WO2015166554A1 - 除染システム - Google Patents

除染システム Download PDF

Info

Publication number
WO2015166554A1
WO2015166554A1 PCT/JP2014/061968 JP2014061968W WO2015166554A1 WO 2015166554 A1 WO2015166554 A1 WO 2015166554A1 JP 2014061968 W JP2014061968 W JP 2014061968W WO 2015166554 A1 WO2015166554 A1 WO 2015166554A1
Authority
WO
WIPO (PCT)
Prior art keywords
decontamination
gas
liquid
hydrogen peroxide
mixture
Prior art date
Application number
PCT/JP2014/061968
Other languages
English (en)
French (fr)
Inventor
川崎 康司
角田 大輔
純 益留
Original Assignee
株式会社エアレックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアレックス filed Critical 株式会社エアレックス
Priority to CN201480078194.5A priority Critical patent/CN106232148B/zh
Priority to US15/300,729 priority patent/US10426856B2/en
Priority to DK14891060.7T priority patent/DK3138583T3/da
Priority to EP14891060.7A priority patent/EP3138583B1/en
Priority to PCT/JP2014/061968 priority patent/WO2015166554A1/ja
Priority to JP2016515798A priority patent/JPWO2015166554A1/ja
Priority to KR1020167029722A priority patent/KR102206230B1/ko
Publication of WO2015166554A1 publication Critical patent/WO2015166554A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/208Hydrogen peroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/12Apparatus for isolating biocidal substances from the environment
    • A61L2202/121Sealings, e.g. doors, covers, valves, sluices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/25Rooms in buildings, passenger compartments
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination

Definitions

  • the present invention relates to a decontamination system that performs decontamination by generating a decontamination gas in a room such as an aseptic room, a clean room, or a hospital room.
  • hydrogen peroxide gas has been adopted for decontamination of work rooms such as aseptic rooms (hereinafter referred to as decontamination target rooms) in place of formalin gas harmful to the human body.
  • This hydrogen peroxide gas has a powerful sterilization effect, is inexpensive and easily available, and is effective as an environmentally friendly decontamination gas that eventually decomposes into oxygen and water.
  • hydrogen peroxide gas has been conventionally used for decontamination of small spaces such as isolators and glove boxes.
  • a large amount of hydrogen peroxide gas of a predetermined concentration must be stably supplied.
  • a sterilization liquid vaporizer that can easily control the concentration of sterilization gas (hydrogen peroxide gas) and can supply a large amount of sterilization gas (hydrogen peroxide gas). Proposed.
  • This sterilizing liquid vaporizer sprays hydrogen peroxide water into air heated to a high temperature by a heating means to form hydrogen peroxide gas, and includes two temperature sensors on the downstream side of the spraying means. The heating means is controlled from the temperature difference between these temperature sensors to stabilize the hydrogen peroxide gas concentration.
  • the large amount of hydrogen peroxide gas generated by these decontamination gas generators is a vaporized hydrogen peroxide solution, which is a mixed gas state of hydrogen peroxide and water vapor.
  • This hydrogen peroxide gas has a low density and is supplied to the decontamination target chamber through a large-diameter duct. Therefore, in order to stably supply the hydrogen peroxide gas adjusted to a predetermined concentration by the decontamination gas generator to the decontamination target chamber, the duct is sufficiently warmed by a heater to prevent condensation in the duct. There is a need to. If the heat insulation by the heater is insufficient, the supplied hydrogen peroxide gas is condensed in the duct and the supply concentration and supply amount to the decontamination target chamber are insufficient. Further, the hydrogen peroxide solution generated by the condensation is heated, and there is a problem that the inside of the duct is corroded.
  • the decontamination target room is not limited to one room, and it is necessary to decontaminate a plurality of decontamination target rooms at the same time.
  • the present invention addresses the above-mentioned problems, and does not require large-scale equipment such as a large-diameter duct or a condensation-preventing heater, and a long distance for each decontamination target room. It is an object of the present invention to provide a decontamination system that can supply a precise amount of decontamination gas for each chamber.
  • the present inventors supply mixed mist obtained by mixing hydrogen peroxide water into compressed air using a small-diameter supply pipe to each decontamination target chamber using the supply pipe.
  • the present invention was completed by vaporizing the mixed mist in the vicinity of the dyeing target room or in the room to generate hydrogen peroxide gas.
  • the decontamination system is A decontamination system (100) for decontaminating the interior of each decontamination target chamber using a decontamination gas for one or more decontamination target chambers (R1 to R4), Compressed air generating means (10) for generating compressed air, and decontamination liquid supply means (20) for supplying a decontamination liquid that is a source of decontamination gas,
  • a gas-liquid regulator 31 to 35
  • a gas mixture for decontamination which is a mixture of the compressed air and the decontamination liquid
  • a gas generator (41 to 45) for generating decontamination gas
  • an air supply pipe (11 to 15) communicating from the compressed air generating means to the gas-liquid regulator
  • the present invention provides the decontamination system according to claim 1, About one or more or all decontamination target rooms among one or more decontamination target rooms,
  • Ax transport distance of the gas-liquid supply pipe included in each decontamination target chamber
  • Bx transport distance of the corresponding decontamination liquid supply pipe
  • the present invention provides the decontamination system according to claim 2,
  • the compressed air supplied from the compressed air generating means to the gas-liquid regulator through the air supply pipe has a discharge pressure of 0.05 MPa and an air flow rate with respect to each gas-liquid regulator. 5 NL / min to 70 NL / min,
  • the decontamination liquid supplied from the decontamination liquid supply means to the gas mixture liquid regulator via the decontamination liquid supply pipe has a flow rate of 0.3 mL / min with respect to each gas mixture liquid regulator. It is characterized by ⁇ 30 mL / min.
  • the present invention provides the decontamination system according to any one of claims 1 to 3, Water supply means (70) for supplying water for conditioning each decontamination target chamber (R1 to R4); Each decontamination target chamber has a water supply pipe (71 to 75) communicating between the water supply means and the gas-liquid regulator, Supplying water through the water supply pipe and supply of the decontamination liquid through the decontamination liquid supply pipe (21-25) to the gas mixture liquid regulator (31-35).
  • the gas-liquid regulator adjusts the humidified gas-liquid mixture obtained by mixing the compressed air and water
  • the gas mixture (41 to 45) is supplied to the gas generator (41 to 45) via the gas mixture liquid supply pipe (61 to 65) to vaporize the humidified gas mixture and generate a humidifying gas composed of water vapor.
  • the gas mixture liquid regulator adjusts a decontamination gas mixture liquid in which the compressed air and the decontamination liquid are mixed.
  • a gas mixture for decontamination is supplied to the gas generator via the gas mixture liquid supply pipe to vaporize the gas mixture for humidification to generate a gas for decontamination.
  • the decontamination method according to the present invention is Using the decontamination system according to any one of claims 1 to 3, By supplying the decontamination liquid to the gas mixture liquid regulator, the inside of each decontamination target chamber is decontaminated with the decontamination gas vaporized by the gas generator.
  • the decontamination method according to the present invention includes Using the decontamination system according to claim 4, First, by supplying water to the gas-liquid regulator, the humidity in each decontamination target chamber is adjusted to a preset value with the humidifying gas vaporized by the gas generator, Next, by supplying the decontamination liquid to the gas-liquid mixture regulator, the inside of each decontamination target chamber after dehumidification is decontaminated with the decontamination gas vaporized by the gas generator. It is characterized by that.
  • the decontamination liquid which is a generation source of the decontamination gas
  • the gas mixture liquid regulator to become a gas mixture liquid.
  • This mixed gas / liquid is supplied to the gas generator via the mixed gas / liquid supply pipe and gasified to become a decontamination gas.
  • the gas-liquid mixture is a mixture of compressed air and liquid, is in a high density state, and has a high transport speed. Therefore, a small-diameter pipe can be used as the gas-liquid supply pipe.
  • the hydrogen peroxide solution in the gas mixture is in a liquid state, there is no need to keep the gas mixture liquid supply pipe warm in order to prevent condensation. Therefore, even when there are a plurality of decontamination target chambers and a long distance supply pipe is provided for each decontamination target chamber, a large facility such as a condensation prevention heater is not required.
  • the compressed air generating means and the decontamination liquid supply means are common to the respective decontamination target chambers, while the mixed gas-liquid regulator and gas generator and the mixture connecting them are used.
  • a gas-liquid supply pipe (hereinafter referred to as “decontamination unit”) is arranged for each decontamination target room. Accordingly, the compressed air generation means, the decontamination liquid supply means, and the gas mixture liquid regulators can be disposed at positions separated from the respective decontamination target chambers.
  • each gas generator is disposed in the vicinity or in the corresponding decontamination target chamber. In this way, a separate decontamination unit is provided for each decontamination target chamber, the transport distance of the decontamination liquid supply pipe is shortened, and the transport distance of the gas mixture liquid supply pipe is lengthened.
  • the decontamination liquid supply pipe by shortening the transport distance of the decontamination liquid supply pipe, it is possible to accurately grasp the supply amount of the decontamination liquid to the gas mixture liquid regulator. This makes it possible to accurately grasp the amount of decontamination liquid supplied to the gas generator for each decontamination target chamber, and to clarify the amount of decontamination gas released to the decontamination target chamber. .
  • the hydrogen peroxide solution in the gas-liquid mixture since the hydrogen peroxide solution in the gas-liquid mixture is in a liquid state and does not condense, the decontamination liquid can be accurately conveyed far by increasing the conveyance distance of the gas-liquid supply pipe. Furthermore, since the hydrogen peroxide solution in the pipe can be completely transported by the compressed air, no dead liquid remains in the pipe.
  • the present invention it is not necessary to use large-scale equipment such as a large-diameter duct or a condensation-preventing heater, and a long-distance pipe is possible for each decontamination target chamber, and In addition, it is possible to provide a decontamination system capable of supplying an accurate amount of decontamination gas for each chamber.
  • the conveyance distance Ax of mixed gas liquid supply piping is the distance of 3 times or more of the conveyance distance Bx of decontamination liquid supply piping. Also good. As a result, the transport distance of the gas-liquid supply pipe can be increased and the decontamination liquid can be transported accurately far. Therefore, also in the structure of the said Claim 2, the effect similar to Claim 1 can be achieved further.
  • the compressed air supplied to each gas-liquid regulator may have a discharge pressure of 0.05 MPa or more and an air flow rate of 5 NL / min to 70 NL / min. Good.
  • the decontamination liquid supplied to each gas-liquid regulator may have a flow rate of 0.3 mL / min to 30 mL / min. This makes it possible to adjust the gas / liquid mixture in each gas / liquid regulator and to convey the gas / liquid mixture via the gas / liquid supply pipe. Therefore, also in the structure of the said Claim 3, the effect similar to Claim 2 can be achieved further.
  • the water supply means and water supply piping are further provided, and water supply and decontamination via a water supply piping are provided with respect to each gas-liquid regulator. You may make it switch supply of the decontamination liquid via liquid supply piping.
  • the humidified gas-liquid mixture in which compressed air and water are mixed is adjusted by the gas-liquid regulator.
  • This humidified gas-liquid mixture is supplied to the gas generator via the gas-liquid supply pipe and is vaporized to generate water vapor to humidify the decontamination target chamber.
  • the humidity state in the decontamination target room can be brought into an appropriate state by decontamination with the decontamination gas.
  • the gas-liquid mixture for decontamination is prepared by mixing the compressed air and the decontamination liquid with the gas-liquid regulator.
  • This decontamination gas mixture liquid decontaminates the decontamination target chamber after humidity control. Therefore, in the structure of the said Claim 4, since decontamination can be performed after performing humidity control of the decontamination object chamber, the effect similar to Claim 1 can be achieved further.
  • a decontamination method using the decontamination system described in claim 4 can be provided. Thereby, in the decontamination method, the same effect as the decontamination system according to claim 4 can be achieved.
  • FIG. 1 is a schematic configuration diagram of a decontamination system 100 according to the first embodiment.
  • aseptic chambers clean rooms
  • R1 to R4 decontamination target chambers
  • a door is provided, respectively, and these doors may be decontaminated in a released state, or these doors may be decontaminated in a closed state.
  • decontamination is performed with these doors open at the time of decontamination.
  • the decontamination system 100 has a common air compressor 10 and a hydrogen peroxide tank 20 in each of the decontamination target chambers R1 to R4. Further, the decontamination target chambers R1 to R4 include ejectors 31 to 35, evaporators 41 to 45, and circulation fans 51 to 55 corresponding to the respective chambers.
  • the air compressor 10 acts as compressed air generating means for generating compressed air as a carrier gas for transporting the hydrogen peroxide solution.
  • the air compressor 10 is disposed at a position away from the decontamination target chambers R1 to R4.
  • the hydrogen peroxide water tank 20 acts as a decontamination liquid supply means for storing hydrogen peroxide water that is a generation source of hydrogen peroxide gas as a decontamination gas.
  • the hydrogen peroxide tank 20 is disposed in the vicinity of the air compressor 10 at a position away from the decontamination target chambers R1 to R4.
  • the concentration of the hydrogen peroxide solution stored in the hydrogen peroxide solution tank 20 is not particularly limited, but generally, the concentration of 30 to 35% by weight should be used in consideration of the handling of hazardous materials. Is preferred.
  • the ejectors 31 to 35 act as a gas-liquid regulator for adjusting a mixed mist obtained by mixing hydrogen peroxide water in compressed air.
  • the ejectors 31 to 35 are disposed in the vicinity of the air compressor 10 and the hydrogen peroxide tank 20 at positions apart from the decontamination target chambers R1 to R4.
  • the evaporators 41 to 45 vaporize the mixed mist containing the hydrogen peroxide solution conveyed from the ejectors 31 to 35 to form a mixed gas of hydrogen peroxide and water vapor (hereinafter referred to as “hydrogen peroxide gas”). Acts as a gas generator.
  • the evaporators 41 to 45 have a heated evaporation plate and evaporate the supplied mixed mist. The temperature of the evaporating plate is sufficient if it has a sufficient amount of heat for vaporization, but generally it may be about 110 to 200 ° C.
  • the evaporators 41 to 45 are disposed outside the upper walls of the decontamination target chambers R1 to R4.
  • the circulation fans 51 to 55 uniformly circulate the hydrogen peroxide gas released from the evaporators 41 to 45 to the decontamination target chambers R1 to R4.
  • the circulation fans 51 to 55 are disposed in the respective decontamination target chambers below the evaporators 41 to 45. Hydrogen peroxide gas released from the discharge ports of the evaporators 41 to 45 is supplied to the outlets of the circulation fans 51 to 55 and circulates in the respective decontamination target chambers.
  • two sets of decontamination units (two ejectors 32 and 33, two evaporators 42 and 43, and two mixed mist pipes 62 and 63 described later) and two circulation fans are provided. 52 and 53 are arranged.
  • more than two sets of decontamination units may be provided in one room. Even when a plurality of decontamination units are provided in one room in this way, the piping has a small diameter, and there is no problem in terms of equipment costs.
  • the decontamination system 100 includes an air pipe 11 to 15 that communicates with the air compressor 10 and the ejectors 31 to 35, and a hydrogen peroxide that communicates between the hydrogen peroxide tank 20 and the ejectors 31 to 35.
  • Water pipes 21 to 25, and mixed mist pipes 61 to 65 for communicating the ejectors 31 to 35 and the evaporators 41 to 45 are provided.
  • the air pipes 11 to 15 communicate the discharge port of the air compressor 10 and the drive flow paths (not shown) of the ejectors 31 to 35. Open / close valves 11a to 15a for controlling the supply of compressed air are provided in the pipes of the air pipes 11 to 15, respectively.
  • the material and the pipe diameter of the air pipes 11 to 15 are not particularly limited, but in general, a stainless steel pipe having an inner diameter of 1 to 10 mm is preferable.
  • an air dryer, an air regulator, an auto drain, an oil mist separator, other filters, etc. are provided in the pipe line between the air compressor 10 and the air pipes 11 to 15. Also good.
  • the hydrogen peroxide water pipes 21 to 25 communicate the supply port of the hydrogen peroxide water tank 20 with the suction flow paths (not shown) of the ejectors 31 to 35.
  • Tube pumps 21a to 25a for controlling the supply of hydrogen peroxide water are provided in the pipes of the hydrogen peroxide water pipes 21 to 25, respectively.
  • the material and the pipe diameter of the hydrogen peroxide water pipes 21 to 25 are not particularly limited as long as they can be used for the hydrogen peroxide water, but are generally stainless steel pipes having an inner diameter of 1 to 10 mm. It is preferable.
  • the mixed mist pipes 61 to 65 communicate the discharge passages of the ejectors 31 to 35 with the evaporators 41 to 45.
  • the mixed mist pipes 61 to 65 are provided with a long distance from the vicinity of the air compressor 10 and the hydrogen peroxide tank 20 to the positions of the evaporators 41 to 45 disposed outside the upper walls of the decontamination target chambers R1 to R4. Has been.
  • the material and pipe diameter of the mixed mist pipes 61 to 65 it is preferable that a necessary amount of hydrogen peroxide mist per unit time can be conveyed over a long distance, and generally an inner diameter of 1 to 10 mm.
  • the stainless steel tube is preferable.
  • the decontamination target chambers R1 to R4 are provided with the air pipes 11 to 15, the hydrogen peroxide water pipes 21 to 25, and the mixed mist pipes 61 to 65, respectively. Each time, the hydrogen peroxide gas can be released separately, and accurate decontamination can be performed for each chamber.
  • the transport distance of the mixed mist pipes 61 to 65 is longer than the transport distance of the air pipes 11 to 15 or the transport distance of the hydrogen peroxide water pipes 21 to 25.
  • the transport distance of the mixed mist through the mixed mist pipes 61 to 65 is not particularly limited, but can normally be transported by about 3 to 100 m.
  • the transport distance of the air pipes 11 to 15 or the transport distance of the hydrogen peroxide water pipes 21 to 25 can be shortened.
  • the transport distance of the mixed mist pipes 61 to 65 is Ax
  • the transport distance of the hydrogen peroxide water pipes 21 to 25 is Bx (x is an integer of 1 to n, and n chambers to be decontaminated).
  • (Ax / Bx) is 3 or more, and may be 5 or more, further 10 or more as necessary.
  • the mixed mist is a mixture of compressed air and hydrogen peroxide water, is in a high density state, and has a high transport speed. Therefore, small-diameter pipes are used for the mixed mist pipes 61-65. Can do. Therefore, the mixed mist pipes 61 to 65 having a long distance can be provided for each decontamination target chamber. This eliminates the need for large-scale equipment such as a large-diameter duct.
  • the hydrogen peroxide solution in the mixed mist is in a liquid state, it is not necessary to keep the mixed mist pipes 61 to 65 warm in order to prevent condensation. Therefore, even when a long distance pipe is provided for each decontamination target room, a large facility such as a condensation prevention heater is not required.
  • the four decontamination target chambers R1 to R4 are decontaminated with the same gas generation time. Since the size of each decontamination target room is different, the amount of hydrogen peroxide gas to be released per unit time is calculated for each decontamination target room. The amount of hydrogen peroxide supplied from the hydrogen peroxide tank 20 to the ejectors 31 to 35 corresponding to the respective decontamination target chambers from these gas discharge amounts through the hydrogen peroxide pipes 21 to 25 is determined. calculate. In addition, it is preferable to set each chamber before decontamination to a predetermined condition using a temperature controller and a humidity controller.
  • the decontamination operation is started.
  • the on-off valves 11a to 15a of the air pipes 11 to 15 are opened, and compressed air is supplied from the air compressor 10 to the drive flow paths of the ejectors 31 to 35 via the air pipes 11 to 15.
  • the compressed air supplied to the ejectors 31 to 35 preferably has a discharge pressure of 0.05 MPa or more and an air flow rate of 5 to 70 NL / min. This air flow rate may be appropriately set according to the concentration and amount of the hydrogen peroxide solution supplied to each decontamination target chamber and the distance to each decontamination target chamber.
  • the tube pumps 21a to 25a of the hydrogen peroxide water pipes 21 to 25 are operated, and the hydrogen peroxide water tank 20 is overoxidized to the suction passages of the ejectors 31 to 35 via the hydrogen peroxide water pipes 21 to 25.
  • the supply amount of the hydrogen peroxide solution corresponds to the amount calculated as described above for the ejectors 31 to 35.
  • the concentration of the hydrogen peroxide solution supplied to the ejectors 31 to 35 is not particularly limited, but a 30 to 35% by weight which is generally distributed may be used as it is, or these These may be used after being concentrated or diluted.
  • the hydrogen peroxide solution supplied to the ejectors 31 to 35 may have a flow rate of 0.3 to 30 mL / min, or may be adjusted to 0.5 to 15 mL / min. .
  • the mixed mist mixed with the hydrogen peroxide solution is long through the mixed mist pipes 61 to 65. It can be transported even at a distance.
  • the hydrogen peroxide solution and the compressed air are mixed and mist in the ejectors 31 to 35, and supplied to the evaporators 41 to 45 from the discharge passages of the ejectors 31 to 35 via the mixing mist pipes 61 to 65.
  • the mixed mist evaporates and hydrogen peroxide gas is generated.
  • the hydrogen peroxide gas vaporized by the evaporators 41 to 45 is supplied from the outlets of the evaporators 41 to 45 to the outlets of the circulation fans 51 to 55 installed in the decontamination target chambers R1 to R4. As a result, hydrogen peroxide gas is released into each decontamination target chamber, and each decontamination target chamber is uniformly decontaminated.
  • the on-off valves 11a to 15a of the air pipes 11 to 15 are closed to stop the supply of compressed air. Thereafter, the hydrogen peroxide gas in the room is discharged, the room is aired, and the decontamination operation is completed.
  • the above operations are preferably performed by automatic control by a microcomputer.
  • FIG. 2 is a schematic diagram showing the relationship between the decontamination effect (D value) by hydrogen peroxide gas and the relative humidity in the room at that time. As shown in FIG. 2, in the decontamination with hydrogen peroxide gas, it can be seen that the decontamination effect is high (D value is low) when the indoor relative humidity is 40 to 60%.
  • the D value (Decimal reduction value) means the time (minutes) required to reduce the initial number of bacteria to 1/10 (90% kill) under certain decontamination conditions. It can be said that decontamination can be performed in a short time as the D value is low, and the decontamination effect is high.
  • FIG. 3 is a schematic configuration diagram of a decontamination system 200 according to the second embodiment.
  • four aseptic rooms (clean rooms) having different sizes are used as the decontamination target rooms R1 to R4.
  • a door is provided, respectively, and these doors may be decontaminated in a released state, or these doors may be decontaminated in a closed state.
  • humidification and decontamination were performed with all these doors closed.
  • the decontamination system 200 has an air compressor 10, a hydrogen peroxide tank 20, and a distilled water tank 70 common to the decontamination target chambers R1 to R4. Further, the decontamination target chambers R1 to R4 include ejectors 31 to 35, evaporators 41 to 45, and circulation fans 51 to 55 corresponding to the respective chambers.
  • the configuration of the air compressor 10 and the hydrogen peroxide tank 20 is the same as that of the first embodiment, and the description thereof is omitted.
  • a distilled water tank 70 is provided.
  • the distilled water tank 70 functions as distilled water supply means for storing distilled water that is a source of water vapor for conditioning the interior of the decontamination target chamber.
  • the distilled water tank 70 is disposed in the vicinity of the air compressor 10 and the hydrogen peroxide water tank 20 at a position away from the decontamination target chambers R1 to R4.
  • the ejectors 31 to 35 act as a gas-liquid regulator for adjusting a mixed mist (mixed liquid for decontamination) obtained by mixing hydrogen peroxide water in compressed air, as in the first embodiment. It also functions as a gas-liquid regulator for adjusting a mixed mist (mixed liquid for humidification) in which distilled water is mixed in compressed air. For this reason, in the second embodiment, a switching valve (not shown) is provided in the suction flow paths (not shown) of the ejectors 31 to 35 so that liquid can be supplied from two paths.
  • One path is the same as that in the first embodiment, and the suction flow paths of the ejectors 31 to 35 and the hydrogen peroxide tank 20 are communicated.
  • the other path connects the suction flow paths of the ejectors 31 to 35 and the distilled water tank 70.
  • the ejectors 31 to 35 are disposed in the vicinity of the air compressor 10, the hydrogen peroxide tank 20, and the distilled water tank 70 at positions apart from the decontamination target chambers R1 to R4.
  • the evaporators 41 to 45 act as gas generators that vaporize the mixed mist containing distilled water or hydrogen peroxide solution conveyed from the ejectors 31 to 35 into steam or hydrogen peroxide gas.
  • evaporators 41 to 45 having the same evaporation plate as in the first embodiment are employed.
  • Circulation fans 51 to 55 uniformly circulate water vapor or hydrogen peroxide gas discharged from the evaporators 41 to 45 to the decontamination target chambers R1 to R4.
  • the circulation fans 51 to 55 are disposed in the decontamination target chambers below the evaporators 41 to 45. Water vapor or hydrogen peroxide gas discharged from the discharge ports of the evaporators 41 to 45 is supplied to the outlets of the circulation fans 51 to 55 and circulates in the respective decontamination target chambers.
  • the widest decontamination target chamber R2 includes two sets of decontamination units (two ejectors 32 and 33, two evaporators 42 and 43, and two mixed mist pipes 62 and 63. ) And two circulation fans 52 and 53 are disposed.
  • the volume of the decontamination target chamber R2 is large, and a large amount of water vapor or hydrogen peroxide gas is supplied from only one set of decontamination units, so that two sets of decontamination units divide the water vapor or excess water from two places. This is because the humidity control efficiency and the decontamination efficiency are increased by releasing the hydrogen oxide gas.
  • more than two sets of decontamination units may be provided in one room. Even when a plurality of decontamination units are provided in one room in this way, the piping has a small diameter, and there is no problem in terms of equipment costs.
  • the decontamination system 200 includes an air pipe 11 to 15 that communicates the air compressor 10 and the ejectors 31 to 35, a hydrogen peroxide that communicates the hydrogen peroxide tank 20 and the ejectors 31 to 35.
  • Water pipes 21 to 25 distilled water pipes 71 to 75 that connect the distilled water tank 70 and the ejectors 31 to 35, and mixed mist pipes 61 to 65 that connect the ejectors 31 to 35 and the evaporators 41 to 45 are provided. I have.
  • the configurations of the air pipes 11 to 15, the hydrogen peroxide water pipes 21 to 25, and the mixed mist pipes 61 to 65 are the same as those of the first embodiment, and the description thereof is omitted.
  • the distilled water pipes 71 to 75 communicate the supply port of the distilled water tank 70 and the suction flow paths (not shown) of the ejectors 31 to 35.
  • the suction flow path is provided with a switching valve (not shown) and is provided with two paths.
  • Tube pumps 71a to 75a for controlling the supply of hydrogen peroxide water are provided in the pipes of the distilled water pipes 71 to 75, respectively.
  • the material and pipe diameter of the distilled water pipes 71 to 75 are not particularly limited, but in general, a stainless steel pipe having an inner diameter of 1 to 10 mm is preferable.
  • the air pipes 11 to 15, the hydrogen peroxide pipes 21 to 25, the distilled water pipes 71 to 75, and the mixed mist pipes 61 to 65 are arranged for the decontamination target chambers R1 to R4, respectively.
  • water vapor and hydrogen peroxide gas can be separately released for each decontamination target chamber, and accurate humidity control and decontamination can be performed for each chamber.
  • the transport distance of the mixed mist pipes 61 to 65 is the transport distance of the air pipes 11 to 15, the transport distance of the hydrogen peroxide water pipes 21 to 25, or the transport distance of the distilled water pipes 71 to 75. Longer distance.
  • the transport distance of the mixed mist through the mixed mist pipes 61 to 65 is not particularly limited, but can normally be transported by about 3 to 100 m.
  • the transport distance of the air pipes 11 to 15, the transport distance of the hydrogen peroxide water pipes 21 to 25, or the transport distance of the distilled water pipes 71 to 75 can be shortened.
  • the mixed mist is a mixture of compressed air and distilled water or hydrogen peroxide water, is in a high density state, and has a high conveyance speed. Therefore, the mixed mist pipes 61 to 65 have small diameter pipes. Can be used. Therefore, the mixed mist pipes 61 to 65 having a long distance can be provided for each decontamination target chamber. This eliminates the need for large-scale equipment such as a large-diameter duct.
  • distilled water or hydrogen peroxide solution in the mixed mist is in a liquid state, it is not necessary to keep the mixed mist pipes 61 to 65 warm in order to prevent condensation. Therefore, even when a long distance pipe is provided for each decontamination target room, a large facility such as a condensation prevention heater is not required.
  • the transport distance of the mixed mist pipes 61 to 65 is increased to accurately transport the hydrogen peroxide solution far. be able to. Furthermore, since the distilled water or the hydrogen peroxide solution in the mixed mist pipes 61 to 65 can be completely transported by the compressed air, no dead liquid remains in the pipe.
  • the relative humidity of the decontamination target chambers R1 to R4 is adjusted to a predetermined value.
  • the relative humidity in the room is preferably 40 to 60%.
  • the hydrogen peroxide gas released into the room by decontamination contains water vapor, and the indoor humidity increases with the passage of the decontamination time. Therefore, the relative humidity at the start of decontamination may be set slightly lower than 40% so that the time during which the relative humidity is maintained at 40 to 60% is the longest from the start to the end of decontamination. Good.
  • the on-off valves 11a to 15a of the air pipes 11 to 15 are opened, and compressed air is supplied from the air compressor 10 to the drive flow paths of the ejectors 31 to 35 via the air pipes 11 to 15.
  • the discharge pressure and the air flow rate of the compressed air supplied to the ejectors 31 to 35 are the same as the compressed air in the decontamination operation of the first embodiment.
  • the tube pumps 71a to 75a of the distilled water pipes 71 to 75 are operated, and distilled water is supplied from the distilled water tank 70 to the suction passages of the ejectors 31 to 35 through the distilled water pipes 71 to 75.
  • the suction flow paths of the ejectors 31 to 35 need to be placed on the distilled water piping 71 to 75 side by switching a switching valve (not shown).
  • the amount of distilled water supplied to the ejectors 31 to 35 may be approximately the same as the amount of hydrogen peroxide water in the decontamination operation of the first embodiment.
  • distilled water and compressed air are gas-liquid mist in the ejectors 31 to 35, and are supplied from the discharge passages of the ejectors 31 to 35 to the evaporators 41 to 45 through the mixed mist pipes 61 to 65.
  • the mixed mist is evaporated and water vapor is generated.
  • the water vapor evaporated by the evaporators 41 to 45 is supplied from the discharge ports of the evaporators 41 to 45 to the outlets of the circulation fans 51 to 55 installed in the decontamination target chambers R1 to R4. As a result, water vapor is released into each decontamination target chamber, and each decontamination target chamber is uniformly conditioned.
  • a temperature sensor and a humidity sensor are installed in the decontamination target chambers R1 to R4.
  • the tube pumps 71a to 75a of the distilled water pipes 71 to 75 are stopped, and the supply of distilled water is stopped.
  • compressed air is supplied to the ejectors 31 to 35 via the air pipes 11 to 15, and all the remaining distilled water in the mixed mist pipes 61 to 65 is sent to the evaporators 41 to 45. .
  • the decontamination operation is started. Also in the second embodiment, the four decontamination target chambers R1 to R4 are decontaminated with the same gas generation time. The amount of hydrogen peroxide gas to be released per unit time for each decontamination target room and the excess amount supplied from the hydrogen peroxide solution tank 20 to the ejectors 31 to 35 via the hydrogen peroxide solution pipes 21 to 25. Calculation of the amount of hydrogen oxide water is the same as in the first embodiment.
  • the decontamination operation is started.
  • the on-off valves 11a to 15a of the air pipes 11 to 15 are opened, and compressed air is supplied from the air compressor 10 to the drive flow paths of the ejectors 31 to 35 via the air pipes 11 to 15.
  • the discharge pressure and the air flow rate of the compressed air supplied to each of the ejectors 31 to 35 are the same as the compressed air in the decontamination operation of the first embodiment.
  • the suction valve switching valves (not shown) of the ejectors 31 to 35 are switched to the hydrogen peroxide pipes 21 to 25 side. Thereafter, the tube pumps 21a to 25a of the hydrogen peroxide water pipes 21 to 25 are operated, and the hydrogen peroxide is supplied from the hydrogen peroxide water tank 20 to the suction passages of the ejectors 31 to 35 via the hydrogen peroxide water pipes 21 to 25. Supply water.
  • the hydrogen peroxide solution supplied to the ejector 31 is the same as the amount of the hydrogen peroxide solution in the decontamination operation of the first embodiment.
  • the supply amount of the hydrogen peroxide solution corresponds to the amount calculated as described above for the ejectors 31 to 35.
  • the hydrogen peroxide solution and the compressed air are gas-liquid mist in the ejectors 31 to 35, and are supplied from the discharge flow paths of the ejectors 31 to 35 to the evaporators 41 to 45 through the mixing mist pipes 61 to 65. .
  • the mixed mist evaporates and hydrogen peroxide gas is generated.
  • the hydrogen peroxide gas vaporized by the evaporators 41 to 45 is supplied from the outlets of the evaporators 41 to 45 to the outlets of the circulation fans 51 to 55 installed in the decontamination target chambers R1 to R4. As a result, hydrogen peroxide gas is released into each decontamination target chamber, and each decontamination target chamber is uniformly decontaminated.
  • the on-off valves 11a to 15a of the air pipes 11 to 15 are closed to stop the supply of compressed air. Thereafter, the hydrogen peroxide gas in the room is discharged, the room is aired, and the decontamination operation is completed.
  • the above operations are preferably performed by automatic control by a microcomputer.
  • Example 1 was implemented based on the first embodiment.
  • the decontamination target chamber having a volume different from that of the first embodiment described with reference to FIG. 1 was decontaminated.
  • the decontamination target chamber of Example 1 is a clean room of a pharmaceutical production line consisting of four large and small chambers, and the volume of each chamber is shown in Table 1.
  • the volume of the fourth chamber was very large at 258 m 3 .
  • the decontamination system according to the first embodiment was applied to these decontamination target rooms.
  • Table 1 shows the number of decontamination units arranged for each chamber. For the fourth chamber having a large volume, five sets of decontamination units were arranged.
  • Example 1 a stainless steel pipe (SUS304) having an inner diameter of 6 mm was used for the mixed mist pipe. As shown in Table 1, the value of (Ax / Bx) representing the ratio between the transport distance Ax of the mixed mist pipe and the transport distance Bx of the hydrogen peroxide solution pipe was 3.5 to 13. Thus, in the present Example 1, the conveyance distance of the mixing mist piping which conveys the mixed mist of hydrogen peroxide solution was long.
  • Example 2 the 6-log reduction BI required for confirming the decontamination effect was set at a predetermined position in each room.
  • Example 1 all the doors between the rooms were opened.
  • each chamber had a temperature of about 25 ° C. and a relative humidity of about 35%. From this state, a decontamination operation according to the first embodiment was performed, and all the rooms released a necessary amount of hydrogen peroxide gas over a predetermined time.
  • the room temperature of each room after completion of the decontamination operation was about 30 ° C., and the relative humidity at that time was about 55%. After stopping the release of hydrogen peroxide gas, indoor aeration was performed to remove the hydrogen peroxide gas in each decontamination target chamber, and then all BIs were collected.
  • the recovered BI was cultured by a predetermined method to determine the degree of sterilization.
  • the used BI was for 6 log reduction, and the conditions under which all the collected BI sterilization indicator bacteria were completely killed were determined to have achieved 6 log reduction.
  • those that achieved a 6 log reduction were displayed as “10 ⁇ 6 ”.
  • Table 1 a 6 log reduction has been achieved in all the decontamination target chambers, and advanced decontamination validation is possible even when the transport distance of the mixed mist pipe is long.
  • Example 2 was implemented based on the second embodiment.
  • decontamination target chambers having different numbers and volumes from those of the second embodiment described with reference to FIG. 2 were decontaminated.
  • the decontamination target chamber of Example 2 is a clean room of a pharmaceutical production line consisting of five large and small chambers. Table 2 shows the volume of each chamber. In particular, the volume of the third chamber was very large at 313 m 3 .
  • the decontamination system according to the second embodiment was applied to these decontamination target rooms. Table 2 shows the number of decontamination units arranged for each chamber. Six sets of decontamination units were arranged for the third chamber having a large volume.
  • Example 2 a stainless steel pipe (SUS304) having an inner diameter of 6 mm was used for the mixed mist pipe. As shown in Table 2, the value of (Ax / Bx) representing the ratio between the transport distance Ax of the mixed mist pipe and the transport distance Bx of the hydrogen peroxide solution pipe was 3 to 18.5. Thus, in the present Example 2, the conveyance distance of the mixing mist piping which conveys the mixed mist of hydrogen peroxide solution was long.
  • Example 2 the 6-log reduction BI required for confirming the decontamination effect was set at a predetermined position in each room.
  • Example 2 all the doors between the rooms were closed.
  • the humidity control operation was performed according to the second embodiment, and the relative humidity was adjusted to about 40% at 26 to 28 ° C. in each chamber.
  • the decontamination operation was performed according to the second embodiment, and a necessary amount of hydrogen peroxide gas was released from all the rooms over a predetermined time.
  • the room temperature of each room after completion of the decontamination operation was 30 to 32 ° C., and the relative humidity at that time was 50 to 60%. After stopping the release of hydrogen peroxide gas, indoor aeration was performed to remove the hydrogen peroxide gas in each decontamination target chamber, and then all BIs were collected.
  • the recovered BI was cultured by a predetermined method to determine the degree of sterilization.
  • the used BI was for 6 log reduction, and the conditions under which all the collected BI sterilization indicator bacteria died completely were judged as having achieved 6 log reduction.
  • “10 ⁇ 6 ” is displayed as the result of 6 log reduction. As can be seen from Table 2, a 6 log reduction is achieved in all the decontamination target chambers, and advanced decontamination validation is possible even when the transport distance of the mixed mist pipe is long.
  • the present invention does not require large-scale equipment such as a large-diameter duct and a condensation prevention heater, and each chamber can be used for a plurality of decontamination target chambers. Therefore, it is possible to provide a decontamination system that can provide long-distance piping for each chamber and that can supply an accurate amount of decontamination gas for each chamber.
  • the decontamination target chamber consisting of four or five chambers is decontaminated, but the present invention is not limited to this, and only one chamber is targeted by the decontamination system of the present invention. You may make it dye, or you may make it make object 10 rooms or more.
  • Example 1 described above humidity conditioning prior to decontamination is not performed, but dehumidification may be performed after humidity conditioning is performed by a humidity controller provided in each chamber.
  • an air compressor is employed as the compressed air generating means.
  • the present invention is not limited to this, and other means such as a high-pressure air cylinder may be employed.
  • an ejector is employed as the gas-liquid mixer, but the present invention is not limited to this, and other gas-liquid mixing means such as a gas-liquid pump may be employed.
  • a distilled water tank is employed as the water supply means, but is not limited thereto, and other means such as a water supply pipe may be employed.
  • a tube pump is used for the pipe of the hydrogen peroxide pipe and the pipe of the distilled water pipe, but the present invention is not limited to this, and any other pump or supply You may make it employ
  • an evaporator having an evaporation plate is adopted as a gas generator.
  • the present invention is not limited to this, and other gas generators may be adopted as long as they can vaporize mixed mist. You may make it do.
  • a circulation fan is adopted for each decontamination target room.
  • the decontamination target room is a RABS (Restricted Access Barrier System) or LF (Laminer).
  • the hydrogen peroxide gas in the room may be circulated by these mechanisms.
  • the hydrogen peroxide gas may be circulated by an air conditioner device already installed in the decontamination target chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

 大口径のダクトや凝縮防止のヒーターなどの大掛かりな設備を必要とせず、複数の除染対象室に対しても各室ごとに長い距離の配管が可能で、且つ、各室ごとに正確な量の除染用ガスを供給することのできる除染システムを提供する。 圧縮空気発生手段と除染液供給手段とを有し、各除染対象室に対して、それぞれ、混合気液調整器とガス発生器とを具備して、混合気液調整器とガス発生器とを連通する混合気液供給配管の搬送距離は、除染液供給手段と混合気液調整器とを連通する除染液供給配管の搬送距離よりも長いことを特徴とする。

Description

除染システム
 本発明は、無菌室、クリーンルーム或いは病室などの室内に除染用ガスを発生させて除染を行う除染システムに関するものである。
 医薬品或いは食品などを製造する製造現場、或いは、手術室などの医療現場においては、室内の無菌状態を維持することが重要である。特に医薬品製造の作業室である無菌室の除染においては、GMP(Good Manufacturing Practice)に即した高度な除染バリデーションを完了させる必要がある。
 近年、無菌室などの作業室(以下、除染対象室という)の除染には、人体に有害なホルマリンガスに替えて過酸化水素ガスが採用されている。この過酸化水素ガスは、強力な滅菌効果を有し、安価で入手しやすく、且つ、最終的には酸素と水に分解する環境に優しい除染用ガスとして有効である。しかし、過酸化水素ガスは従来、アイソレーターやグローブボックスなど小空間の除染に使用されてきた。一方、除染対象室のような大空間の除染に過酸化水素ガスを用いるには、所定濃度の過酸化水素ガスを大量に安定して供給しなければならないという問題があった。
 そこで、下記特許文献1においては、除染ガス発生装置として殺菌ガス(過酸化水素ガス)の濃度制御が容易で、しかも大量の殺菌ガス(過酸化水素ガス)を供給可能な殺菌液気化装置が提案されている。この殺菌液気化装置は、加熱手段により高温に加熱した空気中に過酸化水素水を噴霧して過酸化水素ガスにするものであり、噴霧手段の下流側に2つの温度センサーを備えている。これらの温度センサーの温度差から加熱手段を制御して過酸化水素ガス濃度を安定にするというものである。
特開2003-339829号公報
 これらの除染ガス発生装置で発生した大量の過酸化水素ガスは、過酸化水素水を気化させたものであり過酸化水素と水蒸気との混合ガスの状態である。この過酸化水素ガスは密度が低く、大口径のダクトを介して除染対象室に供給される。従って、除染ガス発生装置で所定の濃度に調整された過酸化水素ガスを除染対象室まで安定して供給するには、ダクト内での凝縮を防止するためにダクトをヒーターで十分に保温する必要がある。ヒーターによる保温が不十分であれば、供給する過酸化水素ガスがダクト中で凝縮し除染対象室への供給濃度と供給量が不十分となる。また、凝縮により生じた過酸化水素液は加温されており、ダクト内を腐食するという問題があった。
 このように、大量の過酸化水素ガスを除染ガス発生装置から除染対象室に供給するには、大口径で大規模なダクト工事と、ダクトを保温するヒーター設備と、腐食に耐える材質のダクトが必要であるという問題があった。
 更に、医薬品製造現場においては、除染対象室は1室と限らず、複数の除染対象室を同時に除染する必要がある。この場合に除染対象室ごとに上記特許文献1のような除染ガス発生装置を設け、除染ガス発生装置ごとにダクト工事をすることは効率的ではない。そこで、1台の除染ガス発生装置から複数の除染対象室に対して長い距離のダクトを配し、このダクトから各除染対象室に分岐ダクトを配して同時に除染することが行われる。この場合には、ダクトの分岐部分で凝縮が生じやすく、また、除染ガス発生装置から各除染対象室への距離が異なることから、それぞれ、どれだけの量の過酸化水素ガスが供給されたかを正確に把握することができないという問題があった。
 一方、大口径のダクトを使用することなく各除染対象室を除染する方法として、ガス化する前の密度の高い過酸化水素水を小口径の供給配管で各除染対象室に供給し、各除染対象室の近傍又は室内でガス化するということが考えられる。この場合、各除染対象室の近傍又は室内でのガス化は、供給された過酸化水素水を小型の蒸発装置(加熱版など)に滴下することで可能である。
 また、ガス供給での大口径のダクトに比べ、液供給での小口径の供給配管は工事が容易で、除染対象室ごとに配管工事をするとしてもその費用は軽減される。更に、供給する過酸化水素水を加熱する必要がないので、供給配管を保温する必要がなく、また、配管内の腐食も軽減される。しかし、この方法では小口径の供給配管中に常に過酸化水素水が残留し、除染対象室ごとに配設された長くて多くの配管中に多量のデッド液が生じる。このため、各除染対象室にどれだけの過酸化水素水が供給されたかを正確に把握することができないという問題があった。
 そこで、本発明は、上記の諸問題に対処して、大口径のダクトや凝縮防止のヒーターなどの大掛かりな設備を必要とせず、複数の除染対象室に対しても各室ごとに長い距離の配管が可能で、且つ、各室ごとに正確な量の除染用ガスを供給することのできる除染システムを提供することを目的とする。
 上記課題の解決にあたり、本発明者らは、小口径の供給配管を利用して過酸化水素水を圧縮空気中に混合した混合ミストを当該供給配管で各除染対象室に供給し、各除染対象室の近傍又は室内で当該混合ミストを気化して過酸化水素ガスを発生させることにより本発明の完成に至った。
 即ち、本発明に係る除染システムは、請求項1の記載によれば、
 1又は2以上の除染対象室(R1~R4)に対して、除染用ガスを使用して各除染対象室の内部を除染する除染システム(100)であって、
 圧縮空気を発生する圧縮空気発生手段(10)と、除染用ガスの発生源となる除染液を供給する除染液供給手段(20)とを有し、
 各除染対象室に対して、それぞれ、前記圧縮空気と前記除染液とを混合した除染用混合気液を調整する混合気液調整器(31~35)と、前記混合気液を気化させて除染用ガスを発生するガス発生器(41~45)と、前記圧縮空気発生手段から前記混合気液調整器までの間を連通する空気供給配管(11~15)と、前記除染液供給手段から前記混合気液調整器までの間を連通する除染液供給配管(21~25)と、前記混合気液調整器から前記ガス発生器までの間を連通する混合気液供給配管(61~65)とを具備してなり、
 前記圧縮空気発生手段と前記除染液供給手段と前記各混合気液調整器とを各除染対象室から離隔した位置に配設し、前記各ガス発生器を各対応の除染対象室の近傍又は室内に配設することにより、
 各除染対象室に対して前記混合気液供給配管の搬送距離は、各対応の前記除染液供給配管の搬送距離よりも長いことを特徴とする。
 また、本発明は、請求項2の記載によると、請求項1に記載の除染システムにおいて、
 1又は2以上の除染対象室のうち少なくとも1つ以上又は全ての除染対象室について、
 各除染対象室がそれぞれ具備する前記混合気液供給配管の搬送距離をAx、各対応の前記除染液供給配管の搬送距離をBxとしたときに下記の各式、
    Ax/Bx ≧ 3 ・・・・・(1)
   (xは、1~nの整数であって、n室ある除染対象室の各除染対象室に対応する)
を満足することを特徴とする。
 また、本発明は、請求項3の記載によると、請求項2に記載の除染システムにおいて、
 前記圧縮空気発生手段から前記空気供給配管を介して前記混合気液調整器に供給される圧縮空気は、各混合気液調整器に対して、それぞれ、吐出圧力が0.05MPa以上で空気流量が5NL/min~70NL/minであって、
 前記除染液供給手段から前記除染液供給配管を介して前記混合気液調整器に供給される除染液は、各混合気液調整器に対して、それぞれ、流量が0.3mL/min~30mL/minであることを特徴とする。
 また、本発明は、請求項4の記載によると、請求項1~3のいずれか1つに記載の除染システムにおいて、
 各除染対象室(R1~R4)を調湿するための水を供給する水供給手段(70)を有し、
 各除染対象室に対して、それぞれ、前記水供給手段から前記混合気液調整器までの間を連通する水供給配管(71~75)を具備し、
 前記混合気液調整器(31~35)に対して、前記水供給配管を介しての水の供給と前記除染液供給配管(21~25)を介しての前記除染液の供給とを切り替えるようにして、
 前記混合気液調整器に対して水が供給されているときには、当該混合気液調整器によって前記圧縮空気と水とを混合した加湿用混合気液を調整し、この加湿用混合気液を前記混合気液供給配管(61~65)を介して前記ガス発生器(41~45)に供給して当該加湿用混合気液を気化させて水蒸気からなる加湿用ガスを発生することとし、
 前記混合気液調整器に対して前記除染液が供給されているときには、当該混合気液調整器によって前記圧縮空気と前記除染液とを混合した除染用混合気液を調整し、この除染用混合気液を前記混合気液供給配管を介して前記ガス発生器に供給して当該加湿用混合気液を気化させて除染用ガスを発生することを特徴とする。
 また、本発明に係る除染方法は、請求項5の記載によれば、
 請求項1~3のいずれか1つに記載の除染システムを使用し、
 前記混合気液調整器に対して前記除染液を供給することにより、前記ガス発生器で気化される除染用ガスにより各除染対象室の内部を除染することを特徴とする。
 また、本発明に係る除染方法は、請求項6の記載によれば、
 請求項4に記載の除染システムを使用し、
 まず、前記混合気液調整器に対して水を供給することにより、前記ガス発生器で気化される加湿用ガスにより各除染対象室内の湿度を予め設定した値に調湿し、
 次に、前記混合気液調整器に対して前記除染液を供給することにより、前記ガス発生器で気化される除染用ガスにより調湿後の各除染対象室の内部を除染することを特徴とする。
 上記請求項1に記載の構成によれば、除染用ガスの発生源となる除染液は混合気液調整器によって圧縮空気発生手段で発生した圧縮空気に混合され混合気液となる。この混合気液は、混合気液供給配管を介してガス発生器に供給されガス化されて除染用ガスとなる。ここで混合気液は、圧縮空気と液体との混合物であり密度の高い状態にあり搬送速度も速いので、混合気液供給配管には小口径の配管を用いることができる。従って、除染対象室が複数あり、また、各除染対象室に対する混合気液供給配管の配設距離が異なる場合でも、除染対象室ごとに適切な距離であり、且つ、長い距離の供給配管を配設することができる。このことにより、大口径のダクトなどの大掛かりな設備を必要としない。
 また、混合気液中の過酸化水素水は液体の状態にあるので、凝縮を防止するために混合気液供給配管を保温する必要がない。従って、除染対象室が複数あり除染対象室ごとに長い距離の供給配管を配設する場合であっても、凝縮防止のヒーターなどの大掛かりな設備を必要としない。
 また、除染対象室が複数ある場合には、圧縮空気発生手段と除染液供給手段とを各除染対象室に共通とし、一方、混合気液調整器とガス発生器及びこれらを結ぶ混合気液供給配管(以下、これらを「除染ユニット」という。)とは除染対象室ごとに配設するようにする。このことにより、圧縮空気発生手段と除染液供給手段と各混合気液調整器とを各除染対象室から離隔した位置に配設することができる。一方、各ガス発生器を各対応の除染対象室の近傍又は室内に配設する。このようにして、除染対象室ごとに別個の除染ユニットを配設し、除染液供給配管の搬送距離を短く、混合気液供給配管の搬送距離を長くする。
 このように、除染液供給配管の搬送距離を短くすることで、混合気液調整器への除染液の供給量を正確に把握することができる。このことにより、除染対象室ごとにガス発生器に供給された除染液の量を正確に把握することができ、当該除染対象室に放出された除染用ガスの量が明確になる。一方、混合気液中の過酸化水素水は液体の状態にあり凝縮することがないので、混合気液供給配管の搬送距離を長くして除染液を遠くまで正確に搬送することができる。更に、圧縮空気により配管中の過酸化水素水を完全に搬送することができるので配管中にデッド液が残留することがない。
 よって、本発明によれば、大口径のダクトや凝縮防止のヒーターなどの大掛かりな設備を必要とせず、複数の除染対象室に対しても各室ごとに長い距離の配管が可能で、且つ、各室ごとに正確な量の除染用ガスを供給することのできる除染システムを提供することができる。
 また、上記請求項2に記載の構成によれば、各除染対象室において、混合気液供給配管の搬送距離Axは、除染液供給配管の搬送距離Bxの3倍以上の距離であってもよい。このことにより、混合気液供給配管の搬送距離を長くして除染液を遠くまで正確に搬送することができる。よって、上記請求項2に記載の構成においても、請求項1と同様の作用効果をより一層達成し得る。
 また、上記請求項3に記載の構成によれば、各混合気液調整器に供給される圧縮空気は、吐出圧力が0.05MPa以上で空気流量が5NL/min~70NL/minであってもよい。また、各混合気液調整器に供給される除染液は、流量が0.3mL/min~30mL/minであってもよい。このことにより、各混合気液調整器における混合気液の調整と、混合気液供給配管を介する混合気液の搬送が良好となる。よって、上記請求項3に記載の構成においても、請求項2と同様の作用効果をより一層達成し得る。
 また、上記請求項4に記載の構成によれば、更に、水供給手段と水供給配管を備えて、各混合気液調整器に対して、水供給配管を介しての水の供給と除染液供給配管を介しての除染液の供給とを切り替えるようにしてもよい。そして、混合気液調整器に水を供給したときには、混合気液調整器によって圧縮空気と水とを混合した加湿用混合気液を調整する。この加湿用混合気液は、混合気液供給配管を介してガス発生器に供給され気化されて水蒸気を発生し除染対象室内を加湿する。この加湿により、除染対象室内の湿度状態を除染用ガスによる除染により適切な状態にすることができる。
 一方、混合気液調整器に除染液を供給したときには、混合気液調整器によって圧縮空気と除染液とを混合した除染用混合気液を調整する。この除染用混合気液は、調湿後の除染対象室を除染する。よって、上記請求項4に記載の構成においては、除染対象室の調湿を行ってから除染を行うことができるので、請求項1と同様の作用効果をより一層達成し得る。
 また、上記請求項5に記載の構成によれば、上述の請求項1~3のいずれか1つに記載の除染システムを使用した除染方法を提供することができる。このことにより、当該除染方法においては、請求項1~3のいずれか1つに記載の除染システムと同様の作用効果を達成することができる。
 また、上記請求項6に記載の構成によれば、上述の請求項4に記載の除染システムを使用した除染方法を提供することができる。このことにより、当該除染方法においては、請求項4に記載の除染システムと同様の作用効果を達成することができる。
第1実施形態に係る除染システムの概略構成図である。 過酸化水素ガスによる除染効果(D値)とその際の室内の相対湿度との関係を示す概要図である。 第2実施形態に係る除染システムの概略構成図である。
 以下、本発明に係る除染システムの各実施形態について説明する。なお、本発明は、下記に示す各実施形態に限定されるものではない。
 《第1実施形態》
 まず、本発明に係る除染システムの第1実施形態を図面に従って説明する。図1は、本第1実施形態に係る除染システム100の概略構成図である。本第1実施形態においては、図1に示すように、広さの異なる4室からなる無菌室(クリーンルーム)を除染対象室R1~R4としている。各除染対象室の間には、それぞれ、ドアが設けられており、これらのドアを解放した状態で除染してもよく、或いは、これらのドアを閉鎖した状態で除染してもよい。なお、本第1実施形態においては、除染の際にこれらのドアを開放した状態で除染する。
 図1において、除染システム100は、除染対象室R1~R4の各室に共通の空気圧縮機10と過酸化水素水タンク20とを有している。また、除染対象室R1~R4は、それぞれ、各室に対応したエジェクタ31~35と蒸発器41~45と循環ファン51~55とを備えている。
 空気圧縮機10は、過酸化水素水を搬送するためのキャリアガスとしての圧縮空気を発生するための圧縮空気発生手段として作用する。この空気圧縮機10は、除染対象室R1~R4から離れた位置に配設されている。
 過酸化水素水タンク20は、除染用ガスとしての過酸化水素ガスの発生源である過酸化水素水を貯留するための除染液供給手段として作用する。この過酸化水素水タンク20は、除染対象室R1~R4から離れた位置で空気圧縮機10の近傍に配設されている。ここで、過酸化水素水タンク20に貯留される過酸化水素水の濃度は特に限定するものではないが、一般に、危険物等の取扱いを考慮して30~35重量%のものを使用することが好ましい。
 エジェクタ31~35は、過酸化水素水を圧縮空気中に混合した混合ミストを調整するための混合気液調整器として作用する。このエジェクタ31~35は、除染対象室R1~R4から離れた位置で空気圧縮機10及び過酸化水素水タンク20の近傍に配設されている。
 蒸発器41~45は、エジェクタ31~35から搬送されてくる過酸化水素水を含む混合ミストを気化して過酸化水素と水蒸気との混合ガス(以下「過酸化水素ガス」という。)にするガス発生器として作用する。この蒸発器41~45は、加熱された蒸発板を有し供給された混合ミストを蒸発させる。蒸発板の温度は気化に十分な熱量を持つものであればよいが、一般に、110~200℃程度であればよい。この蒸発器41~45は、除染対象室R1~R4の上壁外側に配設されている。
 循環ファン51~55は、蒸発器41~45から放出される過酸化水素ガスを除染対象室R1~R4に均一に循環させる。この循環ファン51~55は、蒸発器41~45の下部の各除染対象室内に配設されている。蒸発器41~45の吐出口から放出される過酸化水素ガスは、循環ファン51~55の吹出口に供給され、各除染対象室内を循環する。
 なお、最も広い除染対象室R2には、2組の除染ユニット(2つのエジェクタ32、33と2つの蒸発器42、43と後述の2つの混合ミスト配管62、63)及び2つの循環ファン52、53が配設されている。これは、除染対象室R2の容積が大きく、1組の除染ユニットのみから多量の過酸化水素ガスを供給するより、2組の除染ユニットに分けて2か所から過酸化水素ガスを放出することにより除染効率が高くなるからである。また、除染対象室の広さによっては、1室に2組より多くの除染ユニットを設けるようにしてもよい。なお、このように1室に複数の除染ユニットを設ける場合でも、配管は小口径であり設備費の点で問題となることはない。
 また、図1において、除染システム100は、空気圧縮機10とエジェクタ31~35とを連通する空気配管11~15と、過酸化水素水タンク20とエジェクタ31~35とを連通する過酸化水素水配管21~25と、エジェクタ31~35と蒸発器41~45とを連通する混合ミスト配管61~65とを備えている。
 空気配管11~15は、空気圧縮機10の吐出口とエジェクタ31~35の駆動流路(図示しない)とを連通する。空気配管11~15の管路には、それぞれ、圧縮空気の供給を制御する開閉弁11a~15aが設けられている。ここで、空気配管11~15の材質及び管径については特に限定するものではないが、一般に、内径1~10mmのステンレス管であることが好ましい。なお、図1には示していないが、空気圧縮機10と空気配管11~15の間の管路には、エアドライヤ、エアレギュレータ、オートドレン、オイルミストセパレータ、その他のフィルタなどを設けるようにしてもよい。
 過酸化水素水配管21~25は、過酸化水素水タンク20の供給口とエジェクタ31~35の吸引流路(図示しない)とを連通する。過酸化水素水配管21~25の管路には、それぞれ、過酸化水素水の供給を制御するチューブポンプ21a~25aが設けられている。ここで、過酸化水素水配管21~25の材質及び管径については、過酸化水素水に使用可能なものであれば特に限定するものではないが、一般に、内径1~10mmのステンレス管であることが好ましい。
 混合ミスト配管61~65は、エジェクタ31~35の吐出流路と蒸発器41~45とを連通する。混合ミスト配管61~65は、空気圧縮機10及び過酸化水素水タンク20の近傍から除染対象室R1~R4の上壁外部に配設された蒸発器41~45の位置まで長い距離を配管されている。ここで、混合ミスト配管61~65の材質及び管径については、単位時間当りに必要な量の過酸化水素ミストを長い距離搬送することのできるものであることが好ましく、一般に、内径1~10mmのステンレス管であることが好ましい。
 このように、除染対象室R1~R4に対して、それぞれ、空気配管11~15と過酸化水素水配管21~25と混合ミスト配管61~65とを配設することにより、除染対象室ごとに、別個に過酸化水素ガスを放出することができ、各室ごとに正確な除染を行うことができる。
 また、図1から分かるように、混合ミスト配管61~65の搬送距離は、空気配管11~15の搬送距離又は過酸化水素水配管21~25の搬送距離よりも長い距離となる。この混合ミスト配管61~65による混合ミストの搬送距離は、特に限定するものではないが、通常、3~100m程度は搬送することができる。一方、空気配管11~15の搬送距離又は過酸化水素水配管21~25の搬送距離は短くすることができる。
 本発明において、混合ミスト配管61~65の搬送距離をAx、過酸化水素水配管21~25の搬送距離をBx(xは、1~nの整数であって、n室ある除染対象室の各除染対象室に対応する)としたときに、(Ax/Bx)の値が3以上であり、また、必要に応じて5以上、更に10以上であってもよい。このように、過酸化水素水配管21~25の搬送距離に対して混合ミスト配管61~65の搬送距離を長くすることにより、過酸化水素水タンク20の位地から各除染対象室への長い距離でも過酸化水素水を混合ミストの状態で安定して搬送することができる。
 本第1実施形態において、混合ミストは、圧縮空気と過酸化水素水との混合物であり密度の高い状態にあり搬送速度も速いので、混合ミスト配管61~65には小口径の配管を用いることができる。従って、除染対象室ごとに長い距離の混合ミスト配管61~65を配設することができる。このことにより、大口径のダクトなどの大掛かりな設備を必要としない。
 また、混合ミスト中の過酸化水素水は液体の状態にあるので、凝縮を防止するために混合ミスト配管61~65を保温する必要がない。従って、除染対象室ごとに長い距離の配管を配設する場合であっても、凝縮防止のヒーターなどの大掛かりな設備を必要としない。
 このように、過酸化水素水配管21~25の搬送距離を短くすることで、エジェクタ31~35への過酸化水素水の供給量を正確に把握することができる。このことにより、除染対象室ごとに蒸発器41~45に供給された過酸化水素水の量を正確に把握することができ、当該除染対象室に放出された過酸化水素ガスの量が明確になる。一方、混合ミスト中の過酸化水素水は液体の状態にあり凝縮することがないので、混合ミスト配管61~65の搬送距離を長くして過酸化水素水を遠くまで正確に搬送することができる。更に、圧縮空気により混合ミスト配管61~65中の過酸化水素水を完全に搬送することができるので配管中にデッド液が残留することがない。
 次に、本第1実施形態に係る除染システム100を使用して除染対象室R1~R4を除染する除染方法について説明する。
 本第1実施形態においては、4室の除染対象室R1~R4を同一のガス発生時間で除染する。各除染対象室の広さが異なることから、除染対象室ごとに単位時間当りに放出すべき過酸化水素ガスの量を算出する。これらのガス放出量から、各除染対象室に対応するエジェクタ31~35に対して、過酸化水素水配管21~25を介して過酸化水素水タンク20から供給する過酸化水素水の量を算出する。なお、除染前の各室は温度調節機及び湿度調節機を用いて所定の条件に設定しておくことが好ましい。
 次に、除染操作を開始する。まず、空気配管11~15の開閉弁11a~15aを開放し、空気圧縮機10から空気配管11~15を介してエジェクタ31~35の駆動流路に圧縮空気を供給する。ここで、エジェクタ31~35に供給される圧縮空気は、それぞれ、吐出圧力が0.05MPa以上であって、空気流量が5~70NL/minであることがよい。この空気流量は、各除染対象室に供給する過酸化水素水の濃度と量、及び、各除染対象室への距離に応じて適宜設定するようにすればよい。
 次に、過酸化水素水配管21~25のチューブポンプ21a~25aを作動し、過酸化水素水タンク20から過酸化水素水配管21~25を介してエジェクタ31~35の吸引流路に過酸化水素水を供給する。なお、この過酸化水素水の供給量は、エジェクタ31~35に対して上述のようにして計算した量に対応する。ここで、エジェクタ31~35に供給される過酸化水素水の濃度は、特に限定するものではないが、一般に流通している30~35重量%のものをそのまま使用してもよく、又は、これらを濃縮或いは希釈して使用するようにしてもよい。また、エジェクタ31~35に供給される過酸化水素水は、それぞれ、流量が0.3~30mL/minであることがよく、或いは、0.5~15mL/minに調整するようにしてもよい。
 なお、過酸化水素水の量が上記範囲であることにより、且つ、圧縮空気の量が上記範囲であることにより、過酸化水素水を混合した混合ミストを混合ミスト配管61~65を介して長い距離でも搬送することができる。
 上述の操作により、エジェクタ31~35において過酸化水素水と圧縮空気が混合ミスト化し、エジェクタ31~35の吐出流路から混合ミスト配管61~65を介して蒸発器41~45に供給される。
 蒸発器41~45においては、混合ミストが蒸発して過酸化水素ガスが発生する。蒸発器41~45で気化した過酸化水素ガスは、蒸発器41~45の吐出口から除染対象室R1~R4内に設置された循環ファン51~55の吹出口に供給される。このことにより、各除染対象室内に過酸化水素ガスが放出され、各除染対象室内が均一に除染される。
 このようにして、所定の時間、過酸化水素ガスを放出する。所定の時間を経過した段階で、過酸化水素水配管21~25のチューブポンプ21a~25aを停止し、過酸化水素水の供給を止める。この段階では、空気配管11~15を介してエジェクタ31~35に圧縮空気が供給された状態にあり、混合ミスト配管61~65中の残余の過酸化水素水が全て蒸発器41~45に送られる。このことにより、除染対象室R1~R4に対して、それぞれ、所定量の過酸化水素ガスが正確に放出される。
 次に、空気配管11~15の開閉弁11a~15aを閉鎖し、圧縮空気の供給を止める。その後、室内の過酸化水素ガスを排出し室内をエアリングして除染操作を終了する。なお、上記各操作は、マイクロコンピュータによる自動制御により行うことが好ましい。
 《第2実施形態》
 次に、本発明に係る除染システムの第2実施形態を説明する。本第2実施形態は、過酸化水素ガスによる除染に先立って、各除染対象室内の調湿を行うことのできる除染システムである。過酸化水素による除染において、除染時の室内温度及び湿度、特に湿度条件が重要である。図2は、過酸化水素ガスによる除染効果(D値)とその際の室内の相対湿度との関係を示す概要図である。図2に示すように、過酸化水素ガスによる除染においては、室内の相対湿度が40~60%の時に除染効果が高い(D値が低い)ことが分かる。
 ここで、D値(Decimal reduction value)とは、一定の除染条件下で初期の菌数を1/10に減少(90%死滅)させるのに必要な時間(分)を意味する。D値が低いほど除染を短時間で行うことができ、除染効果が高いといえる。
 本発明に係る除染システムの第2実施形態を図面に従って説明する。図3は、本第2実施形態に係る除染システム200の概略構成図である。本第2実施形態においては、上記第1実施形態と同じく、広さの異なる4室からなる無菌室(クリーンルーム)を除染対象室R1~R4としている。各除染対象室の間には、それぞれ、ドアが設けられており、これらのドアを解放した状態で除染してもよく、或いは、これらのドアを閉鎖した状態で除染してもよい。なお、本第2実施形態においては、これらのドアを全て閉鎖した状態で加湿及び除染を行った。
 図3において、除染システム200は、除染対象室R1~R4に共通の空気圧縮機10と過酸化水素水タンク20と蒸留水タンク70とを有している。また、除染対象室R1~R4は、それぞれ、各室に対応したエジェクタ31~35と蒸発器41~45と循環ファン51~55とを備えている。
 本第2実施形態においては、空気圧縮機10と過酸化水素水タンク20との構成は、上記第1実施形態と同様でありその説明は省略する。
 本第2実施形態においては、上記第1実施形態と異なり蒸留水タンク70を有している。蒸留水タンク70は、除染対象室内を調湿するための水蒸気の発生源である蒸留水を貯留するための蒸留水供給手段として作用する。この蒸留水タンク70は、除染対象室R1~R4から離れた位置で空気圧縮機10及び過酸化水素水タンク20の近傍に配設されている。
 エジェクタ31~35は、上記第1実施形態と同様に過酸化水素水を圧縮空気中に混合した混合ミスト(除染用混合気液)を調整するための混合気液調整器として作用すると共に、蒸留水を圧縮空気中に混合した混合ミスト(加湿用混合気液)を調整するための混合気液調整器としても作用する。このため、本第2実施形態においては、エジェクタ31~35の吸引流路(図示しない)には、切替弁(図示しない)が設けられ2つの経路から液体を供給できるようにしている。
 一方の経路は上記第1実施形態と同様であり、エジェクタ31~35の吸引流路と過酸化水素水タンク20とを連通する。他方の経路は、エジェクタ31~35の吸引流路と蒸留水タンク70とを連通する。このエジェクタ31~35は、除染対象室R1~R4から離れた位置で空気圧縮機10、過酸化水素水タンク20及び蒸留水タンク70の近傍に配設されている。
 蒸発器41~45は、エジェクタ31~35から搬送されてくる蒸留水又は過酸化水素水を含む混合ミストを気化して水蒸気又は過酸化水素ガスにするガス発生器として作用する。本第2実施形態においては、上記第1実施形態と同様の蒸発板を有する蒸発器41~45を採用する。
 循環ファン51~55は、蒸発器41~45から放出される水蒸気又は過酸化水素ガスを除染対象室R1~R4に均一に循環させる。本第2実施形態においては、上記第1実施形態と同様に、この循環ファン51~55は、蒸発器41~45の下部の除染対象室内に配設されている。蒸発器41~45の吐出口から放出される水蒸気又は過酸化水素ガスは、循環ファン51~55の吹出口に供給され、各除染対象室内を循環する。
 なお、本第2実施形態においても、最も広い除染対象室R2には、2組の除染ユニット(2つのエジェクタ32、33と2つの蒸発器42、43と2つの混合ミスト配管62、63)及び2つの循環ファン52、53が配設されている。これは、除染対象室R2の容積が大きく、1組の除染ユニットのみから多量の水蒸気又は過酸化水素ガスを供給するより、2組の除染ユニットに分けて2か所から水蒸気又は過酸化水素ガスを放出することにより調湿効率及び除染効率が高くなるからである。また、除染対象室の広さによっては、1室に2組より多くの除染ユニットを設けるようにしてもよい。なお、このように1室に複数の除染ユニットを設ける場合でも、配管は小口径であり設備費の点で問題となることはない。
 また、図3において、除染システム200は、空気圧縮機10とエジェクタ31~35とを連通する空気配管11~15と、過酸化水素水タンク20とエジェクタ31~35とを連通する過酸化水素水配管21~25と、蒸留水タンク70とエジェクタ31~35とを連通する蒸留水配管71~75と、エジェクタ31~35と蒸発器41~45とを連通する混合ミスト配管61~65とを備えている。
 本第2実施形態においては、空気配管11~15と過酸化水素水配管21~25と混合ミスト配管61~65との構成は、上記第1実施形態と同様でありその説明は省略する。
 蒸留水配管71~75は、蒸留水タンク70の供給口とエジェクタ31~35の吸引流路(図示しない)とを連通する。この吸引流路には、上述のように、切替弁(図示しない)が設けられ2つの経路が設けられている。蒸留水配管71~75の管路には、それぞれ、過酸化水素水の供給を制御するチューブポンプ71a~75aが設けられている。ここで、蒸留水配管71~75の材質及び管径については特に限定するものではないが、一般に、内径1~10mmのステンレス管であることが好ましい。
 このように、除染対象室R1~R4に対して、それぞれ、空気配管11~15と過酸化水素水配管21~25と蒸留水配管71~75と混合ミスト配管61~65とを配設することにより、除染対象室ごとに、別個に水蒸気及び過酸化水素ガスを放出することができ、各室ごとに正確な調湿と除染を行うことができる。
 また、図3から分かるように、混合ミスト配管61~65の搬送距離は、空気配管11~15の搬送距離、過酸化水素水配管21~25の搬送距離又は蒸留水配管71~75の搬送距離よりも長い距離となる。この混合ミスト配管61~65による混合ミストの搬送距離は、特に限定するものではないが、通常、3~100m程度は搬送することができる。一方、空気配管11~15の搬送距離、過酸化水素水配管21~25の搬送距離又は蒸留水配管71~75の搬送距離は短くすることができる。
 本第2実施形態において、混合ミストは、圧縮空気と蒸留水又は過酸化水素水との混合物であり密度の高い状態にあり搬送速度も速いので、混合ミスト配管61~65には小口径の配管を用いることができる。従って、除染対象室ごとに長い距離の混合ミスト配管61~65を配設することができる。このことにより、大口径のダクトなどの大掛かりな設備を必要としない。
 また、混合ミスト中の蒸留水又は過酸化水素水は液体の状態にあるので、凝縮を防止するために混合ミスト配管61~65を保温する必要がない。従って、除染対象室ごとに長い距離の配管を配設する場合であっても、凝縮防止のヒーターなどの大掛かりな設備を必要としない。
 このように、過酸化水素水配管21~25の搬送距離を短くすることで、エジェクタ31~35への過酸化水素水の供給量を正確に把握することができる。このことにより、除染対象室ごとに蒸発器41~45に供給された過酸化水素水の量を正確に把握することができ、当該除染対象室に放出された過酸化水素ガスの量が明確になる。
 一方、混合ミスト中の蒸留水又は過酸化水素水は液体の状態にあり凝縮することがないので、混合ミスト配管61~65の搬送距離を長くして過酸化水素水を遠くまで正確に搬送することができる。更に、圧縮空気により混合ミスト配管61~65中の蒸留水又は過酸化水素水を完全に搬送することができるので配管中にデッド液が残留することがない。
 次に、本第2実施形態に係る除染システム200を使用して除染対象室R1~R4を調湿してから除染する除染方法について説明する。
 本第2実施形態においては、まず、除染対象室R1~R4の相対湿度を所定の値に調湿する。上述のように、室内の相対湿度を40~60%にすることが好ましい。但し、上述のように、除染で室内に放出される過酸化水素ガスには水蒸気が含まれており、除染時間の経過と共に室内湿度が上昇する。従って、除染開始時から終了時までに相対湿度が40~60%を維持する時間が最も長くなるように、除染開始時の相対湿度を40%より若干低く設定しておくようにしてもよい。
 まず、調湿操作を開始する。空気配管11~15の開閉弁11a~15aを開放し、空気圧縮機10から空気配管11~15を介してエジェクタ31~35の駆動流路に圧縮空気を供給する。ここで、エジェクタ31~35に供給される圧縮空気の吐出圧力と空気流量は、上記第1実施形態の除染操作における圧縮空気と同様である。
 次に、蒸留水配管71~75のチューブポンプ71a~75aを作動し、蒸留水タンク70から蒸留水配管71~75を介してエジェクタ31~35の吸引流路に蒸留水を供給する。このとき、エジェクタ31~35の吸引流路は、切替弁(図示しない)の切替えにより蒸留水配管71~75側にしておく必要がある。ここで、エジェクタ31~35に供給される蒸留水の量は、上記第1実施形態の除染操作における過酸化水素水の量と同程度であってもよい。
 上述の操作により、エジェクタ31~35において蒸留水と圧縮空気が気液ミスト化し、エジェクタ31~35の吐出流路から混合ミスト配管61~65を介して蒸発器41~45に供給される。
 蒸発器41~45においては、混合ミストが蒸発して水蒸気が発生する。蒸発器41~45で気化した水蒸気は、蒸発器41~45の吐出口から除染対象室R1~R4内に設置された循環ファン51~55の吹出口に供給される。このことにより、各除染対象室内に水蒸気が放出され、各除染対象室内が均一に調湿される。
 ここで、除染対象室R1~R4には、温度センサーと湿度センサー(共に図示せず)を設置しておく。調湿操作の経過と共に除染対象室R1~R4の温度と相対湿度が設定範囲内になったところで、蒸留水配管71~75のチューブポンプ71a~75aを停止し、蒸留水の供給を止める。この段階では、空気配管11~15を介して各エジェクタ31~35に圧縮空気が供給された状態にあり、混合ミスト配管61~65中の残余の蒸留水が全て蒸発器41~45に送られる。
 なお、各除染対象室の相対湿度が設定範囲内になるには、各室ごとに時間差が生じる。従って、各室ごとに個別に制御することが必要である。一度、設定範囲内になった除染対象室の相対湿度が下がった場合には、再度、蒸留水の供給を開始し、全室の相対湿度が設定範囲内になった時点で調湿操作を終了する。
 次に、除染操作を開始する。本第2実施形態においても、4室の除染対象室R1~R4を同一のガス発生時間で除染する。除染対象室ごとに単位時間当りに放出すべき過酸化水素ガスの量と、エジェクタ31~35に対して、過酸化水素水配管21~25を介して過酸化水素水タンク20から供給する過酸化水素水の量の算出は、上記第1実施形態と同様である。
 次に、除染操作を開始する。空気配管11~15の開閉弁11a~15aを開放し、空気圧縮機10から空気配管11~15を介してエジェクタ31~35の駆動流路に圧縮空気を供給する。ここで、各エジェクタ31~35に供給される圧縮空気の吐出圧力と空気流量は、上記第1実施形態の除染操作における圧縮空気と同様である。
 次に、エジェクタ31~35の吸引流路の切替弁(図示しない)を切替えにより過酸化水素水配管21~25側にする。その後、過酸化水素水配管21~25のチューブポンプ21a~25aを作動し、過酸化水素水タンク20から過酸化水素水配管21~25を介してエジェクタ31~35の吸引流路に過酸化水素水を供給する。ここで、エジェクタ31に供給される過酸化水素水は、上記第1実施形態の除染操作における過酸化水素水の量と同様である。なお、この過酸化水素水の供給量は、エジェクタ31~35に対して上述のようにして計算した量に対応する。
 上述の操作により、エジェクタ31~35において過酸化水素水と圧縮空気が気液ミスト化し、エジェクタ31~35の吐出流路から混合ミスト配管61~65を介して蒸発器41~45に供給される。
 蒸発器41~45においては、混合ミストが蒸発して過酸化水素ガスが発生する。蒸発器41~45で気化した過酸化水素ガスは、蒸発器41~45の吐出口から除染対象室R1~R4内に設置された循環ファン51~55の吹出口に供給される。このことにより、各除染対象室内に過酸化水素ガスが放出され、各除染対象室内が均一に除染される。
 このようにして、所定の時間、過酸化水素ガスを放出する。所定の時間を経過した段階で、過酸化水素水配管21~25のチューブポンプ21a~25aを停止し、過酸化水素水の供給を止める。この段階では、空気配管11~15を介してエジェクタ31~35に圧縮空気が供給された状態にあり、混合ミスト配管61~65中の残余の過酸化水素水が全て蒸発器41~45に送られる。このことにより、除染対象室R1~R4に対して所定量の過酸化水素ガスが正確に放出される。
 次に、空気配管11~15の開閉弁11a~15aを閉鎖し、圧縮空気の供給を止める。その後、室内の過酸化水素ガスを排出し室内をエアリングして除染操作を終了する。なお、上記各操作は、マイクロコンピュータによる自動制御により行うことが好ましい。
 以下、上記各実施形態に基づいて、それぞれ、次のような各実施例の除染操作を行った。
 実施例1は、上記第1実施形態に基づいて実施した。なお、本実施例1においては、図1を用いて説明した上記第1実施形態と異なる容積の除染対象室を除染した。本実施例1の除染対象室は、大小4室からなる医薬品製造ラインのクリーンルームであって各室の容積を表1に示す。特に、第4室の容積が258m3と非常に大きかった。これらの除染対象室に対して、上記第1実施形態に係る除染システムを適用した。各室に対して配設した除染ユニットの数を表1に示す。容積の大きい第4室については、5組の除染ユニットを配設した。
 本実施例1において、混合ミスト配管には、内径6mmのステンレス管(SUS304)を使用した。混合ミスト配管の搬送距離Axと過酸化水素水配管の搬送距離Bxとの比を表す(Ax/Bx)の値は、表1に示すように、3.5~13であった。このように、本実施例1においては、過酸化水素水の混合ミストを搬送する混合ミスト配管の搬送距離は長いものであった。
 次に、各室の所定の位置に除染効果を確認するのに必要な枚数の6対数減少用BIをセットした。なお、本実施例1においては、各室の間のドアは全て開放した。また、各室の調湿は特に行っていないが、各室とも約25℃、相対湿度を約35%であった。この状態から、上記第1実施形態に沿った除染操作を行い、全室とも所定時間に亘って必要量の過酸化水素ガスを放出した。
 除染操作の終了後の各室の室内温度は約30℃であり、その時の相対湿度は約55%であった。過酸化水素ガスの放出を停止してから各除染対象室の過酸化水素ガスを除去するために室内のエアレーションを実施し、その後、全てのBIを回収した。
Figure JPOXMLDOC01-appb-T000001
 回収したBIは、所定の方法で培養し滅菌の程度を判定した。本実施例1においては、使用したBIが6対数減少用のものであり、回収した全てのBIの滅菌指標菌が全到死した条件を6対数減少が達成されたものとして判定した。表1の除染効果の欄には、6対数減少が達成されたものを「10-6」として表示した。表1から分かるように、全ての除染対象室において6対数減少が達成されており、混合ミスト配管の搬送距離が長い場合であっても高度な除染バリデーションが可能となる。
 実施例2は、上記第2実施形態に基づいて実施した。なお、本実施例2においては、図2を用いて説明した上記第2実施形態と異なる室数及び容積の除染対象室を除染した。本実施例2の除染対象室は、大小5室からなる医薬品製造ラインのクリーンルームであって各室の容積を表2に示す。特に、第3室の容積が313m3と非常に大きかった。これらの除染対象室に対して、上記第2実施形態に係る除染システムを適用した。各室に対して配設した除染ユニットの数を表2に示す。容積の大きい第3室については、6組の除染ユニットを配設した。
 本実施例2において、混合ミスト配管には、内径6mmのステンレス管(SUS304)を使用した。混合ミスト配管の搬送距離Axと過酸化水素水配管の搬送距離Bxとの比を表す(Ax/Bx)の値は、表2に示すように、3~18.5であった。このように、本実施例2においては、過酸化水素水の混合ミストを搬送する混合ミスト配管の搬送距離は長いものであった。
 次に、各室の所定の位置に除染効果を確認するのに必要な枚数の6対数減少用BIをセットした。なお、本実施例2においては、各室の間のドアは全て閉鎖した。次に、調湿操作を上記第2実施形態に沿って行い、各室とも26~28℃において相対湿度を約40%に調湿した。次に、除染操作を上記第2実施形態に沿って行い、全室とも所定時間に亘って必要量の過酸化水素ガスを放出した。
 除染操作の終了後の各室の室内温度は30~32℃であり、その時の相対湿度は50~60%であった。過酸化水素ガスの放出を停止してから各除染対象室の過酸化水素ガスを除去するために室内のエアレーションを実施し、その後、全てのBIを回収した。
Figure JPOXMLDOC01-appb-T000002
 回収したBIは、所定の方法で培養し滅菌の程度を判定した。本実施例2においては、使用したBIが6対数減少用のものであり、回収した全てのBIの滅菌指標菌が全到死した条件を6対数減少が達成されたものとして判定した。表2の除染効果の欄には、6対数減少が達成されたものを「10-6」として表示した。表2から分かるように、全ての除染対象室において6対数減少が達成されており、混合ミスト配管の搬送距離が長い場合であっても高度な除染バリデーションが可能となる。
 以上のように上記各実施例から明らかなように、本発明においては、大口径のダクトや凝縮防止のヒーターなどの大掛かりな設備を必要とせず、複数の除染対象室に対しても各室ごとに長い距離の配管が可能で、且つ、各室ごとに正確な量の除染用ガスを供給することのできる除染システムを提供することができる。
 なお、本発明の実施にあたり、上記各実施形態に限らず次のような種々の変形例が挙げられる。
(1)上記各実施例においては、4室又は5室からなる除染対象室を除染したが、これらに限定されるものではなく、1室のみを対象として本発明の除染システムにより除染するようにしてもよく、或いは、10室以上を対象とするようにしてもよい。
(2)上記実施例1においては、除染前の調湿は特に行っていないが、各室に備えられた調湿器による調湿を行ってから、除染を行うようにしてもよい。
(3)上記各実施形態においては、圧縮空気発生手段として空気圧縮機を採用するが、これに限定されるものではなく、高圧空気ボンベ等その他の手段を採用するようにしてもよい。
(4)上記各実施形態においては、気液混合器としてエジェクタを採用するが、これに限定されるものではなく、気液ポンプ等その他の気液混合手段を採用するようにしてもよい。
(5)上記各実施形態においては、水供給手段として蒸留水タンクを採用するが、これに限定されるものではなく、給水配管等その他の手段を採用するようにしてもよい。
(6)上記各実施形態においては、過酸化水素水配管の管路及び蒸留水配管の管路にチューブポンプを採用するが、これに限定されるものではなく、他のどのようなポンプ或いは給液手段を採用するようにしてもよい。
(7)上記各実施形態においては、ガス発生器として蒸発板を有する蒸発器を採用するが、これに限定されるものではなく、混合ミストを気化できるものであれば他のガス発生器を採用するようにしてもよい。
(8)上記各実施形態においては、各除染対象室に循環ファンを採用するが、これに限定されるものではなく、例えば、除染対象室がRABS(Restricted Access Barrier System)やLF(Laminer Flow)などの独自の空気流機構を有する場合には、これらの機構により室内の過酸化水素ガスの循環をするようにしてもよい。また、除染対象室に既に設置されているエアーコンディショナー装置などにより過酸化水素ガスの循環をするようにしてもよい。
 10…空気圧縮機、11~15…空気配管、20…過酸化水素水タンク、
21~25…過酸化水素水配管、31~35…エジェクタ、41~45…蒸発器、
51~55…循環ファン、61~65…混合ミスト配管、70…蒸留水タンク、
71~75…蒸留水配管、100、200…除染システム、R1~R4…除染対象室。

Claims (6)

  1.  1又は2以上の除染対象室に対して、除染用ガスを使用して各除染対象室の内部を除染する除染システムであって、
     圧縮空気を発生する圧縮空気発生手段と、除染用ガスの発生源となる除染液を供給する除染液供給手段とを有し、
     各除染対象室に対して、それぞれ、前記圧縮空気と前記除染液とを混合した除染用混合気液を調整する混合気液調整器と、前記混合気液を気化させて除染用ガスを発生するガス発生器と、前記圧縮空気発生手段から前記混合気液調整器までの間を連通する空気供給配管と、前記除染液供給手段から前記混合気液調整器までの間を連通する除染液供給配管と、前記混合気液調整器から前記ガス発生器までの間を連通する混合気液供給配管とを具備してなり、
     前記圧縮空気発生手段と前記除染液供給手段と前記各混合気液調整器とを各除染対象室から離隔した位置に配設し、前記各ガス発生器を各対応の除染対象室の近傍又は室内に配設することにより、
     各除染対象室に対して前記混合気液供給配管の搬送距離は、各対応の前記除染液供給配管の搬送距離よりも長いことを特徴とする除染システム。
  2.  1又は2以上の除染対象室のうち少なくとも1つ以上又は全ての除染対象室について、
     各除染対象室がそれぞれ具備する前記混合気液供給配管の搬送距離をAx、各対応の前記除染液供給配管の搬送距離をBxとしたときに下記の各式、
        Ax/Bx ≧ 3 ・・・・・(1)
       (xは、1~nの整数であって、n室ある除染対象室の各除染対象室に対応する)
    を満足することを特徴とする請求項1に記載の除染システム。
  3.  前記圧縮空気発生手段から前記空気供給配管を介して前記混合気液調整器に供給される圧縮空気は、各混合気液調整器に対して、それぞれ、吐出圧力が0.05MPa以上で空気流量が5NL/min~70NL/minであって、
     前記除染液供給手段から前記除染液供給配管を介して前記混合気液調整器に供給される除染液は、各混合気液調整器に対して、それぞれ、流量が0.3mL/min~30mL/minであることを特徴とする請求項2に記載の除染システム。
  4.  各除染対象室を調湿するための水を供給する水供給手段を有し、
     各除染対象室に対して、それぞれ、前記水供給手段から前記混合気液調整器までの間を連通する水供給配管を具備し、
     前記混合気液調整器に対して、前記水供給配管を介しての水の供給と前記除染液供給配管を介しての前記除染液の供給とを切り替えるようにして、
     前記混合気液調整器に対して水が供給されているときには、当該混合気液調整器によって前記圧縮空気と水とを混合した加湿用混合気液を調整し、この加湿用混合気液を前記混合気液供給配管を介して前記ガス発生器に供給して当該加湿用混合気液を気化させて水蒸気からなる加湿用ガスを発生することとし、
     前記混合気液調整器に対して前記除染液が供給されているときには、当該混合気液調整器によって前記圧縮空気と前記除染液とを混合した除染用混合気液を調整し、この除染用混合気液を前記混合気液供給配管を介して前記ガス発生器に供給して当該除染用混合気液を気化させて除染用ガスを発生することを特徴とする請求項1~3のいずれか1つに記載の除染システム。
  5.  請求項1~3のいずれか1つに記載の除染システムを使用し、
     前記混合気液調整器に対して前記除染液を供給することにより、前記ガス発生器で気化される除染用ガスにより各除染対象室の内部を除染することを特徴とする除染方法。
  6.  請求項4に記載の除染システムを使用し、
     まず、前記混合気液調整器に対して水を供給することにより、前記ガス発生器で気化される加湿用ガスにより各除染対象室内の湿度を予め設定した値に調湿し、
     次に、前記混合気液調整器に対して前記除染液を供給することにより、前記ガス発生器で気化される除染用ガスにより調湿後の各除染対象室の内部を除染することを特徴とする除染方法。
PCT/JP2014/061968 2014-04-30 2014-04-30 除染システム WO2015166554A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480078194.5A CN106232148B (zh) 2014-04-30 2014-04-30 除污系统
US15/300,729 US10426856B2 (en) 2014-04-30 2014-04-30 Decontamination system
DK14891060.7T DK3138583T3 (da) 2014-04-30 2014-04-30 Dekontamineringssystem
EP14891060.7A EP3138583B1 (en) 2014-04-30 2014-04-30 Decontamination system
PCT/JP2014/061968 WO2015166554A1 (ja) 2014-04-30 2014-04-30 除染システム
JP2016515798A JPWO2015166554A1 (ja) 2014-04-30 2014-04-30 除染システム
KR1020167029722A KR102206230B1 (ko) 2014-04-30 2014-04-30 제염 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061968 WO2015166554A1 (ja) 2014-04-30 2014-04-30 除染システム

Publications (1)

Publication Number Publication Date
WO2015166554A1 true WO2015166554A1 (ja) 2015-11-05

Family

ID=54358306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061968 WO2015166554A1 (ja) 2014-04-30 2014-04-30 除染システム

Country Status (7)

Country Link
US (1) US10426856B2 (ja)
EP (1) EP3138583B1 (ja)
JP (1) JPWO2015166554A1 (ja)
KR (1) KR102206230B1 (ja)
CN (1) CN106232148B (ja)
DK (1) DK3138583T3 (ja)
WO (1) WO2015166554A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090773A1 (ja) * 2015-11-27 2017-06-01 東京エレクトロン株式会社 細胞培養システム及び滅菌方法
WO2018212029A1 (ja) * 2017-05-15 2018-11-22 株式会社エアレックス インキュベータ
WO2020021874A1 (ja) * 2018-07-23 2020-01-30 株式会社エアレックス インキュベータの陽圧制御方法及びこの方法を利用した培養作業システム
JPWO2019187201A1 (ja) * 2018-03-26 2021-03-11 シャープ株式会社 清浄空間維持装置、建築構造体、細胞培養方法および細胞製造方法
WO2021090661A1 (ja) * 2019-11-07 2021-05-14 株式会社エアレックス 除染システム
WO2023074464A1 (ja) 2021-10-25 2023-05-04 株式会社エアレックス 移動式除染装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102007263B1 (ko) * 2017-09-26 2019-08-07 주식회사 이노글로벌 양방향 도전성 모듈 및 그 제조방법
JP7201231B2 (ja) * 2019-04-03 2023-01-10 株式会社エアレックス 連続除染装置
US11617812B1 (en) * 2020-05-14 2023-04-04 Orbital Building Solutions, Inc. Sanitization system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037862A (ja) * 1999-07-26 2001-02-13 Matsuji Nakagome 消臭液・除菌液の広域噴霧システム
JP2002231709A (ja) * 2000-10-23 2002-08-16 Applied Materials Inc ユースポイントにおける前駆物質の気化
JP2005160903A (ja) * 2003-12-05 2005-06-23 Ngk Insulators Ltd 滅菌装置
JP2006320392A (ja) * 2005-05-17 2006-11-30 Daikin Ind Ltd 滅菌システム
JP2010179943A (ja) * 2009-02-06 2010-08-19 Dainippon Printing Co Ltd 飲料充填装置
JP2010235209A (ja) * 2009-03-10 2010-10-21 Dainippon Printing Co Ltd 飲料充填方法及び装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077480A (en) * 1997-06-19 2000-06-20 Steris Corporation Multiple flashpoint vaporization system
US7381338B2 (en) * 2002-04-17 2008-06-03 Nutech 03, Inc. Ballast water treatment system and method without off-gas
JP3915598B2 (ja) 2002-05-27 2007-05-16 澁谷工業株式会社 殺菌液気化装置
CN2808146Y (zh) * 2005-08-08 2006-08-23 冷正来 喷雾消毒装置
US20090263499A1 (en) 2008-04-18 2009-10-22 Ethicon, Inc. Area decontamination via low-level concentration of germicidal agent
US8741228B2 (en) 2011-09-23 2014-06-03 American Sterilizer Company Hydrogen peroxide vaporizer with heated diffuser
CN103100098B (zh) * 2011-11-14 2016-01-06 中国检验检疫科学研究院 空箱卫生处理系统和方法
CN202568963U (zh) * 2012-03-31 2012-12-05 江苏东宝粮油集团有限公司 蔬菜大棚及养殖设备多功能杀菌装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037862A (ja) * 1999-07-26 2001-02-13 Matsuji Nakagome 消臭液・除菌液の広域噴霧システム
JP2002231709A (ja) * 2000-10-23 2002-08-16 Applied Materials Inc ユースポイントにおける前駆物質の気化
JP2005160903A (ja) * 2003-12-05 2005-06-23 Ngk Insulators Ltd 滅菌装置
JP2006320392A (ja) * 2005-05-17 2006-11-30 Daikin Ind Ltd 滅菌システム
JP2010179943A (ja) * 2009-02-06 2010-08-19 Dainippon Printing Co Ltd 飲料充填装置
JP2010235209A (ja) * 2009-03-10 2010-10-21 Dainippon Printing Co Ltd 飲料充填方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3138583A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090773A1 (ja) * 2015-11-27 2017-06-01 東京エレクトロン株式会社 細胞培養システム及び滅菌方法
WO2018212029A1 (ja) * 2017-05-15 2018-11-22 株式会社エアレックス インキュベータ
JP2018191546A (ja) * 2017-05-15 2018-12-06 株式会社エアレックス インキュベータ
EP3626813A4 (en) * 2017-05-15 2021-02-24 Airex Co., Ltd. INCUBATOR
US11142742B2 (en) 2017-05-15 2021-10-12 Airex Co., Ltd. Incubator
JPWO2019187201A1 (ja) * 2018-03-26 2021-03-11 シャープ株式会社 清浄空間維持装置、建築構造体、細胞培養方法および細胞製造方法
WO2020021874A1 (ja) * 2018-07-23 2020-01-30 株式会社エアレックス インキュベータの陽圧制御方法及びこの方法を利用した培養作業システム
JP2020014387A (ja) * 2018-07-23 2020-01-30 株式会社エアレックス インキュベータの陽圧制御方法及びこの方法を利用した培養作業システム
JP7108295B2 (ja) 2018-07-23 2022-07-28 株式会社エアレックス インキュベータの陽圧制御方法及びこの方法を利用した培養作業システム
WO2021090661A1 (ja) * 2019-11-07 2021-05-14 株式会社エアレックス 除染システム
TWI836153B (zh) * 2019-11-07 2024-03-21 日商愛瑞思股份有限公司 除污系統
WO2023074464A1 (ja) 2021-10-25 2023-05-04 株式会社エアレックス 移動式除染装置

Also Published As

Publication number Publication date
US10426856B2 (en) 2019-10-01
KR20170003537A (ko) 2017-01-09
US20170014540A1 (en) 2017-01-19
CN106232148A (zh) 2016-12-14
JPWO2015166554A1 (ja) 2017-04-20
EP3138583A1 (en) 2017-03-08
KR102206230B1 (ko) 2021-01-21
EP3138583B1 (en) 2019-07-17
EP3138583A4 (en) 2017-12-27
DK3138583T3 (da) 2019-08-05
CN106232148B (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2015166554A1 (ja) 除染システム
KR102374984B1 (ko) 인큐베이터
JP5590797B2 (ja) 空間の消毒
EP1368068B1 (en) High capacity flash vapor generation systems
JP6111087B2 (ja) 除染システム
US9878062B2 (en) Aseptic manipulation system
KR20180112142A (ko) 과산화수소를 이용한 멸균장치
US2523373A (en) Apparatus for air sterilization
KR20150058053A (ko) 인큐베이터 및 인큐베이터 오염 제거 방법
JP2011010892A (ja) 室内除染システム
KR101967811B1 (ko) 간이 과산화수소 증기 멸균 장치 및 이를 이용한 멸균 방법
KR20230002312A (ko) 인큐베이터
WO2011051645A1 (en) Apparatus for use with sterilant vapour generators
JP4966632B2 (ja) 細胞培養施設
JP7108295B2 (ja) インキュベータの陽圧制御方法及びこの方法を利用した培養作業システム
JP7264328B1 (ja) 空間除染方法及び空間除染装置
KR101545789B1 (ko) 친환경 소독제를 이용한 문화재 소독장치
JP2017032225A (ja) 加湿装置及び空気調和装置
JP2019115454A (ja) 空間除菌脱臭システム
US20230125244A1 (en) Apparatus and methods for decontaminating enclosed spaces
CN220778746U (zh) 一种汽化过氧化氢发生器
US20090169424A1 (en) Method of disinfecting and wetiing the interior of a building
CN118320152A (zh) 一种管道输送式过氧化氢灭菌系统
FI13021Y1 (fi) Korkeapaineinen kuumavesisumutusjärjestelmä
GB2389789A (en) Apparatus for decontamination of enclosed spaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515798

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014891060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014891060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15300729

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167029722

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE