WO2015162847A1 - 蓄熱タンクユニットならびに空調システム - Google Patents

蓄熱タンクユニットならびに空調システム Download PDF

Info

Publication number
WO2015162847A1
WO2015162847A1 PCT/JP2015/001408 JP2015001408W WO2015162847A1 WO 2015162847 A1 WO2015162847 A1 WO 2015162847A1 JP 2015001408 W JP2015001408 W JP 2015001408W WO 2015162847 A1 WO2015162847 A1 WO 2015162847A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage tank
heat
storage medium
pipe
Prior art date
Application number
PCT/JP2015/001408
Other languages
English (en)
French (fr)
Inventor
安尾 晃一
修二 藤本
柯壁 陳
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP15782529.0A priority Critical patent/EP3135608A4/en
Priority to CN201580021393.7A priority patent/CN106255653A/zh
Publication of WO2015162847A1 publication Critical patent/WO2015162847A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage tank unit that stores cold using the heat storage action of a heat storage medium, and an air conditioning system that performs air conditioning using the cold.
  • the heat storage circuit mainly includes a heat storage tank that stores a heat storage medium, a heat storage heat exchanger that exchanges heat between the heat storage medium and a heat medium such as a refrigerant, and a circulation pump.
  • the refrigerant circuit is mainly composed of a heat storage heat exchanger, a use side heat exchanger, and the like.
  • the use-side heat exchanger cools the room air using the cold energy extracted from the heat storage medium by the heat storage heat exchanger.
  • Patent Document 1 a heat storage material (for example, an aqueous solution of tetra-n-butylammonium bromide) in which clathrate hydrate is generated by cooling is used as a heat storage medium.
  • a heat storage material for example, an aqueous solution of tetra-n-butylammonium bromide
  • the cold storage operation which stores the heat storage medium cooled with the heat exchanger for heat storage in a heat storage tank is performed.
  • the path of the heat storage medium (heat storage side path) in the heat storage heat exchanger is blocked by the clathrate hydrate, which may reduce the heat exchange capacity of the heat storage heat exchanger. Therefore, when the cold storage operation is performed to some extent, it is preferable to perform a heating operation in which the heat storage side passage is heated by a heat medium. This is because the clathrate hydrate blocking the heat storage side passage is peeled from the heat storage side passage by heating the heat storage side passage, and the closed state of the heat storage side passage is eliminated. The peeled clathrate hydrate flows into the heat storage tank.
  • a heat storage medium (specifically, a heat storage medium containing a supercooled solution and clathrate hydrate) that is cooled in the cold storage operation is stored in the heat storage tank.
  • a heat storage medium having a higher temperature for example, higher than the hydrate generation temperature
  • the heat storage medium that has flowed into the heat storage tank dissolves the clathrate hydrate, and the heat storage medium that has been melted into a solution generally flows to the top of the heat storage tank.
  • the inlet of the heat storage medium in the heat storage tank is located below the outlet, and both the inlet and the outlet are provided on the side wall of the tank.
  • a heat storage medium that is a solution tends to flow in a portion that easily flows, such as a side wall of a tank. Therefore, during the heating operation, a predetermined flow path for the heat storage medium that connects the inlet and the outlet at the shortest distance is formed in the heat storage tank. Then, at the time of the cold storage operation after the heating operation, the heat storage medium cooled by the heat storage heat exchanger does not cause any temperature change with respect to the heat storage medium in the heat storage tank, and remains in the heat storage tank. It flows out of the heat storage tank through the predetermined flow path.
  • the present invention has been made in view of such a point, and an object thereof is to suppress the formation of a predetermined flow path in the heat storage tank.
  • a first aspect of the present disclosure is a heat storage tank unit connected to a heat storage heat exchanger (29) that performs heat exchange between a heat storage medium in which clathrate hydrate is generated by cooling and a heat medium,
  • the pipe (55) and the inlet end (56a) communicate with the inside of the heat storage tank (52), and the outlet end is connected to the inflow side of the heat storage heat exchanger (29).
  • An outflow pipe (56) for letting the heat storage medium out of the heat storage tank (52) out of the inflow pipe (55) The mouth end (55a) is located below the inlet end (56a) of the outflow pipe (56), and the inflow pipe (55) is located at the approximate center inside the heat storage tank (52) in a cross-sectional view.
  • the heat storage tank unit discharges the heat storage medium in the axial direction of the heat storage tank (52).
  • the heat storage medium when the heat storage medium is discharged into the heat storage tank (52), the heat storage medium is discharged in the axial direction of the heat storage tank (52) at approximately the center of the heat storage tank (52). Then, the heat storage medium easily flows so as to be scattered in the heat storage tank (52) in all directions from the discharged portion. Thereby, it can suppress that a predetermined flow path (pa) is formed inside a thermal storage tank (52). Therefore, a necessary amount of cold energy is stored in the heat storage tank (52). Further, in the heat storage heat exchanger (29), the heat storage side passageway (29b) is less likely to be blocked by the clathrate hydrate, and a decrease in heat exchange capacity is suppressed.
  • the inflow pipe (55) includes the heat storage medium in the heat storage tank (52) in a downward direction in the axial direction of the heat storage tank (52). It is a heat storage tank unit characterized by discharging.
  • the heat storage medium when the heat storage medium is discharged from the inflow pipe (55) to the bottom side of the heat storage tank (52), the heat storage medium travels in all directions along the bottom and the side wall of the tank and moves to the upper side of the heat storage tank (52). It becomes easy to flow. Therefore, formation of the predetermined flow path (pa) is suppressed.
  • the inflow pipe (55) includes the heat storage medium in the heat storage tank (52) in an upward direction in an axial direction of the heat storage tank (52). It is a heat storage tank unit characterized by discharging.
  • the heat storage medium when discharged from the inflow pipe (55) to the upper side of the heat storage tank (52), it once flows to the upper side of the heat storage tank (52) and is included in the heat storage tank (52). It collides with the clathrate hydrate layer (slurry layer) of the heat storage medium.
  • the heat storage medium easily flows to the upper side of the heat storage tank (52) while being transmitted in all directions along the bottom and the side wall of the tank. Therefore, formation of the predetermined flow path (pa) is suppressed.
  • an inlet end (56a) of the outflow pipe (56) is located near a side wall of the heat storage tank (52), and the outflow pipe (56) is a heat storage tank unit in which the heat storage medium is sucked in a substantially horizontal direction.
  • the heat storage medium which is mainly a solution, flows out of the heat storage tank (52) when sucked from the horizontal direction into the outflow pipe (56) in the upper part of the heat storage tank (52).
  • the outflow pipe (56) includes the heat storage tank (52) approximately at the center inside the heat storage tank (52) in a cross-sectional view.
  • the heat storage tank unit is characterized in that the heat storage medium is sucked from above in the axial direction of 52).
  • the heat storage medium which is mainly a solution, is sucked into the outflow pipe (56) from approximately the center inside the heat storage tank (52) and from above.
  • the heat storage medium discharged from the inflow pipe (55) is more likely to flow in the four sides of the heat storage tank (52) to the upper side of the heat storage tank (52), and the heat storage medium in the heat storage tank (52) The drift is less likely to occur.
  • a heat storage medium having a higher temperature can be caused to flow out of the heat storage tank (52) as compared with the outflow pipe (56) that does not suck the heat storage medium from above.
  • the heat storage side passage (29b) of the heat storage heat exchanger (29) is less likely to be clogged than the heat storage tank unit in which the outflow pipe (56) of the type that does not suck the heat storage medium from above is adopted,
  • the heat exchange rate capability of the heat storage heat exchanger (29) is also increased.
  • a sixth aspect of the present disclosure is the heat storage tank according to the fifth aspect, wherein the inlet end (56a) of the outflow pipe (56) is wider than the pipe diameter of the outflow pipe (56). Is a unit.
  • the heat storage tank unit (50) according to any one of the first to sixth aspects, the heat storage side passage (29b) through which the heat storage medium flows, and the heat medium flow.
  • a heat medium side passage (29a), and the heat storage side passage (29b) is connected to the heat storage tank unit (50), the heat storage heat exchanger (29), and the heat medium side passage (29a )
  • a heat exchanger (25) on the use side that can cool the air-conditioning space using the heat storage medium stored in the heat storage tank (52) of the heat storage tank unit (50) as a cold heat source, and the heat storage Cooling operation for cooling the air-conditioned space using the medium as a cooling source, and when the heat storage side passage (29b) is blocked by the heat storage medium containing clathrate hydrate, the heat storage side passage (29a) stores the heat.
  • the heat medium is the air conditioning system comprising: a heating operation, the operation control
  • the predetermined flow path (pa) is mainly formed in the heat storage tank (52) during the heating operation.
  • the heat storage tank unit (51) according to any one of the first to sixth aspects is adopted, even if the heating operation is performed, the predetermined flow path described above (Pa) becomes difficult to form. Therefore, a necessary amount of cold can be stored in the heat storage tank (52), and the air-conditioning target space can be cooled using the stored cold.
  • the heat storage side passageway (29b) is less likely to be blocked by the clathrate hydrate, and a decrease in heat exchange capacity is suppressed.
  • the formation of the predetermined flow path (pa) is suppressed.
  • the heat storage medium that is a solution when drawn into the outflow pipe (56) from the horizontal direction in the upper part of the heat storage tank (52), the heat storage medium flows out of the heat storage tank (52). To do.
  • path ( The blockage of 29b) hardly occurs and the heat exchange rate of the heat storage heat exchanger (29) is also increased.
  • the inlet end (56a) of the outflow pipe (56) is difficult to block. .
  • the predetermined flow path (pa) is hardly formed. Therefore, a necessary amount of cold can be stored in the heat storage tank (52), and the air-conditioning target space can be cooled using the stored cold.
  • FIG. 1 is a configuration diagram of an air conditioning system.
  • FIG. 2 is a diagram illustrating the refrigerant flow and the heat storage medium flow during the cold storage operation and the heating operation.
  • FIG. 3 is a diagram illustrating the refrigerant flow and the heat storage medium flow during the first use cooling operation.
  • FIG. 4 is a diagram illustrating the refrigerant flow and the heat storage medium flow during the second usage cooling operation.
  • FIG. 5 the external appearance of the heat storage tank unit according to the first embodiment is represented by (A), and the longitudinal section of the heat storage tank unit is represented by (B).
  • FIG. 6 is a longitudinal sectional view of a conventional heat storage tank unit.
  • FIG. 1 is a configuration diagram of an air conditioning system.
  • FIG. 2 is a diagram illustrating the refrigerant flow and the heat storage medium flow during the cold storage operation and the heating operation.
  • FIG. 3 is a diagram illustrating the refrigerant flow and the heat storage medium flow during the first use cooling operation.
  • FIG. 4 is
  • FIG. 7 is a diagram illustrating an appearance of a heat storage tank unit according to the fourth embodiment. 10, the vicinity of the inlet end of the conventional outflow pipe is represented by (A), and the vicinity of the inlet end of the outflow pipe of FIG. 9 is represented by (B).
  • FIG. 1 is a configuration diagram of an air conditioning system (10).
  • the air conditioning system (10) includes an air conditioner (20), a heat storage device (50), and a controller (100) (corresponding to an operation control unit).
  • the heat storage device (50) includes a heat storage tank unit (51), an auxiliary heat exchanger (28), a heat storage heat exchanger (29), a heat storage expansion valve (30), and a circulation pump (58) according to the first embodiment. , And other various valves (32, 33, 34).
  • the heat storage circuit (61) is configured by the devices included in the heat storage device (50).
  • the air conditioner (20) has an outdoor unit (20a) and an indoor unit (20b). Equipment included in each unit (20a, 20b) and some equipment of heat storage device (50) (specifically, auxiliary heat exchanger (28), heat storage heat exchanger (29), expansion for heat storage)
  • a refrigerant circuit (11) is constituted by the valve (30) and other various valves (32, 33, 34).
  • the controller (100) is for controlling the operation of the air conditioning system (10), and controls the compressor (21) of the refrigerant circuit (11) and the circulation pump (58) of the heat storage circuit (61). I do.
  • the refrigerant circuit (11) is filled with a refrigerant (corresponding to a heat medium), and a refrigeration cycle is performed by circulating the refrigerant.
  • the refrigerant circuit (11) mainly includes a compressor (21), an outdoor heat exchanger (22), an outdoor expansion valve (23), an indoor expansion valve (24), and an indoor heat exchanger (25 ), A four-way switching valve (26), an auxiliary heat exchanger (28), a heat storage heat exchanger (29), and a heat storage expansion valve (30).
  • the compressor (21), the outdoor heat exchanger (22), the outdoor expansion valve (23) and the four-way switching valve (26) are provided in the outdoor unit (20a), and the indoor expansion valve (24) and the indoor heat exchanger ( 25) is provided in the indoor unit (20b).
  • Compressor (21) compresses and discharges refrigerant.
  • the compressor (21) is, for example, a variable capacity type, and the rotation speed (operation frequency) is variable by an inverter circuit (not shown).
  • the outdoor heat exchanger (22) is connected to the four-way switching valve (26) through the pipe (12).
  • the outdoor heat exchanger (22) is, for example, a cross fin and tube type, and when outdoor air is supplied by an outdoor fan (22a) provided in the outdoor unit (20a), heat of the outdoor air and the refrigerant is generated. Exchange.
  • the outdoor expansion valve (23) is connected to the outdoor heat exchanger (22) via the pipe (13), and is connected to the indoor expansion valve (24) via the pipe (14a, 14b).
  • the outdoor expansion valve (23) and the indoor expansion valve (24) are composed of, for example, electronic expansion valves, and adjust the refrigerant pressure by varying the opening.
  • the indoor heat exchanger (25) is connected to the indoor expansion valve (24) via the pipe (15), and is connected to the four-way switching valve (26) via the pipe (16).
  • the indoor heat exchanger (25) is, for example, a cross fin and tube type, and when indoor air is supplied by an indoor fan (25a) provided in the indoor unit (20b), the heat of the indoor air and the refrigerant Exchange.
  • the four-way selector valve (26) has four ports. Specifically, the first port of the four-way switching valve (26) is connected to the discharge side of the compressor (21), and the second port of the four-way switching valve (26) is connected to the compressor (27) via the accumulator (27). 21) connected to the suction side. The third port of the four-way switching valve (26) is connected to the outdoor heat exchanger (22) through the pipe (12), and the fourth port of the four-way switching valve (26) is connected to the indoor through the pipe (16). Connected to heat exchanger (25). The four-way selector valve (26) has a connection state of each port in a first state (state indicated by a solid line in FIG. 1) or a second state (state indicated by a broken line in FIG. 1) depending on the operation type of the air conditioning system (10). ).
  • the auxiliary heat exchanger (28) has a refrigerant side passage (28a) and a heat storage side passage (28b).
  • the refrigerant side passage (28a) is located on the pipe (14a), that is, between the outdoor expansion valve (23) and the heat storage expansion valve (30), and the refrigerant flows inside.
  • the heat storage side passage (28b) is connected in series to the heat storage circuit (61), and a heat storage medium (described later) flows through the heat storage side passage (28b).
  • the auxiliary heat exchanger (28) performs heat exchange between the refrigerant and the heat storage medium.
  • the heat storage heat exchanger (29) includes a refrigerant side passage (29a) (corresponding to a heat medium side passage) and a heat storage side passage (29b).
  • the refrigerant side passage (29a) is located between the heat storage expansion valve (30) and the indoor expansion valve (24) on the pipe (14b), and the refrigerant flows inside.
  • the heat storage side passage (29b) is connected in series to the heat storage circuit (61), and the heat storage medium flows inside.
  • the heat storage heat exchanger (29) performs heat exchange between the refrigerant and the heat storage medium.
  • the heat storage expansion valve (30) is connected to the auxiliary heat exchanger (28) through the pipe (14a) and is connected to the heat storage heat exchanger (29) through the pipe (14b).
  • the heat storage expansion valve (30) is composed of, for example, an electronic expansion valve, and adjusts the pressure of the refrigerant by varying the opening degree.
  • the refrigerant circuit (11) is provided with three on-off valves (31, 32, 33) and one check valve (34).
  • the first on-off valve (31) is located on the first bypass pipe (17), and the second on-off valve (32) is located on the second bypass pipe (18).
  • the first bypass pipe (17) connects the pipe (12) and the outdoor expansion valve (23) and the auxiliary heat exchanger (28) in the pipe (14a).
  • the second bypass pipe (18) connects the pipe (16) and the heat storage heat exchanger (29) and the indoor expansion valve (24) in the pipe (14b).
  • the third on-off valve (33) is between the heat storage heat exchanger (29) and the indoor expansion valve (24) in the pipe (14b), and is also connected to the second bypass pipe (18) and the pipe (14b).
  • the check valve (34) is connected in parallel to the third on-off valve (33).
  • the check valve (34) receives heat from the indoor expansion valve (24) (29) It is provided so that the refrigerant flows toward the) side.
  • the heat storage circuit (61) is filled with a heat storage medium, and a cycle of storing the cold energy by circulating the heat storage medium is performed.
  • the heat storage circuit (61) is mainly configured by the auxiliary heat exchanger (28) and the heat storage heat exchanger (29) described above, in addition to the heat storage tank unit (51) and the circulation pump (58).
  • the heat storage medium As the heat storage medium, a heat storage material in which clathrate hydrate is generated by cooling, that is, a fluid heat storage material is employed.
  • the heat storage medium include tetra nbutylammonium bromide (TBAB) aqueous solution, trimethylolethane (TME) aqueous solution, and paraffinic slurry.
  • TAB tetra nbutylammonium bromide
  • TME trimethylolethane
  • paraffinic slurry paraffinic slurry.
  • an aqueous solution of tetra-n-butylammonium bromide maintains the state of the aqueous solution even in a supercooled state in which the temperature of the aqueous solution is lower than the hydrate formation temperature after being stably cooled.
  • the supercooled solution transitions to a solution containing clathrate hydrate (ie, slurry). That is, the aqueous solution of tetra-n-butylammonium bromide eliminates the supercooled state, and clathrate hydrate (hydrate crystal) composed of tetra-n-butylammonium bromide and water molecules is generated, and the viscosity is relatively low. It becomes a high slurry state.
  • the supercooled state refers to a state in which the clathrate hydrate is not generated and the state of the solution is maintained even when the heat storage medium has a temperature equal to or lower than the hydrate forming solution.
  • the temperature of the aqueous solution becomes higher than the hydrate formation temperature, the clathrate hydrate melts and the fluidity is relatively high. It becomes a liquid state (solution).
  • the hydrate formation temperature of tetra n butyl ammonium bromide aqueous solution is higher than 0 degreeC, for example, 12 degreeC.
  • the heat storage tank unit (51) includes a heat storage tank (52), an inflow pipe (55), and an outflow pipe (56), as shown in FIGS.
  • the heat storage tank (52) is a hollow cylindrical container arranged so that the axial direction is the vertical direction, and the upper end and the lower end are closed.
  • a heat storage medium is stored in the heat storage tank (52).
  • a first opening (53) is formed in a lower portion of the side wall of the heat storage tank (52), and a first opening (53) is formed in the upper side of the tank (52) of the side wall of the heat storage tank (52). Two openings (54) are formed.
  • the inflow pipe (55) is attached to the heat storage tank (52) through the first opening (53), and allows the heat storage medium to flow into the heat storage tank (52).
  • the inlet end of the heat storage medium of the inflow pipe (55) is connected to one end of the heat storage side passage (29b) of the heat storage heat exchanger (29) via the pipe (62).
  • the outlet end (55a) of the heat storage medium of the inflow pipe (55) communicates with the inside of the heat storage tank (52).
  • the outflow pipe (56) is attached to the heat storage tank (52) through the second opening (54), and the heat storage medium inside the heat storage tank (52) is transferred to the tank (52). 52).
  • the inlet end (56a) of the heat storage medium of the outflow pipe (56) communicates with the inside of the heat storage tank (52).
  • the outlet end of the heat storage medium of the outflow pipe (56) is connected to one end of the heat storage side passage (28b) of the auxiliary heat exchanger (28) via the pipe (63).
  • the circulation pump (58) circulates the heat storage medium in the direction from the auxiliary heat exchanger (28) to the heat storage heat exchanger (29) in the heat storage circuit (61) of FIG.
  • the circulation pump (58) is connected to the other end of the heat storage side passage (28b) of the auxiliary heat exchanger (28) through the pipe (64), and is connected to the heat storage heat exchanger (29) through the pipe (65). Is connected to the other end of the heat storage side passage (29b). Therefore, the inlet end of the inflow pipe (55) is connected to the outflow side of the heat storage medium of the heat storage heat exchanger (29), and the outlet end of the outflow pipe (56) is the heat storage of the heat storage heat exchanger (29). It can be said that it is connected to the inflow side of the medium.
  • the controller (100) controls on / off of the operation of the circulation pump (58) and the conveyance amount of the heat storage medium.
  • the heat storage circuit (61) is a closed circuit.
  • the operation types of the air conditioning system (10) are only the operation in which the heat storage medium is circulated in the heat storage circuit (61) in parallel with the refrigerant circulation in the refrigerant circuit (11), and the refrigerant circulation in the refrigerant circuit (11). It is roughly divided into driving. Below, the driving
  • the heat storage circuit (61) is configured so that the heat storage medium flowing out of the heat storage tank (52) passes through the auxiliary heat exchanger (28) and the heat storage heat exchanger (29) in order, and flows into the heat storage tank (52) again. Circulate the heat storage medium.
  • the four-way selector valve (26) is set to the first state
  • the first on-off valve (31) and the third on-off valve (33) are set to the closed state
  • the second on-off valve (32) is set to the open state.
  • the opening of the outdoor expansion valve (23) is in a fully open state
  • the opening of the indoor expansion valve (24) is in a fully closed state
  • the opening of the heat storage expansion valve (30) is a predetermined opening (heat storage heat exchanger (29 )
  • the degree of superheat of the refrigerant at the outlet of the refrigerant side passage (29a) is set to a predetermined target value.
  • the compressor (21) and the outdoor fan (22a) operate.
  • the refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), and dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22).
  • the condensed refrigerant flows into the refrigerant side passage (28a) of the auxiliary heat exchanger (28) through the outdoor expansion valve (23), but while passing through the refrigerant side passage (28a), the heat storage side passage (28b ) Is further cooled by the heat storage medium flowing through.
  • the refrigerant flowing out of the auxiliary heat exchanger (28) is depressurized by the heat storage expansion valve (30), and then absorbs heat from the heat storage medium and evaporates by the heat storage heat exchanger (29).
  • the evaporated refrigerant is once sucked into the accumulator (27) through the second bypass pipe (18) and the four-way switching valve (26), and the gas refrigerant separated from the liquid refrigerant is then sucked into the compressor (21). Compressed.
  • the circulation pump (58) operates.
  • the heat storage medium in the heat storage tank (52) flows into the heat storage side passage (28b) of the auxiliary heat exchanger (28) through the second opening (54) and the pipes (56, 63).
  • the heat storage medium is heated by the refrigerant flowing through the refrigerant side passage (28a).
  • the heated heat storage medium flows into the heat storage side passage (29b) of the heat storage heat exchanger (29) through the circulation pump (58) and the pipes (64, 65).
  • the heat storage medium is cooled by the refrigerant flowing through the refrigerant side passage (29a).
  • the cooled heat storage medium flows into the heat storage tank (52) through the pipes (62, 55) and the first opening (53). In this way, cold heat is stored in the heat storage tank (52).
  • the heat storage medium stored in the heat storage tank (52) in the cold storage operation is used as a cold heat source, and the indoor heat exchanger (25) is used for indoor (air conditioning target space). Equivalent cooling) is performed.
  • the refrigerant circuit (11) circulates the refrigerant so that the refrigerant obtained from the heat storage medium in the heat storage heat exchanger (29) evaporates in the indoor heat exchanger (25).
  • the heat storage circuit (61) is configured so that the heat storage medium flowing out of the heat storage tank (52) passes through the auxiliary heat exchanger (28) and the heat storage heat exchanger (29) in order, and flows into the heat storage tank (52) again. Circulate the heat storage medium.
  • the utilization cooling operation includes a first utilization cooling operation in FIG. 3 and a second utilization cooling operation in FIG.
  • First use cooling operation In the first use cooling operation, indoor cooling is performed using the cold heat stored in the heat storage tank (52) and the cold heat obtained by the refrigeration cycle of the refrigerant circuit (11).
  • the outdoor heat exchanger (22) is a condenser
  • the auxiliary heat exchanger (28) and the heat storage heat exchanger (29) are subcoolers (that is, radiators)
  • the indoor heat exchanger (25 ) Performs a refrigeration cycle that becomes an evaporator.
  • the four-way switching valve (26) is in the first state, the first on-off valve (31) and the second on-off valve (32) are closed, and the third on-off valve (33) is Each is set to the open state.
  • the opening degree of the outdoor expansion valve (23) and the heat storage expansion valve (30) is fully open, and the opening degree of the indoor expansion valve (24) is a predetermined opening degree (the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger (25)). Is set to a predetermined target value).
  • the compressor (21), the outdoor fan (22a), and the indoor fan (25a) operate.
  • the refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), and dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22).
  • the condensed refrigerant flows into the refrigerant-side passage (28a) of the auxiliary heat exchanger (28) through the fully-expanded outdoor expansion valve (23), and passes through the refrigerant-side passage (28a), and then the heat storage-side passage. It is further cooled by the heat storage medium flowing through (28b).
  • the refrigerant that has flowed out of the auxiliary heat exchanger (28) flows into the refrigerant side passage (29a) of the heat storage heat exchanger (29) via the heat storage expansion valve (30) that is fully open, and the heat storage side passage (29b ) Is further cooled by the heat storage medium flowing through.
  • the refrigerant is depressurized by the indoor expansion valve (24), and then absorbs heat from the indoor air by the indoor heat exchanger (25) to evaporate. Thereby, indoor air is cooled.
  • the evaporated refrigerant is once sucked into the accumulator (27) through the pipe (16) and the four-way switching valve (26), and the gas refrigerant separated from the liquid refrigerant is then sucked into the compressor (21) and compressed. .
  • the circulation pump (58) operates.
  • the heat storage medium in the heat storage tank (52) flows into the heat storage side passage (28b) of the auxiliary heat exchanger (28) through the second opening (54) and the pipes (56, 63).
  • the heat storage medium absorbs heat from the refrigerant flowing through the refrigerant side passage (28a).
  • the heat storage medium that has absorbed heat flows into the heat storage side passageway (29b) of the heat storage heat exchanger (29) through the circulation pump (58) and the pipes (64, 65).
  • the heat storage medium further absorbs heat from the refrigerant flowing through the refrigerant side passage (29a).
  • the heat storage medium that has absorbed heat flows into the heat storage tank (52) through the pipes (62, 55) and the first opening (53). In this way, cold heat is applied from the heat storage medium to the refrigerant.
  • the four-way switching valve (26) is in the first state
  • the second on-off valve (32) is in the closed state
  • the first on-off valve (31) and the third on-off valve (33) are Each is set to the open state.
  • the opening of the outdoor expansion valve (23) is fully closed
  • the opening of the heat storage expansion valve (30) is fully open
  • the opening of the indoor expansion valve (24) is a predetermined opening (indoor heat exchanger (25)
  • the compressor (21) and the indoor fan (25a) operate.
  • the refrigerant discharged from the compressor (21) flows into the refrigerant side passage (28a) of the auxiliary heat exchanger (28) through the pipe (12), the first bypass pipe (17) and the pipe (14a),
  • the heat storage medium flowing through the heat storage side passage (28b) dissipates heat and condenses.
  • the condensed refrigerant passes through the heat storage expansion valve (30) that is fully open, then flows into the refrigerant side passage (29a) of the heat storage heat exchanger (29), and passes through the refrigerant side passage (29a). And further cooled by the heat storage medium flowing through the heat storage side passageway (29b).
  • the refrigerant then flows into the indoor expansion valve (24) via the third on-off valve (33) and is depressurized.
  • the decompressed refrigerant absorbs heat from the room air and evaporates while passing through the indoor heat exchanger (25). Thereby, indoor air is cooled.
  • the evaporated refrigerant is once sucked into the accumulator (27) through the pipe (16) and the four-way switching valve (26), and the gas refrigerant separated from the liquid refrigerant is then sucked into the compressor (21) and compressed. .
  • the circulation pump (58) operates.
  • the heat storage medium in the heat storage tank (52) consists of the second opening (54), piping (56, 63), the heat storage side passage (28b) of the auxiliary heat exchanger (28), piping (64), and circulation pump (58) After flowing through the pipe (65) in this order, it flows into the heat storage side passage (29b) of the heat storage heat exchanger (29). While passing through each heat storage side passage (28b, 29b), the heat storage medium absorbs heat from the refrigerant passing through each refrigerant side passage (28a, 29a). The heat storage medium that has absorbed heat flows into the heat storage tank (52) through the pipes (62, 55) and the first opening (53). In this way, cold heat is applied from the heat storage medium to the refrigerant.
  • a heat storage medium in which clathrate hydrate is generated by cooling is used. Then, in the cold storage operation in which the heat storage medium is cooled by the heat storage heat exchanger (29), the heat storage side passage (29b) of the heat storage heat exchanger (29) is changed to clathrate hydrate by cooling. There is a possibility that the medium accumulates and the heat storage side passage (29b) is blocked by the heat storage medium. If the heat storage side passage (29b) is blocked, heat exchange between the refrigerant and the heat storage medium in the heat storage heat exchanger (29) may be hindered, and the heat exchange efficiency of the heat storage heat exchanger (29) may deteriorate. There is.
  • the air conditioning system (10) for example, when the flow rate of the heat storage medium is lower than a predetermined amount or the temperature difference between the inlet and outlet of the heat storage side passage (29b) in the heat storage heat exchanger (29) is a predetermined temperature.
  • the heating operation for forcibly separating the clathrate hydrate from the passage (29b) is performed by heating the heat storage side passage (29b) of the heat storage heat exchanger (29).
  • the same operation as the cold storage operation according to FIG. 2 is performed except that the opening degree of the heat storage expansion valve (30) is larger than that during the cold storage operation (for example, the fully open state). That is, after the refrigerant discharged from the compressor (21) is condensed in the outdoor heat exchanger (22), the outdoor expansion valve (23), the refrigerant side passage (28a) of the auxiliary heat exchanger (28), The heat storage expansion valve (30), the refrigerant side passage (29a) of the heat storage heat exchanger (29), and the second bypass pipe (18) flow in this order.
  • the refrigerant that has flowed out of the auxiliary heat exchanger (28) has a relatively small amount of reduced pressure, and the heat storage heat exchanger (29) Is flowed into.
  • the temperature of the refrigerant flowing through the heat storage heat exchanger (29) is higher than that of the refrigerant flowing through the heat storage heat exchanger (29) in the cold storage operation, specifically, the hydrate formation temperature of the heat storage medium. It is high.
  • the refrigerant flowing through the heat storage heat exchanger (29) is then sucked into the accumulator (27) through the four-way switching valve (26).
  • the heat storage medium flowing out of the heat storage tank (52) and flowing into the heat storage side passage (28b) of the auxiliary heat exchanger (28) absorbs heat from the refrigerant flowing through the refrigerant side passage (28a), It flows into the heat storage side passageway (29b) of the heat storage heat exchanger (29). Since the temperature of the refrigerant flowing through the refrigerant side passage (29a) is higher than the hydrate formation temperature of the heat storage medium, the clathrate hydrate that closes the heat storage side passage (29b) constitutes the heat storage side passage (29b). It gradually melts from the portion near the inner wall of the pipe and eventually peels off from the inner wall of the pipe. The peeled clathrate hydrate flows again into the heat storage tank (52) by the circulation operation by the circulation pump (58).
  • the outlet end (55a) of the inflow pipe (55) and the inlet end (56a) of the outflow pipe (56) open horizontally in the vicinity of the side wall of the heat storage tank (52).
  • the outlet end (56a) of the outflow pipe (56) is located above the outlet end (55a) of the inflow pipe (55).
  • the heat storage medium containing the clathrate hydrate separated from the heat storage side passageway (29b) of the heat storage heat exchanger (29) is at the outlet of the inflow pipe (55) in a state higher than the hydrate formation temperature. It flows into the heat storage tank (52) through the end (55a).
  • This heat storage medium is the inlet of the outflow pipe (56) while partially melting the clathrate hydrate layer (dots in FIG. 6) of the heat storage medium already stored in the heat storage tank (52). It flows toward the end (56a).
  • the inflowing heat storage medium flows to the inlet end (56a) of the outflow pipe (56) along the side wall of the heat storage tank (52) that is easy to flow. Will be formed.
  • the predetermined flow path (pa) extends along the side wall of the heat storage tank (52) and extends from the outlet end (55a) of the inlet pipe (55) to the inlet end (56a) of the outlet pipe (56).
  • the flow path is formed so as to be connected at the shortest distance.
  • the predetermined flow path (pa) When the predetermined flow path (pa) is formed during the heating operation, when the cold storage operation is performed after the heating operation, it is cooled by the heat storage heat exchanger (29) and is discharged from the outlet end (55a) of the inflow pipe (55).
  • the heat storage medium flowing into the heat storage tank (52) passes through the predetermined flow path (pa) and flows out from the inlet end (56a) of the outflow pipe (56) to the outside of the heat storage tank (52). Then, during the cold storage operation, in the heat storage tank (52), the newly stored heat storage medium comes into contact with the supercooled solution in the prestored heat storage medium, so that the supercooled solution is clathrated and hydrated.
  • the phenomenon of transition to an object is unlikely to occur (that is, it is difficult to eliminate supercooling), and therefore, a state in which the temperature of the heat storage medium does not change is maintained in the heat storage tank (52). Therefore, there is a possibility that a necessary amount of cold energy is not stored in the heat storage tank (52).
  • the heat storage medium flowing out of the heat storage tank (52) circulates through the heat storage circuit (61) and flows again into the heat storage heat exchanger (29). Since the heat storage medium flowing in again contains a supercooled solution and clathrate hydrate, the heat storage side passage (29b) of the heat exchanger for heat storage (29) is included in the heat storage medium that has flowed in again. It becomes easy to block
  • the configuration shown in FIGS. 5A and 5B is adopted as the configuration of the heat storage tank unit (51).
  • the outlet end (55a) of the inflow pipe (55) is located below the inlet end (56a) of the outflow pipe (56).
  • the outlet end (55a) of the inlet pipe (55) is located inside the heat storage tank (52), and the inlet end (56a) of the outlet pipe (56) is horizontal in the vicinity of the side wall of the heat storage tank (52). It is located so as to open.
  • the inflow pipe (55) discharges the heat storage medium downward in the axial direction of the heat storage tank (52) at the center of the heat storage tank (52) in a cross-sectional view. That is, the inflow pipe (55) is inserted into the heat storage tank (52) in the horizontal direction from the first opening (53), and the outlet end (55a) of the inflow pipe (55) is cylindrical. ) Is bent in the middle so as to open toward the bottom of the heat storage tank (52) on the central axis (O).
  • the heat storage medium flowing out from the heat storage side passage (29b) of the heat storage heat exchanger (29) passes through the inflow pipe (55) at a temperature higher than the hydrate generation temperature.
  • the heat storage tank (52) At this time, since the heat storage medium is discharged downward from the inflow pipe (55) on the central axis (O) of the heat storage tank (52), it collides with the bottom of the heat storage tank (52).
  • a heat storage medium containing the supercooled solution and the clathrate hydrate is stored in the heat storage tank (52) by the cold storage operation performed before the heating operation.
  • the heat storage medium immediately after the inflow that collided with the bottom of the heat storage tank (52) is transmitted in all directions along the bottom and side walls of the heat storage tank (52) as shown by the arrows in FIG. 5 (B). It flows to the upper side of (52). Moreover, since the heat storage medium immediately after inflow has a temperature higher than the hydrate formation temperature, while flowing in the heat storage tank (52), the heat storage medium already stored in the heat storage tank (52) The clathrate hydrate is melted while contacting the clathrate hydrate.
  • the heat storage medium of the solution that has dissolved and contained a small amount of clathrate hydrate (that is, the heat storage medium in which the density of clathrate hydrate is relatively low) accumulates in the upper layer of the clathrate hydrate and flows out.
  • the heat is discharged from the inlet end (56a) of the pipe (56) to the outside of the heat storage tank (52) (specifically, the heat storage side passage (28b) of the auxiliary heat exchanger (28)).
  • the heat storage medium flowing into the heat storage tank (52) flows as indicated by the arrow in FIG. Hinders the formation of pa Therefore, when the heat storage medium cooled in the heat storage heat exchanger (29) flows into the heat storage tank (52) during the cold storage operation after the heating operation, the supercooled solution in the tank (52) is removed. Transition to clathrate hydrate. Thereby, the stable clathrate hydrate production
  • the flow rate of the heat storage medium flowing into the heat storage tank (52) during the heating operation is sufficiently low.
  • the flow rate of the heat storage medium is adjusted by adjusting the pipe diameter of the inflow pipe (55), About “0.3 m / sec” is set.
  • the distance between the outlet end (55a) of the inlet pipe (55) and the bottom surface of the heat storage tank (52) is set. Even if it is slightly deviated from the distance, the heat storage medium in the heat storage tank (52) may drift instead of that shown in FIG. 5 (B), and instead a predetermined flow path (pa) may be formed. It is. Therefore, during the heating operation, the heat storage medium flows as shown in FIG. 5B regardless of the error in the distance between the outlet end (55a) of the inlet pipe (55) and the bottom surface in the heat storage tank (52). Therefore, it is preferable that the flow rate of the heat storage medium is appropriately set to a sufficiently low value from the volume and height of the heat storage tank (52).
  • the heat storage medium is discharged approximately in the center of the heat storage tank (52) in the axial direction of the heat storage tank (52), more specifically in the downward direction. .
  • the heat storage medium flows to the upper side of the heat storage tank (52) while being transmitted in all directions along the bottom and side walls of the heat storage tank (52).
  • the predetermined flow path (pa) as shown in FIG. 6 is formed in the thermal storage tank (52). Therefore, a necessary amount of cold energy is stored in the heat storage tank (52).
  • the heat storage side passageway (29b) is less likely to be blocked by the clathrate hydrate, and a decrease in heat exchange capacity is suppressed.
  • the inlet end (56a) of the outflow pipe (56) is located near the side wall of the heat storage tank (52), and the heat storage medium is sucked into the outflow pipe (56) in a substantially horizontal direction. Yes. Therefore, when the heat storage medium, which is mainly a solution, is sucked from the horizontal direction into the outflow pipe (56) in the upper part of the heat storage tank (52), it flows out of the heat storage tank (52).
  • the air conditioning system (10) of this Embodiment 1 since the structure which concerns on FIG. 5 is employ
  • Embodiment 2 In the second embodiment, the configuration of the heat storage tank unit (51) is different from that of the first embodiment. In addition, the other structure of the air conditioning system (10) which concerns on this Embodiment 2 is the same as that of the said Embodiment 1. FIG.
  • the outlet end (55a) of the inflow pipe (55) is positioned below the inlet end (56a) of the outflow pipe (56). Yes.
  • the outlet end (55a) of the inlet pipe (55) is located inside the heat storage tank (52), and the inlet end (56a) of the outlet pipe (56) is horizontal in the vicinity of the side wall of the heat storage tank (52). It is located so as to open.
  • the inflow pipe (55) discharges the heat storage medium upward in the axial direction of the heat storage tank (52) at the center of the heat storage tank (52) in a cross-sectional view. That is, the inflow pipe (55) is inserted into the heat storage tank (52) in the horizontal direction from the first opening (53), and the outlet end (55a) is opposite to that of the first embodiment to store the heat storage tank (52). Is bent in the middle so as to open toward the upper surface of the heat storage tank (52) on the central axis (O).
  • a heat storage medium having a temperature higher than the hydrate generation temperature flows from the heat storage side passage (29b) of the heat storage heat exchanger (29) into the inflow pipe (55). Since the heat storage medium is discharged from the inflow pipe (55) upward on the central axis (O) of the heat storage tank (52), the heat storage tank is located above the outlet end (55a) of the inflow pipe (55). Collides with the clathrate hydrate layer in (52). Then, the collided heat storage medium flows toward the bottom of the heat storage tank (52) along the inflow pipe (55) as shown by the arrow in FIG.
  • Such a heat storage tank unit (51) can achieve the same effects as those of the first embodiment.
  • the flow rate of the heat storage medium is sufficiently low as in the first embodiment. If the flow rate of the heat storage medium is too high during the heating operation, the heat storage medium that has flowed into the heat storage tank (52) will dissolve the clathrate hydrate located immediately above the outlet end (55a) of the inflow pipe (55). This is because there is a possibility that the clathrate hydrate layer penetrates toward the upper surface side of the heat storage tank (52) to form a predetermined flow path (pa).
  • Embodiment 3 In the third embodiment, the configuration of the heat storage tank unit (51) is different from those of the first and second embodiments. In addition, the other structure of the air conditioning system (10) which concerns on this Embodiment 3 is the same as that of the said Embodiment 1,2.
  • the outlet end (55a) of the inflow pipe (55) is positioned below the inlet end (56a) of the outflow pipe (56). Yes.
  • the outlet end (55a) of the inflow pipe (55) and the inlet end (56a) of the outflow pipe (56) are both located inside the heat storage tank (52).
  • the inflow pipe (55) discharges the heat storage medium downward in the axial direction of the heat storage tank (52) at the center of the heat storage tank (52) in a cross-sectional view. That is, the inflow pipe (55) is inserted into the heat storage tank (52) horizontally from the first opening (53), and the outlet end (55a) is on the central axis (O) of the heat storage tank (52). And bent in the middle so as to open toward the bottom of the heat storage tank (52).
  • the outflow pipe (56) sucks the heat storage medium from the upper side in the axial direction of the heat storage tank (52) at the center of the heat storage tank (52) in the cross-sectional view. That is, the outflow pipe (56) is inserted into the heat storage tank (52) horizontally from the second opening (54), and the inlet end (56a) is on the central axis (O) of the heat storage tank (52). And bent in the middle so as to open toward the upper surface of the heat storage tank (52).
  • a heat storage medium having a temperature higher than the hydrate generation temperature flows from the heat storage side passage (29b) of the heat storage heat exchanger (29) into the inflow pipe (55).
  • the heat storage medium is discharged downward from the inflow pipe (55) on the central axis (O) of the heat storage tank (52) and collides with the bottom of the heat storage tank (52).
  • the heat storage medium that has collided with the bottom of the heat storage tank (52) propagates in all directions along the bottom and side walls of the heat storage tank (52) as shown by the arrows in FIG. Flow to the side.
  • the heat storage medium immediately after inflow has a temperature higher than the hydrate formation temperature, while flowing in the heat storage tank (52), the heat storage medium already stored in the heat storage tank (52) The clathrate hydrate is melted while contacting the clathrate hydrate.
  • the heat storage medium of the solution that has dissolved and contained a small amount of clathrate hydrate (that is, the heat storage medium in which the density of clathrate hydrate is relatively low) accumulates in the upper layer of the clathrate hydrate layer.
  • the heat storage medium accumulated in the upper layer passes from the inlet end (56a) of the outflow pipe (56) to the outside of the heat storage tank (52) (specifically, the auxiliary heat exchanger (28)). To the heat storage side passage (28b)).
  • Such a heat storage tank unit (51) can achieve the same effects as those of the first and second embodiments.
  • the outlet end (56a) of the outflow pipe (56) is provided so as to face upward at the center of the heat storage tank (52). Then, it can be said that the drift of the heat storage medium is less likely to occur than in the first and second embodiments. Therefore, in the third embodiment, the predetermined flow path (pa) is less likely to be formed than in the first and second embodiments.
  • the inlet end (56a) of the outflow pipe (56) faces upward, the outflow pipe (56) allows the heat storage medium having a higher temperature to flow out of the heat storage tank (52) among the heat storage medium accumulated in the upper layer. Can do.
  • the heat exchange rate capability of the heat storage heat exchanger (29) is also increased as compared to the first and second embodiments, and the heat storage side passage (29b) of the heat storage heat exchanger (29) is blocked. Also, it is less likely to occur than in the first and second embodiments.
  • the flow rate of the heat storage medium is sufficiently low as in the first and second embodiments.
  • Embodiment 4 As shown in FIG. 9, in the fourth embodiment, the direction of the outlet end (55a) of the inflow pipe (55) and the direction of the inlet end (56a) of the outflow pipe (56) are the same as in the third embodiment.
  • the inlet end (56a) of the outflow pipe (56) according to Embodiment 4 is wider than the pipe diameter of the outflow pipe (56).
  • the heat storage medium accumulated in the upper layer of the clathrate hydrate layer is mostly a solution heat medium, but contains a small amount of clathrate hydrate.
  • the clathrate hydrate (sl) adheres to the peripheral edge of the inlet end (56a)
  • the clathrate hydrate (sl) gradually accumulates on the peripheral edge, and the size of the inlet end (56a) increases. Depending on the situation, the inlet end (56a) may be blocked.
  • the inlet end (56a) of the outflow pipe (56) is wider than the diameter of the outflow pipe (56). Therefore, as shown in FIG. 10 (B), even if the clathrate hydrate (sl) adheres and accumulates on the peripheral edge of the inlet end (56a), the inlet end (56a) is difficult to block. .
  • the extent to which the inlet end (56a) of the outflow pipe (56) is expanded from the pipe diameter is appropriately determined depending on, for example, the standard crystal grain size of the clathrate hydrate (sl).
  • the diameter of the inlet end (56a) can be about twice the pipe diameter (about 32 mm).
  • the directions of the outlet end (55a) of the inflow pipe (55) and the inlet end (56a) of the outflow pipe (56) are the same as in the third embodiment. Similar effects can be achieved.
  • the inlet end (56a) of the outflow pipe (56) is heat storage.
  • the center of the tank (52) may be bent so as to face the upper surface of the heat storage tank (52).
  • the inlet end (56a) of the outflow pipe (56) may be wider than the pipe diameter of the outflow pipe (56).
  • Embodiments 1 to 4 only the inflow pipe (55) / or both the inflow pipe (55) and the outflow pipe (56) do not necessarily have to be bent in the axial direction inside the heat storage tank (52). That is, only the outlet end (55a) of the inlet pipe (55) / or the outlet end (55a) of the inlet pipe (55) and the inlet end (56a) of the outlet pipe (56) are at the center of the heat storage tank (52).
  • the bending direction or the like may be appropriately adjusted.
  • the diameters of the inflow pipe (55) and the outflow pipe (56) may be the same or different.
  • the shape of the heat storage tank (52) may be a shape other than a cylindrical shape, for example, a rectangular tube shape.
  • the present invention performs air conditioning using a heat storage tank unit that stores cold energy using a heat storage medium that generates clathrate hydrates by cooling, and cold energy stored in the unit. It is useful as an air conditioning system.
  • Air conditioning system 29 Heat exchanger for heat storage 29a Refrigerant side passage (heat medium side passage) 29b Heat storage side passage 51 Thermal storage tank unit 52 Thermal storage tank 55 Inflow pipe 55a Exit end 56 Outflow pipe 56a Inlet end 100 Controller (Operation control unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 蓄熱タンク内に所定流路が形成されることを抑制する。冷却により包接水和物を生成する蓄熱媒体を貯留する筒状の蓄熱タンク(52)には、蓄熱媒体を蓄熱タンク(52)内部に流入させる流入管(55)と、蓄熱タンク(52)内部の蓄熱媒体を蓄熱タンク(52)から流出させる流出管(56)とが接続されている。流入管(55)の出口端(55a)は、流出管(56)の入口端(56a)よりも下方に位置し、流入管(55)は、横断面視における蓄熱タンク(52)内部の概ね中心にて、蓄熱タンク(52)の軸方向に蓄熱媒体を排出する。

Description

蓄熱タンクユニットならびに空調システム
 本発明は、蓄熱媒体の蓄熱作用を利用して冷熱を蓄える蓄熱タンクユニット、及び、当該冷熱を利用して空調を行う空調システムに関するものである。
 空調システムには、特許文献1に示すように、蓄熱回路と冷媒回路とで構成され、蓄熱媒体を冷熱源として利用して室内の空調を行うシステムが知られている。蓄熱回路は、主として、蓄熱媒体を貯留する蓄熱タンク、蓄熱媒体を冷媒等の熱媒体と熱交換する蓄熱用熱交換器、及び循環ポンプ等によって構成される。冷媒回路は、主として、蓄熱用熱交換器及び利用側熱交換器等によって構成される。利用側熱交換器は、蓄熱用熱交換器にて蓄熱媒体から取り出された冷熱を用いて室内空気を冷却する。
 上記特許文献1では、冷却によって包接水和物が生成される蓄熱材(例えば臭化テトラnブチルアンモニウム水溶液)が蓄熱媒体として利用されている。特許文献1では、蓄熱タンク内に冷熱を蓄えるために、蓄熱用熱交換器で冷却された蓄熱媒体を蓄熱タンクに貯留する蓄冷運転が行われる。
特開2013-083439号公報
 蓄冷運転では、蓄熱用熱交換器における蓄熱媒体の通路(蓄熱側通路)が包接水和物によって閉塞され、蓄熱用熱交換器の熱交換能力が低下する虞がある。そのため、蓄冷運転がある程度行われた際には、蓄熱側通路を熱媒体によって加熱する加熱運転を行うことが好ましい。蓄熱側通路が加熱されることで、蓄熱側通路を閉塞している包接水和物が蓄熱側通路から剥離され、蓄熱側通路の閉塞状態が解消されるからである。剥離された包接水和物は蓄熱タンクに流入される。
 この加熱運転の際、蓄熱タンク内には、蓄冷運転にて冷却された蓄熱媒体(具体的には、過冷却の溶液と包接水和物とを含む蓄熱媒体)が貯留されている。一方、加熱運転では、蓄熱側通路が温められるため、蓄熱タンクには、蓄冷運転時よりも温度の高い(例えば水和物生成温度以上の)蓄熱媒体が流入される。蓄熱タンク内に流入してきた蓄熱媒体は包接水和物を溶かし、溶けて概ね溶液となった蓄熱媒体は蓄熱タンクの上部へと流動する。
 ところが、一般的には、蓄熱タンクにおける蓄熱媒体の流入口は流出口よりも下部に位置し、しかも流入口及び流出口はいずれもタンクの側壁に設けられている。溶液である蓄熱媒体は、タンクの側壁等の流動し易い部分を流動する傾向にある。そのため、加熱運転時、蓄熱タンク内には、流入口と流出口とを最短距離で結ぶ蓄熱媒体の所定流路が形成されてしまう。すると、加熱運転後の蓄冷運転時、蓄熱用熱交換器で冷却された蓄熱媒体は、蓄熱タンク内の蓄熱媒体に対して何ら温度変化を生じさせることなく、流入された状態のままで蓄熱タンク内の所定流路を経て蓄熱タンク外へと流出してしまう。すると、蓄熱タンクでは、必要な量の冷熱が貯留されにくくなる。また、蓄熱タンク外へと流出した蓄熱媒体は、再度蓄熱用熱交換器に流入するため、蓄熱用熱交換器では閉塞が生じ易くなり、熱交換能力が低下する。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、蓄熱タンク内に所定流路が形成されることを抑制することである。
 本開示の第1の態様は、冷却によって包接水和物が生成される蓄熱媒体と熱媒体との熱交換を行う蓄熱用熱交換器(29)に接続された蓄熱タンクユニットであって、上記蓄熱用熱交換器(29)にて熱交換された後の上記蓄熱媒体を内部に貯留可能であって、軸方向が上下方向となっている筒状の蓄熱タンク(52)と、入口端が上記蓄熱用熱交換器(29)の流出側に接続され出口端(55a)が上記蓄熱タンク(52)内部に連通されており、上記蓄熱媒体を該蓄熱タンク(52)内部に流入させる流入管(55)と、入口端(56a)が上記蓄熱タンク(52)内部に連通され出口端が上記蓄熱用熱交換器(29)の流入側に接続されており、上記蓄熱タンク(52)内部の上記蓄熱媒体を該蓄熱タンク(52)から流出させる流出管(56)とを備え、上記流入管(55)の出口端(55a)は、上記流出管(56)の入口端(56a)よりも下方に位置し、上記流入管(55)は、横断面視における上記蓄熱タンク(52)内部の概ね中心にて、該蓄熱タンク(52)の軸方向に上記蓄熱媒体を排出することを特徴とする蓄熱タンクユニットである。
 この蓄熱タンクユニットでは、蓄熱媒体が蓄熱タンク(52)内部に排出される際、蓄熱媒体は、蓄熱タンク(52)の概ね中心にて蓄熱タンク(52)の軸方向に排出される。すると、蓄熱媒体は、排出された箇所から四方八方に蓄熱タンク(52)内部に散らばるように流動し易くなる。これにより、蓄熱タンク(52)内部に所定流路(pa)が形成されることを抑制することができる。従って、蓄熱タンク(52)では、必要な量の冷熱が貯留される。また、蓄熱用熱交換器(29)では、包接水和物による蓄熱側通路(29b)の閉塞は生じにくくなり、熱交換能力の低下は抑制される。
 本開示の第2の態様は、第1の態様において、上記流入管(55)は、上記蓄熱タンク(52)内において、上記蓄熱タンク(52)の軸方向のうち下方向に上記蓄熱媒体を排出することを特徴とする蓄熱タンクユニットである。
 これにより、蓄熱媒体は、流入管(55)から蓄熱タンク(52)の底部側へと排出されると、底部及びタンク側壁に沿って四方八方に伝わりながら蓄熱タンク(52)の上部側へと流動し易くなる。従って、所定流路(pa)の形成が抑制される。
 本開示の第3の態様は、第1の態様において、上記流入管(55)は、上記蓄熱タンク(52)内において、上記蓄熱タンク(52)の軸方向のうち上方向に上記蓄熱媒体を排出することを特徴とする蓄熱タンクユニットである。
 これにより、蓄熱媒体は、流入管(55)から蓄熱タンク(52)の上部側へと排出されると、一旦蓄熱タンク(52)の上部側へと流動し、蓄熱タンク(52)に含まれる蓄熱媒体のうちの包接水和物の層(スラリーの層)に衝突する。当該蓄熱媒体は、その後底部及びタンク側壁に沿って四方八方に伝わりながら蓄熱タンク(52)の上部側へと流動し易くなる。従って、所定流路(pa)の形成が抑制される。
 本開示の第4の態様は、第2の態様または第3の態様において、上記流出管(56)の入口端(56a)は、上記蓄熱タンク(52)の側壁付近に位置し、上記流出管(56)には概ね水平方向に上記蓄熱媒体が吸入されることを特徴とする蓄熱タンクユニットである。
 ここでは、主として溶液である蓄熱媒体は、蓄熱タンク(52)内の上部において、流出管(56)に水平方向から吸入されると、蓄熱タンク(52)の外部に流出する。
 本開示の第5の態様は、第2の態様または第3の態様において、上記流出管(56)には、横断面視における上記蓄熱タンク(52)内部の概ね中心にて、上記蓄熱タンク(52)の軸方向のうち上方向から上記蓄熱媒体が吸入されることを特徴とする蓄熱タンクユニットである。
 ここでは、流出管(56)には、主として溶液である蓄熱媒体が、蓄熱タンク(52)内部の概ね中心且つ上方向から吸入される。これにより、流入管(55)から排出された蓄熱媒体は、蓄熱タンク(52)内部をより四方八方に蓄熱タンク(52)の上部側へ流動し易くなり、蓄熱タンク(52)内における蓄熱媒体の偏流は、より発生しにくくなる。更に、上方向から蓄熱媒体を吸入しないタイプの流出管(56)に比して、より高い温度の蓄熱媒体を蓄熱タンク(52)から流出させることができる。従って、上方向から蓄熱媒体を吸入しないタイプの流出管(56)が採用された蓄熱タンクユニットに比して、蓄熱用熱交換器(29)の蓄熱側通路(29b)の閉塞は生じにくく、蓄熱用熱交換器(29)の熱交換率能力も高まる。
 本開示の第6の態様は、第5の態様において、上記流出管(56)の入口端(56a)は、上記流出管(56)の管径よりも広がっていることを特徴とする蓄熱タンクユニットである。
 これにより、蓄熱媒体における包接水和物が流出管(56)の入口端(56a)の周縁部に付着して堆積したとしても、当該入口端(56a)は閉塞しづらくなる。
 本開示の第7の態様は、第1の態様から第6の態様のいずれか1つに係る蓄熱タンクユニット(50)と、上記蓄熱媒体が流れる蓄熱側通路(29b)と上記熱媒体が流れる熱媒体側通路(29a)とを有し、上記蓄熱側通路(29b)が上記蓄熱タンクユニット(50)に接続されている上記蓄熱用熱交換器(29)と、上記熱媒体側通路(29a)と接続され、上記蓄熱タンクユニット(50)の上記蓄熱タンク(52)内に貯留された上記蓄熱媒体を冷熱源として空調対象空間を冷房可能な利用側熱交換器(25)と、上記蓄熱媒体を冷熱源として空調対象空間を冷房する冷房運転、及び、包接水和物を含む上記蓄熱媒体によって上記蓄熱側通路(29b)が閉塞した場合に上記熱媒体側通路(29a)に上記蓄熱媒体の水和物生成温度よりも高い温度の熱媒体を流すことで該蓄熱媒体を上記蓄熱側通路(29b)から剥離させる加熱運転、を実行させることが可能な運転制御部(100)とを備えることを特徴とする空調システムである。
 所定流路(pa)は、主として、加熱運転時に蓄熱タンク(52)内に形成される。これに対し、この空調システムでは、上記第1の態様から第6の態様のいずれかに係る蓄熱タンクユニット(51)が採用されているため、加熱運転を行ったとしても、上述した所定流路(pa)は形成されにくくなる。従って、必要な量の冷熱を蓄熱タンク(52)に貯留することができ、貯留された冷熱を利用して空調対象空間の冷房を行うことができる。
 本開示の第1の態様によれば、蓄熱タンク(52)内部に所定流路(pa)が形成されることを抑制することができる。従って、蓄熱タンク(52)では、必要な量の冷熱が貯留される。また、蓄熱用熱交換器(29)では、包接水和物による蓄熱側通路(29b)の閉塞は生じにくくなり、熱交換能力の低下は抑制される。
 また、第2の態様及び第3の態様によれば、所定流路(pa)の形成が抑制される。
 また、第4の態様によれば、溶液である蓄熱媒体は、蓄熱タンク(52)内の上部において、流出管(56)に水平方向から吸入されると、蓄熱タンク(52)の外部に流出する。
 また、第5の態様によれば、上方向から蓄熱媒体を吸入しないタイプの流出管(56)が採用された蓄熱タンクユニットに比して、蓄熱用熱交換器(29)の蓄熱側通路(29b)の閉塞は生じにくく、蓄熱用熱交換器(29)の熱交換率も高まる。
 また、第6の態様によれば、包接水和物が流出管(56)の入口端(56a)の周縁部に付着して堆積したとしても、当該入口端(56a)は閉塞しづらくなる。
 また、第7の態様によれば、加熱運転を行ったとしても、所定流路(pa)は形成されにくくなる。従って、必要な量の冷熱を蓄熱タンク(52)に貯留することができ、貯留された冷熱を利用して空調対象空間の冷房を行うことができる。
図1は、空調システムの構成図である。 図2は、蓄冷運転時及び加熱運転時の冷媒の流れと蓄熱媒体の流れとを表す図である。 図3は、第1利用冷房運転時の冷媒の流れと蓄熱媒体の流れとを表す図である。 図4は、第2利用冷房運転時の冷媒の流れと蓄熱媒体の流れとを表す図である。 図5では、実施形態1に係る蓄熱タンクユニットの外観を(A)、蓄熱タンクユニットの縦断面を(B)で表している。 図6は、従来の蓄熱タンクユニットの縦断面図である。 図7では、実施形態2に係る蓄熱タンクユニットの外観を(A)、蓄熱タンクユニットの縦断面を(B)で表している。 図8では、実施形態3に係る蓄熱タンクユニットの外観を(A)、蓄熱タンクユニットの縦断面を(B)で表している。 図9は、実施形態4に係る蓄熱タンクユニットの外観を表す図である。 図10では、従来の流出管の入口端近傍を(A)、図9の流出管の入口端近傍を(B)で表している。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 ≪実施形態1≫
 図1は、空調システム(10)の構成図である。図1に示すように、空調システム(10)は、空気調和装置(20)、蓄熱装置(50)、及びコントローラ(100)(運転制御部に相当)を有する。
 蓄熱装置(50)は、本実施形態1に係る蓄熱タンクユニット(51)、補助熱交換器(28)、蓄熱用熱交換器(29)、蓄熱用膨張弁(30)、循環ポンプ(58)、及びその他の各種弁(32,33,34)を有する。蓄熱装置(50)が有する機器によって蓄熱回路(61)が構成されている。
 空気調和装置(20)は、室外ユニット(20a)と室内ユニット(20b)とを有する。各ユニット(20a,20b)に含まれる機器と、蓄熱装置(50)が有する一部の機器(具体的には、補助熱交換器(28)、蓄熱用熱交換器(29)、蓄熱用膨張弁(30)及びその他の各種弁(32,33,34))によって冷媒回路(11)が構成されている。
 コントローラ(100)は、空調システム(10)の運転を制御するためのものであって、冷媒回路(11)の圧縮機(21)や蓄熱回路(61)の循環ポンプ(58)等の駆動制御を行う。
 <冷媒回路の構成>
 冷媒回路(11)には冷媒(熱媒体に相当)が充填されており、冷媒が循環することによって冷凍サイクルが行われる。図1に示すように、冷媒回路(11)は、主として、圧縮機(21)、室外熱交換器(22)、室外膨張弁(23)、室内膨張弁(24)、室内熱交換器(25)、四方切換弁(26)、補助熱交換器(28)、蓄熱用熱交換器(29)及び蓄熱用膨張弁(30)によって構成されている。圧縮機(21)、室外熱交換器(22)、室外膨張弁(23)及び四方切換弁(26)は、室外ユニット(20a)に設けられ、室内膨張弁(24)及び室内熱交換器(25)は、室内ユニット(20b)に設けられている。
 圧縮機(21)は冷媒を圧縮して吐出する。圧縮機(21)は、例えば容量可変式であって、図示しないインバータ回路によって回転数(運転周波数)が可変される。
 室外熱交換器(22)は、配管(12)を介して四方切換弁(26)と接続されている。室外熱交換器(22)は、例えばクロスフィンアンドチューブ式であって、室外ユニット(20a)に設けられた室外ファン(22a)によって室外空気が供給されると、当該室外空気と冷媒との熱交換を行う。
 室外膨張弁(23)は、配管(13)を介して室外熱交換器(22)と接続され、配管(14a,14b)を介して室内膨張弁(24)と接続されている。室外膨張弁(23)及び室内膨張弁(24)は、例えば電子膨張弁で構成されており、開度を可変することで冷媒の圧力を調整する。
 室内熱交換器(25)は、配管(15)を介して室内膨張弁(24)と接続され、配管(16)を介して四方切換弁(26)と接続されている。室内熱交換器(25)は、例えばクロスフィンアンドチューブ式であって、室内ユニット(20b)に設けられた室内ファン(25a)によって室内空気が供給されると、当該室内空気と冷媒との熱交換を行う。
 四方切換弁(26)は、4つポートを有する。具体的に、四方切換弁(26)の第1ポートは、圧縮機(21)の吐出側に接続され、四方切換弁(26)の第2ポートは、アキュムレータ(27)を介して圧縮機(21)の吸入側に接続されている。四方切換弁(26)の第3ポートは、配管(12)を介して室外熱交換器(22)に接続され、四方切換弁(26)の第4ポートは、配管(16)を介して室内熱交換器(25)に接続されている。四方切換弁(26)は、空調システム(10)の運転種類に応じて、各ポートの接続状態を第1状態(図1の実線で示す状態)または第2状態(図1の破線で示す状態)に切り換える。
 補助熱交換器(28)は、冷媒側通路(28a)と蓄熱側通路(28b)とを有する。冷媒側通路(28a)は、配管(14a)上、つまりは室外膨張弁(23)と蓄熱用膨張弁(30)との間に位置し、内部には冷媒が流れる。蓄熱側通路(28b)は、蓄熱回路(61)に直列に接続され、内部には蓄熱媒体(後述)が流れる。補助熱交換器(28)は、冷媒と蓄熱媒体との熱交換を行う。
 蓄熱用熱交換器(29)は、冷媒側通路(29a)(熱媒体側通路に相当)と蓄熱側通路(29b)とを有する。冷媒側通路(29a)は、配管(14b)上において蓄熱用膨張弁(30)と室内膨張弁(24)との間に位置し、内部には冷媒が流れる。蓄熱側通路(29b)は、蓄熱回路(61)に直列に接続され、内部には蓄熱媒体が流れる。蓄熱用熱交換器(29)は、冷媒と蓄熱媒体との熱交換を行う。
 蓄熱用膨張弁(30)は、配管(14a)を介して補助熱交換器(28)に接続されると共に、配管(14b)を介して蓄熱用熱交換器(29)と接続されている。蓄熱用膨張弁(30)は、例えば電子膨張弁で構成されており、開度を可変することで冷媒の圧力を調整する。
 また、冷媒回路(11)には、3つの開閉弁(31,32,33)及び1つの逆止弁(34)が設けられている。第1開閉弁(31)は、第1バイパス配管(17)上に位置し、第2開閉弁(32)は、第2バイパス配管(18)上に位置している。ここで、第1バイパス配管(17)は、配管(12)と、配管(14a)における室外膨張弁(23)及び補助熱交換器(28)の間とを繋いでいる。第2バイパス配管(18)は、配管(16)と、配管(14b)における蓄熱用熱交換器(29)及び室内膨張弁(24)の間とを繋いでいる。第3開閉弁(33)は、配管(14b)のうち蓄熱用熱交換器(29)と室内膨張弁(24)との間であって、且つ第2バイパス配管(18)と配管(14b)との接続部分よりも室内膨張弁(24)側に位置している。逆止弁(34)は、第3開閉弁(33)に並列に接続されている。逆止弁(34)は、第3開閉弁(33)における室内膨張弁(24)側の冷媒圧力が所定値を超えた場合に、室内膨張弁(24)側から蓄熱用熱交換器(29)側に向けて冷媒が流れるように設けられている。
 <蓄熱回路の構成>
 蓄熱回路(61)には蓄熱媒体が充填されており、蓄熱媒体を循環させて冷熱を蓄熱するサイクル等が行われる。蓄熱回路(61)は、主として、蓄熱タンクユニット(51)及び循環ポンプ(58)の他に、上述した補助熱交換器(28)及び蓄熱用熱交換器(29)によって構成されている。
 ここで、本実施形態1に係る蓄熱媒体について説明する。蓄熱媒体には、冷却によって包接水和物が生成される蓄熱材、即ち流動性を有する蓄熱材が採用される。蓄熱媒体の具体例としては、臭化テトラnブチルアンモニウム(TBAB:Tetra Butyl Ammonium Bromide)水溶液、トリメチロールエタン(TME:Trimethylolethane)水溶液、パラフィン系スラリーなどが挙げられる。例えば、臭化テトラnブチルアンモニウム水溶液は、安定的に冷却されて当該水溶液の温度が水和物生成温度よりも低くなった過冷却状態でもその水溶液の状態を維持するが、この過冷却状態にて何らかのきっかけが与えられると、過冷却の溶液が包接水和物を含んだ溶液(即ちスラリー)へと遷移する。即ち、臭化テトラnブチルアンモニウム水溶液は、過冷却状態を解消して、臭化テトラnブチルアンモニウムと水分子とからなる包接水和物(水和物結晶)が生成されて粘性の比較的高いスラリー状となる。ここで、過冷却状態とは、蓄熱媒体が水和物生成溶液以下の温度となっても包接水和物が生成されずに溶液の状態を保っている状態を言う。逆に、スラリー状となっている臭化テトラnブチルアンモニウム水溶液は、加熱により当該水溶液の温度が水和物生成温度よりも高くなると、包接水和物が融解して流動性の比較的高い液状態となる(溶液)。なお、臭化テトラnブチルアンモニウム水溶液の水和物生成温度は、0℃よりも高い温度、例えば12℃となっている。
 蓄熱タンクユニット(51)は、図1及び図5に示すように、蓄熱タンク(52)、流入管(55)及び流出管(56)を備える。図5に示すように、蓄熱タンク(52)は、軸方向が上下方向となるように配置された中空の円筒状容器であって、上端及び下端は閉塞されている。蓄熱タンク(52)の内部には蓄熱媒体が貯留される。また、蓄熱タンク(52)の側壁のうち該タンク(52)の下部には、第1開口(53)が形成され、蓄熱タンク(52)の側壁うち該タンク(52)の上部には、第2開口(54)が形成されている。
 図1及び図5に示すように、流入管(55)は、第1開口(53)を介して蓄熱タンク(52)に取り付けられており、蓄熱タンク(52)内部に蓄熱媒体を流入させる。流入管(55)の蓄熱媒体の入口端は、配管(62)を介して蓄熱用熱交換器(29)の蓄熱側通路(29b)の一端に接続されている。流入管(55)の蓄熱媒体の出口端(55a)は、蓄熱タンク(52)内部と連通している。
 図1及び図5に示すように、流出管(56)は、第2開口(54)を介して蓄熱タンク(52)に取り付けられており、蓄熱タンク(52)内部の蓄熱媒体を該タンク(52)から流出させる。流出管(56)の蓄熱媒体の入口端(56a)は、蓄熱タンク(52)内部と連通している。流出管(56)の蓄熱媒体の出口端は、配管(63)を介して補助熱交換器(28)の蓄熱側通路(28b)の一端に接続されている。
 なお、蓄熱タンクユニット(51)の更なる構成については、後述する。
 循環ポンプ(58)は、図1の蓄熱回路(61)において、補助熱交換器(28)から蓄熱用熱交換器(29)に向かう方向に蓄熱媒体を循環させる。循環ポンプ(58)は、配管(64)を介して補助熱交換器(28)の蓄熱側通路(28b)の他端に接続され、配管(65)を介して蓄熱用熱交換器(29)の蓄熱側通路(29b)の他端に接続されている。従って、流入管(55)の入口端は、蓄熱用熱交換器(29)の蓄熱媒体の流出側に接続され、流出管(56)の出口端は、蓄熱用熱交換器(29)の蓄熱媒体の流入側に接続されていると言える。循環ポンプ(58)の運転のオン及びオフや蓄熱媒体の搬送量は、コントローラ(100)によって制御される。
 以上の構成により、蓄熱回路(61)は、閉回路となっている。
 <空調システムの運転動作>
 空調システム(10)の運転種類は、冷媒回路(11)における冷媒の循環と並行して蓄熱回路(61)における蓄熱媒体の循環が行われる運転と、冷媒回路(11)における冷媒の循環のみが行われる運転とに大別される。以下では、前者の場合の運転動作について説明する。前者の場合としては、蓄冷運転、利用冷房運転(冷房運転に相当)及び加熱運転が挙げられる。
 ―蓄冷運転―
 図2に示される蓄冷運転では、室外熱交換器(22)及び補助熱交換器(28)にて凝縮及び冷却された冷媒が蓄熱用熱交換器(29)の冷媒側通路(29a)にて蒸発することで、蓄熱側通路(29b)内の蓄熱媒体が冷却されて蓄熱タンク(52)に貯留される。冷媒回路(11)は、室外熱交換器(22)が凝縮器となり蓄熱用熱交換器(29)が蒸発器となる冷凍サイクルを行う。蓄熱回路(61)は、蓄熱タンク(52)から流出した蓄熱媒体が補助熱交換器(28)及び蓄熱用熱交換器(29)を順に通過して蓄熱タンク(52)に再度流入するように蓄熱媒体を循環させる。
 具体的に、四方切換弁(26)は第1状態、第1開閉弁(31)及び第3開閉弁(33)は閉状態、第2開閉弁(32)は開状態にそれぞれ設定される。室外膨張弁(23)の開度は全開状態、室内膨張弁(24)の開度は全閉状態、蓄熱用膨張弁(30)の開度は所定の開度(蓄熱用熱交換器(29)の冷媒側通路(29a)の出口における冷媒の過熱度が所定目標値となる開度)にそれぞれ設定される。圧縮機(21)および室外ファン(22a)は作動する。
 圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮する。凝縮された冷媒は、室外膨張弁(23)を介して補助熱交換器(28)の冷媒側通路(28a)に流入するが、冷媒側通路(28a)を通過する間に蓄熱側通路(28b)を流れる蓄熱媒体によって更に冷却される。補助熱交換器(28)から流出した冷媒は、蓄熱用膨張弁(30)にて減圧された後、蓄熱用熱交換器(29)にて蓄熱媒体から吸熱して蒸発する。蒸発した冷媒は、第2バイパス配管(18)及び四方切換弁(26)を介してアキュムレータ(27)に一旦吸入され、液冷媒から分離されたガス冷媒がその後圧縮機(21)に吸入されて圧縮される。
 蓄熱回路(61)では、循環ポンプ(58)が作動する。蓄熱タンク(52)内の蓄熱媒体は、第2開口(54)及び配管(56,63)を介して補助熱交換器(28)の蓄熱側通路(28b)に流入する。この蓄熱側通路(28b)を通過する間に、蓄熱媒体は、冷媒側通路(28a)を流れる冷媒によって加熱される。加熱された蓄熱媒体は、循環ポンプ(58)及び配管(64,65)を介して蓄熱用熱交換器(29)の蓄熱側通路(29b)に流入する。この蓄熱側通路(29b)を通過する間に、蓄熱媒体は、冷媒側通路(29a)を流れる冷媒によって冷却される。冷却された蓄熱媒体は、配管(62,55)及び第1開口(53)を介して蓄熱タンク(52)内に流入する。このようにして、蓄熱タンク(52)には冷熱が蓄えられる。
 ―利用冷房運転―
 図3及び図4に示される利用冷房運転では、上記蓄冷運転にて蓄熱タンク(52)に貯留された蓄熱媒体を冷熱源として用いて、室内熱交換器(25)により室内(空調対象空間に相当)の冷房が行われる。冷媒回路(11)は、蓄熱用熱交換器(29)にて蓄熱媒体から冷熱を得た冷媒が室内熱交換器(25)にて蒸発するように冷媒を循環させる。蓄熱回路(61)は、蓄熱タンク(52)から流出した蓄熱媒体が補助熱交換器(28)及び蓄熱用熱交換器(29)を順に通過して蓄熱タンク(52)に再度流入するように蓄熱媒体を循環させる。
 利用冷房運転には、図3の第1利用冷房運転と図4の第2利用冷房運転とがある。
  ―第1利用冷房運転―
 第1利用冷房運転では、蓄熱タンク(52)に蓄えられた冷熱と冷媒回路(11)の冷凍サイクルによって得られる冷熱とを用いて室内の冷房が行われる。冷媒回路(11)は、室外熱交換器(22)が凝縮器、補助熱交換器(28)及び蓄熱用熱交換器(29)が過冷却器(即ち放熱器)、室内熱交換器(25)が蒸発器となる冷凍サイクルを行う。
 具体的には、図3に示すように、四方切換弁(26)は第1状態、第1開閉弁(31)及び第2開閉弁(32)は閉状態、第3開閉弁(33)は開状態にそれぞれ設定される。室外膨張弁(23)及び蓄熱用膨張弁(30)の開度は全開状態、室内膨張弁(24)の開度は所定の開度(室内熱交換器(25)の出口における冷媒の過熱度が所定目標値となる開度)にそれぞれ設定される。圧縮機(21)、室外ファン(22a)及び室内ファン(25a)は作動する。
 圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮する。凝縮された冷媒は、全開である室外膨張弁(23)を介して補助熱交換器(28)の冷媒側通路(28a)に流入し、冷媒側通路(28a)を通過する間に蓄熱側通路(28b)を流れる蓄熱媒体によって更に冷却される。補助熱交換器(28)から流出した冷媒は、全開である蓄熱用膨張弁(30)を介して蓄熱用熱交換器(29)の冷媒側通路(29a)に流入し、蓄熱側通路(29b)を流れる蓄熱媒体によって更に冷却される。この冷媒は、室内膨張弁(24)にて減圧された後、室内熱交換器(25)にて室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。蒸発した冷媒は、配管(16)及び四方切換弁(26)を介してアキュムレータ(27)に一旦吸入され、液冷媒から分離されたガス冷媒がその後圧縮機(21)に吸入されて圧縮される。
 蓄熱回路(61)では、循環ポンプ(58)が作動する。蓄熱タンク(52)内の蓄熱媒体は、第2開口(54)及び配管(56,63)を介して補助熱交換器(28)の蓄熱側通路(28b)に流入する。この蓄熱側通路(28b)を通過する間に、蓄熱媒体は、冷媒側通路(28a)を流れる冷媒から吸熱する。吸熱した蓄熱媒体は、循環ポンプ(58)及び配管(64,65)を介して蓄熱用熱交換器(29)の蓄熱側通路(29b)に流入する。この蓄熱側通路(29b)を通過する間に、蓄熱媒体は、冷媒側通路(29a)を流れる冷媒から更に吸熱する。更に吸熱した蓄熱媒体は、配管(62,55)及び第1開口(53)を介して蓄熱タンク(52)内に流入する。このようにして、蓄熱媒体から冷媒へ冷熱が付与される。
  ―第2利用冷房運転―
 第2利用冷房運転では、蓄熱タンク(52)に蓄えられた冷熱のみを用いて室内の冷房が行われる。冷媒回路(11)は、蓄熱用熱交換器(29)を通過した冷媒が室内熱交換器(25)において蒸発するように冷媒を循環させる。
 具体的には、図4に示すように、四方切換弁(26)は第1状態、第2開閉弁(32)は閉状態、第1開閉弁(31)及び第3開閉弁(33)は開状態にそれぞれ設定される。室外膨張弁(23)の開度は全閉状態、蓄熱用膨張弁(30)の開度は全開状態、室内膨張弁(24)の開度は所定の開度(室内熱交換器(25)の出口における冷媒の過熱度が所定目標値となる開度)にそれぞれ設定される。圧縮機(21)及び室内ファン(25a)は作動する。
 圧縮機(21)から吐出された冷媒は、配管(12)、第1バイパス配管(17)及び配管(14a)を介して補助熱交換器(28)の冷媒側通路(28a)に流入し、蓄熱側通路(28b)を流れる蓄熱媒体に放熱して凝縮する。凝縮された冷媒は、全開状態である蓄熱用膨張弁(30)を通過後、蓄熱用熱交換器(29)の冷媒側通路(29a)に流入し、冷媒側通路(29a)を通過する間に蓄熱側通路(29b)を流れる蓄熱媒体によって更に冷却される。当該冷媒は、その後第3開閉弁(33)を介して室内膨張弁(24)に流入し、減圧される。減圧された冷媒は、室内熱交換器(25)を通過する間に室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。蒸発した冷媒は、配管(16)及び四方切換弁(26)を介してアキュムレータ(27)に一旦吸入され、液冷媒から分離されたガス冷媒がその後圧縮機(21)に吸入されて圧縮される。
 蓄熱回路(61)では、循環ポンプ(58)が作動する。蓄熱タンク(52)内の蓄熱媒体は、第2開口(54)、配管(56,63)、補助熱交換器(28)の蓄熱側通路(28b)、配管(64)、循環ポンプ(58)、配管(65)を、この順に流れた後、蓄熱用熱交換器(29)の蓄熱側通路(29b)に流入する。各蓄熱側通路(28b,29b)を通過する間に、蓄熱媒体は、各冷媒側通路(28a,29a)を通過する冷媒から吸熱する。吸熱した蓄熱媒体は、配管(62,55)及び第1開口(53)を介して蓄熱タンク(52)内に流入する。このようにして、蓄熱媒体から冷媒へ冷熱が付与される。
 -加熱運転-
 既に述べたように、本実施形態1では、冷却により包接水和物が生成される蓄熱媒体が用いられている。すると、蓄熱用熱交換器(29)にて蓄熱媒体を冷却させる蓄冷運転では、蓄熱用熱交換器(29)の蓄熱側通路(29b)には冷却により包接水和物へと遷移した蓄熱媒体が蓄積し、当該蓄熱媒体によって蓄熱側通路(29b)が閉塞される虞がある。蓄熱側通路(29b)が閉塞されると、蓄熱用熱交換器(29)での冷媒と蓄熱媒体との熱交換が妨げられ、蓄熱用熱交換器(29)の熱交換効率が悪化する虞がある。
 そのため、空調システム(10)は、例えば、蓄熱媒体の流量が所定量よりも低下した場合や蓄熱用熱交換器(29)における蓄熱側通路(29b)の入口と出口との温度差が所定温度よりも低下した場合に、蓄熱用熱交換器(29)の蓄熱側通路(29b)を加熱することで包接水和物を強制的に当該通路(29b)から剥離させる加熱運転を行う。
 具体的に、加熱運転では、蓄熱用膨張弁(30)の開度が蓄冷運転時よりも大きい(例えば全開状態)ことを除き、図2に係る蓄冷運転と同じ動作が行われる。即ち、圧縮機(21)から吐出された冷媒は、室外熱交換器(22)にて凝縮された後、室外膨張弁(23)、補助熱交換器(28)の冷媒側通路(28a)、蓄熱用膨張弁(30)、蓄熱用熱交換器(29)の冷媒側通路(29a)及び第2バイパス配管(18)をこの順に流れる。特に、蓄熱用膨張弁(30)の開度が蓄冷運転時よりも大きいため、補助熱交換器(28)を流出した冷媒は、比較的減圧量が小さい状態で蓄熱用熱交換器(29)に流入される。蓄熱用熱交換器(29)を流れる冷媒の温度は、蓄冷運転にて蓄熱用熱交換器(29)を流れる冷媒よりも温度が高く、具体的には蓄熱媒体の水和物生成温度よりも高くなっている。蓄熱用熱交換器(29)を流れた冷媒は、その後四方切換弁(26)を介してアキュムレータ(27)に吸入される。
 蓄熱回路(61)では、蓄熱タンク(52)から流出し補助熱交換器(28)の蓄熱側通路(28b)に流入した蓄熱媒体は、冷媒側通路(28a)を流れる冷媒から吸熱した後、蓄熱用熱交換器(29)の蓄熱側通路(29b)に流入する。冷媒側通路(29a)を流れる冷媒の温度は蓄熱媒体の水和物生成温度よりも高いため、蓄熱側通路(29b)を閉塞する包接水和物は、蓄熱側通路(29b)を構成する配管の内壁に近い部分から徐々に融解していき、やがて当該配管の内壁から剥離される。剥離された包接水和物は、循環ポンプ(58)による循環動作により、蓄熱タンク(52)の内部に再度流入する。
 <本実施形態1に係る蓄熱ユニットの更なる構成>
 しかしながら、流入管(55)及び流出管(56)の蓄熱タンク(52)への接続構造によっては、上述した加熱運転の際に蓄熱用熱交換器(29)の熱交換能力が低下する等の問題が生じる虞がある。
 例えば、図6に示すように、流入管(55)の出口端(55a)及び流出管(56)の入口端(56a)が、蓄熱タンク(52)の側壁付近にて水平方向に開口するよう位置しており、且つ流出管(56)の入口端(56a)が流入管(55)の出口端(55a)よりも上方に位置する従来例を考える。加熱運転時には、蓄熱用熱交換器(29)の蓄熱側通路(29b)から剥離した包接水和物を含む蓄熱媒体が、水和物生成温度よりも高い状態で流入管(55)の出口端(55a)を介して蓄熱タンク(52)内に流入する。この蓄熱媒体は、既に蓄熱タンク(52)内に貯留されている蓄熱媒体のうちの包接水和物の層(図6のドット部分)を部分的に融解させながら流出管(56)の入口端(56a)に向かって流動する。ところが、従来例では、流入してきた蓄熱媒体は、流動し易い蓄熱タンク(52)の側壁に沿って流出管(56)の入口端(56a)へと流動するため、所定流路(pa)が形成されてしまう。図6では、所定流路(pa)が、蓄熱タンク(52)の側壁に沿って延びており且つ流入管(55)の出口端(55a)から流出管(56)の入口端(56a)までを最短距離にて結ぶようにして形成された流路である場合を一例として示している。
 加熱運転時に上記所定流路(pa)が形成されると、加熱運転後に蓄冷運転が行われた際、蓄熱用熱交換器(29)で冷却され流入管(55)の出口端(55a)から蓄熱タンク(52)内に流入した蓄熱媒体は、所定流路(pa)を通過して流出管(56)の入口端(56a)から蓄熱タンク(52)外部へと流出してしまう。すると、蓄冷運転時、蓄熱タンク(52)内では、新たに流入してきた蓄熱媒体が予め貯留されている蓄熱媒体のうちの過冷却の溶液と接触することで過冷却の溶液が包接水和物へと遷移する現象は生じ難く(即ち、過冷却解消が生じにくい)、よって蓄熱タンク(52)内では蓄熱媒体の温度変化が生じない状態が維持される。故に、蓄熱タンク(52)には必要な量の冷熱が蓄熱されない虞がある。また、この状態では、蓄熱タンク(52)から流出した蓄熱媒体は、蓄熱回路(61)を循環して蓄熱用熱交換器(29)に再度流入される。再度流入してきた蓄熱媒体は、過冷却の溶液と包接水和物とを含むため、蓄熱用熱交換器(29)の蓄熱側通路(29b)は、再度流入してきた蓄熱媒体の包接水和物によって閉塞し易くなり、蓄熱用熱交換器(29)の熱交換能力が低下する虞がある。
 そこで、本実施形態1では、蓄熱タンクユニット(51)の構成として、図5(A)(B)に示す構成が採用されている。図5(A)(B)に示すように、流入管(55)の出口端(55a)は、流出管(56)の入口端(56a)よりも下方に位置している。流入管(55)の出口端(55a)は、蓄熱タンク(52)内部に位置しており、流出管(56)の入口端(56a)は、蓄熱タンク(52)の側壁付近にて水平方向に開口するようにして位置している。
 特に、流入管(55)は、横断面視における蓄熱タンク(52)内部の中心にて、蓄熱タンク(52)の軸方向のうち下方向に蓄熱媒体を排出するようになっている。即ち、流入管(55)は、第1開口(53)から水平方向に蓄熱タンク(52)内部に差し込まれ、且つ、流入管(55)の出口端(55a)が円筒状の蓄熱タンク(52)の中心軸(O)上にて蓄熱タンク(52)の底部に向かって開口するように、途中で曲げられている。
 これにより、加熱運転時、蓄熱用熱交換器(29)の蓄熱側通路(29b)から流出してきた蓄熱媒体は、水和物生成温度よりも高い温度の状態にて、流入管(55)を介して蓄熱タンク(52)内に流入される。この際、当該蓄熱媒体は、蓄熱タンク(52)の中心軸(O)上にて下向きに流入管(55)から排出されるため、蓄熱タンク(52)の底部に衝突する。一方で、加熱運転時、蓄熱タンク(52)内部には、加熱運転の前に行われていた蓄冷運転によって、過冷却の溶液と包接水和物とを含む蓄熱媒体が貯留されている。すると、蓄熱タンク(52)の底部に衝突した流入直後の蓄熱媒体は、図5(B)の矢印に示すように、蓄熱タンク(52)の底部及び側壁に沿って四方八方に伝わりながら蓄熱タンク(52)の上部側に流動する。また、流入直後の蓄熱媒体は、水和物生成温度よりも高い温度を有するため、蓄熱タンク(52)内を流動しつつも、既に蓄熱タンク(52)内に貯留されている蓄熱媒体のうち包接水和物に接触しながら当該包接水和物を融解させていく。溶けて少量の包接水和物を含んだ溶液の蓄熱媒体(即ち、包接水和物の密度が比較的低くなった蓄熱媒体)は、包接水和物の層の上層に溜まり、流出管(56)の入口端(56a)から蓄熱タンク(52)の外部(具体的には、補助熱交換器(28)の蓄熱側通路(28b))へと排出されていく。
 即ち、本実施形態1では、加熱運転時、蓄熱タンク(52)内に流入してきた蓄熱媒体は、図5(B)の矢印に示すように流動することで、図6に示すような所定流路(pa)の形成を妨げる。それ故、加熱運転後の蓄冷運転の際、蓄熱用熱交換器(29)で冷却された蓄熱媒体は、蓄熱タンク(52)内部に流入すると、当該タンク(52)内の過冷却の溶液を包接水和物へと遷移させていく。これにより、蓄冷運転時、安定した包接水和物の生成動作が行われ、必要な量の冷熱が蓄冷されることとなる。また、蓄熱用熱交換器(29)で冷却された蓄熱媒体の中に包接水和物が含まれていても、その包接水和物が再度蓄熱用熱交換器(29)に流入される虞はなく、蓄熱用熱交換器(29)の蓄熱側通路(29b)の閉塞は防がれる。従って、蓄熱用熱交換器(29)の熱交換能力は低下することなく維持された状態となる。
 なお、加熱運転時に蓄熱タンク(52)内に流入される蓄熱媒体の流速は、十分に低いことが好ましい。一例として、蓄熱タンク(52)の容積が約250リットル、蓄熱タンク(52)の高さが約2mとした場合、蓄熱媒体の流速は、流入管(55)の管径を調整することにより、約“0.3m/sec”と設定される。
 これは、加熱運転時、蓄熱タンク(52)のサイズに対して蓄熱媒体の流速が速すぎると、流入管(55)の出口端(55a)と蓄熱タンク(52)の底面との距離が設定距離から僅かにずれただけで、蓄熱タンク(52)内の蓄熱媒体が図5(B)とはならずに偏流してしまい、かえって所定流路(pa)が形成される虞が考えられるためである。従って、加熱運転時、流入管(55)の出口端(55a)と蓄熱タンク(52)内の底面との距離の誤差に関係なく、図5(B)に示すように蓄熱媒体が流動するようにするべく、蓄熱媒体の流速は、蓄熱タンク(52)の容積や高さ等から十分低い値に適宜設定されることが好ましい。
 <効果>
 本実施形態1に係る蓄熱タンクユニット(51)では、蓄熱媒体は、蓄熱タンク(52)内の概ね中心にて、蓄熱タンク(52)の軸方向、より具体的には下方向に排出される。すると、当該蓄熱媒体は、図5(B)に示すように、蓄熱タンク(52)の底部及び側壁に沿って四方八方に伝わりながら蓄熱タンク(52)の上部側に流動する。これにより、図6に示すような所定流路(pa)が蓄熱タンク(52)内部に形成されることを抑制することができる。従って、蓄熱タンク(52)では、必要な量の冷熱が貯留される。また、蓄熱用熱交換器(29)では、包接水和物による蓄熱側通路(29b)の閉塞は生じにくくなり、熱交換能力の低下は抑制される。
 また、流出管(56)の入口端(56a)は、蓄熱タンク(52)の側壁付近に位置しており、流出管(56)には概ね水平方向に蓄熱媒体が吸入されるようになっている。そのため、主として溶液である蓄熱媒体は、蓄熱タンク(52)内の上部において、流出管(56)に水平方向から吸入されると、蓄熱タンク(52)の外部に流出する。
 また、本実施形態1の空調システム(10)では、蓄熱タンクユニット(51)として図5に係る構成が採用されているため、たとえ加熱運転を行ったとしても、図6に示した所定流路(pa)は形成されにくい。従って、空調システム(10)は、必要な量の冷熱を蓄熱タンク(52)に貯留することができ、貯留された冷熱を利用して室内の冷房を行うことができる。
 ≪実施形態2≫
 本実施形態2では、蓄熱タンクユニット(51)の構成が上記実施形態1とは異なっている。なお、本実施形態2に係る空調システム(10)のその他の構成は、上記実施形態1と同様である。
 本実施形態2では、図7(A)(B)に示すように、流入管(55)の出口端(55a)は、流出管(56)の入口端(56a)よりも下方に位置している。流入管(55)の出口端(55a)は、蓄熱タンク(52)内部に位置しており、流出管(56)の入口端(56a)は、蓄熱タンク(52)の側壁付近にて水平方向に開口するようにして位置している。
 特に、流入管(55)は、横断面視における蓄熱タンク(52)内部の中心にて、蓄熱タンク(52)の軸方向のうち上方向に蓄熱媒体を排出するようになっている。即ち、流入管(55)は、第1開口(53)から水平方向に蓄熱タンク(52)内部に差し込まれ、且つ、出口端(55a)が上記実施形態1とは逆に蓄熱タンク(52)の中心軸(O)上にて蓄熱タンク(52)の上面部に向かって開口するように、途中で曲げられている。
 これにより、加熱運転時、蓄熱用熱交換器(29)の蓄熱側通路(29b)から流入管(55)へと、水和物生成温度よりも高い温度の蓄熱媒体が流入される。当該蓄熱媒体は、蓄熱タンク(52)の中心軸(O)上にて上向きに流入管(55)から排出されるため、流入管(55)の出口端(55a)の上方に位置する蓄熱タンク(52)内の包接水和物の層に衝突する。すると、衝突した蓄熱媒体は、図7(B)の矢印に示すように、流入管(55)に沿いながら蓄熱タンク(52)の底部に向けて流動し、その後蓄熱タンク(52)の底部及び側壁に沿って四方八方に伝わりながら蓄熱タンク(52)の上部側に流動する。また、流入直後の蓄熱媒体は、水和物生成温度よりも高い温度を有するため、蓄熱タンク(52)内を流動しつつも、蓄熱タンク(52)内の包接水和物に接触しながら当該包接水和物を融解させていく。溶けて少量の包接水和物を含んだ溶液の蓄熱媒体(即ち、包接水和物の密度が比較的低くなった蓄熱媒体)は、包接水和物の層の上層に溜まり、流出管(56)の入口端(56a)から蓄熱タンク(52)の外部(具体的には、補助熱交換器(28)の蓄熱側通路(28b))へと排出されていく。
 このような蓄熱タンクユニット(51)は、上記実施形態1と同様の効果を奏することができる。
 なお、本実施形態2の場合も、上記実施形態1と同様、蓄熱媒体の流速は十分に低いことが好ましい。加熱運転時、蓄熱媒体の流速が速すぎると、蓄熱タンク(52)内に流入された蓄熱媒体は、流入管(55)の出口端(55a)の直上に位置する包接水和物を溶かすだけにとどまらず、包接水和物の層を蓄熱タンク(52)の上面側に向けて貫通させてしまい、かえって所定流路(pa)が形成する虞があるためである。
 ≪実施形態3≫
 本実施形態3では、蓄熱タンクユニット(51)の構成が上記実施形態1,2とは異なっている。なお、本実施形態3に係る空調システム(10)のその他の構成は、上記実施形態1,2と同様である。
 本実施形態3では、図8(A)(B)に示すように、流入管(55)の出口端(55a)は、流出管(56)の入口端(56a)よりも下方に位置している。
 特に、流入管(55)の出口端(55a)及び流出管(56)の入口端(56a)は、共に蓄熱タンク(52)内部に位置している。流入管(55)は、横断面視における蓄熱タンク(52)内部の中心にて、蓄熱タンク(52)の軸方向のうち下方向に蓄熱媒体を排出するようになっている。即ち、流入管(55)は、第1開口(53)から水平方向に蓄熱タンク(52)内部に差し込まれ、且つ、出口端(55a)が蓄熱タンク(52)の中心軸(O)上にて蓄熱タンク(52)の底部に向かって開口するように、途中で曲げられている。
 更に、流出管(56)は、横断面視における蓄熱タンク(52)内部の中心にて、蓄熱タンク(52)の軸方向のうち上方向から蓄熱媒体を吸入するようになっている。即ち、流出管(56)は、第2開口(54)から水平方向に蓄熱タンク(52)内部に差し込まれ、且つ、入口端(56a)が蓄熱タンク(52)の中心軸(O)上にて蓄熱タンク(52)の上面部に向かって開口するように、途中で曲げられている。
 これにより、加熱運転時、蓄熱用熱交換器(29)の蓄熱側通路(29b)から流入管(55)へと、水和物生成温度よりも高い温度の蓄熱媒体が流入される。当該蓄熱媒体は、蓄熱タンク(52)の中心軸(O)上にて下向きに流入管(55)から排出され、蓄熱タンク(52)の底部に衝突する。蓄熱タンク(52)の底部に衝突した蓄熱媒体は、図8(B)の矢印に示すように、蓄熱タンク(52)の底部及び側壁に沿って四方八方に伝わりながら蓄熱タンク(52)の上部側に流動する。また、流入直後の蓄熱媒体は、水和物生成温度よりも高い温度を有するため、蓄熱タンク(52)内を流動しつつも、既に蓄熱タンク(52)内に貯留されている蓄熱媒体のうち包接水和物に接触しながら当該包接水和物を融解させていく。溶けて少量の包接水和物を含んだ溶液の蓄熱媒体(即ち、包接水和物の密度が比較的低くなった蓄熱媒体)は、包接水和物の層の上層に溜まる。上層に溜まった蓄熱媒体は、図8(B)に示すように、流出管(56)の入口端(56a)から蓄熱タンク(52)の外部(具体的には、補助熱交換器(28)の蓄熱側通路(28b))へと排出されていく。
 このような蓄熱タンクユニット(51)は、上記実施形態1,2と同様の効果を奏することができる。
 特に、本実施形態3では、流出管(56)の入口端(56a)が蓄熱タンク(52)の中心にて上向きとなるように設けられているため、加熱運転時、蓄熱タンク(52)内では蓄熱媒体の偏流が上記実施形態1,2よりも発生しにくいと言える。従って、本実施形態3では、上記実施形態1,2よりも所定流路(pa)が形成されにくい。また、流出管(56)の入口端(56a)が上向きであるため、流出管(56)は、上層に溜まった蓄熱媒体の中でもより高い温度の蓄熱媒体を蓄熱タンク(52)から流出させることができる。従って、例えば加熱運転時、蓄熱用熱交換器(29)の熱交換率能力も上記実施形態1,2に比して高まり、蓄熱用熱交換器(29)の蓄熱側通路(29b)の閉塞も、上記実施形態1,2に比してより生じにくくなる。
 なお、本実施形態3の場合も、上記実施形態1,2と同様、蓄熱媒体の流速は十分に低いことが好ましい。
 ≪実施形態4≫
 図9に示すように、本実施形態4では、流入管(55)の出口端(55a)及び流出管(56)の入口端(56a)の向きが上記実施形態3と同様ではあるが、本実施形態4に係る流出管(56)の入口端(56a)は、流出管(56)の管径に比して広がっている。
 上述したように、包接水和物の層の上層に溜まっている蓄熱媒体は、概ね溶液の熱媒体ではあるが、少量ではあるものの包接水和物を含んでいる。包接水和物の結晶粒径が大きい程、図10(A)に示すように、包接水和物(sl)は流出管(56)の入口端(56a)の周縁部に付着し易くなる。包接水和物(sl)が入口端(56a)の周縁部に付着すると、当該周縁部には、包接水和物(sl)が徐々に堆積していき、入口端(56a)の大きさ次第では、当該入口端(56a)が閉塞する虞がある。
 これに対し、本実施形態4では、流出管(56)の入口端(56a)が流出管(56)の管径よりも広がっている。それ故、図10(B)に示すように、包接水和物(sl)が入口端(56a)の周縁部に付着して堆積したとしても、当該入口端(56a)は閉塞しづらくなる。
 ここで、流出管(56)の入口端(56a)を管径からどの程度広げるかについては、例えば包接水和物(sl)の標準的な結晶粒径等によって適宜決定される。具体的な例示としては、流出管(56)の管径が約16mmである場合、入口端(56a)の直径は、管径の約2倍(約32mm)とすることができる。
 なお、実施形態4では、流入管(55)の出口端(55a)及び流出管(56)の入口端(56a)の向きは、上記実施形態3と同様であるため、更に上記実施形態3と同様の効果を奏することができる。
 ≪その他の実施形態≫
 上記実施形態2に示すように、流入管(55)の出口端(55a)が上向きであることに加え、更に実施形態3に示すように、流出管(56)の入口端(56a)が蓄熱タンク(52)の中心において当該蓄熱タンク(52)の上面部に向くようにして曲げられていても良い。更に、上記実施形態4と同様、流出管(56)の入口端(56a)が、流出管(56)の管径に比して広がっていてもよい。
 上記実施形態1~4において、流入管(55)のみ/または流入管(55)及び流出管(56)の両方は、蓄熱タンク(52)内部にて必ずしも軸方向に曲げられていなくともよい。即ち、流入管(55)の出口端(55a)のみ/または流入管(55)の出口端(55a)及び流出管(56)の入口端(56a)が、蓄熱タンク(52)の中心にて図5,7~9に示した方向に向くように、第1開口(53)及び第2開口(54)の蓄熱タンク(52)への形成位置や流入管(55)及び流出管(56)の曲げ方向等が適宜調整されていてもよい。
 上記実施形態1~4において、流入管(55)及び流出管(56)それぞれの管径は、同一であってもよいし、異なっていても良い。
 蓄熱タンク(52)の形状は、円筒状以外の形状であってもよく、例えば角形筒状であることができる。
 以上説明したように、本発明は、冷却により包接水和物を生成する蓄熱媒体を用いて冷熱を蓄熱する蓄熱タンクユニット、及び、当該ユニットに蓄熱された冷熱を利用して空気調和を行う空調システム、として有用である。
10 空調システム
29 蓄熱用熱交換器
29a 冷媒側通路(熱媒体側通路)
29b 蓄熱側通路
51 蓄熱タンクユニット
52 蓄熱タンク
55 流入管
55a 出口端
56 流出管
56a 入口端
100 コントローラ(運転制御部)

Claims (7)

  1.  冷却によって包接水和物が生成される蓄熱媒体と熱媒体との熱交換を行う蓄熱用熱交換器(29)に接続された蓄熱タンクユニットであって、
     上記蓄熱用熱交換器(29)にて熱交換された後の上記蓄熱媒体を内部に貯留可能であって、軸方向が上下方向となっている筒状の蓄熱タンク(52)と、
     入口端が上記蓄熱用熱交換器(29)の流出側に接続され出口端(55a)が上記蓄熱タンク(52)内部に連通されており、上記蓄熱媒体を該蓄熱タンク(52)内部に流入させる流入管(55)と、
     入口端(56a)が上記蓄熱タンク(52)内部に連通され出口端が上記蓄熱用熱交換器(29)の流入側に接続されており、上記蓄熱タンク(52)内部の上記蓄熱媒体を該蓄熱タンク(52)から流出させる流出管(56)と
    を備え、
     上記流入管(55)の出口端(55a)は、上記流出管(56)の入口端(56a)よりも下方に位置し、
     上記流入管(55)は、横断面視における上記蓄熱タンク(52)内部の概ね中心にて、該蓄熱タンク(52)の軸方向に上記蓄熱媒体を排出する
    ことを特徴とする蓄熱タンクユニット。
  2.  請求項1において、
     上記流入管(55)は、上記蓄熱タンク(52)内において、上記蓄熱タンク(52)の軸方向のうち下方向に上記蓄熱媒体を排出する
    ことを特徴とする蓄熱タンクユニット。
  3.  請求項1において、
     上記流入管(55)は、上記蓄熱タンク(52)内において、上記蓄熱タンク(52)の軸方向のうち上方向に上記蓄熱媒体を排出する
    ことを特徴とする蓄熱タンクユニット。
  4.  請求項2または請求項3において、
     上記流出管(56)の入口端(56a)は、上記蓄熱タンク(52)の側壁付近に位置し、上記流出管(56)には概ね水平方向に上記蓄熱媒体が吸入される
    ことを特徴とする蓄熱タンクユニット。
  5.  請求項2または請求項3において、
     上記流出管(56)には、横断面視における上記蓄熱タンク(52)内部の概ね中心にて、上記蓄熱タンク(52)の軸方向のうち上方向から上記蓄熱媒体が吸入される
    ことを特徴とする蓄熱タンクユニット。
  6.  請求項5において、
     上記流出管(56)の入口端(56a)は、上記流出管(56)の管径よりも広がっている
    ことを特徴とする蓄熱タンクユニット。
  7.  請求項1から請求項6のいずれか1項に係る蓄熱タンクユニット(50)と、
     上記蓄熱媒体が流れる蓄熱側通路(29b)と上記熱媒体が流れる熱媒体側通路(29a)とを有し、上記蓄熱側通路(29b)が上記蓄熱タンクユニット(50)に接続されている上記蓄熱用熱交換器(29)と、
     上記熱媒体側通路(29a)と接続され、上記蓄熱タンクユニット(50)の上記蓄熱タンク(52)内に貯留された上記蓄熱媒体を冷熱源として空調対象空間を冷房可能な利用側熱交換器(25)と、
     上記蓄熱媒体を冷熱源として空調対象空間を冷房する冷房運転、及び、スラリー状の上記蓄熱媒体によって上記蓄熱側通路(29b)が閉塞した場合に上記熱媒体側通路(29a)に上記蓄熱媒体の水和物生成温度よりも高い温度の熱媒体を流すことで該蓄熱媒体を上記蓄熱側通路(29b)から剥離させる加熱運転、を実行させることが可能な運転制御部(100)と
    を備えることを特徴とする空調システム。
PCT/JP2015/001408 2014-04-25 2015-03-13 蓄熱タンクユニットならびに空調システム WO2015162847A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15782529.0A EP3135608A4 (en) 2014-04-25 2015-03-13 Heat storage tank unit and air conditioning system
CN201580021393.7A CN106255653A (zh) 2014-04-25 2015-03-13 蓄热箱机组和空调系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-091850 2014-04-25
JP2014091850A JP5867539B2 (ja) 2014-04-25 2014-04-25 蓄熱タンクユニットならびに空調システム

Publications (1)

Publication Number Publication Date
WO2015162847A1 true WO2015162847A1 (ja) 2015-10-29

Family

ID=54332030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001408 WO2015162847A1 (ja) 2014-04-25 2015-03-13 蓄熱タンクユニットならびに空調システム

Country Status (4)

Country Link
EP (1) EP3135608A4 (ja)
JP (1) JP5867539B2 (ja)
CN (1) CN106255653A (ja)
WO (1) WO2015162847A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109601469A (zh) * 2019-01-29 2019-04-12 山东中瑞新能源科技有限公司 一种海水养殖用沙滩埋管制冷供冷系统及运行方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224027A1 (ja) * 2022-05-16 2023-11-23 三菱電機株式会社 貯湯式給湯機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117665A (ja) * 1992-10-05 1994-04-28 Hitachi Plant Eng & Constr Co Ltd 蓄熱槽構造
JPH07248168A (ja) * 1994-03-11 1995-09-26 Daikin Ind Ltd 製氷装置
JP2009030914A (ja) * 2007-07-30 2009-02-12 Jfe Engineering Kk 冷凍サイクルの運転方法及び包接水和物スラリ製造装置の運転方法
JP2009056344A (ja) * 2007-03-29 2009-03-19 Jfe Engineering Kk 包接水和物スラリーの製造方法及び製造装置、過冷却解除方法及び過冷却解除装置、貯留槽を備える装置並びに、包接水和物の存在比率を増加させる方法及びそのための装置
JP2010229841A (ja) * 2009-03-26 2010-10-14 Toyoda Gosei Co Ltd 保温構造体
JP2013083421A (ja) * 2011-09-30 2013-05-09 Daikin Industries Ltd 給湯空調システム
JP2014037960A (ja) * 2012-08-13 2014-02-27 Shanghai Jiao Tong Univ 水和物スラリー蓄熱装置、水和物スラリーの蓄熱方法、及び水和物蓄熱式空気調和システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117665A (ja) * 1992-10-05 1994-04-28 Hitachi Plant Eng & Constr Co Ltd 蓄熱槽構造
JPH07248168A (ja) * 1994-03-11 1995-09-26 Daikin Ind Ltd 製氷装置
JP2009056344A (ja) * 2007-03-29 2009-03-19 Jfe Engineering Kk 包接水和物スラリーの製造方法及び製造装置、過冷却解除方法及び過冷却解除装置、貯留槽を備える装置並びに、包接水和物の存在比率を増加させる方法及びそのための装置
JP2009030914A (ja) * 2007-07-30 2009-02-12 Jfe Engineering Kk 冷凍サイクルの運転方法及び包接水和物スラリ製造装置の運転方法
JP2010229841A (ja) * 2009-03-26 2010-10-14 Toyoda Gosei Co Ltd 保温構造体
JP2013083421A (ja) * 2011-09-30 2013-05-09 Daikin Industries Ltd 給湯空調システム
JP2014037960A (ja) * 2012-08-13 2014-02-27 Shanghai Jiao Tong Univ 水和物スラリー蓄熱装置、水和物スラリーの蓄熱方法、及び水和物蓄熱式空気調和システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3135608A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109601469A (zh) * 2019-01-29 2019-04-12 山东中瑞新能源科技有限公司 一种海水养殖用沙滩埋管制冷供冷系统及运行方法
CN109601469B (zh) * 2019-01-29 2024-02-20 山东中瑞新能源科技有限公司 一种海水养殖用沙滩埋管制冷供冷系统及运行方法

Also Published As

Publication number Publication date
CN106255653A (zh) 2016-12-21
JP2015209226A (ja) 2015-11-24
EP3135608A4 (en) 2017-12-06
JP5867539B2 (ja) 2016-02-24
EP3135608A1 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP5516695B2 (ja) 空気調和装置
JP6359102B2 (ja) 室外機および冷凍サイクル装置
JP6678332B2 (ja) 空気調和機の室外ユニットおよび制御方法
JP2010236706A (ja) 空気調和装置
WO2015140885A1 (ja) 冷凍サイクル装置
JP6020550B2 (ja) 蓄熱式空気調和機
JP5867539B2 (ja) 蓄熱タンクユニットならびに空調システム
US20150089971A1 (en) Air conditioner
JP2014129902A (ja) 冷凍装置
JP2015210025A (ja) 蓄冷システムならびに空調システム
JP6020548B2 (ja) 蓄熱式空気調和機
JP2016133257A (ja) 空気調和装置
JP2016125725A (ja) 蓄熱式空気調和機
JP2014109416A (ja) 空気調和装置
JP2016125714A (ja) 蓄熱式空気調和機
WO2016103726A1 (ja) 蓄熱式空気調和機
JP2015210029A (ja) 蓄熱システム及び空調システム
JP6492580B2 (ja) 給湯空調システム
JP5783192B2 (ja) 空気調和装置
JP2016125716A (ja) 蓄熱式空気調和機
JP2015210028A (ja) 蓄熱システム及び空調システム
JP2016125727A (ja) 蓄熱式空気調和機
JP2016125717A (ja) 蓄熱式空気調和機
JP2016125713A (ja) 蓄熱式空気調和機
JP6052275B2 (ja) 蓄熱式空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782529

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015782529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015782529

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE