WO2016199980A1 - Chemical vapor deposition system using initiator - Google Patents
Chemical vapor deposition system using initiator Download PDFInfo
- Publication number
- WO2016199980A1 WO2016199980A1 PCT/KR2015/009511 KR2015009511W WO2016199980A1 WO 2016199980 A1 WO2016199980 A1 WO 2016199980A1 KR 2015009511 W KR2015009511 W KR 2015009511W WO 2016199980 A1 WO2016199980 A1 WO 2016199980A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- initiator
- chamber
- chemical vapor
- vapor deposition
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/6776—Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/60—Deposition of organic layers from vapour phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/02—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
- B05D3/0254—After-treatment
- B05D3/0272—After-treatment with ovens
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
- C23C16/545—Apparatus specially adapted for continuous coating for coating elongated substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02118—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67126—Apparatus for sealing, encapsulating, glassing, decapsulating or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2203/00—Other substrates
- B05D2203/30—Other inorganic substrates, e.g. ceramics, silicon
- B05D2203/35—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2252/00—Sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2252/00—Sheets
- B05D2252/02—Sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2252/00—Sheets
- B05D2252/04—Sheets of definite length in a continuous process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2401/00—Form of the coating product, e.g. solution, water dispersion, powders or the like
- B05D2401/30—Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant
- B05D2401/33—Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant applied as vapours polymerising in situ
Definitions
- the present invention relates to a chemical vapor deposition system using an initiator, and more particularly, to a chemical vapor deposition system capable of significantly reducing material consumption by improving deposition speed and maximizing material use efficiency in a deposition process using an initiator. It is about.
- a semiconductor device or a display device is manufactured through various manufacturing processes including a deposition process.
- a process of depositing a deposition material using a chemical vapor deposition system is essential.
- CVD chemical vapor deposition
- Korean Patent Application Publication No. 10-2015-0057679 name of the invention: a substrate cooling apparatus and a chemical vapor deposition apparatus including the same.
- the cooling device includes an initiator inlet plate into which the initiator is introduced such that the first and second reaction gases react, causing the plurality of reaction gases to react due to the initiator.
- the initiator is decomposed in the form of radical ions, and since the energy of the radical ions decreases according to the configuration of the access path (curve flow, volume, etc.) of the initiator, in order to minimize collisions until the radical ions formed at the top are ejected to the nozzle. It was configured to be ejected from the top.
- CVD using an initiator requires that the initiator and monomer be first adsorbed onto the substrate to form a polymerization site in order to cause polymerization of the initiator and monomer on the substrate surface.
- Initiator CVD consists of three stages: 1 Site generation (monomer adsorption site formation on the substrate) ⁇ 2 Polymerization (polymer formation through polymerization of initiator and monomer) ⁇ 3 Termination (controlling deposition thickness by removing residual initiator) Processes can be distinguished, and such processes form polymers on the substrate surface.
- FIG. 1 is a cross-sectional view schematically showing the configuration of an example of a conventional chemical vapor deposition system.
- an initiator 2 and a plurality of monomers 4 and 6 are simultaneously introduced into one chamber 10,
- the initiator (2) and monomer (4) (6) simultaneously introduced form a monomer adsorption site on the substrate (20), and then form a polymer through a polymerization reaction of the initiator (2) and the monomer (4) (6).
- a gaseous substance should be introduced into the chamber to create a certain concentration of atmosphere.
- the size of the chamber may be increased according to the structure of the apparatus for the deposition process.
- the vapor phase material should fill the entire interior of the chamber, and the input and discharge of the material may be performed to maintain a constant pressure in the chamber.
- the material must be continually consumed and the material that does not participate in the reaction required to form the polymer should be discharged to a vacuum pumping line (not shown), which causes a problem of high consumption of the material.
- the concentration of the gaseous substance in each position may vary according to the material flow of the gaseous phase in the chamber and the vacuum pumping direction, it is difficult to secure deposition uniformity of the substrate thin film.
- CVD using an initiator requires the presence of an initiator to form a polymer thin film, but there is a problem in that thickness reproducibility is difficult by a residual initiator after forming a thin film of a desired thickness.
- energy heat, plasma, etc.
- an activation source wire heater
- An object of the present invention is to solve the above-mentioned problems.
- a separate chamber for forming a polymerization site of a substrate is formed, thereby improving a deposition rate and a material. It is to provide a chemical vapor deposition system that can reduce the consumption of, and to ensure the deposition uniformity of the deposited substrate thin film is deposited to a uniform thickness of the deposition material.
- the linear evaporation source is used to minimize damage (heat, plasma, etc.) transferred to the substrate, and most of the material discharged from the nozzle is distributed in a narrow linear evaporation source space, so that most of the supplied material participates in the deposition polymerization reaction. Accordingly, to provide a chemical vapor deposition system that can minimize the leakage of gaseous substances into the chamber outside the substrate to maximize the efficiency of use of the substance.
- a polymerization reaction of an initiator and a monomer is caused to occur on the surface of a substrate, and a first chamber is formed in which the initiator and the monomer are added to form a polymerization site, and a polymerization site is formed in the first chamber.
- a second chamber for forming a polymer through polymerization of the initiator and the monomer after the substrate is introduced, and a third chamber for stopping the reaction to control the deposition thickness by removing the residual initiator after the substrate in which the polymer is formed is introduced;
- a substrate transfer device for moving the substrate from the first chamber to the third chamber via the second chamber, wherein the process of polymer thin film formation is carried out in each chamber step by step.
- the third chamber is characterized in that the thickness is controlled by blocking the polymerization reaction by additionally adding an initiator to remove the residual initiator.
- the first to third chambers may control the chamber pressure through intermittent pumping as needed without forming a gaseous fluid flow through a gaseous substance input and vacuum pumping in real time.
- the substrate transfer device is installed between the first chamber and the second chamber and between the second chamber and the third chamber, the door opening and closing when transferring the substrate to each chamber, the first chamber, Outlets and inlets serving as passages of the substrates formed at positions where the doors are installed in the second chambers and the third chambers, and a transport apparatus for transferring the substrates between the chambers through the outlets and the inlets; It may include a control unit for controlling the operation of the transportation device and the opening and closing of the door.
- the transport device may be made of a robot arm horizontally reciprocating while entering and exiting the outlet and the inlet.
- the transport apparatus may include a conveyor apparatus including a plurality of rollers for directly placing or transporting the substrate into the first to third chambers, and a driving apparatus for driving the conveyor apparatus.
- a conveyor apparatus including a plurality of rollers for directly placing or transporting the substrate into the first to third chambers
- a driving apparatus for driving the conveyor apparatus.
- the conveyor apparatus is composed of an internal conveyor device installed inside the first to third chambers, and an external conveyor device installed outside the first to third chambers to connect the chambers.
- the conveyor apparatus and the external conveyor apparatus may be driven through separate drives.
- At least two or more monomers may be introduced into the first chamber or the second chamber to form a vapor deposition material atmosphere.
- the linear evaporation source generates a polymerization reaction between the initiator and the monomer through a polymerization reaction of the initiator and the monomer on the first evaporation source into which the initiator and the monomer are added to form a monomer adsorption site, and the substrate on which the monomer adsorption site is formed in the first evaporation source.
- the thickness can be controlled by blocking the polymerization reaction.
- the first to third evaporation sources may include a plurality of nozzles for injecting a deposition material to be deposited on a substrate, and an evaporation source for distributing the deposition material discharged through the nozzle in a narrow volume linear space to participate in the deposition polymerization reaction.
- a guide and a wire heater provided inside the evaporation source guide and activating the deposition material ejected through the nozzle by radicals may be included.
- the plurality of nozzles may be spaced apart from each other at a predetermined interval.
- the evaporation source guide may be configured to guide the deposition material to a position adjacent to the substrate so that the deposition material participates in the deposition polymerization reaction on the substrate surface.
- the wire heater may be formed in plural, and the plurality of wire heaters may be spaced apart from each other at a predetermined interval.
- the substrate is made of a flexible substrate
- the moving means may be made of a roll to roll (roll to roll) device.
- the roll-to-roll apparatus includes a supply roller for providing the flexible substrate to a deposition position where the deposition material is deposited, a recovery roller for recovering the flexible substrate on which the deposition material is deposited, and between the supply roller and the recovery roller.
- a direction roller positioned to assist the flexible substrate to be continuously supplied to the deposition position and to pass through the deposition position, and to receive the substrate from the supply roller side so that the deposition material is deposited on the substrate. It may include a supporter roller (supporter roller) for supporting the substrate.
- the supporter roller may be provided with a substrate cooling means for cooling the heat received while the deposition material is deposited on the substrate.
- the substrate is made of a plate-like substrate
- the movement means is a horizontal movement to reciprocate the substrate or linear evaporation source in the horizontal direction to scan the entire area of the substrate for the process of forming a polymer thin film By means.
- the horizontal moving means includes a conveyor device including a plurality of rollers for directly placing the substrate to move the substrate to the position of the first to third evaporation source, and a driving device for driving the conveyor device. can do.
- the present invention has the effect of improving the deposition rate and reducing the consumption of the material by configuring a separate chamber for forming the polymerization site of the substrate.
- the position according to the gas phase material flow and vacuum pumping direction It is possible to secure the deposition uniformity of the substrate thin film by preventing the concentration of the gaseous phase material different from each other.
- the present invention has the effect of improving the deposition rate and at the same time reduce the consumption of the material by configuring a plurality of linear evaporation source for the step of proceeding the polymer thin film forming process through the polymerization of the substrate.
- the linear evaporation source is used to minimize damage (heat, plasma, etc.) transferred to the substrate, and most of the material discharged from the nozzle is distributed in a narrow linear evaporation source space, so that most of the supplied material participates in the deposition polymerization reaction. By doing so, it is possible to minimize the leakage of gaseous substances into the chamber other than the substrate to maximize the material use efficiency.
- the gaseous substance exists in a narrow region, it is easy to control the concentration of the gaseous substance, and thus, it is advantageous to secure the overall uniformity of the substrate.
- FIG. 1 is a cross-sectional view briefly showing the configuration of an example of a conventional chemical vapor deposition system.
- FIG. 2 is a cross-sectional view showing the overall configuration of the chemical vapor deposition system of the present invention.
- 3 to 4 illustrate one embodiment of a substrate transfer apparatus in the chemical vapor deposition system of the present invention, and are sectional views showing a substrate transfer process.
- Figure 5 is a cross-sectional view showing an embodiment of a linear chemical vapor deposition system of the present invention, showing an example applied to the process of a roll to roll flexible (flexible) substrate.
- FIG. 6 is a cross-sectional view showing another embodiment of the linear chemical vapor deposition system of the present invention.
- FIG. 7 is a perspective view showing a linear evaporation source in the chemical vapor deposition system of the present invention.
- FIG. 8 is a cross-sectional view taken along the line A-A in FIG.
- FIG. 2 is a cross-sectional view showing the overall configuration of the chemical vapor deposition system of the present invention.
- the chemical vapor deposition system using the initiator is 1 Site generation (formation of monomer adsorption site on the substrate) ⁇ 2 Polymerization (polymer formation through polymerization of the initiator and monomer) ⁇ (3)
- the process of the termination is configured to proceed in the three-stage chamber.
- the present invention causes a polymerization reaction between the initiator 112 and the monomers 114 and 116 on the surface of the substrate 20.
- the initiator 112 and the monomers 114 and 116 are introduced to form a polymerization site.
- a second chamber in which the polymer is formed through polymerization of the initiator 122 and the monomers 124 and 126 after the first chamber 110 and the substrate having the polymerization site formed therein are introduced from the first chamber 110.
- a third chamber 130 which stops the reaction to control the deposition thickness by removing the residual initiator after the substrate on which the polymer is formed is introduced. There is a characteristic to proceed in.
- the first chamber 110, the second chamber 120, and the third chamber 130 provide a space isolated from the outside to allow a process of depositing a deposition material on the substrate 20.
- the interior of the chambers is in a vacuum state, and the deposition process is performed in a vacuum.
- Such a chamber is provided with a vacuum pumping line (not shown) for establishing a vacuum state.
- a showerhead assembly (not shown) is provided on the upper portion of the chamber. None) can be installed to allow the reaction gas to flow through. In this case, an initiator and a plurality of monomers are simultaneously introduced through the showerhead assembly to form a structure which is ejected downward.
- At least two monomers and an initiator are added to the first chamber 110 or the second chamber 120 to form a vapor deposition material atmosphere. That is, in the present embodiment, two kinds of monomers are introduced and ejected, but the present invention is not limited thereto, and three or more kinds of reaction gases may be introduced and ejected.
- the initiator is decomposed in the form of radical ions, and since the energy of the radical ions decreases according to the configuration of the entry path (curve, volume, etc.) of the access path, in order to minimize the collision before the radical ions formed at the top are ejected into the nozzle. It is preferable to configure so that it may eject from the top.
- an initiator and a plurality of monomers are simultaneously introduced into one chamber to form a polymer, and then materials that do not participate in the reaction required for polymer formation are discharged to a vacuum pumping line, so that all processes are performed in one chamber. Is done.
- the concentration of the gaseous substance by location varies according to the gaseous fluid flow and the vacuum pumping direction. Will be.
- the process of controlling deposition thickness by (1) forming a monomer adsorption site on a substrate, (2) forming a polymer through polymerization of an initiator and a monomer, and (3) removing a residual initiator is performed in a separate chamber for each process.
- the method of adding an initiator by removing residual initiator is not a method of discharging a material that does not participate in the reaction after polymer formation at once but by vacuum pumping line. By using this, the flow of gaseous substances due to the vacuum pumping direction is minimized.
- the chamber pressure can be controlled by intermittent pumping in each chamber, thereby minimizing the flow of the gaseous substance due to the vacuum pumping direction, thereby preventing the concentration of the gaseous substance deposited on the substrate by location. As a result, the deposition uniformity of the substrate thin film can be secured.
- the initiator 132 in order to remove the residual initiator in the third chamber 130, by additionally adding an initiator 132, the initiator 132, which is decomposed and introduced into the radical ion form, is combined with the residual initiator to form a molecular form.
- the residual initiator can be removed quickly, and the polymerization reaction can be blocked to facilitate the thickness control of the thin film.
- This invention includes a substrate transfer device for moving a substrate in each chamber. That is, a substrate transfer apparatus is provided for sequentially moving the process to each chamber while moving the substrate from the first chamber 110 to the third chamber 130 via the second chamber 120.
- the substrate transfer device is installed between the first chamber 110 and the second chamber 120, and between the second chamber 120 and the third chamber 130 to each of the substrate 20
- the substrate is formed and transported in a position where the door 220 is installed in the door 220 and the first chamber 110, the second chamber 120, and the third chamber 130. It may include an outlet and an inlet which is a passage of the passage, a transport apparatus for transferring the substrate between the chamber through the outlet and the inlet, and a control unit for controlling the operation and opening and closing of the door.
- the outlet and the inlet are formed to be opened in the side of the chamber for the loading and unloading of the substrate, the door 220 is movable between the outlet and the inlet to move the opening and closing the outlet and the inlet.
- the transport device may be made of a robot arm horizontally reciprocating while entering and exiting the outlet and the inlet.
- a conventional known robot arm is installed between the first chamber 110 and the second chamber 120 and between the second chamber 120 and the third chamber 130. Can be applied to transfer the substrate 20 to each chamber.
- the door 220 is closed when the process proceeds in each chamber, but when the process is completed in one chamber and the substrate is to be transferred to the next chamber, the door 220 is opened by the control unit so that the robot arm opens the outlet and The substrate 20 can be transferred through the inlet.
- the substrate transfer apparatus of the present invention can be applied in various configurations in addition to the above-described robot arm.
- 3 to 4 illustrate an embodiment of a substrate transfer apparatus in the chemical vapor deposition system of the present invention, and is a cross-sectional view illustrating a substrate transfer process through a roller structure.
- the transport apparatus includes a plurality of rollers for directly loading or unloading the substrate 20 into the first chamber 110 or the third chamber 130. It may include a conveyor device including a 210, and a driving device (not shown) for driving the conveyor device.
- the driving device may be a conventionally known technology such as a motor for driving the conveyor device, a detailed description thereof will be omitted.
- the conveyor device is an internal conveyor device installed in the first chamber 110 to the third chamber 130, and the first chamber 110 to the third chamber 130 is installed outside the chamber between It can be divided into an external conveyor to connect. That is, it is provided with an internal conveyor device for transferring the substrate to proceed with the process inside the chamber, and an external conveyor device for transferring the substrate is completed between the chambers.
- the internal conveyor device and the external conveyor device may be driven through respective driving devices, and the control of the driving device is controlled by the controller to transfer the substrates inside the chamber and the substrates outside the chamber, respectively. Take control.
- FIG. 3 is a view illustrating a space between the first chamber 110 and the second chamber 120.
- An outlet 110a is formed in the first chamber 110, and an inlet 120a is formed in the second chamber 120.
- the gate 230 is formed between the outlet 110a and the inlet 110b so that the door 220 opens and closes the gate 230.
- the same structure may be applied between the second chamber 120 and the third chamber 130, and thus the illustration thereof is omitted.
- the substrate transfer device is driven in a state in which the substrate 20 on which the process is completed is placed on the roller 210 when the formation of the monomer adsorption site on the substrate 20 is completed in the first chamber 110.
- the control unit controls the opening and closing of the door 220 to open the door 220, so that the substrate 20 passes through the outlet 110a and the inlet 120a. To be transferred to the second chamber 120.
- the substrate 20 transferred to the second chamber 120 forms a polymer through a polymerization reaction between the initiator 122 and the monomers 124 and 126, and the third chamber 130 is formed in the same manner as described above. After being transferred to, by removing the residual initiator in the third chamber 130, it is possible to proceed to the polymer thin film forming process in three steps.
- the chemical vapor deposition system using the initiator according to the present invention has an effect of improving the deposition rate and reducing the consumption of materials by configuring a separate chamber for forming a polymerization reaction site of the substrate. .
- the position according to the gas phase material flow and vacuum pumping direction It is possible to secure the deposition uniformity of the substrate thin film by preventing the concentration of the gaseous phase material different from each other.
- Figure 5 is a cross-sectional view showing an embodiment of the linear chemical vapor deposition system of the present invention, shows an example applied to the process of a roll to roll (flexible) substrate
- Figure 6 is a linear chemistry of the present invention
- 7 is a cross-sectional view showing another embodiment of the vapor deposition system
- Figure 7 is a perspective view showing a linear evaporation source in the chemical vapor deposition system of the present invention
- Figure 8 is a cross-sectional view taken along line AA in FIG.
- 1Site generation formation of monomer adsorption site on the substrate
- 2Polymerization polymer formation through polymerization of initiator and monomer
- 3Tremination removal by removing residual initiator
- a chamber 100 for forming a polymer through polymerization of an initiator and a monomer on the surface of the substrate 20 and an initiator and a monomer are added to a part of the surface of the substrate in the chamber 100.
- a plurality of linear evaporation sources 400 and the substrate 20 or the linear evaporation sources 400 for moving the polymer thin film formation process step by step through the polymerization reaction to move the polymer thin film formation process over the entire area of the substrate It includes a moving means for.
- the chamber 100 provides a space isolated from the outside so that the deposition material is deposited on the substrate 20.
- the interior of the chamber 100 is in a vacuum state, and the deposition process is performed in a vacuum.
- the chamber 100 is provided with a vacuum pump (not shown) for forming a vacuum state.
- a plurality of linear evaporation sources 400 are provided to step a polymer thin film forming process through a polymerization reaction by adding an initiator and a monomer to a part of the substrate surface.
- the linear evaporation sources 400 are provided. As shown in FIG. 5, three evaporation sources are formed so that three steps of forming a polymer can be performed at each evaporation source.
- the linear evaporation source 400 is a first evaporation source (400a) to form a monomer adsorption site by injecting the initiator and monomer to cause the polymerization reaction of the initiator and the monomer on the surface of the substrate 20, and the first evaporation source ( After the substrate on which the monomer adsorption site is formed is introduced at 400a), a second evaporation source 400b for forming a polymer through polymerization of the initiator and the monomer is removed, and the residual initiator is removed after the substrate on which the polymer is formed is introduced. And a third evaporation source 400c for stopping the reaction for control.
- 400a first evaporation source
- a showerhead assembly (not shown) is installed on the upper part of the evaporation source, thereby reacting the reaction gas. Can be introduced. In this case, an initiator and a plurality of monomers are simultaneously introduced through the showerhead assembly to form a structure which is ejected downward.
- the first evaporation source 400a or the second evaporation source 400b at least two or more monomers and an initiator are added to form a vapor deposition material atmosphere. That is, in the present embodiment, two kinds of monomers are introduced and ejected, but the present invention is not limited thereto, and three or more kinds of reaction gases may be introduced and ejected.
- the initiator is decomposed in the form of radical ions, and since the energy of the radical ions decreases according to the configuration of the entry path (curve, volume, etc.) of the access path, in order to minimize the collision before the radical ions formed at the top are ejected into the nozzle. It is preferable to configure so that it may eject from the top.
- Such an evaporation source has the same structure, and as shown in FIG. 8, a plurality of nozzles 420 for injecting a deposition material to be deposited on the substrate 20 and a deposition material discharged through the nozzle 420 are narrow.
- Evaporation source guide 410 distributed in a linear space of the volume to participate in the deposition polymerization reaction, provided inside the evaporation source guide 410, the deposition material ejected through the nozzle 420 radical (radical) It may include a wire heater 430 for activating.
- the plurality of nozzles 420 may be spaced apart from each other at regular intervals so as to spray the deposition material evenly on the surface of the substrate 20.
- the evaporation source guide 410 should be formed to guide the deposition material to a position adjacent to the substrate 20 so that the deposition material participates in the deposition polymerization reaction on the substrate surface. That is, the evaporation source guide 410 forms a narrow volume of linear space so that the deposition material participates in the deposition polymerization reaction on the substrate surface, as shown in FIG. 7, and is formed in a box shape extending in the width direction of the substrate 20. To achieve. In this case, as shown in FIG. 8, the evaporation source guide 410 has a cross-sectional shape of ' ⁇ ' having a lower surface opened, and the substrate 20 is placed on the opened lower surface.
- the nozzle 420 is formed at a predetermined interval on the evaporation source guide 410, the wire heater 430 is provided between the nozzle 420 and the substrate 20.
- the wire heater 430 radically activates the deposition material ejected through the nozzle 420 of the evaporation source.
- the deposition material is an initiator
- the initiator is activated by the wire heater 430 as a radical.
- the wire heater 430 is composed of a plurality of heater wires, the radicals are activated by the heat energy supplied from the heater wires.
- the plurality of heater wires are preferably spaced apart from each other at a predetermined interval with respect to the neighboring heater wires.
- each of the plurality of heater wires may be arranged to correspond to each of the plurality of nozzles 420.
- the initiator 132 in order to remove the residual initiator in the third evaporation source (400c), by additionally adding an initiator 132, the initiator 132 is decomposed into radical ions form and combined with the residual initiator to form a molecular By doing so, the residual initiator can be removed quickly, and the polymerization reaction can be blocked to facilitate the thickness control of the thin film.
- the present invention minimizes damage (heat, plasma, etc.) transmitted from the wire heater 430 to the substrate using the linear evaporation source 400, and the most of the material discharged from the nozzle 420 is of a narrow size.
- damage heat, plasma, etc.
- the substrate 20 is made of a flexible substrate
- the moving means may be made of a roll to roll (roll to roll) device.
- the roll-to-roll apparatus includes a supply roller 250 for providing the flexible substrate 30 to a deposition position where the deposition material is deposited, and a recovery roller 260 for recovering the flexible substrate 30 on which the deposition material is deposited. And the direction rollers 230 and 240 positioned between the supply roller 250 and the recovery roller 260 to continuously supply the flexible substrate to the deposition position and to pass through the deposition position. And a supporter roller 300 supporting the substrate by receiving the substrate from the supply roller 250 so that the deposition material may be deposited on the substrate.
- the flexible substrate 30 is flexible, and unlike the glass substrate, the flexible substrate 30 is continuous. Therefore, the flexible substrate 30 is transferred to the deposition position, and the flexible substrate 30 on which the deposition material is deposited is recovered from the deposition position. This process may be performed until all of the flexible substrate 30 wound on the supply roller 250 is deposited.
- the supply roller 250 is wound on the flexible substrate 30 and is in a state before the deposition material is deposited. As the feed roller 250 rotates, the flexible substrate 30 wound up is released, and the flexible substrate 30 released from the feed roller 250 is moved to the deposition position.
- the recovery roller 260 recovers the flexible substrate 30 on which the deposition material is deposited at the deposition position. In order to recover the flexible substrate 30, the recovery roller 260 is also rotated and recovered by winding the flexible substrate 30.
- the direction rollers 230 and 240 are positioned between the supply roller 250 and the recovery roller 260 to assist the flexible substrate 30 to be continuously supplied to the deposition position and to pass through the deposition position. As shown in FIG. 5, the direction rollers 230 and 240 play an auxiliary role of positioning the flexible substrate 30 released from the supply roller 250 so as to pass through the deposition position.
- the flexible substrate 30 is released from the supply roller 250 and is deposited while passing through the deposition position by the assistance of the direction rollers 230 and 240, and the finished flexible substrate 30 is finally recovered by a recovery roller ( 260 is recovered while winding.
- the supporter roller 300 receives the flexible substrate 30 from the supply roller 250 side to support the flexible substrate 30 so that the deposition material may be deposited on the flexible substrate 30. And the supporter roller 300 is more preferably provided with a substrate cooling means that can cool the heat received while the deposition material is deposited on the flexible substrate 30.
- the arrangement of the plurality of evaporation sources 400 is supported so that the distance between the plurality of evaporation sources 400 and the flexible substrate 30 can be kept constant while the flexible substrate 30 is supported by the supporter roller 300. It is preferable to form a virtual curved surface corresponding to the outer surface of the roller 300.
- the shape of the virtual curved surface formed by the arrangement of the plurality of nozzles 420 is disposed at a predetermined distance with respect to the axis of rotation of the support controller 300, the virtual curved surface of which the cross section forms a floating arc It is preferably in the form of. In this case, since the distance (distance) with the nozzle 420 is kept constant while the flexible substrate 30 supported by the support controller 300 is deposited, a more uniform deposition thickness can be realized.
- the support controller 300 can rotate, damage to the lower surface of the flexible substrate 30 is suppressed while supporting the flexible substrate 30 while being in contact with it.
- the support controller 300 may further include a substrate cooling unit capable of cooling the heat received while the deposition material is deposited on the flexible substrate 30.
- the coolant may pass through the support controller 300 along the central axis of rotation, thereby allowing the support controller 300 to cool the flexible substrate 30.
- the substrate 20 may be formed of a plate-like substrate, as shown in FIG.
- the moving means comprises a horizontal moving means for reciprocating the substrate 20 or the linear evaporation source 400 in a horizontal direction so as to scan the entire area of the substrate for the process of forming a polymer thin film.
- a horizontal moving means for reciprocating the substrate 20 or the linear evaporation source 400 in a horizontal direction so as to scan the entire area of the substrate for the process of forming a polymer thin film.
- the horizontal moving means is a conveyor apparatus including a plurality of rollers for moving the substrate to the position of the first evaporation source (400a) to the third evaporation source (400b) directly placed on the substrate 20, the conveyor It may include a driving device for driving the device.
- the driving device may be a conventionally known technology such as a motor for driving the conveyor device, a detailed description thereof will be omitted.
- the substrate 20 in the first evaporation source (400a) When the horizontal movement means is completed to form the monomer adsorption site on the substrate 20 in the first evaporation source (400a), the substrate 20, the process is completed is placed on the roller in the drive device Is moved so that it can be transferred from the first evaporation source (400a) to the second evaporation source (400b).
- the substrate 20 transferred to the second evaporation source 400b forms a polymer through a polymerization reaction of an initiator and a monomer, and is transferred to the third evaporation source 400c in the same manner as described above, and then a third evaporation source ( By removing the residual initiator in 400c), the polymer thin film forming process can proceed in three steps.
- the present invention by forming a plurality of linear evaporation source for the step of proceeding the polymer thin film forming process through the polymerization of the substrate, it is possible to improve the deposition rate and reduce the consumption of the material It works.
- the gaseous substance exists in a narrow region, it is easy to control the concentration of the gaseous substance, and thus, it is advantageous to secure the overall uniformity of the substrate.
- the present invention as described above can form a separate chamber for forming the polymerization reaction site of the substrate to improve the deposition rate and to reduce the consumption of the material, and to prevent the concentration of the gaseous substance for each position of the substrate to prevent the substrate Since the deposition uniformity of the thin film can be secured, it will be referred to as an invention having high industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Physical Vapour Deposition (AREA)
Abstract
The present invention relates to a chemical vapor deposition system using an initiator, the system comprising: a first chamber that forms a polymerization reaction site by feeding an initiator and a monomer in order to cause a polymerization reaction between the initiator and the monomer on the surface of a substrate; a second chamber that forms a polymer through a polymerization reaction between the initiator and the monomer after the substrate having the polymerization reaction site formed thereon by the first chamber is introduced thereinto; a third chamber that stops the reaction in order to control the thickness of deposition by removing the residual initiator after the substrate having the polymer formed thereon is introduced thereinto; and a substrate transfer device for moving the substrate from the first chamber to the third chamber via the second chamber, whereby it is possible to enhance the deposition speed and to reduce the material consumption when carrying out the deposition process using the initiator.
Description
본 발명은 개시제(Initiator)를 사용하는 화학기상증착시스템에 관한 것으로, 보다 상세하게는 개시제를 이용하는 증착공정 시 증착 속도 향상 및 물질 사용 효율을 극대화시킴으로써 물질 소모량을 크게 감소시킬 수 있는 화학기상증착시스템에 관한 것이다.The present invention relates to a chemical vapor deposition system using an initiator, and more particularly, to a chemical vapor deposition system capable of significantly reducing material consumption by improving deposition speed and maximizing material use efficiency in a deposition process using an initiator. It is about.
근래의 반도체소자 또는 디스플레이 장치 등은 증착공정 등을 포함한 여러 가지 제조공정과정을 거치면서 제조된다. 이러한 여러 제조과정 중에는 화학기상증착시스템을 이용하여 증착물질을 증착시키는 공정이 필수적으로 이루어지고 있다.Recently, a semiconductor device or a display device is manufactured through various manufacturing processes including a deposition process. Among these various manufacturing processes, a process of depositing a deposition material using a chemical vapor deposition system is essential.
이에 화학기상증착시스템(Chemical vapor deposition, 이하 'CVD'라 함)에 관련하여 많은 기술들이 제안되고, 적용되어 왔다. Accordingly, many techniques have been proposed and applied in connection with chemical vapor deposition (hereinafter referred to as CVD).
이러한 종래의 기술들 중에는 대한민국 공개특허 제10-2015-0057679호(발명의 명칭 : 기판 냉각장치 및 이를 포함하는 화학기상 증착장치. 이하 선행기술1 이라 함.) 등이 있다.Among these conventional techniques, Korean Patent Application Publication No. 10-2015-0057679 (name of the invention: a substrate cooling apparatus and a chemical vapor deposition apparatus including the same.
선행기술 1에 따르면, 냉각장치는 제1 및 제2 반응가스가 반응을 일으키도록 개시제가 유입되는 개시제 유입 플레이트가 포함되어, 상기 개시제로 인해 복수의 반응가스가 반응을 일으키게 한다. According to the prior art 1, the cooling device includes an initiator inlet plate into which the initiator is introduced such that the first and second reaction gases react, causing the plurality of reaction gases to react due to the initiator.
여기서, 개시제는 라디칼 이온 형태로 분해되어 유입되는데, 라디칼 이온은 진입로의 구성(유로의 굴곡, 부피등)에 따라 에너지가 감소되기 때문에 상부에서 형성된 라디칼 이온이 노즐로 분출되기 전까지 충돌을 최소화하기 위해 최상부에서 분출되도록 구성하였다.Here, the initiator is decomposed in the form of radical ions, and since the energy of the radical ions decreases according to the configuration of the access path (curve flow, volume, etc.) of the initiator, in order to minimize collisions until the radical ions formed at the top are ejected to the nozzle. It was configured to be ejected from the top.
선행기술 1 등과 같은 개시제(Initiator)를 사용하는 CVD는 기판 표면에서 개시제(Initiator)와 모노머의 중합반응을 일으키기 위해 개시제 및 모노머가 기판에 우선 흡착되어 중합반응 사이트를 형성해야 한다.CVD using an initiator, such as Prior Art 1, requires that the initiator and monomer be first adsorbed onto the substrate to form a polymerization site in order to cause polymerization of the initiator and monomer on the substrate surface.
구체적으로 Initiator CVD는 ①Site generation(기판 위의 모노머(Monomer) 흡착 사이트 형성) → ②Polymerization(개시제와 모노머의 중합반응을 통한 Polymer 형성) → ③Tremination(잔류 개시제를 제거하여 증착두께를 제어)의 3단계로 공정을 구분할 수 있으며, 이와 같은 공정을 통해 기판 표면에서 폴리머를 형성한다. Specifically, Initiator CVD consists of three stages: ① Site generation (monomer adsorption site formation on the substrate) → ② Polymerization (polymer formation through polymerization of initiator and monomer) → ③ Termination (controlling deposition thickness by removing residual initiator) Processes can be distinguished, and such processes form polymers on the substrate surface.
도 1은 종래의 화학기상증착시스템의 일예의 구성을 간략하게 보인 단면도로서, 통상적인 CVD는 한 개의 챔버(10) 내에 개시제(2)와 복수의 모노머(4)(6)가 동시에 투입되고, 동시 투입된 개시제(2)와 모노머(4)(6)는 기판(20) 위에 모노머 흡착 사이트를 형성한 후 개시제(2)와 모노머(4)(6)의 중합반응을 통해 폴리머를 형성한다. 1 is a cross-sectional view schematically showing the configuration of an example of a conventional chemical vapor deposition system. In the conventional CVD, an initiator 2 and a plurality of monomers 4 and 6 are simultaneously introduced into one chamber 10, The initiator (2) and monomer (4) (6) simultaneously introduced form a monomer adsorption site on the substrate (20), and then form a polymer through a polymerization reaction of the initiator (2) and the monomer (4) (6).
이와 같은 경우, 기판(20) 상부에서 개시제(2)와 모노머(4)(6)의 중합반응을 유도하기 위해 기상의 물질을 챔버 내부로 투입하여 일정 농도의 분위기를 만들어주어야 한다. In this case, in order to induce the polymerization reaction of the initiator (2) and the monomer (4) (6) on the substrate 20, a gaseous substance should be introduced into the chamber to create a certain concentration of atmosphere.
이러한 종래의 기술에서 증착 공정을 위한 기구물 구성에 따라 챔버의 크기가 커질 수 있는데, 증착 공정 중에는 기상의 물질이 챔버의 내부 전체를 채워야 하며, 챔버 내 일정압력을 유지하기 위해서 물질의 투입과 배출을 공조하며 지속적으로 물질을 소모해 주어야 하며, 폴리머 형성에 필요한 반응에 참여하지 않는 물질은 진공 펌핑 라인(도시안함)으로 배출되어야 하는데, 이로 인해 물질의 소모량이 많은 문제점이 있었다. In this conventional technique, the size of the chamber may be increased according to the structure of the apparatus for the deposition process. During the deposition process, the vapor phase material should fill the entire interior of the chamber, and the input and discharge of the material may be performed to maintain a constant pressure in the chamber. The material must be continually consumed and the material that does not participate in the reaction required to form the polymer should be discharged to a vacuum pumping line (not shown), which causes a problem of high consumption of the material.
특히, 대형 기판의 경우 기판의 크기 증가에 따라 증착 챔버의 크기도 증가하므로 더 많은 물질 소모가 필요하여 물질의 효율이 감소한다.In particular, in the case of a large substrate, as the size of the substrate increases, the size of the deposition chamber also increases, which requires more material consumption, thereby reducing the efficiency of the material.
또한, 챔버 내 기상의 물질 흐름(flow) 및 진공 펌핑 방향에 따라 위치별 기상물질의 농도가 달라질 수 있어 기판 박막의 증착 균일도 확보가 어려운 문제점이 있었다. In addition, since the concentration of the gaseous substance in each position may vary according to the material flow of the gaseous phase in the chamber and the vacuum pumping direction, it is difficult to secure deposition uniformity of the substrate thin film.
또한, 개시제를 사용하는 CVD는 개시제가 존재 하여야 폴리머(Polymer) 박막을 형성할 수 있는데, 원하는 두께의 박막 형성 후 잔류 개시제에 의해 두께 재현성이 어려운 문제점이 있었다. 또한, 한 개의 챔버에서 증착공정을 진행하는 경우, 액티베이션 소스(Activation source)(와이어 히터)로부터 전달되는 에너지(열, 플라즈마 등)가 기판 전면에 전달되어 기판의 온도를 상승시켜 온도 균일도 확보가 어려운 문제점이 있었다.In addition, CVD using an initiator requires the presence of an initiator to form a polymer thin film, but there is a problem in that thickness reproducibility is difficult by a residual initiator after forming a thin film of a desired thickness. In addition, when the deposition process is performed in one chamber, energy (heat, plasma, etc.) transferred from an activation source (wire heater) is transferred to the entire surface of the substrate to raise the temperature of the substrate, thereby making it difficult to secure temperature uniformity. There was a problem.
본 발명의 목적은 상기한 종래의 문제점을 해결하기 위한 것으로, 개시제를 이용하여 증착하는 화학기상증착시스템에서 기판의 중합반응 사이트 형성을 위한 별도의 챔버를 구성함으로써, 증착 속도를 향상함과 아울러 물질의 소모량을 감소시키고, 증착물질이 균일한 두께로 증착되어 증착 기판 박막의 증착 균일도 확보가 가능한 화학기상증착시스템을 제공함에 있다.SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems. In the chemical vapor deposition system using an initiator, a separate chamber for forming a polymerization site of a substrate is formed, thereby improving a deposition rate and a material. It is to provide a chemical vapor deposition system that can reduce the consumption of, and to ensure the deposition uniformity of the deposited substrate thin film is deposited to a uniform thickness of the deposition material.
또한, 선형 증발원을 이용하여 기판으로 전달되는 손상(열, 플라즈마 등)을 최소화하고, 노즐에서 토출된 물질의 대부분이 좁은 크기의 선형 증발원 공간에 분포하여, 공급된 물질 대부분이 증착 중합 반응에 참여함으로써, 기상의 물질이 기판 외 챔버로 누출되는 것을 최소화하여 물질 사용 효율을 극대화시킬 수 있는 화학기상증착시스템을 제공하는데 있다. In addition, the linear evaporation source is used to minimize damage (heat, plasma, etc.) transferred to the substrate, and most of the material discharged from the nozzle is distributed in a narrow linear evaporation source space, so that most of the supplied material participates in the deposition polymerization reaction. Accordingly, to provide a chemical vapor deposition system that can minimize the leakage of gaseous substances into the chamber outside the substrate to maximize the efficiency of use of the substance.
또한, 좁은 증착 구역 확보가 가능하여 판상의 기판 뿐 아니라 롤투롤(Roll to roll) 플렉서블(flexible) 기판의 공정에도 적용이 가능한 화학기상증착시스템을 제공하는데 있다. In addition, it is possible to secure a narrow deposition area to provide a chemical vapor deposition system that can be applied to the process of roll-to-roll (roll to roll) flexible substrate as well as plate-like substrate.
또한, 좁은 영역에 기상의 물질이 존재하므로 기상 물질의 농도 제어가 용이하여 기판 전체 균일도 확보가 유리한 화학기상증착시스템을 제공함에 있다.In addition, since a gaseous substance exists in a narrow area, it is easy to control the concentration of the gaseous substance, thereby providing a chemical vapor deposition system which is advantageous in securing overall substrate uniformity.
상기와 같은 목적을 달성하기 위하여, 본 발명에서는 기판 표면에서 개시제와 모노머의 중합반응을 일으키기 상기 개시제와 모노머를 투입하여 중합반응 사이트 형성하는 제1 챔버와, 상기 제1 챔버에서 중합반응 사이트가 형성된 기판이 유입된 후 개시제와 모노머의 중합반응을 통해 폴리머를 형성하는 제2 챔버와, 상기 폴리머가 형성된 기판이 유입된 후 잔류 개시제를 제거하여 증착두께를 제어하기 위해 반응을 중단시키는 제3 챔버와, 상기 제1 챔버에서 제2 챔버를 거쳐 제3 챔버로 기판을 이동시키기 위한 기판 이송장치를 포함하며, 폴리머 박막 형성 공정을 단계별로 각각의 챔버에서 진행하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템이 제공된다.In order to achieve the above object, in the present invention, a polymerization reaction of an initiator and a monomer is caused to occur on the surface of a substrate, and a first chamber is formed in which the initiator and the monomer are added to form a polymerization site, and a polymerization site is formed in the first chamber. A second chamber for forming a polymer through polymerization of the initiator and the monomer after the substrate is introduced, and a third chamber for stopping the reaction to control the deposition thickness by removing the residual initiator after the substrate in which the polymer is formed is introduced; And a substrate transfer device for moving the substrate from the first chamber to the third chamber via the second chamber, wherein the process of polymer thin film formation is carried out in each chamber step by step. A system is provided.
상기 제3 챔버에서는 개시제를 추가적으로 투입하여 잔류 개시제를 제거함으로써 중합 반응을 차단하여 두께를 제어하는 것을 특징으로 한다. The third chamber is characterized in that the thickness is controlled by blocking the polymerization reaction by additionally adding an initiator to remove the residual initiator.
또한, 상기 제1 챔버 내지 제3 챔버는 기상의 물질 투입과 진공 펌핑을 통한 기상 유체 흐름을 실시간으로 형성하지 않고, 필요에 의해 간헐적인 펌핑을 통해 챔버 압력을 제어할 수 있다. In addition, the first to third chambers may control the chamber pressure through intermittent pumping as needed without forming a gaseous fluid flow through a gaseous substance input and vacuum pumping in real time.
본 발명에서, 상기 기판 이송장치는 상기 제1 챔버와 제2 챔버 사이 및 제2 챔버와 제3 챔버 사이에 설치되어 상기 기판을 각각의 챔버로 이송시킬 때 개폐가능한 도어와, 상기 제1 챔버, 제2 챔버 및 제3 챔버에 상기 도어가 설치되는 위치에 형성되어 이송되는 기판의 통로가 되는 유출구 및 유입구와, 상기 기판을 상기 유출구 및 유입구를 통해 챔버 간 이송시킬 수 있도록 하는 운송장치와, 상기 운송장치의 동작과 도어의 개폐를 제어하기 위한 제어부를 포함할 수 있다. In the present invention, the substrate transfer device is installed between the first chamber and the second chamber and between the second chamber and the third chamber, the door opening and closing when transferring the substrate to each chamber, the first chamber, Outlets and inlets serving as passages of the substrates formed at positions where the doors are installed in the second chambers and the third chambers, and a transport apparatus for transferring the substrates between the chambers through the outlets and the inlets; It may include a control unit for controlling the operation of the transportation device and the opening and closing of the door.
여기서, 상기 운송장치는 상기 유출구 및 유입구를 출입하면서 수평 왕복 운동하는 로봇암으로 이루어질 수 있다. Here, the transport device may be made of a robot arm horizontally reciprocating while entering and exiting the outlet and the inlet.
또는, 상기 운송장치는 기판이 직접 안치되어 상기 기판을 상기 제1 챔버 내지 제3 챔버에 반입하거나 반출하기 위한 다수의 롤러를 포함하는 컨베이어장치와, 상기 컨베이어장치를 구동시키기 위한 구동장치를 포함할 수 있다. Alternatively, the transport apparatus may include a conveyor apparatus including a plurality of rollers for directly placing or transporting the substrate into the first to third chambers, and a driving apparatus for driving the conveyor apparatus. Can be.
이 경우, 상기 컨베이어장치는 상기 제1 챔버 내지 제3 챔버 내부에 설치되는 내부 컨베이어장치와, 상기 제1 챔버 내지 제3 챔버 외부에 설치되어 챔버 간을 연결하는 외부 컨베이어장치로 이루어지며, 상기 내부 컨베이어장치와 외부 컨베이어장치는 별도의 구동장치를 통해 구동될 수 있다. In this case, the conveyor apparatus is composed of an internal conveyor device installed inside the first to third chambers, and an external conveyor device installed outside the first to third chambers to connect the chambers. The conveyor apparatus and the external conveyor apparatus may be driven through separate drives.
본 발명에 있어서, 상기 제1 챔버 또는 제2 챔버에서는 적어도 2개 이상의 모노머를 투입하여 기상 증착 물질 분위기를 형성할 수 있다. In the present invention, at least two or more monomers may be introduced into the first chamber or the second chamber to form a vapor deposition material atmosphere.
한편, 상기와 같은 목적을 달성하기 위하여, 본 발명에서는 기판 표면에 개시제와 모노머의 중합반응을 통해 폴리머를 형성하기 위한 챔버와, 상기 챔버 내부에서 상기 기판 표면의 일부에 개시제와 모노머를 투입하여 중합반응을 통한 폴리머 박막 형성공정을 단계별로 진행하기 위한 복수의 선형 증발원과, 상기 기판 또는 상기 선형 증발원을 이동시켜 상기 기판의 전체 면적에 폴리머 박막 형성공정을 진행하기 위한 이동수단을 포함하는 개시제를 이용하는 선형 화학기상증착시스템이 제공된다. On the other hand, in order to achieve the above object, in the present invention, a chamber for forming a polymer through the polymerization reaction of the initiator and the monomer on the substrate surface, and the initiator and the monomer is added to a part of the substrate surface in the chamber to polymerize Using an initiator comprising a plurality of linear evaporation source for the step of proceeding the polymer thin film forming process through the reaction, and a moving means for moving the substrate or the linear evaporation source to proceed the polymer thin film forming process over the entire area of the substrate A linear chemical vapor deposition system is provided.
상기 선형 증발원은 개시제와 모노머의 중합반응을 일으키기 상기 개시제와 모노머를 투입하여 모노머 흡착 사이트를 형성하는 제1 증발원과, 상기 제1 증발원에서 모노머 흡착 사이트가 형성된 기판에 개시제와 모노머의 중합반응을 통해 폴리머를 형성하는 제2 증발원과, 상기 폴리머가 형성된 기판에 잔류 개시제를 제거하여 증착두께를 제어하기 위해 반응을 중단시키는 제3 증발원을 포함할 수 있다. The linear evaporation source generates a polymerization reaction between the initiator and the monomer through a polymerization reaction of the initiator and the monomer on the first evaporation source into which the initiator and the monomer are added to form a monomer adsorption site, and the substrate on which the monomer adsorption site is formed in the first evaporation source. A second evaporation source for forming a polymer and a third evaporation source for stopping the reaction to control the deposition thickness by removing the residual initiator on the substrate on which the polymer is formed.
여기서, 상기 제3 증발원에서는 개시제를 추가적으로 투입하여 잔류 개시제를 제거함으로써 중합 반응을 차단하여 두께를 제어할 수 있다. Here, in the third evaporation source, by adding an initiator to remove the residual initiator, the thickness can be controlled by blocking the polymerization reaction.
또한, 상기 제1 증발원 내지 제3 증발원은 기판에 증착시킬 증착물질을 분사하는 다수개의 노즐과, 상기 노즐을 통해 토출된 증착물질이 좁은 볼륨의 선형 공간에 분포하여 증착 중합 반응에 참여하도록 하는 증발원 가이드와, 상기 증발원 가이드의 내부에 마련되며, 상기 노즐을 통해 분출된 상기 증착물질을 라디칼(radical)로 활성화시켜주는 와이어 히터를 포함할 수 있다. The first to third evaporation sources may include a plurality of nozzles for injecting a deposition material to be deposited on a substrate, and an evaporation source for distributing the deposition material discharged through the nozzle in a narrow volume linear space to participate in the deposition polymerization reaction. A guide and a wire heater provided inside the evaporation source guide and activating the deposition material ejected through the nozzle by radicals may be included.
이 경우, 상기 다수개의 노즐은 일정간격을 두고 이격되어 배치될 수 있다. In this case, the plurality of nozzles may be spaced apart from each other at a predetermined interval.
또한, 상기 증발원 가이드는 상기 증착물질이 기판 표면에서 증착 중합 반응에 참여하도록 상기 증착물질을 상기 기판에 인접한 위치까지 가이드하는 형태로 이루어질 수 있다. In addition, the evaporation source guide may be configured to guide the deposition material to a position adjacent to the substrate so that the deposition material participates in the deposition polymerization reaction on the substrate surface.
상기 와이어 히터는 다수개로 이루어지고, 상기 다수개의 와이어 히터는 일정간격을 두고 이격되어 배치될 수 있다. The wire heater may be formed in plural, and the plurality of wire heaters may be spaced apart from each other at a predetermined interval.
한편, 상기 기판은 플렉서블 기판으로 이루어지며, 상기 이동수단은 롤투롤(Roll to roll) 장치로 이루어질 수 있다. On the other hand, the substrate is made of a flexible substrate, the moving means may be made of a roll to roll (roll to roll) device.
상기 롤투롤 장치는 상기 증착물질의 증착이 이루어지는 증착위치로 상기 플렉서블 기판을 제공하는 공급롤러와, 상기 증착물질이 증착된 상기 플렉서블 기판을 회수하는 회수롤러와, 상기 공급롤러와 상기 회수롤러 사이에 위치하여 상기 플렉서블 기판이 상기 증착위치로 연속적으로 공급되어 상기 증착위치를 통과할 수 있도록 보조하는 방향롤러와, 상기 증착물질이 상기 기판에 증착될 수 있도록 상기 공급롤러 측으로부터 상기 기판을 전달받아서 상기 기판을 지지하는 서포터롤러(supporter roller)를 포함할 수 있다. The roll-to-roll apparatus includes a supply roller for providing the flexible substrate to a deposition position where the deposition material is deposited, a recovery roller for recovering the flexible substrate on which the deposition material is deposited, and between the supply roller and the recovery roller. A direction roller positioned to assist the flexible substrate to be continuously supplied to the deposition position and to pass through the deposition position, and to receive the substrate from the supply roller side so that the deposition material is deposited on the substrate. It may include a supporter roller (supporter roller) for supporting the substrate.
상기 서포터롤러는 상기 기판에 상기 증착물질이 증착되면서 받은 열을 냉각시켜 주기 위한 기판냉각수단을 구비할 수 있다. The supporter roller may be provided with a substrate cooling means for cooling the heat received while the deposition material is deposited on the substrate.
또한, 상기 기판은 판상의 기판으로 이루어지며, 상기 이동수단은 상기 기판 또는 선형 증발원을 수평방향으로 왕복 이동시켜 상기 기판의 전체 면적에 폴리머 박막 형성공정을 진행하기 위해 스캔닝할 수 있도록 하는 수평이동수단으로 이루어질 수 있다. In addition, the substrate is made of a plate-like substrate, the movement means is a horizontal movement to reciprocate the substrate or linear evaporation source in the horizontal direction to scan the entire area of the substrate for the process of forming a polymer thin film By means.
이 경우, 상기 수평이동수단은 기판이 직접 안치되어 상기 기판을 상기 제1 증발원 내지 제3 증발원의 위치로 이동시키는 다수의 롤러를 포함하는 컨베이어장치와, 상기 컨베이어장치를 구동시키기 위한 구동장치를 포함할 수 있다. In this case, the horizontal moving means includes a conveyor device including a plurality of rollers for directly placing the substrate to move the substrate to the position of the first to third evaporation source, and a driving device for driving the conveyor device. can do.
이상에서 살펴본 본 발명에 의하면, 본 발명은 기판의 중합반응 사이트 형성을 위한 별도의 챔버를 구성함으로써, 증착 속도를 향상함과 아울러 물질의 소모량을 감소시킬 수 있는 효과가 있다. According to the present invention as described above, the present invention has the effect of improving the deposition rate and reducing the consumption of the material by configuring a separate chamber for forming the polymerization site of the substrate.
또한, 챔버 내 기상의 물질 투입과 진공 펌핑을 통한 기상 유체 흐름(flow)을 실시간으로 형성하지 않고 필요에 의해 간헐적인 펌핑을 통해 챔버 압력을 제어함으로써, 기상의 물질 흐름과 진공 펌핑 방향에 따라 위치별 기상물질의 농도가 달라지는 것을 방지하여 기판 박막의 증착 균일도 확보가 가능한 효과가 있다. In addition, by controlling the chamber pressure through intermittent pumping as needed without forming gas phase fluid flow through the gas phase material input and vacuum pumping in real time, the position according to the gas phase material flow and vacuum pumping direction It is possible to secure the deposition uniformity of the substrate thin film by preventing the concentration of the gaseous phase material different from each other.
또한, 본 발명은 기판의 중합반응을 통한 폴리머 박막 형성공정을 단계별로 진행하기 위한 복수의 선형 증발원을 구성함으로써, 증착 속도를 향상함과 아울러 물질의 소모량을 감소시킬 수 있는 효과가 있다. In addition, the present invention has the effect of improving the deposition rate and at the same time reduce the consumption of the material by configuring a plurality of linear evaporation source for the step of proceeding the polymer thin film forming process through the polymerization of the substrate.
또한, 선형 증발원을 이용하여 기판으로 전달되는 손상(열, 플라즈마 등)을 최소화하고, 노즐에서 토출된 물질의 대부분이 좁은 크기의 선형 증발원 공간에 분포하여, 공급된 물질 대부분이 증착 중합 반응에 참여함으로써, 기상의 물질이 기판 외 챔버로 누출되는 것을 최소화하여 물질 사용 효율을 극대화시킬 수 있는 효과가 있다. In addition, the linear evaporation source is used to minimize damage (heat, plasma, etc.) transferred to the substrate, and most of the material discharged from the nozzle is distributed in a narrow linear evaporation source space, so that most of the supplied material participates in the deposition polymerization reaction. By doing so, it is possible to minimize the leakage of gaseous substances into the chamber other than the substrate to maximize the material use efficiency.
또한, 좁은 증착 구역 확보가 가능하여 판상의 기판 뿐 아니라 롤투롤(Roll to roll) 플렉서블(flexible) 기판의 공정에도 적용이 가능하다.In addition, it is possible to secure a narrow deposition area, so that it is applicable to the process of roll-to-roll (flexible) substrate as well as the plate-like substrate.
또한, 좁은 영역에 기상의 물질이 존재하므로 기상 물질의 농도 제어가 용이하여 기판 전체 균일도 확보가 유리한 효과가 있다.In addition, since the gaseous substance exists in a narrow region, it is easy to control the concentration of the gaseous substance, and thus, it is advantageous to secure the overall uniformity of the substrate.
도 1은 종래의 화학기상증착시스템의 일예의 구성을 간략하게 보인 단면도이다. 1 is a cross-sectional view briefly showing the configuration of an example of a conventional chemical vapor deposition system.
도 2는 본 발명의 화학기상증착시스템의 전체 구성을 보인 단면도이다. 2 is a cross-sectional view showing the overall configuration of the chemical vapor deposition system of the present invention.
도 3 내지 도 4는 본 발명의 화학기상증착시스템에서 기판 이송장치의 일실시예를 도시한 것으로, 기판 이송 공정을 도시한 단면도이다.3 to 4 illustrate one embodiment of a substrate transfer apparatus in the chemical vapor deposition system of the present invention, and are sectional views showing a substrate transfer process.
도 5는 본 발명의 선형 화학기상증착시스템의 일실시예를 보인 단면도로서, 롤투롤(Roll to roll) 플렉서블(flexible) 기판의 공정에 적용된 예를 도시한 것이다. Figure 5 is a cross-sectional view showing an embodiment of a linear chemical vapor deposition system of the present invention, showing an example applied to the process of a roll to roll flexible (flexible) substrate.
도 6은 본 발명의 선형 화학기상증착시스템의 다른 실시예를 보인 단면도이다. 6 is a cross-sectional view showing another embodiment of the linear chemical vapor deposition system of the present invention.
도 7은 본 발명의 화학기상증착시스템에서 선형 증발원을 도시한 사시도이다. 7 is a perspective view showing a linear evaporation source in the chemical vapor deposition system of the present invention.
도 8은 도 7에서의 A-A선 단면도이다. 8 is a cross-sectional view taken along the line A-A in FIG.
이하에서는 본 발명에 대하여 보다 구체적으로 이해할 수 있도록 첨부된 도면을 참조한 바람직한 실시 예를 들어 설명하기로 한다. Hereinafter, a preferred embodiment with reference to the accompanying drawings to be described in more detail with respect to the present invention will be described.
도 2는 본 발명의 화학기상증착시스템의 전체 구성을 보인 단면도이다. 2 is a cross-sectional view showing the overall configuration of the chemical vapor deposition system of the present invention.
도 2를 참조하면, 본 발명의 실시 예에 따른 개시제를 이용하는 화학기상증착시스템은 ①Site generation(기판 위의 모노머(Monomer) 흡착 사이트 형성) → ②Polymerization(개시제와 모노머의 중합반응을 통한 Polymer 형성) → ③Tremination(잔류 개시제를 제거하여 증착두께를 제어)의 공정을 3단 챔버에서 진행할 수 있도록 구성된다. Referring to Figure 2, the chemical vapor deposition system using the initiator according to an embodiment of the present invention is ① Site generation (formation of monomer adsorption site on the substrate) → ② Polymerization (polymer formation through polymerization of the initiator and monomer) → (3) The process of the termination (controlling the deposition thickness by removing the residual initiator) is configured to proceed in the three-stage chamber.
구체적으로, 본 발명은 기판(20) 표면에서 개시제(112)와 모노머(114)(116)의 중합반응을 일으키기 상기 개시제(112)와 모노머(114)(116)를 투입하여 중합반응 사이트 형성하는 제1 챔버(110)와, 상기 제1 챔버(110)에서 중합반응 사이트가 형성된 기판이 유입된 후 개시제(122)와 모노머(124)(126)의 중합반응을 통해 폴리머를 형성하는 제2 챔버(120)와, 상기 폴리머가 형성된 기판이 유입된 후 잔류 개시제를 제거하여 증착두께를 제어하기 위해 반응을 중단시키는 제3 챔버(130)를 포함하여, 폴리머 박막 형성 공정을 단계별로 3단의 챔버에서 진행하는데 특징이 있다. Specifically, the present invention causes a polymerization reaction between the initiator 112 and the monomers 114 and 116 on the surface of the substrate 20. The initiator 112 and the monomers 114 and 116 are introduced to form a polymerization site. A second chamber in which the polymer is formed through polymerization of the initiator 122 and the monomers 124 and 126 after the first chamber 110 and the substrate having the polymerization site formed therein are introduced from the first chamber 110. And a third chamber 130 which stops the reaction to control the deposition thickness by removing the residual initiator after the substrate on which the polymer is formed is introduced. There is a characteristic to proceed in.
상기 제1 챔버(110), 제2 챔버(120) 및 제3 챔버(130)는 상기 기판(20)에 증착물질이 증착되는 공정이 이루어질 수 있도록 외부로부터 격리된 공간을 제공한다. 상기 챔버들의 내부는 진공상태로 있게 되며, 진공 속에서 증착공정이 이루어지게 된다. 이러한 챔버에는 진공상태를 조성해주기 위한 진공 펌핑라인(도시안함) 등이 구비되어 있다. The first chamber 110, the second chamber 120, and the third chamber 130 provide a space isolated from the outside to allow a process of depositing a deposition material on the substrate 20. The interior of the chambers is in a vacuum state, and the deposition process is performed in a vacuum. Such a chamber is provided with a vacuum pumping line (not shown) for establishing a vacuum state.
상기 제1 챔버(110), 제2 챔버(120) 및 제3 챔버(130)에 상기 개시제(112)와 모노머(114)(116) 등을 투입하기 위해, 챔버의 상부에는 샤워헤드 어셈블리(도시안함)가 설치되어 이를 통해서 반응가스가 유입되도록 할 수 있다. 이 경우, 상기 샤워헤드 어셈블리를 통해 개시제 및 복수의 모노머가 동시에 유입되어 하방으로 분출되는 구조를 형성된다. In order to introduce the initiator 112, the monomers 114, 116, etc. into the first chamber 110, the second chamber 120, and the third chamber 130, a showerhead assembly (not shown) is provided on the upper portion of the chamber. None) can be installed to allow the reaction gas to flow through. In this case, an initiator and a plurality of monomers are simultaneously introduced through the showerhead assembly to form a structure which is ejected downward.
또한, 상기 상기 제1 챔버(110) 또는 제2 챔버(120)에서는 적어도 2종 이상의 모노머와 개시제를 투입하여 기상 증착 물질 분위기를 형성한다. 즉, 본 실시예에서는 2종의 모노머가 유입되어 분출되는 것으로 설명하고 있으나, 본 발명이 이에 제한되는 것은 아니고 3종 이상의 반응가스가 유입되어 분출될 수 있도록 구성할 수도 있다. 여기서, 개시제는 라디칼 이온 형태로 분해되어 유입되는데, 라디칼 이온은 진입로의 구성(유로의 굴곡, 부피 등)에 따라 에너지가 감소되기 때문에 상부에서 형성된 라디칼 이온이 노즐로 분출되기 전까지 충돌을 최소화하기 위해 최상부에서 분출되도록 구성하는 것이 바람직하다.In addition, at least two monomers and an initiator are added to the first chamber 110 or the second chamber 120 to form a vapor deposition material atmosphere. That is, in the present embodiment, two kinds of monomers are introduced and ejected, but the present invention is not limited thereto, and three or more kinds of reaction gases may be introduced and ejected. Here, the initiator is decomposed in the form of radical ions, and since the energy of the radical ions decreases according to the configuration of the entry path (curve, volume, etc.) of the access path, in order to minimize the collision before the radical ions formed at the top are ejected into the nozzle. It is preferable to configure so that it may eject from the top.
한편, 본 발명에서는 챔버 내 기상의 물질 흐름(flow) 및 진공 펌핑 방향에 따라 기판에 증착되는 기상물질이 위치별로 농도가 달라지는 것을 방지하기 위해, 상기 제1 챔버(110) 내지 제3 챔버(130)는 기상의 물질 투입과 진공 펌핑을 통한 기상 유체 흐름을 실시간으로 형성하지 않고, 필요에 의해 간헐적인 펌핑을 통해 챔버 압력을 제어할 수 있도록 한다. Meanwhile, in the present invention, the first chamber 110 to the third chamber 130 to prevent the concentration of the vapor phase substance deposited on the substrate according to the position according to the material flow of the gas phase in the chamber and the vacuum pumping direction. ) Allows the chamber pressure to be controlled through intermittent pumping as needed, without the formation of gaseous fluid flow through gaseous material input and vacuum pumping in real time.
즉, 종래의 기술에서는 한 개의 챔버 내에 개시제와 복수의 모노머가 동시에 투입되어 폴리머를 형성한 후 폴리머 형성에 필요한 반응에 참여하지 않는 물질은 진공 펌핑 라인으로 배출함으로써, 모든 공정이 한 개의 챔버 내에서 이루어진다. 이때, 기상의 물질 투입으로 인한 챔버 내 기상 유체 흐름이 발생하고 반응에 참여하지 않는 물질을 배출 시 진공 펌핑 방향이 발생하므로, 기상 유체 흐름과 진공 펌핑 방향에 따라 위치별 기상물질의 농도가 달라지게 되는 것이다. That is, in the prior art, an initiator and a plurality of monomers are simultaneously introduced into one chamber to form a polymer, and then materials that do not participate in the reaction required for polymer formation are discharged to a vacuum pumping line, so that all processes are performed in one chamber. Is done. At this time, since the gaseous fluid flow in the chamber due to the input of the gaseous substance is generated and the vacuum pumping direction is generated when discharging a substance that does not participate in the reaction, the concentration of the gaseous substance by location varies according to the gaseous fluid flow and the vacuum pumping direction. Will be.
그러나, 본 발명은 ①기판 위의 모노머(Monomer) 흡착 사이트 형성, ②개시제와 모노머의 중합반응을 통한 폴리머 형성, ③잔류 개시제를 제거하여 증착두께를 제어하는 공정을 각 공정별로 별도의 챔버에서 이루어지게 함으로써, 기상의 물질 투입으로 인한 흐름이 최소화되고, 폴리머 형성 후 반응에 참여하지 않는 물질은 진공 펌핑 라인으로 한 번에 배출하는 방법이 아니라 잔류 개시제를 제거하는 방법으로 개시제를 추가적으로 투입하는 방법을 사용함으로써, 진공 펌핑 방향으로 인한 기상 물질의 흐름을 최소화한다. However, in the present invention, the process of controlling deposition thickness by (1) forming a monomer adsorption site on a substrate, (2) forming a polymer through polymerization of an initiator and a monomer, and (3) removing a residual initiator is performed in a separate chamber for each process. By minimizing the flow of gaseous material, the method of adding an initiator by removing residual initiator is not a method of discharging a material that does not participate in the reaction after polymer formation at once but by vacuum pumping line. By using this, the flow of gaseous substances due to the vacuum pumping direction is minimized.
한편, 펌핑이 필요한 경우, 각 챔버 마다 간헐적인 펌핑을 통해 챔버 압력을 제어할 수 있도록 함으로써, 진공 펌핑 방향으로 인한 기상 물질의 흐름을 최소화하여 기판에 증착되는 기상물질이 위치별로 농도가 달라지는 것을 방지하여 기판 박막의 증착 균일도를 확보할 수 있게 된다. On the other hand, when pumping is required, the chamber pressure can be controlled by intermittent pumping in each chamber, thereby minimizing the flow of the gaseous substance due to the vacuum pumping direction, thereby preventing the concentration of the gaseous substance deposited on the substrate by location. As a result, the deposition uniformity of the substrate thin film can be secured.
이와 같은 본 발명은 상기 제3 챔버(130)에서 잔류 개시제를 제거하기 위해, 개시제(132)를 추가적으로 투입함으로써, 라디칼 이온 형태로 분해되어 유입되는 개시제(132)가 잔류 개시제와 결합하여 분자형태가 됨으로써 잔류 개시제를 빠르게 제거 할 수 있고, 중합 반응을 차단하여 박막의 두께 제어를 용이하게 할 수 있다. In the present invention as described above, in order to remove the residual initiator in the third chamber 130, by additionally adding an initiator 132, the initiator 132, which is decomposed and introduced into the radical ion form, is combined with the residual initiator to form a molecular form. By doing so, the residual initiator can be removed quickly, and the polymerization reaction can be blocked to facilitate the thickness control of the thin film.
이와 같은 본 발명은 기판을 각각의 챔버에서 이동시키기 위한 기판 이송장치를 포함한다. 즉, 상기 제1 챔버(110)에서 제2 챔버(120)를 거쳐 제3 챔버(130)로 기판을 이동시키면서 각 챔버 별로 공정을 순차적으로 진행하기 위한 기판 이송장치가 구비되는 것이다. This invention includes a substrate transfer device for moving a substrate in each chamber. That is, a substrate transfer apparatus is provided for sequentially moving the process to each chamber while moving the substrate from the first chamber 110 to the third chamber 130 via the second chamber 120.
본 발명에서, 상기 기판 이송장치는 상기 제1 챔버(110)와 제2 챔버(120) 사이 및 제2 챔버(120)와 제3 챔버(130) 사이에 설치되어 상기 기판(20)을 각각의 챔버로 이송시킬 때 개폐가능한 도어(220)와, 상기 제1 챔버(110), 제2 챔버(120) 및 제3 챔버(130)에 상기 도어(220)가 설치되는 위치에 형성되어 이송되는 기판의 통로가 되는 유출구 및 유입구와, 상기 기판을 상기 유출구 및 유입구를 통해 챔버 간 이송시킬 수 있도록 하는 운송장치와, 상기 운송장치의 동작과 도어의 개폐를 제어하기 위한 제어부를 포함할 수 있다. In the present invention, the substrate transfer device is installed between the first chamber 110 and the second chamber 120, and between the second chamber 120 and the third chamber 130 to each of the substrate 20 The substrate is formed and transported in a position where the door 220 is installed in the door 220 and the first chamber 110, the second chamber 120, and the third chamber 130. It may include an outlet and an inlet which is a passage of the passage, a transport apparatus for transferring the substrate between the chamber through the outlet and the inlet, and a control unit for controlling the operation and opening and closing of the door.
상기 유출구 및 유입구는 기판의 반입 및 반출을 위해 상기 챔버들의 측면에 개구되게 형성되고, 상기 유출구 및 유입구 사이에 도어(220)가 이동가능하게 설치되어 유출구 및 유입구를 개폐한다.The outlet and the inlet are formed to be opened in the side of the chamber for the loading and unloading of the substrate, the door 220 is movable between the outlet and the inlet to move the opening and closing the outlet and the inlet.
여기서, 상기 운송장치는 상기 유출구 및 유입구를 출입하면서 수평 왕복 운동하는 로봇암으로 이루어질 수 있다. Here, the transport device may be made of a robot arm horizontally reciprocating while entering and exiting the outlet and the inlet.
상기 로봇암으로 운송장치를 구성할 경우, 통상의 공지된 로봇암이 상기 제1 챔버(110)와 제2 챔버(120) 사이 및 제2 챔버(120)와 제3 챔버(130) 사이에 설치되어 상기 기판(20)을 각각의 챔버로 이송시키도록 적용할 수 있다. When configuring a transport device with the robot arm, a conventional known robot arm is installed between the first chamber 110 and the second chamber 120 and between the second chamber 120 and the third chamber 130. Can be applied to transfer the substrate 20 to each chamber.
이 경우, 상기 도어(220)는 각 챔버 내에서 공정이 진행될 때는 닫혀있다가 한 개의 챔버에서 공정이 완료되어 다음 챔버로 기판을 이송해야 하는 경우, 상기 제어부에 의해 개방되어 로봇암이 상기 유출구 및 유입구를 통해 기판(20)을 이송할 수 있도록 한다. In this case, the door 220 is closed when the process proceeds in each chamber, but when the process is completed in one chamber and the substrate is to be transferred to the next chamber, the door 220 is opened by the control unit so that the robot arm opens the outlet and The substrate 20 can be transferred through the inlet.
이와 같은 로봇암의 구성은 공지기술이 적용가능하므로, 본 발명에서는 이에 대한 상세한 설명은 생략하도록 한다. Since the known technology is applicable to the configuration of such a robot arm, a detailed description thereof will be omitted in the present invention.
한편, 본 발명의 기판 이송장치는 상술한 로봇암 이외에도 다양한 구성이 적용될 수 있다. On the other hand, the substrate transfer apparatus of the present invention can be applied in various configurations in addition to the above-described robot arm.
도 3 내지 도 4는 본 발명의 화학기상증착시스템에서 기판 이송장치의 일실시예를 도시한 것으로, 롤러 구조를 통해 기판 이송 공정을 도시한 단면도이다. 3 to 4 illustrate an embodiment of a substrate transfer apparatus in the chemical vapor deposition system of the present invention, and is a cross-sectional view illustrating a substrate transfer process through a roller structure.
도 3 내지 도 4를 참조하면, 상기 운송장치는 기판(20)이 직접 안치되어 상기 기판(20)을 상기 제1 챔버(110) 내지 제3 챔버(130)에 반입하거나 반출하기 위한 다수의 롤러(210)를 포함하는 컨베이어장치와, 상기 컨베이어장치를 구동시키기 위한 구동장치(도시안함)를 포함할 수 있다. 3 to 4, the transport apparatus includes a plurality of rollers for directly loading or unloading the substrate 20 into the first chamber 110 or the third chamber 130. It may include a conveyor device including a 210, and a driving device (not shown) for driving the conveyor device.
상기 구동장치는 상기 컨베이어장치를 구동시키기 위한 모터 등 통상의 공지된 기술이 적용될 수 있으므로 본 발명에서는 이에 대한 구체적인 설명은 생략하도록 한다. Since the driving device may be a conventionally known technology such as a motor for driving the conveyor device, a detailed description thereof will be omitted.
또한, 상기 컨베이어장치는 상기 제1 챔버(110) 내지 제3 챔버(130) 내부에 설치되는 내부 컨베이어장치와, 상기 제1 챔버(110) 내지 제3 챔버(130) 외부에 설치되어 챔버 간을 연결하는 외부 컨베이어장치로 구분되어 이루어질 수 있다. 즉, 챔버 내부에서 공정을 진행하기 위해 기판을 이송시키는 내부 컨베이어장치와, 공정이 완료된 기판을 챔버 간 이송시키기 위한 외부 컨베이어장치를 별도로 구비하는 것이다. 이 경우, 상기 내부 컨베이어장치와 외부 컨베이어장치는 각각의 구동장치를 통해 구동될 수 있으며, 상기 구동장치의 동작 제어는 상기 제어부가 담당하여 챔버 내부에서의 기판 이송과 챔버 외부에서의 기판 이송을 각각 제어하도록 한다. In addition, the conveyor device is an internal conveyor device installed in the first chamber 110 to the third chamber 130, and the first chamber 110 to the third chamber 130 is installed outside the chamber between It can be divided into an external conveyor to connect. That is, it is provided with an internal conveyor device for transferring the substrate to proceed with the process inside the chamber, and an external conveyor device for transferring the substrate is completed between the chambers. In this case, the internal conveyor device and the external conveyor device may be driven through respective driving devices, and the control of the driving device is controlled by the controller to transfer the substrates inside the chamber and the substrates outside the chamber, respectively. Take control.
도 3은 제1 챔버(110)와 제2 챔버(120) 사이를 도시한 것으로, 제1 챔버(110)에는 유출구(110a)가 형성되고 제2 챔버(120)에는 유입구(120a)가 형성되며, 상기 유출구(110a)와 유입구(110b) 사이에는 게이트(230)가 형성되어 상기 도어(220)가 게이트(230)를 개폐하는 구조를 갖는다. 도면에는 도시하지 않았지만, 제2 챔버(120)와 제3 챔버(130) 사이에도 동일한 구조가 적용될 수 있으므로, 이에 대한 도시는 생략하였다.FIG. 3 is a view illustrating a space between the first chamber 110 and the second chamber 120. An outlet 110a is formed in the first chamber 110, and an inlet 120a is formed in the second chamber 120. The gate 230 is formed between the outlet 110a and the inlet 110b so that the door 220 opens and closes the gate 230. Although not shown in the drawings, the same structure may be applied between the second chamber 120 and the third chamber 130, and thus the illustration thereof is omitted.
이와 같은 기판 이송장치는 상기 제1 챔버(110)에서 기판(20) 위의 모노머(Monomer) 흡착 사이트 형성이 완료되면, 공정이 완료된 기판(20)이 롤러(210) 상에 놓여진 상태로 상기 구동장치에 의해 이동됨과 아울러 상기 제어부가 상기 도어(220) 개폐를 제어하여 도어(220)를 개방함으로써, 상기 기판(20)이 상기 유출구(110a) 및 유입구(120a)를 통해 제1 챔버(110)에서 제2 챔버(120)로 이송될 수 있도록 한다. The substrate transfer device is driven in a state in which the substrate 20 on which the process is completed is placed on the roller 210 when the formation of the monomer adsorption site on the substrate 20 is completed in the first chamber 110. In addition to being moved by a device, the control unit controls the opening and closing of the door 220 to open the door 220, so that the substrate 20 passes through the outlet 110a and the inlet 120a. To be transferred to the second chamber 120.
이후, 제2 챔버(120)로 이송된 기판(20)은 개시제(122)와 모노머(124)(126)의 중합반응을 통해 폴리머를 형성하고, 상술한 바와 동일한 방식으로 제3 챔버(130)로 이송된 후, 제3 챔버(130) 내에서 잔류 개시제를 제거함으로써, 폴리머 박막 형성 공정을 3단계로 진행할 수 있게 된다. Subsequently, the substrate 20 transferred to the second chamber 120 forms a polymer through a polymerization reaction between the initiator 122 and the monomers 124 and 126, and the third chamber 130 is formed in the same manner as described above. After being transferred to, by removing the residual initiator in the third chamber 130, it is possible to proceed to the polymer thin film forming process in three steps.
이상에서 설명한 바와 같이 본 발명에 따른 개시제를 이용한 화학기상증착시스템은 기판의 중합반응 사이트 형성을 위한 별도의 챔버를 구성함으로써, 증착 속도를 향상함과 아울러 물질의 소모량을 감소시킬 수 있는 효과가 있다. As described above, the chemical vapor deposition system using the initiator according to the present invention has an effect of improving the deposition rate and reducing the consumption of materials by configuring a separate chamber for forming a polymerization reaction site of the substrate. .
또한, 챔버 내 기상의 물질 투입과 진공 펌핑을 통한 기상 유체 흐름(flow)을 실시간으로 형성하지 않고 필요에 의해 간헐적인 펌핑을 통해 챔버 압력을 제어함으로써, 기상의 물질 흐름과 진공 펌핑 방향에 따라 위치별 기상물질의 농도가 달라지는 것을 방지하여 기판 박막의 증착 균일도 확보가 가능한 효과가 있다. In addition, by controlling the chamber pressure through intermittent pumping as needed without forming gas phase fluid flow through the gas phase material input and vacuum pumping in real time, the position according to the gas phase material flow and vacuum pumping direction It is possible to secure the deposition uniformity of the substrate thin film by preventing the concentration of the gaseous phase material different from each other.
이하에서는 폴리머 박막 형성공정을 단계별로 진행하기 위한 복수의 선형 증발원을 구성하는 본 발명에 대하여 보다 구체적으로 이해할 수 있도록 첨부된 도면을 참조한 바람직한 실시 예를 들어 설명하기로 한다. Hereinafter, a preferred embodiment with reference to the accompanying drawings will be described in order to understand the present invention constituting a plurality of linear evaporation source for proceeding step of the polymer thin film forming step in more detail.
도 5는 본 발명의 선형 화학기상증착시스템의 일실시예를 보인 단면도로서, 롤투롤(Roll to roll) 플렉서블(flexible) 기판의 공정에 적용된 예를 도시한 것이고, 도 6은 본 발명의 선형 화학기상증착시스템의 다른 실시예를 보인 단면도이고, 도 7은 본 발명의 화학기상증착시스템에서 선형 증발원을 도시한 사시도이고, 도 8은 도 7에서의 A-A선 단면도이다. Figure 5 is a cross-sectional view showing an embodiment of the linear chemical vapor deposition system of the present invention, shows an example applied to the process of a roll to roll (flexible) substrate, Figure 6 is a linear chemistry of the present invention 7 is a cross-sectional view showing another embodiment of the vapor deposition system, Figure 7 is a perspective view showing a linear evaporation source in the chemical vapor deposition system of the present invention, Figure 8 is a cross-sectional view taken along line AA in FIG.
본 발명의 개시제를 이용하는 선형 화학기상증착시스템은 ①Site generation(기판 위의 모노머(Monomer) 흡착 사이트를 형성) → ②Polymerization(개시제와 모노머의 중합반응을 통한 Polymer 형성) → ③Tremination(잔류 개시제를 제거하여 증착두께를 제어)의 공정을 한 개의 챔버(100) 내에서 단계별로 진행할 수 있도록 구성된다. In the linear chemical vapor deposition system using the initiator of the present invention, ①Site generation (formation of monomer adsorption site on the substrate) → ②Polymerization (polymer formation through polymerization of initiator and monomer) → ③Tremination (removal by removing residual initiator) Control the thickness) is configured to proceed step by step in one chamber (100).
이를 위해, 본 발명에서는 기판(20) 표면에 개시제와 모노머의 중합반응을 통해 폴리머를 형성하기 위한 챔버(100)와, 상기 챔버(100) 내부에서 상기 기판 표면의 일부에 개시제와 모노머를 투입하여 중합반응을 통한 폴리머 박막 형성공정을 단계별로 진행하기 위한 복수의 선형 증발원(400)과, 상기 기판(20) 또는 상기 선형 증발원(400)을 이동시켜 상기 기판의 전체 면적에 폴리머 박막 형성공정을 진행하기 위한 이동수단을 포함한다. To this end, in the present invention, a chamber 100 for forming a polymer through polymerization of an initiator and a monomer on the surface of the substrate 20 and an initiator and a monomer are added to a part of the surface of the substrate in the chamber 100. A plurality of linear evaporation sources 400 and the substrate 20 or the linear evaporation sources 400 for moving the polymer thin film formation process step by step through the polymerization reaction to move the polymer thin film formation process over the entire area of the substrate It includes a moving means for.
상기 챔버(100)는 기판(20)에 증착물질이 증착되는 공정이 이루어질 수 있도록 외부로부터 격리된 공간을 제공한다. 챔버(100)의 내부는 진공상태로 있게 되며, 진공 속에서 증착공정이 이루어지게 된다. 이러한 챔버(100)에는 진공상태를 조성해주기 위한 진공펌프(미도시) 등이 구비되어 있다. The chamber 100 provides a space isolated from the outside so that the deposition material is deposited on the substrate 20. The interior of the chamber 100 is in a vacuum state, and the deposition process is performed in a vacuum. The chamber 100 is provided with a vacuum pump (not shown) for forming a vacuum state.
상기 챔버(100) 내부에는 상기 기판 표면의 일부에 개시제와 모노머를 투입하여 중합반응을 통한 폴리머 박막 형성공정을 단계별로 진행하기 위한 복수의 선형 증발원(400)이 구비되는데, 상기 선형 증발원(400)은 도 5에 도시한 바와 같이, 폴리머를 형성하는 3단계를 각각의 증발원에서 진행할 수 있도록 3개의 증발원으로 이루어진다. In the chamber 100, a plurality of linear evaporation sources 400 are provided to step a polymer thin film forming process through a polymerization reaction by adding an initiator and a monomer to a part of the substrate surface. The linear evaporation sources 400 are provided. As shown in FIG. 5, three evaporation sources are formed so that three steps of forming a polymer can be performed at each evaporation source.
구체적으로, 상기 선형 증발원(400)은 기판(20) 표면에서 개시제와 모노머의 중합반응을 일으키기 상기 개시제와 모노머를 투입하여 모노머 흡착 사이트를 형성하는 제1 증발원(400a)와, 상기 제1 증발원(400a)에서 모노머 흡착 사이트가 형성된 기판이 유입된 후 개시제와 모노머의 중합반응을 통해 폴리머를 형성하는 제2 증발원(400b)와, 상기 폴리머가 형성된 기판이 유입된 후 잔류 개시제를 제거하여 증착두께를 제어하기 위해 반응을 중단시키는 제3 증발원(400c)를 포함한다. Specifically, the linear evaporation source 400 is a first evaporation source (400a) to form a monomer adsorption site by injecting the initiator and monomer to cause the polymerization reaction of the initiator and the monomer on the surface of the substrate 20, and the first evaporation source ( After the substrate on which the monomer adsorption site is formed is introduced at 400a), a second evaporation source 400b for forming a polymer through polymerization of the initiator and the monomer is removed, and the residual initiator is removed after the substrate on which the polymer is formed is introduced. And a third evaporation source 400c for stopping the reaction for control.
상기 제1 증발원(400a), 제2 증발원(400b) 및 제3 증발원(400c)에 상기 개시제와 모노머 등을 투입하기 위해, 증발원의 상부에는 샤워헤드 어셈블리(도시안함)가 설치되어 이를 통해서 반응가스가 유입되도록 할 수 있다. 이 경우, 상기 샤워헤드 어셈블리를 통해 개시제 및 복수의 모노머가 동시에 유입되어 하방으로 분출되는 구조를 형성된다. In order to introduce the initiator and the monomer into the first evaporation source 400a, the second evaporation source 400b, and the third evaporation source 400c, a showerhead assembly (not shown) is installed on the upper part of the evaporation source, thereby reacting the reaction gas. Can be introduced. In this case, an initiator and a plurality of monomers are simultaneously introduced through the showerhead assembly to form a structure which is ejected downward.
또한, 상기 상기 제1 증발원(400a) 또는 제2 증발원(400b)에서는 적어도 2종 이상의 모노머와 개시제를 투입하여 기상 증착 물질 분위기를 형성한다. 즉, 본 실시예에서는 2종의 모노머가 유입되어 분출되는 것으로 설명하고 있으나, 본 발명이 이에 제한되는 것은 아니고 3종 이상의 반응가스가 유입되어 분출될 수 있도록 구성할 수도 있다. 여기서, 개시제는 라디칼 이온 형태로 분해되어 유입되는데, 라디칼 이온은 진입로의 구성(유로의 굴곡, 부피 등)에 따라 에너지가 감소되기 때문에 상부에서 형성된 라디칼 이온이 노즐로 분출되기 전까지 충돌을 최소화하기 위해 최상부에서 분출되도록 구성하는 것이 바람직하다.In addition, in the first evaporation source 400a or the second evaporation source 400b, at least two or more monomers and an initiator are added to form a vapor deposition material atmosphere. That is, in the present embodiment, two kinds of monomers are introduced and ejected, but the present invention is not limited thereto, and three or more kinds of reaction gases may be introduced and ejected. Here, the initiator is decomposed in the form of radical ions, and since the energy of the radical ions decreases according to the configuration of the entry path (curve, volume, etc.) of the access path, in order to minimize the collision before the radical ions formed at the top are ejected into the nozzle. It is preferable to configure so that it may eject from the top.
이와 같은 증발원은 동일한 구조를 갖고 있는데, 도 8에서 보는 바와 같이, 기판(20)에 증착시킬 증착물질을 분사하는 다수개의 노즐(420)과, 상기 노즐(420)을 통해 토출된 증착물질이 좁은 볼륨의 선형 공간에 분포하여 증착 중합 반응에 참여하도록 하는 증발원 가이드(410)와, 상기 증발원 가이드(410)의 내부에 마련되며, 상기 노즐(420)을 통해 분출된 상기 증착물질을 라디칼(radical)로 활성화시켜주는 와이어 히터(430)를 포함할 수 있다. Such an evaporation source has the same structure, and as shown in FIG. 8, a plurality of nozzles 420 for injecting a deposition material to be deposited on the substrate 20 and a deposition material discharged through the nozzle 420 are narrow. Evaporation source guide 410 distributed in a linear space of the volume to participate in the deposition polymerization reaction, provided inside the evaporation source guide 410, the deposition material ejected through the nozzle 420 radical (radical) It may include a wire heater 430 for activating.
상기 다수개의 노즐(420)은 기판(20) 표면에 고르게 증착물질을 분사하도록 일정간격을 두고 이격되어 배치될 수 있다. The plurality of nozzles 420 may be spaced apart from each other at regular intervals so as to spray the deposition material evenly on the surface of the substrate 20.
또한, 상기 증발원 가이드(410)는 상기 증착물질이 기판 표면에서 증착 중합 반응에 참여하도록 상기 증착물질을 상기 기판(20)에 인접한 위치까지 가이드하는 형태로 이루어지어야 한다. 즉, 상기 증발원 가이드(410)는 좁은 볼륨의 선형 공간을 형성하여 상기 증착물질이 기판 표면에서 증착 중합 반응에 참여하도록 도 7에서 보는 바와 같이, 기판(20)의 폭방향으로 길게 형성되는 박스형상을 이룬다. 이때, 상기 증발원 가이드(410)는 도 8에서 보는 바와 같이, 하면이 개구된 '┌┐'의 단면형상을 가지며, 상기 개구된 하면에는 기판(20)이 놓이게 된다. In addition, the evaporation source guide 410 should be formed to guide the deposition material to a position adjacent to the substrate 20 so that the deposition material participates in the deposition polymerization reaction on the substrate surface. That is, the evaporation source guide 410 forms a narrow volume of linear space so that the deposition material participates in the deposition polymerization reaction on the substrate surface, as shown in FIG. 7, and is formed in a box shape extending in the width direction of the substrate 20. To achieve. In this case, as shown in FIG. 8, the evaporation source guide 410 has a cross-sectional shape of '┌┐' having a lower surface opened, and the substrate 20 is placed on the opened lower surface.
상기 노즐(420)은 상기 증발원 가이드(410)의 상부에 일정간격으로 형성되며, 상기 와이어 히터(430)는 노즐(420)과 기판(20) 사이에 마련된다. 상기 와이어 히터(430)는 증발원의 노즐(420)을 통해 분출된 증착물질을 라디칼(radical)로 활성화시켜준다. 여기서 증착물질이 개시제(initiator)인 경우, 상기 와이어 히터(430)에 의해 개시제가 라디칼로 활성화 된다.The nozzle 420 is formed at a predetermined interval on the evaporation source guide 410, the wire heater 430 is provided between the nozzle 420 and the substrate 20. The wire heater 430 radically activates the deposition material ejected through the nozzle 420 of the evaporation source. Here, when the deposition material is an initiator, the initiator is activated by the wire heater 430 as a radical.
상기 와이어 히터(430)는 다수개의 히터선으로 이루어지며, 상기 라디칼은 상기 히터선으로부터 공급되는 열에너지에 의해 활성화된다. The wire heater 430 is composed of a plurality of heater wires, the radicals are activated by the heat energy supplied from the heater wires.
그리고 도 8에서 참조되는 바와 같이, 다수개의 히터선은 이웃하는 히터선에 대하여 일정 간격을 두고 이격되어 배치되어 있는 것이 바람직하다. 여기서 다수개의 히터선 각각이 다수개의 노즐(420) 각각에 대응되도록 배치될 수도 있으며, 도 8에 도시된 바와 같이, 다수개의 노즐의 개수와는 상관없이 히터선 간의 간격이 일정하게 분포된 형태 또한 가능하다. As shown in FIG. 8, the plurality of heater wires are preferably spaced apart from each other at a predetermined interval with respect to the neighboring heater wires. Here, each of the plurality of heater wires may be arranged to correspond to each of the plurality of nozzles 420. As shown in FIG. 8, a shape in which a distance between heater wires is uniformly distributed regardless of the number of nozzles It is possible.
이와 같은 본 발명은 상기 제3 증발원(400c)에서 잔류 개시제를 제거하기 위해, 개시제(132)를 추가적으로 투입함으로써, 라디칼 이온 형태로 분해되어 유입되는 개시제(132)가 잔류 개시제와 결합하여 분자형태가 됨으로써 잔류 개시제를 빠르게 제거 할 수 있고, 중합 반응을 차단하여 박막의 두께 제어를 용이하게 할 수 있다. In the present invention as described above, in order to remove the residual initiator in the third evaporation source (400c), by additionally adding an initiator 132, the initiator 132 is decomposed into radical ions form and combined with the residual initiator to form a molecular By doing so, the residual initiator can be removed quickly, and the polymerization reaction can be blocked to facilitate the thickness control of the thin film.
이와 같이, 본 발명은 선형 증발원(400)을 이용하여 와이어 히터(430)로부터 기판으로 전달되는 손상(열, 플라즈마 등)을 최소화하고, 노즐(420)에서 토출된 물질의 대부분이 좁은 크기의 선형 증발원(400) 공간에 분포하여, 공급된 물질 대부분이 증착 중합 반응에 참여함으로써, 기상의 물질이 기판 외 챔버로 누출되는 것을 최소화하여 물질 사용 효율을 극대화시킬 수 있는 효과가 있다. As described above, the present invention minimizes damage (heat, plasma, etc.) transmitted from the wire heater 430 to the substrate using the linear evaporation source 400, and the most of the material discharged from the nozzle 420 is of a narrow size. By distributing the space in the evaporation source 400, most of the supplied material participates in the deposition polymerization reaction, thereby minimizing leakage of the gaseous material into the chamber outside the substrate, thereby maximizing the material use efficiency.
한편, 상기 기판(20)은 플렉서블 기판으로 이루어지며, 상기 이동수단은 롤투롤(Roll to roll) 장치로 이루어질 수 있다. On the other hand, the substrate 20 is made of a flexible substrate, the moving means may be made of a roll to roll (roll to roll) device.
상기 롤투롤 장치는 상기 증착물질의 증착이 이루어지는 증착위치로 상기 플렉서블 기판(30)을 제공하는 공급롤러(250)와, 상기 증착물질이 증착된 상기 플렉서블 기판(30)을 회수하는 회수롤러(260)와, 상기 공급롤러(250)와 상기 회수롤러(260) 사이에 위치하여 상기 플렉서블 기판이 상기 증착위치로 연속적으로 공급되어 상기 증착위치를 통과할 수 있도록 보조하는 방향롤러(230)(240)와, 상기 증착물질이 상기 기판에 증착될 수 있도록 상기 공급롤러(250) 측으로부터 상기 기판을 전달받아서 상기 기판을 지지하는 서포터롤러(supporter roller)(300)를 포함할 수 있다. The roll-to-roll apparatus includes a supply roller 250 for providing the flexible substrate 30 to a deposition position where the deposition material is deposited, and a recovery roller 260 for recovering the flexible substrate 30 on which the deposition material is deposited. And the direction rollers 230 and 240 positioned between the supply roller 250 and the recovery roller 260 to continuously supply the flexible substrate to the deposition position and to pass through the deposition position. And a supporter roller 300 supporting the substrate by receiving the substrate from the supply roller 250 so that the deposition material may be deposited on the substrate.
통상의 기판과 달리 플렉서블 기판(30)은 유연성이 있으며, 글라스 기판과 달리 연속적으로 되어 있다. 따라서 플렉서블 기판(30)을 증착위치로 전달하고, 증착위치에서 증착물질이 증착된 플렉서블 기판(30)을 회수한다. 이러한 과정은 공급롤러(250)에 감겨있는 플렉서블 기판(30)이 모두 증착될 때까지 이루어질 수 있다.Unlike a conventional substrate, the flexible substrate 30 is flexible, and unlike the glass substrate, the flexible substrate 30 is continuous. Therefore, the flexible substrate 30 is transferred to the deposition position, and the flexible substrate 30 on which the deposition material is deposited is recovered from the deposition position. This process may be performed until all of the flexible substrate 30 wound on the supply roller 250 is deposited.
상기 공급롤러(250)는 플렉서블 기판(30)이 감겨져 있으며, 증착물질이 증착되기 전의 상태이다. 공급롤러(250)가 회전하면서 감겨있던 플렉서블 기판(30)이 풀려서 나오게 되며, 공급롤러(250)로부터 풀려서 나온 플렉서블 기판(30)이 증착위치로 이동된다. The supply roller 250 is wound on the flexible substrate 30 and is in a state before the deposition material is deposited. As the feed roller 250 rotates, the flexible substrate 30 wound up is released, and the flexible substrate 30 released from the feed roller 250 is moved to the deposition position.
회수롤러(260)는 증착위치에서 증착물질의 증착이 이루어진 플렉서블 기판(30)을 회수한다. 플렉서블 기판(30)을 회수하기 위하여 회수롤러(260) 또한 회전하여 플렉서블 기판(30)을 감아들임으로써 회수한다. The recovery roller 260 recovers the flexible substrate 30 on which the deposition material is deposited at the deposition position. In order to recover the flexible substrate 30, the recovery roller 260 is also rotated and recovered by winding the flexible substrate 30.
방향롤러(230)(240)는 공급롤러(250)와 회수롤러(260) 사이에 위치하여 플렉서블 기판(30)이 증착위치로 연속적으로 공급되어 증착위치를 통과할 수 있도록 보조한다. 도 5에 도시된 바와 같이 공급롤러(250)로부터 풀려나오는 플렉서블 기판(30)이 증착위치를 지나갈 수 있도록 위치를 잡아주는 보조적인 역할을 방향롤러(230)(240)가 한다. The direction rollers 230 and 240 are positioned between the supply roller 250 and the recovery roller 260 to assist the flexible substrate 30 to be continuously supplied to the deposition position and to pass through the deposition position. As shown in FIG. 5, the direction rollers 230 and 240 play an auxiliary role of positioning the flexible substrate 30 released from the supply roller 250 so as to pass through the deposition position.
이와 같이 플렉서블 기판(30)은 공급롤러(250)로부터 풀려나와서 방향롤러(230)(240)의 보조에 의해 증착위치를 지나면서 증착되고, 증착이 끝난 플렉서블 기판(30)은 최종적으로 회수롤러(260)에 감기면서 회수된다. In this way, the flexible substrate 30 is released from the supply roller 250 and is deposited while passing through the deposition position by the assistance of the direction rollers 230 and 240, and the finished flexible substrate 30 is finally recovered by a recovery roller ( 260 is recovered while winding.
상기 서포터롤러(300)는 증착물질이 플렉서블 기판(30)에 증착될 수 있도록 공급롤러(250)측으로부터 플렉서블 기판(30)을 전달받아서 플렉서블 기판(30)을 지지한다. 그리고 서포터롤러(300)에는 플렉서블 기판(30)에 증착물질이 증착되면서 받은 열을 냉각시켜줄 수 있는 기판냉각수단이 구비되어 있는 것이 더욱 바람직하다.The supporter roller 300 receives the flexible substrate 30 from the supply roller 250 side to support the flexible substrate 30 so that the deposition material may be deposited on the flexible substrate 30. And the supporter roller 300 is more preferably provided with a substrate cooling means that can cool the heat received while the deposition material is deposited on the flexible substrate 30.
여기서 플렉서블 기판(30)이 서포터롤러(300)에 의해 지지되는 동안에 복수개의 증발원(400)과 플렉서블 기판(30) 사이의 간격이 일정하게 유지될 수 있도록 복수개의 증발원(400)의 배치형태가 서포터롤러(300)의 외면에 대응하여 가상의 곡면을 형성하고 있는 것이 바람직하다. Here, the arrangement of the plurality of evaporation sources 400 is supported so that the distance between the plurality of evaporation sources 400 and the flexible substrate 30 can be kept constant while the flexible substrate 30 is supported by the supporter roller 300. It is preferable to form a virtual curved surface corresponding to the outer surface of the roller 300.
여기서, 다수개의 노즐(420)의 배치형태에 의해 형성되는 가상의 곡면의 형태는 서포트롤러(300)의 회전중심축에 대하여 일정 거리를 두고 배치되되, 단면이 부체꼴의 호를 이루는 가상의 곡면의 형태인 것이 바람직하다. 이러한 경우 서포트롤러(300)에 의해 지지되는 플렉서블 기판(30)이 증착되는 동안에 노즐(420)과의 간격(거리가) 일정하게 유지되므로, 보다 균일한 증착두께를 실현할 수 있게 된다. Here, the shape of the virtual curved surface formed by the arrangement of the plurality of nozzles 420 is disposed at a predetermined distance with respect to the axis of rotation of the support controller 300, the virtual curved surface of which the cross section forms a floating arc It is preferably in the form of. In this case, since the distance (distance) with the nozzle 420 is kept constant while the flexible substrate 30 supported by the support controller 300 is deposited, a more uniform deposition thickness can be realized.
또한, 서포트롤러(300)가 회전할 수 있으므로 플렉서블 기판(30)을 접하면서 지지하는 동안에 플렉서블 기판(30)의 하측면에 대한 손상이 억제된다. In addition, since the support controller 300 can rotate, damage to the lower surface of the flexible substrate 30 is suppressed while supporting the flexible substrate 30 while being in contact with it.
그리고 서포트롤러(300)에는 플렉서블 기판(30)에 증착물질이 증착되면서 받은 열을 냉각시켜줄 수 있는 기판냉각수단이 구비되어 있는 것이 더욱 바람직하다.In addition, the support controller 300 may further include a substrate cooling unit capable of cooling the heat received while the deposition material is deposited on the flexible substrate 30.
예를 들어 기판냉각수단으로서 차가운 냉매가 서포트롤러(300)를 회전중심축에 따라서 지나가도록 하여 서포트롤러(300)가 플렉서블 기판(30)을 냉각시켜줄 수 있는 것을 예로 들을 수 있다. For example, as the substrate cooling means, the coolant may pass through the support controller 300 along the central axis of rotation, thereby allowing the support controller 300 to cool the flexible substrate 30.
또한, 상기 기판(20)은 도 6에서 보는 바와 같이, 판상의 기판으로 이루어질 수 있다. In addition, the substrate 20 may be formed of a plate-like substrate, as shown in FIG.
이 경우, 상기 이동수단은 상기 기판(20) 또는 선형 증발원(400)을 수평방향으로 왕복 이동시켜 상기 기판의 전체 면적에 폴리머 박막 형성공정을 진행하기 위해 스캔닝할 수 있도록 하는 수평이동수단으로 이루어질 수 있다. In this case, the moving means comprises a horizontal moving means for reciprocating the substrate 20 or the linear evaporation source 400 in a horizontal direction so as to scan the entire area of the substrate for the process of forming a polymer thin film. Can be.
이 경우, 상기 수평이동수단은 기판(20)이 직접 안치되어 상기 기판을 상기 제1 증발원(400a) 내지 제3 증발원(400b)의 위치로 이동시키는 다수의 롤러를 포함하는 컨베이어장치와, 상기 컨베이어장치를 구동시키기 위한 구동장치를 포함할 수 있다.In this case, the horizontal moving means is a conveyor apparatus including a plurality of rollers for moving the substrate to the position of the first evaporation source (400a) to the third evaporation source (400b) directly placed on the substrate 20, the conveyor It may include a driving device for driving the device.
상기 구동장치는 상기 컨베이어장치를 구동시키기 위한 모터 등 통상의 공지된 기술이 적용될 수 있으므로 본 발명에서는 이에 대한 구체적인 설명은 생략하도록 한다. Since the driving device may be a conventionally known technology such as a motor for driving the conveyor device, a detailed description thereof will be omitted.
이와 같은 수평이동수단은 상기 제1 증발원(400a)에서 기판(20) 위의 모노머(Monomer) 흡착 사이트를 형성이 완료되면, 공정이 완료된 기판(20)이 롤러 상에 놓여진 상태로 상기 구동장치에 의해 이동되어, 상기 제1 증발원(400a)에서 제2 증발원(400b)로 이송될 수 있도록 한다. When the horizontal movement means is completed to form the monomer adsorption site on the substrate 20 in the first evaporation source (400a), the substrate 20, the process is completed is placed on the roller in the drive device Is moved so that it can be transferred from the first evaporation source (400a) to the second evaporation source (400b).
이후, 제2 증발원(400b)로 이송된 기판(20)은 개시제와 모노머의 중합반응을 통해 폴리머를 형성하고, 상술한 바와 동일한 방식으로 제3 증발원(400c)로 이송된 후, 제3 증발원(400c) 내에서 잔류 개시제를 제거함으로써, 폴리머 박막 형성 공정을 3단계로 진행할 수 있게 된다. Subsequently, the substrate 20 transferred to the second evaporation source 400b forms a polymer through a polymerization reaction of an initiator and a monomer, and is transferred to the third evaporation source 400c in the same manner as described above, and then a third evaporation source ( By removing the residual initiator in 400c), the polymer thin film forming process can proceed in three steps.
이상에서 살펴본 본 발명에 의하면, 본 발명은 기판의 중합반응을 통한 폴리머 박막 형성공정을 단계별로 진행하기 위한 복수의 선형 증발원을 구성함으로써, 증착 속도를 향상함과 아울러 물질의 소모량을 감소시킬 수 있는 효과가 있다. According to the present invention as described above, the present invention by forming a plurality of linear evaporation source for the step of proceeding the polymer thin film forming process through the polymerization of the substrate, it is possible to improve the deposition rate and reduce the consumption of the material It works.
또한, 좁은 증착 구역 확보가 가능하여 판상의 기판 뿐 아니라 롤투롤(Roll to roll) 플렉서블(flexible) 기판의 공정에도 적용이 가능하다.In addition, it is possible to secure a narrow deposition area, so that it is applicable to the process of roll-to-roll (flexible) substrate as well as the plate-like substrate.
또한, 좁은 영역에 기상의 물질이 존재하므로 기상 물질의 농도 제어가 용이하여 기판 전체 균일도 확보가 유리한 효과가 있다.In addition, since the gaseous substance exists in a narrow region, it is easy to control the concentration of the gaseous substance, and thus, it is advantageous to secure the overall uniformity of the substrate.
이상에서 설명된 바와 같이, 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시 예들에 의해서 이루어졌지만, 상술한 실시 예들은 본 발명의 바람직한 실시 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시 예에만 국한되는 것으로 이해되어져서는 아니되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어져야 할 것이다. As described above, the detailed description of the present invention has been made by the embodiments with reference to the accompanying drawings, but since the above-described embodiments have only been described with reference to a preferred embodiment of the present invention, the present invention has been described above. It should not be understood to be limited only to the embodiments, and the scope of the present invention should be understood by the claims and equivalent concepts described below.
이상에서 살펴본 본 발명은 기판의 중합반응 사이트 형성을 위한 별도의 챔버를 구성하여 증착 속도를 향상함과 아울러 물질의 소모량을 감소시킬 수 있고, 기판의 위치별로 기상물질의 농도가 달라지는 것을 방지하여 기판 박막의 증착 균일도 확보가 가능하므로 산업상 이용가능성이 매우 높은 발명이라 할 것이다.The present invention as described above can form a separate chamber for forming the polymerization reaction site of the substrate to improve the deposition rate and to reduce the consumption of the material, and to prevent the concentration of the gaseous substance for each position of the substrate to prevent the substrate Since the deposition uniformity of the thin film can be secured, it will be referred to as an invention having high industrial applicability.
또한, 좁은 증착 구역 확보가 가능하여 판상의 기판 뿐 아니라 롤투롤(Roll to roll) 플렉서블(flexible) 기판의 공정에도 적용이 가능하므로, 선형 증발원을 이용하여 증착하는 플렉서블 기판의 제조에도 사용할 수 있다. In addition, since it is possible to secure a narrow deposition region, it can be applied not only to a plate-shaped substrate but also to a process of a roll to roll flexible substrate, and thus it can be used to manufacture a flexible substrate deposited using a linear evaporation source.
Claims (20)
- 기판 표면에서 개시제와 모노머의 중합반응을 일으키기 위해 상기 개시제와 모노머를 투입하여 모노머 흡착 사이트를 형성하는 제1 챔버;A first chamber in which the initiator and the monomer are added to form a monomer adsorption site to cause polymerization of the initiator and the monomer on the substrate surface;상기 제1 챔버에서 중합반응 사이트가 형성된 기판이 유입된 후 개시제와 모노머의 중합반응을 통해 폴리머를 형성하는 제2 챔버;A second chamber in which the polymer is formed through polymerization of an initiator and a monomer after the substrate on which the polymerization reaction site is formed is introduced into the first chamber;상기 폴리머가 형성된 기판이 유입된 후 잔류 개시제를 제거하여 증착두께를 제어하기 위해 반응을 중단시키는 제3 챔버; 및A third chamber in which the reaction is stopped to control the deposition thickness by removing the residual initiator after the substrate on which the polymer is formed is introduced; And상기 제1 챔버에서 제2 챔버를 거쳐 제3 챔버로 기판을 이동시키기 위한 기판 이송장치;A substrate transfer device for moving a substrate from the first chamber to a third chamber via a second chamber;를 포함하며, Including;폴리머 박막 형성 공정을 단계별로 각각의 챔버에서 진행하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템.Chemical vapor deposition system using an initiator, characterized in that the polymer thin film forming process is carried out in each chamber step by step.
- 청구항 1에 있어서, The method according to claim 1,상기 제3 챔버에서는 개시제를 추가적으로 투입하여 잔류 개시제를 제거함으로써 중합 반응을 차단하여 두께를 제어하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템.Chemical vapor deposition system using an initiator in the third chamber is added to the initiator to remove the residual initiator to block the polymerization reaction by controlling the thickness.
- 청구항 1에 있어서, The method according to claim 1,상기 제1 챔버 내지 제3 챔버는 기상의 물질 투입과 진공 펌핑을 통한 기상 유체 흐름을 실시간으로 형성하지 않고, 필요에 의해 간헐적인 펌핑을 통해 챔버 압력을 제어하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템.The first to third chambers do not form gaseous fluid flow through the gas phase material injection and vacuum pumping in real time, and if necessary, control the chamber pressure through intermittent pumping. Deposition system.
- 청구항 1에 있어서, The method according to claim 1,상기 기판 이송장치는 상기 제1 챔버와 제2 챔버 사이 및 제2 챔버와 제3 챔버 사이에 설치되어 상기 기판을 각각의 챔버로 이송시킬 때 개폐가능한 도어; The substrate transfer apparatus includes a door installed between the first chamber and the second chamber and between the second chamber and the third chamber to open and close the substrate when the substrate is transferred to each chamber;상기 제1 챔버, 제2 챔버 및 제3 챔버에 상기 도어가 설치되는 위치에 형성되어 이송되는 기판의 통로가 되는 유출구 및 유입구;Outlets and inlets serving as passages of substrates formed at positions where the doors are installed in the first chamber, the second chamber, and the third chamber;상기 기판을 상기 유출구 및 유입구를 통해 챔버 간 이송시킬 수 있도록 하는 운송장치; A transport apparatus for transferring the substrate between the chamber through the outlet and the inlet;상기 운송장치의 동작과 도어의 개폐를 제어하기 위한 제어부;A control unit for controlling the operation of the transportation device and opening and closing of the door;를 포함하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템. Chemical vapor deposition system using an initiator comprising a.
- 청구항 4에 있어서, The method according to claim 4,상기 운송장치는 상기 유출구 및 유입구를 출입하면서 수평 왕복 운동하는 로봇암으로 이루어지는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템. The transport apparatus is a chemical vapor deposition system using an initiator, characterized in that consisting of a robot arm horizontally reciprocating while entering and exiting the outlet and the inlet.
- 청구항 4에 있어서, The method according to claim 4,상기 운송장치는 기판이 직접 안치되어 상기 기판을 상기 제1 챔버 내지 제3 챔버에 반입하거나 반출하기 위한 다수의 롤러를 포함하는 컨베이어장치;The conveying apparatus includes a conveyor apparatus comprising a plurality of rollers for directly placing or transporting the substrate into or out of the first to third chambers;상기 컨베이어장치를 구동시키기 위한 구동장치;A driving device for driving the conveyor device;를 포함하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템. Chemical vapor deposition system using an initiator comprising a.
- 청구항 6에 있어서, The method according to claim 6,상기 컨베이어장치는 상기 제1 챔버 내지 제3 챔버 내부에 설치되는 내부 컨베이어장치와, The conveyor apparatus includes an internal conveyor installed in the first to third chambers;상기 제1 챔버 내지 제3 챔버 외부에 설치되어 챔버 간을 연결하는 외부 컨베이어장치로 이루어지며, Installed outside the first to third chambers made of an external conveyor device for connecting the chambers,상기 내부 컨베이어장치와 외부 컨베이어장치는 별도의 구동장치를 통해 구동되는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템. Chemical vapor deposition system using an initiator characterized in that the inner conveyor device and the outer conveyor device is driven through a separate drive device.
- 청구항 1에 있어서, The method according to claim 1,상기 제1 챔버 또는 제2 챔버에서는 적어도 2개 이상의 모노머를 투입하여 기상 증착 물질 분위기를 형성하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템. Chemical vapor deposition system using an initiator in the first chamber or the second chamber to form at least two monomers to form a vapor deposition material atmosphere.
- 기판 표면에 개시제와 모노머의 중합반응을 통해 폴리머를 형성하기 위한 챔버;A chamber for forming a polymer through polymerization of an initiator and a monomer on a substrate surface;상기 챔버 내부에서 상기 기판 표면의 일부에 개시제와 모노머를 투입하여 중합반응을 통한 폴리머 박막 형성공정을 단계별로 진행하기 위한 복수의 선형 증발원; 및A plurality of linear evaporation sources for inputting an initiator and a monomer into a portion of the substrate surface in the chamber to step through a polymer thin film forming process through a polymerization reaction step by step; And상기 기판 또는 상기 선형 증발원을 이동시켜 상기 기판의 전체 면적에 폴리머 박막 형성공정을 진행하기 위한 이동수단;Moving means for moving the substrate or the linear evaporation source to perform a polymer thin film formation process over the entire area of the substrate;을 포함하는 개시제를 이용하는 화학기상증착시스템.Chemical vapor deposition system using an initiator comprising a.
- 청구항 9에 있어서, The method according to claim 9,상기 선형 증발원은 개시제와 모노머의 중합반응을 일으키기 위해 상기 개시제와 모노머를 투입하여 모노머 흡착 사이트를 형성하는 제1 증발원;The linear evaporation source may include a first evaporation source for introducing a monomer and a monomer to form a monomer adsorption site in order to cause polymerization of the initiator and the monomer;상기 제1 증발원에서 모노머 흡착 사이트가 형성된 기판에 개시제와 모노머의 중합반응을 통해 폴리머를 형성하는 제2 증발원; 및A second evaporation source for forming a polymer through a polymerization reaction of an initiator and a monomer on a substrate on which a monomer adsorption site is formed in the first evaporation source; And상기 폴리머가 형성된 기판에 잔류 개시제를 제거하여 증착두께를 제어하기 위해 반응을 중단시키는 제3 증발원; A third evaporation source for stopping the reaction to control the deposition thickness by removing the residual initiator on the substrate on which the polymer is formed;을 포함하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템.Chemical vapor deposition system using an initiator comprising a.
- 청구항 10에 있어서, The method according to claim 10,상기 제3 증발원에서는 개시제를 추가적으로 투입하여 잔류 개시제를 제거함으로써 중합 반응을 차단하여 두께를 제어하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템.Chemical vapor deposition system using an initiator in the third evaporation source by adding an initiator to remove the residual initiator to block the polymerization reaction to control the thickness.
- 청구항 10에 있어서, The method according to claim 10,상기 제1 증발원 내지 제3 증발원은 기판에 증착시킬 증착물질을 분사하는 다수개의 노즐;The first to third evaporation sources include a plurality of nozzles for injecting a deposition material to be deposited on a substrate;상기 노즐을 통해 토출된 증착물질이 좁은 볼륨의 선형 공간에 분포하여 증착 중합 반응에 참여하도록 하는 증발원 가이드; 및An evaporation source guide for distributing the deposition material discharged through the nozzle in a narrow volume linear space to participate in the deposition polymerization reaction; And상기 증발원 가이드의 내부에 마련되며, 상기 노즐을 통해 분출된 상기 증착물질을 라디칼(radical)로 활성화시켜주는 와이어 히터; A wire heater provided inside the evaporation source guide and activating radically the deposition material ejected through the nozzle;를 포함하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템.Chemical vapor deposition system using an initiator comprising a.
- 청구항 12에 있어서, The method according to claim 12,상기 다수개의 노즐은 일정간격을 두고 이격되어 배치된 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템.The plurality of nozzles are chemical vapor deposition system using an initiator, characterized in that spaced apart at a predetermined interval.
- 청구항 12에 있어서, The method according to claim 12,상기 증발원 가이드는 상기 증착물질이 기판 표면에서 증착 중합 반응에 참여하도록 상기 증착물질을 상기 기판에 인접한 위치까지 가이드하는 형태로 이루어지는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템.And the evaporation source guide is configured to guide the deposition material to a position adjacent to the substrate so that the deposition material participates in the deposition polymerization reaction on the substrate surface.
- 청구항 12에 있어서, The method according to claim 12,상기 와이어 히터는 다수개로 이루어지고, 상기 다수개의 와이어 히터는 일정간격을 두고 이격되어 배치된 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템.The wire heater is made of a plurality, the plurality of wire heaters chemical vapor deposition system using an initiator, characterized in that spaced at a predetermined interval disposed.
- 청구항 9에 있어서, The method according to claim 9,상기 기판은 플렉서블 기판으로 이루어지며, The substrate is made of a flexible substrate,상기 이동수단은 롤투롤(Roll to roll) 장치인 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템.Chemical vapor deposition system using an initiator, characterized in that the moving means is a roll to roll (Roll to roll) device.
- 청구항 16에 있어서, The method according to claim 16,상기 롤투롤 장치는 상기 증착물질의 증착이 이루어지는 증착위치로 상기 플렉서블 기판을 제공하는 공급롤러; The roll-to-roll apparatus includes a supply roller for providing the flexible substrate to a deposition position where the deposition material is deposited;상기 증착물질이 증착된 상기 플렉서블 기판을 회수하는 회수롤러; A recovery roller for recovering the flexible substrate on which the deposition material is deposited;상기 공급롤러와 상기 회수롤러 사이에 위치하여 상기 플렉서블 기판이 상기 증착위치로 연속적으로 공급되어 상기 증착위치를 통과할 수 있도록 보조하는 방향롤러; 및A direction roller positioned between the supply roller and the recovery roller to assist the flexible substrate to be continuously supplied to the deposition position and to pass through the deposition position; And상기 증착물질이 상기 기판에 증착될 수 있도록 상기 공급롤러 측으로부터 상기 기판을 전달받아서 상기 기판을 지지하는 서포터롤러(supporter);A supporter roller supporting the substrate by receiving the substrate from the supply roller side so that the deposition material is deposited on the substrate;를 포함하는 것을 특징으로 하는 개시제를 이용한 화학기상증착시스템. Chemical vapor deposition system using an initiator comprising a.
- 청구항 17에 있어서, The method according to claim 17,상기 서포터롤러는 상기 기판에 상기 증착물질이 증착되면서 받은 열을 냉각시켜 주기 위한 기판냉각수단을 구비하고 있는 것을 특징으로 하는 개시제를 이용한 화학기상증착시스템.The support roller is a chemical vapor deposition system using an initiator, characterized in that the substrate cooling means for cooling the heat received while the deposition material is deposited on the substrate.
- 청구항 9에 있어서, The method according to claim 9,상기 기판은 판상의 기판으로 이루어지며, The substrate is made of a plate-like substrate,상기 이동수단은 상기 기판 또는 선형 증발원을 수평방향으로 왕복 이동시켜 상기 기판의 전체 면적에 폴리머 박막 형성공정을 진행하기 위해 스캔닝할 수 있도록 하는 수평이동수단으로 이루어지는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템. The moving means comprises a horizontal moving means for reciprocating the substrate or the linear evaporation source in a horizontal direction to scan the entire area of the substrate for the process of forming a polymer thin film, the chemical vapor using an initiator Deposition system.
- 청구항 19에 있어서, The method according to claim 19,상기 수평이동수단은 기판이 직접 안치되어 상기 기판을 상기 제1 증발원 내지 제3 증발원의 위치로 이동시키는 다수의 롤러를 포함하는 컨베이어장치;The horizontal shifting means includes a conveyor apparatus including a plurality of rollers are placed directly to the substrate to move the substrate to the position of the first to third evaporation source;상기 컨베이어장치를 구동시키기 위한 구동장치;A driving device for driving the conveyor device;를 포함하는 것을 특징으로 하는 개시제를 이용하는 화학기상증착시스템. Chemical vapor deposition system using an initiator comprising a.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150081432A KR101767154B1 (en) | 2015-06-09 | 2015-06-09 | Linear Chemical Vapor Deposition System Using Initiator |
KR10-2015-0081432 | 2015-06-09 | ||
KR10-2015-0081431 | 2015-06-09 | ||
KR1020150081431A KR101695230B1 (en) | 2015-06-09 | 2015-06-09 | Chemical Vapor Deposition System Using Initiator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016199980A1 true WO2016199980A1 (en) | 2016-12-15 |
Family
ID=57504164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/009511 WO2016199980A1 (en) | 2015-06-09 | 2015-09-10 | Chemical vapor deposition system using initiator |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016199980A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040011288A1 (en) * | 2002-02-26 | 2004-01-22 | Affinito John D. | Methods and apparatus for vacuum thin film deposition |
US20110045349A1 (en) * | 2009-08-24 | 2011-02-24 | Applied Materials, Inc. | 3d approach on battery and supercapacitor fabrication by initiation chemical vapor deposition techniques |
US20130337615A1 (en) * | 2012-05-25 | 2013-12-19 | Applied Materials, Inc. | Polymer hot-wire chemical vapor deposition in chip scale packaging |
US20140178567A1 (en) * | 2011-08-05 | 2014-06-26 | 3M Innovative Properties Company | Systems and Methods for Processing Vapor |
KR20150004576A (en) * | 2013-07-03 | 2015-01-13 | (주)아이컴포넌트 | A plastic film electrode, method for producing the same, and display article comprising the same |
-
2015
- 2015-09-10 WO PCT/KR2015/009511 patent/WO2016199980A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040011288A1 (en) * | 2002-02-26 | 2004-01-22 | Affinito John D. | Methods and apparatus for vacuum thin film deposition |
US20110045349A1 (en) * | 2009-08-24 | 2011-02-24 | Applied Materials, Inc. | 3d approach on battery and supercapacitor fabrication by initiation chemical vapor deposition techniques |
US20140178567A1 (en) * | 2011-08-05 | 2014-06-26 | 3M Innovative Properties Company | Systems and Methods for Processing Vapor |
US20130337615A1 (en) * | 2012-05-25 | 2013-12-19 | Applied Materials, Inc. | Polymer hot-wire chemical vapor deposition in chip scale packaging |
KR20150004576A (en) * | 2013-07-03 | 2015-01-13 | (주)아이컴포넌트 | A plastic film electrode, method for producing the same, and display article comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013147481A1 (en) | Apparatus and cluster equipment for selective epitaxial growth | |
WO2015057023A1 (en) | Substrate treatment apparatus | |
WO2009102133A2 (en) | Batch-type atomic layer vapour-deposition device | |
WO2014030973A1 (en) | Substrate treatment apparatus and substrate treatment method | |
WO2017073901A1 (en) | Substrate processing apparatus and method for assembling tube assembly | |
WO2015072691A1 (en) | Atomic layer deposition apparatus and method | |
WO2015105284A1 (en) | Substrate processing device | |
WO2013095030A1 (en) | Substrate-processing apparatus and substrate-processing method | |
WO2017052100A1 (en) | Exhaust device of wafer treating apparatus | |
KR102173658B1 (en) | Substrate processing system | |
KR101478151B1 (en) | Atommic layer deposition apparatus | |
US8052887B2 (en) | Substrate processing apparatus | |
KR19980070132A (en) | Plasma processing equipment | |
WO2014157835A1 (en) | Apparatus for processing substrate | |
WO2014157834A1 (en) | Apparatus for processing substrate | |
WO2015156542A1 (en) | Gas spraying apparatus and substrate processing apparatus including same | |
WO2016199980A1 (en) | Chemical vapor deposition system using initiator | |
WO2014046448A1 (en) | Apparatus for treating wafer, comprising wafer purging cassette for removing process gas remaining on wafer | |
WO2013191414A1 (en) | Substrate processing apparatus | |
WO2021206351A1 (en) | Substrate processing device and method | |
WO2015034208A1 (en) | Stacking-type atomic layer deposition device and method therefor | |
WO2018135858A1 (en) | Deposition source and deposition apparatus having the same | |
JPS63109174A (en) | Sheet-fed cvd device | |
WO2015142131A1 (en) | Multi-type deposition apparatus and thin-film forming method using same | |
WO2015083883A1 (en) | Substrate processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15895048 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15895048 Country of ref document: EP Kind code of ref document: A1 |