WO2015163367A1 - 蓄電システム及びその運転方法 - Google Patents

蓄電システム及びその運転方法 Download PDF

Info

Publication number
WO2015163367A1
WO2015163367A1 PCT/JP2015/062241 JP2015062241W WO2015163367A1 WO 2015163367 A1 WO2015163367 A1 WO 2015163367A1 JP 2015062241 W JP2015062241 W JP 2015062241W WO 2015163367 A1 WO2015163367 A1 WO 2015163367A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
storage batteries
electrolytic
storage
electrode
Prior art date
Application number
PCT/JP2015/062241
Other languages
English (en)
French (fr)
Inventor
杉政 昌俊
寛人 内藤
石川 敬郎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2015163367A1 publication Critical patent/WO2015163367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power storage system and an operation method thereof.
  • a flow type storage battery such as a redox flow battery is known.
  • a flow-type storage battery is a storage battery that charges and discharges by advancing an oxidation-reduction reaction of an active material by circulating an electrolytic solution in which an active material such as metal ions is dissolved in an electrode tank.
  • the charging power can be stored in the electrolyte tank in the form of a solution, so that the battery capacity can be easily increased. Therefore, application to power storage systems including those for power leveling is being studied.
  • a flow-type storage battery is configured to supply an electrolytic solution in which an active material is dissolved from a common electrolytic solution tank to a plurality of storage batteries. Therefore, the output can be adjusted by adjusting the flow rate of the electrolytic solution. It has the advantage that it can be done properly.
  • Patent Document 1 discloses an operation method of a redox flow battery system including a stacked assembly of cells in which an electrolyte is circulated and supplied to generate electromotive force, and each cell constituting the redox flow battery system
  • all or some of the units of each sub-stack, each cell stack, and each module can adjust the flow rate of the electrolyte, measure the voltage of each unit during charging, and based on the measurement results
  • a method of operating a redox flow battery system is disclosed in which the voltage of each unit is equalized by adjusting the flow rate of the electrolytic solution in the unit.
  • a conventional power storage system disclosed in Patent Document 1 includes a power supply unit 10 that supplies generated power, and a plurality of storage batteries 22C1,
  • the power storage unit 20C having a configuration in which 22C2 is connected in series is connected to a load unit 40 such as a commercial AC power system via a power conditioner 30.
  • FIG. 4B is a diagram showing the relationship between the charge input and the discharge output in such a power storage system 100.
  • the horizontal axis indicates the charging voltage or discharging voltage
  • the vertical axis indicates the charging current or discharging current.
  • the solid line indicates the charge / discharge characteristic line of the power storage unit 20 ⁇ / b> C
  • the broken line indicates the output characteristic line of the power supply unit 10.
  • the power supply unit 10 constituted by a renewable energy power generation facility or the like is affected by fluctuations in the amount of energy sources (fluctuations in wind conditions, weather, etc.). May cause output (output current) fluctuations.
  • the output current from the power supply unit 10 depends on the voltages of the power storage unit 20C including the resistance component, the power converter 30, and the load unit 40, and decreases as the voltage is set higher as shown by the broken line in FIG. Therefore, the output current is low in the high voltage range, and the output voltage is low in the high current range. Therefore, when charging the power storage unit 20C, as shown by the charging characteristic line 110 in FIG.
  • the maximum power point is performed by following the output of the power supply unit 10 to the maximum power point where the power is maximum. Charging in the power point tracking (Maximum Power Point Tracking; MPPT) format is often adopted.
  • MPPT Maximum Power Point Tracking
  • the storage batteries 22C1 and 22C2 that output power to the power conditioner 30 have a property of causing a large voltage drop during discharging as compared with the input voltage during charging. This voltage drop becomes more prominent as the current density increases. It becomes. Therefore, in power storage system 100 that handles a large current, the voltage range of the discharge voltage by power storage unit 20C tends to deviate from the voltage range of the charging voltage to power storage unit 20C. That is, the power conditioner 30 has a wide driving voltage range so that it can correspond to both the voltage range of the output by the power supply unit 10 used for charging the power storage unit 20C and the voltage range of the discharge by the power storage unit 20C. It is necessary to configure so as to have (the voltage range between Vd1 and Vc2 in FIG. 4B). However, when the drive voltage range of the power conditioner 30 is expanded in this way, the power conversion efficiency is lowered, which is an obstacle to the effective use of power.
  • an object of the present invention is to provide a power storage system capable of charging and discharging a storage battery in a voltage range in which a voltage difference between a charging voltage and a discharging voltage is small, and an operation method thereof.
  • a power storage system includes a first electrode, a second electrode, a first electrolytic cell in which the first electrode is held, a second electrolytic cell in which the second electrode is held, and An assembled battery formed by combining a plurality of storage batteries each having a separator that separates the first electrolytic tank and the second electrolytic tank; and the first electrolytic tank included in the plurality of storage batteries via an outward piping and a return piping.
  • a first electrolytic solution storage tank that stores a first electrolytic solution that is connected and circulated with the first electrolytic cell, and a second electrolytic cell that the plurality of storage batteries have is connected via a forward piping and a return piping.
  • a second electrolyte storage tank that stores a second electrolyte solution that is circulated between the second electrolyte tanks, and a first electrolyte solution that is stored in the first electrolyte storage tank.
  • a first electrolyte supply means for supplying each to the first electrolytic cell;
  • Second electrolyte supply means for supplying the second electrolyte stored in the second electrolyte storage tank to the second electrolyte tank of the plurality of storage batteries, a power source for supplying power to the assembled battery, and the plurality of storage batteries
  • Switching means for mutually switching the connection between the series connection and the parallel connection, switching of the switching means, the flow rate of the first electrolyte supplied by the first electrolyte supply means, and the second electrolysis
  • a control device for controlling the flow rate of the second electrolyte supplied by the liquid supply means.
  • a method of operating a power storage system includes a first electrode, a second electrode, a first electrolytic cell in which the first electrode is held, and a second electrolysis in which the second electrode is held.
  • a plurality of storage batteries having a tank and a separator that separates the first electrolytic tank and the second electrolytic tank are combined, and an assembled battery that is fed by a power source, and the first electrolysis that the plurality of storage batteries have
  • a first electrolytic solution storage tank that stores a first electrolytic solution that is connected to the tank via an outward piping and a return piping and circulates between the first electrolytic bath, and the second electrolytic bath that the plurality of storage batteries have.
  • a second electrolyte storage tank that stores a second electrolytic solution that is circulated between the second electrolytic tank and a first electrolytic tank that is stored in the first electrolytic solution storage tank.
  • Electrolyte solution to the first electrolytic cell of the plurality of storage batteries First electrolyte supply means for supplying each of the second electrolyte supply means, and second electrolyte supply means for supplying the second electrolyte stored in the second electrolyte storage tank to the second electrolyte tanks of the plurality of storage batteries, respectively.
  • a switching means for switching the connection of the plurality of storage batteries to one of a series connection and a parallel connection, wherein the plurality of storage batteries are connected in parallel when the assembled battery is charged.
  • the switching means is controlled such that the switching means is controlled so that the plurality of storage batteries are connected in series when the assembled battery is discharged.
  • a power storage system capable of charging and discharging a storage battery in a voltage range in which a voltage difference between a charging voltage and a discharging voltage is small, and an operation method thereof.
  • a power converter such as a power conditioner connected to the power storage system
  • the power conversion efficiency can be maintained at a high level, or the connection of such a power converter can be omitted.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power storage system according to a first embodiment.
  • A is a figure which shows the outline of the circuit at the time of charge of the electrical storage system which concerns on this embodiment
  • (b) is a figure which shows the outline of the circuit at the time of discharge of the electrical storage system which concerns on this embodiment
  • (c ) Is a diagram showing the relationship between the charge input and the discharge output. It is a figure which shows schematic structure of the electrical storage system which concerns on 2nd Embodiment.
  • (A) is a figure which shows the outline of the circuit at the time of charging / discharging of the electrical storage system which concerns on a comparative example
  • (b) is a figure which shows the relationship between charge input and discharge output.
  • FIG. 1 is a diagram illustrating a schematic configuration of a power storage system according to the first embodiment.
  • the connection state is indicated by a solid line.
  • the power storage system 1 includes a power storage unit 20 that is fed by a power supply unit 10 and a control device 50.
  • Power storage unit 20 is connected to main buses 110a and 110b, respectively, and is electrically connected to power supply unit 10 and power converter 30.
  • the power converter 30 is connected to the load unit 40.
  • the control device 50 is a device that controls switching of the switching means, which will be described later, and the flow rate of the electrolyte supplied by the first electrolyte supply means 26A and the second electrolyte supply means 26B.
  • the power supply unit 10 is a DC power source that outputs DC power, and is configured by a power source such as a power generator.
  • the power supply unit 10 includes a natural energy generator such as a wind power generator, a solar power generator, a solar power generator, or a hydroelectric power generator.
  • the power supply unit 10 is connected to the main bus 110a via a substation facility such as a DC-DC converter (not shown). Then, the electric power generated by the power supply unit 10 is fed to the power storage unit 20 to charge the power storage unit 20 or output to the power converter 30 and directly fed to the load unit 40.
  • the power storage unit 20 is charged when the power supply to the load unit 40 is excessive, and the discharge from the power storage unit 20 is performed when the output from the power supply unit 10 is reduced. Switching control is performed by a control device (not shown).
  • the electrical storage part 20 is comprised with the assembled battery which consists of a some flow type storage battery (22A, 22B) as shown by the dashed-dotted line in FIG.
  • the power storage unit 20 is connected to the main bus 110a via a plurality of switching means (SW1, SW2, SW3, SW4, SW5).
  • SW1, SW2, SW3, SW4, SW5 switching means
  • the power storage unit 20 charged by power supply from the power supply unit 10 can output the stored power to the power converter 30.
  • the power converter 30 is composed of a power conditioner that converts DC power into AC power. As shown in FIG. 1, the power converter 30 is connected to a load unit 40 such as a commercial AC system, and converts DC power output from the power supply unit 10 or the power storage unit 20 into single-phase or three-phase AC power. And output to the load unit 40.
  • the power converter 30 can be omitted when the power storage system 1 is directly applied to a DC load.
  • the power storage unit 20 includes an assembled battery including a plurality of flow type (electrolyte circulation type) storage batteries 22A and 22B, an electrolyte storage tank (24A and 24B), and an electrolyte supply means (26A, 26B).
  • a plurality of pipes 211, 212, 213, and 214 are provided for connecting the storage batteries 22A and 22B and the electrolyte storage tanks 24A and 24B.
  • Specific examples of the electrolyte circulation type storage batteries 22A and 22B having such a configuration include a redox flow battery and a lead storage battery.
  • the storage batteries 22A and 22B have a first electrode 221, a second electrode 222, a first electrode electrolytic cell 223, a second electrode electrolytic cell 224, and a separator 226 inside the housing.
  • the inside of the housing of each storage battery 22A, 22B is partitioned into two tanks, a first electrode electrolytic tank 223 and a second electrode electrolytic tank 224, by an ion conductive separator 226, respectively.
  • the separator 226 restricts the movement of the composition component of the electrolytic solution held inside the housings of the storage batteries 22A and 22B.
  • the first electrode electrolytic bath 223 has a first electrode side electrolytic solution, and the second electrode electrolytic bath 224 has no movement.
  • the second electrode side electrolytic solution is partitioned. Note that only some carrier ions are allowed to move through the separator 226.
  • the separator 226 is made of, for example, a porous resin material, and specifically, polyethylene, polypropylene, polyimide, fluororesin, other ion exchange membranes, or the like are used.
  • 1st electrode 221 is hold
  • the lead wiring drawn from the first electrode 221 is connected to the positive electrode (+) side of the power supply unit 10.
  • the second electrode 222 is held in the second electrode electrolytic bath 224 and is immersed in the second electrode side electrolytic solution.
  • the lead wiring drawn from the second electrode 222 is connected to the negative electrode ( ⁇ ) side of the power supply unit 10.
  • metal materials such as stainless steel, nickel, copper, titanium, gold, platinum, and alloys thereof, and carbon materials such as carbon felt are used.
  • a first electrode side electrolytic solution storage tank 24A and a second electrode side electrolytic solution storage tank 24B are provided.
  • a first electrode side electrolyte solution and a second electrode side electrolyte solution containing an electrochemically active active material are respectively stored.
  • the first electrode side electrolyte storage tank 24A and the second electrode side electrolyte storage tank 24B are each provided with an open voltage measuring means 242.
  • the voltage measurement values by the open-circuit voltage measuring means 242 provided in the first electrode-side electrolyte storage tank 24A and the open-circuit voltage measurement means 242 provided in the second electrode-side electrolyte storage tank 24B are output to the control device 50, respectively.
  • a voltage difference between the electrode-side electrolyte and the second electrode-side electrolyte is required.
  • a known first electrode active material and second electrode active material having good reversibility of the redox reaction can be used in combination.
  • the first electrode active material include metals such as copper, nickel, cobalt, silver, manganese, vanadium, and iron, alloys thereof, halogens such as bromine and iodine, oxygen, oxides and hydroxides. And metal compounds such as nickel, manganese and iridium that can be charged and discharged by a change in state between the two.
  • examples of the second electrode active material include zinc, lead, tin, titanium, vanadium, and the like.
  • an appropriate conductive solution is used according to the types of the first electrode active material and the second electrode active material.
  • the second electrode active material is zinc and the first electrode active material is bromine, zinc bromide, ammonium bromide, or the like can be used.
  • One end of the outgoing pipe 211 having a branch is connected to the first electrode side electrolyte storage tank 24A, and the other end of the outgoing pipe 211 is connected to the first electrode electrolytic tank 223 of each of the storage batteries 22A and 22B.
  • one end of the return pipe 213 is connected to the first electrode electrolytic tank 223 of each of the storage batteries 22A and 22B, and the other end of the return pipe 213 is connected to the first electrode side electrolyte storage tank 24A.
  • one end of the outgoing pipe 212 having a branch is connected to the second electrode side electrolyte storage tank 24B, and the other end of the outgoing pipe 212 is connected to the second electrode electrolytic tank 224 of each of the storage batteries 22A and 22B.
  • one end of the return pipe 214 is connected to the second electrode electrolytic tank 224 of each of the storage batteries 22A and 22B, and the other end of the return pipe 214 is connected to the second electrode side electrolyte storage tank 24B.
  • the second electrode side electrolyte storage tank 24B, the forward piping 212, the second electrode electrolytic tank 224, and the return piping 214 are sequentially passed, and then returned to the second electrode side electrolyte storage tank 24B.
  • a returning annular flow path is provided.
  • the forward piping 211 and 212 are provided with electrolyte supply pumps 26A and 26B, respectively.
  • the electrolyte supply pumps 26A and 26B receive the control signal from the control device 50, vary the discharge amount, the rotation speed, etc., and adjust the supply amount of the electrolyte.
  • the first electrode side electrolyte supply pump 26A supplies the first electrode side electrolyte solution of the same composition from the first electrode side electrolyte solution storage tank 24A to the first electrode electrolyte tank 223 of each of the storage batteries 22A and 22B.
  • the reacted first electrode-side electrolyte is returned from the first electrode electrolytic tank 223 of each storage battery 22A, 22B to the first electrode-side electrolyte storage tank 24A.
  • the second electrode side electrolyte supply pump 26B supplies the second electrode side electrolyte of the same composition from the second electrode side electrolyte storage tank 24B to the second electrode electrolyte tank 224 of each of the storage batteries 22A and 22B.
  • the second electrode-side electrolyte solution after the reaction is returned from the second electrode electrolytic cell 224 of each of the storage batteries 22A and 22B to the second electrode-side electrolyte solution storage cell 24B.
  • the power storage unit 20 having such a configuration, for example, when the power supply by the power supply unit 10 is excessive, charging with the power generated by the power supply unit 10 is performed. That is, the oxidation reaction of the active material proceeds in the first electrode electrolytic cell 223 holding the first electrode 221, and carrier ions such as protons pass through the separator 226 and move to the second electrode electrolytic cell 224. Then, the reduction reaction of the active material proceeds in the second electrode electrolytic cell 224 that holds the second electrode 222. At this time, by operating the electrolyte supply pumps 26A and 26B, the first electrode-side electrolyte solution in which the active material is in the reduced state is transferred from the first electrode-side electrolyte storage tank 24A to the first electrode electrolyte bath 223.
  • the second electrode electrolytic solution 224 is supplied with the second electrode side electrolytic solution in which the active material is in the oxidized state from the second electrode side electrolytic solution storage tank 24B, and the charging reaction is continuously performed. Then, the first electrode side electrolytic solution in which the active material is in the oxidized state is returned from the first electrode electrolytic bath 223 to the first electrode side electrolytic solution storage tank 24A, and the second electrode side electrolytic solution in which the active material is in the reduced state. Is returned from the second electrode electrolytic cell 224 to the second electrode side electrolyte storage cell 24B and stored therein.
  • the power storage unit 20 for example, when the power supply by the power supply unit 10 is insufficient with respect to the power demand of the load unit 40, the stored power is discharged.
  • the reverse reaction discharge reaction
  • the polarity conversion in charging / discharging may be performed by installing a polarity converter (not shown) for each of the plurality of storage batteries 22 ⁇ / b> A and 22 ⁇ / b> B, or may be performed by the power converter 30.
  • fever accompanying these charge / discharge reactions is measured by the temperature measurement means 228 with which the 1st electrode electrolytic cell 223 and the 2nd electrode electrolytic cell 224 are each equipped.
  • the temperature measuring means 228 outputs the measured values of the electrolyte temperature in each of the first electrolyte solution and the second electrolyte solution to the control device 50.
  • the electrochemically active active material is separated from the first electrode electrolytic cell 223 and the second electrode electrolytic cell 224, the first electrode side electrolytic solution storage tank 24A, and the second electrode side electrolytic solution. Since each can be stored in the storage tank 24B, there is an advantage that the electric capacity can be increased only by expanding the capacity of the electrolytic solution. Moreover, since common electrolyte solution is supplied to each storage battery 22A, 22B, the both-ends voltage of each storage battery 22A, 22B is equalized. Therefore, there is an advantage that current concentration is unlikely to occur in some of the storage batteries, and an apparatus for performing charge / discharge management of each of the storage batteries 22A and 22B can be simplified.
  • the number of storage batteries is not limited to two as shown in FIG. 1, and may be three or more.
  • the form of the arrangement of the plurality of storage batteries is not particularly limited, and may be a form in which a cell stack is formed by stacking, for example.
  • the plurality of storage batteries 22A and 22B included in the power storage unit 20 include a plurality of switching means (SW1, SW2, SW3, SW4, SW5) as illustrated in FIG. To the power supply unit 10 and the power converter 30.
  • the switching means (SW1, SW2, SW3, SW4, SW5) are switches, switches, switching elements, etc. that open and close the electric circuit.
  • the switching means (SW1, SW2, SW3, SW4, SW5) is controlled to open and close based on a control signal from the control device 50, and the connection state of the plurality of storage batteries 22A, 22B is set to either serial connection or parallel connection. They are arranged to be switchable with each other.
  • FIG. 2A is a diagram illustrating a schematic circuit during charging of the power storage system according to the first embodiment
  • FIG. 2B illustrates a schematic circuit during discharging of the power storage system according to the first embodiment
  • FIG. 2 (c) is a diagram showing the relationship between the charge input and the discharge output.
  • the horizontal axis indicates the charging voltage or discharging voltage
  • the vertical axis indicates the charging current or discharging current.
  • the solid line indicates the charge / discharge characteristic line of the power storage unit 20, and the broken line indicates the output characteristic line of the power supply unit 10.
  • the switching means (SW1, SW2, SW3, SW4, SW5) is controlled to open and close so that the storage batteries 22A and 22B are connected in parallel when the power storage unit 20 is charged. That is, the switching means SW1, the switching means SW2, and the switching means SW4 are controlled in the closed state (ON), and the switching means SW3 and the switching means SW5 are controlled in the open state (OFF).
  • the switching means (SW1, SW2, SW3, SW4, SW5) is controlled to open and close so that the storage batteries 22A and 22B are connected in series when the power storage unit 20 is discharged. That is, the switching means SW3, the switching means SW5 are controlled to be in the closed state (ON), and the switching means SW1, the switching means SW2, and the switching means SW4 are controlled to be in the open state (OFF).
  • the storage batteries 22A and 22B are connected in parallel to level the charging current between the storage batteries and The voltage range is narrowed.
  • charging characteristic line 110 in FIG. 2C charging of a maximum power point tracking (Maximum Power Point Tracking; MPPT) format is performed, and a plurality of storage batteries 22A and 22B connected in parallel are connected.
  • MPPT Maximum Power Point Tracking
  • the storage batteries 22A and 22B are connected in series so that a desired output is achieved and the voltage range of the discharge voltage is maintained at a higher level. Yes.
  • the discharge characteristic line 130 in FIG. 2C constant power discharge is performed by each of the plurality of storage batteries 22A and 22B connected in series from the discharge start voltage Vd1 to the discharge end voltage Vd2. it can.
  • the discharge start voltage Vd1 in the discharge from the power storage unit 20 decreases from the charge end voltage Vc2 due to a voltage drop generated in the storage batteries 22A and 22B, but the plurality of storage batteries 22A and 22B Since the connection is switched to the series connection, the discharge voltage is maintained at a higher level than in the case of the power storage system 100 according to the comparative example (see FIG. 4).
  • the output current due to the discharge depends on the difference between the output voltage and the open circuit voltage, the flow rates of the first electrolyte solution and the second electrolyte solution, and the temperatures of the first electrolyte solution and the second electrolyte solution. Therefore, the voltage between the electrodes of each of the storage batteries 22A and 22B measured by a voltage measuring instrument (not shown) and the first electrode side electrolyte storage tank 24A and the second electrode side electrolyte storage tank 24B measured by the open voltage measuring means 242.
  • the first electrolytic solution and the first electrolytic solution for achieving a predetermined output current It is possible to obtain a model function of the flow rate of two electrolytes in advance.
  • the output current generated by the discharge from the storage batteries 22A and 22B is calculated based on the flow rate of the first electrolyte supplied by the first electrode side electrolyte supply pump 26A by the control device 50 and the second electrode side electrolysis. It can be adjusted by reducing the flow rate of the second electrolyte supplied by the liquid supply pump 26B.
  • the switching means (SW1, SW2, SW3, SW4, SW5) is controlled, and the flow rate of the first electrolyte solution and the flow rate of the second electrolyte solution are set so that the discharge voltage range in the assembled battery is equal to or lower than the end-of-charge voltage of the assembled battery.
  • the storage batteries 22A and 22B can be charged and discharged more precisely so that the voltage difference between the charge voltage and the discharge voltage is small.
  • the voltage difference between the input voltage to power storage unit 20 when connected in parallel and the output voltage of power storage unit 20 when connected in series is 1 / of the maximum voltage applied in power storage system 1. It can also be adjusted to be in the range of 10 or less.
  • the storage batteries 22A and 22B can be charged and discharged within a voltage range in which the voltage difference between the charging voltage and the discharging voltage is small. And since the expansion of the input voltage range to the power converter 30 is suppressed, it is not necessary to configure the drive voltage range of the power converter 30 to be a wide range. That is, the power conversion efficiency of the power converter 30 can be improved and maintained at a high level, or the installation of the power converter 30 can be omitted when AC conversion is not required. Or In the power storage system 1 according to the first embodiment, the frequency of switching between the serial connection and the parallel connection is suppressed by limiting charging of the power storage unit 20 by the power supply unit 10 by limiting it in the daytime. Can be operated. Therefore, there is an advantage that the charge / discharge efficiency does not depend on the switching speed of the switching means.
  • FIG. 3 is a diagram illustrating a schematic configuration of a power storage system according to the second embodiment.
  • the connection state is indicated by a solid line along with the configuration of the power storage system according to the second embodiment.
  • the power storage system 2 includes a power storage unit 20A that is powered by the power supply unit 10 and a control device 50A.
  • the electricity storage unit 20A includes water electrolyzers 72A, 72B, 72C, and 72D as storage batteries.
  • Power storage unit 20A is connected to main buses 110a and 110b, respectively, and is electrically connected to power supply unit 10 and power converter 30.
  • the power converter 30 is connected to the load unit 40.
  • Water electrolyzers 72A, 72B, 72C, 72D are devices that generate oxygen (oxygen gas) and hydrogen (hydrogen gas) by electrolyzing water.
  • the water electrolyzers 72A, 72B, 72C, 72D have a mechanism for generating oxygen and hydrogen at different timings in order to avoid mixing of the generated oxygen and hydrogen.
  • An oxidized product or reduced product of an intermediate product that reversibly repeats the oxidation-reduction reaction is produced.
  • the water electrolyzers 72A, 72B, 72C, and 72D have a function as a storage battery that stores electric power using the oxidation-reduction potential difference between the oxidant and the reductant.
  • the water electrolyzers 72A, 72B, 72C, 72D have an electrolytic electrode 721, an intermediate electrode 722, a water electrolytic cell 723, an intermediate electrolytic cell 724, and a separator 726 inside the housing.
  • each of the water electrolyzers 72A, 72B, 72C, 72D is divided into two tanks, a water electrolysis tank 723 and an intermediate electrolysis tank 724, by a separator 726 that blocks permeation of product gas.
  • the separator 726 restricts the movement of the gas generated inside the casings of the water electrolyzers 72A, 72B, 72C, 72D.
  • the water electrolysis tank 723 has an electrolytic electrode side electrolyte solution and the intermediate electrolysis tank 724 has an intermediate electrode side. The electrolyte is held.
  • the separator 726 is made of, for example, an appropriate porous body that can prevent the reverse reaction of the generated gas.
  • the electrolytic electrode 721 is held in the water electrolysis tank 723 and is immersed in the electrolytic electrode side electrolytic solution.
  • the lead wire drawn from the electrolytic electrode 721 is connected to the positive electrode (+) side of the power supply unit 10.
  • the intermediate electrode 722 is held in the intermediate electrolytic tank 724 and immersed in the intermediate electrode side electrolyte.
  • the lead wiring drawn from the intermediate electrode 722 is connected to the negative electrode ( ⁇ ) side of the power supply unit 10.
  • an electrode material having a hydrogen generation potential higher than the oxidation-reduction potential of the intermediate product is used, and preferably, platinum, rhodium, nickel, or the like having a small hydrogen generation overvoltage and oxygen generation overvoltage is used.
  • an electrode material whose hydrogen generation potential is lower than the oxidation-reduction potential of the intermediate product is used, and preferably zinc, copper, gold, carbon, or the like is used.
  • an electrolytic electrode side electrolytic solution storage tank 74A and an intermediate electrode side electrolytic solution storage tank 74B are provided as the electrolytic solution storage tanks (74A, 74B).
  • the electrolytic electrode side electrolytic solution is stored in the electrolytic electrode side electrolytic solution storage tank 74A.
  • the intermediate electrode side electrolyte solution storage tank 74B stores an intermediate electrode side electrolyte solution in which the intermediate product is dissolved.
  • An open-circuit voltage measuring unit 242 may be installed in each of the electrolytic electrode side electrolytic solution storage tank 74A and the intermediate electrode side electrolytic solution storage tank 74B.
  • the electrolytic electrode side electrolytic solution may be an aqueous solution, and may be an alkaline electrolyte solution, a plating solution, or the like.
  • the intermediate electrode side electrolytic solution has a composition in which the intermediate product is dissolved in such an electrolytic solution.
  • the electrolyte concentration of the electrolytic solution is preferably 0.01 mol / L or more and 10 mol / L or less. When the electrolyte concentration of the electrolytic solution is 0.01 mol / L or more and 10 mol / L or less, it is possible to avoid a decrease in the conductivity of the electrolytic solution while securing a storage capacity of electric power.
  • the intermediate product may be a metal, an organic molecule, or a metal complex as long as it is a substance having a redox potential higher than the hydrogen generation potential, but the reductant produced by the redox reaction is preferably water-insoluble. . If the reductant is insoluble in water, it will be deposited as a solid on the electrode, so that it is possible to avoid the reverse reaction from proceeding at the counter electrode.
  • Examples of such intermediate products include zinc, iron, lead, tin, nickel, alloys thereof, and the like. Among these, zinc is preferable.
  • One end of a forward piping 711 having a branch is connected to the electrolytic electrode side electrolytic solution storage tank 74A, and the other end of the outward piping 711 is connected to the water electrolysis tank 723 of each water electrolyzer 72A, 72B, 72C, 72D, respectively.
  • One end of the return pipe 713 is connected to the water electrolysis tank 723 of each water electrolyzer 72A, 72B, 72C, 72D, and the other end of the return pipe 713 is connected to the electrolytic electrode side electrolyte storage tank 74A. ing.
  • the electrolytic electrode side electrolytic solution is again passed from the electrolytic electrode side electrolytic solution storage tank 74A through the forward piping 711, the water electrolytic bath 723, and the return piping 713 sequentially.
  • An annular flow path returning to the storage tank 74A is provided.
  • one end of an outgoing pipe 712 having a branch is connected to the intermediate electrode side electrolyte storage tank 74B, and the other end of the outgoing pipe 712 is an intermediate electrolytic tank of each water electrolyzer 72A, 72B, 72C, 72D. 724 and 724, respectively.
  • one end of the return pipe 714 is connected to the intermediate electrolytic tank 724 of each water electrolyzer 72A, 72B, 72C, 72D, and the other end of the return pipe 714 is connected to the intermediate electrode side electrolyte storage tank 74B. ing.
  • the intermediate electrode side electrolyte solution is again passed from the intermediate electrode side electrolyte storage tank 74B through the forward piping 712, the intermediate electrolytic bath 724, and the return piping 714 in order.
  • An annular flow path returning to the storage tank 74B is provided.
  • the forward piping 711 and 712 are provided with electrolyte supply pumps 76A and 76B, respectively.
  • the electrolyte supply pumps 26A and 26B receive the control signal from the control device 50A, vary the discharge amount, the rotation speed, etc., and adjust the supply amount of the electrolyte.
  • the electrolytic electrode-side electrolyte solution of the same composition is supplied from the electrolytic electrode-side electrolyte storage tank 74A to the water electrolysis tank 723 of each water electrolyzer 72A, 72B, 72C, 72D by the electrolytic electrode-side electrolyte supply pump 76A.
  • the electrolytic electrode side electrolytic solution after the reaction is returned from the water electrolytic tank 723 of each water electrolyzer 72A, 72B, 72C, 72D to the electrolytic electrode side electrolytic solution storage tank 74A.
  • the intermediate electrode side electrolyte supply pump 76B causes the intermediate electrode side electrolyte solution of the same composition from the intermediate electrode side electrolyte storage tank 74B to the intermediate electrolytic tank 724 of each water electrolyzer 72A, 72B, 72C, 72D, respectively. While being supplied, the reacted intermediate electrode side electrolyte is returned from the intermediate electrolytic tank 724 of each water electrolyzer 72A, 72B, 72C, 72D to the intermediate electrode side electrolyte storage tank 74B. .
  • reaction formula 1 zinc is cited as an example of an intermediate product. Zn 2+ + 2e ⁇ ⁇ Zn (reaction formula 1)
  • reaction formula 2 water is electrolyzed according to the following reaction formula 2 to generate oxygen gas.
  • intermediate electrode 722 is reduced according to the following reaction formula 3.
  • the oxidation reaction of the product proceeds. This is because the reduction reaction proceeds in the electrolytic electrode 721 because the oxidation-reduction potential of the intermediate product is set lower than the hydrogen generation potential of the electrolytic electrode 721.
  • zinc is cited as an example of the intermediate product.
  • Zn ⁇ Zn 2+ + 2e ⁇ (reaction formula 3)
  • hydrogen gas is generated at the electrolytic electrode 721 according to the following reaction formula 4. 2H + + 2e ⁇ ⁇ H 2 (reaction formula 4)
  • the redox potential of the intermediate product is set lower than the hydrogen generation potential at electrolytic electrode 721, and the redox potential of the intermediate product is set higher than the hydrogen generation potential at intermediate electrode 722.
  • the intermediate product By configuring the intermediate product to have a higher redox potential than the hydrogen generation potential of the intermediate product, water is electrolyzed by the water electrolyzers 72A, 72B, 72C, 72D when the power storage unit 20A is charged, Only oxygen gas can be generated without generation of hydrogen gas. At this time, the oxidant of the intermediate product is converted into a reductant by an oxidation-reduction reaction and used for power storage.
  • the power storage unit 20A when the power storage unit 20A is discharged, water is electrolyzed by the water electrolyzers 72A, 72B, 72C, and 72D, and only hydrogen gas can be generated without generating oxygen gas. . At this time, the reduced product of the intermediate product is converted into an oxidized product by an oxidation-reduction reaction and used for discharge. In addition, you may make it measure the heat_generation
  • the plurality of water electrolyzers 72A, 72B, 72C, 72D provided in the power storage unit 20A include a plurality of switching means (SW11, SW12, SW13, SW21, SW22, SW23, SW31, SW32, SW33, SW4, SW5) are connected to the power supply unit 10 and the power converter 30. These switching means are controlled to open and close based on a control signal from the control device 50A, and the connection states of the plurality of water electrolyzers 72A, 72B, 72C, 72D are mutually connected to either serial connection or parallel connection. It is arranged to be switchable.
  • SW11, SW12, SW13, SW21, SW22, SW23, SW31, SW32, SW33, SW4, SW5 are connected to the power supply unit 10 and the power converter 30. These switching means are controlled to open and close based on a control signal from the control device 50A, and the connection states of the plurality of water electrolyzers 72A, 72B, 72C, 72D are mutually connected to either serial connection
  • the switching means is controlled to open and close so that the water electrolyzers 72A, 72B, 72C, and 72D are connected in parallel when the power storage unit 20A is charged. That is, the switching means SW11, the switching means SW12, the switching means SW13, the switching means SW21, the switching means SW22, the switching means SW23, and the switching means SW4 are closed (ON), the switching means SW31, the switching means SW32, the switching means SW33, and the switching The means SW5 is controlled to be open (OFF). On the other hand, the switching means is controlled to open and close so that the water electrolyzers 72A, 72B, 72C, and 72D are connected in series when the power storage unit 20A is discharged.
  • switching means SW31, switching means SW32, switching means SW33, and switching means SW5 are closed (ON), the switching means SW11, switching means SW12, switching means SW13, switching means SW21, switching means SW22, switching means SW23, switching The means SW4 is controlled to be open (OFF).
  • the water electrolyzers 72A, 72B, 72C, and 72D are connected in parallel, thereby leveling the charging current between the storage batteries and narrowing the voltage range of the charging voltage. Can be.
  • the electricity storage unit 20A is discharged, the water electrolyzers 72A, 72B, 72C, and 72D are connected in series, thereby achieving a desired output and a higher voltage range of the discharge voltage. Can be maintained.
  • the output current generated by the discharge from the water electrolyzers 72A, 72B, 72C, 72D is supplied by the flow rate of the electrolytic electrode side electrolytic solution supplied by the electrolytic solution supply pump 76A by the control device 50A and the electrolytic solution supply pump 76B. It can be adjusted by decreasing the flow rate of the intermediate electrode side electrolyte. While controlling the switching means, the discharge voltage range in the water electrolyzers 72A, 72B, 72C, 72D is the same as the flow rate of the electrolytic electrode side electrolyte and the flow rate of the intermediate electrode side electrolyte.
  • the water electrolysis devices 72A, 72B, 72C, and 72D are charged and discharged within a voltage range in which the voltage difference between the charging voltage and the discharging voltage is small by reducing the charging voltage to be within the range of the charging end voltage of 72C and 72D. It is possible to adjust more precisely as described.
  • charging / discharging of the water electrolyzer 72A, 72B, 72C, 72D is performed in the voltage range with a small voltage difference of a charge voltage and a discharge voltage. it can.
  • the electric power charged in the power storage unit 20A can be used for the production of oxygen gas and hydrogen gas, and the generated gas can be separately used as an energy source.
  • the voltage required for the generation of oxygen gas and the reduction of zinc is about 1.9V
  • the voltage required for the generation of hydrogen gas and the oxidation of zinc is about 0.5 V, and the voltage difference between the charge voltage and the discharge voltage becomes large.
  • the water electrolyzer when discharging is used.
  • oxygen gas and hydrogen gas can be generated in a voltage range in which the voltage difference between the charging voltage and the discharging voltage substantially matches.
  • the generation of oxygen gas and the generation of hydrogen gas can be temporally separated in the power storage system 2 according to the second embodiment, it is possible to operate while suppressing the switching frequency between series connection and parallel connection. it can. Therefore, the gas generation efficiency and the charge / discharge efficiency have an advantage that does not depend on the switching speed of the switching means.
  • Power Storage System 10 Power Supply Unit (Power Supply) 20 Power storage units 22A and 22B Storage battery 24A First electrode side electrolyte storage tank (first electrolyte storage tank) 24B Second electrode side electrolyte storage tank (second electrolyte storage tank) 26A First electrode side electrolyte supply pump (first electrolyte supply means) 26B Second electrode side electrolyte supply pump (second electrolyte supply means) 221 First electrode 222 Second electrode 223 First electrode electrolytic cell 224 Second electrode electrolytic cell 226 Separator 228 Temperature measuring unit 242 Open voltage measuring unit (voltage measuring unit) 30 Power Converter 40 Load Unit 50 Control Device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 本発明は、蓄電池の充放電を、充電電圧と放電電圧との電圧差が小さい電圧範囲で行うことが可能な蓄電システム及びその運転方法を提供する。蓄電システム1は、蓄電池が複数組み合わされてなる組電池(22A,22B)と、蓄電池22Aとの間で循環される第1電解液を貯留する第1電解液貯槽24Aと、蓄電池22Bとの間で循環される第2電解液を貯留する第2電解液貯槽24Bと、第1電解液供給手段26Aと、第2電解液供給手段26Bと、組電池(22A,22B)の接続を、直列接続及び並列接続のいずれかに相互に切り替える切替手段(SW1,SW2,SW3,SW4,SW5)と、前記切替手段の切り替えと第1電解液の流量及び第2電解液の流量とを制御する制御装置50とを備え、充電時には、複数の蓄電池の接続が並列接続となり、放電時には、直列接続となるように運転される。

Description

蓄電システム及びその運転方法
 本発明は、蓄電システム及びその運転方法に関する。
 近年、自然エネルギを発電に利用した風力発電、太陽光発電等の再生可能エネルギ発電の普及が進められている。このような自然エネルギを利用した発電は、風況や天候等の影響を受け易く、単独で電力の安定的な供給を担う能力に乏しいことから、火力発電設備や揚水発電設備等を併設することによって、電力需給ギャップの補填を行うことが多くなっている。しかしながら、火力発電や揚水発電の設備を設置するための場所や費用は膨大なものとなるため、これらを再生可能エネルギ発電設備に併設するのが困難な場合がある。そこで、近年、大電力を貯蔵することが可能な蓄電池を利用する蓄電システムが注目されている。
 蓄電池の一種として、レドックスフロー電池等のフロー型蓄電池が知られている。フロー型蓄電池は、金属イオン等の活物質を溶解させた電解液を電極槽に循環させることによって、活物質の酸化還元反応を進行させて充放電を行う蓄電池である。フロー型蓄電池によると、充電電力を溶液の形態で電解液タンクに貯蔵することができるため、電池容量の大容量化が容易である。そのため、電力平準化用をはじめとした蓄電システムへの適用が検討されている。特に、フロー型蓄電池は、活物質が溶解している電解液を、複数の蓄電池に共通の電解液タンクから供給する構成とされるため、電解液の流量を調整することによって、出力の調節を適切に行うことができる利点を有している。
 例えば、特許文献1には、電解液が循環供給されて個々に起電力を発生させるセルの積層集合体からなるレドックスフロー電池システムの運転方法であって、前記レドックスフロー電池システムを構成する各セル、各サブスタック、各セルスタック、各モジュールの単位の全て或いは一部の単位が電解液の流量を調整することができ、充電時に各単位の電圧を測定し、その測定結果に基づいて、各単位における電解液の流量を調整することにより、各単位の電圧を均等化することを特徴とするレドックスフロー電池システムの運転方法が開示されている。
特開2009-16218号公報
 特許文献1に開示されるような従来の蓄電システム(比較例に係る蓄電システム100)は、図4(a)に示すように、発電した電力を供給する電源部10と、複数の蓄電池22C1,22C2が直列接続された構成の蓄電部20Cとが、パワーコンディショナ30を介して、商用交流電力系統等の負荷部40に接続された構成を有する。図4(b)はこのような蓄電システム100における充電入力及び放電出力の関係を示す図である。図4(b)において、横軸は、充電電圧又は放電電圧を示し、縦軸は、充電電流又は放電電流を示している。また、実線は、蓄電部20Cの充放電特性線、破線は、電源部10の出力特性線を示している。
 蓄電システム100では、図4(b)に複数の破線で示すように、再生可能エネルギ発電設備等で構成される電源部10が、エネルギ源の量変動(風況、天候等の変動)の影響を受けることで、出力(出力電流)変動を生じることがある。電源部10からの出力電流は、抵抗成分を含む蓄電部20C、電力変換器30、負荷部40の電圧に依存し、図4(b)に破線で示すように、高電圧に設定するほど低下していく傾向を示すため、高電圧の電圧範囲では出力電流が低く、高電流の電流範囲では出力電圧が低くなる特性を示すことになる。そこで、蓄電部20Cへの充電を行う場合には、図4(b)の充電特性線110に示されるように、電力が最大となる最大電力点に電源部10の出力を追従させて行う最大電力点追従(Maximum Power Point Tracking;MPPT)形式による充電が採用されることが多い。その一方で、蓄電部20Cからの放電を行う場合には、図4(b)の放電特性線120に示されるように、放電開始電圧Vd1から放電終止電圧Vd2まで定電力放電が行われるのが一般的である。
 パワーコンディショナ30に電力を出力する蓄電池22C1,22C2は、充電時における入力電圧と比較して、放電時に大きな電圧降下を生じる性質を有しており、この電圧降下は、電流密度が高くなるほど顕著となる。そのため、大電流を扱うような蓄電システム100では、蓄電部20Cによる放電電圧の電圧範囲が、蓄電部20Cへの充電電圧の電圧範囲から逸脱する傾向がある。すなわち、パワーコンデョショナ30は、蓄電部20Cへの充電にも用いられる電源部10による出力の電圧範囲と蓄電部20Cによる放電の電圧範囲との両方に対応し得るように、広い駆動電圧範囲(図4(b)におけるVd1-Vc2間の電圧範囲)を備えるように構成する必要が生じる。しかしながら、このようにしてパワーコンデョショナ30の駆動電圧範囲が拡大すると、電力変換効率は低下してしまうため、電力を有効利用するにあたって障害となっている。
 そこで、本発明は、蓄電池の充放電を、充電電圧と放電電圧との電圧差が小さい電圧範囲で行うことが可能な蓄電システム及びその運転方法を提供することを目的とする。
 前記課題を解決するために本発明に係る蓄電システムは、第1電極、第2電極、前記第1電極が保持される第1電解槽、前記第2電極が保持される第2電解槽、及び、前記第1電解槽と前記第2電解槽とを隔離するセパレータを有する蓄電池が複数組み合わされてなる組電池と、前記複数の蓄電池が有する前記第1電解槽に往路配管及び復路配管を介して接続され、前記第1電解槽との間で循環される第1電解液を貯留する第1電解液貯槽と、前記複数の蓄電池が有する前記第2電解槽に往路配管及び復路配管を介して接続され、前記第2電解槽との間で循環される第2電解液を貯留する第2電解液貯槽と、前記第1電解液貯槽に貯留される第1電解液を、前記複数の蓄電池の前記第1電解槽にそれぞれ供給する第1電解液供給手段と、前記第2電解液貯槽に貯留される第2電解液を、前記複数の蓄電池の前記第2電解槽にそれぞれ供給する第2電解液供給手段と、前記組電池に給電する電源と、前記複数の蓄電池の接続を、直列接続及び並列接続のいずれかに相互に切り替える切替手段と、前記切替手段の切り替えと、前記第1電解液供給手段が供給する前記第1電解液の流量と、前記第2電解液供給手段が供給する前記第2電解液の流量とを制御する制御装置と、を備えることを特徴とする。
 前記課題を解決するために本発明に係る蓄電システムの運転方法は、第1電極、第2電極、前記第1電極が保持される第1電解槽、前記第2電極が保持される第2電解槽、及び、前記第1電解槽と前記第2電解槽とを隔離するセパレータを有する蓄電池が複数組み合わされてなると共に、電源によって給電される組電池と、前記複数の蓄電池が有する前記第1電解槽に往路配管及び復路配管を介して接続され、前記第1電解槽との間で循環される第1電解液を貯留する第1電解液貯槽と、前記複数の蓄電池が有する前記第2電解槽に往路配管及び復路配管を介して接続され、前記第2電解槽との間で循環される第2電解液を貯留する第2電解液貯槽と、前記第1電解液貯槽に貯留される第1電解液を、前記複数の蓄電池の前記第1電解槽にそれぞれ供給する第1電解液供給手段と、前記第2電解液貯槽に貯留される第2電解液を、前記複数の蓄電池の前記第2電解槽にそれぞれ供給する第2電解液供給手段と、前記複数の蓄電池の接続を、直列接続及び並列接続のいずれかに切り替える切替手段と、を備える蓄電システムの運転方法であって、前記組電池の充電時には、前記複数の蓄電池の接続が並列接続となるように前記切替手段を制御し、前記組電池の放電時には、前記複数の蓄電池の接続が直列接続となるように前記切替手段を制御することを特徴とする。
 本発明によれば、蓄電池の充放電を、充電電圧と放電電圧との電圧差が小さい電圧範囲で行うことが可能な蓄電システム及びその運転方法を提供することができる。そして、例えば、蓄電システムに接続されるパワーコンデョショナ等の電力変換器において、電力変換効率を高い水準に維持したり、このような電力変換器の接続を省略したりすることができるようになる。
第1実施形態に係る蓄電システムの概略構成を示す図である。 (a)は本実施形態に係る蓄電システムの充電時における回路の概略を示す図であり、(b)は本実施形態に係る蓄電システムの放電時における回路の概略を示す図であり、(c)は充電入力及び放電出力の関係を示す図である。 第2実施形態に係る蓄電システムの概略構成を示す図である。 (a)は比較例に係る蓄電システムの充放時における回路の概略を示す図であり、(b)は充電入力及び放電出力の関係を示す図である。
 はじめに、第1実施形態に係る蓄電システム及びその運転方法について説明する。
 図1は、第1実施形態に係る蓄電システムの概略構成を示す図である。図1では、第1実施形態に係る蓄電システムの構成と共に、結線の状態を実線で示している。
 第1実施形態に係る蓄電システム1は、電源部10によって給電される蓄電部20と、制御装置50とを備えている。蓄電部20は、それぞれ主母線110a,110bに接続され、電源部10及び電力変換器30と電気的に接続されている。また、電力変換器30は、負荷部40と接続されている。制御装置50は、後記する切替手段の切り替えと、第1電解液供給手段26A及び第2電解液供給手段26Bがそれぞれ供給する電解液の流量とを制御する装置である。
 電源部10は、直流電力を出力する直流電源であって、発電装置等の電源によって構成されている。電源部10としては、具体的には、例えば、風力発電機、太陽光発電機、太陽熱発電機、水力発電機等の自然エネルギ発電機が備えられる。電源部10は、不図示の直流-直流変換器等の変電設備を介して、主母線110aと接続されている。そして、電源部10が発電した電力は、蓄電部20に給電されて蓄電部20が充電されたり、電力変換器30に出力されて直接に負荷部40に給電されたりする。なお、蓄電部20への充電は、負荷部40への給電が過多となる場合等に行われ、蓄電部20からの放電は、電源部10からの出力が低下した場合等に行われるように、不図示の制御機器によって切替制御される。
 蓄電部20は、図1に一点鎖線で示されるように、複数のフロー型蓄電池(22A,22B)からなる組電池で構成されている。蓄電部20は、複数の切替手段(SW1,SW2,SW3,SW4,SW5)を介して、主母線110aと接続されている。電源部10からの給電によって充電された蓄電部20は、蓄電された電力を、電力変換器30に出力することができるようになっている。
 電力変換器30は、直流電力を交流電力に変換するパワーコンデョショナで構成されている。電力変換器30は、図1に示すように、例えば、商用交流系統等の負荷部40と接続され、電源部10や蓄電部20から出力される直流電力を、単相や三相の交流電力に変換して負荷部40に出力する。なお、電力変換器30は、蓄電システム1が直流負荷に直接に適用される場合には、設置を省略することもできる。
 次に、蓄電システム1が備える蓄電部20の構成について説明する。
 蓄電部20は、図1に示すように、複数のフロー型(電解液循環型)の蓄電池22A,22Bからなる組電池と、電解液貯槽(24A,24B)と、電解液供給手段(26A,26B)とを備えている。また、これら蓄電池22A,22Bと、電解液貯槽24A,24Bとを接続する複数の配管211,212,213,214を備えている。このような構成の電解液循環型の蓄電池22A,22Bとしては、具体的には、例えば、レドックスフロー電池、鉛蓄電池等がある。
 蓄電池22A,22Bは、筺体の内部に、第1電極221と、第2電極222と、第1電極電解槽223と、第2電極電解槽224と、セパレータ226とを有している。各蓄電池22A,22Bの筺体の内部は、イオン伝導性のセパレータ226によって、第1電極電解槽223と、第2電極電解槽224との二槽にそれぞれ区画されている。
 セパレータ226は、蓄電池22A,22Bの筺体の内部に保持される電解液の組成成分の移動を制約し、第1電極電解槽223には第1電極側電解液、第2電極電解槽224には第2電極側電解液が保持されるように区画している。なお、セパレータ226を介しては、一部のキャリアイオンのみの移動が許容される状態となる。セパレータ226は、例えば、多孔性とした樹脂材料等で構成され、具体的には、ポリエチレン、ポリプロピレン、ポリイミド、フッ素樹脂、その他イオン交換膜等が用いられる。
 第1電極221は、第1電極電解槽223に保持され、第1電極側電解液に浸漬されている。この第1電極221から引き出された引出配線は、電源部10の正極(+)側に接続される。また、第2電極222は、第2電極電解槽224に保持され、第2電極側電解液に浸漬されている。この第2電極222から引き出された引出配線は、電源部10の負極(-)側に接続される。これら第1電極221や第2電極222としては、例えば、ステンレス鋼、ニッケル、銅、チタン、金、白金、これらの合金等の金属材料や、カーボンフェルト等の炭素材料が用いられる。
 電解液貯槽(24A,24B)としては、第1電極側電解液貯槽24Aと、第2電極側電解液貯槽24Bとが備えられている。第1電極側電解液貯槽24Aと、第2電極側電解液貯槽24Bとには、電気化学的に活性な活物質を含有する第1電極側電解液、第2電極側電解液がそれぞれ貯留されている。また、第1電極側電解液貯槽24A及び第2電極側電解液貯槽24Bには、それぞれ開放電圧計測手段242が備えられている。第1電極側電解液貯槽24Aに備えられる開放電圧計測手段242と第2電極側電解液貯槽24Bに備えられる開放電圧計測手段242とによる電圧計測値は、制御装置50にそれぞれ出力され、第1電極側電解液と第2電極側電解液との電圧差が求められるようになっている。
 電解液に含有させる活物質としては、酸化還元反応の可逆性が良好な公知の第1電極活物質と第2電極活物質とを組み合わせて用いることができる。第1電極活物質としては、例えば、銅、ニッケル、コバルト、銀、マンガン、バナジウム、鉄等の金属や、これらの合金や、臭素、ヨウ素等のハロゲン類や、酸素、酸化物と水酸化物との間の状態変化により充放電が可能なニッケル、マンガン、イリジウム等の金属化合物が挙げられる。一方、第2電極活物質としては、例えば、亜鉛、鉛、錫、チタン、バナジウム等が挙げられる。また、電解液としては、第1電極活物質及び第2電極活物質の種類に応じて、適宜の導電性溶液が使用される。例えば、第2電極活物質を亜鉛、第1電極活物質を臭素とした場合は、臭化亜鉛、臭化アンモニウム等を用いることができる。
 第1電極側電解液貯槽24Aには、分岐を有する往路配管211の一端が接続され、往路配管211の他端は、各蓄電池22A,22Bの第1電極電解槽223とそれぞれ接続されている。また、各蓄電池22A,22Bの第1電極電解槽223には、復路配管213の一端がそれぞれ接続され、復路配管213の他端は、第1電極側電解液貯槽24Aと接続されている。このように、各蓄電池22A,22Bには、第1電極側電解液貯槽24Aから、往路配管211、第1電極電解槽223、復路配管213を順次経て、再び第1電極側電解液貯槽24Aに戻る環状の流路が設けられている。
 同様にして、第2電極側電解液貯槽24Bには、分岐を有する往路配管212の一端が接続され、往路配管212の他端は、各蓄電池22A,22Bの第2電極電解槽224とそれぞれ接続されている。また、各蓄電池22A,22Bの第2電極電解槽224には、復路配管214の一端がそれぞれ接続され、復路配管214の他端は、第2電極側電解液貯槽24Bと接続されている。このように、各蓄電池22A,22Bには、第2電極側電解液貯槽24Bから、往路配管212、第2電極電解槽224、復路配管214を順次経て、再び第2電極側電解液貯槽24Bに戻る環状の流路が設けられている。
 往路配管211,212には、電解液供給ポンプ26A,26Bがそれぞれ備えられている。電解液供給ポンプ26A,26Bは、制御装置50からの制御信号を受けて吐出量、回転速度等を可変させ、電解液の供給量を調節する。そして、第1電極側電解液供給ポンプ26Aによって、各蓄電池22A,22Bの第1電極電解槽223には、第1電極側電解液貯槽24Aから同組成の第1電極側電解液がそれぞれ供給されると共に、各蓄電池22A,22Bの第1電極電解槽223から第1電極側電解液貯槽24Aに、反応後の第1電極側電解液が返流されるようになっている。また、第2電極側電解液供給ポンプ26Bによって、各蓄電池22A,22Bの第2電極電解槽224には、第2電極側電解液貯槽24Bから同組成の第2電極側電解液がそれぞれ供給されると共に、各蓄電池22A,22Bの第2電極電解槽224から第2電極側電解液貯槽24Bに、反応後の第2電極側電解液が返流されるようになっている。
 このような構成を有する蓄電部20では、例えば、電源部10による電力供給が過剰である場合等には、電源部10が発電した電力による充電が行われる。すなわち、第1電極221を保持する第1電極電解槽223で活物質の酸化反応が進行し、プロトン等のキャリアイオンがセパレータ226を透過して、第2電極電解槽224に移動する。そして、第2電極222を保持する第2電極電解槽224で活物質の還元反応が進行する。このとき、電解液供給ポンプ26A,26Bが稼働されることによって、第1電極電解槽223には、第1電極側電解液貯槽24Aから、活物質が還元状態にある第1電極側電解液が供給され、第2電極電解槽224には、第2電極側電解液貯槽24Bから、活物質が酸化状態にある第2電極側電解液が供給されて、充電反応が継続的に行われる。そして、活物質が酸化状態にある第1電極側電解液は、第1電極電解槽223から第1電極側電解液貯槽24Aに返流され、活物質が還元状態にある第2電極側電解液は、第2電極電解槽224から第2電極側電解液貯槽24Bに返流されて、それぞれ貯蔵されることになる。
 また、蓄電部20では、例えば、負荷部40の電力需要に対して、電源部10による電力供給が不足している場合等には、蓄電された電力の放電が行われる。蓄電部20の放電時においては、前記の充電時の逆反応(放電反応)が進行することになる。充放電における極性変換は、不図示の極性変換器を複数の蓄電池22A,22B毎に設置して行ってよく、電力変換器30において行ってもよい。なお、これらの充放電反応に伴う発熱は、第1電極電解槽223と第2電極電解槽224とにそれぞれ備えられる温度計測手段228によって計測される。温度計測手段228は、第1電解液と第2電解液のそれぞれにおける電解液温度の計測値を制御装置50にそれぞれ出力するようになっている。
 以上の蓄電部20では、電気化学的に活性な活物質を、第1電極電解槽223、第2電極電解槽224とは別体の第1電極側電解液貯槽24A、第2電極側電解液貯槽24Bにそれぞれ貯蔵することが可能であるため、電解液の容量の拡大のみによって、電気容量を増大させることができるという利点を有している。また、各蓄電池22A,22Bには、共通の電解液が供給されるため、各蓄電池22A,22Bの両端電圧は平準化されることになる。そのため、一部の蓄電池に電流集中が生じるおそれが低く、各蓄電池22A,22Bの充放電管理を行う装置を簡略化できるという利点がある。なお、蓄電池の個数は、図1に示される2個に限られるものではなく、3個以上であってもよい。また、複数の蓄電池の配列の形態は、特に制限されるものではなく、例えば、積層されてセルスタックを形成した形態であってもよい。
 第1実施形態に係る蓄電システム1においては、蓄電部20が備える複数の蓄電池22A,22Bは、図1に例示されるように、複数の切替手段(SW1,SW2,SW3,SW4,SW5)を介して電源部10及び電力変換器30と接続される。切替手段(SW1,SW2,SW3,SW4,SW5)は、電気回路を開閉する開閉器、スイッチ、スイッチング素子等である。切替手段(SW1,SW2,SW3,SW4,SW5)は、制御装置50からの制御信号に基いて開閉を制御され、複数の蓄電池22A,22Bの接続状態を、直列接続及び並列接続のいずれかに相互に切り替え可能に配設される。
 図2(a)は第1実施形態に係る蓄電システムの充電時における回路の概略を示す図であり、図2(b)は第1実施形態に係る蓄電システムの放電時における回路の概略を示す図であり、図2(c)は充電入力及び放電出力の関係を示す図である。図2(c)において、横軸は、充電電圧又は放電電圧を示し、縦軸は、充電電流又は放電電流を示している。また、実線は、蓄電部20の充放電特性線、破線は、電源部10の出力特性線を示している。
 切替手段(SW1,SW2,SW3,SW4,SW5)は、蓄電部20の充電時には、各蓄電池22A,22Bが並列接続となるように開閉を制御される。すなわち、切替手段SW1,切替手段SW2,切替手段SW4を閉状態(ON)に、切替手段SW3,切替手段SW5を開状態(OFF)に制御される。その一方で、切替手段(SW1,SW2,SW3,SW4,SW5)は、蓄電部20の放電時には、各蓄電池22A,22Bが直列接続となるように開閉を制御される。すなわち、切替手段SW3,切替手段SW5を閉状態(ON)に、切替手段SW1,切替手段SW2,切替手段SW4を開状態(OFF)に制御される。
 このように第1実施形態に係る蓄電システムでは、蓄電部20の充電時においては、各蓄電池22A,22Bを並列接続とすることによって、充電電流を各蓄電池間で平準化させると共に、充電電圧の電圧範囲が狭くなるようにしている。例えば、図2(c)の充電特性線110で示されるように、最大電力点追従(Maximum Power Point Tracking;MPPT)形式の充電を実施して、並列接続とされた複数の蓄電池22A,22Bのそれぞれに略等しい電圧を印加して一律に充電することができる。
 その一方で、蓄電部20の放電時においては、各蓄電池22A,22Bを直列接続とすることによって、所望の出力を実現しつつ、放電電圧の電圧範囲がより高い水準に維持されるようにしている。例えば、図2(c)の放電特性線130で示されるように、放電開始電圧Vd1から放電終止電圧Vd2まで、直列接続とされた複数の蓄電池22A,22Bのそれぞれによる定電力放電を行うことができる。放電特性線130が示すように、蓄電部20からの放電における、放電開始電圧Vd1は、蓄電池22A,22Bに生じる電圧降下によって、充電終止電圧Vc2から低下するものの、複数の蓄電池22A,22Bが、直列接続に切り替えられているために、比較例に係る蓄電システム100における場合(図4参照)と比較して、放電電圧は高い水準に維持されることになる。
 なお、放電による出力電流は、出力電圧と開放電圧との差分、第1電解液及び第2電解液の流量、第1電解液及び第2電解液の温度に依存することになる。そのため、不図示の電圧計測器で計測される各蓄電池22A,22Bの電極間電圧と、開放電圧計測手段242によって計測される第1電極側電解液貯槽24Aと第2電極側電解液貯槽24Bの電圧差と、温度計測手段228によって計測される第1電極電解槽223及び第2電極電解槽224の電解液出口温度とに基づいて、所定の出力電流を達成するための第1電解液及び第2電解液の流量のモデル関数を事前に求めることが可能である。
 蓄電池22A,22Bからの放電による出力電流は、このようなモデル関数に基づいて、制御装置50によって第1電極側電解液供給ポンプ26Aが供給する第1電解液の流量と、第2電極側電解液供給ポンプ26Bが供給する第2電解液の流量とを減少させることで調節することができる。切替手段(SW1,SW2,SW3,SW4,SW5)の制御を行うと共に、第1電解液の流量と第2電解液の流量とを、組電池における放電電圧範囲が組電池の充電終止電圧以下の範囲となるように減少させることによって、蓄電池22A,22Bの充放電を、充電電圧と放電電圧との電圧差が小さい電圧範囲で行われるように、更に精密に調節することが可能である。具体的には、並列接続であるときの蓄電部20への入力電圧と、直列接続であるときの蓄電部20の出力電圧との電圧差が、蓄電システム1において印加される最大電圧の1/10以下の範囲となるように調節することも可能となる。
 このように、第1実施形態に係る蓄電システム1によれば、充電電圧と放電電圧との電圧差が小さい電圧範囲で、蓄電池22A,22Bの充放電を行うことができる。そして、電力変換器30への入力電圧範囲の拡大が抑えられることから、電力変換器30の駆動電圧範囲が広い範囲となるように構成する必要がなくなる。すなわち、電力変換器30の電力変換効率を向上させて高い水準に維持することが可能となったり、交流変換を要しない場合には電力変換器30の設置を省略したりすることも可能となったりする。なお、第1実施形態に係る蓄電システム1では、電源部10による蓄電部20の充電を、昼間に制限する等して限定的にすることによって、直列接続と並列接続との切り替え頻度を抑制して稼働させることができる。よって、充放電効率は、切替手段の開閉速度には依存しない利点がある。
 次に、第2実施形態に係る蓄電システムについて説明する。なお、前記の第1実施形態に係る蓄電システムと、共通する構成については、同一の符号を付し、重複した説明を省略する。
 図3は、第2実施形態に係る蓄電システムの概略構成を示す図である。図3では、第2実施形態に係る蓄電システムの構成と共に、結線の状態を実線で示している。
 第2実施形態に係る蓄電システム2は、電源部10によって給電される蓄電部20Aと、制御装置50Aとを備えている。蓄電部20Aには、蓄電池として水電気分解装置72A,72B,72C,72Dが備えられている。蓄電部20Aは、それぞれ主母線110a,110bに接続され、電源部10及び電力変換器30と電気的に接続されている。また、電力変換器30は、負荷部40と接続されている。
 水電気分解装置72A,72B,72C,72Dは、水を電気分解することによって、酸素(酸素ガス)と水素(水素ガス)とを生成する装置である。この水電気分解装置72A,72B,72C,72Dは、生成する酸素と水素との混合を避けるため、酸素と水素を異なるタイミングで発生させる機構を有しており、水の電気分解に伴って、酸化還元反応を可逆的に繰り返す中間生成物の酸化体又は還元体を生成する。水電気分解装置72A,72B,72C,72Dは、この酸化体と還元体の酸化還元電位差を利用して電力を貯蔵する蓄電池としての機能を有している。
 水電気分解装置72A,72B,72C,72Dは、筺体の内部に、電解電極721と、中間電極722と、水電解槽723と、中間電解槽724と、セパレータ726とを有している。
 各水電気分解装置72A,72B,72C,72Dの筺体の内部は、生成ガスの透過を遮断するセパレータ726によって、水電解槽723と、中間電解槽724との二槽にそれぞれ区画されている。セパレータ726によって、水電気分解装置72A,72B,72C,72Dの筺体の内部で発生したガスの移動が制約され、水電解槽723には電解電極側電解液、中間電解槽724には中間電極側電解液が保持されるようになっている。セパレータ726は、例えば、発生したガスの逆反応を防止可能な適宜の多孔質体等で構成される。
 電解電極721は、水電解槽723に保持され、電解電極側電解液に浸漬されている。この電解電極721から引き出された引出配線は、電源部10の正極(+)側に接続される。また、中間電極722は、中間電解槽724に保持され、中間電極側電解液に浸漬されている。この中間電極722から引き出された引出配線は、電源部10の負極(-)側に接続される。電解電極721としては、水素発生電位が中間生成物の酸化還元電位よりも高い電極材料が用いられ、好ましくは水素発生過電圧及び酸素発生過電圧が小さい、白金、ロジウム、ニッケル等が用いられる。また、中間電極722としては、水素発生電位が中間生成物の酸化還元電位よりも低い電極材料が用いられ、好ましくは亜鉛、銅、金、炭素等が用いられる。
 電解液貯槽(74A,74B)としては、電解電極側電解液貯槽74Aと、中間電極側電解液貯槽74Bとが備えられている。電解電極側電解液貯槽74Aには、電解電極側電解液が貯留されている。また、中間電極側電解液貯槽74Bには、中間生成物を溶解した中間電極側電解液が貯留されている。これらの電解電極側電解液貯槽74A及び中間電極側電解液貯槽74Bには、それぞれ開放電圧計測手段242を設置することもできる。
 電解電極側電解液は、水溶液であればよく、アルカリ性電解質溶液、めっき液等であってもよい。一方で、中間電極側電解液は、このような電解液に中間生成物が溶解された組成となる。電解液の電解質濃度としては、0.01mol/L以上10mol/L以下が好ましい。電解液の電解質濃度が、0.01mol/L以上10mol/L以下であれば、電力の貯蔵容量を確保しつつ、電解液の導電度の低下も避けることができる。
 中間生成物としては、水素発生電位よりも酸化還元電位が高い物質であれば金属、有機分子、金属錯体のいずれでもよいが、酸化還元反応によって生じる還元体が、非水溶性であることが好ましい。還元体が非水溶性であると、電極に固体として析出することになるため、対極で逆反応が進行するのを避けることができる。このような中間生成物としては、例えば、亜鉛、鉄、鉛、錫、ニッケル、これらの合金等が挙げられるが、これらの中でも、亜鉛が好適である。
 電解電極側電解液貯槽74Aには、分岐を有する往路配管711の一端が接続され、往路配管711の他端は、各水電気分解装置72A,72B,72C,72Dの水電解槽723とそれぞれ接続されている。また、各水電気分解装置72A,72B,72C,72Dの水電解槽723には、復路配管713の一端がそれぞれ接続され、復路配管713の他端は、電解電極側電解液貯槽74Aと接続されている。このように、各水電気分解装置72A,72B,72C,72Dには、電解電極側電解液貯槽74Aから、往路配管711、水電解槽723、復路配管713を順次経て、再び電解電極側電解液貯槽74Aに戻る環状の流路が設けられている。
 同様にして、中間電極側電解液貯槽74Bには、分岐を有する往路配管712の一端が接続され、往路配管712の他端は、各水電気分解装置72A,72B,72C,72Dの中間電解槽724とそれぞれ接続されている。また、各水電気分解装置72A,72B,72C,72Dの中間電解槽724には、復路配管714の一端がそれぞれ接続され、復路配管714の他端は、中間電極側電解液貯槽74Bと接続されている。このように、各水電気分解装置72A,72B,72C,72Dには、中間電極側電解液貯槽74Bから、往路配管712、中間電解槽724、復路配管714を順次経て、再び中間電極側電解液貯槽74Bに戻る環状の流路が設けられている。
 往路配管711,712には、電解液供給ポンプ76A,76Bがそれぞれ備えられている。電解液供給ポンプ26A,26Bは、制御装置50Aからの制御信号を受けて吐出量、回転数等を可変させ、電解液の供給量を調節する。電解電極側電解液供給ポンプ76Aによって、各水電気分解装置72A,72B,72C,72Dの水電解槽723には、電解電極側電解液貯槽74Aから同組成の電解電極側電解液がそれぞれ供給されると共に、各水電気分解装置72A,72B,72C,72Dの水電解槽723から電解電極側電解液貯槽74Aに、反応後の電解電極側電解液が返流されるようになっている。また、中間電極側電解液供給ポンプ76Bによって、各水電気分解装置72A,72B,72C,72Dの中間電解槽724には、中間電極側電解液貯槽74Bから同組成の中間電極側電解液がそれぞれ供給されると共に、各水電気分解装置72A,72B,72C,72Dの中間電解槽724から中間電極側電解液貯槽74Bに、反応後の中間電極側電解液が返流されるようになっている。
 蓄電部20Aの充電時においては、電解電極721と中間電極722との間に直流電圧が印加されると、中間電極722では、次の反応式1にしたがって、中間生成物の還元反応が進行する。これは、中間電極722の水素発生電位が中間生成物の酸化還元電位よりも低くなるようにされていると共に、中間生成物の水素発生電位が酸化還元電位よりも低くなるようにされているためである。なお、反応式1では、中間生成物の例として亜鉛を挙げている。
  Zn2++2e → Zn・・・(反応式1)
 その一方で、電解電極721では、次の反応式2にしたがって、水が電気分解されて酸素ガスが生成する。
  2HO → O+4H+4e・・・(反応式2)
 これに対して、蓄電部20Aの放電時においては、電解電極721と中間電極722とを短絡させたり負荷と接続させると、中間電極722では、次の反応式3にしたがって、還元されていた中間生成物の酸化反応が進行する。これは、中間生成物の酸化還元電位が電解電極721の水素発生電位よりも低くなるようにされていることで、電解電極721において還元反応が進行するためである。なお、反応式3では、中間生成物の例として亜鉛を挙げている。
  Zn → Zn2++2e・・・(反応式3)
 その一方で、電解電極721では、次の反応式4にしたがって、水素ガスが生成する。
  2H+2e → H・・・(反応式4)
 このような構成を有する蓄電部20Aでは、電解電極721における水素発生電位よりも中間生成物の酸化還元電位を低くし、中間電極722における水素発生電位よりも中間生成物の酸化還元電位を高くし、中間生成物の水素発生電位よりも中間生成物の酸化還元電位を高く構成することによって、蓄電部20Aの充電時には、水電気分解装置72A,72B,72C,72Dで水を電気分解して、水素ガスの発生を伴わず、酸素ガスのみを生成させることができる。このとき、中間生成物の酸化体は、酸化還元反応によって、還元体に変換されて蓄電に利用される。
 また、蓄電部20Aでは、蓄電部20Aの放電時には、水電気分解装置72A,72B,72C,72Dで水を電気分解して、酸素ガスの発生を伴わず、水素ガスのみを生成させることができる。このとき、中間生成物の還元体は、酸化還元反応によって、酸化体に変換されて放電に利用される。なお、これらの充放電反応に伴う発熱は、水電解槽723、中間電解槽724に備えられる温度計測手段228によって計測するようにしてもよい。
 第2実施形態に係る蓄電システム2においては、蓄電部20Aが備える複数の水電気分解装置72A,72B,72C,72Dは、図3に例示されるように、複数の切替手段(SW11,SW12,SW13,SW21,SW22,SW23,SW31,SW32,SW33,SW4,SW5)を介して電源部10及び電力変換器30と接続される。これらの切替手段は、制御装置50Aからの制御信号に基いて開閉を制御され、複数の水電気分解装置72A,72B,72C,72Dの接続状態を、直列接続及び並列接続のいずれかに相互に切り替え可能に配設される。
 切替手段は、蓄電部20Aの充電時には、各水電気分解装置72A,72B,72C,72Dが並列接続となるように開閉を制御される。すなわち、切替手段SW11,切替手段SW12,切替手段SW13,切替手段SW21,切替手段SW22,切替手段SW23,切替手段SW4を閉状態(ON)に、切替手段SW31,切替手段SW32,切替手段SW33,切替手段SW5を開状態(OFF)に制御される。その一方で、切替手段は、蓄電部20Aの放電時には、各水電気分解装置72A,72B,72C,72Dが直列接続となるように開閉を制御される。すなわち、切替手段SW31,切替手段SW32,切替手段SW33,切替手段SW5を閉状態(ON)に、切替手段SW11,切替手段SW12,切替手段SW13,切替手段SW21,切替手段SW22,切替手段SW23,切替手段SW4を開状態(OFF)に制御される。
 このように蓄電部20Aの充電時において、各水電気分解装置72A,72B,72C,72Dを並列接続とすることによって、充電電流を各蓄電池間で平準化させると共に、充電電圧の電圧範囲が狭くなるようにすることができる。その一方で、蓄電部20Aの放電時において、各水電気分解装置72A,72B,72C,72Dを直列接続とすることによって、所望の出力を実現しつつ、放電電圧の電圧範囲がより高い水準に維持されるようにすることができる。
 また、水電気分解装置72A,72B,72C,72Dからの放電による出力電流は、制御装置50Aによって電解液供給ポンプ76Aが供給する電解電極側電解液の流量と、電解液供給ポンプ76Bが供給する中間電極側電解液の流量とを減少させることで調節することができる。切替手段の制御を行うと共に、電解電極側電解液の流量と中間電極側電解液の流量とを、水電気分解装置72A,72B,72C,72Dにおける放電電圧範囲が水電気分解装置72A,72B,72C,72Dの充電終止電圧以下の範囲となるように減少させることによって、水電気分解装置72A,72B,72C,72Dの充放電を、充電電圧と放電電圧との電圧差が小さい電圧範囲で行われるように、更に精密に調節することが可能である。
 このように、第2実施形態に係る蓄電システム2によれば、充電電圧と放電電圧との電圧差が小さい電圧範囲で、水電気分解装置72A,72B,72C,72Dの充放電を行うことができる。そして、蓄電部20Aに充電された電力を、酸素ガスや水素ガスの製造に利用できる他、生成されるガスをエネルギ源として別途利用することが可能となる。通常、水電気分解装置72A,72B,72C,72Dでは、中間生成物を亜鉛とした場合には、酸素ガスの生成と亜鉛の還元に要する電圧は、約1.9V程度となるのに対し、水素ガスの生成と亜鉛の酸化に要する電圧は、約0.5V程度となり、充電電圧と放電電圧との電圧差が大きくなる。しかしながら、複数の水電気分解装置72A,72B,72C,72Dの接続を、酸素ガスの生成時に並列接続とし、水素ガスの生成時に直列接続とすることが可能であるため、放電時に水電気分解装置72A,72B,72C,72Dを4直列とすることで、充電電圧と放電電圧との電圧差が略一致する電圧範囲で、酸素ガスや水素ガスを生成することができる。なお、第2実施形態に係る蓄電システム2では、酸素ガスの生成と水素ガスの生成を時間的に分離させることができるため、直列接続と並列接続との切り替え頻度を抑制して稼働させることができる。よって、ガス生成効率や充放電効率は、切替手段の開閉速度には依存しない利点を有している。
1 蓄電システム
10 電源部(電源)
20 蓄電部
22A,22B 蓄電池
24A 第1電極側電解液貯槽(第1電解液貯槽)
24B 第2電極側電解液貯槽(第2電解液貯槽)
26A 第1電極側電解液供給ポンプ(第1電解液供給手段)
26B 第2電極側電解液供給ポンプ(第2電解液供給手段)
221 第1電極
222 第2電極
223 第1電極電解槽
224 第2電極電解槽
226 セパレータ
228 温度計測手段
242 開放電圧計測手段(電圧計測手段)
30 電力変換器
40 負荷部
50 制御装置

Claims (11)

  1.  第1電極、第2電極、前記第1電極が保持される第1電解槽、前記第2電極が保持される第2電解槽、及び、前記第1電解槽と前記第2電解槽とを隔離するセパレータを有する蓄電池が複数組み合わされてなると共に、電源によって給電される組電池と、
     前記複数の蓄電池が有する前記第1電解槽に往路配管及び復路配管を介して接続され、前記第1電解槽との間で循環される第1電解液を貯留する第1電解液貯槽と、
     前記複数の蓄電池が有する前記第2電解槽に往路配管及び復路配管を介して接続され、前記第2電解槽との間で循環される第2電解液を貯留する第2電解液貯槽と、
     前記第1電解液貯槽に貯留される第1電解液を、前記複数の蓄電池の前記第1電解槽にそれぞれ供給する第1電解液供給手段と、
     前記第2電解液貯槽に貯留される第2電解液を、前記複数の蓄電池の前記第2電解槽にそれぞれ供給する第2電解液供給手段と、
     前記複数の蓄電池の接続を、直列接続及び並列接続のいずれかに切り替える切替手段と、
     前記切替手段の切り替えと、前記第1電解液供給手段が供給する前記第1電解液の流量及び前記第2電解液供給手段が供給する前記第2電解液の流量とを制御する制御装置と、
    を備えることを特徴とする蓄電システム。
  2.  前記制御装置は、
     前記組電池の充電時には、
     前記複数の蓄電池の接続が並列接続となるように前記切替手段を制御し、
     前記組電池の放電時には、
     前記複数の蓄電池の接続が直列接続となるように前記切替手段を制御すると共に、
     前記複数の蓄電池が直列接続された前記組電池における放電電圧範囲が、前記組電池の充電終止電圧以下の範囲となるように、前記第1電解液供給手段が供給する前記第1電解液の流量と、前記第2電解液供給手段が供給する前記第2電解液の流量とを減少させる
    ことを特徴とする請求項1に記載の蓄電システム。
  3.  前記複数の蓄電池が並列接続であるときの前記組電池への入力電圧と、前記複数の蓄電池が直列接続であるときの前記組電池の出力電圧との電圧差が、
     前記蓄電システムに印加される最大電圧の1/10以下の範囲にある
    ことを特徴とする請求項1又は請求項2に記載の蓄電システム。
  4.  さらに、
     前記第1電解液と前記第2電解液との間の開放電圧を計測する電圧計測手段と、
     前記第1電解液と前記第2電解液のそれぞれにおける電解液温度を計測する温度計測手段と
    を備え、
     前記制御装置は、
     前記電圧計測手段が計測した開放電圧と前記蓄電池における放電電圧との電圧差、及び、前記温度計測手段が計測した電解液温度に基づいて前記第1電解液及び前記第2電解液の流量を減少させる
    ことを特徴とする請求項2に記載の蓄電システム。
  5.  前記第1電解液及び前記第2電解液が、水溶液であり、
     前記蓄電池が、水の電気分解によって水素ガス及び酸素ガスを生成する機能を備えている
    ことを特徴とする請求項1に記載の蓄電システム。
  6.  前記第1電解液が、亜鉛を含む水溶液であり、
     前記組電池の充電時には、
     前記複数の蓄電池が酸素ガスを生成し、
     前記組電池の放電時には、
     前記複数の蓄電池が水素ガスを生成する
    ことを特徴とする請求項5に記載の蓄電システム。
  7.  第1電極、第2電極、前記第1電極が保持される第1電解槽、前記第2電極が保持される第2電解槽、及び、前記第1電解槽と前記第2電解槽とを隔離するセパレータを有する蓄電池が複数組み合わされてなると共に、電源によって給電される組電池と、
     前記複数の蓄電池が有する前記第1電解槽に往路配管及び復路配管を介して接続され、前記第1電解槽との間で循環される第1電解液を貯留する第1電解液貯槽と、
     前記複数の蓄電池が有する前記第2電解槽に往路配管及び復路配管を介して接続され、前記第2電解槽との間で循環される第2電解液を貯留する第2電解液貯槽と、
     前記第1電解液貯槽に貯留される第1電解液を、前記複数の蓄電池の前記第1電解槽にそれぞれ供給する第1電解液供給手段と、
     前記第2電解液貯槽に貯留される第2電解液を、前記複数の蓄電池の前記第2電解槽にそれぞれ供給する第2電解液供給手段と、
     前記複数の蓄電池の接続を、直列接続及び並列接続のいずれかに切り替える切替手段と、
    を備える蓄電システムの運転方法であって、
     前記組電池の充電時には、
     前記複数の蓄電池の接続が並列接続となるように前記切替手段を制御し、
     前記組電池の放電時には、
     前記複数の蓄電池の接続が直列接続となるように前記切替手段を制御する
    ことを特徴とする蓄電システムの運転方法。
  8.  前記組電池の放電時には、
     さらに、前記複数の蓄電池が直列接続された前記組電池における放電電圧範囲が、前記組電池の充電終止電圧以下の範囲となるように、前記第1電解液供給手段が供給する前記第1電解液の流量と、前記第2電解液供給手段が供給する前記第2電解液の流量とを減少させる
    ことを特徴とする請求項7に記載の蓄電システムの運転方法。
  9.  前記複数の蓄電池が並列接続であるときの前記組電池への入力電圧と、前記複数の蓄電池が直列接続であるときの前記組電池の出力電圧との電圧差が、
     前記蓄電システムに印加される最大電圧の1/10以下の範囲となるように、前記第1電解液供給手段が供給する前記第1電解液の流量と、前記第2電解液供給手段が供給する前記第2電解液の流量とを減少させる
    ことを特徴とする請求項8に記載の蓄電システムの運転方法。
  10.  前記第1電解液と前記第2電解液との間の開放電圧と、
     前記第1電解液と前記第2電解液のそれぞれにおける電解液温度とを計測し、
     前記組電池の充電時には、
     前記複数の蓄電池の接続が並列接続となるように前記切替手段を制御し、
     前記組電池の放電時には、
     前記複数の蓄電池の接続が直列接続となるように前記切替手段を制御すると共に、
     前記開放電圧と前記蓄電池における放電電圧との電圧差、及び、前記電解液温度に基づいて前記第1電解液及び前記第2電解液の流量を減少させる
    ことを特徴とする請求項7に蓄電システムの運転方法。
  11.  第1電極、第2電極、前記第1電極が保持される第1電解槽、前記第2電極が保持される第2電解槽、及び、前記第1電解槽と前記第2電解槽とを隔離するセパレータを有する蓄電池が複数組み合わされてなると共に、電源によって給電される組電池と、
     前記複数の蓄電池が有する前記第1電解槽に往路配管及び復路配管を介して接続され、前記第1電解槽との間で循環される第1電解液を貯留する第1電解液貯槽と、
     前記複数の蓄電池が有する前記第2電解槽に往路配管及び復路配管を介して接続され、前記第2電解槽との間で循環される第2電解液を貯留する第2電解液貯槽と、
     前記第1電解液貯槽に貯留される第1電解液を、前記複数の蓄電池の前記第1電解槽にそれぞれ供給する第1電解液供給手段と、
     前記第2電解液貯槽に貯留される第2電解液を、前記複数の蓄電池の前記第2電解槽にそれぞれ供給する第2電解液供給手段と、
     前記複数の蓄電池の接続を、直列接続及び並列接続のいずれかに切り替える切替手段と、
    を備え、
     前記第1電解液及び前記第2電解液が、亜鉛を含む水溶液であり、
     前記蓄電池が、水の電気分解によって水素ガス及び酸素ガスを生成する機能を備えている蓄電システムの運転方法であって、
     前記組電池の充電時には、
     前記複数の蓄電池の接続が並列接続となるように前記切替手段を制御し、前記複数の蓄電池において酸素ガスを生成させ、
     前記組電池の放電時には、
     前記複数の蓄電池の接続が直列接続となるように前記切替手段を制御し、前記複数の蓄電池において水素ガスを生成させる
    ことを特徴とする蓄電システムの運転方法。
PCT/JP2015/062241 2014-04-22 2015-04-22 蓄電システム及びその運転方法 WO2015163367A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-088503 2014-04-22
JP2014088503A JP6378923B2 (ja) 2014-04-22 2014-04-22 蓄電システム及びその運転方法

Publications (1)

Publication Number Publication Date
WO2015163367A1 true WO2015163367A1 (ja) 2015-10-29

Family

ID=54332530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062241 WO2015163367A1 (ja) 2014-04-22 2015-04-22 蓄電システム及びその運転方法

Country Status (2)

Country Link
JP (1) JP6378923B2 (ja)
WO (1) WO2015163367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191768A (ja) * 2016-04-15 2017-10-19 スタンダード エナジー 株式会社StandardEnergy Co., Ltd. レドックスフロー電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101930771B1 (ko) 2016-12-14 2018-12-19 라이프코어인스트루먼트 주식회사 전기분해를 이용한 에너지 저장 장치 및 방법
JP2019201483A (ja) * 2018-05-16 2019-11-21 株式会社大原興商 発電設備

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502370A (ja) * 1991-12-18 1995-03-09 エリン・エネルギーアンヴェンドゥング・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 再充電可能なバッテリーで適当に電気化学的な変換を行う方法
JP2009016218A (ja) * 2007-07-05 2009-01-22 Sumitomo Electric Ind Ltd レドックスフロー電池システムの運転方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046516B2 (ja) * 1976-10-18 1985-10-16 株式会社東芝 密閉型蓄電池の過充電検出方法
JPS53117721A (en) * 1977-03-25 1978-10-14 Tokyo Shibaura Electric Co Enclosed type storage battery
JP5229352B2 (ja) * 2011-05-17 2013-07-03 パルステック工業株式会社 2次電池の検査装置及び検査方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502370A (ja) * 1991-12-18 1995-03-09 エリン・エネルギーアンヴェンドゥング・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 再充電可能なバッテリーで適当に電気化学的な変換を行う方法
JP2009016218A (ja) * 2007-07-05 2009-01-22 Sumitomo Electric Ind Ltd レドックスフロー電池システムの運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191768A (ja) * 2016-04-15 2017-10-19 スタンダード エナジー 株式会社StandardEnergy Co., Ltd. レドックスフロー電池
US10090550B2 (en) 2016-04-15 2018-10-02 Standard Energy Co., Ltd. Redox flow battery

Also Published As

Publication number Publication date
JP6378923B2 (ja) 2018-08-22
JP2015207500A (ja) 2015-11-19

Similar Documents

Publication Publication Date Title
US9595730B2 (en) Flow battery and usage thereof
CN114729461B (zh) 用于电解水的方法和装置
WO2015056641A1 (ja) 水電気分解装置およびそれを用いたエネルギー貯蔵・供給システム
JP2019200839A (ja) 発電システム
JP6547002B2 (ja) 液体電解液の処理方法
US9853454B2 (en) Vanadium redox battery energy storage system
Piwek et al. Vanadium-oxygen cell for positive electrolyte discharge in dual-circuit vanadium redox flow battery
CN103069052A (zh) 氢制造系统
JP6378923B2 (ja) 蓄電システム及びその運転方法
JP5740357B2 (ja) 大容量蓄電装置
US8692517B2 (en) Non-diffusion liquid energy storage device
WO2016164008A1 (en) Redox-air indirect fuel cell
KR101841052B1 (ko) 충방전의 동시 수행이 가능한 에너지 저장 장치
JP2019075874A (ja) 充電システム
JP2020178517A (ja) 蓄電池システム
US20090130539A1 (en) Electric power grid buffer
KR102063753B1 (ko) 요오드화합물 산화환원쌍을 이용한 에너지저장장치
JP2012160410A (ja) 電解液流通型電池システム
JP2012248529A (ja) ハイブリッド水素燃料電池
JP2012164495A (ja) 電解液流通型電池システム
JP6037187B2 (ja) 電解液流通型電池システム
US20230343980A1 (en) Methods and systems for operating redox flow battery
EP3254327B1 (en) Bioelectrochemical energy storage device and method for bioelectrochemical energy storage
JPH05326007A (ja) 電解液流通型電池装置
US20160322674A1 (en) Large-capacity electrical energy storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783164

Country of ref document: EP

Kind code of ref document: A1