WO2015166705A1 - 路肩検出システムおよび鉱山用運搬車両 - Google Patents

路肩検出システムおよび鉱山用運搬車両 Download PDF

Info

Publication number
WO2015166705A1
WO2015166705A1 PCT/JP2015/056381 JP2015056381W WO2015166705A1 WO 2015166705 A1 WO2015166705 A1 WO 2015166705A1 JP 2015056381 W JP2015056381 W JP 2015056381W WO 2015166705 A1 WO2015166705 A1 WO 2015166705A1
Authority
WO
WIPO (PCT)
Prior art keywords
road shoulder
road
vehicle
shoulder
unit
Prior art date
Application number
PCT/JP2015/056381
Other languages
English (en)
French (fr)
Inventor
幸彦 小野
渡邊 淳
石本 英史
藤田 浩二
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CA2941987A priority Critical patent/CA2941987C/en
Priority to CN201580010327.XA priority patent/CN106030682B/zh
Priority to EP15786571.8A priority patent/EP3139361B1/en
Priority to US15/124,107 priority patent/US9997075B2/en
Priority to AU2015254491A priority patent/AU2015254491B2/en
Publication of WO2015166705A1 publication Critical patent/WO2015166705A1/ja
Priority to AU2018201164A priority patent/AU2018201164B2/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • G01S17/875Combinations of systems using electromagnetic waves other than radio waves for determining attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser

Definitions

  • the present invention relates to a road shoulder detection system used for a mine transport vehicle used in a mine, for example, and the mine transport vehicle.
  • Patent Document 1 discloses a conventional technique for reducing collision accidents while running a dump truck at high speed.
  • the vehicle travel control device disclosed in Patent Document 1 when no other vehicle is in the vicinity, the vehicle travels on a single traveling course installed near the center of the road. And only when the vehicles need to come close and rub against each other, make a transition to the crushed driving course on the side of the road while reducing the speed, and after passing each other's vehicles, accelerate back to the single driving course and accelerate It is set to return to.
  • the vehicle position measurement by the vehicle position measurement unit may not be acquired by an obstacle such as a cliff.
  • an obstacle such as a cliff.
  • the vehicle position measurement by the vehicle position measurement unit since no consideration is given to dirt during the traveling of other vehicles, the inclination of the vehicle body due to the inclination of the road surface, unevenness of the road surface, etc., the individual traveling course or rubbing from the road shoulder due to such dirt, inclination of the vehicle body or unevenness of the road surface, etc. There is a possibility that the distance to the traveling course cannot be detected, and it is impossible to measure the direction of the vehicle with respect to the road shoulder and the distance from the vehicle to the road shoulder.
  • the present invention has been made from the above-described prior art, and an object thereof is to provide a road shoulder detection system and a mine transport vehicle capable of accurately measuring the direction of the vehicle with respect to the road shoulder and the distance to the road shoulder. It is in.
  • the road surface ahead of the vehicle is scanned in the traveling direction of the vehicle, and a road shoulder detection unit for detecting a road shoulder located on the road surface is detected by the road shoulder detection unit.
  • a road shoulder measuring unit that measures a direction of the vehicle with respect to the road shoulder and a distance to the road shoulder, and two road shoulder detection units are installed on the traveling direction side of the vehicle. .
  • the present invention configured as described above can consider the road shoulder information detected by each of the two road shoulder detection units in combination or
  • the shoulder measurement unit can measure the direction of the vehicle with respect to the shoulder and the distance to the shoulder, so the shoulder measurement unit can accurately measure the direction of the vehicle with respect to the shoulder and the distance to the shoulder.
  • the present invention is the above invention, wherein the two road shoulder detectors linearly scan the distance to the road surface in the traveling direction of the vehicle at a predetermined angle with each of the road shoulder detectors as a center.
  • the scanning line on the road surface by one of the road shoulder detection units and the scanning line on the road surface by the other road shoulder detection unit are installed so as to intersect each other.
  • the scanning line on the road surface by one road shoulder detection unit of the road shoulder detection unit that linearly scans the distance to the road surface ahead of the traveling direction of the vehicle for each predetermined angle, and the other The scanning line on the road surface by the road shoulder detection unit is crossed.
  • the distance between the road shoulder detection point detected by one road shoulder detection unit and the road shoulder detection point detected by the other road shoulder detection unit is small, Since the position and orientation of the shoulder at this small distance are detected, it is possible to detect the shoulder more accurately.
  • the distance between the road shoulder detection point detected by one road shoulder detection unit and the road shoulder detection point detected by the other road shoulder detection unit increases.
  • the road shoulder can be detected over a wider range (see, for example, FIG. 10). Therefore, appropriate road shoulder detection according to the distance from the vehicle to the road shoulder is possible, and more appropriate autonomous traveling control is possible.
  • the present invention further includes a storage unit that stores a shoulder shape of a traveling road on which the vehicle travels as a reference shoulder shape, and the shoulder measurement unit is one of the two shoulder detection units.
  • a comparison unit that compares the road shoulder shape detected by the detection unit and the reference road shoulder shape stored in the storage unit, and based on the comparison in the comparison unit, the orientation of the vehicle with respect to the road shoulder, It is characterized by measuring the distance to the shoulder.
  • the present invention configured as described above measures the direction of the vehicle with respect to the road shoulder and the distance to the road shoulder in the road shoulder measurement unit while taking into account the reference road shoulder shape stored in the storage unit.
  • the measurement accuracy of the direction of the vehicle with respect to the distance to the road shoulder can be further improved.
  • the present invention is characterized in that, in the above-mentioned invention, the vehicle has wheels, and the two road shoulder detection portions are attached to the vehicle and are installed at a position higher than the upper end of the wheels.
  • the road shoulder can be detected by each road shoulder detection unit from a position higher than the upper end of the wheel. Therefore, it is possible to more reliably detect the road shoulder by these road shoulder detection units without being affected by dust or the like.
  • the two road shoulder measurement units may be configured such that an intersection of a scanning line on the road surface by the road shoulder detection unit and a scanning line on the shoulder slope by the road shoulder detection unit is a road shoulder measurement point. It is characterized by doing.
  • the width of the road shoulder is considered based on the shoulder shape information.
  • the intersection of the scan line on the road surface by the shoulder detection unit and the scan line on the shoulder slope by the shoulder detection unit is defined as the shoulder measurement point.
  • the shoulder measurement unit may be configured such that the two shoulder measurement points detected by the two shoulder detection units are relative to the vehicle and the reference shoulder shape stored in the storage unit. Based on this, the direction of the vehicle with respect to the road shoulder and the distance to the road shoulder are measured.
  • the present invention configured as described above is based on the reference road shoulder shape stored in the storage unit, taking into account the relative position of the road shoulder measurement point by the two road shoulder detection units with respect to the vehicle, By measuring the distance, the direction of the vehicle with respect to the road shoulder and the distance to the road shoulder can be measured with higher accuracy by the road shoulder measurement unit.
  • the present invention also provides a vehicle main body, a road shoulder detection unit for detecting a road shoulder located on the road surface by scanning a road surface ahead of the vehicle main body with respect to a traveling direction of the vehicle main body, and the road shoulder detection.
  • a road shoulder measuring unit that measures the orientation of the vehicle main body with respect to the road shoulder detected by a section and a distance to the road shoulder, and two road shoulder detection units are installed on the traveling direction side of the vehicle main body. It is characterized by being.
  • the direction of the vehicle main body with respect to the road shoulder detected by each of the two road shoulder detection units and the distance to the road shoulder are compared with the case where the road shoulder is detected by one road shoulder detection unit.
  • the direction of the vehicle main body with respect to the road shoulder and the distance to the road shoulder can be accurately measured by the road shoulder measuring unit.
  • the present invention also provides a road shoulder detection unit for detecting a road shoulder located on the road surface by scanning a road surface ahead of the vehicle with respect to the traveling direction of the vehicle, and a scanning direction for the road surface by the road shoulder detection unit.
  • a scanning direction changing unit for changing the position, a road shoulder measuring unit for measuring the direction of the vehicle with respect to the road shoulder detected by the road shoulder detecting unit, and a distance to the road shoulder, and for detecting a traveling speed of the vehicle
  • a speed detection unit and a control unit that controls the scanning direction change unit, wherein two road shoulder detection units are installed on a traveling direction side of the vehicle, and the scanning direction change unit includes the two road shoulder detection units.
  • Each of the two shoulder detection units is configured to linearly scan the distance to the road surface in the traveling direction of the vehicle at predetermined angles with the respective shoulder detection units as the center,
  • the road The scanning line on the road surface by the detection unit and the scanning line on the road surface by the other shoulder detection unit are installed so as to intersect, and the control unit determines the traveling speed of the vehicle detected by the speed detection unit.
  • the scanning direction changing unit is controlled to move the intersection position of the scanning line on the road surface by the one shoulder detection unit and the scanning line on the road surface by the other road shoulder detection unit in the front-rear direction. It is characterized by.
  • the traveling speed of the vehicle When the traveling speed of the vehicle is high, it is a case where the vehicle is traveling on a flat road surface or the like, and detection of the shoulder over a wider range in front of the traveling direction is required rather than the position and orientation of the shoulder near the vehicle.
  • the vehicle traveling speed is low, for example, when traveling on a place where it is necessary to suppress the traveling speed, such as a curve, a slope, or an uneven road surface, the position and orientation of the shoulder near the vehicle are accurately detected. Therefore, it is necessary to appropriately prevent contact with the road shoulder. Therefore, in the present invention, for example, when the traveling speed of the vehicle detected by the speed detection unit is high, the control unit controls the scanning direction changing unit, and the scanning line on the road surface by one road shoulder detection unit.
  • the shoulder detection point detected by one shoulder detection unit and the shoulder detected by the other shoulder detection unit by moving the position of the intersection with the scanning line on the road surface by the other shoulder detection unit to the front side.
  • the distance between the detection points can be increased, and the road shoulder can be detected over a wider range (see, for example, FIG. 17).
  • the control unit controls the scanning direction changing unit, and the scanning line on the road surface by one road shoulder detection unit and the other road shoulder By moving the position of the intersection with the scanning line on the road surface by the detection unit to the rear side, the road shoulder detection point detected by one road shoulder detection unit and the road shoulder detection point detected by the other road shoulder detection unit The distance between them can be reduced, and more accurate road shoulder detection is possible. Therefore, appropriate road shoulder detection according to the traveling speed of the vehicle is possible, and more appropriate autonomous traveling control is possible.
  • the road surface is scanned by each of the two road shoulder detection units installed on the traveling direction side of the vehicle, and the road shoulders located on the road surface are respectively detected by these two road shoulder detection units.
  • the present invention can consider the road shoulder information detected by each of the two road shoulder detection units in a composite manner or mutually complement these road shoulder information as compared with the case where the road shoulder is detected by one road shoulder detection unit.
  • the road shoulder measurement unit can measure the direction of the vehicle with respect to the road shoulder and the distance to the road shoulder. Therefore, the road shoulder measurement unit can accurately measure the vehicle direction with respect to the road shoulder and the distance to the road shoulder.
  • road shoulder detection from the vehicle can be performed with higher accuracy, and for example, the vehicle can autonomously travel more appropriately and accurately.
  • It is a figure which shows the road shoulder detection by the road shoulder detection part of the said mine transport vehicle (a) is a schematic perspective view which shows the scanning state at the time of road shoulder detection,
  • (b) is a graph which shows the road shoulder detection position P.
  • FIG. 1 is a schematic view showing a road shoulder detection system 100 according to the first embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing an off-road dump truck that is a vehicle 1 as a mine transport vehicle used in the road shoulder detection system 100.
  • FIG. 3 is a schematic plan view showing the scanning direction of the road shoulder detection units 2 a and 2 b of the vehicle 1.
  • FIG. 4 is a schematic perspective view showing the road shoulder detection unit 2 a of the vehicle 1.
  • the vehicle 1 is an unmanned traveling type capable of traveling by autonomous driving on a road surface A such as a traveling path provided in advance in a mine.
  • a road shoulder B that is an object to be detected is provided along the road surface A.
  • the road shoulder B is an embankment that is provided at least on the side where the vehicle 1 travels, for example, on the left side in the traveling direction, and has a structure having predetermined height and width dimensions, and is separated from the traveling position of the vehicle 1 by, for example, about 30 m.
  • the mine is provided with a traffic control center 200 having a traffic control system for transmitting and receiving predetermined information to and from the vehicle 1, and loads such as earth and sand are loaded on the vehicle 1.
  • a hydraulic excavator (not shown) for loading is used.
  • the vehicle 1 includes a vehicle main body 1a, a driver seat 1b provided on the upper front side of the vehicle main body 1a, and a vessel 1c as a working portion provided on the vehicle main body 1a so as to be undulated,
  • the vehicle body 1a is configured to include left and right front wheels 1d and a rear wheel 1e that support the vehicle body 1a so as to be able to travel.
  • the front wheel 1d is a driven wheel
  • the rear wheel 1e is a drive wheel.
  • the driver's seat 1b is installed on a substantially flat upper deck 1f for an operator to get into the driver's seat.
  • the upper deck 1f is provided above the upper end of the front wheel 1d so as to cover the front wheel 1d.
  • the upper deck 1f is provided on the front side of the vehicle main body 1a, and has a size over the entire width direction of the vehicle main body 1a.
  • a pair of buildings 1g are provided at a predetermined interval in a central portion below the upper deck 1f, and a heat exchange device 1h such as a radiator is installed between the buildings 1g.
  • the air cleaner 1i is attached to the outside of the pair of buildings 1g. Each air cleaner 1i is attached to a corner below the upper deck 1f and partitioned by the upper deck 1f and the building 1g. A cylindrical filter element 1j for capturing dust in the air is attached to each air cleaner 1i. Each filter element 1j is attached to each air cleaner 1i in a state in which one end side protrudes forward from the front end portion of the upper deck 1f.
  • each building 1g there are a total of two shoulder detection units 2a, 2b for detecting the relative position of a part of the shoulder B existing on one side of the traveling direction M of the vehicle body 1a, for example, on the left side in the traveling direction. Each is attached.
  • the road shoulder detection units 2a and 2b scan the road surface ahead of the vehicle body 1a with respect to the traveling direction M of the vehicle body 1a.
  • These road shoulder detection parts 2a and 2b are attached to the lower side of the upper deck 1f and on an air cleaner 1i partitioned by the upper deck 1f and the building 1g. That is, these road shoulder detection units 2a and 2b are provided in the scanning surfaces 40a and 40b when the road shoulder B is detected by these road shoulder detection units 2a and 2b.
  • each road shoulder detection part 2a, 2b is a position higher than the upper end part of the front wheel 1d, Comprising: It is installed in the front side right and left which are the running direction side of the vehicle main body 1a in the same height position. Specifically, each of the road shoulder detection units 2a and 2b is installed at a height of about 4 m from the lower end of the front wheel 1d, for example. You may install these road shoulder detection parts 2a and 2b in a different height position.
  • the road shoulder detectors 2a and 2b irradiate laser beams at predetermined angles around the respective road shoulder detectors 2a and 2b, scan the road surface A in a fan shape, and scan to the target by reflected light from the object.
  • a laser scanner or the like that can measure the distance and direction of the laser.
  • FIG. 4 shows a configuration in which the road shoulder detection unit 2a includes a detection window 2c.
  • each of the road shoulder detection units 2a and 2b has the longitudinal direction of the detection windows 2c and 2d obliquely downward while keeping the longitudinal direction of the detection windows 2c and 2d along the left and right direction of the vehicle body 1a. It is attached as a state facing.
  • the road shoulder detection system 100 includes a road shoulder detection device 21 for measuring the orientation of the vehicle body 1a with respect to the road shoulder B and the distance to the road shoulder B, and a self-position measurement device for measuring the position and posture of the vehicle body 1a. 22, a communication device for performing communication between the vehicle body motion control device 23 that changes the distance and speed from the shoulder B of the vehicle main body 1 a due to the road width of the road surface and the presence of an oncoming vehicle, and the traffic control center 200. 24.
  • the road shoulder detection device 21 is a road shoulder measurement unit that measures the direction of the vehicle body 1a relative to the road shoulder B and the distance to the road shoulder B based on the measurement results of the road shoulder detection units 2a and 2b and the road shoulder detection units 2a and 2b.
  • a certain shoulder measurement device 21a and a shoulder position in the external coordinate system around the road surface A that is, a shoulder road data relating to a shoulder shape of a straight shoulder or a curved shoulder or the shape of the shoulder itself are stored as a reference shoulder shape.
  • a shoulder storage unit 21b as a storage unit.
  • Each road shoulder detection unit 2a, 2b is connected to a road shoulder measurement device 21a, and the road shoulder measurement device 21a is connected to a road shoulder storage unit 21b.
  • the road shoulder detectors 2a and 2b are crossed as scanning lines that are straight lines formed by measurement points on the road surface A to which the laser beams emitted from the respective road shoulder detectors 2a and 2b reach.
  • the lines L1a and L1b are set along the width direction (road width direction) of the road surface A, and the intersecting lines L1a and L1b formed by the measurement points on the road surface A by the road shoulder detection units 2a and 2b are set to be parallel to each other. ing.
  • the road shoulder detection units 2a and 2b change the irradiation directions 41a and 41b of the laser beams from the respective road shoulder detection units 2a and 2b by a predetermined angle, for example, every 0.25 degrees, and perform measurement on the road surface A.
  • the points are scanned, and the distance to the road surface A for each predetermined angle is measured on the scan surfaces 40a and 40b, which are the scanning surfaces of the laser light by the respective shoulder detection units 2a and 2b. That is, each road shoulder detection unit 2a, 2b has, for example, an angle resolution of 0.25 degrees, and the interval between measurement points at a point 30 m away is 1 m.
  • the road shoulder measuring device 21a includes a comparison unit 21c that compares the road shoulder information detected by the respective road shoulder detection units 2a and 2b and road shoulder data stored in the road shoulder storage unit 21b, for comparison in the comparison unit 21c. Based on the road shoulder B, the direction of the vehicle body 1 and the distance to the road shoulder B are measured.
  • the self-position measuring device 22 is a steering angle of a wheel speed measuring unit 22a for measuring, for example, the rotational speed of the front wheel 1d of the vehicle main body 1 and a handle (not shown) provided on the driver's seat 1b of the vehicle main body 1a.
  • the vehicle body 1a travel speed, front wheel 1d based on the rotation angle result measured by the steering angle measurement unit 22b and the wheel speed measurement unit 22a and the steering angle result measured by the steering angle measurement unit 22b.
  • a self-position calculating device 22c for calculating the position and orientation of the vehicle main body 1a in a coordinate system fixed to the ground.
  • the wheel speed measurement unit 22a is a speed detection unit for detecting the traveling speed of the vehicle 1 and is, for example, a rotation speed sensor for detecting the rotation speed of the front wheel 1d.
  • the steering angle measurement unit 22b is a displacement sensor or the like that can detect the steering angle of the steering wheel.
  • the self-position measuring device 22 includes a self-position correcting device 22d for correcting the self-position of the vehicle main body 1a.
  • the self-position correcting device 22d is for measuring the position and posture of the vehicle body 1a with higher accuracy, and is configured by, for example, an inertial measurement device (IMU: Inertial Measurement Unit) or GPS (Global Positioning System). ing.
  • IMU Inertial Measurement Unit
  • GPS Global Positioning System
  • the vehicle body motion control device 23 includes a braking device 23a for reducing or stopping the traveling speed of the vehicle main body 1a, and a drive torque limiting device 23b for limiting a rotational torque command value for the rear wheel 1e of the vehicle 1.
  • a steering control device 23c for changing the distance from the shoulder B of the vehicle body 1a, a data storage unit 23d in which map data such as the route of the traveling road, the road width of the road surface A, and oncoming vehicle information is stored;
  • a vehicle control device 23e for calculating a braking amount by the braking device 23a, a limiting amount by the driving torque limiting device 23b, and a control amount by the steering control device 23c is provided.
  • the vehicle control device 23e is based on the map data stored in the data storage unit 23d, and the amount of braking by the braking device 23a and the driving torque limiting device are intended to limit the distance to the road shoulder B and the traveling speed of the vehicle body 1a. It is a control part which calculates the amount of control by 23b, and the amount of control by steering control device 23c.
  • the braking device 23a is a mechanical brake having a mechanical structure such as a disc brake for braking the rotation of the rear wheel 1e.
  • the drive torque limiting device 23b is, for example, a retarder brake such as an electric brake that applies an electrical resistance to braking of the rotation of the rear wheel 1e.
  • map data stored in the data storage unit 23d road shoulder information such as a road shoulder shape provided on the side of the traveling road is also stored. Map data stored in the data storage unit 23d, self-position information calculated by the self-position calculating device 22c, and road shoulder information measured by the road shoulder measuring device 21a are input to the vehicle control device 23e.
  • the vehicle control device 23e is connected to each of the braking device 23a, the driving torque braking device 23b, and the steering control device 23c.
  • the communication device 24 is connected to the self-position calculating device 22c, and transmits the self-position information of the vehicle 1 calculated by the self-position calculating device 22c to the traffic control center.
  • the communication device 24 is connected to the road shoulder storage unit 21b and the data storage unit 23d, and the road shoulder position data stored in the road shoulder storage unit 21b and the map data stored in the data storage unit 23d are transmitted via the communication device 24. Output.
  • the traffic control center 200 includes a communication device 31 for transmitting and receiving information to and from the communication device 24 mounted on the vehicle 1, and a road shoulder data storage unit 32 in which a road shoulder shape map such as a road shoulder shape of a traveling road is stored.
  • a road shoulder shape comparison device 33 as a comparison unit that compares road shoulder shape information transmitted from the communication device 24 of the vehicle 1 to the communication device 31 and a road shoulder shape memory stored in the road shoulder data storage unit 32;
  • a change data storage unit 34 is provided for storing road shoulder shape change information in the road shoulder shape information.
  • FIGS. 5A and 5B are diagrams showing road shoulder detection by the road shoulder detection units 2a and 2b of the vehicle 1.
  • FIG. 5A is a schematic perspective view showing a scan state at the time of road shoulder detection
  • FIG. 5B is a graph showing a road shoulder detection position P. It is.
  • FIG. 5A shows a state where the vehicle 1 is traveling while detecting the shoulder B on the traveling road
  • the broken lines in FIG. 5A indicate the shoulder detection units 2a and 2b and the shoulder.
  • required with the measuring apparatus 21a is shown.
  • the road shoulder B does not necessarily exist only on one side of the vehicle 1 as shown in FIG. 5, and may exist on both sides of the vehicle 1. Further, as shown in FIG. This slope is also the shoulder B.
  • FIG. 6 is a flowchart showing a road shoulder detection process by the vehicle 1.
  • the road surface A and the road shoulder B are detected by the left and right road shoulder detection units 2a and 2b, and the distance measurement data of the road surface A and the road shoulder B are acquired by the road shoulder detection units 2a and 2b (step S1, hereinafter simply “ S1 "etc.).
  • step S1 hereinafter simply “S1 "etc.”.
  • the scanning surfaces 40a, 40b and the road surface A by the respective shoulder detection units 2a, 2b intersect each other.
  • the intersection line L1 (L1a, L1b) is calculated by the shoulder measurement device 21a (S2).
  • intersection line L2 (L2a, L2b) is calculated by the road shoulder measuring device 21a (S3).
  • the road shoulder measuring device 21a sets the intersection of the intersection lines L1a and L1b calculated in S2 and the intersection lines L2a and L2b calculated in S3 as a road shoulder detection point P (Pa, Pb) (S4). . That is, as shown in FIG. 5A, a point where the intersection line L1a and the intersection line L2a intersect is a road shoulder detection point Pa, and a point where the intersection line L1b and the intersection line L2b intersect is a road shoulder detection point Pb. .
  • the road shoulder shape in the road shoulder data referring to the road shoulder data stored in the road shoulder storage unit 21b, the road shoulder shape in the road shoulder data, the self-position of the vehicle 1 based on the distance measurement data detected by the road shoulder detection units 2a and 2b, the road shoulder The detection points Pa and Pb are compared, and the road shoulder shape, self-position and the relative positional relationship between the road shoulder detection points Pa and Pb, that is, the relative position of the road shoulder detection points Pa and Pb with respect to the vehicle 1, with respect to the road shoulder B of the vehicle 1.
  • the direction ⁇ and the distance D to the shoulder B are calculated by the shoulder measuring device 21a (S5).
  • the current position of the vehicle 1 is estimated based on, for example, GPS, or based on the rotation speed result measured by the wheel speed measurement unit 22a and the steering angle result measured by the steering angle measurement unit 22b.
  • the traveling speed of the vehicle 1 corrected by the self-position correcting device 22d, the angular velocity of the front wheel 1d, and the position and posture of the vehicle 1 in a coordinate system fixed to the ground are calculated and estimated by the self-position calculating device 22c. is doing.
  • FIG. 7 is a flowchart showing an autonomous traveling process by the vehicle 1.
  • the self-position information of the vehicle 1 measured by the self-position measuring device 22 is acquired by the vehicle control device 23e of the vehicle body motion control device 23 (S11).
  • the vehicle control device 23e of the vehicle body motion control device 23 Next, referring to the map data stored in the data storage unit 23d, based on the road width information of the road surface A in the map data and the self-position information acquired in S11, the direction to the road shoulder B, and the road shoulder The distance to B is acquired (S12).
  • the vehicle control device 23e acquires information on the direction ⁇ of the vehicle 1 with respect to the shoulder B measured by the shoulder measurement device 21a of the shoulder detection device 21 and the distance D from the vehicle 1 to the shoulder B (S13). ). Then, the direction and distance acquired in S12 and the direction ⁇ and distance D acquired in S13 are compared by the vehicle control device 23e, and the calculated direction ⁇ and distance D are calculated by the self-position calculating device 22c. It is determined whether it is equal to the direction and the distance (S14).
  • the vehicle control device 23e controls the braking device 23a and the drive torque limiting device 23b to stop the vehicle 1 (S15).
  • the map data stored in the data storage unit 23d is acquired. (S16).
  • the vehicle control device 23e compares the route information of the travel route in the acquired map data with the own position acquired in S11, and based on the deviation between the route information and the own position, the vehicle control device. In 23e, the steering control device 23c, the drive torque limiting device 23b, and the like are appropriately controlled to control the traveling position of the vehicle 1 to a predetermined traveling position (S17).
  • the road shoulder detection units 2a and 2b are installed on the left and right of the vehicle main body 1a in the traveling direction, respectively, and the total of these two road shoulder detection units 2a and 2b. In each case, the distance to the shoulder B on the left in the traveling direction is detected. Based on the detection information detected by these two road shoulder detection units 2a and 2b, the direction of the vehicle 1 with respect to the road shoulder B and the distance from the vehicle 1 to the road shoulder B are measured by the road shoulder measuring device 21a. It is configured.
  • the detection information detected by the single road shoulder detection unit is used. Compared to the detection information detected by the two road shoulder detection units 2a and 2b, the detection information detected by the two road shoulder detection units 2a and 2b can be considered in a complex manner or mutually complemented. Since correction using two pieces of detection information is possible, the measurement accuracy of the direction of the vehicle 1 with respect to the road shoulder B and the distance to the road shoulder B by the road shoulder measurement device 21a can be improved. And since the measurement precision by the road shoulder measuring device 21a can be improved, the road shoulder detection from the vehicle 1 can be performed more accurately, and the autonomous traveling of the vehicle 1 by the vehicle control device 23e of the vehicle body motion control device 23 can be performed more appropriately and accurately.
  • the road shoulder data stored in the road shoulder storage unit 21b is referred to, and the vehicle based on the road shoulder shape in the road shoulder data and the distance measurement data detected by the road shoulder detection units 2a and 2b. 1 is compared with the road shoulder detection points Pa and Pb by the comparator 21c. From the road shoulder shape, the self position, and the relative positional relationship between the road shoulder detection points Pa and Pb, the direction ⁇ of the vehicle 1 with respect to the road shoulder B The distance D to the road shoulder B is calculated by the road shoulder measuring device 21a.
  • the road shoulder measuring device 21a based on the road shoulder shape in the road shoulder data stored in the road shoulder storage unit 21b while considering the relative positions of the road shoulder detection points Pa and Pb with respect to the vehicle 1 by the two road shoulder detection units 2a and 2b, the road shoulder measuring device 21a. Since the direction of the vehicle 1 with respect to the road shoulder B and the distance to the road shoulder B are measured, the measurement of the direction of the vehicle 1 with respect to the road shoulder B and the distance to the road shoulder B by the road shoulder measuring device 21a can be performed with higher accuracy.
  • intersecting lines L1a and L1b intersecting the road surface A with the scan surfaces 40a and 40b by the road shoulder detection units 2a and 2b, and the inclined surfaces B1 of the scan surfaces 40a and 40b and the road shoulder B by the road shoulder detection units 2a and 2b.
  • the intersections with the intersection lines L2a and L2b are defined as road shoulder detection points Pa and Pb.
  • the road shoulder detection points Pa and Pb can be measured and calculated, for example, in addition to the intersection lines L1a and L1b and the intersection lines L2a and L2b, the width dimension of the road shoulder B is taken into account, and the center position in the width direction of the road shoulder B is detected.
  • the process of measuring the distance to the shoulder B by the shoulder measurement device 21a can be facilitated, and the orientation of the vehicle 1 with respect to the shoulder B by the shoulder measurement device 21a can be measured with higher accuracy.
  • FIG. 8 is a diagram illustrating the action associated with the mounting position of the road shoulder detection units 2a and 2b of the vehicle 1.
  • FIG. 8A shows the road shoulder detection units 2a and 2b mounted at a position lower than the height position of the front wheel 1d.
  • (B) is a situation diagram when road shoulder detectors 2a and 2b are attached at a position higher than the height position of front wheel 1d. That is, in the case where the travel path is dry soil, when the vehicle 1 travels on this travel path, the dust E rises due to the rotation of the front wheel 1d or the rear wheel 1e of the vehicle 1, and as shown in FIG. There is a risk that the dust E lifted by the oncoming vehicle F drifts between the vehicle 1 and the road shoulder B.
  • the dust E that has risen on the road surface A of the traveling road is suppressed while the frequency of the dust E adhering to the detection windows 2c and 2d of the road shoulder detection units 2a and 2b is suppressed.
  • the road shoulder detection portions 2a and 2b are installed at a position higher than the upper end portion of the front wheel 1d of the vehicle 1 so that the distance from above E to the road shoulder B can be detected.
  • road shoulder detectors 2a and 2b are installed on an air cleaner 1i that is easily accessible from the upper deck 1f, that is, below the upper deck 1f and partitioned by the upper deck 1f and the building 1g. Therefore, the road shoulder detectors 2a and 2b can be inspected from the upper deck 1f, and the maintainability of these road shoulder detectors 2a and 2b is ensured.
  • a total of two road shoulder detectors 2a and 2b are installed at equal height positions, and the detection results of these two road shoulder detectors 2a and 2b are made symmetrical.
  • the difference in resolution on the road surface A by the two road shoulder detection units 2a and 2b can be eliminated. Detection errors due to the detection units 2a and 2b can be reduced.
  • FIG. 9 is a schematic configuration diagram showing a vehicle 1 according to the second embodiment of the invention.
  • FIG. 10 is a schematic plan view showing the scanning directions 40a and 40b of the road shoulder detection units 2a and 2b of the vehicle 1.
  • FIG. 11 is a schematic perspective view showing a scan state when the road shoulder is detected by the road shoulder detectors 2a and 2b of the vehicle 1.
  • FIG. The second embodiment is different from the first embodiment described above in that the first embodiment is such that the intersecting lines L1a and L1b formed by the measurement points on the road surface A by the road shoulder detection units 2a and 2b are parallel to each other. In contrast, in the second embodiment, the intersection lines L1a and L1b are set to intersect.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals.
  • the scanning surfaces 40a and 40b of the road shoulder detection units 2a and 2b are configured to measure the distance at every fixed angle, the detection interval for detecting the distance to the road shoulder B increases as the road shoulder B moves away from the vehicle 1. growing. Therefore, in the vehicle 1 according to the second embodiment, the intersecting lines L1a and L1b formed by the measurement points on the road surface A by the shoulder detection units 2a and 2b intersect at the vehicle 1 front position. Therefore, in the second embodiment, as shown in FIG. 9, road shoulder detection units 2 a and 2 b are installed on both side edges in the width direction on the front end side of the upper deck 1 f, as shown in FIGS. 9 and 10.
  • the scanning directions of these shoulder detection units 2a and 2b are set so as to pass through the vehicle 1 and to be positioned in front of the vehicle 1 in the traveling direction.
  • the distance D from the vehicle 1 to the road shoulder B is relatively short (the road shoulder B1 indicated by the broken line in FIG. 10)
  • the distance D1 from the vehicle 1 to the road shoulder B1 is small, and the vehicle 1 is in contact with the road shoulder B1. Therefore, it is necessary to detect the position and orientation of the road shoulder B1 with high accuracy at the proximity position in front of the vehicle 1.
  • the distance D from the vehicle 1 to the road shoulder B is relatively long (the road shoulder B2 indicated by the solid line in FIG. 10)
  • the distance D2 from the vehicle 1 to the road shoulder B2 is large, and the vehicle 1 contacts the road shoulder B2. Since the possibility is low, it is required to detect the position and orientation of the shoulder B2 over a wider range than the detection accuracy.
  • the distance W2 between the road shoulder detection point Pa2 detected by the road shoulder detection unit 2a and the road shoulder detection point Pb2 detected by the road shoulder detection unit 2b increases.
  • the direction ⁇ of the vehicle 1 relative to the road shoulder B2 can be measured in consideration of the direction ⁇ of the road shoulder B2 between the road shoulder detection points Pa2 and Pb2 away from the road shoulder B2 in the traveling direction, and the road shoulder detection considering the road shoulder B2 over a wider range. Is possible. Therefore, appropriate road shoulder detection according to the distance D from the vehicle 1 to the road shoulder B is possible, and more appropriate autonomous traveling control of the vehicle 1 is possible.
  • FIG. 12 is a schematic plan view showing the scanning direction of the road shoulder detection units 2a and 2b of the vehicle 1 according to the third embodiment of the present invention.
  • the third embodiment differs from the second embodiment described above in that the second embodiment is such that the intersection lines L1a and L1b formed by the measurement points on the road surface A by the road shoulder detection units 2a and 2b are center positions in front of the vehicle 1.
  • the intersection lines L1a and L1b are set so as to intersect at a position closer to the road shoulder B side than the center position in front of the vehicle 1.
  • the same or corresponding parts as those in the second embodiment are denoted by the same reference numerals.
  • L1b when the vehicle 1 is traveling on the road surface A, for example, when the vehicle is on the left side, these road shoulder detectors are positioned so as to be closer to the left side than the center position in the width direction of the vehicle 1. Scan directions 2a and 2b are set. Further, the intersection G1 is set so as to be inside the both side portions of the vehicle body 1a, specifically, within the range C between the road shoulder detection portions 2a and 2b, and closer to the road shoulder B located on the traveling side. Has been.
  • the intersection lines L1a and L1b formed by the measurement points on the road surface A by the road shoulder detection units 2a and 2b are within the interval C between the road shoulder detection units 2a and 2b, and this vehicle 1
  • the scan direction of the road shoulder detection units 2a and 2b is set so as to intersect at a position closer to the road shoulder B on the traveling side than the center position on the front side. That is, since the measurement points on the road surface A by the road shoulder detection units 2a and 2b cannot be within the interval C between the road shoulder detection units 2a and 2b, the intersection G1 of the intersection lines L1a and L1b is the road shoulder detection units 2a and 2b.
  • the measurement point on the road surface A by the road shoulder detection units 2a and 2b that is, the scanning direction is brought closer to the road shoulder B to be detected, thereby detecting the road shoulder detection point Pa by the road shoulder detection unit 2a.
  • the shoulder detection point Pb by the shoulder detection unit 2b can be reduced, and the position and orientation of the shoulder B at the small distance W can be detected. It can be detected with high accuracy.
  • the intersection G1 closer to the shoulder B, it is possible to narrow the scanning range by the respective shoulder detection units 2a, 2b, and to narrow the scanning angle and scanning range by these shoulder detection units 2a, 2b. Is also possible.
  • FIG. 13 is a schematic diagram showing a road shoulder detection system according to the fourth embodiment of the present invention.
  • the fourth embodiment differs from the first embodiment described above in that the first embodiment transmits road shoulder shape information measured by one vehicle 1 to the control center 200, whereas the fourth embodiment. Sequentially transmits road shoulder shape information measured by the plurality of vehicles 1, 1 a to 1 c to the traffic control center 200.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals.
  • a self-position measurement device 22 is mounted on each vehicle 1, and the vehicle with respect to the measured road shoulder B Information about the direction ⁇ of the vehicle 1 and the distance D from the vehicle 1 to the road shoulder B, and road shoulder shape information such as detected position information in the external coordinate system of the road shoulder detection points Pa and Pb via the communication device 24. It is transmitted to 200 communication devices 31.
  • the other vehicles 1a to 1c are provided with a road shoulder detection device 21, a self-position measuring device 22, a vehicle body motion control device 23, and a communication device 24, and road shoulder shape information measured by these vehicles 1a to 1c is communicated. It is transmitted to the traffic control center 200 via the device 24.
  • the traffic control center 200 compares the road shoulder shape information transmitted from each of the vehicles 1, 1 a to 1 c with the road shoulder shape map stored in the road shoulder data storage unit 32 and the road shoulder shape comparison device 33, and the road shoulder shape comparison device. If the road shoulder shape information is different from the road shoulder shape map by comparison in 33, the road shoulder shape change information of the road shoulder shape information is stored in the change data storage unit 34.
  • each vehicle 1, 1a is provided by including the road shoulder detection device 21, the self-position measurement device 22, the vehicle body motion control device 23, and the communication device 24 in each vehicle 1, 1a to 1c.
  • the road shoulder shape change information which is different from the road shoulder shape map stored in the road shoulder data storage unit 32 is stored in the change data storage unit 34, and the road shoulder shape map is stored. Can be updated sequentially.
  • FIG. 14 is a schematic view showing a road shoulder detection system 100 according to the fifth embodiment of the present invention.
  • the fifth embodiment differs from the fourth embodiment described above in that the fourth embodiment transmits road shoulder shape information measured by the vehicle 1 to the traffic control center 200, whereas the fifth embodiment The measured road shoulder shape information is used in the vehicle 1 without being sent to the traffic control center 200.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals.
  • each of the road shoulder detection device 21, the self-position measurement device 22, and the vehicle body motion control device 23 constituting the other road shoulder detection system 100 except the communication device 24 is a vehicle. 1 is installed. Then, when the orientation ⁇ of the vehicle body 1 with respect to the shoulder B calculated by the shoulder measurement device 21a and the distance D from the vehicle body 1 to the shoulder B continuously change within a predetermined range, the shoulder measurement device 21a The detected positions of the road shoulder detection points Pa and Pb in the external coordinate system are compared with the road shoulder data stored in the road shoulder storage unit 21b, and the road shoulder data is updated if they are different.
  • the vehicle control device 23e determines that the travel position of the vehicle 1 is a predetermined travel range based on the orientation ⁇ of the vehicle body 1 with respect to the shoulder B calculated by the shoulder measurement device 21a and the distance D from the vehicle body 1 to the shoulder B.
  • the drive torque limiting device 23b and the steering control device 23c are appropriately controlled so that the travel position of the vehicle 1 is within the predetermined travel range.
  • an alarm device (not shown) provided in the driver's seat 1b It is good also as a structure which gives a warning by a sound, light, etc. to an operator.
  • the direction ⁇ of the vehicle body 1 with respect to the road shoulder B calculated by the road shoulder measurement device 21a and the distance D from the vehicle body 1 to the road shoulder B continuously change within a predetermined range.
  • the shoulder detection points Pa and Pb obtained by the shoulder measurement device 21a in the external coordinate system are compared with the shoulder data stored in the shoulder storage unit 21b. Update.
  • the vehicle control device 23a of the vehicle 1 controls the travel position of the vehicle 1. Therefore, the autonomous traveling control of the vehicle 1 by the vehicle control device 23e can be made more appropriate and accurate.
  • FIG. 15 is a schematic diagram illustrating a state of a road shoulder detection unit when the vehicle 1 according to the sixth embodiment of the present invention travels at a low speed, where (a) is an overall view of the vehicle 1 and (b) is a view of the road shoulder detection unit 2a. It is a partial enlarged view.
  • FIG. 16 is a schematic diagram illustrating a state of the road shoulder detection unit 2a when the vehicle 1 travels at a high speed, where (a) is an overall view of the vehicle 1 and (b) is a partial enlarged view of the road shoulder detection unit 2a.
  • FIG. 17 is a schematic plan view illustrating the scanning direction of the road shoulder detection units 2 a and 2 b of the vehicle 1. In FIG. 15A and FIG. 16A, the description of the road shoulder detection unit 2b is omitted.
  • the sixth embodiment is different from the second embodiment described above.
  • the road shoulder detectors 2a and 2b are fixed to the upper deck 1f, and the scan directions of these road shoulder detectors 2a and 2b are fixed.
  • the sixth embodiment is movable so that the scanning direction of these shoulder detection units 2a and 2b can be changed.
  • the same or corresponding parts as those in the second embodiment are denoted by the same reference numerals.
  • a shaft inclined member 2e having a triangular shape in side view is attached to the upper side of the front corner of the upper deck 1f.
  • the shaft inclined member 2e has an inclined surface 2f inclined downward from the front side to the rear side of the upper deck 1f.
  • a drive mechanism 2g is attached as a scanning direction changing unit that changes the scanning direction with respect to the road surface A by the road shoulder detecting unit 2a.
  • the drive mechanism 2g is formed in a substantially flat plate shape, and a flat plate-like support 2h fixed to the road shoulder detection unit 2a is attached on the upper surface of the drive mechanism 2g.
  • the support 2h is rotatably mounted on the drive mechanism 2g with the axis tilted above the vertical axis toward the rear of the vehicle as the rotation axis V1.
  • the road shoulder detection unit 2a is attached with its scan surface 40a inclined with respect to the vertical direction as the inclination angle of the inclined surface 2f of the shaft inclined member 2e. Therefore, the road shoulder detector 2a rotates the support 2f with the drive mechanism 2e, and follows the scanning surface 40a of the road shoulder detector 2a in the front-rear direction as shown in FIGS. 15 (a) and 15 (b). As shown in FIGS. 16 (a) and 16 (b), the scan surface 40a can be changed from the adjusted position to a position along the width direction of the road surface A. Yes.
  • the road shoulder detection unit 2b is similarly configured.
  • the vehicle control device 23e calculates the traveling speed of the vehicle 1 based on the rotational speed of the front wheel 1d detected by the wheel speed measuring unit 22a, and controls the rotational driving of the drive mechanism 2g according to the calculated traveling speed. Specifically, when the calculated traveling speed is lower than a predetermined speed, the vehicle control device 23e determines whether the scanning surfaces 40a, 40b and the road surface A by the road shoulder detection units 2a, 2b are as shown in FIG. Each drive mechanism 2g rotates each of the support bodies 2h inward so that the intersection point G1 of the intersection lines L1a1 and L1b1 moves to the front side in the traveling direction, that is, the rear side.
  • the vehicle control device 23e determines that the intersection point G2 of the intersection lines L1a2 and L1b2 between the scanning surfaces 40a and 40b and the road surface A by the road shoulder detection units 2a and 2b. Then, each of the support bodies 2h is rotated outward by each drive mechanism 2g so as to move forward in the running direction, that is, the front side.
  • ⁇ Effect> In general, when the traveling speed of the vehicle 1 is low, for example, when traveling on a place where it is necessary to suppress the traveling speed, such as a curve, a slope, or an uneven road surface, the position of the shoulder B in the vicinity of the vehicle 1 and It is necessary to accurately detect the direction and appropriately prevent contact with the shoulder B. On the other hand, when the traveling speed of the vehicle 1 is high, it is a case where the vehicle 1 is traveling on a flat road surface A that is a straight road, and therefore, a wider range in front of the traveling direction than the position and orientation of the shoulder B close to the vehicle 1. Road shoulder detection is required.
  • each drive is performed by the vehicle control device 23e.
  • Each mechanism 2g is controlled to move the position of the intersection G1 between the intersection line L1a1 on the road surface A by the road shoulder detection unit 2a and the intersection line L1b1 of the road surface A by the road shoulder detection unit 2b to the front side in the traveling direction of the vehicle 1
  • the distance W1 between the road shoulder detection point Pa detected by the road shoulder detection unit 2a and the road shoulder detection point Pb1 detected by the road shoulder detection unit 2b can be reduced. It can be detected with higher accuracy.
  • the vehicle control device 23e controls each drive mechanism 2g.
  • the position of the intersection G2 between the intersection line L1a2 on the road surface A by the road shoulder detection unit 2a and the intersection line L1b2 of the road surface A by the road shoulder detection unit 2b is moved to the front side in the traveling direction of the vehicle 1.
  • the distance W2 between the road shoulder detection point Pa detected by the road shoulder detection unit 2a and the road shoulder detection point Pb2 detected by the road shoulder detection unit 2b can be increased, the road shoulder considering the road shoulder B over a wider range. Detection is possible. Therefore, appropriate road shoulder detection according to the traveling speed of the vehicle 1 becomes possible, and more appropriate autonomous traveling control of the vehicle 1 becomes possible.
  • the shoulder detection can be performed by mounting the shoulder detection system 100 according to the present invention.
  • the two shoulder detection units 2a and 2b are installed at positions spaced equidistantly from the center position in the left-right direction on the front side of the vehicle body 1a.
  • any position may be used as long as the distance to the shoulder B can be detected.
  • a laser scanner has been described as an example of the road shoulder detection units 2a and 2b, other than the laser scanner may be used as long as the distance to the road shoulder B can be detected.
  • the drive mechanism 2g is mounted on the shaft inclined member 2e, and the scan surfaces 40a, 40b of the road shoulder detection units 2a, 2b are inclined, and the road shoulder detection unit 2a, Although the moving distance of the scan surfaces 40a and 40b when the 2b is rotated is secured, the front corner portion of the upper deck 1f is as in the seventh embodiment shown in FIGS. 18 (a) to 18 (c). It is good also as a structure which attaches the drive mechanism 2e to the upper side of this, and makes the vertical axis into the rotating shaft V2. In this case, by rotating the support body 2f in the horizontal direction by the drive mechanism 2e, the scanning surface 40a of the road shoulder detection unit 2a is changed from the front-rear direction shown in FIG.
  • the intersection G of the road shoulder detection units 2a and 2b with the intersection lines L1a and L1b When the position is moved to the front side in the traveling direction of the vehicle 1 and the traveling speed of the vehicle 1 is higher than a predetermined speed, the position of the intersection G with the intersection lines L1a and L1b of the road shoulder detection units 2a and 2b is Although the two-stage switching type moves to the front side in the traveling direction, the linear switching type that linearly switches the position of the intersection point G according to the traveling speed of the vehicle 1 or the multi-stage switching that switches stepwise according to the traveling speed of the vehicle 1 It may be an expression.
  • FIG. 19 shows a profile indicating a distance measurement result corresponding to the optical axis rotation angle by the vehicle 1 according to the eighth embodiment of the present invention. As shown in FIG.
  • Vehicle (Mine transport vehicle) 1a Vehicle body 1d Front wheel (wheel) 1e Rear wheel (wheel) 2a, 2b Road shoulder detection unit 2g Drive mechanism (scanning direction changing unit) 21a Shoulder measuring device (shoulder measuring unit) 21b Road shoulder storage unit (storage unit) 21c Comparison unit 22a Wheel speed measurement unit (speed detection unit) 23e Vehicle control device (control unit) 40a, 40b Scanning surface 100 Shoulder detection system

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

 路肩に対する車両の向きと路肩までの距離を精度良く計測できる路肩検出システムの提供。本発明は、車両1の走行方向に対して車両1よりも前方の路面Aを走査して、路面Aに位置する路肩Bを検出するための路肩検出部2a,2bと、路肩検出部2a,2bにて検出した路肩Bに対する車両1の向きと、路肩Bまでの距離とを計測する路肩計測装置21aとを備え、路肩検出部2a,2bは、車両1の走行方向側に2つ設置している。2つの路肩検出部2a,2bは、前輪1dの上端よりも高い位置に設置している。

Description

路肩検出システムおよび鉱山用運搬車両
 本発明は、例えば鉱山で使用される鉱山用運搬車両に用いられる路肩検出システムおよびその鉱山用運搬車両に関する。
 鉱山における採掘作業では、安全性向上と低コスト化を目的として、自律走行が可能な無人車両を用いる技術が求められている。採掘作業のうち、坑道を掘らずに地表から渦を巻くように地下へ掘り進めて地表付近の鉱物を採掘するようにした、いわゆる露天掘りの場合、最深部で土砂を掘削し、掘削した土砂を採掘現場の外に運搬する必要がある。採掘現場の外に土砂を運搬する作業は、土砂積載量が大きな巨大なダンプトラックなどを用いて行われるが、運搬する土砂の単位時間当たりの運搬量は、採掘の進捗に直結する事項であるため、ダンプトラックによる高速走行での土砂運搬が求められる。
 ところが、土砂を効率良く採掘現場の外に大量に運搬するためには、複数台のダンプトラックが運搬用の道路を何往復もする必要があり、往路と復路とを走行するダンプトラック同士での衝突事故や、崖等からのダンプトラックの転落への対策が重要となる。
 ダンプトラックを高速走行させつつ衝突事故を低減させる従来技術が、例えば特許文献1に開示されている。本特許文献1に開示された車両の走行制御装置においては、他の車両が付近にいない場合は、道路の中央付近に設置された単独走行コースを走行させる。そして、車両が近接し擦れ違う必要がある場合にのみ、道路の脇寄りにある擦れ違い走行コースに速度を下げつつ移行させ、お互いの車両をやり過ごした後に、単独走行コースに戻しながら加速させて高速走行に戻す構成とされている。
 そして、本特許文献1においては、道路幅を考慮して走行させる場合に、道路幅や、道路上での車両位置を、コースデータ記憶部に記憶させたコースデータと、GPS等の車両位置計測部で計測した車両位置とから求めている。
米国特許第6941201号明細書
 しかしながら、上記特許文献1に開示された車両の走行制御装置においては、車両位置計測部による車両位置の計測が、崖などの障害物によって取得できないおそれがある。また、他車両の走行時の土埃や路面の傾斜による車体の傾き、路面の凹凸等について何ら考慮されていないため、これら土埃、車体の傾きまたは路面の凹凸等によって、路肩から単独走行コースや擦れ違い走行コースまでの距離を検出できないおそれもあり、路肩に対する車両の向きや、車両から路肩までの距離の計測もできない。
 本発明は、上述した従来技術における実状からなされたもので、その目的は、路肩に対する車両の向きと路肩までの距離を精度良く計測することができる路肩検出システムおよび鉱山用運搬車両を提供することにある。
 この目的を達成するために、車両の走行方向に対して前記車両よりも前方の路面を走査して、前記路面に位置する路肩を検出するための路肩検出部と、前記路肩検出部にて検出した前記路肩に対する前記車両の向きと、前記路肩までの距離とを計測する路肩計測部とを備え、前記路肩検出部は、前記車両の走行方向側に2つ設置していることを特徴としている。
 このように構成した本発明は、1つの路肩検出部にて路肩を検出する場合に比べ、2つの路肩検出部のそれぞれにて検出した路肩情報を複合的に考慮したり、これら路肩情報を相互補完したりする等して、路肩計測部にて路肩に対する車両の向きと、路肩までの距離とを計測できるため、路肩計測部による路肩に対する車両の向きおよび路肩までの距離の計測を精度良くできる。
 また本発明は、上記発明において、前記2つの路肩検出部は、それぞれの前記路肩検出部を中心として所定の角度毎に前記車両の走行方向前方の路面までの距離を線状に走査する構成とされ、一方の前記路肩検出部による路面上の走査線と、他方の前記路肩検出部による路面上の走査線とが交差するように設置していることを特徴としている。
 一般に、車両から路肩までの距離が近い場合は、路肩に接触等する可能性が高く、より高精度な路肩の位置および向きの検出が必要となる。その一方、車両から路肩までの距離が遠い場合は、路肩に接触等する可能性が低く、より広範囲に亘った路肩の位置および向きの検出が求められる。そこで、本発明においては、所定の角度毎に車両の走行方向前方の路面までの距離を線状に走査する路肩検出部のうちの、一方の路肩検出部による路面上の走査線と、他方の路肩検出部による路面上の走査線とを交差させている。この結果、車両から路肩までの距離が近い場合には、一方の路肩検出部にて検出した路肩検出点と、他方の路肩検出部にて検出した路肩検出点との間の距離が小さくなり、この小さな距離における路肩の位置および向きを検出するため、より高精度な路肩検出が可能となる。これに対し、車両から路肩までの距離が遠い場合には、一方の路肩検出部にて検出した路肩検出点と、他方の路肩検出部にて検出した路肩検出点との間の距離が大きくなり、より広範囲に亘った路肩検出が可能となる(例えば、図10参照。)。よって、車両から路肩までの距離に応じた適切な路肩検出が可能となり、より適切な自律走行制御が可能となる。
 また本発明は、上記発明において、前記車両が走行する走行路の路肩形状を基準路肩形状として記憶した記憶部を備え、前記路肩計測部は、前記2つの路肩検出部のうちの一方の前記路肩検出部にて検出して求めた路肩形状と前記記憶部に記憶させた基準路肩形状とを比較する比較部を有し、この比較部での比較に基づき前記路肩に対する前記車両の向きと、前記路肩までの距離とを計測することを特徴としている。
 このように構成した本発明は、記憶部に記憶させた基準路肩形状を考慮しつつ、路肩に対する車両の向きと、路肩までの距離とを路肩計測部にて計測するため、路肩計測部による路肩に対する車両の向きと路肩までの距離との計測精度をより向上することができる。
 また本発明は、上記発明において、前記車両は、車輪を有し、前記2つの路肩検出部は、前記車両に取り付け、前記車輪の上端よりも高い位置に設置していることを特徴としている。
 このように構成した本発明は、例えば、自車両または他車両の走行時に土埃等が撒き上がった場合であっても、車輪の上端よりも高い位置から各路肩検出部にて路肩を検出できる。よって、土埃等の影響をあまり受けることなく、これらら路肩検出部による路肩検出をより確実にできる。
 また本発明は、上記発明において、前記2つの路肩計測部は、前記路肩検出部による路面上の走査線と、前記路肩検出部による前記路肩斜面上の走査線との交点を、路肩計測点とすることを特徴としている。
 このように構成した本発明は、路肩検出部による路面上の走査線と、この路肩検出部による路肩斜面上の走査線との交点に加え、例えば、路肩形状情報に基づいて路肩の幅を考慮し、路肩の幅方向の中心位置を路肩計測点とする場合に比べ、路肩検出部による路面上の走査線と、この路肩検出部による路肩斜面上の走査線との交点を、路肩計測点とすることによって、路肩計測部による路肩までの距離の計測処理をより容易にでき、この路肩計測部による路肩に対する車両の向きの計測をより精度良くできる。
 また本発明は、上記発明において、前記路肩計測部は、前記2つの路肩検出部にて検出した2つの路肩計測点の前記車両に対する相対位置と、前記記憶部に記憶させた基準路肩形状とに基づいて、前記路肩に対する前記車両の向きと、前記路肩までの距離とを計測することを特徴としている。
 このように構成した本発明は、2つの路肩検出部による路肩計測点の車両に対する相対位置を考慮しつつ、記憶部に記憶させた基準路肩形状に基づき、路肩に対する車両の向きと、路肩までの距離とを計測することにより、路肩計測部による、路肩に対する車両の向きと路肩までの距離とをより精度良く計測することができる。
 また本発明は、車両本体と、前記車両本体の走行方向に対して前記車両本体よりも前方の路面を走査して、前記路面に位置する路肩を検出するための路肩検出部と、前記路肩検出部にて検出した前記路肩に対する前記車両本体の向きと、前記路肩までの距離とを計測する路肩計測部とを備え、前記路肩検出部は、前記車両本体の走行方向側に2つ設置していることを特徴としている。
 このように構成した本発明は、1つの路肩検出部にて路肩を検出する場合に比べ、2つの路肩検出部のそれぞれにて検出した路肩に対する車両本体の向きと、路肩までの距離とを路肩計測部にて計測することにより、路肩計測部による路肩に対する車両本体の向きおよび路肩までの距離の計測を精度良くできる。
 また本発明は、車両の走行方向に対して前記車両よりも前方の路面を走査して、前記路面に位置する路肩を検出するための路肩検出部と、前記路肩検出部による前記路面に対する走査方向を変更させる走査方向変更部と、前記路肩検出部にて検出した前記路肩に対する前記車両の向きと、前記路肩までの距離とを計測する路肩計測部と、前記車両の走行速度を検出するための速度検出部と、前記走査方向変更部を制御する制御部とを備え、前記路肩検出部は、前記車両の走行方向側に2つ設置され、前記走査方向変更部は、前記2つの路肩検出部のそれぞれに設けられ、前記2つの路肩検出部は、それぞれの前記路肩検出部を中心として所定の角度毎に前記車両の走行方向前方の路面までの距離を線状に走査する構成とされ、一方の前記路肩検出部による路面上の走査線と、他方の前記路肩検出部による路面上の走査線とが交差するように設置し、前記制御部は、前記速度検出部にて検出する前記車両の走行速度に応じ、前記走査方向変更部を制御して、前記一方の路肩検出部による路面上の走査線と、前記他方の路肩検出部による路面上の走査線との交点位置を、前後方向に移動することを特徴としている。
 車両の走行速度が高い場合は、平坦な路面等を走行している場合であり、車両に近接する路肩の位置および向きよりも、走行方向前方のより広範囲に亘る路肩検出が求められる。一方、車両の走行速度が低い場合は、例えばカーブ、坂道、凹凸路面等の走行速度を抑える必要のある箇所を走行している場合であり、車両に近接する路肩の位置および向きを正確に検出し、路肩への接触等を適切に防止する必要がある。そこで、本発明においては、例えば、速度検出部にて検出した車両の走行速度が高い場合に、制御部にて走査方向変更部をそれぞれ制御して、一方の路肩検出部による路面上の走査線と、他方の路肩検出部による路面上の走査線との交点位置を、前側に移動させることにより、一方の路肩検出部にて検出した路肩検出点と、他方の路肩検出部にて検出した路肩検出点との間の距離を大きくでき、より広範囲に亘った路肩検出が可能となる(例えば、図17参照。)。これに対し、速度検出部にて検出した車両の走行速度が低い場合に、制御部にて走査方向変更部をそれぞれ制御して、一方の路肩検出部による路面上の走査線と、他方の路肩検出部による路面上の走査線との交点位置を、後側に移動させることにより、一方の路肩検出部にて検出した路肩検出点と、他方の路肩検出部にて検出した路肩検出点との間の距離を小さくでき、より高精度な路肩検出が可能となる。したがって、車両の走行速度に応じた適切な路肩検出が可能となり、より適切な自律走行制御が可能となる。
 本発明は、車両の走行方向側に2つ設置されている路肩検出部のそれぞれにて路面を走査して、これら2つの路肩検出部にて路面に位置する路肩をそれぞれ検出する構成にしてある。この構成により本発明は、1つの路肩検出部にて路肩を検出する場合に比べ、2つの路肩検出部のそれぞれにて検出した路肩情報を複合的に考慮したり、これら路肩情報を相互補完したりする等して、路肩計測部にて路肩に対する車両の向きと、路肩までの距離とを計測できるため、路肩計測部による路肩に対する車両の向きおよび路肩までの距離の計測を精度良くできる。この結果、車両からの路肩検知をより精度良くでき、例えば、車両の自律走行をより適切かつ精度良く行うことができる。そして、前述した以外の課題、構成および効果は、以下の実施形態の説明より明らかにされる。
本発明の第1実施形態に係る路肩検出システムを示す概略図である。 上記路肩検出システムに用いられる鉱山用運搬車両を示す概略斜視図である。 上記鉱山用運搬車両の路肩検出部のスキャン方向を示す概略平面図である。 上記鉱山用運搬車両の路肩検出部を示す概略斜視図である。 上記鉱山用運搬車両の路肩検出部による路肩検出を示す図であり、(a)は路肩検出時のスキャン状態を示す概略斜視図で、(b)は路肩検出位置Pを示すグラフである。 上記鉱山用運搬車両による路肩検出処理を示すフローチャートである。 上記鉱山用運搬車両による自律走行処理を示すフローチャートである。 上記鉱山用運搬車両の路肩検出部の取り付け位置に伴う作用を示す図であり、(a)は車輪の高さ位置より低い位置に路肩検出部を取り付けた場合の状況図で、(b)は車輪の高さ位置より高い位置に路肩検出部を取り付けた場合の状況図である。 本発明の第2実施形態に係る鉱山用運搬車両を示す概略構成図である。 上記鉱山用運搬車両の路肩検出部のスキャン方向を示す概略平面図である。 上記鉱山用運搬車両の路肩検出部による路肩検出時のスキャン状態を示す概略斜視図である。 本発明の第3実施形態に係る鉱山用運搬車両の路肩検出部のスキャン方向を示す概略平面図である。 本発明の第4実施形態に係る路肩検出システムを示す概略図である。 本発明の第5実施形態に係る路肩検出システムを示す概略図である。 本発明の第6実施形態に係る鉱山用運搬車両の低速走行時の路肩検出部の状態を示す概略図で、(a)は鉱山用運搬車両の全体図、(b)は路肩検出部の部分拡大図である。 上記鉱山用運搬車両の高速走行時の路肩検出部の状態を示す概略図で、(a)は鉱山用運搬車両の全体図、(b)は路肩検出部の部分拡大図である。 上記鉱山用運搬車両の路肩検出部のスキャン方向を示す概略平面図である。 本発明の第7実施形態に係る鉱山用運搬車両の路肩検出部の部分拡大図で、(a)は分解状態図、(b)は高速状態図、(c)は低速状態図である。 本発明の第8実施形態に係る鉱山用運搬車両による光軸回転角度に対応した測距結果を示すプロファイルを示す図である。
 以下、本発明に係る路肩検出システムを実施するための形態を図に基づいて説明する。
[第1実施形態]
 本第1実施形態は、2つの路肩検出部のスキャン方向が平行とされた実施形態である。図1は、本発明の第1実施形態に係る路肩検出システム100を示す概略図である。図2は、路肩検出システム100に用いられる鉱山用運搬車両として、車両1であるオフロードダンプトラックを示す概略斜視図である。図3は、車両1の路肩検出部2a,2bのスキャン方向を示す概略平面図である。図4は、車両1の路肩検出部2aを示す概略斜視図である。
<構成>
 車両1は、図2に示すように、鉱山に予め設けられた走行路等の路面Aを自律運転で走行可能な無人走行式とされている。鉱山の路面Aの側部には、路面Aに沿って検出対象物である路肩Bが設けられている。路肩Bは、少なくとも車両1が走行する側、例えば走行方向左側に設けられ、所定の高さ寸法および幅寸法を有する構造の盛土であり、車両1の走行位置から例えば30mほど離れている。鉱山には、図1に示すように、車両1との間で所定の情報を送受信するための交通管制システムを有する交通管制センタ200が設置されているとともに、車両1に土砂等の積載物を積載させるための油圧ショベル(図示せず)が用いられる。
 車両1は、図1に示すように、車両本体1aと、車両本体1aの前側上方に設けられた運転席1bと、車両本体1a上に起伏可能に設けられた作業部としてのベッセル1cと、車両本体1aを走行可能に支持する左右の前輪1dおよび後輪1eとを備えた構成とされている。前輪1dは従動輪とされ、後輪1eは駆動輪とされている。
 運転席1bは、オペレータが運転席に乗り込む等するための略平板状の上側デッキ1f上に設置されている。上側デッキ1fは、前輪1dを覆うように、前輪1dの上端部より上方に設けられている。また、上側デッキ1fは、車両本体1aの前側に設けられ、車両本体1aの幅方向の全体に亘った大きさとされている。上側デッキ1fの下側の中央部には、一対の建屋1gが所定間隔を空けて設けられ、これら建屋1g間にラジエータ等の熱交換装置1hが設置されている。
 一対の建屋1gの外側には、エアクリーナ1iがそれぞれ取り付けられている。各エアクリーナ1iは、上側デッキ1fの下側であって、上側デッキ1fと建屋1gとにて仕切られた角部に取り付けられている。各エアクリーナ1iには、空気中のダストを捕捉するための円筒状のフィルタエレメント1jが取り付けられている。各フィルタエレメント1jは、一端側を上側デッキ1fの前側の端部よりも前方に突出させた状態とされて各エアクリーナ1iに取り付けられている。
 各建屋1gの内側には、車両本体1aの走行方向Mの一側、例えば走行方向左側に存在する路肩Bの一部の相対位置を検出するための計2台の路肩検出部2a,2bがそれぞれ取り付けられている。路肩検出部2a,2bは、車両本体1aの走行方向Mに対して車両本体1aよりも前方の路面を走査する。これら路肩検出部2a,2bは、上側デッキ1fの下側であって、上側デッキ1fと建屋1gとにて仕切られたエアクリーナ1i上に取り付けられている。すなわち、これら路肩検出部2a,2bは、これら路肩検出部2a,2bにて路肩Bを検出する際のスキャン面40a,40b内に、車両本体1の前面に突出して設けられている各フィルタエレメント1jが入り込まない位置に取り付けられている。また、各路肩検出部2a,2bは、前輪1dの上端部より高い位置であって、車両本体1aの走行方向側である前側左右に、等しい高さ位置で設置されている。具体的に、各路肩検出部2a,2bは、例えば前輪1dの下端部から4mほどの高さ位置に設置されている。これら路肩検出部2a,2bは、異なる高さ位置に設置してもよい。
 路肩検出部2a,2bは、それぞれの路肩検出部2a,2bを中心としてレーザ光を所定の角度毎に照射して路面Aを扇状にスキャンして走査し、物体からの反射光によって対象物までの距離と方向とを測定することができるレーザスキャナ等である。路肩検出部2a,2bの具体的な構成例として、図4に路肩検出部2aが検出窓2cを備えた構成を示す。各路肩検出部2a,2bは、図2に示すように、検出窓2c,2dの長手方向を車両本体1aの左右方向に沿わせつつ、検出窓2c,2dの長手方向の中心位置を斜め下方に向けた状態として取り付けられている。
 一方、路肩検出システム100は、路肩Bに対する車両本体1aの向き、および路肩Bまでの距離を計測するための路肩検出装置21と、車両本体1aの位置および姿勢を計測するための自己位置計測装置22と、路面の路幅や対向車の存在により、車両本体1aの路肩Bからの距離や速度を変更させる車体運動制御装置23と、交通管制センタ200との間で通信を行うための通信装置24とを備えている。
 路肩検出装置21は、路肩検出部2a,2bと、各路肩検出部2a,2bによる測定結果に基づき、路肩Bに対する車両本体1aの向きと、路肩Bまでの距離とを計測する路肩計測部である路肩計測装置21aと、路面Aの周囲の外部座標系での路肩位置、すなわち直線状の路肩または曲線状の路肩等や、路肩そのものの形状についての路肩形状に関する路肩データを基準路肩形状として記憶する記憶部としての路肩記憶部21bとを備えている。
 各路肩検出部2a,2bは、路肩計測装置21aにそれぞれ接続され、路肩計測装置21aは、路肩記憶部21bに接続されている。路肩検出部2a,2bは、図2および図3に示すように、これら各路肩検出部2a,2bから照射するレーザ光が到達する路面A上の計測点がなす直線である走査線としての交線L1a,L1bが、それぞれ路面Aの幅方向(路幅方向)に沿い、これら路肩検出部2a,2bによる路面A上の計測点がなす交線L1a,L1bが互いに平行となるように設定されている。また、路肩検出部2a,2bは、各路肩検出部2a,2bからのレーザ光の照射方向41a,41bを予め定めた所定の角度、例えば0.25度毎に変化させて路面A上の計測点を走査していき、これら各路肩検出部2a,2bによるレーザ光の走査面であるスキャン面40a,40bにおいて、所定の角度毎の路面Aまでの距離を計測する。すなわち、各路肩検出部2a,2bは、例えば0.25度の角度分解能を有し、30m離れた地点での計測点間の間隔が1mである。
 さらに、路肩測定装置21aは、各路肩検出部2a,2bにて検出した路肩情報と、路肩記憶部21bに記憶させた路肩データとを比較する比較部21cを備え、比較部21cでの比較に基づき路肩Bに対する車両本体1の向きと、路肩Bまでの距離とを計測する。
 自己位置計測装置22は、車両本体1の、例えば前輪1dの回転速度を計測するための車輪速計測部22aと、車両本体1aの運転席1bに設けられたハンドル(図示せず)の操舵角度を計測するための操舵角計測部22bと、車輪速計測部22aにて計測した回転速度結果および操舵角計測部22bにて計測した操舵角結果に基づいて、車両本体1aの走行速度、前輪1dの角速度、地面に固定された座標系での車両本体1aの位置および姿勢を算出するための自己位置演算装置22cとを備えている。車輪速計測部22aは、車両1の走行速度を検出するための速度検出部であって、例えば前輪1dの回転速度を検出するための回転速度センサ等である。操舵角計測部22bは、ハンドルの操舵角を検出することができる変位センサ等である。
 自己位置計測装置22は、車両本体1aの自己位置を補正するための自己位置補正装置22dを備えている。自己位置補正装置22dは、車両本体1aの位置および姿勢をより高精度に計測するためのものであり、例えば慣性計測装置(IMU:Inertial Measurement Unit)や、GPS(Global Positioning System)等で構成されている。車輪速計測部22a、操舵角計測部22bおよび自己位置補正装置22dは、自己位置演算装置22cにそれぞれ接続されている。
 車体運動制御装置23は、車両本体1aの走行速度を低下させたり停止させたりするための制動装置23aと、車両1の後輪1eに対する回転トルク指令値を制限するための駆動トルク制限装置23bと、車両本体1aの路肩Bからの距離を変更するための操舵制御装置23cと、走行路の経路やその路面Aの路幅、対向車情報等の地図データが記憶されたデータ記憶部23dと、制動装置23aによる制動量、駆動トルク制限装置23bによる制限量、および操舵制御装置23cによる制御量を算出するための車両制御装置23eを備えている。車両制御装置23eは、データ記憶部23dに記憶された地図データに基づき、車両本体1aの路肩Bまでの距離や走行速度を制限することを目的として、制動装置23aによる制動量、駆動トルク制限装置23bによる制限量、および操舵制御装置23cによる制御量を算出する制御部である。
 制動装置23aは、例えば後輪1eの回転を制動させるディスクブレーキ等の機械的構造のメカニカルブレーキである。駆動トルク制限装置23bは、例えば後輪1eの回転に対して電気的な抵抗を掛けて制動させる電気ブレーキ等のリターダブレーキである。データ記憶部23dに記憶された地図データとしては、走行路の側部に設けられている路肩形状等の路肩情報も記憶されている。車両制御装置23eには、データ記憶部23dに記憶されている地図データ、自己位置演算装置22cにて演算された自己位置情報、および路肩計測装置21aにて計測された路肩情報が入力される。車両制御装置23eは、制動装置23a、駆動トルク制動装置23bおよび操舵制御装置23cのそれぞれに接続されている。
 通信装置24は、自己位置演算装置22cに接続され、自己位置演算装置22cにて演算した車両1の自己位置情報を交通管制センタへ送信する。通信装置24は、路肩記憶部21bおよびデータ記憶部23dに接続され、路肩記憶部21bに記憶されている路肩位置データや、データ記憶部23dに記憶されている地図データを、通信装置24を介して出力できる構成とされている。
 交通管制センタ200は、車両1に搭載された通信装置24との間で情報を送受信するための通信装置31と、走行路の路肩形状等の路肩形状マップが記憶される路肩データ記憶部32と、車両1の通信装置24から通信装置31に送信されてくる路肩形状情報と、路肩データ記憶部32に記憶されている路肩形状マップとを比較する比較部としての路肩形状比較装置33と、路肩形状比較装置33での比較により路肩形状情報が路肩形状マップと相違する場合に、その路肩形状情報のうちの路肩形状変化情報を記憶させるための変化データ記憶部34とを備えている。
<路肩検出処理>
 次いで、路肩検出システム100による路肩検出処理について、図5および図6を参照して説明する。図5は、車両1の路肩検出部2a,2bによる路肩検出を示す図であり、(a)は路肩検出時のスキャン状態を示す概略斜視図で、(b)は路肩検出位置Pを示すグラフである。ここで、図5(a)は、車両1が走行路上の路肩Bを検出しながら走行している様子を示しており、図5(a)中の破線は、路肩検出部2a,2bおよび路肩計測装置21aにて求められる路肩位置を示す。なお、路肩Bとは、必ずしも図5に示すように車両1の片側にのみ存在するものではなく、車両1の両側に存在する場合もあり、また後述する図8に示すように片側が斜面(法面)の場合もあり、この斜面もまた路肩Bである。図6は、車両1による路肩検出処理を示すフローチャートである。
 まず、左右の各路肩検出部2a,2bにて路面Aおよび路肩Bを検出し、これら路肩検出部2a,2bによりこれら路面Aおよび路肩Bの測距データを取得する(ステップS1、以下単に「S1」等と示す。)。このS1にて取得した測距データに基づいて、図5(a)および図5(b)に示すように、各路肩検出部2a,2bによるスキャン面40a,40bと路面Aとが交差する各交線L1(L1a,L1b)を、路肩計測装置21aにて算出する(S2)。同時に、各路肩検出部2a,2bから取得した測距データ中の路肩Bの傾斜面B1上の測定点から、各路肩検出部2a,2bによるスキャン面40a,40bと路肩Bの傾斜面B1との交線L2(L2a,L2b)を、路肩計測装置21aにて算出する(S3)。
 この後、路肩計測装置21aは、S2にて算出した交線L1a,L1bと、S3にて算出した交線L2a,L2bとの交点を、路肩検出点P(Pa,Pb)とする(S4)。すなわち、図5(a)に示すように、交線L1aと交線L2aとが交わる点を、路肩検出点Paとし、交線L1bと交線L2bとが交わる点を、路肩検出点Pbとする。
 さらに、路肩記憶部21bに記憶させている路肩データを参照し、この路肩データ中の路肩形状と、各路肩検出部2a,2bにて検出した測距データに基づく車両1の自己位置と、路肩検出点Pa,Pbとを比較し、これら路肩形状、自己位置および路肩検出点Pa,Pbの相対位置関係、すなわち、路肩検出点Pa,Pbの車両1に対する相対位置から、車両1の路肩Bに対する向きαと、路肩Bまでの距離Dとを路肩計測装置21aにて算出する(S5)。
 ここで、車両1の現在位置は、例えば、GPSに基づいて推定されたり、車輪速計測部22aにて計測した回転速度結果と、操舵角計測部22bにて計測した操舵角結果とに基づき、自己位置補正装置22dにて補正された車両1の走行速度、前輪1dの角速度、地面に固定された座標系での車両1の位置および姿勢が自己位置演算装置22cにて算出されて推定されたりしている。そして、自己位置演算装置22cにて演算された車両1の位置および姿勢に基づき算出される車両1の向きおよび路肩までの距離が、S5にて算出した向きαおよび距離Dと等しいか判断される(S6)。
 S6により、自己位置演算装置22cにて求めた向きおよび距離が、S5にて算出した向きαおよび距離Dと等しい(Yes)と判断された場合は、図6に示す路肩検出処理が終了となる。一方、S6により、自己位置演算装置22cにて求めた向きおよび距離が、S5にて算出した向きαおよび距離Dと異なる(No)と判断された場合は、S5にて算出した向きαおよび距離Dが、予め定めた所定の範囲内で連続的に変化しているか判断される(S7)。
 S7により、S5にて算出した向きαおよび距離Dが所定の範囲内で連続的に変化している(Yes)と判断された場合は、S4にて求めた路肩検出点Pa,Pbの外部座標系での検出位置を路肩計測装置21aにて算出し、この算出した検出情報を、通信装置24を介して交通管制センタ200の通信装置31へ送信する(S8)。一方、S7により、S5にて算出した向きαおよび距離Dが所定の範囲内で連続的に変化しておらず不連続(No)と判断された場合は、自己位置計測装置22での計測、すなわち自己位置演算装置22cでの車両1の位置および姿勢の演算に異常が生じているとし、車体運動制御装置23の車両制御装置23eにて制動装置23aおよび駆動トルク制限装置23bを制御して車両1の走行を停止、すなわち停車させる(S9)。
<自律走行処理>
 次いで、路肩検出システム100による自律走行処理について、図7を参照して説明する。図7は、車両1による自律走行処理を示すフローチャートである。
 自己位置計測装置22にて計測した車両1の自己位置情報を、車体運動制御装置23の車両制御装置23eにて取得する(S11)。次いで、データ記憶部23dに記憶させている地図データを参照し、この地図データ中の路面Aの路幅情報と、S11にて取得した自己位置情報とに基づいて、路肩Bに対する向き、および路肩Bまでの距離を取得する(S12)。
 この後、路肩検出装置21の路肩計測装置21aにて計測された路肩Bに対する車両1の向きα、および車両1から路肩Bまでの距離Dに関する情報を、車両制御装置23eにて取得する(S13)。そして、S12にて取得した向きおよび距離と、S13にて取得した向きαと距離Dとを車両制御装置23eにて比較し、算出した向きαおよび距離Dが自己位置演算装置22cにて演算した向きおよび距離に等しいか判断する(S14)。
 S14により、算出した向きαおよび距離Dが自己位置演算装置22cにて演算した向きおよび距離と異なる(No)と判断された場合は、自己位置計測装置22での計測、すなわち自己位置演算装置22cでの車両1の位置および姿勢の演算に異常が生じているとし、車両制御装置23eにて制動装置23aおよび駆動トルク制限装置23bを制御して車両1を停車させる(S15)。
 一方、S14により、算出した向きαおよび距離Dが自己位置演算装置22cにて演算した向きおよび距離に等しい(Yes)と判断された場合は、データ記憶部23dに記憶されている地図データを取得する(S16)。そして、この取得した地図データ中の走行路の経路情報と、S11にて取得した自己位置とを車両制御装置23eにて比較し、これら経路情報と自己位置とのずれに基づいて、車両制御装置23eにて操舵制御装置23cや駆動トルク制限装置23b等を適宜制御して車両1の走行位置を、予め定めた所定の走行位置に走行制御する(S17)。
<作用効果>
 以上により、上記第1実施形態に係る路肩検出システム100においては、車両本体1aの走行方向前の左右に路肩検出部2a,2bをそれぞれ設置し、これら計2台の路肩検出部2a,2bのそれぞれにて走行方向左側の路肩Bまでの距離を検出する。そして、これら2台の路肩検出部2a,2bにて検出した検出情報に基づき、路肩Bに対する車両1の向きと、車両1から路肩Bまでの距離とのそれぞれを路肩計測装置21aにて計測する構成としている。
 すなわち、車両本体1aの前側に設置された計2台の路肩検出部2a,2bのそれぞれにて路肩Bまでの距離を検出するため、1台の路肩検出部にて検出した検出情報に基づく場合に比べ、2台の路肩検出部2a,2bにて検出した検出情報に基づくため、これら2台の路肩検出部2a,2bによる検出情報を複合的に考慮したり、相互補完させたり、これら2つの検出情報を用いた補正等が可能となるから、路肩計測装置21aによる路肩Bに対する車両1の向きと路肩Bまでの距離との計測精度を向上できる。そして、路肩計測装置21aによる計測精度を向上できるため、車両1からの路肩検知をより精度良くでき、車体運動制御装置23の車両制御装置23eによる車両1の自律走行をより適切かつ精度良くできる。
 特に、路肩計測装置21aにおいては、路肩記憶部21bに記憶させている路肩データを参照し、この路肩データ中の路肩形状と、各路肩検出部2a,2bにて検出した測距データに基づく車両1の自己位置と、路肩検出点Pa,Pbとを比較部21cにて比較し、これら路肩形状、自己位置および路肩検出点Pa,Pbの相対位置関係から、車両1の路肩Bに対する向きαと、路肩Bまでの距離Dとを路肩計測装置21aにて算出する構成としている。すなわち、2つの路肩検出部2a,2bによる路肩検出点Pa,Pbの車両1に対する相対位置を考慮しつつ、路肩記憶部21bに記憶させている路肩データ中の路肩形状に基づき、路肩計測装置21aにて路肩Bに対する車両1の向きと、路肩Bまでの距離とを計測するため、路肩計測装置21aによる路肩Bに対する車両1の向きと路肩Bまでの距離との計測をより精度良くできる。
 さらに、各路肩検出部2a,2bによるスキャン面40a,40bと路面Aとが交差する各交線L1a,L1bと、各路肩検出部2a,2bによるスキャン面40a,40bと路肩Bの傾斜面B1との交線L2a,L2bとの交点を、路肩検出点Pa,Pbとする構成としている。すなわち、スキャン面40a,40bと路面Aとが交差する各交線L1a,L1bと、スキャン面40a,40bと路肩Bの傾斜面B1との交線L2a,L2bとの交点を算出するのみで、路肩検出点Pa,Pbを計測して算出できるため、例えば、これら交線L1a,L1bおよび交線L2a,L2bに加え路肩Bの幅寸法等を考慮し路肩Bの幅方向の中心位置を路肩検出点とする場合に比べ、路肩計測装置21aによる路肩Bまでの距離の計測処理をより容易にでき、路肩計測装置21aによる路肩Bに対する車両1の向きをより精度良く計測できる。
 ここで、図8は、車両1の路肩検出部2a,2bの取り付け位置に伴う作用を示す図であり、(a)は前輪1dの高さ位置より低い位置に路肩検出部2a,2bを取り付けた場合の状況図で、(b)は前輪1dの高さ位置より高い位置に路肩検出部2a,2bを取り付けた場合の状況図である。すなわち、走行路が乾いた土の場合は、この走行路を車両1が走行する際に、車両1の前輪1dまたは後輪1eの回転によって、土埃Eが撒き上がり、図8に示すように、対向車両Fが撒き上げた土埃Eが車両1と路肩Bとの間に漂うおそれがある。この状況において、図8(a)に示すように、車両1の下部に路肩検出部2a,2bが設置されている場合には、路肩検出部2a,2bと路肩Bとの間に土埃Eが介在してしまうため、路肩検出部2a,2bにて路肩Bまでの距離を正確に検出できないだけではなく、路肩検出部2a,2bの検出窓2c,2dが土埃Eにて汚れてしまい、路肩Bまでの距離を検出できなくなるおそれがある。
 そこで、上記第1実施形態に係る車両1においては、走行路の路面A上に舞い上がった土埃Eが、路肩検出部2a,2bの検出窓2c,2dに付着する頻度を抑えつつ、舞い上がった土埃Eの上方から路肩Bまでの距離を検出できるように、路肩検出部2a,2bを車両1の前輪1dの上端部よりも高い位置に設置している。この結果、対向車両Fのみならず、自車両1または他車両の走行時に土埃Eが撒き上がった場合であっても、この撒き上がった土埃Eの上方から各路肩検出部2a,2bにて路肩Bまでの距離を検出できるため、路肩検出部2a,2bによる路肩検出をより確実にできる。また同時に、路肩検出部2a,2bの検出窓2c,2dへの土埃Eの付着頻度を抑制できるため、路肩検出部2a,2bによる路肩Bまでの距離の検出精度の低下を抑制できる。
 さらに、上側デッキ1fからのアクセスが容易な位置、すなわち上側デッキ1fの下側であって、上側デッキ1fと建屋1gとにて仕切られたエアクリーナ1i上に路肩検出部2a,2bを設置しているため、上側デッキ1fから路肩検出部2a,2bを点検等でき、これら路肩検出部2a,2bのメンテナンス性を確保している。また、計2台の路肩検出部2a,2bを等しい高さ位置に設置し、これら2台の路肩検出2a,2b部の検出結果に対称性を持たせている。したがって、これら2台の路肩検出部2a,2bの高さ位置を異ならせる場合に比べ、これら2台の路肩検出部2a,2bによる路面A上での分解能の相違を無くすことができ、これら路肩検出部2a,2bによる検出誤差を少なくできる。
[第2実施形態]
 図9は、発明の第2実施形態に係る車両1を示す概略構成図である。図10は、車両1の路肩検出部2a,2bのスキャン方向40a,40bを示す概略平面図である。図11は、車両1の路肩検出部2a,2bによる路肩検出時のスキャン状態を示す概略斜視図である。本第2実施形態が前述した第1実施形態と異なるのは、第1実施形態は、路肩検出部2a,2bによる路面A上の計測点がなす交線L1a,L1bが互いに平行となるように設定されているのに対し、第2実施形態は、これら交線L1a,L1bが交差するように設定されている。なお、本第2実施形態において、第1実施形態と同一又は対応する部分には同一符号を付している。
 各路肩検出部2a,2bのスキャン面40a,40bは、一定角度毎に距離を測定する構成であるため、車両1から路肩Bが離れるにつれて、路肩Bまでの距離を検出する際の検出間隔が大きくなる。そこで、本第2実施形態に係る車両1では、路肩検出部2a,2bによる路面A上の計測点がなす交線L1a,L1bを、車両1前方位置で交差させる。そのため、本第2実施形態においては、図9に示すように、上側デッキ1fの前端側の幅方向の両側縁に路肩検出部2a,2bを設置しており、図9および図10に示すように、各路肩検出部2a,2bによるスキャン面40a,40bと路面Aとが交差する交線L1a,L1bが交差し、この交線L1a,L1bの交差点Gが、車両1の幅方向の中心位置を通過し車両1の走行方向前方に位置するように、これら路肩検出部2a,2bのスキャン方向が設定されている。
 この結果、図10および図11に示すように、車両1と路肩Bとの間の距離Dが大きくなるに連れて、各路肩検出部2a,2bによるスキャン間隔毎の路肩の計測点Niと計測点Ni+1との間の距離が大きくなるとともに、一方の路肩検出部2aにて検出した路肩検出点Paと、他方の路肩検出部2bにて検出した路肩検出点Pbとの間の距離Wが大きくなる。すなわち、これら路肩検出部2a,2bによる一定角度毎のレーザ照射による計測点間の間隔が、路肩Bまでの距離に応じて大きくなり、路肩検出点Pa,Pb間の距離Wもまた同様に大きくなる。これに対し、上記第1実施形態の場合においては、路肩検出部2a,2bによる路面A上の計測点がなす交線L1a,L1bが平行であるため、図3に示すように、路肩検出部2a,2bによる一定角度毎のレーザ照射の計測点間の間隔が、路肩Bまでの距離に応じて大きくなるものの、路肩検出点Pa,Pb間の距離Wは変化せず一定である。
 一般に、車両1から路肩Bまでの距離Dが比較的近い(図10中の破線で示す路肩B1)場合は、車両1から路肩B1までの距離D1が小さく、車両1が路肩B1に接触等してしまう可能性が高いため、車両1前方の近接位置における高精度な路肩B1の位置および向きの検出が必要となる。一方、車両1から路肩Bまでの距離Dが比較的遠い(図10中の実線で示す路肩B2)場合は、車両1から路肩B2までの距離D2が大きく、車両1が路肩B2に接触等する可能性が低いため、検出精度よりも、より広範囲に亘った路肩B2の位置および向きの検出が求められる。
 そこで、上記第2実施形態のように、路肩検出部2a,2bによる路面A上の計測点がなす交線L1a,L1bを車両1前方で交差させることにより、図10に示すように、車両1から路肩B1までの距離D1が近い場合は、路肩検出部2aによる路肩検出点Pa1と、路肩検出部2bによる路肩検出点Pb1との間の距離W1が小さくなり、この小さな距離W1において路肩B1の位置および向きを検出するため、車両1前方の近接位置における路肩B1のより高精度な検出が可能となる。これに対し、車両1から路肩B2までの距離D2が遠い場合は、路肩検出部2aによる路肩検出点Pa2と、路肩検出部2bにて検出した路肩検出点Pb2との間の距離W2が大きくなり、走行方向前方の路肩B2の離れた路肩検出点Pa2,Pb2間の路肩B2の向きαを考慮して路肩B2に対する車両1の向きαを計測でき、より広範囲に亘る路肩B2を考慮した路肩検出が可能となる。よって、車両1から路肩Bまでの距離Dに応じた適切な路肩検出が可能となり、車両1のより適切な自律走行制御が可能となる。
[第3実施形態]
 図12は、本発明の第3実施形態に係る車両1の路肩検出部2a,2bのスキャン方向を示す概略平面図である。本第3実施形態が前述した第2実施形態と異なるのは、第2実施形態は、路肩検出部2a,2bによる路面A上の計測点がなす交線L1a,L1bが車両1前方の中心位置で交差するように設定されているのに対し、第3実施形態は、これら交線L1a,L1bが車両1前方の中心位置よりも路肩B側に寄った位置で交差するように設定されている。なお、本第3実施形態において、第2実施形態と同一又は対応する部分には同一符号を付している。
 本第3実施形態においては、図12に示すように、各路肩検出部2a,2bによるスキャン面40a,40bと路面Aとが交差する交線L1a,L1bが交差しており、この交線L1a,L1bの交差点G1が、路面A上の車両1が走行する側、例えば左側通行の場合には、車両1の幅方向の中心位置よりも左側に寄った位置となるように、これら路肩検出部2a,2bのスキャン方向が設定されている。さらに、交差点G1は、車両本体1aの両側部より内側、具体的には路肩検出部2a,2b間の間隔Cの範囲内となるように設定されており、走行側に位置する路肩B寄りとされている。
 以上により、本第3実施形態においては、路肩検出部2a,2bによる路面A上の計測点がなす交線L1a,L1bが、路肩検出部2a,2b間の間隔C内であって、この車両1前方の中心位置よりも走行側の路肩B寄りの位置で交差するように路肩検出部2a,2bのスキャン方向が設定されている。すなわち、これら路肩検出部2a,2bによる路面A上の計測点は、路肩検出部2a,2b間の間隔C内になり得ないため、交線L1a,L1bの交差点G1が路肩検出部2a,2b間の間隔C内であれば、これら路肩検出部2a,2bによる路面A上の計測点、すなわちスキャン方向を、検出対象である路肩B側に寄せることにより、路肩検出部2aによる路肩検出点Paと、路肩検出部2bによる路肩検出点Pbとの間の距離Wを小さくでき、この小さな距離Wにおいての路肩Bの位置および向きを検出するため、車両1前方のより近接する部分の路肩Bを高精度に検出することができる。また同時に、交差点G1を路肩B寄りにすることにより、各路肩検出部2a,2bによる走査範囲を狭くすることも可能であり、これら路肩検出部2a,2bによるスキャン角度やスキャン範囲を狭くすることも可能となる。
[第4実施形態]
 図13は、本発明の第4実施形態に係る路肩検出システムを示す概略図である。本第4実施形態が前述した第1実施形態と異なるのは、第1実施形態は、1台の車両1にて計測した路肩形状情報を管制センタ200に送信するのに対し、第4実施形態は、複数の車両1,1a~1cにて計測した路肩形状情報を逐次、交通管制センタ200に送信する。なお、本第4実施形態において、第1実施形態と同一又は対応する部分には同一符号を付している。
 本第4実施形態においては、図13に示すように、路肩検出装置21および車体運動制御装置23に加え、自己位置計測装置22が各車両1に搭載されており、計測された路肩Bに対する車両1の向きα、および車両1から路肩Bまでの距離Dに関する情報や、路肩検出点Pa,Pbの外部座標系での検出位置情報等の路肩形状情報が、通信装置24を介して交通管制センタ200の通信装置31へ送信される。他の車両1a~1cも同様に、路肩検出装置21、自己位置計測装置22、車体運動制御装置23および通信装置24を備え、これら各車両1a~1cにて計測された路肩形状情報が、通信装置24を介して交通管制センタ200に送信される。
 交通管制センタ200は、各車両1,1a~1cから送信される路肩形状情報を、路肩データ記憶部32に記憶されている路肩形状マップと路肩形状比較装置33にて比較し、路肩形状比較装置33での比較により路肩形状情報が路肩形状マップと相違する場合に、その路肩形状情報のうちの路肩形状変化情報を変化データ記憶部34に記憶させる。
 以上により、本第4実施形態においては、路肩検出装置21、自己位置計測装置22、車体運動制御装置23および通信装置24を各車両1,1a~1cに備えさせることにより、各車両1,1a~1cから送信されてくる路肩形状情報に基づき、路肩データ記憶部32に記憶されている路肩形状マップとの相違箇所である路肩形状変化情報を変化データ記憶部34に記憶させ、路肩形状マップを逐次更新できる。
[第5実施形態]
 図14は、本発明の第5実施形態に係る路肩検出システム100を示す概略図である。本第5実施形態が前述した第4実施形態と異なるのは、第4実施形態は、車両1にて計測した路肩形状情報を交通管制センタ200に送信するものに対し、第5実施形態は、計測した路肩形状情報を交通管制センタ200へ送らず車両1内で用いる。なお、本第5実施形態において、第1実施形態と同一又は対応する部分には同一符号を付している。
 本第5実施形態においては、図14に示すように、通信装置24を除く、他の路肩検出システム100を構成する路肩検出装置21、自己位置計測装置22および車体運動制御装置23のそれぞれが車両1に搭載されている。そして、路肩計測装置21aにて算出した路肩Bに対する車体1の向きα、および車体1から路肩Bまでの距離Dが所定の範囲内で連続的に変化している場合に、路肩計測装置21aにて求めた路肩検出点Pa,Pbの外部座標系での検出位置を、路肩記憶部21bに記憶させている路肩データに対比させ、相違する場合に路肩データを更新させる。
 車両制御装置23eは、路肩計測装置21aにて算出した路肩Bに対する車体1の向きα、および車体1から路肩Bまでの距離Dに基づき、車両1の走行位置が、予め定めた所定の走行範囲を逸脱したかどうかを判断する構成とされ、所定の走行範囲を逸脱した場合に、駆動トルク制限装置23bや操舵制御装置23cを適宜制御して、車両1の走行位置を所定の走行範囲内とさせる。なお、算出した車両1の走行位置が、予め定めた所定の走行範囲を逸脱していると車両制御装置23eにて判断した場合に、運転席1bに設けた警報装置(図示せず)にてオペレータに音や光等による警報を与える構成としてもよい。
 以上により、本第5実施形態においては、路肩計測装置21aにて算出した路肩Bに対する車体1の向きα、および車体1から路肩Bまでの距離Dが所定の範囲内で連続的に変化している場合に、路肩計測装置21aにて求めた路肩検出点Pa,Pbの外部座標系での検出位置を、路肩記憶部21bに記憶させている路肩データに対比させ、相違する場合に路肩データを更新させる。
 また、路肩計測装置21aにて計測した路肩Bに対する車体1の向きα、および車体1から路肩Bまでの距離Dに基づき、車両1の車両制御装置23イにて車両1の走行位置を制御するため、車両制御装置23eによる車両1の自律走行制御をより適切かつ精度良くすることができる。
[第6実施形態]
 図15は、本発明の第6実施形態に係る車両1の低速走行時の路肩検出部の状態を示す概略図で、(a)は車両1の全体図、(b)は路肩検出部2aの部分拡大図である。図16は、車両1の高速走行時の路肩検出部2aの状態を示す概略図で、(a)は車両1の全体図、(b)は路肩検出部2aの部分拡大図である。図17は、車両1の路肩検出部2a,2bのスキャン方向を示す概略平面図である。なお、図15(a)および図16(a)においては、路肩検出部2bの記載を省略している。
 本第6実施形態が前述した第2実施形態と異なるのは、第2実施形態は、路肩検出部2a,2bが上側デッキ1fに固定し、これら路肩検出部2a,2bのスキャン方向を固定しているのに対し、第6実施形態は、これら路肩検出部2a,2bのスキャン方向を変更できる可動式としている。なお、本第6実施形態において、第2実施形態と同一又は対応する部分には同一符号を付している。
<構成>
 本第6実施形態においては、図15(b)および図16(b)に示すように、上側デッキ1fの前側角部の上側に、側面視三角形状の軸傾斜材2eを取り付けている。軸傾斜材2eは、上側デッキ1fの前側から後側に向けて下方に傾斜した傾斜面2fを有している。この傾斜面2f上に、路肩検出部2aによる路面Aに対する走査方向を変更させる走査方向変更部としての駆動機構2gを取り付けている。駆動機構2gは、略平板状に形成され、この駆動機構2gの上面上に、路肩検出部2aに固定された平板状の支持体2hを取り付けている。支持体2hは、鉛直軸の上側を車両の後方に傾けた軸を回転軸V1として駆動機構2g上に回転可能に取り付けている。路肩検出部2aは、そのスキャン面40aを軸傾斜材2eの傾斜面2fの傾斜角度ほど鉛直方向に対して傾けて取り付けている。よって、路肩検出部2aは、駆動機構2eにて支持体2fを回転させて、図15(a)および図15(b)に示すように、路肩検出部2aのスキャン面40aを前後方向に沿わせた位置から、図16(a)および図16(b)に示すように、そのスキャン面40aを路面Aの幅方向に沿わせた位置までに亘って、スキャン面40aが変更可能な構成としている。なお、路肩検出部2bも同様に、構成されている。
 車両制御装置23eは、車輪速計測部22aにて検出した前輪1dの回転速度に基づき、車両1の走行速度を算出し、この算出した走行速度に応じて駆動機構2gの回転駆動を制御する。具体的に、車両制御装置23eは、算出した走行速度が予め定めた所定速度より低い場合に、図17に示すように、各路肩検出部2a,2bによるスキャン面40a,40bと路面Aとの交線L1a1,L1b1の交点G1が、走行方向手前側、すなわち後側に移動するように各駆動機構2gにて支持体2hのそれぞれを内側に回転させる。また、車両制御装置23eは、算出した走行速度が予め定めた所定速度以上の場合に、各路肩検出部2a,2bによるスキャン面40a,40bと路面Aとの交線L1a2,L1b2の交点G2が、走行方向前方、すなわち前側に移動するように各駆動機構2gにて支持体2hのそれぞれを外側に回転させる。
<作用効果>
 一般に、車両1の走行速度が低い場合は、例えばカーブ、坂道、凹凸路面等の走行速度を抑える必要のある箇所を走行している場合であり、車両1に近接する部分の路肩Bの位置および向きを正確に検出し、路肩Bへの接触等を適切に防止する必要がある。一方、車両1の走行速度が高い場合は、直線路であり平坦な路面Aを走行している場合であるため、車両1に近接する路肩Bの位置および向きよりも、走行方向前方のより広範囲に亘る路肩検出が求められる。
 そこで、上記第6実施形態においては、車輪速計測部22aにて検出した前輪1dの回転速度に基づく車両1の走行速度が予め定めた所定速度より低い場合に、車両制御装置23eにて各駆動機構2gをそれぞれ制御して、路肩検出部2aによる路面A上の交線L1a1と、路肩検出部2bによる路面Aの交線L1b1との交点G1の位置を、車両1の走行方向手前側に移動させる。この結果、路肩検出部2aにて検出した路肩検出点Paと、路肩検出部2bにて検出した路肩検出点Pb1との間の距離W1を小さくできるため、車両1に近接する部分の路肩Bをより高精度に検出することができる。さらに、車輪速計測部22aにて検出した前輪1dの回転速度に基づく車両1の走行速度が予め定めた所定速度以上の場合には、車両制御装置23eにて各駆動機構2gをそれぞれ制御して、路肩検出部2aによる路面A上の交線L1a2と、路肩検出部2bによる路面Aの交線L1b2との交点G2の位置を、車両1の走行方向前側に移動させる。この結果、路肩検出部2aにて検出した路肩検出点Paと、路肩検出部2bにて検出した路肩検出点Pb2との間の距離W2を大きくできるため、より広範囲に亘る路肩Bを考慮した路肩検出が可能となる。よって、車両1の走行速度に応じた適切な路肩検出が可能となり、車両1のより適切な自律走行制御が可能となる。
[その他]
 なお、本発明は前述した実施形態に限定されるものではなく、様々な変形態様が含まれる。例えば、前述した実施形態は、本発明を分りやすく説明するために説明したものであり、本発明は、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 さらに、上記各実施形態においては、鉱山用の自律走行式のオフロードダンプトラックを例として車両1を説明したが、オペレータによる操作にて走行させる有人走行式のダンプトラックや、その他の車両1においても、本発明に係る路肩検出システム100を搭載させて路肩検出を行うこともできる。
 また、上記各実施形態においては、2台の路肩検出部2a,2bを、車両本体1aの前側の左右方向の中心位置から等間隔離間させた位置に設置したが、これら路肩検出部2a,2bの設置位置としては、路肩Bまでの距離を検出できる位置であれば、どのような位置であってもよい。これら路肩検出部2a,2bとしてレーザスキャナを例として説明したが、路肩Bまでの距離を検出できれば、レーザスキャナ以外でも良い。
 さらに、上記第6実施形態においては、軸傾斜材2e上に駆動機構2gを取り付けて、路肩検出部2a,2bのスキャン面40a,40bを傾斜させ、これら駆動機構2gにて路肩検出部2a,2bを回転させた際のスキャン面40a,40bの移動距離を確保しているが、図18(a)~図18(c)に示す第7実施形態のように、上側デッキ1fの前側角部の上側に駆動機構2eを取り付け、鉛直軸を回転軸V2とする構成としてもよい。この場合には、駆動機構2eにて支持体2fを水平方向に回転させることにより、路肩検出部2aのスキャン面40aを図18(b)に示す前後方向から図18(c)に示す左右方向まで変更させることができる。したがって、上記第6実施形態よりも各路肩検出部2aのスキャン面40aの移動距離が小さいものの、路肩検出部2aによる路面A上の交線L1aと、路肩検出部2bによる路面Aの交線L1bとの交点Gの位置を、車両1の走行方向に沿って移動させることができる。
 また、上記第6実施形態においては、予め定めた所定速度を基準とし、この所定速度より車両1の走行速度が低い場合に、路肩検出部2a,2bの交線L1a,L1bとの交点Gの位置を、車両1の走行方向手前側に移動させ、所定速度より車両1の走行速度が高い場合に、路肩検出部2a,2bの交線L1a,L1bとの交点Gの位置を、車両1の走行方向前側に移動させる二段階切替式としたが、車両1の走行速度に応じて交点Gの位置をリニアに切り替えるリニア切替式や、車両1の走行速度に応じてステップ状に切り替える多段階切替式としてもよい。
 さらに、上記第6実施形態においては、路肩Bの検出に際し、図11に示すように、交線L1、L2を算出しその路肩検出点Pa、Pbを求めたが、各路肩検出部2a,2bにおいて光軸の回転角度とその回転角度における測距結果(各路肩検出部2a,2bと計測点との間の距離)とを対応づけて求め、距離の変化率の変化に基づいて路肩検出点Pa,Pbを求めてもよい。図19に、本発明の第8実施形態に係る車両1による光軸回転角度に対応した測距結果を示すプロファイルを示す。図11に示すように、路肩検出部2a,2bの光軸をNi-1、Ni、Ni+1と走査すると、その計測点は車両1に近づき(距離は減少関数を示す)、車両1に最も近づいた後、計測点は車両1から遠ざかる(距離は増加関数を示す)。そして、路肩Bの斜面にレーダが照射されると、路面Aよりも路肩Bの斜面の方がZ軸方向に立ち上がっているため、その高さに応じて光軸との交点(計測点)までの距離が短くなる。したがって、図19に示すプロファイルでは、レーザの照射位置が路面Aから路肩Bに移動すると、距離の増え方が緩やかになる。そこで、距離の増加率Δdが、正の値の範囲かつ増加率が減少した点を交点Pとして検出してもよい。
 1  車両(鉱山用運搬車両)
 1a 車両本体
 1d 前輪(車輪)
 1e 後輪(車輪)
 2a,2b 路肩検出部
 2g  駆動機構(走査方向変更部)
 21a 路肩計測装置(路肩計測部)
 21b 路肩記憶部(記憶部)
 21c 比較部
 22a 車輪速計測部(速度検出部)
 23e 車両制御装置(制御部)
 40a,40b スキャン面
 100 路肩検出システム

Claims (8)

  1.  車両の走行方向に対して前記車両よりも前方の路面を走査して、前記路面に位置する路肩を検出するための路肩検出部と、
     前記路肩検出部にて検出した前記路肩に対する前記車両の向きと、前記路肩までの距離とを計測する路肩計測部とを備え、
     前記路肩検出部は、前記車両の走行方向側に2つ設置している
     ことを特徴とする路肩検出システム。
  2.  請求項1の路肩検出システムにおいて、
     前記2つの路肩検出部は、それぞれの前記路肩検出部を中心として所定の角度毎に前記車両の走行方向前方の路面までの距離を線状に走査する構成とされ、一方の前記路肩検出部による路面上の走査線と、他方の前記路肩検出部による路面上の走査線とが交差するように設置している
     ことを特徴とする路肩検出システム。
  3.  請求項1の路肩検出システムにおいて、
     前記車両が走行する走行路の路肩形状を基準路肩形状として記憶した記憶部を備え、
     前記路肩計測部は、前記2つの路肩検出部のうちの一方の前記路肩検出部にて検出して求めた路肩形状と前記記憶部に記憶させた基準路肩形状とを比較する比較部を有し、この比較部での比較に基づき前記路肩に対する前記車両の向きと、前記路肩までの距離とを計測する
     ことを特徴とする路肩検出システム。
  4.  請求項1の路肩検出システムにおいて、
     前記車両は、車輪を有し、
     前記2つの路肩検出部は、前記車両に取り付け、前記車輪の上端よりも高い位置に設置している
     ことを特徴とする路肩検出システム。
  5.  請求項1の路肩検出システムにおいて、
     前記2つの路肩計測部は、前記路肩検出部による路面上の走査線と、前記路肩検出部による前記路肩斜面上の走査線との交点を、路肩計測点とする
     ことを特徴とする路肩検出システム。
  6.  請求項5の路肩検出システムにおいて、
     前記路肩計測部は、前記2つの路肩検出部にて検出した2つの路肩計測点の前記車両に対する相対位置と、前記記憶部に記憶させた基準路肩形状とに基づいて、前記路肩に対する前記車両の向きと、前記路肩までの距離とを計測する
     ことを特徴とする路肩検出システム。
  7.  車両本体と、
     前記車両本体の走行方向に対して前記車両本体よりも前方の路面を走査して、前記路面に位置する路肩を検出するための路肩検出部と、
     前記路肩検出部にて検出した前記路肩に対する前記車両本体の向きと、前記路肩までの距離とを計測する路肩計測部とを備え、
     前記路肩検出部は、前記車両本体の走行方向側に2つ設置している
     ことを特徴とする鉱山用運搬車両。
  8.  車両の走行方向に対して前記車両よりも前方の路面を走査して、前記路面に位置する路肩を検出するための路肩検出部と、
     前記路肩検出部による前記路面に対する走査方向を変更させる走査方向変更部と、
     前記路肩検出部にて検出した前記路肩に対する前記車両の向きと、前記路肩までの距離とを計測する路肩計測部と、
     前記車両の走行速度を検出するための速度検出部と、
     前記走査方向変更部を制御する制御部とを備え、
     前記路肩検出部は、前記車両の走行方向側に2つ設置され、
     前記走査方向変更部は、前記2つの路肩検出部のそれぞれに設けられ、
     前記2つの路肩検出部は、それぞれの前記路肩検出部を中心として所定の角度毎に前記車両の走行方向前方の路面までの距離を線状に走査する構成とされ、一方の前記路肩検出部による路面上の走査線と、他方の前記路肩検出部による路面上の走査線とが交差するように設置し、
     前記制御部は、前記速度検出部にて検出する前記車両の走行速度に応じ、前記走査方向変更部を制御して、前記一方の路肩検出部による路面上の走査線と、前記他方の路肩検出部による路面上の走査線との交点位置を、前後方向に移動する
     ことを特徴とする路肩検出システム。
PCT/JP2015/056381 2014-04-28 2015-03-04 路肩検出システムおよび鉱山用運搬車両 WO2015166705A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2941987A CA2941987C (en) 2014-04-28 2015-03-04 Road shoulder-detecting system and transportation vehicle for mining
CN201580010327.XA CN106030682B (zh) 2014-04-28 2015-03-04 路肩检测系统以及矿山用搬运车辆
EP15786571.8A EP3139361B1 (en) 2014-04-28 2015-03-04 Road-shoulder-detecting system and transportation vehicle for mining
US15/124,107 US9997075B2 (en) 2014-04-28 2015-03-04 Road shoulder-detecting system and transportation vehicle for mining
AU2015254491A AU2015254491B2 (en) 2014-04-28 2015-03-04 Road-shoulder-detecting system and transportation vehicle for mining
AU2018201164A AU2018201164B2 (en) 2014-04-28 2018-02-16 Road-shoulder-detecting system and transportation vehicle for mining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014093076A JP6374695B2 (ja) 2014-04-28 2014-04-28 路肩検出システムおよび鉱山用運搬車両
JP2014-093076 2014-04-28

Publications (1)

Publication Number Publication Date
WO2015166705A1 true WO2015166705A1 (ja) 2015-11-05

Family

ID=54358446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056381 WO2015166705A1 (ja) 2014-04-28 2015-03-04 路肩検出システムおよび鉱山用運搬車両

Country Status (7)

Country Link
US (1) US9997075B2 (ja)
EP (1) EP3139361B1 (ja)
JP (1) JP6374695B2 (ja)
CN (1) CN106030682B (ja)
AU (2) AU2015254491B2 (ja)
CA (1) CA2941987C (ja)
WO (1) WO2015166705A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097479A (ja) * 2015-11-19 2017-06-01 日立建機株式会社 自己位置推定装置の異常検知装置及び車両
CN106980314A (zh) * 2017-03-14 2017-07-25 联想(北京)有限公司 一种运动控制方法及电子设备
CN109952546A (zh) * 2016-08-26 2019-06-28 克朗设备公司 物料搬运车辆中的多场扫描工具

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6757676B2 (ja) * 2017-02-14 2020-09-23 日立建機株式会社 運搬車両及び路面推定方法
EP3367128B1 (de) * 2017-02-22 2020-10-28 Leuze electronic GmbH + Co. KG Überwachungsanordnung
JP6796041B2 (ja) 2017-09-07 2020-12-02 日立建機株式会社 安全運転支援装置
KR20190050633A (ko) 2017-11-03 2019-05-13 주식회사 만도 운전자 상태 기반 차량 제어 시스템 및 방법
JP6900897B2 (ja) * 2017-12-25 2021-07-07 コベルコ建機株式会社 建設機械の障害物検出装置
JP6722876B2 (ja) * 2017-12-26 2020-07-15 クモノスコーポレーション株式会社 三次元レーザー光走査装置
CN110549943A (zh) * 2018-06-01 2019-12-10 新疆北方建设集团有限公司 一种基于路肩的检测装置及车载检测装置
US11470760B2 (en) 2018-08-13 2022-10-18 Raven Industries, Inc. Comparative agricultural obstacle monitor and guidance system and method for same
JP7040637B2 (ja) * 2018-10-29 2022-03-23 村田機械株式会社 天井走行車、天井走行車システム、及び障害物の検出方法
US11860643B2 (en) 2019-07-02 2024-01-02 Liebherr Mining Equipment Newport News Co. System for controlling a plurality of autonomous vehicles on a mine site
US11927457B2 (en) 2019-07-10 2024-03-12 Deka Products Limited Partnership System and method for real time control of an autonomous device
CN110491174A (zh) * 2019-08-26 2019-11-22 浙江华是科技股份有限公司 一种内河船舶桥梁防撞检测系统及方法
JP2021128038A (ja) * 2020-02-13 2021-09-02 キヤノン株式会社 光学装置、それを備える車載システム及び移動装置
DE102021109425B3 (de) * 2021-04-15 2022-07-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Steuern eines Fahrzeugs und Steuervorrichtung für ein Fahrzeug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221620A (ja) * 2000-02-10 2001-08-17 Nippon Hodo Co Ltd 構造物表面の光走査方法
JP2012238230A (ja) * 2011-05-12 2012-12-06 Mitsubishi Heavy Ind Ltd 自律走行装置及び自律走行方法並びにそのプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141294B4 (de) * 2001-08-23 2016-12-08 Sick Ag Verfahren zur Bodenerkennung
JP2004157934A (ja) 2002-11-08 2004-06-03 Komatsu Ltd 車両の走行制御装置
JP4852919B2 (ja) * 2005-07-25 2012-01-11 アイシン・エィ・ダブリュ株式会社 車両乗上制御システム及び車両乗上制御方法
JP5089545B2 (ja) * 2008-09-17 2012-12-05 日立オートモティブシステムズ株式会社 道路境界検出判断装置
JP5363085B2 (ja) * 2008-12-03 2013-12-11 株式会社小糸製作所 前照灯制御装置
JP5267095B2 (ja) * 2008-12-11 2013-08-21 トヨタ自動車株式会社 走行状態評価装置
JP5213803B2 (ja) * 2009-07-07 2013-06-19 日立建機株式会社 路肩崩落リスク監視装置及び運搬車両
US8633810B2 (en) * 2009-11-19 2014-01-21 Robert Bosch Gmbh Rear-view multi-functional camera system
JP5138665B2 (ja) * 2009-12-10 2013-02-06 日立建機株式会社 ダンプ車両の転倒防止装置
JP5325765B2 (ja) * 2009-12-28 2013-10-23 日立オートモティブシステムズ株式会社 路肩検出装置及び路肩検出装置を用いた車両
KR101694292B1 (ko) * 2010-12-17 2017-01-09 한국전자통신연구원 스테레오 영상 정합 장치 및 그 방법
US8768583B2 (en) * 2012-03-29 2014-07-01 Harnischfeger Technologies, Inc. Collision detection and mitigation systems and methods for a shovel
KR101927155B1 (ko) * 2012-10-19 2018-12-10 현대자동차 주식회사 도로 갓길의 공간 인지 방법 및 시스템
JP6194604B2 (ja) * 2013-03-15 2017-09-13 株式会社リコー 認識装置、車両及びコンピュータが実行可能なプログラム
CN105765966B (zh) * 2013-12-19 2020-07-10 英特尔公司 碗形成像系统
US11443331B2 (en) * 2014-02-13 2022-09-13 Conduent Business Solutions, Llc Multi-target tracking for demand management
JP6386794B2 (ja) * 2014-06-04 2018-09-05 日立建機株式会社 運搬車両

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221620A (ja) * 2000-02-10 2001-08-17 Nippon Hodo Co Ltd 構造物表面の光走査方法
JP2012238230A (ja) * 2011-05-12 2012-12-06 Mitsubishi Heavy Ind Ltd 自律走行装置及び自律走行方法並びにそのプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3139361A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097479A (ja) * 2015-11-19 2017-06-01 日立建機株式会社 自己位置推定装置の異常検知装置及び車両
CN108139755A (zh) * 2015-11-19 2018-06-08 日立建机株式会社 自己位置推定装置的异常检测装置以及车辆
EP3379363A4 (en) * 2015-11-19 2019-09-04 Hitachi Construction Machinery Co., Ltd. DEVICE FOR DETECTING ERRORS IN LOCATION DEVICES AND VEHICLE
CN108139755B (zh) * 2015-11-19 2021-02-12 日立建机株式会社 自己位置推定装置的异常检测装置以及车辆
CN109952546A (zh) * 2016-08-26 2019-06-28 克朗设备公司 物料搬运车辆中的多场扫描工具
CN106980314A (zh) * 2017-03-14 2017-07-25 联想(北京)有限公司 一种运动控制方法及电子设备
CN106980314B (zh) * 2017-03-14 2020-11-20 联想(北京)有限公司 一种运动控制方法及电子设备

Also Published As

Publication number Publication date
CA2941987C (en) 2020-01-07
AU2015254491B2 (en) 2018-03-01
US20170018188A1 (en) 2017-01-19
EP3139361B1 (en) 2020-01-29
AU2015254491A1 (en) 2016-09-22
CN106030682A (zh) 2016-10-12
CN106030682B (zh) 2019-06-18
AU2018201164B2 (en) 2020-01-02
JP6374695B2 (ja) 2018-08-15
JP2015210734A (ja) 2015-11-24
EP3139361A4 (en) 2018-01-10
US9997075B2 (en) 2018-06-12
CA2941987A1 (en) 2015-11-05
EP3139361A1 (en) 2017-03-08
AU2018201164A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6374695B2 (ja) 路肩検出システムおよび鉱山用運搬車両
JP6386794B2 (ja) 運搬車両
US10800406B2 (en) Mining machine, management system of mining machine, and management method of mining machine
JP6284741B2 (ja) 後退支援装置
US11292469B2 (en) Dump truck and reversing assistance device
US10466709B2 (en) Autonomous driving vehicle and autonomous driving system
CN108139755B (zh) 自己位置推定装置的异常检测装置以及车辆
WO2016051818A1 (ja) 障害物回避システム
WO2016121688A1 (ja) 運搬用車両の障害物検出装置
JP2015210734A5 (ja)
JP6718341B2 (ja) 鉱山用作業機械及びその後方監視方法
JP2007193495A (ja) 移動車両
JP6990600B2 (ja) 自律走行システム
JP6293328B2 (ja) 路肩検出システムおよび鉱山用運搬車両
JP6387135B2 (ja) 路肩検出システムおよび鉱山用運搬車両
Dragt et al. An overview of the automation of load-haul-dump vehicles in an underground mining environment
JP6761845B2 (ja) ダンプトラックの制御システム、及びダンプトラック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786571

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15124107

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2941987

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015786571

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015786571

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015254491

Country of ref document: AU

Date of ref document: 20150304

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE