확보를 위해 내부 확산영역을 포함하여 형성된다.Referring to FIG. 4, a gas supply part 1212 and an exhaust part 1211 may be formed on an upper surface of the upper process chamber 1210. In this case, the gas supply part 1212 may be formed in a round tube shape at the center of both sides of the upper process chamber 1210. In addition, the gas supplied from the gas supply unit 1212 is formed on the lower surface of the upper process chamber 1210 including an internal diffusion region to ensure a uniform flow of process gas on the entire surface on the substrate.
하부 공정챔버(1220)의 상부면에는 마스크(1020)를 안착시키기 위한 마스크 지지대(1017)와 기판(1010)을 안착시키기 위한 기판 지지대(1015)가 형성될 수 있다. 이때 마스크(1020)와 기판(1010)은 각각의 마스크 지지대(1017)와 기판 지지대(1015)에 안착되도록 로딩된 후, 하부 공정챔버와 상부 공정챔버의 결합 시 생성되는 공정챔버내 독립적인 공간에 위치하게 된다. 또한, 하부 공정챔버의 하부면에는 마스크 지지대(1017)와 기판 지지대(1015)의 높이 제한, 안정적 지지를 위한 연결부(1018)가 형성되며, 공정가스의 완벽한 차단을 위하여 하부 공정챔버의 지지대 홀과 지지대 사이에 오링, 벨로즈등 별도의 실링부를 추가 구성할 수 있다.A mask support 1017 for seating the mask 1020 and a substrate support 1015 for seating the substrate 1010 may be formed on an upper surface of the lower process chamber 1220. In this case, the mask 1020 and the substrate 1010 are loaded to be seated on the mask support 1017 and the substrate support 1015, respectively, and then in an independent space in the process chamber generated when the lower process chamber and the upper process chamber are combined. Will be located. In addition, the lower surface of the lower process chamber, the height limit of the mask support 1017 and the substrate support 1015, the connection portion 1018 for stable support is formed, and the support hole of the lower process chamber and the Separate sealing parts such as O-rings and bellows can be added between the supports.
또한, 상기의 상부 공정쳄버(1210)와 하부 공정쳄버(1220)가 결합하기 이전에 기판(1020)과 마스크(1020)의 정확한 위치 확보 및 안착을 위한 화상정보처리(비젼) 장치를 이용하여 마스크부 또는 기판부의 좌우, 전후, 회전의 제어가 가능한 조절 장치부를 구성하여 정확한 정렬이 가능하도록 구성 할 수 있다.In addition, before the upper process chamber 1210 and the lower process chamber 1220 are combined, a mask using an image information processing (vision) apparatus for accurately securing and mounting the substrate 1020 and the mask 1020. It can be configured to enable accurate alignment by configuring the control unit portion that can control the left and right, front and rear, rotation of the unit or the substrate unit.
또한, 상부 공정챔버(1210)의 하부면에는 마스크(1020)를 안착시키기 위한 마스크 지지부(1017)와 기판(1010)을 안착시키기 위한 기판 지지부(1015)를 구성하여 상기의 상부 공정쳄버(1210)의 기판과 하부 공정쳄버(1220)의 기판에 동시에 성막이 가능하도록 구성할 수 있다.In addition, a lower surface of the upper process chamber 1210 constitutes a mask support portion 1017 for seating the mask 1020 and a substrate support portion 1015 for seating the substrate 1010 to form the upper process chamber 1210. Can be formed on the substrate and the substrate of the lower process chamber 1220 at the same time.
도 5는 본 발명의 다른 실시예에 따른 공정챔버의 분리 입체 사시도를 도시한 것으로, 가스 공급부가 샤워헤드 방식으로 형성된 공정챔버의 입체 사시도를 도시한 것이다.5 is an exploded three-dimensional perspective view of the process chamber according to another embodiment of the present invention, a gas supply unit shows a three-dimensional perspective view of the process chamber formed by the showerhead method.
도 5를 참조하면, 상부 공정챔버(1210)의 상부면에는 가스 공급부(1212)와 배기부(1211)가 형성될 수 있다. 이때 가스 공급부(1212)는 상부 공정챔버(1210)의 상부 또는 측면에 형성될 수 있다. 또한, 상부 공정챔버(1210)의 하부면에는 가스 공급부(1212)에서 공급된 가스가 기판상 전체면에 분사되도록 하기 위한 공정가스 분사를 위한 샤워헤드형 디퓨저(1312)가 형성된다.Referring to FIG. 5, a gas supply part 1212 and an exhaust part 1211 may be formed on an upper surface of the upper process chamber 1210. In this case, the gas supply part 1212 may be formed on the upper side or the side of the upper process chamber 1210. In addition, a showerhead type diffuser 1312 is formed on a lower surface of the upper process chamber 1210 for spraying a process gas for spraying the gas supplied from the gas supply unit 1212 onto the entire surface of the substrate.
하부 공정챔버(1220)의 상부면에는 마스크(1020)를 안착시키기 위한 마스크 지지대(1017)와 기판(1010)을 안착시키기 위한 기판 지지대(1015)가 형성될 수 있다. 이때 마스크(1020)와 기판(1010)은 각각의 마스크 지지대(1017)와 기판 지지대(1015)에 안착되도록 로딩된 후, 하부 공정챔버(1220)와 상부 공정챔버(1210)의 결합 시 생성되는 공정챔버(1200)내 독립적인 공간에 위치하게 된다. 또한, 하부 공정챔버(1220)의 하부면에는 마스크 지지대(1017)와 기판 지지대(1015)를 공정챔버(1200)에 고정시키기 위한 연결부(1018)가 형성된다.A mask support 1017 for seating the mask 1020 and a substrate support 1015 for seating the substrate 1010 may be formed on an upper surface of the lower process chamber 1220. In this case, the mask 1020 and the substrate 1010 are loaded to be seated on the mask support 1017 and the substrate support 1015, and then a process generated when the lower process chamber 1220 and the upper process chamber 1210 are combined. It is located in an independent space in the chamber 1200. In addition, a connection portion 1018 is formed on the lower surface of the lower process chamber 1220 to fix the mask support 1017 and the substrate support 1015 to the process chamber 1200.
도 6은 본 발명의 실시예에 따른 공정챔버의 단면 구조로서 공정가스가 기판상 교차흐름 또는 이동파 방식으로 분사되는 개략적인 구성을 도시한 것이다.FIG. 6 is a cross-sectional structure of a process chamber according to an exemplary embodiment of the present invention and illustrates a schematic configuration in which process gas is injected in a cross flow or moving wave manner on a substrate.
위 도 6을 참조하면, 가스 공급부(1212)를 통해 상부 공정챔버(1210) 외곽의 일측면에서 공정챔버(1200)의 내부에 위치한 기판(1010)으로 원료전구체, 반응전구체, 퍼지가스를 원자층 증착 공정의 순서에 따라 순차적으로 공급하게 되며, 상부 공정챔버(1210)의 타측면에 형성되는 가스 배기부(1211)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 나타내고 있다.Referring to FIG. 6, an atomic layer includes a raw material precursor, a reaction precursor, and a purge gas from a side surface of the upper process chamber 1210 to the substrate 1010 located inside the process chamber 1200 through the gas supply unit 1212. It supplies sequentially according to the order of the deposition process, and shows a structure to exhaust the process gas or purge gas used in each process through the gas exhaust unit 1211 formed on the other side of the upper process chamber 1210 have.
이하, 동작을 살펴보면, 가스 공급부(1212)로 공급된 원료전구체(TMA 등)가 상부 공정챔버(1210)의 일측면의 확산이 용이한 고깔 형상 또는 물결형상의 영역을 지나 기판(1010)의 일측면으로 균일하게 공급되고, 이에 따라, 하부 공정챔버(1220)에 안착되어 있는 기판(1010)의 상층면에서 흡착반응이 일어나게 된다. Hereinafter, referring to the operation, the raw material precursor (TMA, etc.) supplied to the gas supply unit 1212 passes through a solid or wavy region in which one side of the upper process chamber 1210 is easily diffused, and then the one of the substrate 1010. It is uniformly supplied to the side surface, and thus, an adsorption reaction occurs on the upper surface of the substrate 1010 seated in the lower process chamber 1220.
흡착이 완료되면 가스 공급부(1212)로 퍼지가스(Ar, O2, N2, N2O 등)를 공급하여 기판상 잔존하는 원료전구체를 가스 배기부(1211)로 배출시킨 후, 반응전구체를 가스 공급부(1212)에 공급하여 기판(1010)으로 분사시킴으로써 원료전구체와 반응전구체간 화학적 반응에 의해 원하는 원자층 박막을 형성시키게 된다. When the adsorption is completed, the purge gas (Ar, O 2 , N 2 , N 2 O, etc.) is supplied to the gas supply part 1212 to discharge the raw material precursor remaining on the substrate to the gas exhaust part 1211, and then the reaction precursor is discharged. By supplying to the gas supply unit 1212 and spraying the substrate 1010, a desired atomic layer thin film is formed by chemical reaction between the raw material precursor and the reaction precursor.
이와 같이 기판(1010)에 박막을 형성시킨 후에는 다시 가스 공급부(1212)로 퍼지가스를 공급하여 기판(1010)상 원료전구체와 결합하지 못하고 잔존하는 반응전구체를 모두 제거함으로써 1층의 원자층 박막을 완성하게 되며, 위와 같은 4단계의 공정을 하나의 사이클로 하는 반복 공정을 통해 기판(1010)상 원자층 박막을 원하는 두께 만큼 형성시키게 된다.After the thin film is formed on the substrate 1010, the purge gas is supplied to the gas supply unit 1212 again to remove all remaining reactive precursors that do not bond with the raw material precursors on the substrate 1010. In this case, the atomic layer thin film on the substrate 1010 is formed to have a desired thickness through a repeating process using the above-described four-step process as one cycle.
이때, 반응전구체의 원활한 반응 및 박막 특성의 향상을 위하여 하부 공정챔버(1220)에 히터(heater) 기능을 부여하여 기판(1010)의 온도 조절이 가능하도록 하여 서셉터 기능을 수행할 수 있다. 또한, 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 이후 공정챔버(1200)의 불완전한 결합 등으로 공정챔버(1200) 외부로의 가스누출에 따른 파티클(particle) 발생 방지를 위해 하부 공정챔버(1220)의 외곽에 기본 실링부(1221)와 추가 실링부(1222)를 구성할 수 있고, 상부 공정챔버(1210)와 하부 공정챔버(1220) 간 완벽한 면접촉을 위한 면접촉 형성부를 추가로 구성할 수도 있다.In this case, in order to smoothly react the reaction precursor and improve the thin film characteristics, a susceptor function may be performed by providing a heater function to the lower process chamber 1220 to enable temperature control of the substrate 1010. In addition, after the upper process chamber 1210 and the lower process chamber 1220 are combined, the lower part may be prevented from generating particles due to gas leakage to the outside of the process chamber 1200 due to incomplete coupling of the process chamber 1200. A basic sealing part 1221 and an additional sealing part 1222 may be configured on the outer side of the process chamber 1220, and a surface contact forming part for perfect surface contact between the upper process chamber 1210 and the lower process chamber 1220. It can also be configured additionally.
이하에서는 위 공정챔버(1200)에서 원자층 증착 공정에 대해 보다 상세히 설명하기로 한다.Hereinafter, the atomic layer deposition process in the process chamber 1200 will be described in more detail.
먼저, 공정챔버(1200)의 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합되어 원자층 증착 공정의 공정 진행이 가능한 상황이 되는 경우, 원자층 증착공정의 1 단계로, 가스 공급부(1212)를 통해 원료전구체를 공급하고, 가스 공급부(1212)를 통해 공급된 원료전구체가 원자층 증착 공정의 대상이 되는 기판(1010)에 분사되도록 하여 기판(1010)상에 원료전구체의 단일 분자층을 형성시킨다. 다음으로, 원료전구체가 기판(1010)상에 충분히 분사된 경우, 원자층 증착공정의 2단계로, 가스 공급부(1212)로 퍼지가스를 공급하여 기판(1010)상에 물리적으로 결합하고 있는 물리흡착층의 원료전구체에 대해서는 퍼지가스에 의해 기판(1010)과의 결합을 분리시켜 가스 배기부(1211)를 통해 배기되도록 함으로써 원료전구체의 단일 분자층을 얻도록 한다. First, when the upper process chamber 1210 and the lower process chamber 1220 of the process chamber 1200 are coupled to a situation in which the process of the atomic layer deposition process is possible, the first step of the atomic layer deposition process, the gas supply unit ( The raw material precursor is supplied through 1212, and the raw material precursor supplied through the gas supply unit 1212 is sprayed onto the substrate 1010 to be subjected to the atomic layer deposition process so that a single molecular layer of the raw material precursor is provided on the substrate 1010. To form. Next, when the raw material precursor is sufficiently injected onto the substrate 1010, physical adsorption that is physically coupled onto the substrate 1010 by supplying a purge gas to the gas supply unit 1212 in the second step of the atomic layer deposition process. For the precursor layer of the layer, the bond with the substrate 1010 is separated by the purge gas to be exhausted through the gas exhaust unit 1211 to obtain a single molecular layer of the precursor precursor.
이때, 기판(1010)상으로 원료전구체가 분사되는 경우 원료전구체는 기판(1010) 표면에 화학적으로 또는 물리적으로 흡착하여 박막을 형성하게 되는데, 이와 같은 상태에서 불활성의 퍼지가스가 기판(1010)으로 분사되는 경우 상대적으로 결합력이 약한 물리흡착층의 원료전구체는 기판(1010)과 분리되어 배기되나, 기판(1010)상 화화적으로 공유 결합을 통해 결합되어 물리흡착층과 비교하여 상대적으로 강한 결합력을 가지고 있는 화학흡착층의 원료전구체는 분리되지 않는다.In this case, when the raw material precursor is injected onto the substrate 1010, the raw material precursor is chemically or physically adsorbed onto the surface of the substrate 1010 to form a thin film. In this state, the inert purge gas is transferred to the substrate 1010. When sprayed, the precursor precursor of the physical adsorption layer, which has a relatively weak bonding force, is separated from the substrate 1010 and exhausted, but is chemically bonded to the substrate 1010 through covalent bonding to provide a relatively strong bonding force compared to the physical adsorption layer. The raw material precursor of the chemisorption layer is not separated.
다음으로, 원자층 증착공정의 3단계로, 가스 공급부(1212)를 통해 반응전구체를 공급하여 기판(1010)상으로 반응전구체를 분사시킨다. 이에 따라 기판(1010)상에 분사되는 반응전구체가 기판(1010)에 흡착되어 있는 원료전구체와 반응하여 원자층 박막이 형성된다. 마지막으로, 위와 같이 원료전구체와 반응전구체간 기상 반응에 의한 원자층 증착이 이루어진 경우, 원자층 증착공정의 4단계로, 가스 공급부(1212)를 통해 퍼지가스를 공급하여 기판(1010)상의 과잉의 전구체 또는 물리흡착 분자를 제거시키게 된다.Next, in the three steps of the atomic layer deposition process, the reaction precursor is supplied through the gas supply unit 1212 to inject the reaction precursor onto the substrate 1010. As a result, the reaction precursor sprayed on the substrate 1010 reacts with the raw material precursor adsorbed on the substrate 1010 to form an atomic layer thin film. Finally, when atomic layer deposition is performed by the gas phase reaction between the raw material precursor and the reaction precursor as described above, in the fourth step of the atomic layer deposition process, the purge gas is supplied through the gas supply unit 1212 to supply excess gas on the substrate 1010. Remove precursor or physisorption molecules.
위와 같은 4단계의 원자층 증착공정을 1사이클(cycle)로 하는 반복 공정을 통해 기판(1010)상에 원자층 박막을 원하는 두께 만큼 형성시키게 된다.The atomic layer thin film is formed on the substrate 1010 by a desired thickness through an iterative process using the above four-step atomic layer deposition process as one cycle.
이때, 상술한 원자층 증착 공정에서는 가스 공급부(1212)가 공정챔버(1200)의 일측부에 형성되어 공정가스가 기판상 교차흐름 또는 이동파 방식으로 분사되는 것을 예를 들어 설명하였으나, 이는 하나의 실시예일 뿐 이러한 가스 공급부(1212)는 상부 공정챔버(1210)상 샤워헤드(shower head)형 등으로 형성되어 전구체가 기판(1010)면에 수직으로 분사되는 형태로도 가능하다.In this case, in the above-described atomic layer deposition process, the gas supply unit 1212 is formed on one side of the process chamber 1200, and the process gas is described by way of example, which is injected by the cross flow or moving wave method on the substrate. The gas supply unit 1212 may be formed in a shower head type on the upper process chamber 1210 so that the precursor is sprayed perpendicularly to the surface of the substrate 1010.
또한, 상부 공정챔버(1210)의 중심부에 플라즈마 형성을 위한 전극(1313)을 배치하고, 전극(1313)과 상부 공정챔버(1210) 사이는 절연체(1314)를 형성하여 상부 공정챔버(1210)와 전극(1313)간 쇼트(short)가 발생하는 것을 방지시키도록 하는 구조를 나타내고 있다. In addition, an electrode 1313 for forming plasma is disposed in the center of the upper process chamber 1210, and an insulator 1314 is formed between the electrode 1313 and the upper process chamber 1210 to form the upper process chamber 1210. The structure which prevents a short between the electrodes 1313 is shown.
이하, 동작을 살펴보면, 먼저, 원료전구체를 가스 공급부(1212)로 공급하여 기판(1010)의 일측면으로 균일하게 공급되고, 이에 따라 하부 공정챔버(1220)에 안착되어 있는 기판(1010)의 상층면에서 흡착반응이 일어나게 된다. Hereinafter, referring to the operation, first, the raw material precursor is supplied to the gas supply unit 1212 and uniformly supplied to one side of the substrate 1010, and thus the upper layer of the substrate 1010 seated in the lower process chamber 1220. At this point, adsorption reaction occurs.
이어, 위와 같은 원료전구체의 흡착이 완료되면 가스 공급부(1212)로 퍼지가스를 공급하여 기판(1010)상 잔존하는 원료전구체를 가스 배기부(1211)로 배출시킨다.Subsequently, when the adsorption of the raw material precursor is completed, the purge gas is supplied to the gas supply part 1212 to discharge the raw material precursor remaining on the substrate 1010 to the gas exhaust part 1211.
이어, 다시 반응전구체를 가스 공급부(1212)에 공급하여 기판으로 분사시킨 후, 전극(1313)에 전원을 공급하여 기판(1010)상으로 직접 플라즈마(plasma)(1030)를 발생시켜 플라즈마(1030)에 의한 원료전구체와 반응전구체간 화학적 반응을 통해 원자층 박막을 형성시키게 된다. 이때, 플라즈마(1030)를 이용한 기판(1010)상 원자층 박막 형성에 있어서는 다른 실시예로써 반응전구체를 포함하는 퍼지가스를 공급하여 기판(1010)상 원료전구체가 완전히 제거되는 시점에 플라즈마(1030)를 발생시켜 막을 형성시킬 수도 있다.Subsequently, the reaction precursor is supplied to the gas supply unit 1212 and sprayed onto the substrate, and then, power is supplied to the electrode 1313 to generate a plasma 1030 directly onto the substrate 1010 to generate a plasma 1030. The atomic layer thin film is formed through the chemical reaction between the raw material precursor and the reaction precursor by. In this case, in the formation of the atomic layer thin film on the substrate 1010 using the plasma 1030, the plasma 1030 is supplied when the raw material precursor on the substrate 1010 is completely removed by supplying a purge gas including the reaction precursor. May be formed to form a film.
또한, 직접 플라즈마(1030)에 따른 기판(1010)의 박막에 가해지는 영향을 최소화하기 위하여 가스 공급부(1212)에 별도의 전극(1313) 및 절연체(1314)를 가지도록 하는 구조를 구성할 수 있다.In addition, in order to minimize the effect on the thin film of the substrate 1010 directly by the plasma 1030, a structure in which the gas supply unit 1212 has a separate electrode 1313 and the insulator 1314 may be configured. .
또한, 가스 공급부(1212)를 통해 상부 공정챔버(1210)의 외곽에서 공정챔버(1200) 내부에 위치한 기판(1010)으로 원료전구체, 반응전구체, 퍼지가스를 원자층 증착 공정의 순서에 따라 순차적으로 공급하게 되며, 상부 공정챔버(1210)의 중앙부에 형성되는 가스 배기부(1211)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 구성할 수 있다.In addition, a raw material precursor, a reaction precursor, and a purge gas are sequentially disposed in an order of the atomic layer deposition process through the gas supply unit 1212 to the substrate 1010 located inside the process chamber 1200 outside the upper process chamber 1210. The gas supply unit 1211 may be configured to supply a process gas or purge gas used in each process through the gas exhaust unit 1211 formed at the center of the upper process chamber 1210.
또한, 상부 공정챔버(1210)의 오염 최소화를 위해 가스 공급부(1212)와 가스 배기부(1211)를 공유하면서 로봇에 의해 주기적으로 교체 가능한 기판 또는 블랭크 마스크(1050)를 부착한 상태로 공정진행이 가능하다.In addition, the process proceeds while the gas supply unit 1212 and the gas exhaust unit 1211 are shared with the substrate or the blank mask 1050 which can be periodically replaced by the robot while minimizing contamination of the upper process chamber 1210. It is possible.
또한, 상부 공정챔버(1210)의 중앙부에 형성된 샤워헤드 디퓨져(1312)를 통해 샤워헤드 방식으로 공정챔버(1200)내 위치한 기판(1010)으로 원료전구체, 반응전구체, 퍼지가스를 원자층 증착 공정의 순서에 따라 순차적으로 공급하게 되며, 상부 공정챔버(1210)의 양측 외곽으로 형성되는 가스 배기부(1211)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 구성할 수 있다.In addition, the raw material precursor, the reaction precursor, and the purge gas are transferred to the substrate 1010 located in the process chamber 1200 through the shower head diffuser 1312 formed at the center of the upper process chamber 1210. In order to supply sequentially, through the gas exhaust unit 1211 formed on both sides of the upper process chamber 1210 may be configured to exhaust the process gas or purge gas used in each process. .
또한, 기판(1010)과 근접한 배기 영역은 기판(1010)의 양단 또는 4면 전체로 구성될 수 있으며, 배기 경로 중 일정 영역에 꼬깔 형상, 물결형상, 홀형 디퓨져, 슬릿형 디퓨져등의 유동 균일도 향상을 위한 구성부를 포함할 수 있으며, 배기 초입부는 기판(1010)과 최대한 근접하게 배치되어 성막이 필요한 기판(1010)외 불필요한 영역의 오염을 최소화할 수 있다.In addition, the exhaust region adjacent to the substrate 1010 may be composed of both ends or the entire four sides of the substrate 1010, and improves the uniformity of flow such as a corrugated shape, a wavy shape, a hole diffuser, and a slit diffuser in a predetermined region of the exhaust path. The exhaust entry portion may be disposed as close as possible to the substrate 1010 to minimize contamination of unnecessary areas other than the substrate 1010 requiring film formation.
또한, 직접 플라즈마 적용이 어려운 물질이나 또는 이온 및 전자에 의한 하부막의 손상이 우려되는 경우 하부막의 손상 위험을 방지하기 위해 절연체(1314)이외에 전극(1413)과 샤워헤드 디퓨져(1312) 사이에 간극 절연체(1414)를 추가로 구성하여 전극(1413)과 디퓨져(1312) 사이에서만 플라즈마(1030)를 발생시킴으로써 반응전구체의 해리를 통한 라디칼을 공급하여 기판(1010)에 손상을 주지 않으면서 원자층 박막의 형성이 가능하도록 구성할 수 있다.In addition, when there is a concern that the lower layer may be damaged by ions and electrons or materials that are difficult to apply the plasma directly, a gap insulator between the electrode 1413 and the showerhead diffuser 1312 in addition to the insulator 1314 may be used to prevent the risk of damage to the lower layer. 1414 may be further configured to generate a plasma 1030 only between the electrode 1413 and the diffuser 1312 to supply radicals through dissociation of the reaction precursor, thereby not damaging the substrate 1010. It can be configured to be formed.
도 7은 본 발명의 다른 실시예에 따른 공정챔버(1200)의 단면 구조로서 마7 is a cross-sectional structure of a process chamber 1200 according to another embodiment of the present invention.
스크를 적용하지 않고, 대면적 기판에 대한 다분할 영역 성막을 수행하는 개략적인 구성을 도시한 것이다.It shows a schematic configuration for performing multi-division region deposition on a large area substrate without applying a screed.
위 도 7을 참조하면, 상부 공정챔버(1210)는 대면적 기판(1010)에 대해 적Referring to FIG. 7 above, the upper process chamber 1210 is applied to the large area substrate 1010.
어도 2개 이상의 영역으로 분할하여 각 영역별로 원자층 증착 공정을 수행할 수 있도록 구성하여 각 영역별 기판(1010) 상으로 원료전구체, 반응전구체, 퍼지가스를 원자층 증착 공정의 순서에 따라 순차적으로 공급하는 구조를 나타내고 있다. At least two regions may be divided to perform an atomic layer deposition process for each region, and the raw material precursor, the reaction precursor, and the purge gas may be sequentially disposed on the substrate 1010 for each region in the order of the atomic layer deposition process. The structure to supply is shown.
이때, 각각의 원자층 증착 공정부(1340)는 각 영역내 기판(1010) 상으로 공정가스를 공급하는 가스 공급부(1312)를 가지며, 외곽 둘레부상에 각각의 공정에서 사용된 공정가스 또는 퍼지가스를 배기시키기 위한 가스 배기부(1311)를 가지는 구조를 나타내고 있다.At this time, each atomic layer deposition process unit 1340 has a gas supply unit 1312 for supplying a process gas to the substrate 1010 in each region, the process gas or purge gas used in each process on the outer periphery The structure which has the gas exhaust part 1311 for exhausting the gas is shown.
또한, 샤워헤드형 디퓨져, 중심홀 디퓨져, 슬릿형 디퓨져 등을 통해 최대한 균일한 가스 흐름이 형성되도록 하고, 각 디퓨져에 전원을 공급하여 발생하는 직접 플라즈마 또는 간접 플라즈마를 이용한 공정 진행도 가능하게 된다.  In addition, the shower head-type diffuser, the central hole diffuser, the slit-type diffuser, etc. to form a uniform gas flow as possible, and the process proceeds using a direct plasma or an indirect plasma generated by supplying power to each diffuser.
또한, 도 7에서는 기본적인 다분할 성막을 위한 구성에서 각 분할 영역의In addition, in FIG. 7, each of the divided regions in the configuration for basic multi-layer deposition is shown.
경계 위치에 추가적으로 퍼지가스를 공급할 수 있도록 하는 퍼지가스 공급부(1412)를 설치하여 가스 배기부(1311)와 연계한 폐루프를 형성하도록 함으로써 다분할된각 영역 사이의 경계를 더욱 명확히 구현할 수 있도록 한다. A purge gas supply unit 1412 for additionally supplying purge gas to the boundary position may be provided to form a closed loop in connection with the gas exhaust unit 1311, so that the boundary between each divided region may be more clearly realized.
또한, 도 7에서는 샤워헤드형 디퓨져 형태와 중심홀 디퓨져 형태로 구성된 것을 예를 들어 도시하였으나, 다양한 형태로의 조합구성이 가능하다.In addition, in FIG. 7, for example, the shower head type diffuser and the center hole diffuser may be configured.
이에 따라, 원료전구체, 반응전구체, 퍼지가스 공급 시 성막 영역 외에 가스의 노출, 확산, 잔류가 방지될 수 있으며, 이에 따라, 대면적 기판의 성막 영역을 분리하기 위한 마스크를 사용하지 않더라도 다분할 영역 성막의 수행이 가능하게 된다.Accordingly, in addition to the deposition region when supplying the raw material precursor, the reaction precursor, and the purge gas, gas exposure, diffusion, and residual can be prevented. Thus, even if a mask for separating the deposition region of a large-area substrate is not used, a multi-division region Deposition can be performed.
도 8은 본 발명의 실시예에 따른 공정쳄버(1200)의 상세 단면 구조로서 마스크(1020)를 적용하지 않고, 기판(1010)의 성막 영역을 조절하는 개략적인 구성 및 구동가스(1415)를 이용하여 상부 공정쳄버(1200)와 하부 공정쳄버(1220)의 간격 높이를 조절하는 개략적인 구성 및 탈부착이 가능한 전극(1313)을 구현하는 개략적인 구성을 도시한 것이다.8 is a detailed cross-sectional structure of a process chamber 1200 according to an exemplary embodiment of the present invention, and a schematic configuration for controlling a deposition region of a substrate 1010 and a driving gas 1415 is used without applying a mask 1020. The schematic configuration for adjusting the height of the gap between the upper process chamber 1200 and the lower process chamber 1220, and the schematic configuration for implementing the removable electrode (1313) is shown.
위 도 8을 참조하면, 기판(1010) 상으로 공정가스를 공급하는 가스 공급부(1312)와 타측에 퍼지가스 공급부(1412)를 가지며, 중앙부에 공정가스 및 퍼지가스를 배기시키는 가스 배기부(1311)를 나타내고 있다. Referring to FIG. 8, a gas supply unit 1312 for supplying a process gas onto the substrate 1010 and a purge gas supply unit 1412 on the other side thereof, and a gas exhaust unit 1311 for exhausting the process gas and the purge gas in the center thereof. ).
상기 가스 배기부(1311)의 인입부에 멤브레인과 같은 기능을 가진 압력에 따라 변위조절이 가능한 장치부(1416)를 구성하여 공정가스의 상존 면적을 조절함으로써 성막 영역을 순차적으로 증가 또는 감소 시키는 것이 가능하게 된다.In order to sequentially increase or decrease the deposition area by forming an apparatus portion 1416 capable of adjusting displacement according to a pressure having a membrane-like function at the inlet of the gas exhaust unit 1311, and controlling the existing area of the process gas. It becomes possible.
이때, 가스 배기부(1311)의 변위 조절부(1416)를 내측에서 외측으로 축소하면 증착물질 1의 성막을 진행한후 증착물질 2의 성막은 타 공정모듈 또는 타 공정장치에서 진행한후 재반입시 2성막부의 외측까지 완전히 감싸지도록 확장 증착이 가능함으로써 증착 물질의 각 층간을 완벽하게 밀폐시킬 수 있게 된다.At this time, when the displacement adjusting unit 1416 of the gas exhaust unit 1311 is reduced from the inside to the outside, the deposition material 1 is deposited, and the deposition material 2 is deposited in another process module or another process device and then reloaded. Expandable deposition is possible to completely cover the outer side of the film forming portion, thereby completely sealing each layer of the deposition material.
또한 도 8에서 기본 실링부(1221)를 멤브레인과 같은 기능을 가진 압력에 따라 변위조절이 가능한 장치부(1416)를 구성하여 상부 공정쳄버(1210)와 하부 공정쳄버(1220)의 간격 높이를 쉽게 조절할 수 있어서 다양한 공정적용이 가능하다.In addition, in FIG. 8, the basic sealing part 1221 is configured with a device part 1416 capable of adjusting the displacement according to the pressure having a membrane-like function, thereby easily increasing the height of the gap between the upper process chamber 1210 and the lower process chamber 1220. It can be adjusted to enable various process applications.
또한 도 8에서 상부 공정쳄버(1210)에 구성된 전극(1313)의 탈부착 장치부(1315)를 구성하여 전극(1313)을 기판 이송용 로봇 또는 하부 공정쳄버(1220)의 상하 구동을 이용하여 쉽게 반입 및 반출이 가능하여 장시간 공정 진행 후 세정을 위한 별도의 유지보수 시간을 생략할 수 있어서 생산성을 증대 시킬 수 있다.Also, in FIG. 8, the detachable device part 1315 of the electrode 1313 formed in the upper process chamber 1210 is configured to easily carry the electrode 1313 into the substrate using a vertical transfer robot or a lower process chamber 1220. And since it is possible to carry out, a separate maintenance time for cleaning after a long process can be omitted, thereby increasing productivity.
이때. 전극의 탈부착 장치부(1315)는 부분적인 테이퍼 형상의 회전을 이용하여 전극(1313)용 절연체(1314)부와 완벽하게 밀착하게 된다.At this time. The detachable device portion 1315 of the electrode is in close contact with the insulator 1314 for the electrode 1313 using a partial tapered rotation.
상기한 바와 같이, 본 발명에서는 원자층 증착에 있어서, 상부 및 하부의 분리 및 결합이 가능한 원자층 증착 공정을 위한 단위 공정챔버를 적층형태로 다수개 배치하며, 적층형태로 배치된 다수개의 공정챔버의 외부에는 별도의 진공형성 및 압력 조절용 진공 챔버를 구현하여 최적의 공정이 가능한 최소의 공간만을 가지도록 구현된 다수개의 공정챔버에서 동시에 원자층 증착 공정진행이 가능하도록 함으로써, 원료전구체 및 반응전구체의 사용량 감소 및 공정시간 최소화를 통해 비용을 절감시키면서 생산성을 향상시킬 수 있도록 한다. 또한, 본 발명에 따르면 최적화된 공정챔버내에서 원자층 증착 대상 기판이 상부 공정챔버 또는 하부 공정챔버에 완벽하게 밀착하게 되어 기판 뒷면의 성막을 방지시킬 수 있도록 한다.As described above, in the present invention, in the atomic layer deposition, a plurality of unit process chambers for the atomic layer deposition process capable of separating and combining the upper and lower portions are arranged in a stacked form, and the plurality of process chambers arranged in the stacked form. By implementing a separate vacuum-forming and pressure-controlled vacuum chamber on the outside of the raw material precursor and the reaction precursor by simultaneously performing the atomic layer deposition process in a plurality of process chambers implemented to have a minimum space for the optimal process Reduced usage and minimizing process time can improve productivity while reducing costs. In addition, according to the present invention, the atomic layer deposition target substrate is perfectly in close contact with the upper process chamber or the lower process chamber in the optimized process chamber, thereby preventing the film formation on the back side of the substrate.
한편 상술한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시될 수 있다. 예를 들어, 본 발명의 실시예에서는 원자층 증착장치에서의 동작을 예를 들어 설명하고 있으나, 본 발명은 PECVD에서도 동일하게 적용 가능하다. Meanwhile, in the above description of the present invention, specific embodiments have been described, but various modifications may be made without departing from the scope of the present invention. For example, in the embodiment of the present invention, the operation in the atomic layer deposition apparatus is described by way of example, but the present invention is equally applicable to PECVD.
따라서 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위에 의해 정하여져야 한다.Therefore, the scope of the invention should be determined by the claims rather than by the described embodiments.

Claims (24)

  1. 상부 공정챔버와 하부 공정챔버를 구비하고, 원자층 증착 공정 대상 기판의 로딩 또는 언로딩 시에는 상기 상부 공정챔버와 하부 공정챔버가 분리되며, 상기 기판에 대한 증착 공정의 진행시에는 상기 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 공정챔버를 구비하고,An upper process chamber and a lower process chamber, wherein the upper process chamber and the lower process chamber are separated when loading or unloading a substrate to be subjected to an atomic layer deposition process, and the upper process chamber when the deposition process is performed on the substrate. And a process chamber which combines with the lower process chamber to form a closed reaction space,
    상기 공정쳄버의 공간을 진공상태로 유지시키는 진공쳄버를 포함하는 공정모듈이 수직방향으로 적층된 형태의 원자층 증착장치.An atomic layer deposition apparatus having a process module including a vacuum chamber for maintaining a space of the process chamber in a vacuum state stacked in a vertical direction.
  2. 상부 공정챔버와 하부 공정챔버를 구비하고, 원자층 증착 공정 대상 기판의 로딩 또는 언로딩 시에는 상기 상부 공정챔버와 하부 공정챔버가 분리되며, 상기 기판에 대한 증착 공정의 진행시에는 상기 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 공정챔버를 한 개 이상 포함하고,An upper process chamber and a lower process chamber, wherein the upper process chamber and the lower process chamber are separated when loading or unloading a substrate to be subjected to an atomic layer deposition process, and the upper process chamber when the deposition process is performed on the substrate. And one or more process chambers combined with the lower process chambers to form a closed reaction space.
    상기 공정쳄버의 공간을 진공상태로 유지시키는 진공쳄버를 포함하는 공정모듈이 적어도 두개 이상 수직방향으로 적층된 형태의 원자층 증착장치.At least two process modules including a vacuum chamber for maintaining the space of the process chamber in a vacuum state stacked type in the vertical direction.
  3. 제 2 항에 있어서,The method of claim 2,
    상기의 상부 공정쳄버와 하부 공정쳄버가 결합하기 이전에 기판과 마스크의 정확한 위치 확보 및 안착을 위한 정렬장치를 더 포함하는 것을 특징으로 하는 원자층 증착장치Atomic layer deposition apparatus further comprises an alignment device for securing and positioning the substrate and the mask correctly before the upper process chamber and the lower process chamber is coupled
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 정렬장치는,The alignment device,
    화상정보처리(비젼) 장치를 이용하여 마스크부 또는 기판부의 좌우, 전후, 회전의 제어가 가능한 조절 장치부를 포함하는 원자층 증착장치Atomic layer deposition apparatus comprising a control unit that can control the left, right, front, and rear of the mask unit or the substrate unit by using an image information processing (vision) apparatus
  5. 제 2 항에 있어서,The method of claim 2,
    상기 상부 공정챔버의 하부면에 절연체 및 접촉형 전원공급부와 탈부착 장치에 의해 결합 또는 분리되는 플라즈마 발생을 위한 전극이 형성되는 것을 특징으로 하는 원자층 증착장치.And an electrode for plasma generation, which is coupled or separated by an insulator and a contact type power supply and a detachable device, is formed on a lower surface of the upper process chamber.
  6. 제 2 항에 있어서,The method of claim 2,
    상기 상부 공정쳄버의 가스 배기부에 압력에 따라 변위조절이 가능한 장치부를 구성하여 공정가스의 상존 면적을 조절함으로써 성막 영역을 순차적으로 증가 시켜 증착 물질의 층간을 완벽하게 밀폐시키는 것을 특징으로 하는 원자층 증착장치Atomic layer characterized in that the gas exhaust portion of the upper process chamber is configured to adjust the displacement according to the pressure to control the phase area of the process gas to sequentially increase the deposition area to completely seal the interlayer of the deposition material Deposition equipment
  7. 제 2 항에 있어서,The method of claim 2,
    상기 진공챔버는,The vacuum chamber,
    상기 공정쳄버 외부공간의 진공형성 또는 대기로의 변환이 가능하도록 구성되며, 각 공정모듈별 유지보수용 개폐부가 구성되는 것을 특징으로 하는 적층형 원자층 증착장치.Stacked atomic layer deposition apparatus is configured to enable the vacuum forming of the process chamber outer space or conversion to the atmosphere, the maintenance switch for each process module is configured.
  8. 제 2 항에 있어서,The method of claim 2,
    상기 진공챔버는,The vacuum chamber,
    상기 진공챔버의 내부 공간에 상기 공정챔버를 지지하거나 반입 또는 반출하거나 이송하기 위한 가이드부를 포함하는 것을 특징으로 하는 원자층 증착장치.And a guide part for supporting, carrying in, taking out, or transferring the process chamber to the inner space of the vacuum chamber.
  9. 제 2 항에 있어서,The method of claim 2,
    상기 진공챔버는,The vacuum chamber,
    상기 상부 공정챔버를 고정시키는 고정수단 및 상기 하부 공정챔버를 상하로 이동시키는 이송수단을 구비하는 것을 특징으로 하는 원자층 증착장치.And fixing means for fixing the upper process chamber and transfer means for moving the lower process chamber up and down.
  10. 제 2 항에 있어서,The method of claim 2,
    상기 상부 공정챔버는 상기 진공챔버에 고정되며, 상기 하부 공정챔버는 상기 진공챔버내에서 상하 방향으로 이동하여 상기 상부 공정챔버와 결합되거나 분리되는 것을 특징으로 하는 원자층 증착장치.And the upper process chamber is fixed to the vacuum chamber, and the lower process chamber is moved up and down in the vacuum chamber to be coupled to or separated from the upper process chamber.
  11. 제 2 항에 있어서,The method of claim 2,
    상기 상부 공정챔버와 상기 하부 공정챔버를 상하로 이동시켜 결합될 때 전체 면적의 균등한 결합력 유지 및 특정부위의 과도한 결합력을 완충할 수 있는 장력조절 기능을 가지는 장치를 더 포함하는 것을 특징으로 하는 원자층 증착장치.The apparatus further comprises a device having a tension control function that can maintain the even bonding force of the entire area and buffer the excessive bonding force of a specific area when the upper process chamber and the lower process chamber is moved up and down to combine Layer deposition apparatus.
  12. 제 11 항에 있어서,The method of claim 11,
    장력조절 기능을 가지는 장치는 자체 탄성력을 가지는 오링, 스프링, ㄷ형 블록 또는 외부 압력에 의해 팽창 및 수축 기능을 가지는 멤브레인, 튜브등의 일정범위의 외력에 가변이 가능한 구성물의 조합으로 만들어지는것을 특징으로 하는 원자층 증착장치.Tension control device is made of a combination of components that can be changed to a range of external forces, such as O-rings, springs, c-shaped blocks having their own elastic force or membranes, tubes having expansion and contraction functions by external pressure An atomic layer deposition apparatus.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 상부 공정챔버와 상기 하부 공정챔버를 상하로 이동시켜 결합될 때 전체 면적의 균등한 결합력 유지 및 특정부위의 과도한 결합력을 측정할 수 있도록 로드셀 또는 압력기등의 계측기기를 포함하여 측정치에 따라 위치별 장력을 조절할 수 있는 기능을 더 포함하는 것을 특징으로 하는 원자층 증착장치.Including the measuring device, such as a load cell or pressure gauge to maintain the even bonding force of the entire area and to measure the excessive bonding force of the specific area when the upper process chamber and the lower process chamber is moved up and down to combine Atomic layer deposition apparatus further comprises a function to adjust the tension.
  14. 제 2 항에 있어서,The method of claim 2,
    상기 공정챔버와 상기 하부 공정챔버를 상하로 이동시켜 결합될 때 요구되는간극조절을 위해 일정 두께를 가지는 갭블럭 교체 장치를 가지거나 두 간극사이에 외부의 압력차에 의해 팽창 및 수축이 가능한 멤브레인을 구성하여 멤브레인에 가해지는 압력조절에 따라 간극 조절이 가능한 것을 특징으로 하는 원자층 증착장치Membrane having a gap block replacement device having a predetermined thickness for adjusting the gap required when the process chamber and the lower process chamber are moved up and down, or a membrane that can be expanded and contracted by an external pressure difference between the gaps. Atomic layer deposition apparatus characterized in that the gap can be adjusted according to the pressure control applied to the membrane
  15. 제 2 항에 있어서,The method of claim 2,
    상기 공정챔버는,The process chamber,
    상기 밀폐된 반응공간에 공정가스 또는 퍼지가스를 공급하는 가스 공급부를 상기 공정쳄버의 일측면에 구비하고, A gas supply unit for supplying a process gas or purge gas to the closed reaction space is provided on one side of the process chamber,
    상기 밀폐된 반응공간에 공급된 가스를 배기시키는 가스 배기부를 상기 공정챔버의 타측면에 구비하는 것을 특징으로 하는 원자층 증착장치.And a gas exhaust portion for exhausting the gas supplied to the sealed reaction space on the other side of the process chamber.
  16. 제 15 항에 있어서,The method of claim 15,
    상기 공정가스가 밀폐된 반응공간으로 인입되는 가스 공급부의 도입부에 플라즈마 발생을 위한 전극이 형성되는 것을 특징으로 하는 원자층 증착장치.And an electrode for generating a plasma is formed at an introduction portion of the gas supply unit through which the process gas is introduced into the closed reaction space.
  17. 제 15 항에 있어서,The method of claim 15,
    상기 가스 공급부는,The gas supply unit,
    상기 상부 공정챔버의 내부에서 균일한 가스 유동을 위해 V, W, VVV, U 형상의 확산공간 또는 샤워헤드 타입의 디퓨져로 형성되어 상기 밀폐된 반응공간내의 상기 기판에 수직 또는 수평 방향으로 상기 공정가스 또는 상기 퍼지가스를 분사하는 것을 특징으로 하는 원자층 증착장치.The process gas is formed in a diffusion space of a V, W, VVV, U shape or a showerhead type diffuser for uniform gas flow in the upper process chamber, and is perpendicular to or horizontal to the substrate in the closed reaction space. Or the purge gas is injected.
  18. 제 15 항에 있어서,The method of claim 15,
    상기 공정쳄버는 상기 공정가스 또는 퍼지가스 또는 배기가스의 응축 또는 부산물 방지를 위하여 상기 공정쳄버에 히팅 및 온도제어 장치를 더 포함하는 것을 특징으로 하는 원자층 증착장치.The process chamber further comprises a heating and temperature control device in the process chamber to prevent condensation or by-products of the process gas or purge gas or exhaust gas.
  19. 제 2 항에 있어서,The method of claim 2,
    상기 공정쳄버의 공정가스 공급부 또는 퍼지가스 공급부 또는 가스 배기부를적어도 1개 이상의 다른 공정쳄버와 공유한 공급배관 또는 배기 배관을 사용하는 것을 특징으로 하는 원자층 증착장치.A process gas supply unit or purge gas supply unit or gas exhaust unit of said process chamber is characterized by using a supply pipe or an exhaust pipe shared with at least one or more other process chambers.
  20. 제 2 항에 있어서,The method of claim 2,
    상기 공정챔버와 상기 하부 공정챔버를 상하로 이동시켜 결합후 공정 진행시기판을 제외한 증착영역 최소화를 위한 상부 공정쳄버와 하부공정쳄버의 결합부 외측에 요철형 단차부가 형성되며, 단차부의 틈새 또는 단차부의 외측에 일정한 양의 퍼지가스를 공급하여 기판을 제외한 씰링부를 포함한 일측면의 증착을 최소화하는 구성을 더 포함하는 것을 특징으로 하는 원자층 증착장치The process chamber and the lower process chamber is moved up and down to form an uneven step on the outside of the combined portion of the upper process chamber and the lower process chamber for minimizing the deposition area except for the process progress board after joining. Atomic layer deposition apparatus further comprises a configuration for supplying a predetermined amount of purge gas to the outside of the portion to minimize the deposition of one side including the sealing portion excluding the substrate
  21. 공정모듈은 적어도 2개 이상의 진공쳄버가 적층되어 있고, At least two vacuum chambers are stacked in a process module,
    진공쳄버는 적어도 1개 이상의 공정쳄버를 구비하는 멀티형 원자층 증착장치에서 수행되는 원자층 증착 방법으로서, Vacuum chamber is an atomic layer deposition method performed in a multi-type atomic layer deposition apparatus having at least one process chamber,
    상기 공정쳄버내에서 기판과 마스크가 로딩되는 단계와, 상기 기판과 마스크를 화상정보 처리장치 등을 포함한 정렬장치에 의해 위치 파악 및 정확한 정렬단계를 거치면, When the substrate and the mask are loaded in the process chamber, and the substrate and the mask are located by an alignment device including an image information processing device, etc.
    상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와, 상기 밀폐된 반응공간에서 상기 기판에 대한 원자층 증착 공정을 수행하는 단계를 포함하는 원자층 증착방법.Combining the upper process chamber with the lower process chamber to form a sealed reaction space, and performing an atomic layer deposition process on the substrate in the closed reaction space.
  22. 제 2 항에 있어서,The method of claim 2,
    상기 상부 공정챔버와 하부 공정챔버는 각각 상기 기판을 탑재하고, The upper process chamber and the lower process chamber each mount the substrate,
    상기 증착 공정의 진행시에 상기 반응공간에서 상기 상부 공정챔버에 탑재된Mounted on the upper process chamber in the reaction space during the deposition process.
    기판과 상기 하부 공정챔버에 탑재된 기판에 동시에 상기 증착 공정이 진행되는 것을 특징으로 하는 원자층 증착장치.And the deposition process is simultaneously performed on a substrate and a substrate mounted on the lower process chamber.
  23. 제 2 항에 있어서,The method of claim 2,
    상기 상부 공정챔버는 상기 기판에 대해 적어도 2개 이상의 영역으로 분할하The upper process chamber is divided into at least two regions with respect to the substrate.
    여 영역별로 원자층 증착 공정을 수행할 수 있는 2개 이상의 원자층 증착 공정부를 구비하되, 상기 원자층 증착 공정부는 가스 공급부와 가스 배기부를 포함하는 것을 특징으로 하는 원자층 증착장치.And at least two atomic layer deposition process portions capable of performing an atomic layer deposition process for each region, wherein the atomic layer deposition process portion includes a gas supply portion and a gas exhaust portion.
  24. 제 2 항에 있어서,The method of claim 2,
    공정챔버의 증착 물질 또는 증착 방법 또는 유지보수의 선택은 진공쳄버를 포함하는 각 단위공정 모듈별 동시 또는 개별로 가능하도록 구성되어지며, 각 단위공정 모듈의 외부 영향성 최소화를 위하여 적층된 진공쳄버 사이에 압력조절 및 강성 보강을 위한 버퍼 공간을 구비하는 것을 특징으로 하는 원자층 증착장치.The choice of deposition material or deposition method or maintenance of the process chamber is made to be possible simultaneously or separately for each unit process module including the vacuum chamber, and between stacked vacuum chambers to minimize external influence of each unit process module. An atomic layer deposition apparatus comprising a buffer space for pressure control and stiffness reinforcement.
PCT/KR2015/002783 2014-03-21 2015-03-21 Multi-type deposition apparatus and thin-film forming method using same WO2015142131A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0033058 2014-03-21
KR1020140033058A KR101634694B1 (en) 2014-03-21 2014-03-21 Multi-type deposition apparatus and methode thereof

Publications (1)

Publication Number Publication Date
WO2015142131A1 true WO2015142131A1 (en) 2015-09-24

Family

ID=54144990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002783 WO2015142131A1 (en) 2014-03-21 2015-03-21 Multi-type deposition apparatus and thin-film forming method using same

Country Status (2)

Country Link
KR (1) KR101634694B1 (en)
WO (1) WO2015142131A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112609170A (en) * 2020-11-24 2021-04-06 鑫天虹(厦门)科技有限公司 Atomic layer deposition apparatus and process
CN114807906A (en) * 2022-06-27 2022-07-29 江苏邑文微电子科技有限公司 Atomic layer deposition equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183908A (en) * 2003-12-15 2005-07-07 Tera Semicon Corp Semiconductor manufacturing apparatus and method of forming thin-film on semiconductor substrate utilizing the same
KR20100077445A (en) * 2008-12-29 2010-07-08 주식회사 케이씨텍 Batch type atomic layer deposition apparatus
KR20110092825A (en) * 2010-02-10 2011-08-18 세메스 주식회사 Plasma processing apparatus and method
KR20120140627A (en) * 2011-06-21 2012-12-31 도쿄엘렉트론가부시키가이샤 Batch type processing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106297A (en) * 2008-10-29 2010-05-13 Dainippon Printing Co Ltd Mask alignment device
KR101044913B1 (en) 2009-07-14 2011-06-28 신웅철 Batch type ald
US8771791B2 (en) 2010-10-18 2014-07-08 Veeco Ald Inc. Deposition of layer using depositing apparatus with reciprocating susceptor
KR20120110823A (en) * 2011-03-30 2012-10-10 (주)세미머티리얼즈 Multi layer type thin film deposition apparatus with a function of improved film uniformity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183908A (en) * 2003-12-15 2005-07-07 Tera Semicon Corp Semiconductor manufacturing apparatus and method of forming thin-film on semiconductor substrate utilizing the same
KR20100077445A (en) * 2008-12-29 2010-07-08 주식회사 케이씨텍 Batch type atomic layer deposition apparatus
KR20110092825A (en) * 2010-02-10 2011-08-18 세메스 주식회사 Plasma processing apparatus and method
KR20120140627A (en) * 2011-06-21 2012-12-31 도쿄엘렉트론가부시키가이샤 Batch type processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112609170A (en) * 2020-11-24 2021-04-06 鑫天虹(厦门)科技有限公司 Atomic layer deposition apparatus and process
CN114807906A (en) * 2022-06-27 2022-07-29 江苏邑文微电子科技有限公司 Atomic layer deposition equipment
CN114807906B (en) * 2022-06-27 2022-09-16 江苏邑文微电子科技有限公司 Atomic layer deposition equipment

Also Published As

Publication number Publication date
KR20150109778A (en) 2015-10-02
KR101634694B1 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
KR101210555B1 (en) Apparatus for manufacturing thin film solar cell
WO2015072691A1 (en) Atomic layer deposition apparatus and method
WO2010055669A1 (en) Electrode circuit, film formation device, electrode unit, and film formation method
WO2013095030A1 (en) Substrate-processing apparatus and substrate-processing method
WO2018042756A1 (en) Atomic layer growth apparatus and atomic layer growth method
EP2299498B1 (en) Thin-film solar cell manufacturing apparatus
WO2013180453A1 (en) Substrate processing device and substrate processing method
JP5280441B2 (en) Deposition equipment
WO2015142131A1 (en) Multi-type deposition apparatus and thin-film forming method using same
WO2015034208A1 (en) Stacking-type atomic layer deposition device and method therefor
TWI420683B (en) Thin film solar cell manufacturing apparatus
KR101321331B1 (en) The system for depositing the thin layer
EP2299477B1 (en) Thin- film solar cell manufacturing apparatus
WO2014007572A1 (en) Substrate-processing apparatus
WO2020036261A1 (en) Apparatus for depositing atomic layer and method for depositing atomic layer using same
WO2015072690A1 (en) Atomic layer deposition apparatus and method
JP2002083774A (en) Film forming apparatus
KR101512140B1 (en) Atomic layer deposition apparatus and method thereof
EP2290701B1 (en) Apparatus for manufacturing thin film solar cell
WO2014175573A1 (en) Cluster-type batch-mode substrate processing system
WO2021112611A1 (en) Substrate processing device, method for preparing substrate processing device, and substrate processing method
WO2023048455A1 (en) Method for washing substrate treatment apparatus
WO2015016492A1 (en) Substrate processing apparatus
WO2016199980A1 (en) Chemical vapor deposition system using initiator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765889

Country of ref document: EP

Kind code of ref document: A1