WO2015161544A1 - 基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法 - Google Patents

基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法 Download PDF

Info

Publication number
WO2015161544A1
WO2015161544A1 PCT/CN2014/079209 CN2014079209W WO2015161544A1 WO 2015161544 A1 WO2015161544 A1 WO 2015161544A1 CN 2014079209 W CN2014079209 W CN 2014079209W WO 2015161544 A1 WO2015161544 A1 WO 2015161544A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
iron
doped graphene
oxide
tungsten
Prior art date
Application number
PCT/CN2014/079209
Other languages
English (en)
French (fr)
Inventor
李长明
赵志亮
张连营
杜洪方
Original Assignee
西南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南大学 filed Critical 西南大学
Publication of WO2015161544A1 publication Critical patent/WO2015161544A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a preparation method of an oxygen reduction electrocatalyst, in particular to a preparation method of an oxygen reduction electrocatalyst based on an iron-tungsten double metal oxide reinforced nitrogen-doped graphene.
  • the electroreduction of oxygen is one of the most important electrocatalytic reactions and is widely used in fuel cells and metal-air batteries.
  • Platinum and platinum-based catalysts are currently common catalysts for fuel cells, but they are expensive, have limited resources, and have a severe performance loss during long-term operation, hindering the development of fuel cells and other related fields.
  • the object of the present invention is to provide a preparation method of an oxygen reduction electrocatalyst based on an iron-tungsten double metal oxide reinforced nitrogen-doped graphene, which has excellent oxygen reduction catalytic performance and long-term stability and obvious Resistance to methanol catalysis.
  • the present invention provides the following technical solutions:
  • the preparation method of the oxygen-reducing electrocatalyst based on the iron-tungsten double-metal oxide reinforced nitrogen-doped graphene of the invention comprises the following steps:
  • the graphene oxide prepared in the step 2) is diluted with water and mixed with a nitrogen source, and then hydrothermally reacted to obtain nitrogen-doped graphene;
  • reaction product of the step 4) is washed and dried, and then heat-treated under the condition of a shielding gas, and the obtained product is an oxygen-reducing electrocatalyst based on an iron-tungsten double-metal oxide-enhanced nitrogen-doped graphene.
  • the graphite powder is oxidized using concentrated sulfuric acid, sodium nitrate, and potassium permanganate to prepare a graphite oxide.
  • the graphite oxide is ultrasonicated at 10 to 20 ° C for 4 to 12 hours to prepare a graphene oxide.
  • the graphene oxide is diluted with water to a concentration of 0.5 to 5.0. Mg/ml, dissolved in urea, and then hydrothermally reacted at 120 ⁇ 220 °C for 6 ⁇ 24h to obtain nitrogen-doped graphene.
  • the nitrogen-doped graphene is dispersed in water, and then an iron source and a tungsten source are added, and the hydrolysis reaction is heated at 50 to 95 ° C for 6 to 24 hours under stirring.
  • the reaction product of the step 4) is washed and dried, and then heat treated at 500 to 1200 ° C for 2 to 6 hours under argon gas protection conditions, and the obtained product is based on iron-tungsten double metal oxide reinforced nitrogen blending.
  • An oxygen reduction electrocatalyst for heterographene is based on iron-tungsten double metal oxide reinforced nitrogen blending.
  • the graphene oxide is reduced while nitrogen is doped, and then the iron source and the tungsten source are added to the nitrogen-doped graphene to heat the hydrolysis reaction, and the iron source and the tungsten source are deposited on the surface of the graphene, and then the conditions of the shielding gas are Under the heat treatment, an oxygen reduction electrocatalyst based on an iron-tungsten double metal oxide-enhanced nitrogen-doped graphene is obtained.
  • the catalyst has excellent oxygen reduction catalytic performance and long-term stability as well as obvious resistance to methanol catalysis, and is inexpensive, stable in performance, simple in preparation method, and can be used as an oxygen reduction electrocatalyst for commercial fuel cells.
  • Example 1 is a scanning electron micrograph of a catalyst prepared in Example 1;
  • Example 2 is a partial transmission electron micrograph of the catalyst prepared in Example 1;
  • Figure 3 is an energy spectrum of the catalyst prepared in Example 1;
  • Example 4 is a cyclic voltammetry graph of the catalyst prepared in Example 1 in a nitrogen and oxygen saturated 0.1 M KOH solution, respectively;
  • Figure 5 is a catalyst prepared in Example 1 and a commercial platinum catalyst (Pt/C) mounted on a rotating counter electrode at an oxygen saturation of 0.1 M Linear sweep voltammogram at 1600 rpm in KOH solution;
  • Example 6 is a graph comparing the stability of a constant potentiometric current oxygen reduction stability of a catalyst prepared in Example 1 with a commercial platinum catalyst (Pt/C);
  • Figure 7 is a graph comparing the resistance of a catalyst prepared in Example 1 to a commercial platinum catalyst (Pt/C) against methanol oxidation.
  • Figure 8 is a scanning electron micrograph of the catalyst prepared in Example 2.
  • Figure 9 is a transmission electron micrograph of the catalyst prepared in Example 2.
  • Figure 10 is an energy spectrum diagram of the catalyst prepared in Example 2.
  • Figure 11 is a cyclic voltammogram of the catalyst prepared in Example 2 in a nitrogen and oxygen saturated 0.1 M KOH solution;
  • Figure 12 is a catalyst prepared in Example 2 with a commercial platinum catalyst (Pt / C) mounted on a rotating counter electrode in oxygen saturation 0.1M Linear sweep voltammogram at 1600 rpm in KOH solution;
  • Figure 13 is a graph showing the comparison of the constant potentiometric current oxygen reduction stability of the catalyst prepared in Example 2 with a commercial platinum catalyst (Pt/C);
  • Figure 14 is a graph comparing the resistance of a catalyst prepared in Example 2 to a commercial platinum catalyst (Pt/C) against methanol oxidation.
  • the graphite oxide prepared in the step 1) is sonicated at 15 ° C for 6 h to prepare a graphene oxide;
  • step 3 Dilute the graphene oxide prepared in step 2) to a concentration of 2.0 Mg/ml, dissolved in urea, and then hydrothermally reacted at 180 ° C for 12 h to obtain nitrogen-doped graphene;
  • reaction product of the step 4) is washed and dried, and then heat-treated at 850 ° C for 3 hours under argon gas protection conditions, and the obtained product is an oxygen reduction electrocatalyst based on an iron-tungsten double metal oxide-enhanced nitrogen-doped graphene.
  • Figure 1 is a scanning electron micrograph of the catalyst prepared in Example 1. As is clear from the figure, the catalyst has a loose porous structure.
  • Example 2 is a partial transmission electron micrograph of the catalyst prepared in Example 1.
  • Example 3 is a graph showing the energy spectrum of the catalyst prepared in Example 1.
  • the energy spectrum shows that the catalyst prepared in Example 1 contains carbon, nitrogen, oxygen, iron and tungsten elements.
  • Figure 4 is a catalyst prepared in Example 1 saturated with 0.1 M nitrogen and oxygen, respectively. Cyclic voltammogram in KOH solution; it was found that a significant reduction peak of oxygen was observed upon oxygen saturation, indicating that the catalyst prepared in Example 1 had good oxygen reduction catalytic performance.
  • Figure 5 is a catalyst prepared in Example 1 and a commercial platinum catalyst (Pt/C) mounted on a rotating counter electrode at an oxygen saturation of 0.1 M A linear sweep voltammogram at 1600 rpm in the KOH solution; it was found that the catalyst prepared in Example 1 had a corrected peak potential and the ring current was small, indicating that the catalyst prepared in Example 1 had a high oxygen reduction. Catalytic activity, the reduction of oxygen is mainly through a one-step four-electron process, and little hydrogen peroxide is produced.
  • Pt/C platinum catalyst
  • Example 6 is a graph comparing the constant potentiometric current oxygen reduction stability of the catalyst prepared in Example 1 with a commercial platinum catalyst (Pt/C); it was found that the catalyst prepared in Example 1 can still maintain its 80.2% after running for 30,000 s. The current was initially catalyzed, while the commercial platinum catalyst (Pt/C) was only 66%, demonstrating that the catalyst prepared in Example 1 has high oxygen reduction stability.
  • Example 7 is a graph comparing the anti-methanol oxidation ability of the catalyst prepared in Example 1 with a commercial platinum catalyst (Pt/C); the catalyst prepared in Example 1 was found to have significant resistance to methanol catalysis.
  • Example 1 The above experimental data shows that the catalyst prepared in Example 1 has excellent oxygen reduction catalytic performance and long-term stability as well as obvious resistance to methanol catalysis, and can be used as an oxygen reduction electrocatalyst for commercial fuel cells.
  • the graphite oxide prepared in the step 1) is sonicated at 10 ° C for 12 h to prepare a graphene oxide;
  • step 3 Dilute the graphene oxide prepared in step 2) to a concentration of 4.0 Mg/ml, dissolved in urea, and then hydrothermally reacted at 200 ° C for 18 h to obtain nitrogen-doped graphene;
  • reaction product of the step 4) is washed and dried, and then heat treated at 1000 ° C for 2 h under argon gas protection conditions, and the obtained product is an oxygen reduction electrocatalyst based on iron-tungsten double metal oxide-enhanced nitrogen-doped graphene.
  • Figure 8 is a scanning electron micrograph of the catalyst prepared in Example 2; it can be clearly seen from the figure that the catalyst has a loose porous structure.
  • Figure 9 is a transmission electron micrograph of the catalyst prepared in Example 2.
  • Figure 10 is a graph showing the energy spectrum of the catalyst prepared in Example 2.
  • the energy spectrum shows that the catalyst prepared in Example 2 contains carbon, nitrogen, oxygen, iron and tungsten elements.
  • Figure 11 is a catalyst prepared in Example 2, saturated with 0.1 M nitrogen and oxygen, respectively. Cyclic voltammogram in KOH solution; it was found that a significant reduction peak of oxygen was observed upon oxygen saturation, indicating that the catalyst prepared in Example 2 has good oxygen reduction catalytic performance.
  • Figure 12 is a catalyst prepared in Example 2 with a commercial platinum catalyst (Pt / C) mounted on a rotating counter electrode in oxygen saturation 0.1M
  • Figure 13 is a graph showing the comparison of the constant potentiometric current oxygen reduction stability of the catalyst prepared in Example 2 with a commercial platinum catalyst (Pt/C); it was found that the catalyst prepared in Example 2 can still maintain its 76% after running for 30,000 s. The catalytic current density was initially calculated, while the commercial platinum catalyst (Pt/C) was only 66%, which proved that the catalyst prepared in Example 2 had better oxygen reduction stability.
  • Figure 14 is a graph comparing the methanol oxidation resistance of the catalyst prepared in Example 2 with a commercial platinum catalyst (Pt/C); the catalyst prepared in Example 2 was found to have significant resistance to methanol catalysis.
  • Example 2 has excellent oxygen reduction catalytic performance and long-term stability as well as obvious resistance to methanol catalysis, and can be used as an oxygen reduction electrocatalyst for commercial fuel cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,包括以下步骤:1)将石墨粉进行氧化制备石墨氧化物;2)将步骤1)制备的石墨氧化物进行超声处理制备石墨烯氧化物;3)将步骤2)制备的石墨烯氧化物加水稀释并与氮源混合后水热反应,得到氮掺杂石墨烯;4)将步骤3)制备的氮掺杂石墨烯分散在水中后加入铁源和钨源,加热水解反应;5)将步骤4)的反应产物清洗干燥,然后在保护气的条件下热处理。本发明的方法制备的催化剂具有优良的氧还原催化性能和长期稳定性以及明显的抗甲醇催化能力,并且价格便宜、性能稳定、制备方法简单,可替代贵金属铂作为商业化燃料电池等的氧还原电催化剂使用。

Description

基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法 技术领域
本发明涉及一种氧还原电催化剂的制备方法,具体涉及一种基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法。
背景技术
氧气的电还原反应是最重要的电催化反应之一,广泛应用于燃料电池和金属-空气电池等领域。铂金以及铂基催化剂是目前燃料电池的常用催化剂,但其价格昂贵、资源有限,且长时间运行时性能损失严重,阻碍了燃料电池等相关领域的发展。
针对铂基催化剂价格昂贵、资源有限、长时间运行时性能损失严重等不足,近年来利用某些非金属元素(例如氮、硫、硼、磷)掺杂的碳材料表现出一定的氧还原性能,但元素掺杂涉及条件较苛刻,并且性能较之于商业化铂催化剂性能差较多,氧还原过电位较大。
因此,研究出一种催化活性高、价格便宜、性能稳定、制备步骤简单的高效氧还原电催化剂显得十分必要。
发明内容
有鉴于此,本发明的目的在于提供一种基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,制备的催化剂具有优良的氧还原催化性能和长期稳定性以及明显的抗甲醇催化能力。
为达到上述目的,本发明提供如下技术方案:
本发明的基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,包括以下步骤:
1)将石墨粉进行氧化制备石墨氧化物;
2)将步骤1)制备的石墨氧化物进行超声处理制备石墨烯氧化物;
3)将步骤2)制备的石墨烯氧化物加水稀释并与氮源混合后水热反应,得到氮掺杂石墨烯;
4)将步骤3)制备的氮掺杂石墨烯分散在水中后加入铁源和钨源,加热水解反应;
5)将步骤4)的反应产物清洗干燥,然后在保护气的条件下热处理,得到的产物即为基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂。
进一步,所述步骤1)中,使用浓硫酸、硝酸钠以及高锰酸钾将石墨粉氧化,制备石墨氧化物。
进一步,所述步骤2)中,将石墨氧化物在10~20℃下超声处理4~12h,制备石墨烯氧化物。
进一步,所述步骤3)中,将石墨烯氧化物加水稀释至浓度为0.5~5.0 mg/ml,加入尿素溶解,然后在120~220℃下水热反应6~24h,得到氮掺杂石墨烯。
进一步,所述步骤4)中,将氮掺杂石墨烯分散在水中后加入铁源和钨源,在搅拌条件下50~95℃加热水解反应6~24h。
进一步,所述步骤5)中,将步骤4)的反应产物清洗干燥,然后在氩气保护条件下500~1200℃热处理2~6h,得到的产物即为基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂。
有益效果
本发明将石墨烯氧化物还原的同时加入氮掺杂,再在氮掺杂石墨烯中加入铁源和钨源加热水解反应,铁源和钨源在石墨烯表面沉积,再在保护气的条件下热处理,就制得基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂。该催化剂具有优良的氧还原催化性能和长期稳定性以及明显的抗甲醇催化能力,并且价格便宜、性能稳定、制备方法简单,可替代贵金属铂作为商业化燃料电池等的氧还原电催化剂使用。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为实施例1制备的催化剂的扫描电镜图;
图2为实施例1制备的催化剂的局部透射电镜图;
图3为实施例1制备的催化剂的能谱图;
图4为实施例1制备的催化剂分别在氮气和氧气饱和0.1M KOH溶液中的循环伏安曲线图;
图5为实施例1制备的催化剂与商业化铂催化剂(Pt/C)搭载在旋转还盘电极在氧气饱和0.1M KOH溶液中以1600转/分钟转速的线性扫描伏安曲线图;
图6为实施例1制备的催化剂与商业化铂催化剂(Pt/C)的恒定电位计时电流氧还原稳定性能比较图;
图7为实施例1制备的催化剂与商业化铂催化剂(Pt/C)的抗甲醇氧化能力比较图。
图8为实施例2制备的催化剂的扫描电镜图;
图9为实施例2制备的催化剂的透射电镜图;
图10为实施例2制备的催化剂的能谱图;
图11为实施例2制备的催化剂分别在氮气和氧气饱和0.1M KOH溶液中的循环伏安曲线图;
图12为实施例2制备的催化剂与商业化铂催化剂(Pt/C)搭载在旋转还盘电极在氧气饱和0.1M KOH溶液中以1600转/分钟转速的线性扫描伏安曲线图;
图13为实施例2制备的催化剂与商业化铂催化剂(Pt/C)的恒定电位计时电流氧还原稳定性能比较图;
图14为实施例2制备的催化剂与商业化铂催化剂(Pt/C)的抗甲醇氧化能力比较图。
本发明的实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
实施例1
本实施例的基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,包括以下步骤:
1)使用浓硫酸、硝酸钠以及高锰酸钾将石墨粉氧化,制备石墨氧化物;
2)将步骤1)制备的石墨氧化物在15℃下超声处理6h,制备石墨烯氧化物;
3)将步骤2)制备的石墨烯氧化物加水稀释至浓度为2.0 mg/ml,加入尿素溶解,然后在180℃下水热反应12h,得到氮掺杂石墨烯;
4)将步骤3)制备的氮掺杂石墨烯分散在水中后加入硫酸亚铁铵和钨酸钠,在搅拌条件下90℃加热水解反应24h;
5)将步骤4)的反应产物清洗干燥,然后在氩气保护条件下850℃热处理3h,得到的产物即为基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂。
图1为实施例1制备的催化剂的扫描电镜图;从图中可以清晰的看出,该催化剂拥有疏松多孔的结构。
图2为实施例1制备的催化剂的局部透射电镜图。
图3为实施例1制备的催化剂能谱图,能谱图表明实施例1制备的催化剂含有碳、氮、氧、铁和钨元素。
图4为实施例1制备的催化剂分别在氮气和氧气饱和0.1M KOH溶液中的循环伏安曲线图;发现在氧气饱和时显示出明显的氧的还原峰,说明实施例1制备的催化剂具有良好的氧还原催化性能。
图5为实施例1制备的催化剂与商业化铂催化剂(Pt/C)搭载在旋转还盘电极在氧气饱和0.1M KOH溶液中以1600转/分钟转速的线性扫描伏安曲线图;发现实施例1制备的催化剂拥有更正的起峰电位,而且环电流很小,说明实施例1制备的催化剂拥有很高的氧还原催化活性,氧气的还原主要通过一步4电子过程,很少有过氧化氢生成。
图6为实施例1制备的催化剂与商业化铂催化剂(Pt/C)的恒定电位计时电流氧还原稳定性能比较图;发现实施例1制备的催化剂在运行30000s后仍然可以保持其80.2%的起始催化电流密度,而商业化的铂催化剂(Pt/C)只有66%,证明实施例1制备的催化剂具有很高的氧还原稳定性能。
图7为实施例1制备的催化剂与商业化铂催化剂(Pt/C)的抗甲醇氧化能力比较图;发现实施例1制备的催化剂具有明显的抗甲醇催化能力。
上述实验数据表明,实施例1制备的催化剂具有优良的氧还原催化性能和长期稳定性以及明显的抗甲醇催化能力,可替代贵金属铂作为商业化燃料电池等的氧还原电催化剂使用。
实施例2
本实施例的基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,包括以下步骤:
1)使用浓硫酸、硝酸钠以及高锰酸钾将石墨粉氧化,制备石墨氧化物;
2)将步骤1)制备的石墨氧化物在10℃下超声处理12h,制备石墨烯氧化物;
3)将步骤2)制备的石墨烯氧化物加水稀释至浓度为4.0 mg/ml,加入尿素溶解,然后在200℃下水热反应18h,得到氮掺杂石墨烯;
4)将步骤3)制备的氮掺杂石墨烯分散在水中后加入硫酸亚铁铵和钨酸钠,在搅拌条件下95℃加热水解反应24h;
5)将步骤4)的反应产物清洗干燥,然后在氩气保护条件下1000℃热处理2h,得到的产物即为基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂。
图8为实施例2制备的催化剂的扫描电镜图;从图中可以清晰的看出,该催化剂拥有疏松多孔的结构。
图9为实施例2制备的催化剂的透射电镜图。
图10为实施例2制备的催化剂能谱图,能谱图表明实施例2制备的催化剂含有碳、氮、氧、铁和钨元素。
图11为实施例2制备的催化剂分别在氮气和氧气饱和0.1M KOH溶液中的循环伏安曲线图;发现在氧气饱和时显示出明显的氧的还原峰,说明实施例2制备的催化剂具有良好的氧还原催化性能。
图12为实施例2制备的催化剂与商业化铂催化剂(Pt/C)搭载在旋转还盘电极在氧气饱和0.1M KOH溶液中以1600转/分钟转速的线性扫描伏安曲线图;发现实施例2制备的催化剂拥有较正的起峰电位,而且环电流小,说明实施例2制备的催化剂拥有比较高的氧还原催化活性。
图13为实施例2制备的催化剂与商业化铂催化剂(Pt/C)的恒定电位计时电流氧还原稳定性能比较图;发现实施例2制备的催化剂在运行30000s后仍然可以保持其76%的起始催化电流密度,而商业化的铂催化剂(Pt/C)只有66%,证明实施例2制备的催化剂氧还原稳定性能较好。
图14为实施例2制备的催化剂与商业化铂催化剂(Pt/C)的抗甲醇氧化能力比较图;发现实施例2制备的催化剂具有明显的抗甲醇催化能力。
上述实验数据表明,实施例2制备的催化剂具有优良的氧还原催化性能和长期稳定性以及明显的抗甲醇催化能力,可替代贵金属铂作为商业化燃料电池等的氧还原电催化剂使用。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (6)

  1. 基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,其特征在于:包括以下步骤:
    1)将石墨粉进行氧化制备石墨氧化物;
    2)将步骤1)制备的石墨氧化物进行超声处理制备石墨烯氧化物;
    3)将步骤2)制备的石墨烯氧化物加水稀释并与氮源混合后水热反应,得到氮掺杂石墨烯;
    4)将步骤3)制备的氮掺杂石墨烯分散在水中后加入铁源和钨源,加热水解反应;
    5)将步骤4)的反应产物清洗干燥,然后在保护气的条件下热处理,得到的产物即为基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂。
  2. 根据权利要求1所述的基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,其特征在于:所述步骤1)中,使用浓硫酸、硝酸钠以及高锰酸钾将石墨粉氧化,制备石墨氧化物。
  3. 根据权利要求1所述的基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,其特征在于:所述步骤2)中,将石墨氧化物在10~20℃下超声处理4~12h,制备石墨烯氧化物。
  4. 根据权利要求1所述的基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,其特征在于:所述步骤3)中,将石墨烯氧化物加水稀释至浓度为0.5~5.0 mg/ml,加入尿素溶解,然后在120~220℃下水热反应6~24h,得到氮掺杂石墨烯。
  5. 根据权利要求1所述的基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,其特征在于:所述步骤4)中,将氮掺杂石墨烯分散在水中后加入铁源和钨源,在搅拌条件下50~95℃加热水解反应6~24h。
  6. 根据权利要求1所述的基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法,其特征在于:所述步骤5)中,将步骤4)的反应产物清洗干燥,然后在氩气保护条件下500~1200℃热处理2~6h,得到的产物即为基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂。
PCT/CN2014/079209 2014-04-23 2014-06-05 基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法 WO2015161544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410164589.9A CN103920519B (zh) 2014-04-23 2014-04-23 基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法
CN201410164589.9 2014-04-23

Publications (1)

Publication Number Publication Date
WO2015161544A1 true WO2015161544A1 (zh) 2015-10-29

Family

ID=51139052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079209 WO2015161544A1 (zh) 2014-04-23 2014-06-05 基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法

Country Status (2)

Country Link
CN (1) CN103920519B (zh)
WO (1) WO2015161544A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987327A (zh) * 2020-08-26 2020-11-24 福州大学 一种负载Pt/Co纳米粒子的氮掺杂石墨烯及其制备方法
CN112615015A (zh) * 2020-12-17 2021-04-06 河南师范大学 一种Fe3C纳米颗粒负载多孔氮掺杂石墨烯氧还原催化剂的制备方法
CN112687902A (zh) * 2020-12-28 2021-04-20 龙岩学院 一种氮掺杂石墨烯载空心纳米铂复合材料的制备方法
CN113845104A (zh) * 2021-08-11 2021-12-28 上海大学 氮掺杂碳纳米片负载氧化亚铁量子点的氧还原电催化剂、其制备方法及应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104353480B (zh) * 2014-09-26 2017-01-11 广西师范大学 三维氮掺杂石墨烯载铂铜复合电催化剂及其制备方法
CN105032469B (zh) * 2015-08-11 2017-08-08 中国人民解放军国防科学技术大学 生物质基氮掺杂石墨烯/碳纤维电催化剂及其制备方法
CN106207202A (zh) * 2016-07-22 2016-12-07 南京大学(苏州)高新技术研究院 掺氮石墨烯担载的铂钯镍三元纳米合金催化剂
CN106159228B (zh) * 2016-07-26 2019-04-23 广东工业大学 一种氮掺杂石墨烯-金属氧化物纳米复合材料及其制备方法和应用
CN110512229A (zh) * 2019-09-17 2019-11-29 王选明 一种水电解用析氧电极的制备方法
CN110876941B (zh) * 2019-11-05 2022-11-18 天津大学 一种负载型铁钨双金属复合氧化物及其制备方法和应用
CN113285080B (zh) * 2021-04-21 2022-10-18 上海电力大学 由植酸衍生的氮磷共掺杂的FeW/N,P-C复合材料及其制备与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142550A (zh) * 2011-02-25 2011-08-03 浙江大学 一种石墨烯纳米片/ws2的复合纳米材料及其制备方法
KR20120021385A (ko) * 2010-07-29 2012-03-09 한국과학기술원 나노 구조 모양을 가지는 연료 전지용 촉매의 한 반응기 제조 방법
CN102513109A (zh) * 2011-12-16 2012-06-27 武汉大学 一种碳基非贵金属氧电极双功能催化剂及其制备方法
CN102757041A (zh) * 2012-07-30 2012-10-31 哈尔滨工业大学 一种石墨烯/金属氧化物纳米复合材料粉体的制备方法
CN103118779A (zh) * 2010-09-14 2013-05-22 巴斯夫欧洲公司 生产含碳载体的方法
CN103599805A (zh) * 2013-11-20 2014-02-26 东华大学 一种氮掺杂石墨烯燃料电池催化剂的制备和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502593B (zh) * 2011-10-11 2013-07-10 中国石油大学(北京) 一种石墨烯、掺杂石墨烯或石墨烯复合物的制备方法
CN102602917B (zh) * 2012-03-19 2014-02-12 华南理工大学 氮掺杂石墨烯/金属氧化物纳米复合材料的制备方法
CN102626649A (zh) * 2012-03-21 2012-08-08 重庆大学 一种氧还原非贵金属催化剂及其制备方法
CN103515624A (zh) * 2013-08-02 2014-01-15 清华大学 碳载非贵金属氧还原复合物催化剂及制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120021385A (ko) * 2010-07-29 2012-03-09 한국과학기술원 나노 구조 모양을 가지는 연료 전지용 촉매의 한 반응기 제조 방법
CN103118779A (zh) * 2010-09-14 2013-05-22 巴斯夫欧洲公司 生产含碳载体的方法
CN102142550A (zh) * 2011-02-25 2011-08-03 浙江大学 一种石墨烯纳米片/ws2的复合纳米材料及其制备方法
CN102513109A (zh) * 2011-12-16 2012-06-27 武汉大学 一种碳基非贵金属氧电极双功能催化剂及其制备方法
CN102757041A (zh) * 2012-07-30 2012-10-31 哈尔滨工业大学 一种石墨烯/金属氧化物纳米复合材料粉体的制备方法
CN103599805A (zh) * 2013-11-20 2014-02-26 东华大学 一种氮掺杂石墨烯燃料电池催化剂的制备和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987327A (zh) * 2020-08-26 2020-11-24 福州大学 一种负载Pt/Co纳米粒子的氮掺杂石墨烯及其制备方法
CN112615015A (zh) * 2020-12-17 2021-04-06 河南师范大学 一种Fe3C纳米颗粒负载多孔氮掺杂石墨烯氧还原催化剂的制备方法
CN112687902A (zh) * 2020-12-28 2021-04-20 龙岩学院 一种氮掺杂石墨烯载空心纳米铂复合材料的制备方法
CN113845104A (zh) * 2021-08-11 2021-12-28 上海大学 氮掺杂碳纳米片负载氧化亚铁量子点的氧还原电催化剂、其制备方法及应用
CN113845104B (zh) * 2021-08-11 2024-01-16 上海大学 氮掺杂碳纳米片负载氧化亚铁量子点的氧还原电催化剂、其制备方法及应用

Also Published As

Publication number Publication date
CN103920519B (zh) 2016-03-30
CN103920519A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2015161544A1 (zh) 基于铁钨双金属氧化物增强氮掺杂石墨烯的氧还原电催化剂的制备方法
Liu et al. Mn-and N-doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation
CN105289695B (zh) 一种石墨烯负载Co-N-C氧还原催化剂及其制备方法
CN107346825A (zh) 一种氮、磷共掺杂碳基非金属氧还原/析出双效催化剂及其制备方法
CN105413730A (zh) 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
CN104289242B (zh) 用于燃料电池阴极的高石墨化度炭基催化剂的制备方法
CN103007976A (zh) 一种掺杂聚苯胺直接碳化的复合电催化剂、制备方法及应用
CN103706388A (zh) 氮掺杂多孔碳包覆碳纳米管的复合材料及其制备方法和应用
Wu et al. Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction
CN103143391B (zh) 三维石墨烯/卟啉复合氧还原电催化剂的制备方法
Li et al. Fe, P, N-and FeP, N-doped carbon hollow nanospheres: A comparison study toward oxygen reduction reaction electrocatalysts
CN107170994A (zh) 一种Fe‑N掺杂多孔碳氧还原催化剂
CN110197905A (zh) 一种改性碳素材料及由其制备的类石墨烯纳米片修饰的液流电池电极
CN109873172B (zh) 一种甲醇燃料电池催化剂的制备方法
CN114277399A (zh) 一种Ni单原子-氮掺杂碳纳米催化剂及其制备方法和烟道气转化应用
CN103170334A (zh) 一种碳载钴氧化物催化剂及其制备和应用
CN114196989A (zh) 一种木质素基三金属氮掺杂碳材料及其制备方法和应用
Zhang et al. Rapeseed meal-based autochthonous N and S-doped non-metallic porous carbon electrode material for oxygen reduction reaction catalysis
CN103212430B (zh) 利用浓硫酸碳化合成氮碳非金属氧还原催化剂的方法
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
Zhang et al. Multi-role graphitic carbon nitride-derived highly porous iron/nitrogen co-doped carbon nanosheets for highly efficient oxygen reduction catalyst
CN113540481A (zh) 一种质子交换膜燃料电池铂钴合金碳催化剂及其制备方法
CN113481004A (zh) 一种碳点及其制备方法和应用
Yang et al. Vacancy-mediated transition metals as efficient electrocatalysts for water splitting
CN108565480A (zh) 一种具有核壳结构的异原子掺杂石墨烯/炭基材料的制备方法及产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890429

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14890429

Country of ref document: EP

Kind code of ref document: A1